Fix formatting of most recent entry.
[binutils.git] / gold / i386.cc
blobd6e42f46501402a7bb4f094c68fcf460a6a37b62
1 // i386.cc -- i386 target support for gold.
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cstring>
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
40 namespace
43 using namespace gold;
45 class Output_data_plt_i386;
47 // The i386 target class.
48 // TLS info comes from
49 // http://people.redhat.com/drepper/tls.pdf
50 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
52 class Target_i386 : public Sized_target<32, false>
54 public:
55 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
57 Target_i386()
58 : Sized_target<32, false>(&i386_info),
59 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60 copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
61 { }
63 // Scan the relocations to look for symbol adjustments.
64 void
65 scan_relocs(const General_options& options,
66 Symbol_table* symtab,
67 Layout* layout,
68 Sized_relobj<32, false>* object,
69 unsigned int data_shndx,
70 unsigned int sh_type,
71 const unsigned char* prelocs,
72 size_t reloc_count,
73 Output_section* output_section,
74 bool needs_special_offset_handling,
75 size_t local_symbol_count,
76 const unsigned char* plocal_symbols);
78 // Finalize the sections.
79 void
80 do_finalize_sections(Layout*);
82 // Return the value to use for a dynamic which requires special
83 // treatment.
84 uint64_t
85 do_dynsym_value(const Symbol*) const;
87 // Relocate a section.
88 void
89 relocate_section(const Relocate_info<32, false>*,
90 unsigned int sh_type,
91 const unsigned char* prelocs,
92 size_t reloc_count,
93 Output_section* output_section,
94 bool needs_special_offset_handling,
95 unsigned char* view,
96 elfcpp::Elf_types<32>::Elf_Addr view_address,
97 section_size_type view_size);
99 // Scan the relocs during a relocatable link.
100 void
101 scan_relocatable_relocs(const General_options& options,
102 Symbol_table* symtab,
103 Layout* layout,
104 Sized_relobj<32, false>* object,
105 unsigned int data_shndx,
106 unsigned int sh_type,
107 const unsigned char* prelocs,
108 size_t reloc_count,
109 Output_section* output_section,
110 bool needs_special_offset_handling,
111 size_t local_symbol_count,
112 const unsigned char* plocal_symbols,
113 Relocatable_relocs*);
115 // Relocate a section during a relocatable link.
116 void
117 relocate_for_relocatable(const Relocate_info<32, false>*,
118 unsigned int sh_type,
119 const unsigned char* prelocs,
120 size_t reloc_count,
121 Output_section* output_section,
122 off_t offset_in_output_section,
123 const Relocatable_relocs*,
124 unsigned char* view,
125 elfcpp::Elf_types<32>::Elf_Addr view_address,
126 section_size_type view_size,
127 unsigned char* reloc_view,
128 section_size_type reloc_view_size);
130 // Return a string used to fill a code section with nops.
131 std::string
132 do_code_fill(section_size_type length);
134 // Return whether SYM is defined by the ABI.
135 bool
136 do_is_defined_by_abi(Symbol* sym) const
137 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
139 // Return the size of the GOT section.
140 section_size_type
141 got_size()
143 gold_assert(this->got_ != NULL);
144 return this->got_->data_size();
147 private:
148 // The class which scans relocations.
149 struct Scan
151 inline void
152 local(const General_options& options, Symbol_table* symtab,
153 Layout* layout, Target_i386* target,
154 Sized_relobj<32, false>* object,
155 unsigned int data_shndx,
156 Output_section* output_section,
157 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
158 const elfcpp::Sym<32, false>& lsym);
160 inline void
161 global(const General_options& options, Symbol_table* symtab,
162 Layout* layout, Target_i386* target,
163 Sized_relobj<32, false>* object,
164 unsigned int data_shndx,
165 Output_section* output_section,
166 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
167 Symbol* gsym);
169 static void
170 unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
172 static void
173 unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
174 Symbol*);
177 // The class which implements relocation.
178 class Relocate
180 public:
181 Relocate()
182 : skip_call_tls_get_addr_(false),
183 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
186 ~Relocate()
188 if (this->skip_call_tls_get_addr_)
190 // FIXME: This needs to specify the location somehow.
191 gold_error(_("missing expected TLS relocation"));
195 // Return whether the static relocation needs to be applied.
196 inline bool
197 should_apply_static_reloc(const Sized_symbol<32>* gsym,
198 int ref_flags,
199 bool is_32bit);
201 // Do a relocation. Return false if the caller should not issue
202 // any warnings about this relocation.
203 inline bool
204 relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
205 const elfcpp::Rel<32, false>&,
206 unsigned int r_type, const Sized_symbol<32>*,
207 const Symbol_value<32>*,
208 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
209 section_size_type);
211 private:
212 // Do a TLS relocation.
213 inline void
214 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
215 size_t relnum, const elfcpp::Rel<32, false>&,
216 unsigned int r_type, const Sized_symbol<32>*,
217 const Symbol_value<32>*,
218 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
219 section_size_type);
221 // Do a TLS General-Dynamic to Initial-Exec transition.
222 inline void
223 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
224 Output_segment* tls_segment,
225 const elfcpp::Rel<32, false>&, unsigned int r_type,
226 elfcpp::Elf_types<32>::Elf_Addr value,
227 unsigned char* view,
228 section_size_type view_size);
230 // Do a TLS General-Dynamic to Local-Exec transition.
231 inline void
232 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
233 Output_segment* tls_segment,
234 const elfcpp::Rel<32, false>&, unsigned int r_type,
235 elfcpp::Elf_types<32>::Elf_Addr value,
236 unsigned char* view,
237 section_size_type view_size);
239 // Do a TLS Local-Dynamic to Local-Exec transition.
240 inline void
241 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
242 Output_segment* tls_segment,
243 const elfcpp::Rel<32, false>&, unsigned int r_type,
244 elfcpp::Elf_types<32>::Elf_Addr value,
245 unsigned char* view,
246 section_size_type view_size);
248 // Do a TLS Initial-Exec to Local-Exec transition.
249 static inline void
250 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
251 Output_segment* tls_segment,
252 const elfcpp::Rel<32, false>&, unsigned int r_type,
253 elfcpp::Elf_types<32>::Elf_Addr value,
254 unsigned char* view,
255 section_size_type view_size);
257 // We need to keep track of which type of local dynamic relocation
258 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
259 enum Local_dynamic_type
261 LOCAL_DYNAMIC_NONE,
262 LOCAL_DYNAMIC_SUN,
263 LOCAL_DYNAMIC_GNU
266 // This is set if we should skip the next reloc, which should be a
267 // PLT32 reloc against ___tls_get_addr.
268 bool skip_call_tls_get_addr_;
269 // The type of local dynamic relocation we have seen in the section
270 // being relocated, if any.
271 Local_dynamic_type local_dynamic_type_;
274 // A class which returns the size required for a relocation type,
275 // used while scanning relocs during a relocatable link.
276 class Relocatable_size_for_reloc
278 public:
279 unsigned int
280 get_size_for_reloc(unsigned int, Relobj*);
283 // Adjust TLS relocation type based on the options and whether this
284 // is a local symbol.
285 static tls::Tls_optimization
286 optimize_tls_reloc(bool is_final, int r_type);
288 // Get the GOT section, creating it if necessary.
289 Output_data_got<32, false>*
290 got_section(Symbol_table*, Layout*);
292 // Get the GOT PLT section.
293 Output_data_space*
294 got_plt_section() const
296 gold_assert(this->got_plt_ != NULL);
297 return this->got_plt_;
300 // Create a PLT entry for a global symbol.
301 void
302 make_plt_entry(Symbol_table*, Layout*, Symbol*);
304 // Create a GOT entry for the TLS module index.
305 unsigned int
306 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
307 Sized_relobj<32, false>* object);
309 // Get the PLT section.
310 const Output_data_plt_i386*
311 plt_section() const
313 gold_assert(this->plt_ != NULL);
314 return this->plt_;
317 // Get the dynamic reloc section, creating it if necessary.
318 Reloc_section*
319 rel_dyn_section(Layout*);
321 // Return true if the symbol may need a COPY relocation.
322 // References from an executable object to non-function symbols
323 // defined in a dynamic object may need a COPY relocation.
324 bool
325 may_need_copy_reloc(Symbol* gsym)
327 return (!parameters->output_is_shared()
328 && gsym->is_from_dynobj()
329 && gsym->type() != elfcpp::STT_FUNC);
332 // Copy a relocation against a global symbol.
333 void
334 copy_reloc(const General_options*, Symbol_table*, Layout*,
335 Sized_relobj<32, false>*, unsigned int,
336 Output_section*, Symbol*, const elfcpp::Rel<32, false>&);
338 // Information about this specific target which we pass to the
339 // general Target structure.
340 static const Target::Target_info i386_info;
342 // The GOT section.
343 Output_data_got<32, false>* got_;
344 // The PLT section.
345 Output_data_plt_i386* plt_;
346 // The GOT PLT section.
347 Output_data_space* got_plt_;
348 // The dynamic reloc section.
349 Reloc_section* rel_dyn_;
350 // Relocs saved to avoid a COPY reloc.
351 Copy_relocs<32, false>* copy_relocs_;
352 // Space for variables copied with a COPY reloc.
353 Output_data_space* dynbss_;
354 // Offset of the GOT entry for the TLS module index;
355 unsigned int got_mod_index_offset_;
358 const Target::Target_info Target_i386::i386_info =
360 32, // size
361 false, // is_big_endian
362 elfcpp::EM_386, // machine_code
363 false, // has_make_symbol
364 false, // has_resolve
365 true, // has_code_fill
366 true, // is_default_stack_executable
367 "/usr/lib/libc.so.1", // dynamic_linker
368 0x08048000, // default_text_segment_address
369 0x1000, // abi_pagesize
370 0x1000 // common_pagesize
373 // Get the GOT section, creating it if necessary.
375 Output_data_got<32, false>*
376 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
378 if (this->got_ == NULL)
380 gold_assert(symtab != NULL && layout != NULL);
382 this->got_ = new Output_data_got<32, false>();
384 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
385 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
386 this->got_);
388 // The old GNU linker creates a .got.plt section. We just
389 // create another set of data in the .got section. Note that we
390 // always create a PLT if we create a GOT, although the PLT
391 // might be empty.
392 this->got_plt_ = new Output_data_space(4);
393 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
394 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
395 this->got_plt_);
397 // The first three entries are reserved.
398 this->got_plt_->set_current_data_size(3 * 4);
400 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
401 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
402 this->got_plt_,
403 0, 0, elfcpp::STT_OBJECT,
404 elfcpp::STB_LOCAL,
405 elfcpp::STV_HIDDEN, 0,
406 false, false);
409 return this->got_;
412 // Get the dynamic reloc section, creating it if necessary.
414 Target_i386::Reloc_section*
415 Target_i386::rel_dyn_section(Layout* layout)
417 if (this->rel_dyn_ == NULL)
419 gold_assert(layout != NULL);
420 this->rel_dyn_ = new Reloc_section();
421 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
422 elfcpp::SHF_ALLOC, this->rel_dyn_);
424 return this->rel_dyn_;
427 // A class to handle the PLT data.
429 class Output_data_plt_i386 : public Output_section_data
431 public:
432 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
434 Output_data_plt_i386(Layout*, Output_data_space*);
436 // Add an entry to the PLT.
437 void
438 add_entry(Symbol* gsym);
440 // Return the .rel.plt section data.
441 const Reloc_section*
442 rel_plt() const
443 { return this->rel_; }
445 protected:
446 void
447 do_adjust_output_section(Output_section* os);
449 private:
450 // The size of an entry in the PLT.
451 static const int plt_entry_size = 16;
453 // The first entry in the PLT for an executable.
454 static unsigned char exec_first_plt_entry[plt_entry_size];
456 // The first entry in the PLT for a shared object.
457 static unsigned char dyn_first_plt_entry[plt_entry_size];
459 // Other entries in the PLT for an executable.
460 static unsigned char exec_plt_entry[plt_entry_size];
462 // Other entries in the PLT for a shared object.
463 static unsigned char dyn_plt_entry[plt_entry_size];
465 // Set the final size.
466 void
467 set_final_data_size()
468 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
470 // Write out the PLT data.
471 void
472 do_write(Output_file*);
474 // The reloc section.
475 Reloc_section* rel_;
476 // The .got.plt section.
477 Output_data_space* got_plt_;
478 // The number of PLT entries.
479 unsigned int count_;
482 // Create the PLT section. The ordinary .got section is an argument,
483 // since we need to refer to the start. We also create our own .got
484 // section just for PLT entries.
486 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
487 Output_data_space* got_plt)
488 : Output_section_data(4), got_plt_(got_plt), count_(0)
490 this->rel_ = new Reloc_section();
491 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
492 elfcpp::SHF_ALLOC, this->rel_);
495 void
496 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
498 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
499 // linker, and so do we.
500 os->set_entsize(4);
503 // Add an entry to the PLT.
505 void
506 Output_data_plt_i386::add_entry(Symbol* gsym)
508 gold_assert(!gsym->has_plt_offset());
510 // Note that when setting the PLT offset we skip the initial
511 // reserved PLT entry.
512 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
514 ++this->count_;
516 section_offset_type got_offset = this->got_plt_->current_data_size();
518 // Every PLT entry needs a GOT entry which points back to the PLT
519 // entry (this will be changed by the dynamic linker, normally
520 // lazily when the function is called).
521 this->got_plt_->set_current_data_size(got_offset + 4);
523 // Every PLT entry needs a reloc.
524 gsym->set_needs_dynsym_entry();
525 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
526 got_offset);
528 // Note that we don't need to save the symbol. The contents of the
529 // PLT are independent of which symbols are used. The symbols only
530 // appear in the relocations.
533 // The first entry in the PLT for an executable.
535 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
537 0xff, 0x35, // pushl contents of memory address
538 0, 0, 0, 0, // replaced with address of .got + 4
539 0xff, 0x25, // jmp indirect
540 0, 0, 0, 0, // replaced with address of .got + 8
541 0, 0, 0, 0 // unused
544 // The first entry in the PLT for a shared object.
546 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
548 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
549 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
550 0, 0, 0, 0 // unused
553 // Subsequent entries in the PLT for an executable.
555 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
557 0xff, 0x25, // jmp indirect
558 0, 0, 0, 0, // replaced with address of symbol in .got
559 0x68, // pushl immediate
560 0, 0, 0, 0, // replaced with offset into relocation table
561 0xe9, // jmp relative
562 0, 0, 0, 0 // replaced with offset to start of .plt
565 // Subsequent entries in the PLT for a shared object.
567 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
569 0xff, 0xa3, // jmp *offset(%ebx)
570 0, 0, 0, 0, // replaced with offset of symbol in .got
571 0x68, // pushl immediate
572 0, 0, 0, 0, // replaced with offset into relocation table
573 0xe9, // jmp relative
574 0, 0, 0, 0 // replaced with offset to start of .plt
577 // Write out the PLT. This uses the hand-coded instructions above,
578 // and adjusts them as needed. This is all specified by the i386 ELF
579 // Processor Supplement.
581 void
582 Output_data_plt_i386::do_write(Output_file* of)
584 const off_t offset = this->offset();
585 const section_size_type oview_size =
586 convert_to_section_size_type(this->data_size());
587 unsigned char* const oview = of->get_output_view(offset, oview_size);
589 const off_t got_file_offset = this->got_plt_->offset();
590 const section_size_type got_size =
591 convert_to_section_size_type(this->got_plt_->data_size());
592 unsigned char* const got_view = of->get_output_view(got_file_offset,
593 got_size);
595 unsigned char* pov = oview;
597 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
598 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
600 if (parameters->output_is_shared())
601 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
602 else
604 memcpy(pov, exec_first_plt_entry, plt_entry_size);
605 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
606 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
608 pov += plt_entry_size;
610 unsigned char* got_pov = got_view;
612 memset(got_pov, 0, 12);
613 got_pov += 12;
615 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
617 unsigned int plt_offset = plt_entry_size;
618 unsigned int plt_rel_offset = 0;
619 unsigned int got_offset = 12;
620 const unsigned int count = this->count_;
621 for (unsigned int i = 0;
622 i < count;
623 ++i,
624 pov += plt_entry_size,
625 got_pov += 4,
626 plt_offset += plt_entry_size,
627 plt_rel_offset += rel_size,
628 got_offset += 4)
630 // Set and adjust the PLT entry itself.
632 if (parameters->output_is_shared())
634 memcpy(pov, dyn_plt_entry, plt_entry_size);
635 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
637 else
639 memcpy(pov, exec_plt_entry, plt_entry_size);
640 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
641 (got_address
642 + got_offset));
645 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
646 elfcpp::Swap<32, false>::writeval(pov + 12,
647 - (plt_offset + plt_entry_size));
649 // Set the entry in the GOT.
650 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
653 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
654 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
656 of->write_output_view(offset, oview_size, oview);
657 of->write_output_view(got_file_offset, got_size, got_view);
660 // Create a PLT entry for a global symbol.
662 void
663 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
665 if (gsym->has_plt_offset())
666 return;
668 if (this->plt_ == NULL)
670 // Create the GOT sections first.
671 this->got_section(symtab, layout);
673 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
674 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
675 (elfcpp::SHF_ALLOC
676 | elfcpp::SHF_EXECINSTR),
677 this->plt_);
680 this->plt_->add_entry(gsym);
683 // Create a GOT entry for the TLS module index.
685 unsigned int
686 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
687 Sized_relobj<32, false>* object)
689 if (this->got_mod_index_offset_ == -1U)
691 gold_assert(symtab != NULL && layout != NULL && object != NULL);
692 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
693 Output_data_got<32, false>* got = this->got_section(symtab, layout);
694 unsigned int got_offset = got->add_constant(0);
695 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
696 got_offset);
697 got->add_constant(0);
698 this->got_mod_index_offset_ = got_offset;
700 return this->got_mod_index_offset_;
703 // Handle a relocation against a non-function symbol defined in a
704 // dynamic object. The traditional way to handle this is to generate
705 // a COPY relocation to copy the variable at runtime from the shared
706 // object into the executable's data segment. However, this is
707 // undesirable in general, as if the size of the object changes in the
708 // dynamic object, the executable will no longer work correctly. If
709 // this relocation is in a writable section, then we can create a
710 // dynamic reloc and the dynamic linker will resolve it to the correct
711 // address at runtime. However, we do not want do that if the
712 // relocation is in a read-only section, as it would prevent the
713 // readonly segment from being shared. And if we have to eventually
714 // generate a COPY reloc, then any dynamic relocations will be
715 // useless. So this means that if this is a writable section, we need
716 // to save the relocation until we see whether we have to create a
717 // COPY relocation for this symbol for any other relocation.
719 void
720 Target_i386::copy_reloc(const General_options* options,
721 Symbol_table* symtab,
722 Layout* layout,
723 Sized_relobj<32, false>* object,
724 unsigned int data_shndx,
725 Output_section* output_section,
726 Symbol* gsym,
727 const elfcpp::Rel<32, false>& rel)
729 Sized_symbol<32>* ssym;
730 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
731 SELECT_SIZE(32));
733 if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
734 data_shndx, ssym))
736 // So far we do not need a COPY reloc. Save this relocation.
737 // If it turns out that we never need a COPY reloc for this
738 // symbol, then we will emit the relocation.
739 if (this->copy_relocs_ == NULL)
740 this->copy_relocs_ = new Copy_relocs<32, false>();
741 this->copy_relocs_->save(ssym, object, data_shndx, output_section, rel);
743 else
745 // Allocate space for this symbol in the .bss section.
747 elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
749 // There is no defined way to determine the required alignment
750 // of the symbol. We pick the alignment based on the size. We
751 // set an arbitrary maximum of 256.
752 unsigned int align;
753 for (align = 1; align < 512; align <<= 1)
754 if ((symsize & align) != 0)
755 break;
757 if (this->dynbss_ == NULL)
759 this->dynbss_ = new Output_data_space(align);
760 layout->add_output_section_data(".bss",
761 elfcpp::SHT_NOBITS,
762 (elfcpp::SHF_ALLOC
763 | elfcpp::SHF_WRITE),
764 this->dynbss_);
767 Output_data_space* dynbss = this->dynbss_;
769 if (align > dynbss->addralign())
770 dynbss->set_space_alignment(align);
772 section_size_type dynbss_size =
773 convert_to_section_size_type(dynbss->current_data_size());
774 dynbss_size = align_address(dynbss_size, align);
775 section_size_type offset = dynbss_size;
776 dynbss->set_current_data_size(dynbss_size + symsize);
778 symtab->define_with_copy_reloc(ssym, dynbss, offset);
780 // Add the COPY reloc.
781 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
782 rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
786 // Optimize the TLS relocation type based on what we know about the
787 // symbol. IS_FINAL is true if the final address of this symbol is
788 // known at link time.
790 tls::Tls_optimization
791 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
793 // If we are generating a shared library, then we can't do anything
794 // in the linker.
795 if (parameters->output_is_shared())
796 return tls::TLSOPT_NONE;
798 switch (r_type)
800 case elfcpp::R_386_TLS_GD:
801 case elfcpp::R_386_TLS_GOTDESC:
802 case elfcpp::R_386_TLS_DESC_CALL:
803 // These are General-Dynamic which permits fully general TLS
804 // access. Since we know that we are generating an executable,
805 // we can convert this to Initial-Exec. If we also know that
806 // this is a local symbol, we can further switch to Local-Exec.
807 if (is_final)
808 return tls::TLSOPT_TO_LE;
809 return tls::TLSOPT_TO_IE;
811 case elfcpp::R_386_TLS_LDM:
812 // This is Local-Dynamic, which refers to a local symbol in the
813 // dynamic TLS block. Since we know that we generating an
814 // executable, we can switch to Local-Exec.
815 return tls::TLSOPT_TO_LE;
817 case elfcpp::R_386_TLS_LDO_32:
818 // Another type of Local-Dynamic relocation.
819 return tls::TLSOPT_TO_LE;
821 case elfcpp::R_386_TLS_IE:
822 case elfcpp::R_386_TLS_GOTIE:
823 case elfcpp::R_386_TLS_IE_32:
824 // These are Initial-Exec relocs which get the thread offset
825 // from the GOT. If we know that we are linking against the
826 // local symbol, we can switch to Local-Exec, which links the
827 // thread offset into the instruction.
828 if (is_final)
829 return tls::TLSOPT_TO_LE;
830 return tls::TLSOPT_NONE;
832 case elfcpp::R_386_TLS_LE:
833 case elfcpp::R_386_TLS_LE_32:
834 // When we already have Local-Exec, there is nothing further we
835 // can do.
836 return tls::TLSOPT_NONE;
838 default:
839 gold_unreachable();
843 // Report an unsupported relocation against a local symbol.
845 void
846 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
847 unsigned int r_type)
849 gold_error(_("%s: unsupported reloc %u against local symbol"),
850 object->name().c_str(), r_type);
853 // Scan a relocation for a local symbol.
855 inline void
856 Target_i386::Scan::local(const General_options&,
857 Symbol_table* symtab,
858 Layout* layout,
859 Target_i386* target,
860 Sized_relobj<32, false>* object,
861 unsigned int data_shndx,
862 Output_section* output_section,
863 const elfcpp::Rel<32, false>& reloc,
864 unsigned int r_type,
865 const elfcpp::Sym<32, false>& lsym)
867 switch (r_type)
869 case elfcpp::R_386_NONE:
870 case elfcpp::R_386_GNU_VTINHERIT:
871 case elfcpp::R_386_GNU_VTENTRY:
872 break;
874 case elfcpp::R_386_32:
875 // If building a shared library (or a position-independent
876 // executable), we need to create a dynamic relocation for
877 // this location. The relocation applied at link time will
878 // apply the link-time value, so we flag the location with
879 // an R_386_RELATIVE relocation so the dynamic loader can
880 // relocate it easily.
881 if (parameters->output_is_position_independent())
883 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
884 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
885 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
886 output_section, data_shndx,
887 reloc.get_r_offset());
889 break;
891 case elfcpp::R_386_16:
892 case elfcpp::R_386_8:
893 // If building a shared library (or a position-independent
894 // executable), we need to create a dynamic relocation for
895 // this location. Because the addend needs to remain in the
896 // data section, we need to be careful not to apply this
897 // relocation statically.
898 if (parameters->output_is_position_independent())
900 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
901 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
902 rel_dyn->add_local(object, r_sym, r_type, output_section, data_shndx,
903 reloc.get_r_offset());
905 break;
907 case elfcpp::R_386_PC32:
908 case elfcpp::R_386_PC16:
909 case elfcpp::R_386_PC8:
910 break;
912 case elfcpp::R_386_PLT32:
913 // Since we know this is a local symbol, we can handle this as a
914 // PC32 reloc.
915 break;
917 case elfcpp::R_386_GOTOFF:
918 case elfcpp::R_386_GOTPC:
919 // We need a GOT section.
920 target->got_section(symtab, layout);
921 break;
923 case elfcpp::R_386_GOT32:
925 // The symbol requires a GOT entry.
926 Output_data_got<32, false>* got = target->got_section(symtab, layout);
927 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
928 if (got->add_local(object, r_sym))
930 // If we are generating a shared object, we need to add a
931 // dynamic RELATIVE relocation for this symbol's GOT entry.
932 if (parameters->output_is_position_independent())
934 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
935 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
936 rel_dyn->add_local_relative(object, r_sym,
937 elfcpp::R_386_RELATIVE,
938 got,
939 object->local_got_offset(r_sym));
943 break;
945 // These are relocations which should only be seen by the
946 // dynamic linker, and should never be seen here.
947 case elfcpp::R_386_COPY:
948 case elfcpp::R_386_GLOB_DAT:
949 case elfcpp::R_386_JUMP_SLOT:
950 case elfcpp::R_386_RELATIVE:
951 case elfcpp::R_386_TLS_TPOFF:
952 case elfcpp::R_386_TLS_DTPMOD32:
953 case elfcpp::R_386_TLS_DTPOFF32:
954 case elfcpp::R_386_TLS_TPOFF32:
955 case elfcpp::R_386_TLS_DESC:
956 gold_error(_("%s: unexpected reloc %u in object file"),
957 object->name().c_str(), r_type);
958 break;
960 // These are initial TLS relocs, which are expected when
961 // linking.
962 case elfcpp::R_386_TLS_GD: // Global-dynamic
963 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
964 case elfcpp::R_386_TLS_DESC_CALL:
965 case elfcpp::R_386_TLS_LDM: // Local-dynamic
966 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
967 case elfcpp::R_386_TLS_IE: // Initial-exec
968 case elfcpp::R_386_TLS_IE_32:
969 case elfcpp::R_386_TLS_GOTIE:
970 case elfcpp::R_386_TLS_LE: // Local-exec
971 case elfcpp::R_386_TLS_LE_32:
973 bool output_is_shared = parameters->output_is_shared();
974 const tls::Tls_optimization optimized_type
975 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
976 switch (r_type)
978 case elfcpp::R_386_TLS_GD: // Global-dynamic
979 if (optimized_type == tls::TLSOPT_NONE)
981 // Create a pair of GOT entries for the module index and
982 // dtv-relative offset.
983 Output_data_got<32, false>* got
984 = target->got_section(symtab, layout);
985 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
986 got->add_local_tls_with_rel(object, r_sym,
987 lsym.get_st_shndx(), true,
988 target->rel_dyn_section(layout),
989 elfcpp::R_386_TLS_DTPMOD32);
991 else if (optimized_type != tls::TLSOPT_TO_LE)
992 unsupported_reloc_local(object, r_type);
993 break;
995 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
996 case elfcpp::R_386_TLS_DESC_CALL:
997 // FIXME: If not relaxing to LE, we need to generate
998 // a GOT entry with an R_386_TLS_DESC reloc.
999 if (optimized_type != tls::TLSOPT_TO_LE)
1000 unsupported_reloc_local(object, r_type);
1001 break;
1003 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1004 if (optimized_type == tls::TLSOPT_NONE)
1006 // Create a GOT entry for the module index.
1007 target->got_mod_index_entry(symtab, layout, object);
1009 else if (optimized_type != tls::TLSOPT_TO_LE)
1010 unsupported_reloc_local(object, r_type);
1011 break;
1013 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1014 break;
1016 case elfcpp::R_386_TLS_IE: // Initial-exec
1017 case elfcpp::R_386_TLS_IE_32:
1018 case elfcpp::R_386_TLS_GOTIE:
1019 layout->set_has_static_tls();
1020 if (optimized_type == tls::TLSOPT_NONE)
1022 // For the R_386_TLS_IE relocation, we need to create a
1023 // dynamic relocation when building a shared library.
1024 if (r_type == elfcpp::R_386_TLS_IE
1025 && parameters->output_is_shared())
1027 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1028 unsigned int r_sym
1029 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1030 rel_dyn->add_local_relative(object, r_sym,
1031 elfcpp::R_386_RELATIVE,
1032 output_section, data_shndx,
1033 reloc.get_r_offset());
1035 // Create a GOT entry for the tp-relative offset.
1036 Output_data_got<32, false>* got
1037 = target->got_section(symtab, layout);
1038 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1039 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1040 ? elfcpp::R_386_TLS_TPOFF32
1041 : elfcpp::R_386_TLS_TPOFF);
1042 got->add_local_with_rel(object, r_sym,
1043 target->rel_dyn_section(layout),
1044 dyn_r_type);
1046 else if (optimized_type != tls::TLSOPT_TO_LE)
1047 unsupported_reloc_local(object, r_type);
1048 break;
1050 case elfcpp::R_386_TLS_LE: // Local-exec
1051 case elfcpp::R_386_TLS_LE_32:
1052 layout->set_has_static_tls();
1053 if (output_is_shared)
1055 // We need to create a dynamic relocation.
1056 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1057 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1058 ? elfcpp::R_386_TLS_TPOFF32
1059 : elfcpp::R_386_TLS_TPOFF);
1060 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1061 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1062 data_shndx, reloc.get_r_offset());
1064 break;
1066 default:
1067 gold_unreachable();
1070 break;
1072 case elfcpp::R_386_32PLT:
1073 case elfcpp::R_386_TLS_GD_32:
1074 case elfcpp::R_386_TLS_GD_PUSH:
1075 case elfcpp::R_386_TLS_GD_CALL:
1076 case elfcpp::R_386_TLS_GD_POP:
1077 case elfcpp::R_386_TLS_LDM_32:
1078 case elfcpp::R_386_TLS_LDM_PUSH:
1079 case elfcpp::R_386_TLS_LDM_CALL:
1080 case elfcpp::R_386_TLS_LDM_POP:
1081 case elfcpp::R_386_USED_BY_INTEL_200:
1082 default:
1083 unsupported_reloc_local(object, r_type);
1084 break;
1088 // Report an unsupported relocation against a global symbol.
1090 void
1091 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
1092 unsigned int r_type,
1093 Symbol* gsym)
1095 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1096 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1099 // Scan a relocation for a global symbol.
1101 inline void
1102 Target_i386::Scan::global(const General_options& options,
1103 Symbol_table* symtab,
1104 Layout* layout,
1105 Target_i386* target,
1106 Sized_relobj<32, false>* object,
1107 unsigned int data_shndx,
1108 Output_section* output_section,
1109 const elfcpp::Rel<32, false>& reloc,
1110 unsigned int r_type,
1111 Symbol* gsym)
1113 switch (r_type)
1115 case elfcpp::R_386_NONE:
1116 case elfcpp::R_386_GNU_VTINHERIT:
1117 case elfcpp::R_386_GNU_VTENTRY:
1118 break;
1120 case elfcpp::R_386_32:
1121 case elfcpp::R_386_16:
1122 case elfcpp::R_386_8:
1124 // Make a PLT entry if necessary.
1125 if (gsym->needs_plt_entry())
1127 target->make_plt_entry(symtab, layout, gsym);
1128 // Since this is not a PC-relative relocation, we may be
1129 // taking the address of a function. In that case we need to
1130 // set the entry in the dynamic symbol table to the address of
1131 // the PLT entry.
1132 if (gsym->is_from_dynobj() && !parameters->output_is_shared())
1133 gsym->set_needs_dynsym_value();
1135 // Make a dynamic relocation if necessary.
1136 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1138 if (target->may_need_copy_reloc(gsym))
1140 target->copy_reloc(&options, symtab, layout, object,
1141 data_shndx, output_section, gsym, reloc);
1143 else if (r_type == elfcpp::R_386_32
1144 && gsym->can_use_relative_reloc(false))
1146 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1147 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1148 output_section, object,
1149 data_shndx, reloc.get_r_offset());
1151 else
1153 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1154 rel_dyn->add_global(gsym, r_type, output_section, object,
1155 data_shndx, reloc.get_r_offset());
1159 break;
1161 case elfcpp::R_386_PC32:
1162 case elfcpp::R_386_PC16:
1163 case elfcpp::R_386_PC8:
1165 // Make a PLT entry if necessary.
1166 if (gsym->needs_plt_entry())
1168 // These relocations are used for function calls only in
1169 // non-PIC code. For a 32-bit relocation in a shared library,
1170 // we'll need a text relocation anyway, so we can skip the
1171 // PLT entry and let the dynamic linker bind the call directly
1172 // to the target. For smaller relocations, we should use a
1173 // PLT entry to ensure that the call can reach.
1174 if (!parameters->output_is_shared()
1175 || r_type != elfcpp::R_386_PC32)
1176 target->make_plt_entry(symtab, layout, gsym);
1178 // Make a dynamic relocation if necessary.
1179 int flags = Symbol::NON_PIC_REF;
1180 if (gsym->type() == elfcpp::STT_FUNC)
1181 flags |= Symbol::FUNCTION_CALL;
1182 if (gsym->needs_dynamic_reloc(flags))
1184 if (target->may_need_copy_reloc(gsym))
1186 target->copy_reloc(&options, symtab, layout, object,
1187 data_shndx, output_section, gsym, reloc);
1189 else
1191 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1192 rel_dyn->add_global(gsym, r_type, output_section, object,
1193 data_shndx, reloc.get_r_offset());
1197 break;
1199 case elfcpp::R_386_GOT32:
1201 // The symbol requires a GOT entry.
1202 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1203 if (gsym->final_value_is_known())
1204 got->add_global(gsym);
1205 else
1207 // If this symbol is not fully resolved, we need to add a
1208 // GOT entry with a dynamic relocation.
1209 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1210 if (gsym->is_from_dynobj()
1211 || gsym->is_undefined()
1212 || gsym->is_preemptible())
1213 got->add_global_with_rel(gsym, rel_dyn, elfcpp::R_386_GLOB_DAT);
1214 else
1216 if (got->add_global(gsym))
1217 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1218 got, gsym->got_offset());
1222 break;
1224 case elfcpp::R_386_PLT32:
1225 // If the symbol is fully resolved, this is just a PC32 reloc.
1226 // Otherwise we need a PLT entry.
1227 if (gsym->final_value_is_known())
1228 break;
1229 // If building a shared library, we can also skip the PLT entry
1230 // if the symbol is defined in the output file and is protected
1231 // or hidden.
1232 if (gsym->is_defined()
1233 && !gsym->is_from_dynobj()
1234 && !gsym->is_preemptible())
1235 break;
1236 target->make_plt_entry(symtab, layout, gsym);
1237 break;
1239 case elfcpp::R_386_GOTOFF:
1240 case elfcpp::R_386_GOTPC:
1241 // We need a GOT section.
1242 target->got_section(symtab, layout);
1243 break;
1245 // These are relocations which should only be seen by the
1246 // dynamic linker, and should never be seen here.
1247 case elfcpp::R_386_COPY:
1248 case elfcpp::R_386_GLOB_DAT:
1249 case elfcpp::R_386_JUMP_SLOT:
1250 case elfcpp::R_386_RELATIVE:
1251 case elfcpp::R_386_TLS_TPOFF:
1252 case elfcpp::R_386_TLS_DTPMOD32:
1253 case elfcpp::R_386_TLS_DTPOFF32:
1254 case elfcpp::R_386_TLS_TPOFF32:
1255 case elfcpp::R_386_TLS_DESC:
1256 gold_error(_("%s: unexpected reloc %u in object file"),
1257 object->name().c_str(), r_type);
1258 break;
1260 // These are initial tls relocs, which are expected when
1261 // linking.
1262 case elfcpp::R_386_TLS_GD: // Global-dynamic
1263 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1264 case elfcpp::R_386_TLS_DESC_CALL:
1265 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1266 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1267 case elfcpp::R_386_TLS_IE: // Initial-exec
1268 case elfcpp::R_386_TLS_IE_32:
1269 case elfcpp::R_386_TLS_GOTIE:
1270 case elfcpp::R_386_TLS_LE: // Local-exec
1271 case elfcpp::R_386_TLS_LE_32:
1273 const bool is_final = gsym->final_value_is_known();
1274 const tls::Tls_optimization optimized_type
1275 = Target_i386::optimize_tls_reloc(is_final, r_type);
1276 switch (r_type)
1278 case elfcpp::R_386_TLS_GD: // Global-dynamic
1279 if (optimized_type == tls::TLSOPT_NONE)
1281 // Create a pair of GOT entries for the module index and
1282 // dtv-relative offset.
1283 Output_data_got<32, false>* got
1284 = target->got_section(symtab, layout);
1285 got->add_global_tls_with_rel(gsym,
1286 target->rel_dyn_section(layout),
1287 elfcpp::R_386_TLS_DTPMOD32,
1288 elfcpp::R_386_TLS_DTPOFF32);
1290 else if (optimized_type == tls::TLSOPT_TO_IE)
1292 // Create a GOT entry for the tp-relative offset.
1293 Output_data_got<32, false>* got
1294 = target->got_section(symtab, layout);
1295 got->add_global_with_rel(gsym, target->rel_dyn_section(layout),
1296 elfcpp::R_386_TLS_TPOFF32);
1298 else if (optimized_type != tls::TLSOPT_TO_LE)
1299 unsupported_reloc_global(object, r_type, gsym);
1300 break;
1302 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
1303 case elfcpp::R_386_TLS_DESC_CALL:
1304 // FIXME: If not relaxing to LE, we need to generate
1305 // a GOT entry with an R_386_TLS_DESC reloc.
1306 if (optimized_type != tls::TLSOPT_TO_LE)
1307 unsupported_reloc_global(object, r_type, gsym);
1308 unsupported_reloc_global(object, r_type, gsym);
1309 break;
1311 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1312 if (optimized_type == tls::TLSOPT_NONE)
1314 // Create a GOT entry for the module index.
1315 target->got_mod_index_entry(symtab, layout, object);
1317 else if (optimized_type != tls::TLSOPT_TO_LE)
1318 unsupported_reloc_global(object, r_type, gsym);
1319 break;
1321 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1322 break;
1324 case elfcpp::R_386_TLS_IE: // Initial-exec
1325 case elfcpp::R_386_TLS_IE_32:
1326 case elfcpp::R_386_TLS_GOTIE:
1327 layout->set_has_static_tls();
1328 if (optimized_type == tls::TLSOPT_NONE)
1330 // For the R_386_TLS_IE relocation, we need to create a
1331 // dynamic relocation when building a shared library.
1332 if (r_type == elfcpp::R_386_TLS_IE
1333 && parameters->output_is_shared())
1335 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1336 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1337 output_section, object,
1338 data_shndx,
1339 reloc.get_r_offset());
1341 // Create a GOT entry for the tp-relative offset.
1342 Output_data_got<32, false>* got
1343 = target->got_section(symtab, layout);
1344 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1345 ? elfcpp::R_386_TLS_TPOFF32
1346 : elfcpp::R_386_TLS_TPOFF);
1347 got->add_global_with_rel(gsym,
1348 target->rel_dyn_section(layout),
1349 dyn_r_type);
1351 else if (optimized_type != tls::TLSOPT_TO_LE)
1352 unsupported_reloc_global(object, r_type, gsym);
1353 break;
1355 case elfcpp::R_386_TLS_LE: // Local-exec
1356 case elfcpp::R_386_TLS_LE_32:
1357 layout->set_has_static_tls();
1358 if (parameters->output_is_shared())
1360 // We need to create a dynamic relocation.
1361 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1362 ? elfcpp::R_386_TLS_TPOFF32
1363 : elfcpp::R_386_TLS_TPOFF);
1364 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1365 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
1366 data_shndx, reloc.get_r_offset());
1368 break;
1370 default:
1371 gold_unreachable();
1374 break;
1376 case elfcpp::R_386_32PLT:
1377 case elfcpp::R_386_TLS_GD_32:
1378 case elfcpp::R_386_TLS_GD_PUSH:
1379 case elfcpp::R_386_TLS_GD_CALL:
1380 case elfcpp::R_386_TLS_GD_POP:
1381 case elfcpp::R_386_TLS_LDM_32:
1382 case elfcpp::R_386_TLS_LDM_PUSH:
1383 case elfcpp::R_386_TLS_LDM_CALL:
1384 case elfcpp::R_386_TLS_LDM_POP:
1385 case elfcpp::R_386_USED_BY_INTEL_200:
1386 default:
1387 unsupported_reloc_global(object, r_type, gsym);
1388 break;
1392 // Scan relocations for a section.
1394 void
1395 Target_i386::scan_relocs(const General_options& options,
1396 Symbol_table* symtab,
1397 Layout* layout,
1398 Sized_relobj<32, false>* object,
1399 unsigned int data_shndx,
1400 unsigned int sh_type,
1401 const unsigned char* prelocs,
1402 size_t reloc_count,
1403 Output_section* output_section,
1404 bool needs_special_offset_handling,
1405 size_t local_symbol_count,
1406 const unsigned char* plocal_symbols)
1408 if (sh_type == elfcpp::SHT_RELA)
1410 gold_error(_("%s: unsupported RELA reloc section"),
1411 object->name().c_str());
1412 return;
1415 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1416 Target_i386::Scan>(
1417 options,
1418 symtab,
1419 layout,
1420 this,
1421 object,
1422 data_shndx,
1423 prelocs,
1424 reloc_count,
1425 output_section,
1426 needs_special_offset_handling,
1427 local_symbol_count,
1428 plocal_symbols);
1431 // Finalize the sections.
1433 void
1434 Target_i386::do_finalize_sections(Layout* layout)
1436 // Fill in some more dynamic tags.
1437 Output_data_dynamic* const odyn = layout->dynamic_data();
1438 if (odyn != NULL)
1440 if (this->got_plt_ != NULL)
1441 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1443 if (this->plt_ != NULL)
1445 const Output_data* od = this->plt_->rel_plt();
1446 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1447 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1448 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1451 if (this->rel_dyn_ != NULL)
1453 const Output_data* od = this->rel_dyn_;
1454 odyn->add_section_address(elfcpp::DT_REL, od);
1455 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1456 odyn->add_constant(elfcpp::DT_RELENT,
1457 elfcpp::Elf_sizes<32>::rel_size);
1460 if (!parameters->output_is_shared())
1462 // The value of the DT_DEBUG tag is filled in by the dynamic
1463 // linker at run time, and used by the debugger.
1464 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1468 // Emit any relocs we saved in an attempt to avoid generating COPY
1469 // relocs.
1470 if (this->copy_relocs_ == NULL)
1471 return;
1472 if (this->copy_relocs_->any_to_emit())
1474 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1475 this->copy_relocs_->emit(rel_dyn);
1477 delete this->copy_relocs_;
1478 this->copy_relocs_ = NULL;
1481 // Return whether a direct absolute static relocation needs to be applied.
1482 // In cases where Scan::local() or Scan::global() has created
1483 // a dynamic relocation other than R_386_RELATIVE, the addend
1484 // of the relocation is carried in the data, and we must not
1485 // apply the static relocation.
1487 inline bool
1488 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1489 int ref_flags,
1490 bool is_32bit)
1492 // For local symbols, we will have created a non-RELATIVE dynamic
1493 // relocation only if (a) the output is position independent,
1494 // (b) the relocation is absolute (not pc- or segment-relative), and
1495 // (c) the relocation is not 32 bits wide.
1496 if (gsym == NULL)
1497 return !(parameters->output_is_position_independent()
1498 && (ref_flags & Symbol::ABSOLUTE_REF)
1499 && !is_32bit);
1501 // For global symbols, we use the same helper routines used in the
1502 // scan pass. If we did not create a dynamic relocation, or if we
1503 // created a RELATIVE dynamic relocation, we should apply the static
1504 // relocation.
1505 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
1506 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
1507 && gsym->can_use_relative_reloc(ref_flags
1508 & Symbol::FUNCTION_CALL);
1509 return !has_dyn || is_rel;
1512 // Perform a relocation.
1514 inline bool
1515 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1516 Target_i386* target,
1517 size_t relnum,
1518 const elfcpp::Rel<32, false>& rel,
1519 unsigned int r_type,
1520 const Sized_symbol<32>* gsym,
1521 const Symbol_value<32>* psymval,
1522 unsigned char* view,
1523 elfcpp::Elf_types<32>::Elf_Addr address,
1524 section_size_type view_size)
1526 if (this->skip_call_tls_get_addr_)
1528 if (r_type != elfcpp::R_386_PLT32
1529 || gsym == NULL
1530 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1531 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1532 _("missing expected TLS relocation"));
1533 else
1535 this->skip_call_tls_get_addr_ = false;
1536 return false;
1540 // Pick the value to use for symbols defined in shared objects.
1541 Symbol_value<32> symval;
1542 bool is_nonpic = (r_type == elfcpp::R_386_PC8
1543 || r_type == elfcpp::R_386_PC16
1544 || r_type == elfcpp::R_386_PC32);
1545 if (gsym != NULL
1546 && (gsym->is_from_dynobj()
1547 || (parameters->output_is_shared()
1548 && (gsym->is_undefined() || gsym->is_preemptible())))
1549 && gsym->has_plt_offset()
1550 && (!is_nonpic || !parameters->output_is_shared()))
1552 symval.set_output_value(target->plt_section()->address()
1553 + gsym->plt_offset());
1554 psymval = &symval;
1557 const Sized_relobj<32, false>* object = relinfo->object;
1559 // Get the GOT offset if needed.
1560 // The GOT pointer points to the end of the GOT section.
1561 // We need to subtract the size of the GOT section to get
1562 // the actual offset to use in the relocation.
1563 bool have_got_offset = false;
1564 unsigned int got_offset = 0;
1565 switch (r_type)
1567 case elfcpp::R_386_GOT32:
1568 if (gsym != NULL)
1570 gold_assert(gsym->has_got_offset());
1571 got_offset = gsym->got_offset() - target->got_size();
1573 else
1575 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1576 gold_assert(object->local_has_got_offset(r_sym));
1577 got_offset = object->local_got_offset(r_sym) - target->got_size();
1579 have_got_offset = true;
1580 break;
1582 default:
1583 break;
1586 switch (r_type)
1588 case elfcpp::R_386_NONE:
1589 case elfcpp::R_386_GNU_VTINHERIT:
1590 case elfcpp::R_386_GNU_VTENTRY:
1591 break;
1593 case elfcpp::R_386_32:
1594 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true))
1595 Relocate_functions<32, false>::rel32(view, object, psymval);
1596 break;
1598 case elfcpp::R_386_PC32:
1600 int ref_flags = Symbol::NON_PIC_REF;
1601 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1602 ref_flags |= Symbol::FUNCTION_CALL;
1603 if (should_apply_static_reloc(gsym, ref_flags, true))
1604 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1606 break;
1608 case elfcpp::R_386_16:
1609 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1610 Relocate_functions<32, false>::rel16(view, object, psymval);
1611 break;
1613 case elfcpp::R_386_PC16:
1615 int ref_flags = Symbol::NON_PIC_REF;
1616 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1617 ref_flags |= Symbol::FUNCTION_CALL;
1618 if (should_apply_static_reloc(gsym, ref_flags, false))
1619 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1621 break;
1623 case elfcpp::R_386_8:
1624 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1625 Relocate_functions<32, false>::rel8(view, object, psymval);
1626 break;
1628 case elfcpp::R_386_PC8:
1630 int ref_flags = Symbol::NON_PIC_REF;
1631 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1632 ref_flags |= Symbol::FUNCTION_CALL;
1633 if (should_apply_static_reloc(gsym, ref_flags, false))
1634 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1636 break;
1638 case elfcpp::R_386_PLT32:
1639 gold_assert(gsym == NULL
1640 || gsym->has_plt_offset()
1641 || gsym->final_value_is_known()
1642 || (gsym->is_defined()
1643 && !gsym->is_from_dynobj()
1644 && !gsym->is_preemptible()));
1645 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1646 break;
1648 case elfcpp::R_386_GOT32:
1649 gold_assert(have_got_offset);
1650 Relocate_functions<32, false>::rel32(view, got_offset);
1651 break;
1653 case elfcpp::R_386_GOTOFF:
1655 elfcpp::Elf_types<32>::Elf_Addr value;
1656 value = (psymval->value(object, 0)
1657 - target->got_plt_section()->address());
1658 Relocate_functions<32, false>::rel32(view, value);
1660 break;
1662 case elfcpp::R_386_GOTPC:
1664 elfcpp::Elf_types<32>::Elf_Addr value;
1665 value = target->got_plt_section()->address();
1666 Relocate_functions<32, false>::pcrel32(view, value, address);
1668 break;
1670 case elfcpp::R_386_COPY:
1671 case elfcpp::R_386_GLOB_DAT:
1672 case elfcpp::R_386_JUMP_SLOT:
1673 case elfcpp::R_386_RELATIVE:
1674 // These are outstanding tls relocs, which are unexpected when
1675 // linking.
1676 case elfcpp::R_386_TLS_TPOFF:
1677 case elfcpp::R_386_TLS_DTPMOD32:
1678 case elfcpp::R_386_TLS_DTPOFF32:
1679 case elfcpp::R_386_TLS_TPOFF32:
1680 case elfcpp::R_386_TLS_DESC:
1681 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1682 _("unexpected reloc %u in object file"),
1683 r_type);
1684 break;
1686 // These are initial tls relocs, which are expected when
1687 // linking.
1688 case elfcpp::R_386_TLS_GD: // Global-dynamic
1689 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1690 case elfcpp::R_386_TLS_DESC_CALL:
1691 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1692 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1693 case elfcpp::R_386_TLS_IE: // Initial-exec
1694 case elfcpp::R_386_TLS_IE_32:
1695 case elfcpp::R_386_TLS_GOTIE:
1696 case elfcpp::R_386_TLS_LE: // Local-exec
1697 case elfcpp::R_386_TLS_LE_32:
1698 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
1699 view, address, view_size);
1700 break;
1702 case elfcpp::R_386_32PLT:
1703 case elfcpp::R_386_TLS_GD_32:
1704 case elfcpp::R_386_TLS_GD_PUSH:
1705 case elfcpp::R_386_TLS_GD_CALL:
1706 case elfcpp::R_386_TLS_GD_POP:
1707 case elfcpp::R_386_TLS_LDM_32:
1708 case elfcpp::R_386_TLS_LDM_PUSH:
1709 case elfcpp::R_386_TLS_LDM_CALL:
1710 case elfcpp::R_386_TLS_LDM_POP:
1711 case elfcpp::R_386_USED_BY_INTEL_200:
1712 default:
1713 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1714 _("unsupported reloc %u"),
1715 r_type);
1716 break;
1719 return true;
1722 // Perform a TLS relocation.
1724 inline void
1725 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1726 Target_i386* target,
1727 size_t relnum,
1728 const elfcpp::Rel<32, false>& rel,
1729 unsigned int r_type,
1730 const Sized_symbol<32>* gsym,
1731 const Symbol_value<32>* psymval,
1732 unsigned char* view,
1733 elfcpp::Elf_types<32>::Elf_Addr,
1734 section_size_type view_size)
1736 Output_segment* tls_segment = relinfo->layout->tls_segment();
1738 const Sized_relobj<32, false>* object = relinfo->object;
1740 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
1742 const bool is_final = (gsym == NULL
1743 ? !parameters->output_is_position_independent()
1744 : gsym->final_value_is_known());
1745 const tls::Tls_optimization optimized_type
1746 = Target_i386::optimize_tls_reloc(is_final, r_type);
1747 switch (r_type)
1749 case elfcpp::R_386_TLS_GD: // Global-dynamic
1750 if (optimized_type == tls::TLSOPT_TO_LE)
1752 gold_assert(tls_segment != NULL);
1753 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1754 rel, r_type, value, view,
1755 view_size);
1756 break;
1758 else
1760 unsigned int got_offset;
1761 if (gsym != NULL)
1763 gold_assert(gsym->has_tls_got_offset(true));
1764 got_offset = gsym->tls_got_offset(true) - target->got_size();
1766 else
1768 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1769 gold_assert(object->local_has_tls_got_offset(r_sym, true));
1770 got_offset = (object->local_tls_got_offset(r_sym, true)
1771 - target->got_size());
1773 if (optimized_type == tls::TLSOPT_TO_IE)
1775 gold_assert(tls_segment != NULL);
1776 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1777 got_offset, view, view_size);
1778 break;
1780 else if (optimized_type == tls::TLSOPT_NONE)
1782 // Relocate the field with the offset of the pair of GOT
1783 // entries.
1784 Relocate_functions<32, false>::rel32(view, got_offset);
1785 break;
1788 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1789 _("unsupported reloc %u"),
1790 r_type);
1791 break;
1793 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1794 case elfcpp::R_386_TLS_DESC_CALL:
1795 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1796 _("unsupported reloc %u"),
1797 r_type);
1798 break;
1800 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1801 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1803 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1804 _("both SUN and GNU model "
1805 "TLS relocations"));
1806 break;
1808 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1809 if (optimized_type == tls::TLSOPT_TO_LE)
1811 gold_assert(tls_segment != NULL);
1812 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1813 value, view, view_size);
1814 break;
1816 else if (optimized_type == tls::TLSOPT_NONE)
1818 // Relocate the field with the offset of the GOT entry for
1819 // the module index.
1820 unsigned int got_offset;
1821 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1822 - target->got_size());
1823 Relocate_functions<32, false>::rel32(view, got_offset);
1824 break;
1826 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1827 _("unsupported reloc %u"),
1828 r_type);
1829 break;
1831 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1832 // This reloc can appear in debugging sections, in which case we
1833 // won't see the TLS_LDM reloc. The local_dynamic_type field
1834 // tells us this.
1835 if (optimized_type == tls::TLSOPT_TO_LE)
1837 gold_assert(tls_segment != NULL);
1838 value -= tls_segment->memsz();
1840 Relocate_functions<32, false>::rel32(view, value);
1841 break;
1843 case elfcpp::R_386_TLS_IE: // Initial-exec
1844 case elfcpp::R_386_TLS_GOTIE:
1845 case elfcpp::R_386_TLS_IE_32:
1846 if (optimized_type == tls::TLSOPT_TO_LE)
1848 gold_assert(tls_segment != NULL);
1849 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1850 rel, r_type, value, view,
1851 view_size);
1852 break;
1854 else if (optimized_type == tls::TLSOPT_NONE)
1856 // Relocate the field with the offset of the GOT entry for
1857 // the tp-relative offset of the symbol.
1858 unsigned int got_offset;
1859 if (gsym != NULL)
1861 gold_assert(gsym->has_got_offset());
1862 got_offset = gsym->got_offset();
1864 else
1866 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1867 gold_assert(object->local_has_got_offset(r_sym));
1868 got_offset = object->local_got_offset(r_sym);
1870 // For the R_386_TLS_IE relocation, we need to apply the
1871 // absolute address of the GOT entry.
1872 if (r_type == elfcpp::R_386_TLS_IE)
1873 got_offset += target->got_plt_section()->address();
1874 // All GOT offsets are relative to the end of the GOT.
1875 got_offset -= target->got_size();
1876 Relocate_functions<32, false>::rel32(view, got_offset);
1877 break;
1879 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1880 _("unsupported reloc %u"),
1881 r_type);
1882 break;
1884 case elfcpp::R_386_TLS_LE: // Local-exec
1885 // If we're creating a shared library, a dynamic relocation will
1886 // have been created for this location, so do not apply it now.
1887 if (!parameters->output_is_shared())
1889 gold_assert(tls_segment != NULL);
1890 value -= tls_segment->memsz();
1891 Relocate_functions<32, false>::rel32(view, value);
1893 break;
1895 case elfcpp::R_386_TLS_LE_32:
1896 // If we're creating a shared library, a dynamic relocation will
1897 // have been created for this location, so do not apply it now.
1898 if (!parameters->output_is_shared())
1900 gold_assert(tls_segment != NULL);
1901 value = tls_segment->memsz() - value;
1902 Relocate_functions<32, false>::rel32(view, value);
1904 break;
1908 // Do a relocation in which we convert a TLS General-Dynamic to a
1909 // Local-Exec.
1911 inline void
1912 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1913 size_t relnum,
1914 Output_segment* tls_segment,
1915 const elfcpp::Rel<32, false>& rel,
1916 unsigned int,
1917 elfcpp::Elf_types<32>::Elf_Addr value,
1918 unsigned char* view,
1919 section_size_type view_size)
1921 // leal foo(,%reg,1),%eax; call ___tls_get_addr
1922 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1923 // leal foo(%reg),%eax; call ___tls_get_addr
1924 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1926 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1927 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1929 unsigned char op1 = view[-1];
1930 unsigned char op2 = view[-2];
1932 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1933 op2 == 0x8d || op2 == 0x04);
1934 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1936 int roff = 5;
1938 if (op2 == 0x04)
1940 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1941 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1942 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1943 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1944 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1946 else
1948 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1949 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1950 if (rel.get_r_offset() + 9 < view_size
1951 && view[9] == 0x90)
1953 // There is a trailing nop. Use the size byte subl.
1954 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1955 roff = 6;
1957 else
1959 // Use the five byte subl.
1960 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1964 value = tls_segment->memsz() - value;
1965 Relocate_functions<32, false>::rel32(view + roff, value);
1967 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1968 // We can skip it.
1969 this->skip_call_tls_get_addr_ = true;
1972 // Do a relocation in which we convert a TLS General-Dynamic to an
1973 // Initial-Exec.
1975 inline void
1976 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
1977 size_t relnum,
1978 Output_segment* tls_segment,
1979 const elfcpp::Rel<32, false>& rel,
1980 unsigned int,
1981 elfcpp::Elf_types<32>::Elf_Addr value,
1982 unsigned char* view,
1983 section_size_type view_size)
1985 // leal foo(,%ebx,1),%eax; call ___tls_get_addr
1986 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
1988 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1989 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1991 unsigned char op1 = view[-1];
1992 unsigned char op2 = view[-2];
1994 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1995 op2 == 0x8d || op2 == 0x04);
1996 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1998 int roff = 5;
2000 // FIXME: For now, support only one form.
2001 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2002 op1 == 0x8d && op2 == 0x04);
2004 if (op2 == 0x04)
2006 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2007 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2008 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2009 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2010 memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2012 else
2014 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2015 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2016 if (rel.get_r_offset() + 9 < view_size
2017 && view[9] == 0x90)
2019 // FIXME: This is not the right instruction sequence.
2020 // There is a trailing nop. Use the size byte subl.
2021 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2022 roff = 6;
2024 else
2026 // FIXME: This is not the right instruction sequence.
2027 // Use the five byte subl.
2028 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2032 value = tls_segment->memsz() - value;
2033 Relocate_functions<32, false>::rel32(view + roff, value);
2035 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2036 // We can skip it.
2037 this->skip_call_tls_get_addr_ = true;
2040 // Do a relocation in which we convert a TLS Local-Dynamic to a
2041 // Local-Exec.
2043 inline void
2044 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
2045 size_t relnum,
2046 Output_segment*,
2047 const elfcpp::Rel<32, false>& rel,
2048 unsigned int,
2049 elfcpp::Elf_types<32>::Elf_Addr,
2050 unsigned char* view,
2051 section_size_type view_size)
2053 // leal foo(%reg), %eax; call ___tls_get_addr
2054 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
2056 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2057 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2059 // FIXME: Does this test really always pass?
2060 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2061 view[-2] == 0x8d && view[-1] == 0x83);
2063 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2065 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
2067 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2068 // We can skip it.
2069 this->skip_call_tls_get_addr_ = true;
2072 // Do a relocation in which we convert a TLS Initial-Exec to a
2073 // Local-Exec.
2075 inline void
2076 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
2077 size_t relnum,
2078 Output_segment* tls_segment,
2079 const elfcpp::Rel<32, false>& rel,
2080 unsigned int r_type,
2081 elfcpp::Elf_types<32>::Elf_Addr value,
2082 unsigned char* view,
2083 section_size_type view_size)
2085 // We have to actually change the instructions, which means that we
2086 // need to examine the opcodes to figure out which instruction we
2087 // are looking at.
2088 if (r_type == elfcpp::R_386_TLS_IE)
2090 // movl %gs:XX,%eax ==> movl $YY,%eax
2091 // movl %gs:XX,%reg ==> movl $YY,%reg
2092 // addl %gs:XX,%reg ==> addl $YY,%reg
2093 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
2094 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2096 unsigned char op1 = view[-1];
2097 if (op1 == 0xa1)
2099 // movl XX,%eax ==> movl $YY,%eax
2100 view[-1] = 0xb8;
2102 else
2104 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2106 unsigned char op2 = view[-2];
2107 if (op2 == 0x8b)
2109 // movl XX,%reg ==> movl $YY,%reg
2110 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2111 (op1 & 0xc7) == 0x05);
2112 view[-2] = 0xc7;
2113 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2115 else if (op2 == 0x03)
2117 // addl XX,%reg ==> addl $YY,%reg
2118 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2119 (op1 & 0xc7) == 0x05);
2120 view[-2] = 0x81;
2121 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2123 else
2124 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2127 else
2129 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2130 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2131 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2132 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2133 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2135 unsigned char op1 = view[-1];
2136 unsigned char op2 = view[-2];
2137 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2138 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
2139 if (op2 == 0x8b)
2141 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2142 view[-2] = 0xc7;
2143 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2145 else if (op2 == 0x2b)
2147 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2148 view[-2] = 0x81;
2149 view[-1] = 0xe8 | ((op1 >> 3) & 7);
2151 else if (op2 == 0x03)
2153 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2154 view[-2] = 0x81;
2155 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2157 else
2158 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2161 value = tls_segment->memsz() - value;
2162 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
2163 value = - value;
2165 Relocate_functions<32, false>::rel32(view, value);
2168 // Relocate section data.
2170 void
2171 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
2172 unsigned int sh_type,
2173 const unsigned char* prelocs,
2174 size_t reloc_count,
2175 Output_section* output_section,
2176 bool needs_special_offset_handling,
2177 unsigned char* view,
2178 elfcpp::Elf_types<32>::Elf_Addr address,
2179 section_size_type view_size)
2181 gold_assert(sh_type == elfcpp::SHT_REL);
2183 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
2184 Target_i386::Relocate>(
2185 relinfo,
2186 this,
2187 prelocs,
2188 reloc_count,
2189 output_section,
2190 needs_special_offset_handling,
2191 view,
2192 address,
2193 view_size);
2196 // Return the size of a relocation while scanning during a relocatable
2197 // link.
2199 unsigned int
2200 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
2201 unsigned int r_type,
2202 Relobj* object)
2204 switch (r_type)
2206 case elfcpp::R_386_NONE:
2207 case elfcpp::R_386_GNU_VTINHERIT:
2208 case elfcpp::R_386_GNU_VTENTRY:
2209 case elfcpp::R_386_TLS_GD: // Global-dynamic
2210 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2211 case elfcpp::R_386_TLS_DESC_CALL:
2212 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2213 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2214 case elfcpp::R_386_TLS_IE: // Initial-exec
2215 case elfcpp::R_386_TLS_IE_32:
2216 case elfcpp::R_386_TLS_GOTIE:
2217 case elfcpp::R_386_TLS_LE: // Local-exec
2218 case elfcpp::R_386_TLS_LE_32:
2219 return 0;
2221 case elfcpp::R_386_32:
2222 case elfcpp::R_386_PC32:
2223 case elfcpp::R_386_GOT32:
2224 case elfcpp::R_386_PLT32:
2225 case elfcpp::R_386_GOTOFF:
2226 case elfcpp::R_386_GOTPC:
2227 return 4;
2229 case elfcpp::R_386_16:
2230 case elfcpp::R_386_PC16:
2231 return 2;
2233 case elfcpp::R_386_8:
2234 case elfcpp::R_386_PC8:
2235 return 1;
2237 // These are relocations which should only be seen by the
2238 // dynamic linker, and should never be seen here.
2239 case elfcpp::R_386_COPY:
2240 case elfcpp::R_386_GLOB_DAT:
2241 case elfcpp::R_386_JUMP_SLOT:
2242 case elfcpp::R_386_RELATIVE:
2243 case elfcpp::R_386_TLS_TPOFF:
2244 case elfcpp::R_386_TLS_DTPMOD32:
2245 case elfcpp::R_386_TLS_DTPOFF32:
2246 case elfcpp::R_386_TLS_TPOFF32:
2247 case elfcpp::R_386_TLS_DESC:
2248 object->error(_("unexpected reloc %u in object file"), r_type);
2249 return 0;
2251 case elfcpp::R_386_32PLT:
2252 case elfcpp::R_386_TLS_GD_32:
2253 case elfcpp::R_386_TLS_GD_PUSH:
2254 case elfcpp::R_386_TLS_GD_CALL:
2255 case elfcpp::R_386_TLS_GD_POP:
2256 case elfcpp::R_386_TLS_LDM_32:
2257 case elfcpp::R_386_TLS_LDM_PUSH:
2258 case elfcpp::R_386_TLS_LDM_CALL:
2259 case elfcpp::R_386_TLS_LDM_POP:
2260 case elfcpp::R_386_USED_BY_INTEL_200:
2261 default:
2262 object->error(_("unsupported reloc %u in object file"), r_type);
2263 return 0;
2267 // Scan the relocs during a relocatable link.
2269 void
2270 Target_i386::scan_relocatable_relocs(const General_options& options,
2271 Symbol_table* symtab,
2272 Layout* layout,
2273 Sized_relobj<32, false>* object,
2274 unsigned int data_shndx,
2275 unsigned int sh_type,
2276 const unsigned char* prelocs,
2277 size_t reloc_count,
2278 Output_section* output_section,
2279 bool needs_special_offset_handling,
2280 size_t local_symbol_count,
2281 const unsigned char* plocal_symbols,
2282 Relocatable_relocs* rr)
2284 gold_assert(sh_type == elfcpp::SHT_REL);
2286 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
2287 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2289 gold::scan_relocatable_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2290 Scan_relocatable_relocs>(
2291 options,
2292 symtab,
2293 layout,
2294 object,
2295 data_shndx,
2296 prelocs,
2297 reloc_count,
2298 output_section,
2299 needs_special_offset_handling,
2300 local_symbol_count,
2301 plocal_symbols,
2302 rr);
2305 // Relocate a section during a relocatable link.
2307 void
2308 Target_i386::relocate_for_relocatable(
2309 const Relocate_info<32, false>* relinfo,
2310 unsigned int sh_type,
2311 const unsigned char* prelocs,
2312 size_t reloc_count,
2313 Output_section* output_section,
2314 off_t offset_in_output_section,
2315 const Relocatable_relocs* rr,
2316 unsigned char* view,
2317 elfcpp::Elf_types<32>::Elf_Addr view_address,
2318 section_size_type view_size,
2319 unsigned char* reloc_view,
2320 section_size_type reloc_view_size)
2322 gold_assert(sh_type == elfcpp::SHT_REL);
2324 gold::relocate_for_relocatable<32, false, Target_i386, elfcpp::SHT_REL>(
2325 relinfo,
2326 prelocs,
2327 reloc_count,
2328 output_section,
2329 offset_in_output_section,
2331 view,
2332 view_address,
2333 view_size,
2334 reloc_view,
2335 reloc_view_size);
2338 // Return the value to use for a dynamic which requires special
2339 // treatment. This is how we support equality comparisons of function
2340 // pointers across shared library boundaries, as described in the
2341 // processor specific ABI supplement.
2343 uint64_t
2344 Target_i386::do_dynsym_value(const Symbol* gsym) const
2346 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2347 return this->plt_section()->address() + gsym->plt_offset();
2350 // Return a string used to fill a code section with nops to take up
2351 // the specified length.
2353 std::string
2354 Target_i386::do_code_fill(section_size_type length)
2356 if (length >= 16)
2358 // Build a jmp instruction to skip over the bytes.
2359 unsigned char jmp[5];
2360 jmp[0] = 0xe9;
2361 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2362 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2363 + std::string(length - 5, '\0'));
2366 // Nop sequences of various lengths.
2367 const char nop1[1] = { 0x90 }; // nop
2368 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2369 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2370 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2371 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2372 0x00 }; // leal 0(%esi,1),%esi
2373 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2374 0x00, 0x00 };
2375 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2376 0x00, 0x00, 0x00 };
2377 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2378 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2379 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2380 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2381 0x00 };
2382 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2383 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2384 0x00, 0x00 };
2385 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2386 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2387 0x00, 0x00, 0x00 };
2388 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2389 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2390 0x00, 0x00, 0x00, 0x00 };
2391 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2392 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2393 0x27, 0x00, 0x00, 0x00,
2394 0x00 };
2395 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2396 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2397 0xbc, 0x27, 0x00, 0x00,
2398 0x00, 0x00 };
2399 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2400 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2401 0x90, 0x90, 0x90, 0x90,
2402 0x90, 0x90, 0x90 };
2404 const char* nops[16] = {
2405 NULL,
2406 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2407 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2410 return std::string(nops[length], length);
2413 // The selector for i386 object files.
2415 class Target_selector_i386 : public Target_selector
2417 public:
2418 Target_selector_i386()
2419 : Target_selector(elfcpp::EM_386, 32, false)
2422 Target*
2423 recognize(int machine, int osabi, int abiversion);
2425 private:
2426 Target_i386* target_;
2429 // Recognize an i386 object file when we already know that the machine
2430 // number is EM_386.
2432 Target*
2433 Target_selector_i386::recognize(int, int, int)
2435 if (this->target_ == NULL)
2436 this->target_ = new Target_i386();
2437 return this->target_;
2440 Target_selector_i386 target_selector_i386;
2442 } // End anonymous namespace.