1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
213 bfd_elf_gnu_hash (const char *namearg
)
215 const unsigned char *name
= (const unsigned char *) namearg
;
216 unsigned long h
= 5381;
219 while ((ch
= *name
++) != '\0')
220 h
= (h
<< 5) + h
+ ch
;
221 return h
& 0xffffffff;
225 bfd_elf_mkobject (bfd
*abfd
)
227 if (abfd
->tdata
.any
== NULL
)
229 abfd
->tdata
.any
= bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
230 if (abfd
->tdata
.any
== NULL
)
234 elf_tdata (abfd
)->program_header_size
= (bfd_size_type
) -1;
240 bfd_elf_mkcorefile (bfd
*abfd
)
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd
);
247 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
249 Elf_Internal_Shdr
**i_shdrp
;
250 bfd_byte
*shstrtab
= NULL
;
252 bfd_size_type shstrtabsize
;
254 i_shdrp
= elf_elfsections (abfd
);
255 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
258 shstrtab
= i_shdrp
[shindex
]->contents
;
259 if (shstrtab
== NULL
)
261 /* No cached one, attempt to read, and cache what we read. */
262 offset
= i_shdrp
[shindex
]->sh_offset
;
263 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize
+ 1 == 0
268 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
269 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
271 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
273 if (bfd_get_error () != bfd_error_system_call
)
274 bfd_set_error (bfd_error_file_truncated
);
278 shstrtab
[shstrtabsize
] = '\0';
279 i_shdrp
[shindex
]->contents
= shstrtab
;
281 return (char *) shstrtab
;
285 bfd_elf_string_from_elf_section (bfd
*abfd
,
286 unsigned int shindex
,
287 unsigned int strindex
)
289 Elf_Internal_Shdr
*hdr
;
294 hdr
= elf_elfsections (abfd
)[shindex
];
296 if (hdr
->contents
== NULL
297 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
300 if (strindex
>= hdr
->sh_size
)
302 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
303 (*_bfd_error_handler
)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
306 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
308 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
312 return ((char *) hdr
->contents
) + strindex
;
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
322 bfd_elf_get_elf_syms (bfd
*ibfd
,
323 Elf_Internal_Shdr
*symtab_hdr
,
326 Elf_Internal_Sym
*intsym_buf
,
328 Elf_External_Sym_Shndx
*extshndx_buf
)
330 Elf_Internal_Shdr
*shndx_hdr
;
332 const bfd_byte
*esym
;
333 Elf_External_Sym_Shndx
*alloc_extshndx
;
334 Elf_External_Sym_Shndx
*shndx
;
335 Elf_Internal_Sym
*isym
;
336 Elf_Internal_Sym
*isymend
;
337 const struct elf_backend_data
*bed
;
345 /* Normal syms might have section extension entries. */
347 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
348 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
350 /* Read the symbols. */
352 alloc_extshndx
= NULL
;
353 bed
= get_elf_backend_data (ibfd
);
354 extsym_size
= bed
->s
->sizeof_sym
;
355 amt
= symcount
* extsym_size
;
356 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
357 if (extsym_buf
== NULL
)
359 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
360 extsym_buf
= alloc_ext
;
362 if (extsym_buf
== NULL
363 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
364 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
370 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
374 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
375 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
376 if (extshndx_buf
== NULL
)
378 alloc_extshndx
= bfd_malloc2 (symcount
,
379 sizeof (Elf_External_Sym_Shndx
));
380 extshndx_buf
= alloc_extshndx
;
382 if (extshndx_buf
== NULL
383 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
384 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
391 if (intsym_buf
== NULL
)
393 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
394 if (intsym_buf
== NULL
)
398 /* Convert the symbols to internal form. */
399 isymend
= intsym_buf
+ symcount
;
400 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
402 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
403 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
405 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
406 (*_bfd_error_handler
) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd
, (unsigned long) symoffset
);
414 if (alloc_ext
!= NULL
)
416 if (alloc_extshndx
!= NULL
)
417 free (alloc_extshndx
);
422 /* Look up a symbol name. */
424 bfd_elf_sym_name (bfd
*abfd
,
425 Elf_Internal_Shdr
*symtab_hdr
,
426 Elf_Internal_Sym
*isym
,
430 unsigned int iname
= isym
->st_name
;
431 unsigned int shindex
= symtab_hdr
->sh_link
;
433 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym
->st_shndx
< elf_numsections (abfd
)
436 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
438 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
439 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
442 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
445 else if (sym_sec
&& *name
== '\0')
446 name
= bfd_section_name (abfd
, sym_sec
);
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
455 typedef union elf_internal_group
{
456 Elf_Internal_Shdr
*shdr
;
458 } Elf_Internal_Group
;
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
464 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
466 Elf_Internal_Shdr
*hdr
;
467 unsigned char esym
[sizeof (Elf64_External_Sym
)];
468 Elf_External_Sym_Shndx eshndx
;
469 Elf_Internal_Sym isym
;
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
474 if (hdr
->sh_type
!= SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
478 /* Go read the symbol. */
479 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
480 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
481 &isym
, esym
, &eshndx
) == NULL
)
484 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
490 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
492 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
498 unsigned int i
, shnum
;
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum
= elf_numsections (abfd
);
504 for (i
= 0; i
< shnum
; i
++)
506 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
507 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
513 num_group
= (unsigned) -1;
514 elf_tdata (abfd
)->num_group
= num_group
;
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
522 elf_tdata (abfd
)->num_group
= num_group
;
523 elf_tdata (abfd
)->group_sect_ptr
524 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
525 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
529 for (i
= 0; i
< shnum
; i
++)
531 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
532 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
535 Elf_Internal_Group
*dest
;
537 /* Add to list of sections. */
538 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest
) >= 4);
543 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
544 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
546 if (shdr
->contents
== NULL
547 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
548 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
556 src
= shdr
->contents
+ shdr
->sh_size
;
557 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
564 idx
= H_GET_32 (abfd
, src
);
565 if (src
== shdr
->contents
)
568 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
569 shdr
->bfd_section
->flags
570 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
575 ((*_bfd_error_handler
)
576 (_("%B: invalid SHT_GROUP entry"), abfd
));
579 dest
->shdr
= elf_elfsections (abfd
)[idx
];
586 if (num_group
!= (unsigned) -1)
590 for (i
= 0; i
< num_group
; i
++)
592 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
593 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
594 unsigned int n_elt
= shdr
->sh_size
/ 4;
596 /* Look through this group's sections to see if current
597 section is a member. */
599 if ((++idx
)->shdr
== hdr
)
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
606 idx
= (Elf_Internal_Group
*) shdr
->contents
;
607 n_elt
= shdr
->sh_size
/ 4;
609 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
610 && elf_next_in_group (s
) != NULL
)
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect
) = elf_group_name (s
);
617 elf_next_in_group (newsect
) = elf_next_in_group (s
);
618 elf_next_in_group (s
) = newsect
;
624 gname
= group_signature (abfd
, shdr
);
627 elf_group_name (newsect
) = gname
;
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect
) = newsect
;
633 /* If the group section has been created, point to the
635 if (shdr
->bfd_section
!= NULL
)
636 elf_next_in_group (shdr
->bfd_section
) = newsect
;
644 if (elf_group_name (newsect
) == NULL
)
646 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
653 _bfd_elf_setup_sections (bfd
*abfd
)
656 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
657 bfd_boolean result
= TRUE
;
660 /* Process SHF_LINK_ORDER. */
661 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
663 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
664 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
666 unsigned int elfsec
= this_hdr
->sh_link
;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
672 const struct elf_backend_data
*bed
673 = get_elf_backend_data (abfd
);
674 if (bed
->link_order_error_handler
)
675 bed
->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
683 this_hdr
= elf_elfsections (abfd
)[elfsec
];
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link
= this_hdr
->bfd_section
;
691 (*_bfd_error_handler
)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s
->owner
, s
, elfsec
);
697 elf_linked_to_section (s
) = link
;
702 /* Process section groups. */
703 if (num_group
== (unsigned) -1)
706 for (i
= 0; i
< num_group
; i
++)
708 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
709 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
710 unsigned int n_elt
= shdr
->sh_size
/ 4;
713 if ((++idx
)->shdr
->bfd_section
)
714 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
715 else if (idx
->shdr
->sh_type
== SHT_RELA
716 || idx
->shdr
->sh_type
== SHT_REL
)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
722 shdr
->bfd_section
->size
-= 4;
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler
)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
729 (unsigned int) idx
->shdr
->sh_type
,
730 bfd_elf_string_from_elf_section (abfd
,
731 (elf_elfheader (abfd
)
734 shdr
->bfd_section
->name
);
742 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
744 return elf_next_in_group (sec
) != NULL
;
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
751 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
752 Elf_Internal_Shdr
*hdr
,
758 const struct elf_backend_data
*bed
;
760 if (hdr
->bfd_section
!= NULL
)
762 BFD_ASSERT (strcmp (name
,
763 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
767 newsect
= bfd_make_section_anyway (abfd
, name
);
771 hdr
->bfd_section
= newsect
;
772 elf_section_data (newsect
)->this_hdr
= *hdr
;
773 elf_section_data (newsect
)->this_idx
= shindex
;
775 /* Always use the real type/flags. */
776 elf_section_type (newsect
) = hdr
->sh_type
;
777 elf_section_flags (newsect
) = hdr
->sh_flags
;
779 newsect
->filepos
= hdr
->sh_offset
;
781 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
782 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
783 || ! bfd_set_section_alignment (abfd
, newsect
,
784 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
787 flags
= SEC_NO_FLAGS
;
788 if (hdr
->sh_type
!= SHT_NOBITS
)
789 flags
|= SEC_HAS_CONTENTS
;
790 if (hdr
->sh_type
== SHT_GROUP
)
791 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
792 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
795 if (hdr
->sh_type
!= SHT_NOBITS
)
798 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
799 flags
|= SEC_READONLY
;
800 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
802 else if ((flags
& SEC_LOAD
) != 0)
804 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
807 newsect
->entsize
= hdr
->sh_entsize
;
808 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
809 flags
|= SEC_STRINGS
;
811 if (hdr
->sh_flags
& SHF_GROUP
)
812 if (!setup_group (abfd
, hdr
, newsect
))
814 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
815 flags
|= SEC_THREAD_LOCAL
;
817 if ((flags
& SEC_ALLOC
) == 0)
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
825 } debug_sections
[] =
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL
, 0 }, /* 'e' */
829 { NULL
, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL
, 0 }, /* 'h' */
832 { NULL
, 0 }, /* 'i' */
833 { NULL
, 0 }, /* 'j' */
834 { NULL
, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL
, 0 }, /* 'm' */
837 { NULL
, 0 }, /* 'n' */
838 { NULL
, 0 }, /* 'o' */
839 { NULL
, 0 }, /* 'p' */
840 { NULL
, 0 }, /* 'q' */
841 { NULL
, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
847 int i
= name
[1] - 'd';
849 && i
< (int) ARRAY_SIZE (debug_sections
)
850 && debug_sections
[i
].name
!= NULL
851 && strncmp (&name
[1], debug_sections
[i
].name
,
852 debug_sections
[i
].len
) == 0)
853 flags
|= SEC_DEBUGGING
;
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name
, ".gnu.linkonce")
864 && elf_next_in_group (newsect
) == NULL
)
865 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
867 bed
= get_elf_backend_data (abfd
);
868 if (bed
->elf_backend_section_flags
)
869 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
872 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
875 if ((flags
& SEC_ALLOC
) != 0)
877 Elf_Internal_Phdr
*phdr
;
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr
= elf_tdata (abfd
)->phdr
;
884 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
886 if (phdr
->p_paddr
!= 0)
889 if (i
< elf_elfheader (abfd
)->e_phnum
)
891 phdr
= elf_tdata (abfd
)->phdr
;
892 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr
->p_type
== PT_LOAD
907 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
908 && (hdr
->sh_offset
+ hdr
->sh_size
909 <= phdr
->p_offset
+ phdr
->p_memsz
)
910 && ((flags
& SEC_LOAD
) == 0
911 || (hdr
->sh_offset
+ hdr
->sh_size
912 <= phdr
->p_offset
+ phdr
->p_filesz
)))
914 if ((flags
& SEC_LOAD
) == 0)
915 newsect
->lma
= (phdr
->p_paddr
916 + hdr
->sh_addr
- phdr
->p_vaddr
);
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect
->lma
= (phdr
->p_paddr
926 + hdr
->sh_offset
- phdr
->p_offset
);
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr
->sh_addr
>= phdr
->p_vaddr
933 && (hdr
->sh_addr
+ hdr
->sh_size
934 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
959 struct elf_internal_shdr
*
960 bfd_elf_find_section (bfd
*abfd
, char *name
)
962 Elf_Internal_Shdr
**i_shdrp
;
967 i_shdrp
= elf_elfsections (abfd
);
970 shstrtab
= bfd_elf_get_str_section (abfd
,
971 elf_elfheader (abfd
)->e_shstrndx
);
972 if (shstrtab
!= NULL
)
974 max
= elf_numsections (abfd
);
975 for (i
= 1; i
< max
; i
++)
976 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
983 const char *const bfd_elf_section_type_names
[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1001 arelent
*reloc_entry
,
1003 void *data ATTRIBUTE_UNUSED
,
1004 asection
*input_section
,
1006 char **error_message ATTRIBUTE_UNUSED
)
1008 if (output_bfd
!= NULL
1009 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1010 && (! reloc_entry
->howto
->partial_inplace
1011 || reloc_entry
->addend
== 0))
1013 reloc_entry
->address
+= input_section
->output_offset
;
1014 return bfd_reloc_ok
;
1017 return bfd_reloc_continue
;
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1023 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1026 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1027 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1030 /* Finish SHF_MERGE section merging. */
1033 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1038 if (!is_elf_hash_table (info
->hash
))
1041 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1042 if ((ibfd
->flags
& DYNAMIC
) == 0)
1043 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1044 if ((sec
->flags
& SEC_MERGE
) != 0
1045 && !bfd_is_abs_section (sec
->output_section
))
1047 struct bfd_elf_section_data
*secdata
;
1049 secdata
= elf_section_data (sec
);
1050 if (! _bfd_add_merge_section (abfd
,
1051 &elf_hash_table (info
)->merge_info
,
1052 sec
, &secdata
->sec_info
))
1054 else if (secdata
->sec_info
)
1055 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1058 if (elf_hash_table (info
)->merge_info
!= NULL
)
1059 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1060 merge_sections_remove_hook
);
1065 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1067 sec
->output_section
= bfd_abs_section_ptr
;
1068 sec
->output_offset
= sec
->vma
;
1069 if (!is_elf_hash_table (info
->hash
))
1072 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1075 /* Copy the program header and other data from one object module to
1079 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1081 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1085 BFD_ASSERT (!elf_flags_init (obfd
)
1086 || (elf_elfheader (obfd
)->e_flags
1087 == elf_elfheader (ibfd
)->e_flags
));
1089 elf_gp (obfd
) = elf_gp (ibfd
);
1090 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1091 elf_flags_init (obfd
) = TRUE
;
1096 get_segment_type (unsigned int p_type
)
1101 case PT_NULL
: pt
= "NULL"; break;
1102 case PT_LOAD
: pt
= "LOAD"; break;
1103 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1104 case PT_INTERP
: pt
= "INTERP"; break;
1105 case PT_NOTE
: pt
= "NOTE"; break;
1106 case PT_SHLIB
: pt
= "SHLIB"; break;
1107 case PT_PHDR
: pt
= "PHDR"; break;
1108 case PT_TLS
: pt
= "TLS"; break;
1109 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1110 case PT_GNU_STACK
: pt
= "STACK"; break;
1111 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1112 default: pt
= NULL
; break;
1117 /* Print out the program headers. */
1120 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1123 Elf_Internal_Phdr
*p
;
1125 bfd_byte
*dynbuf
= NULL
;
1127 p
= elf_tdata (abfd
)->phdr
;
1132 fprintf (f
, _("\nProgram Header:\n"));
1133 c
= elf_elfheader (abfd
)->e_phnum
;
1134 for (i
= 0; i
< c
; i
++, p
++)
1136 const char *pt
= get_segment_type (p
->p_type
);
1141 sprintf (buf
, "0x%lx", p
->p_type
);
1144 fprintf (f
, "%8s off 0x", pt
);
1145 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1146 fprintf (f
, " vaddr 0x");
1147 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1148 fprintf (f
, " paddr 0x");
1149 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1150 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1151 fprintf (f
, " filesz 0x");
1152 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1153 fprintf (f
, " memsz 0x");
1154 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1155 fprintf (f
, " flags %c%c%c",
1156 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1157 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1158 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1159 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1160 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1165 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1169 unsigned long shlink
;
1170 bfd_byte
*extdyn
, *extdynend
;
1172 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1174 fprintf (f
, _("\nDynamic Section:\n"));
1176 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1179 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1182 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1184 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1185 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1188 extdynend
= extdyn
+ s
->size
;
1189 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1191 Elf_Internal_Dyn dyn
;
1194 bfd_boolean stringp
;
1196 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1198 if (dyn
.d_tag
== DT_NULL
)
1205 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1209 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1210 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1211 case DT_PLTGOT
: name
= "PLTGOT"; break;
1212 case DT_HASH
: name
= "HASH"; break;
1213 case DT_STRTAB
: name
= "STRTAB"; break;
1214 case DT_SYMTAB
: name
= "SYMTAB"; break;
1215 case DT_RELA
: name
= "RELA"; break;
1216 case DT_RELASZ
: name
= "RELASZ"; break;
1217 case DT_RELAENT
: name
= "RELAENT"; break;
1218 case DT_STRSZ
: name
= "STRSZ"; break;
1219 case DT_SYMENT
: name
= "SYMENT"; break;
1220 case DT_INIT
: name
= "INIT"; break;
1221 case DT_FINI
: name
= "FINI"; break;
1222 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1223 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1224 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1225 case DT_REL
: name
= "REL"; break;
1226 case DT_RELSZ
: name
= "RELSZ"; break;
1227 case DT_RELENT
: name
= "RELENT"; break;
1228 case DT_PLTREL
: name
= "PLTREL"; break;
1229 case DT_DEBUG
: name
= "DEBUG"; break;
1230 case DT_TEXTREL
: name
= "TEXTREL"; break;
1231 case DT_JMPREL
: name
= "JMPREL"; break;
1232 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1233 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1238 case DT_FLAGS
: name
= "FLAGS"; break;
1239 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1242 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1243 case DT_MOVEENT
: name
= "MOVEENT"; break;
1244 case DT_MOVESZ
: name
= "MOVESZ"; break;
1245 case DT_FEATURE
: name
= "FEATURE"; break;
1246 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1247 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1248 case DT_SYMINENT
: name
= "SYMINENT"; break;
1249 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1250 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1251 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1252 case DT_PLTPAD
: name
= "PLTPAD"; break;
1253 case DT_MOVETAB
: name
= "MOVETAB"; break;
1254 case DT_SYMINFO
: name
= "SYMINFO"; break;
1255 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1256 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1257 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1258 case DT_VERSYM
: name
= "VERSYM"; break;
1259 case DT_VERDEF
: name
= "VERDEF"; break;
1260 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1261 case DT_VERNEED
: name
= "VERNEED"; break;
1262 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1263 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1264 case DT_USED
: name
= "USED"; break;
1265 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1266 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1269 fprintf (f
, " %-11s ", name
);
1271 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1275 unsigned int tagv
= dyn
.d_un
.d_val
;
1277 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1280 fprintf (f
, "%s", string
);
1289 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1290 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1292 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1296 if (elf_dynverdef (abfd
) != 0)
1298 Elf_Internal_Verdef
*t
;
1300 fprintf (f
, _("\nVersion definitions:\n"));
1301 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1303 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1304 t
->vd_flags
, t
->vd_hash
,
1305 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1306 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1308 Elf_Internal_Verdaux
*a
;
1311 for (a
= t
->vd_auxptr
->vda_nextptr
;
1315 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1321 if (elf_dynverref (abfd
) != 0)
1323 Elf_Internal_Verneed
*t
;
1325 fprintf (f
, _("\nVersion References:\n"));
1326 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1328 Elf_Internal_Vernaux
*a
;
1330 fprintf (f
, _(" required from %s:\n"),
1331 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1332 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1333 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1334 a
->vna_flags
, a
->vna_other
,
1335 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1347 /* Display ELF-specific fields of a symbol. */
1350 bfd_elf_print_symbol (bfd
*abfd
,
1353 bfd_print_symbol_type how
)
1358 case bfd_print_symbol_name
:
1359 fprintf (file
, "%s", symbol
->name
);
1361 case bfd_print_symbol_more
:
1362 fprintf (file
, "elf ");
1363 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1364 fprintf (file
, " %lx", (long) symbol
->flags
);
1366 case bfd_print_symbol_all
:
1368 const char *section_name
;
1369 const char *name
= NULL
;
1370 const struct elf_backend_data
*bed
;
1371 unsigned char st_other
;
1374 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1376 bed
= get_elf_backend_data (abfd
);
1377 if (bed
->elf_backend_print_symbol_all
)
1378 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1382 name
= symbol
->name
;
1383 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1386 fprintf (file
, " %s\t", section_name
);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol
->section
))
1392 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1394 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1395 bfd_fprintf_vma (abfd
, file
, val
);
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd
)->dynversym_section
!= 0
1399 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1400 || elf_tdata (abfd
)->dynverref_section
!= 0))
1402 unsigned int vernum
;
1403 const char *version_string
;
1405 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1408 version_string
= "";
1409 else if (vernum
== 1)
1410 version_string
= "Base";
1411 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1413 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1416 Elf_Internal_Verneed
*t
;
1418 version_string
= "";
1419 for (t
= elf_tdata (abfd
)->verref
;
1423 Elf_Internal_Vernaux
*a
;
1425 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1427 if (a
->vna_other
== vernum
)
1429 version_string
= a
->vna_nodename
;
1436 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1437 fprintf (file
, " %-11s", version_string
);
1442 fprintf (file
, " (%s)", version_string
);
1443 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1448 /* If the st_other field is not zero, print it. */
1449 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1454 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1455 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1456 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1458 /* Some other non-defined flags are also present, so print
1460 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1463 fprintf (file
, " %s", name
);
1469 /* Create an entry in an ELF linker hash table. */
1471 struct bfd_hash_entry
*
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1473 struct bfd_hash_table
*table
,
1476 /* Allocate the structure if it has not already been allocated by a
1480 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1485 /* Call the allocation method of the superclass. */
1486 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1489 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1490 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1492 /* Set local fields. */
1495 ret
->got
= htab
->init_got_refcount
;
1496 ret
->plt
= htab
->init_plt_refcount
;
1497 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1498 - offsetof (struct elf_link_hash_entry
, size
)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1514 struct elf_link_hash_entry
*dir
,
1515 struct elf_link_hash_entry
*ind
)
1517 struct elf_link_hash_table
*htab
;
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1522 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1523 dir
->ref_regular
|= ind
->ref_regular
;
1524 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1525 dir
->non_got_ref
|= ind
->non_got_ref
;
1526 dir
->needs_plt
|= ind
->needs_plt
;
1527 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1529 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab
= elf_hash_table (info
);
1535 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1537 if (dir
->got
.refcount
< 0)
1538 dir
->got
.refcount
= 0;
1539 dir
->got
.refcount
+= ind
->got
.refcount
;
1540 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1543 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1545 if (dir
->plt
.refcount
< 0)
1546 dir
->plt
.refcount
= 0;
1547 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1548 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1551 if (ind
->dynindx
!= -1)
1553 if (dir
->dynindx
!= -1)
1554 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1555 dir
->dynindx
= ind
->dynindx
;
1556 dir
->dynstr_index
= ind
->dynstr_index
;
1558 ind
->dynstr_index
= 0;
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1564 struct elf_link_hash_entry
*h
,
1565 bfd_boolean force_local
)
1567 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1571 h
->forced_local
= 1;
1572 if (h
->dynindx
!= -1)
1575 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1581 /* Initialize an ELF linker hash table. */
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table
*table
,
1587 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1588 struct bfd_hash_table
*,
1590 unsigned int entsize
)
1593 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1595 memset (table
, 0, sizeof * table
);
1596 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1597 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1598 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1599 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1600 /* The first dynamic symbol is a dummy. */
1601 table
->dynsymcount
= 1;
1603 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1604 table
->root
.type
= bfd_link_elf_hash_table
;
1609 /* Create an ELF linker hash table. */
1611 struct bfd_link_hash_table
*
1612 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1614 struct elf_link_hash_table
*ret
;
1615 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1617 ret
= bfd_malloc (amt
);
1621 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1622 sizeof (struct elf_link_hash_entry
)))
1631 /* This is a hook for the ELF emulation code in the generic linker to
1632 tell the backend linker what file name to use for the DT_NEEDED
1633 entry for a dynamic object. */
1636 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1638 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1639 && bfd_get_format (abfd
) == bfd_object
)
1640 elf_dt_name (abfd
) = name
;
1644 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1647 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd
) == bfd_object
)
1649 lib_class
= elf_dyn_lib_class (abfd
);
1656 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
1658 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1659 && bfd_get_format (abfd
) == bfd_object
)
1660 elf_dyn_lib_class (abfd
) = lib_class
;
1663 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1664 the linker ELF emulation code. */
1666 struct bfd_link_needed_list
*
1667 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1668 struct bfd_link_info
*info
)
1670 if (! is_elf_hash_table (info
->hash
))
1672 return elf_hash_table (info
)->needed
;
1675 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1676 hook for the linker ELF emulation code. */
1678 struct bfd_link_needed_list
*
1679 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1680 struct bfd_link_info
*info
)
1682 if (! is_elf_hash_table (info
->hash
))
1684 return elf_hash_table (info
)->runpath
;
1687 /* Get the name actually used for a dynamic object for a link. This
1688 is the SONAME entry if there is one. Otherwise, it is the string
1689 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1692 bfd_elf_get_dt_soname (bfd
*abfd
)
1694 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1695 && bfd_get_format (abfd
) == bfd_object
)
1696 return elf_dt_name (abfd
);
1700 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1701 the ELF linker emulation code. */
1704 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1705 struct bfd_link_needed_list
**pneeded
)
1708 bfd_byte
*dynbuf
= NULL
;
1710 unsigned long shlink
;
1711 bfd_byte
*extdyn
, *extdynend
;
1713 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1717 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1718 || bfd_get_format (abfd
) != bfd_object
)
1721 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1722 if (s
== NULL
|| s
->size
== 0)
1725 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1728 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1732 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1734 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1735 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1738 extdynend
= extdyn
+ s
->size
;
1739 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1741 Elf_Internal_Dyn dyn
;
1743 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1745 if (dyn
.d_tag
== DT_NULL
)
1748 if (dyn
.d_tag
== DT_NEEDED
)
1751 struct bfd_link_needed_list
*l
;
1752 unsigned int tagv
= dyn
.d_un
.d_val
;
1755 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1760 l
= bfd_alloc (abfd
, amt
);
1781 /* Allocate an ELF string table--force the first byte to be zero. */
1783 struct bfd_strtab_hash
*
1784 _bfd_elf_stringtab_init (void)
1786 struct bfd_strtab_hash
*ret
;
1788 ret
= _bfd_stringtab_init ();
1793 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1794 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1795 if (loc
== (bfd_size_type
) -1)
1797 _bfd_stringtab_free (ret
);
1804 /* ELF .o/exec file reading */
1806 /* Create a new bfd section from an ELF section header. */
1809 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1811 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1812 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1813 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1816 name
= bfd_elf_string_from_elf_section (abfd
,
1817 elf_elfheader (abfd
)->e_shstrndx
,
1822 switch (hdr
->sh_type
)
1825 /* Inactive section. Throw it away. */
1828 case SHT_PROGBITS
: /* Normal section with contents. */
1829 case SHT_NOBITS
: /* .bss section. */
1830 case SHT_HASH
: /* .hash section. */
1831 case SHT_NOTE
: /* .note section. */
1832 case SHT_INIT_ARRAY
: /* .init_array section. */
1833 case SHT_FINI_ARRAY
: /* .fini_array section. */
1834 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1835 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1836 case SHT_GNU_HASH
: /* .gnu.hash section. */
1837 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1839 case SHT_DYNAMIC
: /* Dynamic linking information. */
1840 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1842 if (hdr
->sh_link
> elf_numsections (abfd
)
1843 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1845 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1847 Elf_Internal_Shdr
*dynsymhdr
;
1849 /* The shared libraries distributed with hpux11 have a bogus
1850 sh_link field for the ".dynamic" section. Find the
1851 string table for the ".dynsym" section instead. */
1852 if (elf_dynsymtab (abfd
) != 0)
1854 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1855 hdr
->sh_link
= dynsymhdr
->sh_link
;
1859 unsigned int i
, num_sec
;
1861 num_sec
= elf_numsections (abfd
);
1862 for (i
= 1; i
< num_sec
; i
++)
1864 dynsymhdr
= elf_elfsections (abfd
)[i
];
1865 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1867 hdr
->sh_link
= dynsymhdr
->sh_link
;
1875 case SHT_SYMTAB
: /* A symbol table */
1876 if (elf_onesymtab (abfd
) == shindex
)
1879 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1881 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1882 elf_onesymtab (abfd
) = shindex
;
1883 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1884 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1885 abfd
->flags
|= HAS_SYMS
;
1887 /* Sometimes a shared object will map in the symbol table. If
1888 SHF_ALLOC is set, and this is a shared object, then we also
1889 treat this section as a BFD section. We can not base the
1890 decision purely on SHF_ALLOC, because that flag is sometimes
1891 set in a relocatable object file, which would confuse the
1893 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1894 && (abfd
->flags
& DYNAMIC
) != 0
1895 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1899 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1900 can't read symbols without that section loaded as well. It
1901 is most likely specified by the next section header. */
1902 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1904 unsigned int i
, num_sec
;
1906 num_sec
= elf_numsections (abfd
);
1907 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1909 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1910 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1911 && hdr2
->sh_link
== shindex
)
1915 for (i
= 1; i
< shindex
; i
++)
1917 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1918 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1919 && hdr2
->sh_link
== shindex
)
1923 return bfd_section_from_shdr (abfd
, i
);
1927 case SHT_DYNSYM
: /* A dynamic symbol table */
1928 if (elf_dynsymtab (abfd
) == shindex
)
1931 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1933 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1934 elf_dynsymtab (abfd
) = shindex
;
1935 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1936 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1937 abfd
->flags
|= HAS_SYMS
;
1939 /* Besides being a symbol table, we also treat this as a regular
1940 section, so that objcopy can handle it. */
1941 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1943 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1944 if (elf_symtab_shndx (abfd
) == shindex
)
1947 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1948 elf_symtab_shndx (abfd
) = shindex
;
1949 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1950 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1953 case SHT_STRTAB
: /* A string table */
1954 if (hdr
->bfd_section
!= NULL
)
1956 if (ehdr
->e_shstrndx
== shindex
)
1958 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1959 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1962 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1965 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1966 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1969 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1972 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1973 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1974 elf_elfsections (abfd
)[shindex
] = hdr
;
1975 /* We also treat this as a regular section, so that objcopy
1977 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1981 /* If the string table isn't one of the above, then treat it as a
1982 regular section. We need to scan all the headers to be sure,
1983 just in case this strtab section appeared before the above. */
1984 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1986 unsigned int i
, num_sec
;
1988 num_sec
= elf_numsections (abfd
);
1989 for (i
= 1; i
< num_sec
; i
++)
1991 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1992 if (hdr2
->sh_link
== shindex
)
1994 /* Prevent endless recursion on broken objects. */
1997 if (! bfd_section_from_shdr (abfd
, i
))
1999 if (elf_onesymtab (abfd
) == i
)
2001 if (elf_dynsymtab (abfd
) == i
)
2002 goto dynsymtab_strtab
;
2006 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2010 /* *These* do a lot of work -- but build no sections! */
2012 asection
*target_sect
;
2013 Elf_Internal_Shdr
*hdr2
;
2014 unsigned int num_sec
= elf_numsections (abfd
);
2017 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2018 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2021 /* Check for a bogus link to avoid crashing. */
2022 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2023 || hdr
->sh_link
>= num_sec
)
2025 ((*_bfd_error_handler
)
2026 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2027 abfd
, hdr
->sh_link
, name
, shindex
));
2028 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2032 /* For some incomprehensible reason Oracle distributes
2033 libraries for Solaris in which some of the objects have
2034 bogus sh_link fields. It would be nice if we could just
2035 reject them, but, unfortunately, some people need to use
2036 them. We scan through the section headers; if we find only
2037 one suitable symbol table, we clobber the sh_link to point
2038 to it. I hope this doesn't break anything. */
2039 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2040 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2046 for (scan
= 1; scan
< num_sec
; scan
++)
2048 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2049 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2060 hdr
->sh_link
= found
;
2063 /* Get the symbol table. */
2064 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2065 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2066 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2069 /* If this reloc section does not use the main symbol table we
2070 don't treat it as a reloc section. BFD can't adequately
2071 represent such a section, so at least for now, we don't
2072 try. We just present it as a normal section. We also
2073 can't use it as a reloc section if it points to the null
2074 section, an invalid section, or another reloc section. */
2075 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2076 || hdr
->sh_info
== SHN_UNDEF
2077 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2078 || hdr
->sh_info
>= num_sec
2079 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2080 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2081 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2084 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2086 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2087 if (target_sect
== NULL
)
2090 if ((target_sect
->flags
& SEC_RELOC
) == 0
2091 || target_sect
->reloc_count
== 0)
2092 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2096 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2097 amt
= sizeof (*hdr2
);
2098 hdr2
= bfd_alloc (abfd
, amt
);
2099 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2102 elf_elfsections (abfd
)[shindex
] = hdr2
;
2103 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2104 target_sect
->flags
|= SEC_RELOC
;
2105 target_sect
->relocation
= NULL
;
2106 target_sect
->rel_filepos
= hdr
->sh_offset
;
2107 /* In the section to which the relocations apply, mark whether
2108 its relocations are of the REL or RELA variety. */
2109 if (hdr
->sh_size
!= 0)
2110 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2111 abfd
->flags
|= HAS_RELOC
;
2115 case SHT_GNU_verdef
:
2116 elf_dynverdef (abfd
) = shindex
;
2117 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2118 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2120 case SHT_GNU_versym
:
2121 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2123 elf_dynversym (abfd
) = shindex
;
2124 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2125 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2127 case SHT_GNU_verneed
:
2128 elf_dynverref (abfd
) = shindex
;
2129 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2130 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2136 /* We need a BFD section for objcopy and relocatable linking,
2137 and it's handy to have the signature available as the section
2139 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2141 name
= group_signature (abfd
, hdr
);
2144 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2146 if (hdr
->contents
!= NULL
)
2148 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2149 unsigned int n_elt
= hdr
->sh_size
/ 4;
2152 if (idx
->flags
& GRP_COMDAT
)
2153 hdr
->bfd_section
->flags
2154 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2156 /* We try to keep the same section order as it comes in. */
2158 while (--n_elt
!= 0)
2159 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2160 && elf_next_in_group (s
) != NULL
)
2162 elf_next_in_group (hdr
->bfd_section
) = s
;
2169 /* Check for any processor-specific section types. */
2170 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
2173 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
2175 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
2176 /* FIXME: How to properly handle allocated section reserved
2177 for applications? */
2178 (*_bfd_error_handler
)
2179 (_("%B: don't know how to handle allocated, application "
2180 "specific section `%s' [0x%8x]"),
2181 abfd
, name
, hdr
->sh_type
);
2183 /* Allow sections reserved for applications. */
2184 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2187 else if (hdr
->sh_type
>= SHT_LOPROC
2188 && hdr
->sh_type
<= SHT_HIPROC
)
2189 /* FIXME: We should handle this section. */
2190 (*_bfd_error_handler
)
2191 (_("%B: don't know how to handle processor specific section "
2193 abfd
, name
, hdr
->sh_type
);
2194 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2196 /* Unrecognised OS-specific sections. */
2197 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
2198 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2199 required to correctly process the section and the file should
2200 be rejected with an error message. */
2201 (*_bfd_error_handler
)
2202 (_("%B: don't know how to handle OS specific section "
2204 abfd
, name
, hdr
->sh_type
);
2206 /* Otherwise it should be processed. */
2207 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2210 /* FIXME: We should handle this section. */
2211 (*_bfd_error_handler
)
2212 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2213 abfd
, name
, hdr
->sh_type
);
2221 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2222 Return SEC for sections that have no elf section, and NULL on error. */
2225 bfd_section_from_r_symndx (bfd
*abfd
,
2226 struct sym_sec_cache
*cache
,
2228 unsigned long r_symndx
)
2230 Elf_Internal_Shdr
*symtab_hdr
;
2231 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2232 Elf_External_Sym_Shndx eshndx
;
2233 Elf_Internal_Sym isym
;
2234 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2236 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2237 return cache
->sec
[ent
];
2239 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2240 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2241 &isym
, esym
, &eshndx
) == NULL
)
2244 if (cache
->abfd
!= abfd
)
2246 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2249 cache
->indx
[ent
] = r_symndx
;
2250 cache
->sec
[ent
] = sec
;
2251 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2252 || isym
.st_shndx
> SHN_HIRESERVE
)
2255 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2257 cache
->sec
[ent
] = s
;
2259 return cache
->sec
[ent
];
2262 /* Given an ELF section number, retrieve the corresponding BFD
2266 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2268 if (index
>= elf_numsections (abfd
))
2270 return elf_elfsections (abfd
)[index
]->bfd_section
;
2273 static const struct bfd_elf_special_section special_sections_b
[] =
2275 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2276 { NULL
, 0, 0, 0, 0 }
2279 static const struct bfd_elf_special_section special_sections_c
[] =
2281 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2282 { NULL
, 0, 0, 0, 0 }
2285 static const struct bfd_elf_special_section special_sections_d
[] =
2287 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2288 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2289 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2290 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2291 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2292 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2293 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2294 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2295 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2296 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2297 { NULL
, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_f
[] =
2302 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2303 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2304 { NULL
, 0, 0, 0, 0 }
2307 static const struct bfd_elf_special_section special_sections_g
[] =
2309 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2310 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2311 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2312 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2313 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2314 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2315 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2316 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2317 { NULL
, 0, 0, 0, 0 }
2320 static const struct bfd_elf_special_section special_sections_h
[] =
2322 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2323 { NULL
, 0, 0, 0, 0 }
2326 static const struct bfd_elf_special_section special_sections_i
[] =
2328 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2329 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2330 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2331 { NULL
, 0, 0, 0, 0 }
2334 static const struct bfd_elf_special_section special_sections_l
[] =
2336 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2337 { NULL
, 0, 0, 0, 0 }
2340 static const struct bfd_elf_special_section special_sections_n
[] =
2342 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2343 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2344 { NULL
, 0, 0, 0, 0 }
2347 static const struct bfd_elf_special_section special_sections_p
[] =
2349 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2350 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2351 { NULL
, 0, 0, 0, 0 }
2354 static const struct bfd_elf_special_section special_sections_r
[] =
2356 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2357 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2358 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2359 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2360 { NULL
, 0, 0, 0, 0 }
2363 static const struct bfd_elf_special_section special_sections_s
[] =
2365 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2366 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2367 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2368 /* See struct bfd_elf_special_section declaration for the semantics of
2369 this special case where .prefix_length != strlen (.prefix). */
2370 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2371 { NULL
, 0, 0, 0, 0 }
2374 static const struct bfd_elf_special_section special_sections_t
[] =
2376 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2377 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2378 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2379 { NULL
, 0, 0, 0, 0 }
2382 static const struct bfd_elf_special_section
*special_sections
[] =
2384 special_sections_b
, /* 'b' */
2385 special_sections_c
, /* 'b' */
2386 special_sections_d
, /* 'd' */
2388 special_sections_f
, /* 'f' */
2389 special_sections_g
, /* 'g' */
2390 special_sections_h
, /* 'h' */
2391 special_sections_i
, /* 'i' */
2394 special_sections_l
, /* 'l' */
2396 special_sections_n
, /* 'n' */
2398 special_sections_p
, /* 'p' */
2400 special_sections_r
, /* 'r' */
2401 special_sections_s
, /* 's' */
2402 special_sections_t
, /* 't' */
2405 const struct bfd_elf_special_section
*
2406 _bfd_elf_get_special_section (const char *name
,
2407 const struct bfd_elf_special_section
*spec
,
2413 len
= strlen (name
);
2415 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2418 int prefix_len
= spec
[i
].prefix_length
;
2420 if (len
< prefix_len
)
2422 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2425 suffix_len
= spec
[i
].suffix_length
;
2426 if (suffix_len
<= 0)
2428 if (name
[prefix_len
] != 0)
2430 if (suffix_len
== 0)
2432 if (name
[prefix_len
] != '.'
2433 && (suffix_len
== -2
2434 || (rela
&& spec
[i
].type
== SHT_REL
)))
2440 if (len
< prefix_len
+ suffix_len
)
2442 if (memcmp (name
+ len
- suffix_len
,
2443 spec
[i
].prefix
+ prefix_len
,
2453 const struct bfd_elf_special_section
*
2454 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2457 const struct bfd_elf_special_section
*spec
;
2458 const struct elf_backend_data
*bed
;
2460 /* See if this is one of the special sections. */
2461 if (sec
->name
== NULL
)
2464 bed
= get_elf_backend_data (abfd
);
2465 spec
= bed
->special_sections
;
2468 spec
= _bfd_elf_get_special_section (sec
->name
,
2469 bed
->special_sections
,
2475 if (sec
->name
[0] != '.')
2478 i
= sec
->name
[1] - 'b';
2479 if (i
< 0 || i
> 't' - 'b')
2482 spec
= special_sections
[i
];
2487 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2491 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2493 struct bfd_elf_section_data
*sdata
;
2494 const struct elf_backend_data
*bed
;
2495 const struct bfd_elf_special_section
*ssect
;
2497 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2500 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2503 sec
->used_by_bfd
= sdata
;
2506 /* Indicate whether or not this section should use RELA relocations. */
2507 bed
= get_elf_backend_data (abfd
);
2508 sec
->use_rela_p
= bed
->default_use_rela_p
;
2510 /* When we read a file, we don't need to set ELF section type and
2511 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2512 anyway. We will set ELF section type and flags for all linker
2513 created sections. If user specifies BFD section flags, we will
2514 set ELF section type and flags based on BFD section flags in
2515 elf_fake_sections. */
2516 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2517 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2519 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2522 elf_section_type (sec
) = ssect
->type
;
2523 elf_section_flags (sec
) = ssect
->attr
;
2527 return _bfd_generic_new_section_hook (abfd
, sec
);
2530 /* Create a new bfd section from an ELF program header.
2532 Since program segments have no names, we generate a synthetic name
2533 of the form segment<NUM>, where NUM is generally the index in the
2534 program header table. For segments that are split (see below) we
2535 generate the names segment<NUM>a and segment<NUM>b.
2537 Note that some program segments may have a file size that is different than
2538 (less than) the memory size. All this means is that at execution the
2539 system must allocate the amount of memory specified by the memory size,
2540 but only initialize it with the first "file size" bytes read from the
2541 file. This would occur for example, with program segments consisting
2542 of combined data+bss.
2544 To handle the above situation, this routine generates TWO bfd sections
2545 for the single program segment. The first has the length specified by
2546 the file size of the segment, and the second has the length specified
2547 by the difference between the two sizes. In effect, the segment is split
2548 into it's initialized and uninitialized parts.
2553 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2554 Elf_Internal_Phdr
*hdr
,
2556 const char *typename
)
2564 split
= ((hdr
->p_memsz
> 0)
2565 && (hdr
->p_filesz
> 0)
2566 && (hdr
->p_memsz
> hdr
->p_filesz
));
2567 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2568 len
= strlen (namebuf
) + 1;
2569 name
= bfd_alloc (abfd
, len
);
2572 memcpy (name
, namebuf
, len
);
2573 newsect
= bfd_make_section (abfd
, name
);
2574 if (newsect
== NULL
)
2576 newsect
->vma
= hdr
->p_vaddr
;
2577 newsect
->lma
= hdr
->p_paddr
;
2578 newsect
->size
= hdr
->p_filesz
;
2579 newsect
->filepos
= hdr
->p_offset
;
2580 newsect
->flags
|= SEC_HAS_CONTENTS
;
2581 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2582 if (hdr
->p_type
== PT_LOAD
)
2584 newsect
->flags
|= SEC_ALLOC
;
2585 newsect
->flags
|= SEC_LOAD
;
2586 if (hdr
->p_flags
& PF_X
)
2588 /* FIXME: all we known is that it has execute PERMISSION,
2590 newsect
->flags
|= SEC_CODE
;
2593 if (!(hdr
->p_flags
& PF_W
))
2595 newsect
->flags
|= SEC_READONLY
;
2600 sprintf (namebuf
, "%s%db", typename
, index
);
2601 len
= strlen (namebuf
) + 1;
2602 name
= bfd_alloc (abfd
, len
);
2605 memcpy (name
, namebuf
, len
);
2606 newsect
= bfd_make_section (abfd
, name
);
2607 if (newsect
== NULL
)
2609 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2610 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2611 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2612 if (hdr
->p_type
== PT_LOAD
)
2614 newsect
->flags
|= SEC_ALLOC
;
2615 if (hdr
->p_flags
& PF_X
)
2616 newsect
->flags
|= SEC_CODE
;
2618 if (!(hdr
->p_flags
& PF_W
))
2619 newsect
->flags
|= SEC_READONLY
;
2626 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2628 const struct elf_backend_data
*bed
;
2630 switch (hdr
->p_type
)
2633 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2636 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2639 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2642 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2645 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2647 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2652 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2655 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2657 case PT_GNU_EH_FRAME
:
2658 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2662 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2665 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2668 /* Check for any processor-specific program segment types. */
2669 bed
= get_elf_backend_data (abfd
);
2670 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2674 /* Initialize REL_HDR, the section-header for new section, containing
2675 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2676 relocations; otherwise, we use REL relocations. */
2679 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2680 Elf_Internal_Shdr
*rel_hdr
,
2682 bfd_boolean use_rela_p
)
2685 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2686 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2688 name
= bfd_alloc (abfd
, amt
);
2691 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2693 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2695 if (rel_hdr
->sh_name
== (unsigned int) -1)
2697 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2698 rel_hdr
->sh_entsize
= (use_rela_p
2699 ? bed
->s
->sizeof_rela
2700 : bed
->s
->sizeof_rel
);
2701 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2702 rel_hdr
->sh_flags
= 0;
2703 rel_hdr
->sh_addr
= 0;
2704 rel_hdr
->sh_size
= 0;
2705 rel_hdr
->sh_offset
= 0;
2710 /* Set up an ELF internal section header for a section. */
2713 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2715 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2716 bfd_boolean
*failedptr
= failedptrarg
;
2717 Elf_Internal_Shdr
*this_hdr
;
2721 /* We already failed; just get out of the bfd_map_over_sections
2726 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2728 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2729 asect
->name
, FALSE
);
2730 if (this_hdr
->sh_name
== (unsigned int) -1)
2736 /* Don't clear sh_flags. Assembler may set additional bits. */
2738 if ((asect
->flags
& SEC_ALLOC
) != 0
2739 || asect
->user_set_vma
)
2740 this_hdr
->sh_addr
= asect
->vma
;
2742 this_hdr
->sh_addr
= 0;
2744 this_hdr
->sh_offset
= 0;
2745 this_hdr
->sh_size
= asect
->size
;
2746 this_hdr
->sh_link
= 0;
2747 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2748 /* The sh_entsize and sh_info fields may have been set already by
2749 copy_private_section_data. */
2751 this_hdr
->bfd_section
= asect
;
2752 this_hdr
->contents
= NULL
;
2754 /* If the section type is unspecified, we set it based on
2756 if (this_hdr
->sh_type
== SHT_NULL
)
2758 if ((asect
->flags
& SEC_GROUP
) != 0)
2759 this_hdr
->sh_type
= SHT_GROUP
;
2760 else if ((asect
->flags
& SEC_ALLOC
) != 0
2761 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2762 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2763 this_hdr
->sh_type
= SHT_NOBITS
;
2765 this_hdr
->sh_type
= SHT_PROGBITS
;
2768 switch (this_hdr
->sh_type
)
2774 case SHT_INIT_ARRAY
:
2775 case SHT_FINI_ARRAY
:
2776 case SHT_PREINIT_ARRAY
:
2783 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2787 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2791 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2795 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2796 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2800 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2801 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2804 case SHT_GNU_versym
:
2805 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2808 case SHT_GNU_verdef
:
2809 this_hdr
->sh_entsize
= 0;
2810 /* objcopy or strip will copy over sh_info, but may not set
2811 cverdefs. The linker will set cverdefs, but sh_info will be
2813 if (this_hdr
->sh_info
== 0)
2814 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2816 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2817 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2820 case SHT_GNU_verneed
:
2821 this_hdr
->sh_entsize
= 0;
2822 /* objcopy or strip will copy over sh_info, but may not set
2823 cverrefs. The linker will set cverrefs, but sh_info will be
2825 if (this_hdr
->sh_info
== 0)
2826 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2828 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2829 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2833 this_hdr
->sh_entsize
= 4;
2837 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2841 if ((asect
->flags
& SEC_ALLOC
) != 0)
2842 this_hdr
->sh_flags
|= SHF_ALLOC
;
2843 if ((asect
->flags
& SEC_READONLY
) == 0)
2844 this_hdr
->sh_flags
|= SHF_WRITE
;
2845 if ((asect
->flags
& SEC_CODE
) != 0)
2846 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2847 if ((asect
->flags
& SEC_MERGE
) != 0)
2849 this_hdr
->sh_flags
|= SHF_MERGE
;
2850 this_hdr
->sh_entsize
= asect
->entsize
;
2851 if ((asect
->flags
& SEC_STRINGS
) != 0)
2852 this_hdr
->sh_flags
|= SHF_STRINGS
;
2854 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2855 this_hdr
->sh_flags
|= SHF_GROUP
;
2856 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2858 this_hdr
->sh_flags
|= SHF_TLS
;
2859 if (asect
->size
== 0
2860 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2862 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2864 this_hdr
->sh_size
= 0;
2867 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2868 if (this_hdr
->sh_size
!= 0)
2869 this_hdr
->sh_type
= SHT_NOBITS
;
2874 /* Check for processor-specific section types. */
2875 if (bed
->elf_backend_fake_sections
2876 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2879 /* If the section has relocs, set up a section header for the
2880 SHT_REL[A] section. If two relocation sections are required for
2881 this section, it is up to the processor-specific back-end to
2882 create the other. */
2883 if ((asect
->flags
& SEC_RELOC
) != 0
2884 && !_bfd_elf_init_reloc_shdr (abfd
,
2885 &elf_section_data (asect
)->rel_hdr
,
2891 /* Fill in the contents of a SHT_GROUP section. */
2894 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2896 bfd_boolean
*failedptr
= failedptrarg
;
2897 unsigned long symindx
;
2898 asection
*elt
, *first
;
2902 /* Ignore linker created group section. See elfNN_ia64_object_p in
2904 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2909 if (elf_group_id (sec
) != NULL
)
2910 symindx
= elf_group_id (sec
)->udata
.i
;
2914 /* If called from the assembler, swap_out_syms will have set up
2915 elf_section_syms; If called for "ld -r", use target_index. */
2916 if (elf_section_syms (abfd
) != NULL
)
2917 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2919 symindx
= sec
->target_index
;
2921 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2923 /* The contents won't be allocated for "ld -r" or objcopy. */
2925 if (sec
->contents
== NULL
)
2928 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2930 /* Arrange for the section to be written out. */
2931 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2932 if (sec
->contents
== NULL
)
2939 loc
= sec
->contents
+ sec
->size
;
2941 /* Get the pointer to the first section in the group that gas
2942 squirreled away here. objcopy arranges for this to be set to the
2943 start of the input section group. */
2944 first
= elt
= elf_next_in_group (sec
);
2946 /* First element is a flag word. Rest of section is elf section
2947 indices for all the sections of the group. Write them backwards
2948 just to keep the group in the same order as given in .section
2949 directives, not that it matters. */
2958 s
= s
->output_section
;
2961 idx
= elf_section_data (s
)->this_idx
;
2962 H_PUT_32 (abfd
, idx
, loc
);
2963 elt
= elf_next_in_group (elt
);
2968 if ((loc
-= 4) != sec
->contents
)
2971 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2974 /* Assign all ELF section numbers. The dummy first section is handled here
2975 too. The link/info pointers for the standard section types are filled
2976 in here too, while we're at it. */
2979 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2981 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2983 unsigned int section_number
, secn
;
2984 Elf_Internal_Shdr
**i_shdrp
;
2985 struct bfd_elf_section_data
*d
;
2989 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2991 /* SHT_GROUP sections are in relocatable files only. */
2992 if (link_info
== NULL
|| link_info
->relocatable
)
2994 /* Put SHT_GROUP sections first. */
2995 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2997 d
= elf_section_data (sec
);
2999 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
3001 if (sec
->flags
& SEC_LINKER_CREATED
)
3003 /* Remove the linker created SHT_GROUP sections. */
3004 bfd_section_list_remove (abfd
, sec
);
3005 abfd
->section_count
--;
3009 if (section_number
== SHN_LORESERVE
)
3010 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3011 d
->this_idx
= section_number
++;
3017 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3019 d
= elf_section_data (sec
);
3021 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
3023 if (section_number
== SHN_LORESERVE
)
3024 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3025 d
->this_idx
= section_number
++;
3027 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
3028 if ((sec
->flags
& SEC_RELOC
) == 0)
3032 if (section_number
== SHN_LORESERVE
)
3033 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3034 d
->rel_idx
= section_number
++;
3035 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
3040 if (section_number
== SHN_LORESERVE
)
3041 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3042 d
->rel_idx2
= section_number
++;
3043 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
3049 if (section_number
== SHN_LORESERVE
)
3050 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3051 t
->shstrtab_section
= section_number
++;
3052 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
3053 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
3055 if (bfd_get_symcount (abfd
) > 0)
3057 if (section_number
== SHN_LORESERVE
)
3058 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3059 t
->symtab_section
= section_number
++;
3060 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3061 if (section_number
> SHN_LORESERVE
- 2)
3063 if (section_number
== SHN_LORESERVE
)
3064 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3065 t
->symtab_shndx_section
= section_number
++;
3066 t
->symtab_shndx_hdr
.sh_name
3067 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3068 ".symtab_shndx", FALSE
);
3069 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3072 if (section_number
== SHN_LORESERVE
)
3073 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3074 t
->strtab_section
= section_number
++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3078 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3079 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3081 elf_numsections (abfd
) = section_number
;
3082 elf_elfheader (abfd
)->e_shnum
= section_number
;
3083 if (section_number
> SHN_LORESERVE
)
3084 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3086 /* Set up the list of section header pointers, in agreement with the
3088 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3089 if (i_shdrp
== NULL
)
3092 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3093 if (i_shdrp
[0] == NULL
)
3095 bfd_release (abfd
, i_shdrp
);
3099 elf_elfsections (abfd
) = i_shdrp
;
3101 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3102 if (bfd_get_symcount (abfd
) > 0)
3104 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3105 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3107 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3108 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3110 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3111 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3114 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3116 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3120 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3121 if (d
->rel_idx
!= 0)
3122 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3123 if (d
->rel_idx2
!= 0)
3124 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3126 /* Fill in the sh_link and sh_info fields while we're at it. */
3128 /* sh_link of a reloc section is the section index of the symbol
3129 table. sh_info is the section index of the section to which
3130 the relocation entries apply. */
3131 if (d
->rel_idx
!= 0)
3133 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3134 d
->rel_hdr
.sh_info
= d
->this_idx
;
3136 if (d
->rel_idx2
!= 0)
3138 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3139 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3142 /* We need to set up sh_link for SHF_LINK_ORDER. */
3143 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3145 s
= elf_linked_to_section (sec
);
3148 /* elf_linked_to_section points to the input section. */
3149 if (link_info
!= NULL
)
3151 /* Check discarded linkonce section. */
3152 if (elf_discarded_section (s
))
3155 (*_bfd_error_handler
)
3156 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3157 abfd
, d
->this_hdr
.bfd_section
,
3159 /* Point to the kept section if it has the same
3160 size as the discarded one. */
3161 kept
= _bfd_elf_check_kept_section (s
, link_info
);
3164 bfd_set_error (bfd_error_bad_value
);
3170 s
= s
->output_section
;
3171 BFD_ASSERT (s
!= NULL
);
3175 /* Handle objcopy. */
3176 if (s
->output_section
== NULL
)
3178 (*_bfd_error_handler
)
3179 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3180 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3181 bfd_set_error (bfd_error_bad_value
);
3184 s
= s
->output_section
;
3186 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3191 The Intel C compiler generates SHT_IA_64_UNWIND with
3192 SHF_LINK_ORDER. But it doesn't set the sh_link or
3193 sh_info fields. Hence we could get the situation
3195 const struct elf_backend_data
*bed
3196 = get_elf_backend_data (abfd
);
3197 if (bed
->link_order_error_handler
)
3198 bed
->link_order_error_handler
3199 (_("%B: warning: sh_link not set for section `%A'"),
3204 switch (d
->this_hdr
.sh_type
)
3208 /* A reloc section which we are treating as a normal BFD
3209 section. sh_link is the section index of the symbol
3210 table. sh_info is the section index of the section to
3211 which the relocation entries apply. We assume that an
3212 allocated reloc section uses the dynamic symbol table.
3213 FIXME: How can we be sure? */
3214 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3216 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3218 /* We look up the section the relocs apply to by name. */
3220 if (d
->this_hdr
.sh_type
== SHT_REL
)
3224 s
= bfd_get_section_by_name (abfd
, name
);
3226 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3230 /* We assume that a section named .stab*str is a stabs
3231 string section. We look for a section with the same name
3232 but without the trailing ``str'', and set its sh_link
3233 field to point to this section. */
3234 if (CONST_STRNEQ (sec
->name
, ".stab")
3235 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3240 len
= strlen (sec
->name
);
3241 alc
= bfd_malloc (len
- 2);
3244 memcpy (alc
, sec
->name
, len
- 3);
3245 alc
[len
- 3] = '\0';
3246 s
= bfd_get_section_by_name (abfd
, alc
);
3250 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3252 /* This is a .stab section. */
3253 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3254 elf_section_data (s
)->this_hdr
.sh_entsize
3255 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3262 case SHT_GNU_verneed
:
3263 case SHT_GNU_verdef
:
3264 /* sh_link is the section header index of the string table
3265 used for the dynamic entries, or the symbol table, or the
3267 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3269 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3272 case SHT_GNU_LIBLIST
:
3273 /* sh_link is the section header index of the prelink library
3275 used for the dynamic entries, or the symbol table, or the
3277 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3278 ? ".dynstr" : ".gnu.libstr");
3280 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3285 case SHT_GNU_versym
:
3286 /* sh_link is the section header index of the symbol table
3287 this hash table or version table is for. */
3288 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3290 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3294 d
->this_hdr
.sh_link
= t
->symtab_section
;
3298 for (secn
= 1; secn
< section_number
; ++secn
)
3299 if (i_shdrp
[secn
] == NULL
)
3300 i_shdrp
[secn
] = i_shdrp
[0];
3302 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3303 i_shdrp
[secn
]->sh_name
);
3307 /* Map symbol from it's internal number to the external number, moving
3308 all local symbols to be at the head of the list. */
3311 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3313 /* If the backend has a special mapping, use it. */
3314 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3315 if (bed
->elf_backend_sym_is_global
)
3316 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3318 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3319 || bfd_is_und_section (bfd_get_section (sym
))
3320 || bfd_is_com_section (bfd_get_section (sym
)));
3323 /* Don't output section symbols for sections that are not going to be
3324 output. Also, don't output section symbols for reloc and other
3325 special sections. */
3328 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3330 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3332 || (sym
->section
->owner
!= abfd
3333 && (sym
->section
->output_section
->owner
!= abfd
3334 || sym
->section
->output_offset
!= 0))));
3338 elf_map_symbols (bfd
*abfd
)
3340 unsigned int symcount
= bfd_get_symcount (abfd
);
3341 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3342 asymbol
**sect_syms
;
3343 unsigned int num_locals
= 0;
3344 unsigned int num_globals
= 0;
3345 unsigned int num_locals2
= 0;
3346 unsigned int num_globals2
= 0;
3353 fprintf (stderr
, "elf_map_symbols\n");
3357 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3359 if (max_index
< asect
->index
)
3360 max_index
= asect
->index
;
3364 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3365 if (sect_syms
== NULL
)
3367 elf_section_syms (abfd
) = sect_syms
;
3368 elf_num_section_syms (abfd
) = max_index
;
3370 /* Init sect_syms entries for any section symbols we have already
3371 decided to output. */
3372 for (idx
= 0; idx
< symcount
; idx
++)
3374 asymbol
*sym
= syms
[idx
];
3376 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3377 && !ignore_section_sym (abfd
, sym
))
3379 asection
*sec
= sym
->section
;
3381 if (sec
->owner
!= abfd
)
3382 sec
= sec
->output_section
;
3384 sect_syms
[sec
->index
] = syms
[idx
];
3388 /* Classify all of the symbols. */
3389 for (idx
= 0; idx
< symcount
; idx
++)
3391 if (ignore_section_sym (abfd
, syms
[idx
]))
3393 if (!sym_is_global (abfd
, syms
[idx
]))
3399 /* We will be adding a section symbol for each normal BFD section. Most
3400 sections will already have a section symbol in outsymbols, but
3401 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3402 at least in that case. */
3403 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3405 if (sect_syms
[asect
->index
] == NULL
)
3407 if (!sym_is_global (abfd
, asect
->symbol
))
3414 /* Now sort the symbols so the local symbols are first. */
3415 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3417 if (new_syms
== NULL
)
3420 for (idx
= 0; idx
< symcount
; idx
++)
3422 asymbol
*sym
= syms
[idx
];
3425 if (ignore_section_sym (abfd
, sym
))
3427 if (!sym_is_global (abfd
, sym
))
3430 i
= num_locals
+ num_globals2
++;
3432 sym
->udata
.i
= i
+ 1;
3434 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3436 if (sect_syms
[asect
->index
] == NULL
)
3438 asymbol
*sym
= asect
->symbol
;
3441 sect_syms
[asect
->index
] = sym
;
3442 if (!sym_is_global (abfd
, sym
))
3445 i
= num_locals
+ num_globals2
++;
3447 sym
->udata
.i
= i
+ 1;
3451 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3453 elf_num_locals (abfd
) = num_locals
;
3454 elf_num_globals (abfd
) = num_globals
;
3458 /* Align to the maximum file alignment that could be required for any
3459 ELF data structure. */
3461 static inline file_ptr
3462 align_file_position (file_ptr off
, int align
)
3464 return (off
+ align
- 1) & ~(align
- 1);
3467 /* Assign a file position to a section, optionally aligning to the
3468 required section alignment. */
3471 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3479 al
= i_shdrp
->sh_addralign
;
3481 offset
= BFD_ALIGN (offset
, al
);
3483 i_shdrp
->sh_offset
= offset
;
3484 if (i_shdrp
->bfd_section
!= NULL
)
3485 i_shdrp
->bfd_section
->filepos
= offset
;
3486 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3487 offset
+= i_shdrp
->sh_size
;
3491 /* Compute the file positions we are going to put the sections at, and
3492 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3493 is not NULL, this is being called by the ELF backend linker. */
3496 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3497 struct bfd_link_info
*link_info
)
3499 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3501 struct bfd_strtab_hash
*strtab
= NULL
;
3502 Elf_Internal_Shdr
*shstrtab_hdr
;
3504 if (abfd
->output_has_begun
)
3507 /* Do any elf backend specific processing first. */
3508 if (bed
->elf_backend_begin_write_processing
)
3509 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3511 if (! prep_headers (abfd
))
3514 /* Post process the headers if necessary. */
3515 if (bed
->elf_backend_post_process_headers
)
3516 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3519 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3523 if (!assign_section_numbers (abfd
, link_info
))
3526 /* The backend linker builds symbol table information itself. */
3527 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3529 /* Non-zero if doing a relocatable link. */
3530 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3532 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3536 if (link_info
== NULL
)
3538 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3543 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3544 /* sh_name was set in prep_headers. */
3545 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3546 shstrtab_hdr
->sh_flags
= 0;
3547 shstrtab_hdr
->sh_addr
= 0;
3548 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3549 shstrtab_hdr
->sh_entsize
= 0;
3550 shstrtab_hdr
->sh_link
= 0;
3551 shstrtab_hdr
->sh_info
= 0;
3552 /* sh_offset is set in assign_file_positions_except_relocs. */
3553 shstrtab_hdr
->sh_addralign
= 1;
3555 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3558 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3561 Elf_Internal_Shdr
*hdr
;
3563 off
= elf_tdata (abfd
)->next_file_pos
;
3565 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3566 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3568 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3569 if (hdr
->sh_size
!= 0)
3570 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3572 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3573 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3575 elf_tdata (abfd
)->next_file_pos
= off
;
3577 /* Now that we know where the .strtab section goes, write it
3579 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3580 || ! _bfd_stringtab_emit (abfd
, strtab
))
3582 _bfd_stringtab_free (strtab
);
3585 abfd
->output_has_begun
= TRUE
;
3590 /* Make an initial estimate of the size of the program header. If we
3591 get the number wrong here, we'll redo section placement. */
3593 static bfd_size_type
3594 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3598 const struct elf_backend_data
*bed
;
3600 /* Assume we will need exactly two PT_LOAD segments: one for text
3601 and one for data. */
3604 s
= bfd_get_section_by_name (abfd
, ".interp");
3605 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3607 /* If we have a loadable interpreter section, we need a
3608 PT_INTERP segment. In this case, assume we also need a
3609 PT_PHDR segment, although that may not be true for all
3614 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3616 /* We need a PT_DYNAMIC segment. */
3619 if (elf_tdata (abfd
)->relro
)
3621 /* We need a PT_GNU_RELRO segment only when there is a
3622 PT_DYNAMIC segment. */
3627 if (elf_tdata (abfd
)->eh_frame_hdr
)
3629 /* We need a PT_GNU_EH_FRAME segment. */
3633 if (elf_tdata (abfd
)->stack_flags
)
3635 /* We need a PT_GNU_STACK segment. */
3639 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3641 if ((s
->flags
& SEC_LOAD
) != 0
3642 && CONST_STRNEQ (s
->name
, ".note"))
3644 /* We need a PT_NOTE segment. */
3649 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3651 if (s
->flags
& SEC_THREAD_LOCAL
)
3653 /* We need a PT_TLS segment. */
3659 /* Let the backend count up any program headers it might need. */
3660 bed
= get_elf_backend_data (abfd
);
3661 if (bed
->elf_backend_additional_program_headers
)
3665 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3671 return segs
* bed
->s
->sizeof_phdr
;
3674 /* Create a mapping from a set of sections to a program segment. */
3676 static struct elf_segment_map
*
3677 make_mapping (bfd
*abfd
,
3678 asection
**sections
,
3683 struct elf_segment_map
*m
;
3688 amt
= sizeof (struct elf_segment_map
);
3689 amt
+= (to
- from
- 1) * sizeof (asection
*);
3690 m
= bfd_zalloc (abfd
, amt
);
3694 m
->p_type
= PT_LOAD
;
3695 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3696 m
->sections
[i
- from
] = *hdrpp
;
3697 m
->count
= to
- from
;
3699 if (from
== 0 && phdr
)
3701 /* Include the headers in the first PT_LOAD segment. */
3702 m
->includes_filehdr
= 1;
3703 m
->includes_phdrs
= 1;
3709 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3712 struct elf_segment_map
*
3713 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3715 struct elf_segment_map
*m
;
3717 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3721 m
->p_type
= PT_DYNAMIC
;
3723 m
->sections
[0] = dynsec
;
3728 /* Possibly add or remove segments from the segment map. */
3731 elf_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
3733 struct elf_segment_map
**m
;
3734 const struct elf_backend_data
*bed
;
3736 /* The placement algorithm assumes that non allocated sections are
3737 not in PT_LOAD segments. We ensure this here by removing such
3738 sections from the segment map. We also remove excluded
3739 sections. Finally, any PT_LOAD segment without sections is
3741 m
= &elf_tdata (abfd
)->segment_map
;
3744 unsigned int i
, new_count
;
3746 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3748 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3749 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3750 || (*m
)->p_type
!= PT_LOAD
))
3752 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3756 (*m
)->count
= new_count
;
3758 if ((*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3764 bed
= get_elf_backend_data (abfd
);
3765 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3767 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3774 /* Set up a mapping from BFD sections to program segments. */
3777 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3780 struct elf_segment_map
*m
;
3781 asection
**sections
= NULL
;
3782 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3784 if (elf_tdata (abfd
)->segment_map
== NULL
3785 && bfd_count_sections (abfd
) != 0)
3789 struct elf_segment_map
*mfirst
;
3790 struct elf_segment_map
**pm
;
3793 unsigned int phdr_index
;
3794 bfd_vma maxpagesize
;
3796 bfd_boolean phdr_in_segment
= TRUE
;
3797 bfd_boolean writable
;
3799 asection
*first_tls
= NULL
;
3800 asection
*dynsec
, *eh_frame_hdr
;
3803 /* Select the allocated sections, and sort them. */
3805 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3806 if (sections
== NULL
)
3810 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3812 if ((s
->flags
& SEC_ALLOC
) != 0)
3818 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3821 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3823 /* Build the mapping. */
3828 /* If we have a .interp section, then create a PT_PHDR segment for
3829 the program headers and a PT_INTERP segment for the .interp
3831 s
= bfd_get_section_by_name (abfd
, ".interp");
3832 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3834 amt
= sizeof (struct elf_segment_map
);
3835 m
= bfd_zalloc (abfd
, amt
);
3839 m
->p_type
= PT_PHDR
;
3840 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3841 m
->p_flags
= PF_R
| PF_X
;
3842 m
->p_flags_valid
= 1;
3843 m
->includes_phdrs
= 1;
3848 amt
= sizeof (struct elf_segment_map
);
3849 m
= bfd_zalloc (abfd
, amt
);
3853 m
->p_type
= PT_INTERP
;
3861 /* Look through the sections. We put sections in the same program
3862 segment when the start of the second section can be placed within
3863 a few bytes of the end of the first section. */
3867 maxpagesize
= bed
->maxpagesize
;
3869 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3871 && (dynsec
->flags
& SEC_LOAD
) == 0)
3874 /* Deal with -Ttext or something similar such that the first section
3875 is not adjacent to the program headers. This is an
3876 approximation, since at this point we don't know exactly how many
3877 program headers we will need. */
3880 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3882 if (phdr_size
== (bfd_size_type
) -1)
3883 phdr_size
= get_program_header_size (abfd
, info
);
3884 if ((abfd
->flags
& D_PAGED
) == 0
3885 || sections
[0]->lma
< phdr_size
3886 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3887 phdr_in_segment
= FALSE
;
3890 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3893 bfd_boolean new_segment
;
3897 /* See if this section and the last one will fit in the same
3900 if (last_hdr
== NULL
)
3902 /* If we don't have a segment yet, then we don't need a new
3903 one (we build the last one after this loop). */
3904 new_segment
= FALSE
;
3906 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3908 /* If this section has a different relation between the
3909 virtual address and the load address, then we need a new
3913 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3914 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3916 /* If putting this section in this segment would force us to
3917 skip a page in the segment, then we need a new segment. */
3920 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3921 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3923 /* We don't want to put a loadable section after a
3924 nonloadable section in the same segment.
3925 Consider .tbss sections as loadable for this purpose. */
3928 else if ((abfd
->flags
& D_PAGED
) == 0)
3930 /* If the file is not demand paged, which means that we
3931 don't require the sections to be correctly aligned in the
3932 file, then there is no other reason for a new segment. */
3933 new_segment
= FALSE
;
3936 && (hdr
->flags
& SEC_READONLY
) == 0
3937 && (((last_hdr
->lma
+ last_size
- 1)
3938 & ~(maxpagesize
- 1))
3939 != (hdr
->lma
& ~(maxpagesize
- 1))))
3941 /* We don't want to put a writable section in a read only
3942 segment, unless they are on the same page in memory
3943 anyhow. We already know that the last section does not
3944 bring us past the current section on the page, so the
3945 only case in which the new section is not on the same
3946 page as the previous section is when the previous section
3947 ends precisely on a page boundary. */
3952 /* Otherwise, we can use the same segment. */
3953 new_segment
= FALSE
;
3956 /* Allow interested parties a chance to override our decision. */
3957 if (last_hdr
&& info
->callbacks
->override_segment_assignment
)
3958 new_segment
= info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
, last_hdr
, new_segment
);
3962 if ((hdr
->flags
& SEC_READONLY
) == 0)
3965 /* .tbss sections effectively have zero size. */
3966 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3967 != SEC_THREAD_LOCAL
)
3968 last_size
= hdr
->size
;
3974 /* We need a new program segment. We must create a new program
3975 header holding all the sections from phdr_index until hdr. */
3977 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3984 if ((hdr
->flags
& SEC_READONLY
) == 0)
3990 /* .tbss sections effectively have zero size. */
3991 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3992 last_size
= hdr
->size
;
3996 phdr_in_segment
= FALSE
;
3999 /* Create a final PT_LOAD program segment. */
4000 if (last_hdr
!= NULL
)
4002 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4010 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4013 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4020 /* For each loadable .note section, add a PT_NOTE segment. We don't
4021 use bfd_get_section_by_name, because if we link together
4022 nonloadable .note sections and loadable .note sections, we will
4023 generate two .note sections in the output file. FIXME: Using
4024 names for section types is bogus anyhow. */
4025 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4027 if ((s
->flags
& SEC_LOAD
) != 0
4028 && CONST_STRNEQ (s
->name
, ".note"))
4030 amt
= sizeof (struct elf_segment_map
);
4031 m
= bfd_zalloc (abfd
, amt
);
4035 m
->p_type
= PT_NOTE
;
4042 if (s
->flags
& SEC_THREAD_LOCAL
)
4050 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4055 amt
= sizeof (struct elf_segment_map
);
4056 amt
+= (tls_count
- 1) * sizeof (asection
*);
4057 m
= bfd_zalloc (abfd
, amt
);
4062 m
->count
= tls_count
;
4063 /* Mandated PF_R. */
4065 m
->p_flags_valid
= 1;
4066 for (i
= 0; i
< tls_count
; ++i
)
4068 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4069 m
->sections
[i
] = first_tls
;
4070 first_tls
= first_tls
->next
;
4077 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4079 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4080 if (eh_frame_hdr
!= NULL
4081 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4083 amt
= sizeof (struct elf_segment_map
);
4084 m
= bfd_zalloc (abfd
, amt
);
4088 m
->p_type
= PT_GNU_EH_FRAME
;
4090 m
->sections
[0] = eh_frame_hdr
->output_section
;
4096 if (elf_tdata (abfd
)->stack_flags
)
4098 amt
= sizeof (struct elf_segment_map
);
4099 m
= bfd_zalloc (abfd
, amt
);
4103 m
->p_type
= PT_GNU_STACK
;
4104 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4105 m
->p_flags_valid
= 1;
4111 if (dynsec
!= NULL
&& elf_tdata (abfd
)->relro
)
4113 /* We make a PT_GNU_RELRO segment only when there is a
4114 PT_DYNAMIC segment. */
4115 amt
= sizeof (struct elf_segment_map
);
4116 m
= bfd_zalloc (abfd
, amt
);
4120 m
->p_type
= PT_GNU_RELRO
;
4122 m
->p_flags_valid
= 1;
4129 elf_tdata (abfd
)->segment_map
= mfirst
;
4132 if (!elf_modify_segment_map (abfd
, info
))
4135 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4137 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4142 if (sections
!= NULL
)
4147 /* Sort sections by address. */
4150 elf_sort_sections (const void *arg1
, const void *arg2
)
4152 const asection
*sec1
= *(const asection
**) arg1
;
4153 const asection
*sec2
= *(const asection
**) arg2
;
4154 bfd_size_type size1
, size2
;
4156 /* Sort by LMA first, since this is the address used to
4157 place the section into a segment. */
4158 if (sec1
->lma
< sec2
->lma
)
4160 else if (sec1
->lma
> sec2
->lma
)
4163 /* Then sort by VMA. Normally the LMA and the VMA will be
4164 the same, and this will do nothing. */
4165 if (sec1
->vma
< sec2
->vma
)
4167 else if (sec1
->vma
> sec2
->vma
)
4170 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4172 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4178 /* If the indicies are the same, do not return 0
4179 here, but continue to try the next comparison. */
4180 if (sec1
->target_index
- sec2
->target_index
!= 0)
4181 return sec1
->target_index
- sec2
->target_index
;
4186 else if (TOEND (sec2
))
4191 /* Sort by size, to put zero sized sections
4192 before others at the same address. */
4194 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4195 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4202 return sec1
->target_index
- sec2
->target_index
;
4205 /* Ian Lance Taylor writes:
4207 We shouldn't be using % with a negative signed number. That's just
4208 not good. We have to make sure either that the number is not
4209 negative, or that the number has an unsigned type. When the types
4210 are all the same size they wind up as unsigned. When file_ptr is a
4211 larger signed type, the arithmetic winds up as signed long long,
4214 What we're trying to say here is something like ``increase OFF by
4215 the least amount that will cause it to be equal to the VMA modulo
4217 /* In other words, something like:
4219 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4220 off_offset = off % bed->maxpagesize;
4221 if (vma_offset < off_offset)
4222 adjustment = vma_offset + bed->maxpagesize - off_offset;
4224 adjustment = vma_offset - off_offset;
4226 which can can be collapsed into the expression below. */
4229 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4231 return ((vma
- off
) % maxpagesize
);
4234 /* Assign file positions to the sections based on the mapping from
4235 sections to segments. This function also sets up some fields in
4239 assign_file_positions_for_load_sections (bfd
*abfd
,
4240 struct bfd_link_info
*link_info
)
4242 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4243 struct elf_segment_map
*m
;
4244 Elf_Internal_Phdr
*phdrs
;
4245 Elf_Internal_Phdr
*p
;
4247 bfd_size_type maxpagesize
;
4251 if (link_info
== NULL
4252 && !elf_modify_segment_map (abfd
, link_info
))
4256 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4259 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4260 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4261 elf_elfheader (abfd
)->e_phnum
= alloc
;
4263 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4264 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4266 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4267 >= alloc
* bed
->s
->sizeof_phdr
);
4271 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4275 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4276 elf_tdata (abfd
)->phdr
= phdrs
;
4281 if ((abfd
->flags
& D_PAGED
) != 0)
4282 maxpagesize
= bed
->maxpagesize
;
4284 off
= bed
->s
->sizeof_ehdr
;
4285 off
+= alloc
* bed
->s
->sizeof_phdr
;
4287 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4293 /* If elf_segment_map is not from map_sections_to_segments, the
4294 sections may not be correctly ordered. NOTE: sorting should
4295 not be done to the PT_NOTE section of a corefile, which may
4296 contain several pseudo-sections artificially created by bfd.
4297 Sorting these pseudo-sections breaks things badly. */
4299 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4300 && m
->p_type
== PT_NOTE
))
4301 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4304 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4305 number of sections with contents contributing to both p_filesz
4306 and p_memsz, followed by a number of sections with no contents
4307 that just contribute to p_memsz. In this loop, OFF tracks next
4308 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4309 an adjustment we use for segments that have no file contents
4310 but need zero filled memory allocation. */
4312 p
->p_type
= m
->p_type
;
4313 p
->p_flags
= m
->p_flags
;
4318 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4320 if (m
->p_paddr_valid
)
4321 p
->p_paddr
= m
->p_paddr
;
4322 else if (m
->count
== 0)
4325 p
->p_paddr
= m
->sections
[0]->lma
;
4327 if (p
->p_type
== PT_LOAD
4328 && (abfd
->flags
& D_PAGED
) != 0)
4330 /* p_align in demand paged PT_LOAD segments effectively stores
4331 the maximum page size. When copying an executable with
4332 objcopy, we set m->p_align from the input file. Use this
4333 value for maxpagesize rather than bed->maxpagesize, which
4334 may be different. Note that we use maxpagesize for PT_TLS
4335 segment alignment later in this function, so we are relying
4336 on at least one PT_LOAD segment appearing before a PT_TLS
4338 if (m
->p_align_valid
)
4339 maxpagesize
= m
->p_align
;
4341 p
->p_align
= maxpagesize
;
4343 else if (m
->count
== 0)
4344 p
->p_align
= 1 << bed
->s
->log_file_align
;
4345 else if (m
->p_align_valid
)
4346 p
->p_align
= m
->p_align
;
4350 if (p
->p_type
== PT_LOAD
4353 bfd_size_type align
;
4355 unsigned int align_power
= 0;
4357 if (m
->p_align_valid
)
4361 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4363 unsigned int secalign
;
4365 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4366 if (secalign
> align_power
)
4367 align_power
= secalign
;
4369 align
= (bfd_size_type
) 1 << align_power
;
4370 if (align
< maxpagesize
)
4371 align
= maxpagesize
;
4374 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4377 && !m
->includes_filehdr
4378 && !m
->includes_phdrs
4379 && (ufile_ptr
) off
>= align
)
4381 /* If the first section isn't loadable, the same holds for
4382 any other sections. Since the segment won't need file
4383 space, we can make p_offset overlap some prior segment.
4384 However, .tbss is special. If a segment starts with
4385 .tbss, we need to look at the next section to decide
4386 whether the segment has any loadable sections. */
4388 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0
4389 && (m
->sections
[i
]->flags
& SEC_HAS_CONTENTS
) == 0)
4391 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4395 voff
= adjust
- align
;
4401 /* Make sure the .dynamic section is the first section in the
4402 PT_DYNAMIC segment. */
4403 else if (p
->p_type
== PT_DYNAMIC
4405 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4408 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4410 bfd_set_error (bfd_error_bad_value
);
4418 if (m
->includes_filehdr
)
4420 if (! m
->p_flags_valid
)
4422 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4423 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4426 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4428 if (p
->p_vaddr
< (bfd_vma
) off
)
4430 (*_bfd_error_handler
)
4431 (_("%B: Not enough room for program headers, try linking with -N"),
4433 bfd_set_error (bfd_error_bad_value
);
4438 if (! m
->p_paddr_valid
)
4443 if (m
->includes_phdrs
)
4445 if (! m
->p_flags_valid
)
4448 if (!m
->includes_filehdr
)
4450 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4454 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4455 p
->p_vaddr
-= off
- p
->p_offset
;
4456 if (! m
->p_paddr_valid
)
4457 p
->p_paddr
-= off
- p
->p_offset
;
4461 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4462 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4465 if (p
->p_type
== PT_LOAD
4466 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4468 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4469 p
->p_offset
= off
+ voff
;
4474 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4475 p
->p_filesz
+= adjust
;
4476 p
->p_memsz
+= adjust
;
4480 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4481 maps. Set filepos for sections in PT_LOAD segments, and in
4482 core files, for sections in PT_NOTE segments.
4483 assign_file_positions_for_non_load_sections will set filepos
4484 for other sections and update p_filesz for other segments. */
4485 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4489 bfd_size_type align
;
4493 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4495 if (p
->p_type
== PT_LOAD
4496 || p
->p_type
== PT_TLS
)
4498 bfd_signed_vma adjust
;
4500 if ((flags
& SEC_LOAD
) != 0)
4502 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4505 (*_bfd_error_handler
)
4506 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4507 abfd
, sec
, (unsigned long) sec
->lma
);
4511 p
->p_filesz
+= adjust
;
4512 p
->p_memsz
+= adjust
;
4514 /* .tbss is special. It doesn't contribute to p_memsz of
4516 else if ((flags
& SEC_ALLOC
) != 0
4517 && ((flags
& SEC_THREAD_LOCAL
) == 0
4518 || p
->p_type
== PT_TLS
))
4520 /* The section VMA must equal the file position
4521 modulo the page size. */
4522 bfd_size_type page
= align
;
4523 if (page
< maxpagesize
)
4525 adjust
= vma_page_aligned_bias (sec
->vma
,
4526 p
->p_vaddr
+ p
->p_memsz
,
4528 p
->p_memsz
+= adjust
;
4532 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4534 /* The section at i == 0 is the one that actually contains
4540 p
->p_filesz
= sec
->size
;
4546 /* The rest are fake sections that shouldn't be written. */
4555 if (p
->p_type
== PT_LOAD
)
4557 sec
->filepos
= off
+ voff
;
4558 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4559 1997, and the exact reason for it isn't clear. One
4560 plausible explanation is that it is to work around
4561 a problem we have with linker scripts using data
4562 statements in NOLOAD sections. I don't think it
4563 makes a great deal of sense to have such a section
4564 assigned to a PT_LOAD segment, but apparently
4565 people do this. The data statement results in a
4566 bfd_data_link_order being built, and these need
4567 section contents to write into. Eventually, we get
4568 to _bfd_elf_write_object_contents which writes any
4569 section with contents to the output. Make room
4570 here for the write, so that following segments are
4572 if ((flags
& SEC_LOAD
) != 0
4573 || (flags
& SEC_HAS_CONTENTS
) != 0)
4577 if ((flags
& SEC_LOAD
) != 0)
4579 p
->p_filesz
+= sec
->size
;
4580 p
->p_memsz
+= sec
->size
;
4583 /* .tbss is special. It doesn't contribute to p_memsz of
4585 else if ((flags
& SEC_ALLOC
) != 0
4586 && ((flags
& SEC_THREAD_LOCAL
) == 0
4587 || p
->p_type
== PT_TLS
))
4588 p
->p_memsz
+= sec
->size
;
4590 if (p
->p_type
== PT_TLS
4592 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4594 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4596 p
->p_memsz
+= o
->offset
+ o
->size
;
4599 if (p
->p_type
== PT_GNU_RELRO
)
4601 else if (align
> p
->p_align
4602 && !m
->p_align_valid
4603 && (p
->p_type
!= PT_LOAD
4604 || (abfd
->flags
& D_PAGED
) == 0))
4608 if (! m
->p_flags_valid
)
4611 if ((flags
& SEC_CODE
) != 0)
4613 if ((flags
& SEC_READONLY
) == 0)
4619 elf_tdata (abfd
)->next_file_pos
= off
;
4623 /* Assign file positions for the other sections. */
4626 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4627 struct bfd_link_info
*link_info
)
4629 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4630 Elf_Internal_Shdr
**i_shdrpp
;
4631 Elf_Internal_Shdr
**hdrpp
;
4632 Elf_Internal_Phdr
*phdrs
;
4633 Elf_Internal_Phdr
*p
;
4634 struct elf_segment_map
*m
;
4635 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4636 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4638 unsigned int num_sec
;
4642 i_shdrpp
= elf_elfsections (abfd
);
4643 num_sec
= elf_numsections (abfd
);
4644 off
= elf_tdata (abfd
)->next_file_pos
;
4645 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4647 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4648 Elf_Internal_Shdr
*hdr
;
4651 if (hdr
->bfd_section
!= NULL
4652 && (hdr
->bfd_section
->filepos
!= 0
4653 || (hdr
->sh_type
== SHT_NOBITS
4654 && hdr
->contents
== NULL
)))
4655 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4656 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4658 if (hdr
->sh_size
!= 0)
4659 ((*_bfd_error_handler
)
4660 (_("%B: warning: allocated section `%s' not in segment"),
4662 (hdr
->bfd_section
== NULL
4664 : hdr
->bfd_section
->name
)));
4665 /* We don't need to page align empty sections. */
4666 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4667 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4670 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4672 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4675 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4676 && hdr
->bfd_section
== NULL
)
4677 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4678 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4679 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4680 hdr
->sh_offset
= -1;
4682 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4684 if (i
== SHN_LORESERVE
- 1)
4686 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4687 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4691 /* Now that we have set the section file positions, we can set up
4692 the file positions for the non PT_LOAD segments. */
4696 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4698 phdrs
= elf_tdata (abfd
)->phdr
;
4699 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4704 if (p
->p_type
!= PT_LOAD
)
4707 if (m
->includes_filehdr
)
4709 filehdr_vaddr
= p
->p_vaddr
;
4710 filehdr_paddr
= p
->p_paddr
;
4712 if (m
->includes_phdrs
)
4714 phdrs_vaddr
= p
->p_vaddr
;
4715 phdrs_paddr
= p
->p_paddr
;
4716 if (m
->includes_filehdr
)
4718 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4719 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4724 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4730 if (p
->p_type
!= PT_LOAD
4731 && (p
->p_type
!= PT_NOTE
|| bfd_get_format (abfd
) != bfd_core
))
4733 Elf_Internal_Shdr
*hdr
;
4734 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4736 hdr
= &elf_section_data (m
->sections
[m
->count
- 1])->this_hdr
;
4737 p
->p_filesz
= (m
->sections
[m
->count
- 1]->filepos
4738 - m
->sections
[0]->filepos
);
4739 if (hdr
->sh_type
!= SHT_NOBITS
)
4740 p
->p_filesz
+= hdr
->sh_size
;
4742 p
->p_offset
= m
->sections
[0]->filepos
;
4747 if (m
->includes_filehdr
)
4749 p
->p_vaddr
= filehdr_vaddr
;
4750 if (! m
->p_paddr_valid
)
4751 p
->p_paddr
= filehdr_paddr
;
4753 else if (m
->includes_phdrs
)
4755 p
->p_vaddr
= phdrs_vaddr
;
4756 if (! m
->p_paddr_valid
)
4757 p
->p_paddr
= phdrs_paddr
;
4759 else if (p
->p_type
== PT_GNU_RELRO
)
4761 Elf_Internal_Phdr
*lp
;
4763 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4765 if (lp
->p_type
== PT_LOAD
4766 && lp
->p_vaddr
<= link_info
->relro_end
4767 && lp
->p_vaddr
>= link_info
->relro_start
4768 && (lp
->p_vaddr
+ lp
->p_filesz
4769 >= link_info
->relro_end
))
4773 if (lp
< phdrs
+ count
4774 && link_info
->relro_end
> lp
->p_vaddr
)
4776 p
->p_vaddr
= lp
->p_vaddr
;
4777 p
->p_paddr
= lp
->p_paddr
;
4778 p
->p_offset
= lp
->p_offset
;
4779 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4780 p
->p_memsz
= p
->p_filesz
;
4782 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4786 memset (p
, 0, sizeof *p
);
4787 p
->p_type
= PT_NULL
;
4793 elf_tdata (abfd
)->next_file_pos
= off
;
4798 /* Work out the file positions of all the sections. This is called by
4799 _bfd_elf_compute_section_file_positions. All the section sizes and
4800 VMAs must be known before this is called.
4802 Reloc sections come in two flavours: Those processed specially as
4803 "side-channel" data attached to a section to which they apply, and
4804 those that bfd doesn't process as relocations. The latter sort are
4805 stored in a normal bfd section by bfd_section_from_shdr. We don't
4806 consider the former sort here, unless they form part of the loadable
4807 image. Reloc sections not assigned here will be handled later by
4808 assign_file_positions_for_relocs.
4810 We also don't set the positions of the .symtab and .strtab here. */
4813 assign_file_positions_except_relocs (bfd
*abfd
,
4814 struct bfd_link_info
*link_info
)
4816 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4817 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4819 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4821 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4822 && bfd_get_format (abfd
) != bfd_core
)
4824 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4825 unsigned int num_sec
= elf_numsections (abfd
);
4826 Elf_Internal_Shdr
**hdrpp
;
4829 /* Start after the ELF header. */
4830 off
= i_ehdrp
->e_ehsize
;
4832 /* We are not creating an executable, which means that we are
4833 not creating a program header, and that the actual order of
4834 the sections in the file is unimportant. */
4835 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4837 Elf_Internal_Shdr
*hdr
;
4840 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4841 && hdr
->bfd_section
== NULL
)
4842 || i
== tdata
->symtab_section
4843 || i
== tdata
->symtab_shndx_section
4844 || i
== tdata
->strtab_section
)
4846 hdr
->sh_offset
= -1;
4849 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4851 if (i
== SHN_LORESERVE
- 1)
4853 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4854 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4862 /* Assign file positions for the loaded sections based on the
4863 assignment of sections to segments. */
4864 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4867 /* And for non-load sections. */
4868 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4871 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4873 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4877 /* Write out the program headers. */
4878 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4879 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4880 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4883 off
= tdata
->next_file_pos
;
4886 /* Place the section headers. */
4887 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4888 i_ehdrp
->e_shoff
= off
;
4889 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4891 tdata
->next_file_pos
= off
;
4897 prep_headers (bfd
*abfd
)
4899 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4900 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4901 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4902 struct elf_strtab_hash
*shstrtab
;
4903 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4905 i_ehdrp
= elf_elfheader (abfd
);
4906 i_shdrp
= elf_elfsections (abfd
);
4908 shstrtab
= _bfd_elf_strtab_init ();
4909 if (shstrtab
== NULL
)
4912 elf_shstrtab (abfd
) = shstrtab
;
4914 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4915 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4916 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4917 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4919 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4920 i_ehdrp
->e_ident
[EI_DATA
] =
4921 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4922 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4924 if ((abfd
->flags
& DYNAMIC
) != 0)
4925 i_ehdrp
->e_type
= ET_DYN
;
4926 else if ((abfd
->flags
& EXEC_P
) != 0)
4927 i_ehdrp
->e_type
= ET_EXEC
;
4928 else if (bfd_get_format (abfd
) == bfd_core
)
4929 i_ehdrp
->e_type
= ET_CORE
;
4931 i_ehdrp
->e_type
= ET_REL
;
4933 switch (bfd_get_arch (abfd
))
4935 case bfd_arch_unknown
:
4936 i_ehdrp
->e_machine
= EM_NONE
;
4939 /* There used to be a long list of cases here, each one setting
4940 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4941 in the corresponding bfd definition. To avoid duplication,
4942 the switch was removed. Machines that need special handling
4943 can generally do it in elf_backend_final_write_processing(),
4944 unless they need the information earlier than the final write.
4945 Such need can generally be supplied by replacing the tests for
4946 e_machine with the conditions used to determine it. */
4948 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4951 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4952 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4954 /* No program header, for now. */
4955 i_ehdrp
->e_phoff
= 0;
4956 i_ehdrp
->e_phentsize
= 0;
4957 i_ehdrp
->e_phnum
= 0;
4959 /* Each bfd section is section header entry. */
4960 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4961 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4963 /* If we're building an executable, we'll need a program header table. */
4964 if (abfd
->flags
& EXEC_P
)
4965 /* It all happens later. */
4969 i_ehdrp
->e_phentsize
= 0;
4971 i_ehdrp
->e_phoff
= 0;
4974 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4975 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4976 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4977 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4978 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4979 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4980 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4981 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4982 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4988 /* Assign file positions for all the reloc sections which are not part
4989 of the loadable file image. */
4992 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4995 unsigned int i
, num_sec
;
4996 Elf_Internal_Shdr
**shdrpp
;
4998 off
= elf_tdata (abfd
)->next_file_pos
;
5000 num_sec
= elf_numsections (abfd
);
5001 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5003 Elf_Internal_Shdr
*shdrp
;
5006 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5007 && shdrp
->sh_offset
== -1)
5008 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5011 elf_tdata (abfd
)->next_file_pos
= off
;
5015 _bfd_elf_write_object_contents (bfd
*abfd
)
5017 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5018 Elf_Internal_Ehdr
*i_ehdrp
;
5019 Elf_Internal_Shdr
**i_shdrp
;
5021 unsigned int count
, num_sec
;
5023 if (! abfd
->output_has_begun
5024 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5027 i_shdrp
= elf_elfsections (abfd
);
5028 i_ehdrp
= elf_elfheader (abfd
);
5031 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5035 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5037 /* After writing the headers, we need to write the sections too... */
5038 num_sec
= elf_numsections (abfd
);
5039 for (count
= 1; count
< num_sec
; count
++)
5041 if (bed
->elf_backend_section_processing
)
5042 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5043 if (i_shdrp
[count
]->contents
)
5045 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5047 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5048 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5051 if (count
== SHN_LORESERVE
- 1)
5052 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5055 /* Write out the section header names. */
5056 if (elf_shstrtab (abfd
) != NULL
5057 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5058 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5061 if (bed
->elf_backend_final_write_processing
)
5062 (*bed
->elf_backend_final_write_processing
) (abfd
,
5063 elf_tdata (abfd
)->linker
);
5065 return bed
->s
->write_shdrs_and_ehdr (abfd
);
5069 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5071 /* Hopefully this can be done just like an object file. */
5072 return _bfd_elf_write_object_contents (abfd
);
5075 /* Given a section, search the header to find them. */
5078 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5080 const struct elf_backend_data
*bed
;
5083 if (elf_section_data (asect
) != NULL
5084 && elf_section_data (asect
)->this_idx
!= 0)
5085 return elf_section_data (asect
)->this_idx
;
5087 if (bfd_is_abs_section (asect
))
5089 else if (bfd_is_com_section (asect
))
5091 else if (bfd_is_und_section (asect
))
5096 bed
= get_elf_backend_data (abfd
);
5097 if (bed
->elf_backend_section_from_bfd_section
)
5101 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5106 bfd_set_error (bfd_error_nonrepresentable_section
);
5111 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5115 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5117 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5119 flagword flags
= asym_ptr
->flags
;
5121 /* When gas creates relocations against local labels, it creates its
5122 own symbol for the section, but does put the symbol into the
5123 symbol chain, so udata is 0. When the linker is generating
5124 relocatable output, this section symbol may be for one of the
5125 input sections rather than the output section. */
5126 if (asym_ptr
->udata
.i
== 0
5127 && (flags
& BSF_SECTION_SYM
)
5128 && asym_ptr
->section
)
5133 sec
= asym_ptr
->section
;
5134 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5135 sec
= sec
->output_section
;
5136 if (sec
->owner
== abfd
5137 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5138 && elf_section_syms (abfd
)[indx
] != NULL
)
5139 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5142 idx
= asym_ptr
->udata
.i
;
5146 /* This case can occur when using --strip-symbol on a symbol
5147 which is used in a relocation entry. */
5148 (*_bfd_error_handler
)
5149 (_("%B: symbol `%s' required but not present"),
5150 abfd
, bfd_asymbol_name (asym_ptr
));
5151 bfd_set_error (bfd_error_no_symbols
);
5158 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5159 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5160 elf_symbol_flags (flags
));
5168 /* Rewrite program header information. */
5171 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5173 Elf_Internal_Ehdr
*iehdr
;
5174 struct elf_segment_map
*map
;
5175 struct elf_segment_map
*map_first
;
5176 struct elf_segment_map
**pointer_to_map
;
5177 Elf_Internal_Phdr
*segment
;
5180 unsigned int num_segments
;
5181 bfd_boolean phdr_included
= FALSE
;
5182 bfd_vma maxpagesize
;
5183 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5184 unsigned int phdr_adjust_num
= 0;
5185 const struct elf_backend_data
*bed
;
5187 bed
= get_elf_backend_data (ibfd
);
5188 iehdr
= elf_elfheader (ibfd
);
5191 pointer_to_map
= &map_first
;
5193 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5194 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5196 /* Returns the end address of the segment + 1. */
5197 #define SEGMENT_END(segment, start) \
5198 (start + (segment->p_memsz > segment->p_filesz \
5199 ? segment->p_memsz : segment->p_filesz))
5201 #define SECTION_SIZE(section, segment) \
5202 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5203 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5204 ? section->size : 0)
5206 /* Returns TRUE if the given section is contained within
5207 the given segment. VMA addresses are compared. */
5208 #define IS_CONTAINED_BY_VMA(section, segment) \
5209 (section->vma >= segment->p_vaddr \
5210 && (section->vma + SECTION_SIZE (section, segment) \
5211 <= (SEGMENT_END (segment, segment->p_vaddr))))
5213 /* Returns TRUE if the given section is contained within
5214 the given segment. LMA addresses are compared. */
5215 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5216 (section->lma >= base \
5217 && (section->lma + SECTION_SIZE (section, segment) \
5218 <= SEGMENT_END (segment, base)))
5220 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5221 #define IS_COREFILE_NOTE(p, s) \
5222 (p->p_type == PT_NOTE \
5223 && bfd_get_format (ibfd) == bfd_core \
5224 && s->vma == 0 && s->lma == 0 \
5225 && (bfd_vma) s->filepos >= p->p_offset \
5226 && ((bfd_vma) s->filepos + s->size \
5227 <= p->p_offset + p->p_filesz))
5229 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5230 linker, which generates a PT_INTERP section with p_vaddr and
5231 p_memsz set to 0. */
5232 #define IS_SOLARIS_PT_INTERP(p, s) \
5234 && p->p_paddr == 0 \
5235 && p->p_memsz == 0 \
5236 && p->p_filesz > 0 \
5237 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5239 && (bfd_vma) s->filepos >= p->p_offset \
5240 && ((bfd_vma) s->filepos + s->size \
5241 <= p->p_offset + p->p_filesz))
5243 /* Decide if the given section should be included in the given segment.
5244 A section will be included if:
5245 1. It is within the address space of the segment -- we use the LMA
5246 if that is set for the segment and the VMA otherwise,
5247 2. It is an allocated segment,
5248 3. There is an output section associated with it,
5249 4. The section has not already been allocated to a previous segment.
5250 5. PT_GNU_STACK segments do not include any sections.
5251 6. PT_TLS segment includes only SHF_TLS sections.
5252 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5253 8. PT_DYNAMIC should not contain empty sections at the beginning
5254 (with the possible exception of .dynamic). */
5255 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5256 ((((segment->p_paddr \
5257 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5258 : IS_CONTAINED_BY_VMA (section, segment)) \
5259 && (section->flags & SEC_ALLOC) != 0) \
5260 || IS_COREFILE_NOTE (segment, section)) \
5261 && segment->p_type != PT_GNU_STACK \
5262 && (segment->p_type != PT_TLS \
5263 || (section->flags & SEC_THREAD_LOCAL)) \
5264 && (segment->p_type == PT_LOAD \
5265 || segment->p_type == PT_TLS \
5266 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5267 && (segment->p_type != PT_DYNAMIC \
5268 || SECTION_SIZE (section, segment) > 0 \
5269 || (segment->p_paddr \
5270 ? segment->p_paddr != section->lma \
5271 : segment->p_vaddr != section->vma) \
5272 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5274 && ! section->segment_mark)
5276 /* If the output section of a section in the input segment is NULL,
5277 it is removed from the corresponding output segment. */
5278 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5279 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5280 && section->output_section != NULL)
5282 /* Returns TRUE iff seg1 starts after the end of seg2. */
5283 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5284 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5286 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5287 their VMA address ranges and their LMA address ranges overlap.
5288 It is possible to have overlapping VMA ranges without overlapping LMA
5289 ranges. RedBoot images for example can have both .data and .bss mapped
5290 to the same VMA range, but with the .data section mapped to a different
5292 #define SEGMENT_OVERLAPS(seg1, seg2) \
5293 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5294 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5295 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5296 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5298 /* Initialise the segment mark field. */
5299 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5300 section
->segment_mark
= FALSE
;
5302 /* Scan through the segments specified in the program header
5303 of the input BFD. For this first scan we look for overlaps
5304 in the loadable segments. These can be created by weird
5305 parameters to objcopy. Also, fix some solaris weirdness. */
5306 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5311 Elf_Internal_Phdr
*segment2
;
5313 if (segment
->p_type
== PT_INTERP
)
5314 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5315 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5317 /* Mininal change so that the normal section to segment
5318 assignment code will work. */
5319 segment
->p_vaddr
= section
->vma
;
5323 if (segment
->p_type
!= PT_LOAD
)
5326 /* Determine if this segment overlaps any previous segments. */
5327 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5329 bfd_signed_vma extra_length
;
5331 if (segment2
->p_type
!= PT_LOAD
5332 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5335 /* Merge the two segments together. */
5336 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5338 /* Extend SEGMENT2 to include SEGMENT and then delete
5341 SEGMENT_END (segment
, segment
->p_vaddr
)
5342 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5344 if (extra_length
> 0)
5346 segment2
->p_memsz
+= extra_length
;
5347 segment2
->p_filesz
+= extra_length
;
5350 segment
->p_type
= PT_NULL
;
5352 /* Since we have deleted P we must restart the outer loop. */
5354 segment
= elf_tdata (ibfd
)->phdr
;
5359 /* Extend SEGMENT to include SEGMENT2 and then delete
5362 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5363 - SEGMENT_END (segment
, segment
->p_vaddr
);
5365 if (extra_length
> 0)
5367 segment
->p_memsz
+= extra_length
;
5368 segment
->p_filesz
+= extra_length
;
5371 segment2
->p_type
= PT_NULL
;
5376 /* The second scan attempts to assign sections to segments. */
5377 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5381 unsigned int section_count
;
5382 asection
** sections
;
5383 asection
* output_section
;
5385 bfd_vma matching_lma
;
5386 bfd_vma suggested_lma
;
5389 asection
* first_section
;
5391 if (segment
->p_type
== PT_NULL
)
5394 first_section
= NULL
;
5395 /* Compute how many sections might be placed into this segment. */
5396 for (section
= ibfd
->sections
, section_count
= 0;
5398 section
= section
->next
)
5400 /* Find the first section in the input segment, which may be
5401 removed from the corresponding output segment. */
5402 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5404 if (first_section
== NULL
)
5405 first_section
= section
;
5406 if (section
->output_section
!= NULL
)
5411 /* Allocate a segment map big enough to contain
5412 all of the sections we have selected. */
5413 amt
= sizeof (struct elf_segment_map
);
5414 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5415 map
= bfd_zalloc (obfd
, amt
);
5419 /* Initialise the fields of the segment map. Default to
5420 using the physical address of the segment in the input BFD. */
5422 map
->p_type
= segment
->p_type
;
5423 map
->p_flags
= segment
->p_flags
;
5424 map
->p_flags_valid
= 1;
5426 /* If the first section in the input segment is removed, there is
5427 no need to preserve segment physical address in the corresponding
5429 if (!first_section
|| first_section
->output_section
!= NULL
)
5431 map
->p_paddr
= segment
->p_paddr
;
5432 map
->p_paddr_valid
= 1;
5435 /* Determine if this segment contains the ELF file header
5436 and if it contains the program headers themselves. */
5437 map
->includes_filehdr
= (segment
->p_offset
== 0
5438 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5440 map
->includes_phdrs
= 0;
5442 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5444 map
->includes_phdrs
=
5445 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5446 && (segment
->p_offset
+ segment
->p_filesz
5447 >= ((bfd_vma
) iehdr
->e_phoff
5448 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5450 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5451 phdr_included
= TRUE
;
5454 if (section_count
== 0)
5456 /* Special segments, such as the PT_PHDR segment, may contain
5457 no sections, but ordinary, loadable segments should contain
5458 something. They are allowed by the ELF spec however, so only
5459 a warning is produced. */
5460 if (segment
->p_type
== PT_LOAD
)
5461 (*_bfd_error_handler
)
5462 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5466 *pointer_to_map
= map
;
5467 pointer_to_map
= &map
->next
;
5472 /* Now scan the sections in the input BFD again and attempt
5473 to add their corresponding output sections to the segment map.
5474 The problem here is how to handle an output section which has
5475 been moved (ie had its LMA changed). There are four possibilities:
5477 1. None of the sections have been moved.
5478 In this case we can continue to use the segment LMA from the
5481 2. All of the sections have been moved by the same amount.
5482 In this case we can change the segment's LMA to match the LMA
5483 of the first section.
5485 3. Some of the sections have been moved, others have not.
5486 In this case those sections which have not been moved can be
5487 placed in the current segment which will have to have its size,
5488 and possibly its LMA changed, and a new segment or segments will
5489 have to be created to contain the other sections.
5491 4. The sections have been moved, but not by the same amount.
5492 In this case we can change the segment's LMA to match the LMA
5493 of the first section and we will have to create a new segment
5494 or segments to contain the other sections.
5496 In order to save time, we allocate an array to hold the section
5497 pointers that we are interested in. As these sections get assigned
5498 to a segment, they are removed from this array. */
5500 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5501 to work around this long long bug. */
5502 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5503 if (sections
== NULL
)
5506 /* Step One: Scan for segment vs section LMA conflicts.
5507 Also add the sections to the section array allocated above.
5508 Also add the sections to the current segment. In the common
5509 case, where the sections have not been moved, this means that
5510 we have completely filled the segment, and there is nothing
5516 for (j
= 0, section
= ibfd
->sections
;
5518 section
= section
->next
)
5520 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5522 output_section
= section
->output_section
;
5524 sections
[j
++] = section
;
5526 /* The Solaris native linker always sets p_paddr to 0.
5527 We try to catch that case here, and set it to the
5528 correct value. Note - some backends require that
5529 p_paddr be left as zero. */
5530 if (segment
->p_paddr
== 0
5531 && segment
->p_vaddr
!= 0
5532 && (! bed
->want_p_paddr_set_to_zero
)
5534 && output_section
->lma
!= 0
5535 && (output_section
->vma
== (segment
->p_vaddr
5536 + (map
->includes_filehdr
5539 + (map
->includes_phdrs
5541 * iehdr
->e_phentsize
)
5543 map
->p_paddr
= segment
->p_vaddr
;
5545 /* Match up the physical address of the segment with the
5546 LMA address of the output section. */
5547 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5548 || IS_COREFILE_NOTE (segment
, section
)
5549 || (bed
->want_p_paddr_set_to_zero
&&
5550 IS_CONTAINED_BY_VMA (output_section
, segment
))
5553 if (matching_lma
== 0)
5554 matching_lma
= output_section
->lma
;
5556 /* We assume that if the section fits within the segment
5557 then it does not overlap any other section within that
5559 map
->sections
[isec
++] = output_section
;
5561 else if (suggested_lma
== 0)
5562 suggested_lma
= output_section
->lma
;
5566 BFD_ASSERT (j
== section_count
);
5568 /* Step Two: Adjust the physical address of the current segment,
5570 if (isec
== section_count
)
5572 /* All of the sections fitted within the segment as currently
5573 specified. This is the default case. Add the segment to
5574 the list of built segments and carry on to process the next
5575 program header in the input BFD. */
5576 map
->count
= section_count
;
5577 *pointer_to_map
= map
;
5578 pointer_to_map
= &map
->next
;
5580 if (matching_lma
!= map
->p_paddr
5581 && !map
->includes_filehdr
&& !map
->includes_phdrs
)
5582 /* There is some padding before the first section in the
5583 segment. So, we must account for that in the output
5585 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5592 if (matching_lma
!= 0)
5594 /* At least one section fits inside the current segment.
5595 Keep it, but modify its physical address to match the
5596 LMA of the first section that fitted. */
5597 map
->p_paddr
= matching_lma
;
5601 /* None of the sections fitted inside the current segment.
5602 Change the current segment's physical address to match
5603 the LMA of the first section. */
5604 map
->p_paddr
= suggested_lma
;
5607 /* Offset the segment physical address from the lma
5608 to allow for space taken up by elf headers. */
5609 if (map
->includes_filehdr
)
5610 map
->p_paddr
-= iehdr
->e_ehsize
;
5612 if (map
->includes_phdrs
)
5614 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5616 /* iehdr->e_phnum is just an estimate of the number
5617 of program headers that we will need. Make a note
5618 here of the number we used and the segment we chose
5619 to hold these headers, so that we can adjust the
5620 offset when we know the correct value. */
5621 phdr_adjust_num
= iehdr
->e_phnum
;
5622 phdr_adjust_seg
= map
;
5626 /* Step Three: Loop over the sections again, this time assigning
5627 those that fit to the current segment and removing them from the
5628 sections array; but making sure not to leave large gaps. Once all
5629 possible sections have been assigned to the current segment it is
5630 added to the list of built segments and if sections still remain
5631 to be assigned, a new segment is constructed before repeating
5639 /* Fill the current segment with sections that fit. */
5640 for (j
= 0; j
< section_count
; j
++)
5642 section
= sections
[j
];
5644 if (section
== NULL
)
5647 output_section
= section
->output_section
;
5649 BFD_ASSERT (output_section
!= NULL
);
5651 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5652 || IS_COREFILE_NOTE (segment
, section
))
5654 if (map
->count
== 0)
5656 /* If the first section in a segment does not start at
5657 the beginning of the segment, then something is
5659 if (output_section
->lma
!=
5661 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5662 + (map
->includes_phdrs
5663 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5669 asection
* prev_sec
;
5671 prev_sec
= map
->sections
[map
->count
- 1];
5673 /* If the gap between the end of the previous section
5674 and the start of this section is more than
5675 maxpagesize then we need to start a new segment. */
5676 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5678 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5679 || ((prev_sec
->lma
+ prev_sec
->size
)
5680 > output_section
->lma
))
5682 if (suggested_lma
== 0)
5683 suggested_lma
= output_section
->lma
;
5689 map
->sections
[map
->count
++] = output_section
;
5692 section
->segment_mark
= TRUE
;
5694 else if (suggested_lma
== 0)
5695 suggested_lma
= output_section
->lma
;
5698 BFD_ASSERT (map
->count
> 0);
5700 /* Add the current segment to the list of built segments. */
5701 *pointer_to_map
= map
;
5702 pointer_to_map
= &map
->next
;
5704 if (isec
< section_count
)
5706 /* We still have not allocated all of the sections to
5707 segments. Create a new segment here, initialise it
5708 and carry on looping. */
5709 amt
= sizeof (struct elf_segment_map
);
5710 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5711 map
= bfd_alloc (obfd
, amt
);
5718 /* Initialise the fields of the segment map. Set the physical
5719 physical address to the LMA of the first section that has
5720 not yet been assigned. */
5722 map
->p_type
= segment
->p_type
;
5723 map
->p_flags
= segment
->p_flags
;
5724 map
->p_flags_valid
= 1;
5725 map
->p_paddr
= suggested_lma
;
5726 map
->p_paddr_valid
= 1;
5727 map
->includes_filehdr
= 0;
5728 map
->includes_phdrs
= 0;
5731 while (isec
< section_count
);
5736 /* The Solaris linker creates program headers in which all the
5737 p_paddr fields are zero. When we try to objcopy or strip such a
5738 file, we get confused. Check for this case, and if we find it
5739 reset the p_paddr_valid fields. */
5740 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5741 if (map
->p_paddr
!= 0)
5744 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5745 map
->p_paddr_valid
= 0;
5747 elf_tdata (obfd
)->segment_map
= map_first
;
5749 /* If we had to estimate the number of program headers that were
5750 going to be needed, then check our estimate now and adjust
5751 the offset if necessary. */
5752 if (phdr_adjust_seg
!= NULL
)
5756 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5759 if (count
> phdr_adjust_num
)
5760 phdr_adjust_seg
->p_paddr
5761 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5766 #undef IS_CONTAINED_BY_VMA
5767 #undef IS_CONTAINED_BY_LMA
5768 #undef IS_COREFILE_NOTE
5769 #undef IS_SOLARIS_PT_INTERP
5770 #undef IS_SECTION_IN_INPUT_SEGMENT
5771 #undef INCLUDE_SECTION_IN_SEGMENT
5772 #undef SEGMENT_AFTER_SEGMENT
5773 #undef SEGMENT_OVERLAPS
5777 /* Copy ELF program header information. */
5780 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5782 Elf_Internal_Ehdr
*iehdr
;
5783 struct elf_segment_map
*map
;
5784 struct elf_segment_map
*map_first
;
5785 struct elf_segment_map
**pointer_to_map
;
5786 Elf_Internal_Phdr
*segment
;
5788 unsigned int num_segments
;
5789 bfd_boolean phdr_included
= FALSE
;
5791 iehdr
= elf_elfheader (ibfd
);
5794 pointer_to_map
= &map_first
;
5796 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5797 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5802 unsigned int section_count
;
5804 Elf_Internal_Shdr
*this_hdr
;
5805 asection
*first_section
= NULL
;
5807 /* FIXME: Do we need to copy PT_NULL segment? */
5808 if (segment
->p_type
== PT_NULL
)
5811 /* Compute how many sections are in this segment. */
5812 for (section
= ibfd
->sections
, section_count
= 0;
5814 section
= section
->next
)
5816 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5817 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5820 first_section
= section
;
5825 /* Allocate a segment map big enough to contain
5826 all of the sections we have selected. */
5827 amt
= sizeof (struct elf_segment_map
);
5828 if (section_count
!= 0)
5829 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5830 map
= bfd_zalloc (obfd
, amt
);
5834 /* Initialize the fields of the output segment map with the
5837 map
->p_type
= segment
->p_type
;
5838 map
->p_flags
= segment
->p_flags
;
5839 map
->p_flags_valid
= 1;
5840 map
->p_paddr
= segment
->p_paddr
;
5841 map
->p_paddr_valid
= 1;
5842 map
->p_align
= segment
->p_align
;
5843 map
->p_align_valid
= 1;
5844 map
->p_vaddr_offset
= 0;
5846 /* Determine if this segment contains the ELF file header
5847 and if it contains the program headers themselves. */
5848 map
->includes_filehdr
= (segment
->p_offset
== 0
5849 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5851 map
->includes_phdrs
= 0;
5852 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5854 map
->includes_phdrs
=
5855 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5856 && (segment
->p_offset
+ segment
->p_filesz
5857 >= ((bfd_vma
) iehdr
->e_phoff
5858 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5860 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5861 phdr_included
= TRUE
;
5864 if (!map
->includes_phdrs
&& !map
->includes_filehdr
)
5865 /* There is some other padding before the first section. */
5866 map
->p_vaddr_offset
= ((first_section
? first_section
->lma
: 0)
5867 - segment
->p_paddr
);
5869 if (section_count
!= 0)
5871 unsigned int isec
= 0;
5873 for (section
= first_section
;
5875 section
= section
->next
)
5877 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5878 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5880 map
->sections
[isec
++] = section
->output_section
;
5881 if (isec
== section_count
)
5887 map
->count
= section_count
;
5888 *pointer_to_map
= map
;
5889 pointer_to_map
= &map
->next
;
5892 elf_tdata (obfd
)->segment_map
= map_first
;
5896 /* Copy private BFD data. This copies or rewrites ELF program header
5900 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5902 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5903 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5906 if (elf_tdata (ibfd
)->phdr
== NULL
)
5909 if (ibfd
->xvec
== obfd
->xvec
)
5911 /* Check to see if any sections in the input BFD
5912 covered by ELF program header have changed. */
5913 Elf_Internal_Phdr
*segment
;
5914 asection
*section
, *osec
;
5915 unsigned int i
, num_segments
;
5916 Elf_Internal_Shdr
*this_hdr
;
5918 /* Initialize the segment mark field. */
5919 for (section
= obfd
->sections
; section
!= NULL
;
5920 section
= section
->next
)
5921 section
->segment_mark
= FALSE
;
5923 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5924 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5928 /* This is a different version of the IS_SOLARIS_PT_INTERP
5929 macro to the one defined in rewrite_elf_program_header(). */
5930 #define IS_SOLARIS_PT_INTERP(p) \
5931 (p->p_type == PT_INTERP \
5932 && p->p_vaddr == 0 \
5933 && p->p_paddr == 0 \
5934 && p->p_memsz == 0 \
5937 /* PR binutils/3535. The Solaris interpreter program header
5938 needs special treatment, so we always rewrite the headers
5939 when one is detected. */
5940 if (IS_SOLARIS_PT_INTERP (segment
))
5943 for (section
= ibfd
->sections
;
5944 section
!= NULL
; section
= section
->next
)
5946 /* We mark the output section so that we know it comes
5947 from the input BFD. */
5948 osec
= section
->output_section
;
5950 osec
->segment_mark
= TRUE
;
5952 /* Check if this section is covered by the segment. */
5953 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5954 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5956 /* FIXME: Check if its output section is changed or
5957 removed. What else do we need to check? */
5959 || section
->flags
!= osec
->flags
5960 || section
->lma
!= osec
->lma
5961 || section
->vma
!= osec
->vma
5962 || section
->size
!= osec
->size
5963 || section
->rawsize
!= osec
->rawsize
5964 || section
->alignment_power
!= osec
->alignment_power
)
5970 /* Check to see if any output section do not come from the
5972 for (section
= obfd
->sections
; section
!= NULL
;
5973 section
= section
->next
)
5975 if (section
->segment_mark
== FALSE
)
5978 section
->segment_mark
= FALSE
;
5981 return copy_elf_program_header (ibfd
, obfd
);
5985 return rewrite_elf_program_header (ibfd
, obfd
);
5988 /* Initialize private output section information from input section. */
5991 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5995 struct bfd_link_info
*link_info
)
5998 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5999 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
6001 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6002 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6005 /* Don't copy the output ELF section type from input if the
6006 output BFD section flags have been set to something different.
6007 elf_fake_sections will set ELF section type based on BFD
6009 if (osec
->flags
== isec
->flags
|| !osec
->flags
)
6011 BFD_ASSERT (osec
->flags
== isec
->flags
6013 && elf_section_type (osec
) == SHT_NULL
));
6014 elf_section_type (osec
) = elf_section_type (isec
);
6017 /* FIXME: Is this correct for all OS/PROC specific flags? */
6018 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6019 & (SHF_MASKOS
| SHF_MASKPROC
));
6021 /* Set things up for objcopy and relocatable link. The output
6022 SHT_GROUP section will have its elf_next_in_group pointing back
6023 to the input group members. Ignore linker created group section.
6024 See elfNN_ia64_object_p in elfxx-ia64.c. */
6027 if (elf_sec_group (isec
) == NULL
6028 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6030 if (elf_section_flags (isec
) & SHF_GROUP
)
6031 elf_section_flags (osec
) |= SHF_GROUP
;
6032 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6033 elf_group_name (osec
) = elf_group_name (isec
);
6037 ihdr
= &elf_section_data (isec
)->this_hdr
;
6039 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6040 don't use the output section of the linked-to section since it
6041 may be NULL at this point. */
6042 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6044 ohdr
= &elf_section_data (osec
)->this_hdr
;
6045 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6046 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6049 osec
->use_rela_p
= isec
->use_rela_p
;
6054 /* Copy private section information. This copies over the entsize
6055 field, and sometimes the info field. */
6058 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6063 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6065 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6066 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6069 ihdr
= &elf_section_data (isec
)->this_hdr
;
6070 ohdr
= &elf_section_data (osec
)->this_hdr
;
6072 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6074 if (ihdr
->sh_type
== SHT_SYMTAB
6075 || ihdr
->sh_type
== SHT_DYNSYM
6076 || ihdr
->sh_type
== SHT_GNU_verneed
6077 || ihdr
->sh_type
== SHT_GNU_verdef
)
6078 ohdr
->sh_info
= ihdr
->sh_info
;
6080 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6084 /* Copy private header information. */
6087 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6091 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6092 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6095 /* Copy over private BFD data if it has not already been copied.
6096 This must be done here, rather than in the copy_private_bfd_data
6097 entry point, because the latter is called after the section
6098 contents have been set, which means that the program headers have
6099 already been worked out. */
6100 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6102 if (! copy_private_bfd_data (ibfd
, obfd
))
6106 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6107 but this might be wrong if we deleted the group section. */
6108 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6109 if (elf_section_type (isec
) == SHT_GROUP
6110 && isec
->output_section
== NULL
)
6112 asection
*first
= elf_next_in_group (isec
);
6113 asection
*s
= first
;
6116 if (s
->output_section
!= NULL
)
6118 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6119 elf_group_name (s
->output_section
) = NULL
;
6121 s
= elf_next_in_group (s
);
6130 /* Copy private symbol information. If this symbol is in a section
6131 which we did not map into a BFD section, try to map the section
6132 index correctly. We use special macro definitions for the mapped
6133 section indices; these definitions are interpreted by the
6134 swap_out_syms function. */
6136 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6137 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6138 #define MAP_STRTAB (SHN_HIOS + 3)
6139 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6140 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6143 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6148 elf_symbol_type
*isym
, *osym
;
6150 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6151 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6154 isym
= elf_symbol_from (ibfd
, isymarg
);
6155 osym
= elf_symbol_from (obfd
, osymarg
);
6159 && bfd_is_abs_section (isym
->symbol
.section
))
6163 shndx
= isym
->internal_elf_sym
.st_shndx
;
6164 if (shndx
== elf_onesymtab (ibfd
))
6165 shndx
= MAP_ONESYMTAB
;
6166 else if (shndx
== elf_dynsymtab (ibfd
))
6167 shndx
= MAP_DYNSYMTAB
;
6168 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6170 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6171 shndx
= MAP_SHSTRTAB
;
6172 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6173 shndx
= MAP_SYM_SHNDX
;
6174 osym
->internal_elf_sym
.st_shndx
= shndx
;
6180 /* Swap out the symbols. */
6183 swap_out_syms (bfd
*abfd
,
6184 struct bfd_strtab_hash
**sttp
,
6187 const struct elf_backend_data
*bed
;
6190 struct bfd_strtab_hash
*stt
;
6191 Elf_Internal_Shdr
*symtab_hdr
;
6192 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6193 Elf_Internal_Shdr
*symstrtab_hdr
;
6194 bfd_byte
*outbound_syms
;
6195 bfd_byte
*outbound_shndx
;
6198 bfd_boolean name_local_sections
;
6200 if (!elf_map_symbols (abfd
))
6203 /* Dump out the symtabs. */
6204 stt
= _bfd_elf_stringtab_init ();
6208 bed
= get_elf_backend_data (abfd
);
6209 symcount
= bfd_get_symcount (abfd
);
6210 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6211 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6212 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6213 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6214 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6215 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6217 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6218 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6220 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6221 if (outbound_syms
== NULL
)
6223 _bfd_stringtab_free (stt
);
6226 symtab_hdr
->contents
= outbound_syms
;
6228 outbound_shndx
= NULL
;
6229 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6230 if (symtab_shndx_hdr
->sh_name
!= 0)
6232 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6233 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6234 sizeof (Elf_External_Sym_Shndx
));
6235 if (outbound_shndx
== NULL
)
6237 _bfd_stringtab_free (stt
);
6241 symtab_shndx_hdr
->contents
= outbound_shndx
;
6242 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6243 symtab_shndx_hdr
->sh_size
= amt
;
6244 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6245 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6248 /* Now generate the data (for "contents"). */
6250 /* Fill in zeroth symbol and swap it out. */
6251 Elf_Internal_Sym sym
;
6257 sym
.st_shndx
= SHN_UNDEF
;
6258 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6259 outbound_syms
+= bed
->s
->sizeof_sym
;
6260 if (outbound_shndx
!= NULL
)
6261 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6265 = (bed
->elf_backend_name_local_section_symbols
6266 && bed
->elf_backend_name_local_section_symbols (abfd
));
6268 syms
= bfd_get_outsymbols (abfd
);
6269 for (idx
= 0; idx
< symcount
; idx
++)
6271 Elf_Internal_Sym sym
;
6272 bfd_vma value
= syms
[idx
]->value
;
6273 elf_symbol_type
*type_ptr
;
6274 flagword flags
= syms
[idx
]->flags
;
6277 if (!name_local_sections
6278 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6280 /* Local section symbols have no name. */
6285 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6288 if (sym
.st_name
== (unsigned long) -1)
6290 _bfd_stringtab_free (stt
);
6295 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6297 if ((flags
& BSF_SECTION_SYM
) == 0
6298 && bfd_is_com_section (syms
[idx
]->section
))
6300 /* ELF common symbols put the alignment into the `value' field,
6301 and the size into the `size' field. This is backwards from
6302 how BFD handles it, so reverse it here. */
6303 sym
.st_size
= value
;
6304 if (type_ptr
== NULL
6305 || type_ptr
->internal_elf_sym
.st_value
== 0)
6306 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6308 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6309 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6310 (abfd
, syms
[idx
]->section
);
6314 asection
*sec
= syms
[idx
]->section
;
6317 if (sec
->output_section
)
6319 value
+= sec
->output_offset
;
6320 sec
= sec
->output_section
;
6323 /* Don't add in the section vma for relocatable output. */
6324 if (! relocatable_p
)
6326 sym
.st_value
= value
;
6327 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6329 if (bfd_is_abs_section (sec
)
6331 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6333 /* This symbol is in a real ELF section which we did
6334 not create as a BFD section. Undo the mapping done
6335 by copy_private_symbol_data. */
6336 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6340 shndx
= elf_onesymtab (abfd
);
6343 shndx
= elf_dynsymtab (abfd
);
6346 shndx
= elf_tdata (abfd
)->strtab_section
;
6349 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6352 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6360 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6366 /* Writing this would be a hell of a lot easier if
6367 we had some decent documentation on bfd, and
6368 knew what to expect of the library, and what to
6369 demand of applications. For example, it
6370 appears that `objcopy' might not set the
6371 section of a symbol to be a section that is
6372 actually in the output file. */
6373 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6376 _bfd_error_handler (_("\
6377 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6378 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6380 bfd_set_error (bfd_error_invalid_operation
);
6381 _bfd_stringtab_free (stt
);
6385 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6386 BFD_ASSERT (shndx
!= -1);
6390 sym
.st_shndx
= shndx
;
6393 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6395 else if ((flags
& BSF_FUNCTION
) != 0)
6397 else if ((flags
& BSF_OBJECT
) != 0)
6399 else if ((flags
& BSF_RELC
) != 0)
6401 else if ((flags
& BSF_SRELC
) != 0)
6406 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6409 /* Processor-specific types. */
6410 if (type_ptr
!= NULL
6411 && bed
->elf_backend_get_symbol_type
)
6412 type
= ((*bed
->elf_backend_get_symbol_type
)
6413 (&type_ptr
->internal_elf_sym
, type
));
6415 if (flags
& BSF_SECTION_SYM
)
6417 if (flags
& BSF_GLOBAL
)
6418 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6420 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6422 else if (bfd_is_com_section (syms
[idx
]->section
))
6423 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6424 else if (bfd_is_und_section (syms
[idx
]->section
))
6425 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6429 else if (flags
& BSF_FILE
)
6430 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6433 int bind
= STB_LOCAL
;
6435 if (flags
& BSF_LOCAL
)
6437 else if (flags
& BSF_WEAK
)
6439 else if (flags
& BSF_GLOBAL
)
6442 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6445 if (type_ptr
!= NULL
)
6446 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6450 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6451 outbound_syms
+= bed
->s
->sizeof_sym
;
6452 if (outbound_shndx
!= NULL
)
6453 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6457 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6458 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6460 symstrtab_hdr
->sh_flags
= 0;
6461 symstrtab_hdr
->sh_addr
= 0;
6462 symstrtab_hdr
->sh_entsize
= 0;
6463 symstrtab_hdr
->sh_link
= 0;
6464 symstrtab_hdr
->sh_info
= 0;
6465 symstrtab_hdr
->sh_addralign
= 1;
6470 /* Return the number of bytes required to hold the symtab vector.
6472 Note that we base it on the count plus 1, since we will null terminate
6473 the vector allocated based on this size. However, the ELF symbol table
6474 always has a dummy entry as symbol #0, so it ends up even. */
6477 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6481 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6483 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6484 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6486 symtab_size
-= sizeof (asymbol
*);
6492 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6496 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6498 if (elf_dynsymtab (abfd
) == 0)
6500 bfd_set_error (bfd_error_invalid_operation
);
6504 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6505 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6507 symtab_size
-= sizeof (asymbol
*);
6513 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6516 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6519 /* Canonicalize the relocs. */
6522 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6529 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6531 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6534 tblptr
= section
->relocation
;
6535 for (i
= 0; i
< section
->reloc_count
; i
++)
6536 *relptr
++ = tblptr
++;
6540 return section
->reloc_count
;
6544 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6546 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6547 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6550 bfd_get_symcount (abfd
) = symcount
;
6555 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6556 asymbol
**allocation
)
6558 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6559 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6562 bfd_get_dynamic_symcount (abfd
) = symcount
;
6566 /* Return the size required for the dynamic reloc entries. Any loadable
6567 section that was actually installed in the BFD, and has type SHT_REL
6568 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6569 dynamic reloc section. */
6572 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6577 if (elf_dynsymtab (abfd
) == 0)
6579 bfd_set_error (bfd_error_invalid_operation
);
6583 ret
= sizeof (arelent
*);
6584 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6585 if ((s
->flags
& SEC_LOAD
) != 0
6586 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6587 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6588 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6589 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6590 * sizeof (arelent
*));
6595 /* Canonicalize the dynamic relocation entries. Note that we return the
6596 dynamic relocations as a single block, although they are actually
6597 associated with particular sections; the interface, which was
6598 designed for SunOS style shared libraries, expects that there is only
6599 one set of dynamic relocs. Any loadable section that was actually
6600 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6601 dynamic symbol table, is considered to be a dynamic reloc section. */
6604 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6608 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6612 if (elf_dynsymtab (abfd
) == 0)
6614 bfd_set_error (bfd_error_invalid_operation
);
6618 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6620 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6622 if ((s
->flags
& SEC_LOAD
) != 0
6623 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6624 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6625 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6630 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6632 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6634 for (i
= 0; i
< count
; i
++)
6645 /* Read in the version information. */
6648 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6650 bfd_byte
*contents
= NULL
;
6651 unsigned int freeidx
= 0;
6653 if (elf_dynverref (abfd
) != 0)
6655 Elf_Internal_Shdr
*hdr
;
6656 Elf_External_Verneed
*everneed
;
6657 Elf_Internal_Verneed
*iverneed
;
6659 bfd_byte
*contents_end
;
6661 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6663 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6664 sizeof (Elf_Internal_Verneed
));
6665 if (elf_tdata (abfd
)->verref
== NULL
)
6668 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6670 contents
= bfd_malloc (hdr
->sh_size
);
6671 if (contents
== NULL
)
6673 error_return_verref
:
6674 elf_tdata (abfd
)->verref
= NULL
;
6675 elf_tdata (abfd
)->cverrefs
= 0;
6678 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6679 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6680 goto error_return_verref
;
6682 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6683 goto error_return_verref
;
6685 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6686 == sizeof (Elf_External_Vernaux
));
6687 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6688 everneed
= (Elf_External_Verneed
*) contents
;
6689 iverneed
= elf_tdata (abfd
)->verref
;
6690 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6692 Elf_External_Vernaux
*evernaux
;
6693 Elf_Internal_Vernaux
*ivernaux
;
6696 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6698 iverneed
->vn_bfd
= abfd
;
6700 iverneed
->vn_filename
=
6701 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6703 if (iverneed
->vn_filename
== NULL
)
6704 goto error_return_verref
;
6706 if (iverneed
->vn_cnt
== 0)
6707 iverneed
->vn_auxptr
= NULL
;
6710 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6711 sizeof (Elf_Internal_Vernaux
));
6712 if (iverneed
->vn_auxptr
== NULL
)
6713 goto error_return_verref
;
6716 if (iverneed
->vn_aux
6717 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6718 goto error_return_verref
;
6720 evernaux
= ((Elf_External_Vernaux
*)
6721 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6722 ivernaux
= iverneed
->vn_auxptr
;
6723 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6725 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6727 ivernaux
->vna_nodename
=
6728 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6729 ivernaux
->vna_name
);
6730 if (ivernaux
->vna_nodename
== NULL
)
6731 goto error_return_verref
;
6733 if (j
+ 1 < iverneed
->vn_cnt
)
6734 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6736 ivernaux
->vna_nextptr
= NULL
;
6738 if (ivernaux
->vna_next
6739 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6740 goto error_return_verref
;
6742 evernaux
= ((Elf_External_Vernaux
*)
6743 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6745 if (ivernaux
->vna_other
> freeidx
)
6746 freeidx
= ivernaux
->vna_other
;
6749 if (i
+ 1 < hdr
->sh_info
)
6750 iverneed
->vn_nextref
= iverneed
+ 1;
6752 iverneed
->vn_nextref
= NULL
;
6754 if (iverneed
->vn_next
6755 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6756 goto error_return_verref
;
6758 everneed
= ((Elf_External_Verneed
*)
6759 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6766 if (elf_dynverdef (abfd
) != 0)
6768 Elf_Internal_Shdr
*hdr
;
6769 Elf_External_Verdef
*everdef
;
6770 Elf_Internal_Verdef
*iverdef
;
6771 Elf_Internal_Verdef
*iverdefarr
;
6772 Elf_Internal_Verdef iverdefmem
;
6774 unsigned int maxidx
;
6775 bfd_byte
*contents_end_def
, *contents_end_aux
;
6777 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6779 contents
= bfd_malloc (hdr
->sh_size
);
6780 if (contents
== NULL
)
6782 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6783 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6786 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6789 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6790 >= sizeof (Elf_External_Verdaux
));
6791 contents_end_def
= contents
+ hdr
->sh_size
6792 - sizeof (Elf_External_Verdef
);
6793 contents_end_aux
= contents
+ hdr
->sh_size
6794 - sizeof (Elf_External_Verdaux
);
6796 /* We know the number of entries in the section but not the maximum
6797 index. Therefore we have to run through all entries and find
6799 everdef
= (Elf_External_Verdef
*) contents
;
6801 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6803 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6805 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6806 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6808 if (iverdefmem
.vd_next
6809 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6812 everdef
= ((Elf_External_Verdef
*)
6813 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6816 if (default_imported_symver
)
6818 if (freeidx
> maxidx
)
6823 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6824 sizeof (Elf_Internal_Verdef
));
6825 if (elf_tdata (abfd
)->verdef
== NULL
)
6828 elf_tdata (abfd
)->cverdefs
= maxidx
;
6830 everdef
= (Elf_External_Verdef
*) contents
;
6831 iverdefarr
= elf_tdata (abfd
)->verdef
;
6832 for (i
= 0; i
< hdr
->sh_info
; i
++)
6834 Elf_External_Verdaux
*everdaux
;
6835 Elf_Internal_Verdaux
*iverdaux
;
6838 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6840 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6842 error_return_verdef
:
6843 elf_tdata (abfd
)->verdef
= NULL
;
6844 elf_tdata (abfd
)->cverdefs
= 0;
6848 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6849 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6851 iverdef
->vd_bfd
= abfd
;
6853 if (iverdef
->vd_cnt
== 0)
6854 iverdef
->vd_auxptr
= NULL
;
6857 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6858 sizeof (Elf_Internal_Verdaux
));
6859 if (iverdef
->vd_auxptr
== NULL
)
6860 goto error_return_verdef
;
6864 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6865 goto error_return_verdef
;
6867 everdaux
= ((Elf_External_Verdaux
*)
6868 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6869 iverdaux
= iverdef
->vd_auxptr
;
6870 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6872 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6874 iverdaux
->vda_nodename
=
6875 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6876 iverdaux
->vda_name
);
6877 if (iverdaux
->vda_nodename
== NULL
)
6878 goto error_return_verdef
;
6880 if (j
+ 1 < iverdef
->vd_cnt
)
6881 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6883 iverdaux
->vda_nextptr
= NULL
;
6885 if (iverdaux
->vda_next
6886 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6887 goto error_return_verdef
;
6889 everdaux
= ((Elf_External_Verdaux
*)
6890 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6893 if (iverdef
->vd_cnt
)
6894 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6896 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6897 iverdef
->vd_nextdef
= iverdef
+ 1;
6899 iverdef
->vd_nextdef
= NULL
;
6901 everdef
= ((Elf_External_Verdef
*)
6902 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6908 else if (default_imported_symver
)
6915 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6916 sizeof (Elf_Internal_Verdef
));
6917 if (elf_tdata (abfd
)->verdef
== NULL
)
6920 elf_tdata (abfd
)->cverdefs
= freeidx
;
6923 /* Create a default version based on the soname. */
6924 if (default_imported_symver
)
6926 Elf_Internal_Verdef
*iverdef
;
6927 Elf_Internal_Verdaux
*iverdaux
;
6929 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6931 iverdef
->vd_version
= VER_DEF_CURRENT
;
6932 iverdef
->vd_flags
= 0;
6933 iverdef
->vd_ndx
= freeidx
;
6934 iverdef
->vd_cnt
= 1;
6936 iverdef
->vd_bfd
= abfd
;
6938 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6939 if (iverdef
->vd_nodename
== NULL
)
6940 goto error_return_verdef
;
6941 iverdef
->vd_nextdef
= NULL
;
6942 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6943 if (iverdef
->vd_auxptr
== NULL
)
6944 goto error_return_verdef
;
6946 iverdaux
= iverdef
->vd_auxptr
;
6947 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6948 iverdaux
->vda_nextptr
= NULL
;
6954 if (contents
!= NULL
)
6960 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6962 elf_symbol_type
*newsym
;
6963 bfd_size_type amt
= sizeof (elf_symbol_type
);
6965 newsym
= bfd_zalloc (abfd
, amt
);
6970 newsym
->symbol
.the_bfd
= abfd
;
6971 return &newsym
->symbol
;
6976 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6980 bfd_symbol_info (symbol
, ret
);
6983 /* Return whether a symbol name implies a local symbol. Most targets
6984 use this function for the is_local_label_name entry point, but some
6988 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6991 /* Normal local symbols start with ``.L''. */
6992 if (name
[0] == '.' && name
[1] == 'L')
6995 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6996 DWARF debugging symbols starting with ``..''. */
6997 if (name
[0] == '.' && name
[1] == '.')
7000 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7001 emitting DWARF debugging output. I suspect this is actually a
7002 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7003 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7004 underscore to be emitted on some ELF targets). For ease of use,
7005 we treat such symbols as local. */
7006 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7013 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7014 asymbol
*symbol ATTRIBUTE_UNUSED
)
7021 _bfd_elf_set_arch_mach (bfd
*abfd
,
7022 enum bfd_architecture arch
,
7023 unsigned long machine
)
7025 /* If this isn't the right architecture for this backend, and this
7026 isn't the generic backend, fail. */
7027 if (arch
!= get_elf_backend_data (abfd
)->arch
7028 && arch
!= bfd_arch_unknown
7029 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7032 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7035 /* Find the function to a particular section and offset,
7036 for error reporting. */
7039 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
7043 const char **filename_ptr
,
7044 const char **functionname_ptr
)
7046 const char *filename
;
7047 asymbol
*func
, *file
;
7050 /* ??? Given multiple file symbols, it is impossible to reliably
7051 choose the right file name for global symbols. File symbols are
7052 local symbols, and thus all file symbols must sort before any
7053 global symbols. The ELF spec may be interpreted to say that a
7054 file symbol must sort before other local symbols, but currently
7055 ld -r doesn't do this. So, for ld -r output, it is possible to
7056 make a better choice of file name for local symbols by ignoring
7057 file symbols appearing after a given local symbol. */
7058 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7064 state
= nothing_seen
;
7066 for (p
= symbols
; *p
!= NULL
; p
++)
7070 q
= (elf_symbol_type
*) *p
;
7072 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
7078 if (state
== symbol_seen
)
7079 state
= file_after_symbol_seen
;
7083 if (bfd_get_section (&q
->symbol
) == section
7084 && q
->symbol
.value
>= low_func
7085 && q
->symbol
.value
<= offset
)
7087 func
= (asymbol
*) q
;
7088 low_func
= q
->symbol
.value
;
7091 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7092 || state
!= file_after_symbol_seen
))
7093 filename
= bfd_asymbol_name (file
);
7097 if (state
== nothing_seen
)
7098 state
= symbol_seen
;
7105 *filename_ptr
= filename
;
7106 if (functionname_ptr
)
7107 *functionname_ptr
= bfd_asymbol_name (func
);
7112 /* Find the nearest line to a particular section and offset,
7113 for error reporting. */
7116 _bfd_elf_find_nearest_line (bfd
*abfd
,
7120 const char **filename_ptr
,
7121 const char **functionname_ptr
,
7122 unsigned int *line_ptr
)
7126 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7127 filename_ptr
, functionname_ptr
,
7130 if (!*functionname_ptr
)
7131 elf_find_function (abfd
, section
, symbols
, offset
,
7132 *filename_ptr
? NULL
: filename_ptr
,
7138 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7139 filename_ptr
, functionname_ptr
,
7141 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7143 if (!*functionname_ptr
)
7144 elf_find_function (abfd
, section
, symbols
, offset
,
7145 *filename_ptr
? NULL
: filename_ptr
,
7151 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7152 &found
, filename_ptr
,
7153 functionname_ptr
, line_ptr
,
7154 &elf_tdata (abfd
)->line_info
))
7156 if (found
&& (*functionname_ptr
|| *line_ptr
))
7159 if (symbols
== NULL
)
7162 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7163 filename_ptr
, functionname_ptr
))
7170 /* Find the line for a symbol. */
7173 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7174 const char **filename_ptr
, unsigned int *line_ptr
)
7176 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7177 filename_ptr
, line_ptr
, 0,
7178 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7181 /* After a call to bfd_find_nearest_line, successive calls to
7182 bfd_find_inliner_info can be used to get source information about
7183 each level of function inlining that terminated at the address
7184 passed to bfd_find_nearest_line. Currently this is only supported
7185 for DWARF2 with appropriate DWARF3 extensions. */
7188 _bfd_elf_find_inliner_info (bfd
*abfd
,
7189 const char **filename_ptr
,
7190 const char **functionname_ptr
,
7191 unsigned int *line_ptr
)
7194 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7195 functionname_ptr
, line_ptr
,
7196 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7201 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7203 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7204 int ret
= bed
->s
->sizeof_ehdr
;
7206 if (!info
->relocatable
)
7208 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7210 if (phdr_size
== (bfd_size_type
) -1)
7212 struct elf_segment_map
*m
;
7215 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7216 phdr_size
+= bed
->s
->sizeof_phdr
;
7219 phdr_size
= get_program_header_size (abfd
, info
);
7222 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7230 _bfd_elf_set_section_contents (bfd
*abfd
,
7232 const void *location
,
7234 bfd_size_type count
)
7236 Elf_Internal_Shdr
*hdr
;
7239 if (! abfd
->output_has_begun
7240 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7243 hdr
= &elf_section_data (section
)->this_hdr
;
7244 pos
= hdr
->sh_offset
+ offset
;
7245 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7246 || bfd_bwrite (location
, count
, abfd
) != count
)
7253 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7254 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7255 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7260 /* Try to convert a non-ELF reloc into an ELF one. */
7263 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7265 /* Check whether we really have an ELF howto. */
7267 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7269 bfd_reloc_code_real_type code
;
7270 reloc_howto_type
*howto
;
7272 /* Alien reloc: Try to determine its type to replace it with an
7273 equivalent ELF reloc. */
7275 if (areloc
->howto
->pc_relative
)
7277 switch (areloc
->howto
->bitsize
)
7280 code
= BFD_RELOC_8_PCREL
;
7283 code
= BFD_RELOC_12_PCREL
;
7286 code
= BFD_RELOC_16_PCREL
;
7289 code
= BFD_RELOC_24_PCREL
;
7292 code
= BFD_RELOC_32_PCREL
;
7295 code
= BFD_RELOC_64_PCREL
;
7301 howto
= bfd_reloc_type_lookup (abfd
, code
);
7303 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7305 if (howto
->pcrel_offset
)
7306 areloc
->addend
+= areloc
->address
;
7308 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7313 switch (areloc
->howto
->bitsize
)
7319 code
= BFD_RELOC_14
;
7322 code
= BFD_RELOC_16
;
7325 code
= BFD_RELOC_26
;
7328 code
= BFD_RELOC_32
;
7331 code
= BFD_RELOC_64
;
7337 howto
= bfd_reloc_type_lookup (abfd
, code
);
7341 areloc
->howto
= howto
;
7349 (*_bfd_error_handler
)
7350 (_("%B: unsupported relocation type %s"),
7351 abfd
, areloc
->howto
->name
);
7352 bfd_set_error (bfd_error_bad_value
);
7357 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7359 if (bfd_get_format (abfd
) == bfd_object
)
7361 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7362 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7363 _bfd_dwarf2_cleanup_debug_info (abfd
);
7366 return _bfd_generic_close_and_cleanup (abfd
);
7369 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7370 in the relocation's offset. Thus we cannot allow any sort of sanity
7371 range-checking to interfere. There is nothing else to do in processing
7374 bfd_reloc_status_type
7375 _bfd_elf_rel_vtable_reloc_fn
7376 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7377 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7378 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7379 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7381 return bfd_reloc_ok
;
7384 /* Elf core file support. Much of this only works on native
7385 toolchains, since we rely on knowing the
7386 machine-dependent procfs structure in order to pick
7387 out details about the corefile. */
7389 #ifdef HAVE_SYS_PROCFS_H
7390 # include <sys/procfs.h>
7393 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7396 elfcore_make_pid (bfd
*abfd
)
7398 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7399 + (elf_tdata (abfd
)->core_pid
));
7402 /* If there isn't a section called NAME, make one, using
7403 data from SECT. Note, this function will generate a
7404 reference to NAME, so you shouldn't deallocate or
7408 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7412 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7415 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7419 sect2
->size
= sect
->size
;
7420 sect2
->filepos
= sect
->filepos
;
7421 sect2
->alignment_power
= sect
->alignment_power
;
7425 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7426 actually creates up to two pseudosections:
7427 - For the single-threaded case, a section named NAME, unless
7428 such a section already exists.
7429 - For the multi-threaded case, a section named "NAME/PID", where
7430 PID is elfcore_make_pid (abfd).
7431 Both pseudosections have identical contents. */
7433 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7439 char *threaded_name
;
7443 /* Build the section name. */
7445 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7446 len
= strlen (buf
) + 1;
7447 threaded_name
= bfd_alloc (abfd
, len
);
7448 if (threaded_name
== NULL
)
7450 memcpy (threaded_name
, buf
, len
);
7452 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7457 sect
->filepos
= filepos
;
7458 sect
->alignment_power
= 2;
7460 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7463 /* prstatus_t exists on:
7465 linux 2.[01] + glibc
7469 #if defined (HAVE_PRSTATUS_T)
7472 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7477 if (note
->descsz
== sizeof (prstatus_t
))
7481 size
= sizeof (prstat
.pr_reg
);
7482 offset
= offsetof (prstatus_t
, pr_reg
);
7483 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7485 /* Do not overwrite the core signal if it
7486 has already been set by another thread. */
7487 if (elf_tdata (abfd
)->core_signal
== 0)
7488 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7489 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7491 /* pr_who exists on:
7494 pr_who doesn't exist on:
7497 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7498 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7501 #if defined (HAVE_PRSTATUS32_T)
7502 else if (note
->descsz
== sizeof (prstatus32_t
))
7504 /* 64-bit host, 32-bit corefile */
7505 prstatus32_t prstat
;
7507 size
= sizeof (prstat
.pr_reg
);
7508 offset
= offsetof (prstatus32_t
, pr_reg
);
7509 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7511 /* Do not overwrite the core signal if it
7512 has already been set by another thread. */
7513 if (elf_tdata (abfd
)->core_signal
== 0)
7514 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7515 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7517 /* pr_who exists on:
7520 pr_who doesn't exist on:
7523 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7524 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7527 #endif /* HAVE_PRSTATUS32_T */
7530 /* Fail - we don't know how to handle any other
7531 note size (ie. data object type). */
7535 /* Make a ".reg/999" section and a ".reg" section. */
7536 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7537 size
, note
->descpos
+ offset
);
7539 #endif /* defined (HAVE_PRSTATUS_T) */
7541 /* Create a pseudosection containing the exact contents of NOTE. */
7543 elfcore_make_note_pseudosection (bfd
*abfd
,
7545 Elf_Internal_Note
*note
)
7547 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7548 note
->descsz
, note
->descpos
);
7551 /* There isn't a consistent prfpregset_t across platforms,
7552 but it doesn't matter, because we don't have to pick this
7553 data structure apart. */
7556 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7558 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7561 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7562 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7566 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7568 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7571 #if defined (HAVE_PRPSINFO_T)
7572 typedef prpsinfo_t elfcore_psinfo_t
;
7573 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7574 typedef prpsinfo32_t elfcore_psinfo32_t
;
7578 #if defined (HAVE_PSINFO_T)
7579 typedef psinfo_t elfcore_psinfo_t
;
7580 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7581 typedef psinfo32_t elfcore_psinfo32_t
;
7585 /* return a malloc'ed copy of a string at START which is at
7586 most MAX bytes long, possibly without a terminating '\0'.
7587 the copy will always have a terminating '\0'. */
7590 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7593 char *end
= memchr (start
, '\0', max
);
7601 dups
= bfd_alloc (abfd
, len
+ 1);
7605 memcpy (dups
, start
, len
);
7611 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7613 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7615 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7617 elfcore_psinfo_t psinfo
;
7619 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7621 elf_tdata (abfd
)->core_program
7622 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7623 sizeof (psinfo
.pr_fname
));
7625 elf_tdata (abfd
)->core_command
7626 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7627 sizeof (psinfo
.pr_psargs
));
7629 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7630 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7632 /* 64-bit host, 32-bit corefile */
7633 elfcore_psinfo32_t psinfo
;
7635 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7637 elf_tdata (abfd
)->core_program
7638 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7639 sizeof (psinfo
.pr_fname
));
7641 elf_tdata (abfd
)->core_command
7642 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7643 sizeof (psinfo
.pr_psargs
));
7649 /* Fail - we don't know how to handle any other
7650 note size (ie. data object type). */
7654 /* Note that for some reason, a spurious space is tacked
7655 onto the end of the args in some (at least one anyway)
7656 implementations, so strip it off if it exists. */
7659 char *command
= elf_tdata (abfd
)->core_command
;
7660 int n
= strlen (command
);
7662 if (0 < n
&& command
[n
- 1] == ' ')
7663 command
[n
- 1] = '\0';
7668 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7670 #if defined (HAVE_PSTATUS_T)
7672 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7674 if (note
->descsz
== sizeof (pstatus_t
)
7675 #if defined (HAVE_PXSTATUS_T)
7676 || note
->descsz
== sizeof (pxstatus_t
)
7682 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7684 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7686 #if defined (HAVE_PSTATUS32_T)
7687 else if (note
->descsz
== sizeof (pstatus32_t
))
7689 /* 64-bit host, 32-bit corefile */
7692 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7694 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7697 /* Could grab some more details from the "representative"
7698 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7699 NT_LWPSTATUS note, presumably. */
7703 #endif /* defined (HAVE_PSTATUS_T) */
7705 #if defined (HAVE_LWPSTATUS_T)
7707 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7709 lwpstatus_t lwpstat
;
7715 if (note
->descsz
!= sizeof (lwpstat
)
7716 #if defined (HAVE_LWPXSTATUS_T)
7717 && note
->descsz
!= sizeof (lwpxstatus_t
)
7722 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7724 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7725 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7727 /* Make a ".reg/999" section. */
7729 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7730 len
= strlen (buf
) + 1;
7731 name
= bfd_alloc (abfd
, len
);
7734 memcpy (name
, buf
, len
);
7736 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7740 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7741 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7742 sect
->filepos
= note
->descpos
7743 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7746 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7747 sect
->size
= sizeof (lwpstat
.pr_reg
);
7748 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7751 sect
->alignment_power
= 2;
7753 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7756 /* Make a ".reg2/999" section */
7758 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7759 len
= strlen (buf
) + 1;
7760 name
= bfd_alloc (abfd
, len
);
7763 memcpy (name
, buf
, len
);
7765 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7769 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7770 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7771 sect
->filepos
= note
->descpos
7772 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7775 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7776 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7777 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7780 sect
->alignment_power
= 2;
7782 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7784 #endif /* defined (HAVE_LWPSTATUS_T) */
7786 #if defined (HAVE_WIN32_PSTATUS_T)
7788 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7794 win32_pstatus_t pstatus
;
7796 if (note
->descsz
< sizeof (pstatus
))
7799 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7801 switch (pstatus
.data_type
)
7803 case NOTE_INFO_PROCESS
:
7804 /* FIXME: need to add ->core_command. */
7805 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7806 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7809 case NOTE_INFO_THREAD
:
7810 /* Make a ".reg/999" section. */
7811 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7813 len
= strlen (buf
) + 1;
7814 name
= bfd_alloc (abfd
, len
);
7818 memcpy (name
, buf
, len
);
7820 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7824 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7825 sect
->filepos
= (note
->descpos
7826 + offsetof (struct win32_pstatus
,
7827 data
.thread_info
.thread_context
));
7828 sect
->alignment_power
= 2;
7830 if (pstatus
.data
.thread_info
.is_active_thread
)
7831 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7835 case NOTE_INFO_MODULE
:
7836 /* Make a ".module/xxxxxxxx" section. */
7837 sprintf (buf
, ".module/%08lx",
7838 (long) pstatus
.data
.module_info
.base_address
);
7840 len
= strlen (buf
) + 1;
7841 name
= bfd_alloc (abfd
, len
);
7845 memcpy (name
, buf
, len
);
7847 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7852 sect
->size
= note
->descsz
;
7853 sect
->filepos
= note
->descpos
;
7854 sect
->alignment_power
= 2;
7863 #endif /* HAVE_WIN32_PSTATUS_T */
7866 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7868 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7876 if (bed
->elf_backend_grok_prstatus
)
7877 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7879 #if defined (HAVE_PRSTATUS_T)
7880 return elfcore_grok_prstatus (abfd
, note
);
7885 #if defined (HAVE_PSTATUS_T)
7887 return elfcore_grok_pstatus (abfd
, note
);
7890 #if defined (HAVE_LWPSTATUS_T)
7892 return elfcore_grok_lwpstatus (abfd
, note
);
7895 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7896 return elfcore_grok_prfpreg (abfd
, note
);
7898 #if defined (HAVE_WIN32_PSTATUS_T)
7899 case NT_WIN32PSTATUS
:
7900 return elfcore_grok_win32pstatus (abfd
, note
);
7903 case NT_PRXFPREG
: /* Linux SSE extension */
7904 if (note
->namesz
== 6
7905 && strcmp (note
->namedata
, "LINUX") == 0)
7906 return elfcore_grok_prxfpreg (abfd
, note
);
7912 if (bed
->elf_backend_grok_psinfo
)
7913 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7915 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7916 return elfcore_grok_psinfo (abfd
, note
);
7923 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7928 sect
->size
= note
->descsz
;
7929 sect
->filepos
= note
->descpos
;
7930 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7938 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7942 cp
= strchr (note
->namedata
, '@');
7945 *lwpidp
= atoi(cp
+ 1);
7952 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7955 /* Signal number at offset 0x08. */
7956 elf_tdata (abfd
)->core_signal
7957 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7959 /* Process ID at offset 0x50. */
7960 elf_tdata (abfd
)->core_pid
7961 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7963 /* Command name at 0x7c (max 32 bytes, including nul). */
7964 elf_tdata (abfd
)->core_command
7965 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7967 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7972 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7976 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7977 elf_tdata (abfd
)->core_lwpid
= lwp
;
7979 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7981 /* NetBSD-specific core "procinfo". Note that we expect to
7982 find this note before any of the others, which is fine,
7983 since the kernel writes this note out first when it
7984 creates a core file. */
7986 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7989 /* As of Jan 2002 there are no other machine-independent notes
7990 defined for NetBSD core files. If the note type is less
7991 than the start of the machine-dependent note types, we don't
7994 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7998 switch (bfd_get_arch (abfd
))
8000 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8001 PT_GETFPREGS == mach+2. */
8003 case bfd_arch_alpha
:
8004 case bfd_arch_sparc
:
8007 case NT_NETBSDCORE_FIRSTMACH
+0:
8008 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8010 case NT_NETBSDCORE_FIRSTMACH
+2:
8011 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8017 /* On all other arch's, PT_GETREGS == mach+1 and
8018 PT_GETFPREGS == mach+3. */
8023 case NT_NETBSDCORE_FIRSTMACH
+1:
8024 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8026 case NT_NETBSDCORE_FIRSTMACH
+3:
8027 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8037 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8039 void *ddata
= note
->descdata
;
8046 /* nto_procfs_status 'pid' field is at offset 0. */
8047 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8049 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8050 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8052 /* nto_procfs_status 'flags' field is at offset 8. */
8053 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8055 /* nto_procfs_status 'what' field is at offset 14. */
8056 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8058 elf_tdata (abfd
)->core_signal
= sig
;
8059 elf_tdata (abfd
)->core_lwpid
= *tid
;
8062 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8063 do not come from signals so we make sure we set the current
8064 thread just in case. */
8065 if (flags
& 0x00000080)
8066 elf_tdata (abfd
)->core_lwpid
= *tid
;
8068 /* Make a ".qnx_core_status/%d" section. */
8069 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8071 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8076 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8080 sect
->size
= note
->descsz
;
8081 sect
->filepos
= note
->descpos
;
8082 sect
->alignment_power
= 2;
8084 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8088 elfcore_grok_nto_regs (bfd
*abfd
,
8089 Elf_Internal_Note
*note
,
8097 /* Make a "(base)/%d" section. */
8098 sprintf (buf
, "%s/%ld", base
, tid
);
8100 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8105 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8109 sect
->size
= note
->descsz
;
8110 sect
->filepos
= note
->descpos
;
8111 sect
->alignment_power
= 2;
8113 /* This is the current thread. */
8114 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8115 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8120 #define BFD_QNT_CORE_INFO 7
8121 #define BFD_QNT_CORE_STATUS 8
8122 #define BFD_QNT_CORE_GREG 9
8123 #define BFD_QNT_CORE_FPREG 10
8126 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8128 /* Every GREG section has a STATUS section before it. Store the
8129 tid from the previous call to pass down to the next gregs
8131 static long tid
= 1;
8135 case BFD_QNT_CORE_INFO
:
8136 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8137 case BFD_QNT_CORE_STATUS
:
8138 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8139 case BFD_QNT_CORE_GREG
:
8140 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8141 case BFD_QNT_CORE_FPREG
:
8142 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8148 /* Function: elfcore_write_note
8151 buffer to hold note, and current size of buffer
8155 size of data for note
8157 Writes note to end of buffer. ELF64 notes are written exactly as
8158 for ELF32, despite the current (as of 2006) ELF gabi specifying
8159 that they ought to have 8-byte namesz and descsz field, and have
8160 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8163 Pointer to realloc'd buffer, *BUFSIZ updated. */
8166 elfcore_write_note (bfd
*abfd
,
8174 Elf_External_Note
*xnp
;
8181 namesz
= strlen (name
) + 1;
8183 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8185 buf
= realloc (buf
, *bufsiz
+ newspace
);
8186 dest
= buf
+ *bufsiz
;
8187 *bufsiz
+= newspace
;
8188 xnp
= (Elf_External_Note
*) dest
;
8189 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8190 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8191 H_PUT_32 (abfd
, type
, xnp
->type
);
8195 memcpy (dest
, name
, namesz
);
8203 memcpy (dest
, input
, size
);
8213 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8215 elfcore_write_prpsinfo (bfd
*abfd
,
8221 const char *note_name
= "CORE";
8222 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8224 if (bed
->elf_backend_write_core_note
!= NULL
)
8227 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8228 NT_PRPSINFO
, fname
, psargs
);
8233 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8234 if (bed
->s
->elfclass
== ELFCLASS32
)
8236 #if defined (HAVE_PSINFO32_T)
8238 int note_type
= NT_PSINFO
;
8241 int note_type
= NT_PRPSINFO
;
8244 memset (&data
, 0, sizeof (data
));
8245 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8246 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8247 return elfcore_write_note (abfd
, buf
, bufsiz
,
8248 note_name
, note_type
, &data
, sizeof (data
));
8253 #if defined (HAVE_PSINFO_T)
8255 int note_type
= NT_PSINFO
;
8258 int note_type
= NT_PRPSINFO
;
8261 memset (&data
, 0, sizeof (data
));
8262 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8263 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8264 return elfcore_write_note (abfd
, buf
, bufsiz
,
8265 note_name
, note_type
, &data
, sizeof (data
));
8268 #endif /* PSINFO_T or PRPSINFO_T */
8270 #if defined (HAVE_PRSTATUS_T)
8272 elfcore_write_prstatus (bfd
*abfd
,
8279 const char *note_name
= "CORE";
8280 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8282 if (bed
->elf_backend_write_core_note
!= NULL
)
8285 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8287 pid
, cursig
, gregs
);
8292 #if defined (HAVE_PRSTATUS32_T)
8293 if (bed
->s
->elfclass
== ELFCLASS32
)
8295 prstatus32_t prstat
;
8297 memset (&prstat
, 0, sizeof (prstat
));
8298 prstat
.pr_pid
= pid
;
8299 prstat
.pr_cursig
= cursig
;
8300 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8301 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8302 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8309 memset (&prstat
, 0, sizeof (prstat
));
8310 prstat
.pr_pid
= pid
;
8311 prstat
.pr_cursig
= cursig
;
8312 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8313 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8314 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8317 #endif /* HAVE_PRSTATUS_T */
8319 #if defined (HAVE_LWPSTATUS_T)
8321 elfcore_write_lwpstatus (bfd
*abfd
,
8328 lwpstatus_t lwpstat
;
8329 const char *note_name
= "CORE";
8331 memset (&lwpstat
, 0, sizeof (lwpstat
));
8332 lwpstat
.pr_lwpid
= pid
>> 16;
8333 lwpstat
.pr_cursig
= cursig
;
8334 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8335 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8336 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8338 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8339 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8341 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8342 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8345 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8346 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8348 #endif /* HAVE_LWPSTATUS_T */
8350 #if defined (HAVE_PSTATUS_T)
8352 elfcore_write_pstatus (bfd
*abfd
,
8356 int cursig ATTRIBUTE_UNUSED
,
8357 const void *gregs ATTRIBUTE_UNUSED
)
8359 const char *note_name
= "CORE";
8360 #if defined (HAVE_PSTATUS32_T)
8361 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8363 if (bed
->s
->elfclass
== ELFCLASS32
)
8367 memset (&pstat
, 0, sizeof (pstat
));
8368 pstat
.pr_pid
= pid
& 0xffff;
8369 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8370 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8378 memset (&pstat
, 0, sizeof (pstat
));
8379 pstat
.pr_pid
= pid
& 0xffff;
8380 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8381 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8385 #endif /* HAVE_PSTATUS_T */
8388 elfcore_write_prfpreg (bfd
*abfd
,
8394 const char *note_name
= "CORE";
8395 return elfcore_write_note (abfd
, buf
, bufsiz
,
8396 note_name
, NT_FPREGSET
, fpregs
, size
);
8400 elfcore_write_prxfpreg (bfd
*abfd
,
8403 const void *xfpregs
,
8406 char *note_name
= "LINUX";
8407 return elfcore_write_note (abfd
, buf
, bufsiz
,
8408 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8412 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8420 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8423 buf
= bfd_malloc (size
);
8427 if (bfd_bread (buf
, size
, abfd
) != size
)
8435 while (p
< buf
+ size
)
8437 /* FIXME: bad alignment assumption. */
8438 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8439 Elf_Internal_Note in
;
8441 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8443 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8444 in
.namedata
= xnp
->name
;
8446 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8447 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8448 in
.descpos
= offset
+ (in
.descdata
- buf
);
8450 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8452 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8455 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8457 if (! elfcore_grok_nto_note (abfd
, &in
))
8462 if (! elfcore_grok_note (abfd
, &in
))
8466 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8473 /* Providing external access to the ELF program header table. */
8475 /* Return an upper bound on the number of bytes required to store a
8476 copy of ABFD's program header table entries. Return -1 if an error
8477 occurs; bfd_get_error will return an appropriate code. */
8480 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8482 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8484 bfd_set_error (bfd_error_wrong_format
);
8488 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8491 /* Copy ABFD's program header table entries to *PHDRS. The entries
8492 will be stored as an array of Elf_Internal_Phdr structures, as
8493 defined in include/elf/internal.h. To find out how large the
8494 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8496 Return the number of program header table entries read, or -1 if an
8497 error occurs; bfd_get_error will return an appropriate code. */
8500 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8504 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8506 bfd_set_error (bfd_error_wrong_format
);
8510 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8511 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8512 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8518 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8521 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8523 i_ehdrp
= elf_elfheader (abfd
);
8524 if (i_ehdrp
== NULL
)
8525 sprintf_vma (buf
, value
);
8528 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8530 #if BFD_HOST_64BIT_LONG
8531 sprintf (buf
, "%016lx", value
);
8533 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8534 _bfd_int64_low (value
));
8538 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8541 sprintf_vma (buf
, value
);
8546 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8549 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8551 i_ehdrp
= elf_elfheader (abfd
);
8552 if (i_ehdrp
== NULL
)
8553 fprintf_vma ((FILE *) stream
, value
);
8556 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8558 #if BFD_HOST_64BIT_LONG
8559 fprintf ((FILE *) stream
, "%016lx", value
);
8561 fprintf ((FILE *) stream
, "%08lx%08lx",
8562 _bfd_int64_high (value
), _bfd_int64_low (value
));
8566 fprintf ((FILE *) stream
, "%08lx",
8567 (unsigned long) (value
& 0xffffffff));
8570 fprintf_vma ((FILE *) stream
, value
);
8574 enum elf_reloc_type_class
8575 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8577 return reloc_class_normal
;
8580 /* For RELA architectures, return the relocation value for a
8581 relocation against a local symbol. */
8584 _bfd_elf_rela_local_sym (bfd
*abfd
,
8585 Elf_Internal_Sym
*sym
,
8587 Elf_Internal_Rela
*rel
)
8589 asection
*sec
= *psec
;
8592 relocation
= (sec
->output_section
->vma
8593 + sec
->output_offset
8595 if ((sec
->flags
& SEC_MERGE
)
8596 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8597 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8600 _bfd_merged_section_offset (abfd
, psec
,
8601 elf_section_data (sec
)->sec_info
,
8602 sym
->st_value
+ rel
->r_addend
);
8605 /* If we have changed the section, and our original section is
8606 marked with SEC_EXCLUDE, it means that the original
8607 SEC_MERGE section has been completely subsumed in some
8608 other SEC_MERGE section. In this case, we need to leave
8609 some info around for --emit-relocs. */
8610 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8611 sec
->kept_section
= *psec
;
8614 rel
->r_addend
-= relocation
;
8615 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8621 _bfd_elf_rel_local_sym (bfd
*abfd
,
8622 Elf_Internal_Sym
*sym
,
8626 asection
*sec
= *psec
;
8628 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8629 return sym
->st_value
+ addend
;
8631 return _bfd_merged_section_offset (abfd
, psec
,
8632 elf_section_data (sec
)->sec_info
,
8633 sym
->st_value
+ addend
);
8637 _bfd_elf_section_offset (bfd
*abfd
,
8638 struct bfd_link_info
*info
,
8642 switch (sec
->sec_info_type
)
8644 case ELF_INFO_TYPE_STABS
:
8645 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8647 case ELF_INFO_TYPE_EH_FRAME
:
8648 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8654 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8655 reconstruct an ELF file by reading the segments out of remote memory
8656 based on the ELF file header at EHDR_VMA and the ELF program headers it
8657 points to. If not null, *LOADBASEP is filled in with the difference
8658 between the VMAs from which the segments were read, and the VMAs the
8659 file headers (and hence BFD's idea of each section's VMA) put them at.
8661 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8662 remote memory at target address VMA into the local buffer at MYADDR; it
8663 should return zero on success or an `errno' code on failure. TEMPL must
8664 be a BFD for an ELF target with the word size and byte order found in
8665 the remote memory. */
8668 bfd_elf_bfd_from_remote_memory
8672 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8674 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8675 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8679 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8680 long symcount ATTRIBUTE_UNUSED
,
8681 asymbol
**syms ATTRIBUTE_UNUSED
,
8686 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8689 const char *relplt_name
;
8690 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8694 Elf_Internal_Shdr
*hdr
;
8700 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8703 if (dynsymcount
<= 0)
8706 if (!bed
->plt_sym_val
)
8709 relplt_name
= bed
->relplt_name
;
8710 if (relplt_name
== NULL
)
8711 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8712 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8716 hdr
= &elf_section_data (relplt
)->this_hdr
;
8717 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8718 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8721 plt
= bfd_get_section_by_name (abfd
, ".plt");
8725 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8726 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8729 count
= relplt
->size
/ hdr
->sh_entsize
;
8730 size
= count
* sizeof (asymbol
);
8731 p
= relplt
->relocation
;
8732 for (i
= 0; i
< count
; i
++, s
++, p
++)
8733 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8735 s
= *ret
= bfd_malloc (size
);
8739 names
= (char *) (s
+ count
);
8740 p
= relplt
->relocation
;
8742 for (i
= 0; i
< count
; i
++, s
++, p
++)
8747 addr
= bed
->plt_sym_val (i
, plt
, p
);
8748 if (addr
== (bfd_vma
) -1)
8751 *s
= **p
->sym_ptr_ptr
;
8752 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8753 we are defining a symbol, ensure one of them is set. */
8754 if ((s
->flags
& BSF_LOCAL
) == 0)
8755 s
->flags
|= BSF_GLOBAL
;
8757 s
->value
= addr
- plt
->vma
;
8759 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8760 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8762 memcpy (names
, "@plt", sizeof ("@plt"));
8763 names
+= sizeof ("@plt");
8770 struct elf_symbuf_symbol
8772 unsigned long st_name
; /* Symbol name, index in string tbl */
8773 unsigned char st_info
; /* Type and binding attributes */
8774 unsigned char st_other
; /* Visibilty, and target specific */
8777 struct elf_symbuf_head
8779 struct elf_symbuf_symbol
*ssym
;
8780 bfd_size_type count
;
8781 unsigned int st_shndx
;
8788 Elf_Internal_Sym
*isym
;
8789 struct elf_symbuf_symbol
*ssym
;
8794 /* Sort references to symbols by ascending section number. */
8797 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8799 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
8800 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
8802 return s1
->st_shndx
- s2
->st_shndx
;
8806 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8808 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8809 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8810 return strcmp (s1
->name
, s2
->name
);
8813 static struct elf_symbuf_head
*
8814 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
8816 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
8817 = bfd_malloc2 (symcount
, sizeof (*indbuf
));
8818 struct elf_symbuf_symbol
*ssym
;
8819 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
8820 bfd_size_type i
, shndx_count
;
8825 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
8826 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
8827 *ind
++ = &isymbuf
[i
];
8830 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
8831 elf_sort_elf_symbol
);
8834 if (indbufend
> indbuf
)
8835 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
8836 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
8839 ssymbuf
= bfd_malloc ((shndx_count
+ 1) * sizeof (*ssymbuf
)
8840 + (indbufend
- indbuf
) * sizeof (*ssymbuf
));
8841 if (ssymbuf
== NULL
)
8847 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
);
8848 ssymbuf
->ssym
= NULL
;
8849 ssymbuf
->count
= shndx_count
;
8850 ssymbuf
->st_shndx
= 0;
8851 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
8853 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
8856 ssymhead
->ssym
= ssym
;
8857 ssymhead
->count
= 0;
8858 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
8860 ssym
->st_name
= (*ind
)->st_name
;
8861 ssym
->st_info
= (*ind
)->st_info
;
8862 ssym
->st_other
= (*ind
)->st_other
;
8865 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
);
8871 /* Check if 2 sections define the same set of local and global
8875 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
8876 struct bfd_link_info
*info
)
8879 const struct elf_backend_data
*bed1
, *bed2
;
8880 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8881 bfd_size_type symcount1
, symcount2
;
8882 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8883 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
8884 Elf_Internal_Sym
*isym
, *isymend
;
8885 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
8886 bfd_size_type count1
, count2
, i
;
8893 /* If both are .gnu.linkonce sections, they have to have the same
8895 if (CONST_STRNEQ (sec1
->name
, ".gnu.linkonce")
8896 && CONST_STRNEQ (sec2
->name
, ".gnu.linkonce"))
8897 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8898 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8900 /* Both sections have to be in ELF. */
8901 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8902 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8905 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8908 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8909 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8911 /* If both are members of section groups, they have to have the
8913 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8917 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8918 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8919 if (shndx1
== -1 || shndx2
== -1)
8922 bed1
= get_elf_backend_data (bfd1
);
8923 bed2
= get_elf_backend_data (bfd2
);
8924 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8925 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8926 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8927 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8929 if (symcount1
== 0 || symcount2
== 0)
8935 ssymbuf1
= elf_tdata (bfd1
)->symbuf
;
8936 ssymbuf2
= elf_tdata (bfd2
)->symbuf
;
8938 if (ssymbuf1
== NULL
)
8940 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8942 if (isymbuf1
== NULL
)
8945 if (!info
->reduce_memory_overheads
)
8946 elf_tdata (bfd1
)->symbuf
= ssymbuf1
8947 = elf_create_symbuf (symcount1
, isymbuf1
);
8950 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
8952 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8954 if (isymbuf2
== NULL
)
8957 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
8958 elf_tdata (bfd2
)->symbuf
= ssymbuf2
8959 = elf_create_symbuf (symcount2
, isymbuf2
);
8962 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
8964 /* Optimized faster version. */
8965 bfd_size_type lo
, hi
, mid
;
8966 struct elf_symbol
*symp
;
8967 struct elf_symbuf_symbol
*ssym
, *ssymend
;
8970 hi
= ssymbuf1
->count
;
8975 mid
= (lo
+ hi
) / 2;
8976 if ((unsigned int) shndx1
< ssymbuf1
[mid
].st_shndx
)
8978 else if ((unsigned int) shndx1
> ssymbuf1
[mid
].st_shndx
)
8982 count1
= ssymbuf1
[mid
].count
;
8989 hi
= ssymbuf2
->count
;
8994 mid
= (lo
+ hi
) / 2;
8995 if ((unsigned int) shndx2
< ssymbuf2
[mid
].st_shndx
)
8997 else if ((unsigned int) shndx2
> ssymbuf2
[mid
].st_shndx
)
9001 count2
= ssymbuf2
[mid
].count
;
9007 if (count1
== 0 || count2
== 0 || count1
!= count2
)
9010 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
9011 symtable2
= bfd_malloc (count2
* sizeof (struct elf_symbol
));
9012 if (symtable1
== NULL
|| symtable2
== NULL
)
9016 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
9017 ssym
< ssymend
; ssym
++, symp
++)
9019 symp
->u
.ssym
= ssym
;
9020 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
9026 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
9027 ssym
< ssymend
; ssym
++, symp
++)
9029 symp
->u
.ssym
= ssym
;
9030 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
9035 /* Sort symbol by name. */
9036 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
9037 elf_sym_name_compare
);
9038 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
9039 elf_sym_name_compare
);
9041 for (i
= 0; i
< count1
; i
++)
9042 /* Two symbols must have the same binding, type and name. */
9043 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
9044 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
9045 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
9052 symtable1
= bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
9053 symtable2
= bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
9054 if (symtable1
== NULL
|| symtable2
== NULL
)
9057 /* Count definitions in the section. */
9059 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
9060 if (isym
->st_shndx
== (unsigned int) shndx1
)
9061 symtable1
[count1
++].u
.isym
= isym
;
9064 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
9065 if (isym
->st_shndx
== (unsigned int) shndx2
)
9066 symtable2
[count2
++].u
.isym
= isym
;
9068 if (count1
== 0 || count2
== 0 || count1
!= count2
)
9071 for (i
= 0; i
< count1
; i
++)
9073 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
9074 symtable1
[i
].u
.isym
->st_name
);
9076 for (i
= 0; i
< count2
; i
++)
9078 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
9079 symtable2
[i
].u
.isym
->st_name
);
9081 /* Sort symbol by name. */
9082 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
9083 elf_sym_name_compare
);
9084 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
9085 elf_sym_name_compare
);
9087 for (i
= 0; i
< count1
; i
++)
9088 /* Two symbols must have the same binding, type and name. */
9089 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
9090 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
9091 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
9109 /* It is only used by x86-64 so far. */
9110 asection _bfd_elf_large_com_section
9111 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9112 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9114 /* Return TRUE if 2 section types are compatible. */
9117 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
9118 bfd
*bbfd
, const asection
*bsec
)
9122 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
9123 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9126 return elf_section_type (asec
) == elf_section_type (bsec
);