1 // layout.cc -- lay out output file sections for gold
18 // Layout_task_runner methods.
20 // Lay out the sections. This is called after all the input objects
24 Layout_task_runner::run(Workqueue
* workqueue
)
26 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
29 // Now we know the final size of the output file and we know where
30 // each piece of information goes.
31 Output_file
* of
= new Output_file(this->options_
);
34 // Queue up the final set of tasks.
35 gold::queue_final_tasks(this->options_
, this->input_objects_
,
36 this->symtab_
, this->layout_
, workqueue
, of
);
41 Layout::Layout(const General_options
& options
)
42 : options_(options
), namepool_(), sympool_(), signatures_(),
43 section_name_map_(), segment_list_(), section_list_(),
44 special_output_list_(), tls_segment_(NULL
)
46 // Make space for more than enough segments for a typical file.
47 // This is just for efficiency--it's OK if we wind up needing more.
48 segment_list_
.reserve(12);
51 // Hash a key we use to look up an output section mapping.
54 Layout::Hash_key::operator()(const Layout::Key
& k
) const
56 return k
.first
+ k
.second
.first
+ k
.second
.second
;
59 // Whether to include this section in the link.
61 template<int size
, bool big_endian
>
63 Layout::include_section(Object
*, const char*,
64 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
66 // Some section types are never linked. Some are only linked when
67 // doing a relocateable link.
68 switch (shdr
.get_sh_type())
70 case elfcpp::SHT_NULL
:
71 case elfcpp::SHT_SYMTAB
:
72 case elfcpp::SHT_DYNSYM
:
73 case elfcpp::SHT_STRTAB
:
74 case elfcpp::SHT_HASH
:
75 case elfcpp::SHT_DYNAMIC
:
76 case elfcpp::SHT_SYMTAB_SHNDX
:
79 case elfcpp::SHT_RELA
:
81 case elfcpp::SHT_GROUP
:
82 return this->options_
.is_relocatable();
85 // FIXME: Handle stripping debug sections here.
90 // Return an output section named NAME, or NULL if there is none.
93 Layout::find_output_section(const char* name
) const
95 for (Section_name_map::const_iterator p
= this->section_name_map_
.begin();
96 p
!= this->section_name_map_
.end();
98 if (strcmp(p
->second
->name(), name
) == 0)
103 // Return an output segment of type TYPE, with segment flags SET set
104 // and segment flags CLEAR clear. Return NULL if there is none.
107 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
108 elfcpp::Elf_Word clear
) const
110 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
111 p
!= this->segment_list_
.end();
113 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
114 && ((*p
)->flags() & set
) == set
115 && ((*p
)->flags() & clear
) == 0)
120 // Return the output section to use for section NAME with type TYPE
121 // and section flags FLAGS.
124 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
125 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
127 // We should ignore some flags.
128 flags
&= ~ (elfcpp::SHF_INFO_LINK
129 | elfcpp::SHF_LINK_ORDER
130 | elfcpp::SHF_GROUP
);
132 const Key
key(name_key
, std::make_pair(type
, flags
));
133 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
134 std::pair
<Section_name_map::iterator
, bool> ins(
135 this->section_name_map_
.insert(v
));
138 return ins
.first
->second
;
141 // This is the first time we've seen this name/type/flags
143 Output_section
* os
= this->make_output_section(name
, type
, flags
);
144 ins
.first
->second
= os
;
149 // Return the output section to use for input section SHNDX, with name
150 // NAME, with header HEADER, from object OBJECT. Set *OFF to the
151 // offset of this input section without the output section.
153 template<int size
, bool big_endian
>
155 Layout::layout(Relobj
* object
, unsigned int shndx
, const char* name
,
156 const elfcpp::Shdr
<size
, big_endian
>& shdr
, off_t
* off
)
158 if (!this->include_section(object
, name
, shdr
))
161 // If we are not doing a relocateable link, choose the name to use
162 // for the output section.
163 size_t len
= strlen(name
);
164 if (!this->options_
.is_relocatable())
165 name
= Layout::output_section_name(name
, &len
);
167 // FIXME: Handle SHF_OS_NONCONFORMING here.
169 // Canonicalize the section name.
170 Stringpool::Key name_key
;
171 name
= this->namepool_
.add(name
, len
, &name_key
);
173 // Find the output section. The output section is selected based on
174 // the section name, type, and flags.
175 Output_section
* os
= this->get_output_section(name
, name_key
,
177 shdr
.get_sh_flags());
179 // FIXME: Handle SHF_LINK_ORDER somewhere.
181 *off
= os
->add_input_section(object
, shndx
, name
, shdr
);
186 // Add POSD to an output section using NAME, TYPE, and FLAGS.
189 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
190 elfcpp::Elf_Xword flags
,
191 Output_section_data
* posd
)
193 // Canonicalize the name.
194 Stringpool::Key name_key
;
195 name
= this->namepool_
.add(name
, &name_key
);
197 Output_section
* os
= this->get_output_section(name
, name_key
, type
, flags
);
198 os
->add_output_section_data(posd
);
201 // Map section flags to segment flags.
204 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
206 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
207 if ((flags
& elfcpp::SHF_WRITE
) != 0)
209 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
214 // Make a new Output_section, and attach it to segments as
218 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
219 elfcpp::Elf_Xword flags
)
221 Output_section
* os
= new Output_section(name
, type
, flags
, true);
223 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
224 this->section_list_
.push_back(os
);
227 // This output section goes into a PT_LOAD segment.
229 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
231 // The only thing we really care about for PT_LOAD segments is
232 // whether or not they are writable, so that is how we search
233 // for them. People who need segments sorted on some other
234 // basis will have to wait until we implement a mechanism for
235 // them to describe the segments they want.
237 Segment_list::const_iterator p
;
238 for (p
= this->segment_list_
.begin();
239 p
!= this->segment_list_
.end();
242 if ((*p
)->type() == elfcpp::PT_LOAD
243 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
245 (*p
)->add_output_section(os
, seg_flags
);
250 if (p
== this->segment_list_
.end())
252 Output_segment
* oseg
= new Output_segment(elfcpp::PT_LOAD
,
254 this->segment_list_
.push_back(oseg
);
255 oseg
->add_output_section(os
, seg_flags
);
258 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
260 if (type
== elfcpp::SHT_NOTE
)
262 // See if we already have an equivalent PT_NOTE segment.
263 for (p
= this->segment_list_
.begin();
264 p
!= segment_list_
.end();
267 if ((*p
)->type() == elfcpp::PT_NOTE
268 && (((*p
)->flags() & elfcpp::PF_W
)
269 == (seg_flags
& elfcpp::PF_W
)))
271 (*p
)->add_output_section(os
, seg_flags
);
276 if (p
== this->segment_list_
.end())
278 Output_segment
* oseg
= new Output_segment(elfcpp::PT_NOTE
,
280 this->segment_list_
.push_back(oseg
);
281 oseg
->add_output_section(os
, seg_flags
);
285 // If we see a loadable SHF_TLS section, we create a PT_TLS
286 // segment. There can only be one such segment.
287 if ((flags
& elfcpp::SHF_TLS
) != 0)
289 if (this->tls_segment_
== NULL
)
291 this->tls_segment_
= new Output_segment(elfcpp::PT_TLS
,
293 this->segment_list_
.push_back(this->tls_segment_
);
295 this->tls_segment_
->add_output_section(os
, seg_flags
);
302 // Find the first read-only PT_LOAD segment, creating one if
306 Layout::find_first_load_seg()
308 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
309 p
!= this->segment_list_
.end();
312 if ((*p
)->type() == elfcpp::PT_LOAD
313 && ((*p
)->flags() & elfcpp::PF_R
) != 0
314 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
318 Output_segment
* load_seg
= new Output_segment(elfcpp::PT_LOAD
, elfcpp::PF_R
);
319 this->segment_list_
.push_back(load_seg
);
323 // Finalize the layout. When this is called, we have created all the
324 // output sections and all the output segments which are based on
325 // input sections. We have several things to do, and we have to do
326 // them in the right order, so that we get the right results correctly
329 // 1) Finalize the list of output segments and create the segment
332 // 2) Finalize the dynamic symbol table and associated sections.
334 // 3) Determine the final file offset of all the output segments.
336 // 4) Determine the final file offset of all the SHF_ALLOC output
339 // 5) Create the symbol table sections and the section name table
342 // 6) Finalize the symbol table: set symbol values to their final
343 // value and make a final determination of which symbols are going
344 // into the output symbol table.
346 // 7) Create the section table header.
348 // 8) Determine the final file offset of all the output sections which
349 // are not SHF_ALLOC, including the section table header.
351 // 9) Finalize the ELF file header.
353 // This function returns the size of the output file.
356 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
)
358 const int size
= input_objects
->target()->get_size();
360 Output_segment
* phdr_seg
= NULL
;
361 if (input_objects
->any_dynamic())
363 // There was a dynamic object in the link. We need to create
364 // some information for the dynamic linker.
366 // Create the PT_PHDR segment which will hold the program
368 phdr_seg
= new Output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
369 this->segment_list_
.push_back(phdr_seg
);
371 // Create the dynamic symbol table, including the hash table,
372 // the dynamic relocations, and the version sections.
373 this->create_dynamic_symtab(size
, symtab
);
375 // Create the .dynamic section to hold the dynamic data, and put
376 // it in a PT_DYNAMIC segment.
377 this->create_dynamic_section();
379 // Create the .interp section to hold the name of the
380 // interpreter, and put it in a PT_INTERP segment.
381 this->create_interp(input_objects
->target());
384 // FIXME: Handle PT_GNU_STACK.
386 Output_segment
* load_seg
= this->find_first_load_seg();
388 // Lay out the segment headers.
389 bool big_endian
= input_objects
->target()->is_big_endian();
390 Output_segment_headers
* segment_headers
;
391 segment_headers
= new Output_segment_headers(size
, big_endian
,
392 this->segment_list_
);
393 load_seg
->add_initial_output_data(segment_headers
);
394 this->special_output_list_
.push_back(segment_headers
);
395 if (phdr_seg
!= NULL
)
396 phdr_seg
->add_initial_output_data(segment_headers
);
398 // Lay out the file header.
399 Output_file_header
* file_header
;
400 file_header
= new Output_file_header(size
,
403 input_objects
->target(),
406 load_seg
->add_initial_output_data(file_header
);
407 this->special_output_list_
.push_back(file_header
);
409 // We set the output section indexes in set_segment_offsets and
410 // set_section_offsets.
411 unsigned int shndx
= 1;
413 // Set the file offsets of all the segments, and all the sections
415 off_t off
= this->set_segment_offsets(input_objects
->target(), load_seg
,
418 // Create the symbol table sections.
419 // FIXME: We don't need to do this if we are stripping symbols.
420 Output_section
* osymtab
;
421 Output_section
* ostrtab
;
422 this->create_symtab_sections(size
, input_objects
, symtab
, &off
,
425 // Create the .shstrtab section.
426 Output_section
* shstrtab_section
= this->create_shstrtab();
428 // Set the file offsets of all the sections not associated with
430 off
= this->set_section_offsets(off
, &shndx
);
432 // Now the section index of OSTRTAB is set.
433 osymtab
->set_link(ostrtab
->out_shndx());
435 // Create the section table header.
436 Output_section_headers
* oshdrs
= this->create_shdrs(size
, big_endian
, &off
);
438 file_header
->set_section_info(oshdrs
, shstrtab_section
);
440 // Now we know exactly where everything goes in the output file.
445 // Return whether SEG1 should be before SEG2 in the output file. This
446 // is based entirely on the segment type and flags. When this is
447 // called the segment addresses has normally not yet been set.
450 Layout::segment_precedes(const Output_segment
* seg1
,
451 const Output_segment
* seg2
)
453 elfcpp::Elf_Word type1
= seg1
->type();
454 elfcpp::Elf_Word type2
= seg2
->type();
456 // The single PT_PHDR segment is required to precede any loadable
457 // segment. We simply make it always first.
458 if (type1
== elfcpp::PT_PHDR
)
460 assert(type2
!= elfcpp::PT_PHDR
);
463 if (type2
== elfcpp::PT_PHDR
)
466 // The single PT_INTERP segment is required to precede any loadable
467 // segment. We simply make it always second.
468 if (type1
== elfcpp::PT_INTERP
)
470 assert(type2
!= elfcpp::PT_INTERP
);
473 if (type2
== elfcpp::PT_INTERP
)
476 // We then put PT_LOAD segments before any other segments.
477 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
479 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
482 // We put the PT_TLS segment last, because that is where the dynamic
483 // linker expects to find it (this is just for efficiency; other
484 // positions would also work correctly).
485 if (type1
== elfcpp::PT_TLS
&& type2
!= elfcpp::PT_TLS
)
487 if (type2
== elfcpp::PT_TLS
&& type1
!= elfcpp::PT_TLS
)
490 const elfcpp::Elf_Word flags1
= seg1
->flags();
491 const elfcpp::Elf_Word flags2
= seg2
->flags();
493 // The order of non-PT_LOAD segments is unimportant. We simply sort
494 // by the numeric segment type and flags values. There should not
495 // be more than one segment with the same type and flags.
496 if (type1
!= elfcpp::PT_LOAD
)
499 return type1
< type2
;
500 assert(flags1
!= flags2
);
501 return flags1
< flags2
;
504 // We sort PT_LOAD segments based on the flags. Readonly segments
505 // come before writable segments. Then executable segments come
506 // before non-executable segments. Then the unlikely case of a
507 // non-readable segment comes before the normal case of a readable
508 // segment. If there are multiple segments with the same type and
509 // flags, we require that the address be set, and we sort by
510 // virtual address and then physical address.
511 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
512 return (flags1
& elfcpp::PF_W
) == 0;
513 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
514 return (flags1
& elfcpp::PF_X
) != 0;
515 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
516 return (flags1
& elfcpp::PF_R
) == 0;
518 uint64_t vaddr1
= seg1
->vaddr();
519 uint64_t vaddr2
= seg2
->vaddr();
520 if (vaddr1
!= vaddr2
)
521 return vaddr1
< vaddr2
;
523 uint64_t paddr1
= seg1
->paddr();
524 uint64_t paddr2
= seg2
->paddr();
525 assert(paddr1
!= paddr2
);
526 return paddr1
< paddr2
;
529 // Set the file offsets of all the segments, and all the sections they
530 // contain. They have all been created. LOAD_SEG must be be laid out
531 // first. Return the offset of the data to follow.
534 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
535 unsigned int *pshndx
)
537 // Sort them into the final order.
538 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
539 Layout::Compare_segments());
541 // Find the PT_LOAD segments, and set their addresses and offsets
542 // and their section's addresses and offsets.
543 uint64_t addr
= target
->text_segment_address();
545 bool was_readonly
= false;
546 for (Segment_list::iterator p
= this->segment_list_
.begin();
547 p
!= this->segment_list_
.end();
550 if ((*p
)->type() == elfcpp::PT_LOAD
)
552 if (load_seg
!= NULL
&& load_seg
!= *p
)
556 // If the last segment was readonly, and this one is not,
557 // then skip the address forward one page, maintaining the
558 // same position within the page. This lets us store both
559 // segments overlapping on a single page in the file, but
560 // the loader will put them on different pages in memory.
562 uint64_t orig_addr
= addr
;
563 uint64_t orig_off
= off
;
565 uint64_t aligned_addr
= addr
;
566 uint64_t abi_pagesize
= target
->abi_pagesize();
567 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
569 uint64_t align
= (*p
)->addralign();
571 addr
= align_address(addr
, align
);
573 if ((addr
& (abi_pagesize
- 1)) != 0)
574 addr
= addr
+ abi_pagesize
;
577 unsigned int shndx_hold
= *pshndx
;
578 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
579 uint64_t new_addr
= (*p
)->set_section_addresses(addr
, &off
, pshndx
);
581 // Now that we know the size of this segment, we may be able
582 // to save a page in memory, at the cost of wasting some
583 // file space, by instead aligning to the start of a new
584 // page. Here we use the real machine page size rather than
585 // the ABI mandated page size.
587 if (aligned_addr
!= addr
)
589 uint64_t common_pagesize
= target
->common_pagesize();
590 uint64_t first_off
= (common_pagesize
592 & (common_pagesize
- 1)));
593 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
596 && ((aligned_addr
& ~ (common_pagesize
- 1))
597 != (new_addr
& ~ (common_pagesize
- 1)))
598 && first_off
+ last_off
<= common_pagesize
)
600 *pshndx
= shndx_hold
;
601 addr
= align_address(aligned_addr
, common_pagesize
);
602 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
603 new_addr
= (*p
)->set_section_addresses(addr
, &off
, pshndx
);
609 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
614 // Handle the non-PT_LOAD segments, setting their offsets from their
615 // section's offsets.
616 for (Segment_list::iterator p
= this->segment_list_
.begin();
617 p
!= this->segment_list_
.end();
620 if ((*p
)->type() != elfcpp::PT_LOAD
)
627 // Set the file offset of all the sections not associated with a
631 Layout::set_section_offsets(off_t off
, unsigned int* pshndx
)
633 for (Layout::Section_list::iterator p
= this->section_list_
.begin();
634 p
!= this->section_list_
.end();
637 (*p
)->set_out_shndx(*pshndx
);
639 if ((*p
)->offset() != -1)
641 off
= align_address(off
, (*p
)->addralign());
642 (*p
)->set_address(0, off
);
643 off
+= (*p
)->data_size();
648 // Create the symbol table sections.
651 Layout::create_symtab_sections(int size
, const Input_objects
* input_objects
,
652 Symbol_table
* symtab
,
654 Output_section
** posymtab
,
655 Output_section
** postrtab
)
661 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
666 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
673 off
= align_address(off
, align
);
674 off_t startoff
= off
;
676 // Save space for the dummy symbol at the start of the section. We
677 // never bother to write this out--it will just be left as zero.
679 unsigned int local_symbol_index
= 1;
681 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
682 p
!= input_objects
->relobj_end();
685 Task_lock_obj
<Object
> tlo(**p
);
686 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
689 off
+= (index
- local_symbol_index
) * symsize
;
690 local_symbol_index
= index
;
693 unsigned int local_symcount
= local_symbol_index
;
694 assert(local_symcount
* symsize
== off
- startoff
);
696 off
= symtab
->finalize(local_symcount
, off
, &this->sympool_
);
698 this->sympool_
.set_string_offsets();
700 const char* symtab_name
= this->namepool_
.add(".symtab", NULL
);
701 Output_section
* osymtab
= new Output_section_symtab(symtab_name
,
703 this->section_list_
.push_back(osymtab
);
705 const char* strtab_name
= this->namepool_
.add(".strtab", NULL
);
706 Output_section
*ostrtab
= new Output_section_strtab(strtab_name
,
708 this->section_list_
.push_back(ostrtab
);
709 this->special_output_list_
.push_back(ostrtab
);
711 osymtab
->set_address(0, startoff
);
712 osymtab
->set_info(local_symcount
);
713 osymtab
->set_entsize(symsize
);
714 osymtab
->set_addralign(align
);
721 // Create the .shstrtab section, which holds the names of the
722 // sections. At the time this is called, we have created all the
723 // output sections except .shstrtab itself.
726 Layout::create_shstrtab()
728 // FIXME: We don't need to create a .shstrtab section if we are
729 // stripping everything.
731 const char* name
= this->namepool_
.add(".shstrtab", NULL
);
733 this->namepool_
.set_string_offsets();
735 Output_section
* os
= new Output_section_strtab(name
, &this->namepool_
);
737 this->section_list_
.push_back(os
);
738 this->special_output_list_
.push_back(os
);
743 // Create the section headers. SIZE is 32 or 64. OFF is the file
746 Output_section_headers
*
747 Layout::create_shdrs(int size
, bool big_endian
, off_t
* poff
)
749 Output_section_headers
* oshdrs
;
750 oshdrs
= new Output_section_headers(size
, big_endian
, this->segment_list_
,
753 off_t off
= align_address(*poff
, oshdrs
->addralign());
754 oshdrs
->set_address(0, off
);
755 off
+= oshdrs
->data_size();
757 this->special_output_list_
.push_back(oshdrs
);
761 // Create the dynamic symbol table.
764 Layout::create_dynamic_symtab(int, Symbol_table
*)
769 // Create the .dynamic section and PT_DYNAMIC segment.
772 Layout::create_dynamic_section()
777 // Create the .interp section and PT_INTERP segment.
780 Layout::create_interp(const Target
* target
)
782 const char* interp
= this->options_
.dynamic_linker();
785 interp
= target
->dynamic_linker();
786 assert(interp
!= NULL
);
789 size_t len
= strlen(interp
) + 1;
791 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
793 const char* interp_name
= this->namepool_
.add(".interp", NULL
);
794 Output_section
* osec
= this->make_output_section(interp_name
,
795 elfcpp::SHT_PROGBITS
,
797 osec
->add_output_section_data(odata
);
799 Output_segment
* oseg
= new Output_segment(elfcpp::PT_INTERP
, elfcpp::PF_R
);
800 this->segment_list_
.push_back(oseg
);
801 oseg
->add_initial_output_section(osec
, elfcpp::PF_R
);
804 // The mapping of .gnu.linkonce section names to real section names.
806 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
807 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
809 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
810 MAPPING_INIT("t", ".text"),
811 MAPPING_INIT("r", ".rodata"),
812 MAPPING_INIT("d", ".data"),
813 MAPPING_INIT("b", ".bss"),
814 MAPPING_INIT("s", ".sdata"),
815 MAPPING_INIT("sb", ".sbss"),
816 MAPPING_INIT("s2", ".sdata2"),
817 MAPPING_INIT("sb2", ".sbss2"),
818 MAPPING_INIT("wi", ".debug_info"),
819 MAPPING_INIT("td", ".tdata"),
820 MAPPING_INIT("tb", ".tbss"),
821 MAPPING_INIT("lr", ".lrodata"),
822 MAPPING_INIT("l", ".ldata"),
823 MAPPING_INIT("lb", ".lbss"),
827 const int Layout::linkonce_mapping_count
=
828 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
830 // Return the name of the output section to use for a .gnu.linkonce
831 // section. This is based on the default ELF linker script of the old
832 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
833 // to ".text". Set *PLEN to the length of the name. *PLEN is
834 // initialized to the length of NAME.
837 Layout::linkonce_output_name(const char* name
, size_t *plen
)
839 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
843 const Linkonce_mapping
* plm
= linkonce_mapping
;
844 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
846 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
855 // Choose the output section name to use given an input section name.
856 // Set *PLEN to the length of the name. *PLEN is initialized to the
860 Layout::output_section_name(const char* name
, size_t* plen
)
862 if (Layout::is_linkonce(name
))
864 // .gnu.linkonce sections are laid out as though they were named
865 // for the sections are placed into.
866 return Layout::linkonce_output_name(name
, plen
);
869 // If the section name has no '.', or only an initial '.', we use
870 // the name unchanged (i.e., ".text" is unchanged).
872 // Otherwise, if the section name does not include ".rel", we drop
873 // the last '.' and everything that follows (i.e., ".text.XXX"
876 // Otherwise, if the section name has zero or one '.' after the
877 // ".rel", we use the name unchanged (i.e., ".rel.text" is
880 // Otherwise, we drop the last '.' and everything that follows
881 // (i.e., ".rel.text.XXX" becomes ".rel.text").
883 const char* s
= name
;
886 const char* sdot
= strchr(s
, '.');
890 const char* srel
= strstr(s
, ".rel");
897 sdot
= strchr(srel
+ 1, '.');
900 sdot
= strchr(sdot
+ 1, '.');
908 // Record the signature of a comdat section, and return whether to
909 // include it in the link. If GROUP is true, this is a regular
910 // section group. If GROUP is false, this is a group signature
911 // derived from the name of a linkonce section. We want linkonce
912 // signatures and group signatures to block each other, but we don't
913 // want a linkonce signature to block another linkonce signature.
916 Layout::add_comdat(const char* signature
, bool group
)
918 std::string
sig(signature
);
919 std::pair
<Signatures::iterator
, bool> ins(
920 this->signatures_
.insert(std::make_pair(sig
, group
)));
924 // This is the first time we've seen this signature.
928 if (ins
.first
->second
)
930 // We've already seen a real section group with this signature.
935 // This is a real section group, and we've already seen a
936 // linkonce section with tihs signature. Record that we've seen
937 // a section group, and don't include this section group.
938 ins
.first
->second
= true;
943 // We've already seen a linkonce section and this is a linkonce
944 // section. These don't block each other--this may be the same
945 // symbol name with different section types.
950 // Write out data not associated with a section or the symbol table.
953 Layout::write_data(Output_file
* of
) const
955 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
956 p
!= this->special_output_list_
.end();
961 // Write_data_task methods.
963 // We can always run this task.
965 Task::Is_runnable_type
966 Write_data_task::is_runnable(Workqueue
*)
971 // We need to unlock FINAL_BLOCKER when finished.
974 Write_data_task::locks(Workqueue
* workqueue
)
976 return new Task_locker_block(*this->final_blocker_
, workqueue
);
979 // Run the task--write out the data.
982 Write_data_task::run(Workqueue
*)
984 this->layout_
->write_data(this->of_
);
987 // Write_symbols_task methods.
989 // We can always run this task.
991 Task::Is_runnable_type
992 Write_symbols_task::is_runnable(Workqueue
*)
997 // We need to unlock FINAL_BLOCKER when finished.
1000 Write_symbols_task::locks(Workqueue
* workqueue
)
1002 return new Task_locker_block(*this->final_blocker_
, workqueue
);
1005 // Run the task--write out the symbols.
1008 Write_symbols_task::run(Workqueue
*)
1010 this->symtab_
->write_globals(this->target_
, this->sympool_
, this->of_
);
1013 // Close_task_runner methods.
1015 // Run the task--close the file.
1018 Close_task_runner::run(Workqueue
*)
1023 // Instantiate the templates we need. We could use the configure
1024 // script to restrict this to only the ones for implemented targets.
1028 Layout::layout
<32, false>(Relobj
* object
, unsigned int shndx
, const char* name
,
1029 const elfcpp::Shdr
<32, false>& shdr
, off_t
*);
1033 Layout::layout
<32, true>(Relobj
* object
, unsigned int shndx
, const char* name
,
1034 const elfcpp::Shdr
<32, true>& shdr
, off_t
*);
1038 Layout::layout
<64, false>(Relobj
* object
, unsigned int shndx
, const char* name
,
1039 const elfcpp::Shdr
<64, false>& shdr
, off_t
*);
1043 Layout::layout
<64, true>(Relobj
* object
, unsigned int shndx
, const char* name
,
1044 const elfcpp::Shdr
<64, true>& shdr
, off_t
*);
1047 } // End namespace gold.