1 /* MIPS-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 1999 Free Software Foundation, Inc.
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
9 This file is part of BFD, the Binary File Descriptor library.
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 /* This file handles MIPS ELF targets. SGI Irix 5 uses a slightly
26 different MIPS ELF from other targets. This matters when linking.
27 This file supports both, switching at runtime. */
37 /* Get the ECOFF swapping routines. */
39 #include "coff/symconst.h"
40 #include "coff/internal.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
44 #include "ecoffswap.h"
46 /* This structure is used to hold .got information when linking. It
47 is stored in the tdata field of the bfd_elf_section_data structure. */
51 /* The global symbol in the GOT with the lowest index in the dynamic
53 struct elf_link_hash_entry
*global_gotsym
;
54 /* The number of global .got entries. */
55 unsigned int global_gotno
;
56 /* The number of local .got entries. */
57 unsigned int local_gotno
;
58 /* The number of local .got entries we have used. */
59 unsigned int assigned_gotno
;
62 /* The MIPS ELF linker needs additional information for each symbol in
63 the global hash table. */
65 struct mips_elf_link_hash_entry
67 struct elf_link_hash_entry root
;
69 /* External symbol information. */
72 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
74 unsigned int possibly_dynamic_relocs
;
76 /* The index of the first dynamic relocation (in the .rel.dyn
77 section) against this symbol. */
78 unsigned int min_dyn_reloc_index
;
80 /* If there is a stub that 32 bit functions should use to call this
81 16 bit function, this points to the section containing the stub. */
84 /* Whether we need the fn_stub; this is set if this symbol appears
85 in any relocs other than a 16 bit call. */
88 /* If there is a stub that 16 bit functions should use to call this
89 32 bit function, this points to the section containing the stub. */
92 /* This is like the call_stub field, but it is used if the function
93 being called returns a floating point value. */
94 asection
*call_fp_stub
;
97 static bfd_reloc_status_type mips32_64bit_reloc
98 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
99 static reloc_howto_type
*bfd_elf32_bfd_reloc_type_lookup
100 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
101 static reloc_howto_type
*mips_rtype_to_howto
102 PARAMS ((unsigned int));
103 static void mips_info_to_howto_rel
104 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rel
*));
105 static void mips_info_to_howto_rela
106 PARAMS ((bfd
*, arelent
*, Elf32_Internal_Rela
*));
107 static void bfd_mips_elf32_swap_gptab_in
108 PARAMS ((bfd
*, const Elf32_External_gptab
*, Elf32_gptab
*));
109 static void bfd_mips_elf32_swap_gptab_out
110 PARAMS ((bfd
*, const Elf32_gptab
*, Elf32_External_gptab
*));
112 static void bfd_mips_elf_swap_msym_in
113 PARAMS ((bfd
*, const Elf32_External_Msym
*, Elf32_Internal_Msym
*));
115 static void bfd_mips_elf_swap_msym_out
116 PARAMS ((bfd
*, const Elf32_Internal_Msym
*, Elf32_External_Msym
*));
117 static boolean mips_elf_sym_is_global
PARAMS ((bfd
*, asymbol
*));
118 static boolean mips_elf_create_procedure_table
119 PARAMS ((PTR
, bfd
*, struct bfd_link_info
*, asection
*,
120 struct ecoff_debug_info
*));
121 static INLINE
int elf_mips_isa
PARAMS ((flagword
));
122 static INLINE
int elf_mips_mach
PARAMS ((flagword
));
123 static INLINE
char* elf_mips_abi_name
PARAMS ((bfd
*));
124 static boolean mips_elf_is_local_label_name
125 PARAMS ((bfd
*, const char *));
126 static struct bfd_hash_entry
*mips_elf_link_hash_newfunc
127 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
128 static int gptab_compare
PARAMS ((const void *, const void *));
129 static bfd_reloc_status_type mips16_jump_reloc
130 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
131 static bfd_reloc_status_type mips16_gprel_reloc
132 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
133 static boolean mips_elf_create_compact_rel_section
134 PARAMS ((bfd
*, struct bfd_link_info
*));
135 static boolean mips_elf_create_got_section
136 PARAMS ((bfd
*, struct bfd_link_info
*));
137 static bfd_reloc_status_type mips_elf_final_gp
138 PARAMS ((bfd
*, asymbol
*, boolean
, char **, bfd_vma
*));
139 static bfd_byte
*elf32_mips_get_relocated_section_contents
140 PARAMS ((bfd
*, struct bfd_link_info
*, struct bfd_link_order
*,
141 bfd_byte
*, boolean
, asymbol
**));
142 static asection
*mips_elf_create_msym_section
144 static void mips_elf_irix6_finish_dynamic_symbol
145 PARAMS ((bfd
*, const char *, Elf_Internal_Sym
*));
146 static bfd_vma mips_elf_sign_extend
PARAMS ((bfd_vma
, int));
147 static boolean mips_elf_overflow_p
PARAMS ((bfd_vma
, int));
148 static bfd_vma mips_elf_high
PARAMS ((bfd_vma
));
149 static bfd_vma mips_elf_higher
PARAMS ((bfd_vma
));
150 static bfd_vma mips_elf_highest
PARAMS ((bfd_vma
));
151 static bfd_vma mips_elf_global_got_index
152 PARAMS ((bfd
*, struct elf_link_hash_entry
*));
153 static bfd_vma mips_elf_local_got_index
154 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
));
155 static bfd_vma mips_elf_got_offset_from_index
156 PARAMS ((bfd
*, bfd
*, bfd_vma
));
157 static boolean mips_elf_record_global_got_symbol
158 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*,
159 struct mips_got_info
*));
160 static bfd_vma mips_elf_got_page
161 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
, bfd_vma
*));
162 static const Elf_Internal_Rela
*mips_elf_next_lo16_relocation
163 PARAMS ((const Elf_Internal_Rela
*, const Elf_Internal_Rela
*));
164 static bfd_reloc_status_type mips_elf_calculate_relocation
165 PARAMS ((bfd
*, bfd
*, asection
*, struct bfd_link_info
*,
166 const Elf_Internal_Rela
*, bfd_vma
, reloc_howto_type
*,
167 Elf_Internal_Sym
*, asection
**, bfd_vma
*, const char **,
169 static bfd_vma mips_elf_obtain_contents
170 PARAMS ((reloc_howto_type
*, const Elf_Internal_Rela
*, bfd
*, bfd_byte
*));
171 static boolean mips_elf_perform_relocation
172 PARAMS ((struct bfd_link_info
*, reloc_howto_type
*,
173 const Elf_Internal_Rela
*, bfd_vma
,
174 bfd
*, asection
*, bfd_byte
*, boolean
));
175 static boolean mips_elf_assign_gp
PARAMS ((bfd
*, bfd_vma
*));
176 static boolean mips_elf_sort_hash_table_f
177 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
178 static boolean mips_elf_sort_hash_table
179 PARAMS ((struct bfd_link_info
*, unsigned long));
180 static asection
* mips_elf_got_section
PARAMS ((bfd
*));
181 static struct mips_got_info
*mips_elf_got_info
182 PARAMS ((bfd
*, asection
**));
183 static boolean mips_elf_local_relocation_p
184 PARAMS ((bfd
*, const Elf_Internal_Rela
*, asection
**));
185 static bfd_vma mips_elf_create_local_got_entry
186 PARAMS ((bfd
*, struct mips_got_info
*, asection
*, bfd_vma
));
187 static bfd_vma mips_elf_got16_entry
188 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_vma
));
189 static boolean mips_elf_create_dynamic_relocation
190 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
191 struct mips_elf_link_hash_entry
*, asection
*,
192 bfd_vma
, bfd_vma
*, asection
*));
193 static void mips_elf_allocate_dynamic_relocations
194 PARAMS ((bfd
*, unsigned int));
195 static boolean mips_elf_stub_section_p
196 PARAMS ((bfd
*, asection
*));
198 /* The level of IRIX compatibility we're striving for. */
206 /* Nonzero if ABFD is using the N32 ABI. */
208 #define ABI_N32_P(abfd) \
209 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
211 /* Nonzero if ABFD is using the 64-bit ABI. FIXME: This is never
213 #define ABI_64_P(abfd) \
214 ((elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) != 0)
216 /* What version of Irix we are trying to be compatible with. FIXME:
217 At the moment, we never generate "normal" MIPS ELF ABI executables;
218 we always use some version of Irix. */
220 #define IRIX_COMPAT(abfd) \
221 ((ABI_N32_P (abfd) || ABI_64_P (abfd)) ? ict_irix6 : ict_irix5)
223 /* Whether we are trying to be compatible with IRIX at all. */
225 #define SGI_COMPAT(abfd) \
226 (IRIX_COMPAT (abfd) != ict_none)
228 /* The name of the msym section. */
229 #define MIPS_ELF_MSYM_SECTION_NAME(abfd) ".msym"
231 /* The name of the srdata section. */
232 #define MIPS_ELF_SRDATA_SECTION_NAME(abfd) ".srdata"
234 /* The name of the options section. */
235 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
236 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.options" : ".options")
238 /* The name of the stub section. */
239 #define MIPS_ELF_STUB_SECTION_NAME(abfd) \
240 (IRIX_COMPAT (abfd) == ict_irix6 ? ".MIPS.stubs" : ".stub")
242 /* The name of the dynamic relocation section. */
243 #define MIPS_ELF_REL_DYN_SECTION_NAME(abfd) ".rel.dyn"
245 /* The size of an external REL relocation. */
246 #define MIPS_ELF_REL_SIZE(abfd) \
247 (get_elf_backend_data (abfd)->s->sizeof_rel)
249 /* The size of an external dynamic table entry. */
250 #define MIPS_ELF_DYN_SIZE(abfd) \
251 (get_elf_backend_data (abfd)->s->sizeof_dyn)
253 /* The size of a GOT entry. */
254 #define MIPS_ELF_GOT_SIZE(abfd) \
255 (get_elf_backend_data (abfd)->s->arch_size / 8)
257 /* The size of a symbol-table entry. */
258 #define MIPS_ELF_SYM_SIZE(abfd) \
259 (get_elf_backend_data (abfd)->s->sizeof_sym)
261 /* The default alignment for sections, as a power of two. */
262 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
263 (get_elf_backend_data (abfd)->s->file_align == 8 ? 3 : 2)
265 /* Get word-sized data. */
266 #define MIPS_ELF_GET_WORD(abfd, ptr) \
267 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
269 /* Put out word-sized data. */
270 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
272 ? bfd_put_64 (abfd, val, ptr) \
273 : bfd_put_32 (abfd, val, ptr))
275 /* Add a dynamic symbol table-entry. */
277 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
278 (ABI_64_P (elf_hash_table (info)->dynobj) \
279 ? bfd_elf64_add_dynamic_entry (info, tag, val) \
280 : bfd_elf32_add_dynamic_entry (info, tag, val))
282 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
283 (ABI_64_P (elf_hash_table (info)->dynobj) \
284 ? (abort (), false) \
285 : bfd_elf32_add_dynamic_entry (info, tag, val))
288 /* The number of local .got entries we reserve. */
289 #define MIPS_RESERVED_GOTNO (2)
291 /* Instructions which appear in a stub. For some reason the stub is
292 slightly different on an SGI system. */
293 #define ELF_MIPS_GP_OFFSET(abfd) (SGI_COMPAT (abfd) ? 0x7ff0 : 0x8000)
294 #define STUB_LW(abfd) \
297 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
298 : 0x8f998010) /* lw t9,0x8010(gp) */ \
299 : 0x8f998000) /* lw t9,0x8000(gp) */
300 #define STUB_MOVE 0x03e07825 /* move t7,ra */
301 #define STUB_JALR 0x0320f809 /* jal t9 */
302 #define STUB_LI16 0x34180000 /* ori t8,zero,0 */
303 #define MIPS_FUNCTION_STUB_SIZE (16)
306 /* We no longer try to identify particular sections for the .dynsym
307 section. When we do, we wind up crashing if there are other random
308 sections with relocations. */
310 /* Names of sections which appear in the .dynsym section in an Irix 5
313 static const char * const mips_elf_dynsym_sec_names
[] =
326 #define SIZEOF_MIPS_DYNSYM_SECNAMES \
327 (sizeof mips_elf_dynsym_sec_names / sizeof mips_elf_dynsym_sec_names[0])
329 /* The number of entries in mips_elf_dynsym_sec_names which go in the
332 #define MIPS_TEXT_DYNSYM_SECNO (3)
336 /* The names of the runtime procedure table symbols used on Irix 5. */
338 static const char * const mips_elf_dynsym_rtproc_names
[] =
341 "_procedure_string_table",
342 "_procedure_table_size",
346 /* These structures are used to generate the .compact_rel section on
351 unsigned long id1
; /* Always one? */
352 unsigned long num
; /* Number of compact relocation entries. */
353 unsigned long id2
; /* Always two? */
354 unsigned long offset
; /* The file offset of the first relocation. */
355 unsigned long reserved0
; /* Zero? */
356 unsigned long reserved1
; /* Zero? */
365 bfd_byte reserved0
[4];
366 bfd_byte reserved1
[4];
367 } Elf32_External_compact_rel
;
371 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
372 unsigned int rtype
: 4; /* Relocation types. See below. */
373 unsigned int dist2to
: 8;
374 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
375 unsigned long konst
; /* KONST field. See below. */
376 unsigned long vaddr
; /* VADDR to be relocated. */
381 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
382 unsigned int rtype
: 4; /* Relocation types. See below. */
383 unsigned int dist2to
: 8;
384 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
385 unsigned long konst
; /* KONST field. See below. */
393 } Elf32_External_crinfo
;
399 } Elf32_External_crinfo2
;
401 /* These are the constants used to swap the bitfields in a crinfo. */
403 #define CRINFO_CTYPE (0x1)
404 #define CRINFO_CTYPE_SH (31)
405 #define CRINFO_RTYPE (0xf)
406 #define CRINFO_RTYPE_SH (27)
407 #define CRINFO_DIST2TO (0xff)
408 #define CRINFO_DIST2TO_SH (19)
409 #define CRINFO_RELVADDR (0x7ffff)
410 #define CRINFO_RELVADDR_SH (0)
412 /* A compact relocation info has long (3 words) or short (2 words)
413 formats. A short format doesn't have VADDR field and relvaddr
414 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
415 #define CRF_MIPS_LONG 1
416 #define CRF_MIPS_SHORT 0
418 /* There are 4 types of compact relocation at least. The value KONST
419 has different meaning for each type:
422 CT_MIPS_REL32 Address in data
423 CT_MIPS_WORD Address in word (XXX)
424 CT_MIPS_GPHI_LO GP - vaddr
425 CT_MIPS_JMPAD Address to jump
428 #define CRT_MIPS_REL32 0xa
429 #define CRT_MIPS_WORD 0xb
430 #define CRT_MIPS_GPHI_LO 0xc
431 #define CRT_MIPS_JMPAD 0xd
433 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
434 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
435 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
436 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
438 static void bfd_elf32_swap_compact_rel_out
439 PARAMS ((bfd
*, const Elf32_compact_rel
*, Elf32_External_compact_rel
*));
440 static void bfd_elf32_swap_crinfo_out
441 PARAMS ((bfd
*, const Elf32_crinfo
*, Elf32_External_crinfo
*));
443 #define USE_REL 1 /* MIPS uses REL relocations instead of RELA */
445 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
446 from smaller values. Start with zero, widen, *then* decrement. */
447 #define MINUS_ONE (((bfd_vma)0) - 1)
449 static reloc_howto_type elf_mips_howto_table
[] =
452 HOWTO (R_MIPS_NONE
, /* type */
454 0, /* size (0 = byte, 1 = short, 2 = long) */
456 false, /* pc_relative */
458 complain_overflow_dont
, /* complain_on_overflow */
459 bfd_elf_generic_reloc
, /* special_function */
460 "R_MIPS_NONE", /* name */
461 false, /* partial_inplace */
464 false), /* pcrel_offset */
466 /* 16 bit relocation. */
467 HOWTO (R_MIPS_16
, /* type */
469 1, /* size (0 = byte, 1 = short, 2 = long) */
471 false, /* pc_relative */
473 complain_overflow_bitfield
, /* complain_on_overflow */
474 bfd_elf_generic_reloc
, /* special_function */
475 "R_MIPS_16", /* name */
476 true, /* partial_inplace */
477 0xffff, /* src_mask */
478 0xffff, /* dst_mask */
479 false), /* pcrel_offset */
481 /* 32 bit relocation. */
482 HOWTO (R_MIPS_32
, /* type */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
486 false, /* pc_relative */
488 complain_overflow_bitfield
, /* complain_on_overflow */
489 bfd_elf_generic_reloc
, /* special_function */
490 "R_MIPS_32", /* name */
491 true, /* partial_inplace */
492 0xffffffff, /* src_mask */
493 0xffffffff, /* dst_mask */
494 false), /* pcrel_offset */
496 /* 32 bit symbol relative relocation. */
497 HOWTO (R_MIPS_REL32
, /* type */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
501 false, /* pc_relative */
503 complain_overflow_bitfield
, /* complain_on_overflow */
504 bfd_elf_generic_reloc
, /* special_function */
505 "R_MIPS_REL32", /* name */
506 true, /* partial_inplace */
507 0xffffffff, /* src_mask */
508 0xffffffff, /* dst_mask */
509 false), /* pcrel_offset */
511 /* 26 bit branch address. */
512 HOWTO (R_MIPS_26
, /* type */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
516 false, /* pc_relative */
518 complain_overflow_dont
, /* complain_on_overflow */
519 /* This needs complex overflow
520 detection, because the upper four
521 bits must match the PC. */
522 bfd_elf_generic_reloc
, /* special_function */
523 "R_MIPS_26", /* name */
524 true, /* partial_inplace */
525 0x3ffffff, /* src_mask */
526 0x3ffffff, /* dst_mask */
527 false), /* pcrel_offset */
529 /* High 16 bits of symbol value. */
530 HOWTO (R_MIPS_HI16
, /* type */
532 2, /* size (0 = byte, 1 = short, 2 = long) */
534 false, /* pc_relative */
536 complain_overflow_dont
, /* complain_on_overflow */
537 _bfd_mips_elf_hi16_reloc
, /* special_function */
538 "R_MIPS_HI16", /* name */
539 true, /* partial_inplace */
540 0xffff, /* src_mask */
541 0xffff, /* dst_mask */
542 false), /* pcrel_offset */
544 /* Low 16 bits of symbol value. */
545 HOWTO (R_MIPS_LO16
, /* type */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
549 false, /* pc_relative */
551 complain_overflow_dont
, /* complain_on_overflow */
552 _bfd_mips_elf_lo16_reloc
, /* special_function */
553 "R_MIPS_LO16", /* name */
554 true, /* partial_inplace */
555 0xffff, /* src_mask */
556 0xffff, /* dst_mask */
557 false), /* pcrel_offset */
559 /* GP relative reference. */
560 HOWTO (R_MIPS_GPREL16
, /* type */
562 2, /* size (0 = byte, 1 = short, 2 = long) */
564 false, /* pc_relative */
566 complain_overflow_signed
, /* complain_on_overflow */
567 _bfd_mips_elf_gprel16_reloc
, /* special_function */
568 "R_MIPS_GPREL16", /* name */
569 true, /* partial_inplace */
570 0xffff, /* src_mask */
571 0xffff, /* dst_mask */
572 false), /* pcrel_offset */
574 /* Reference to literal section. */
575 HOWTO (R_MIPS_LITERAL
, /* type */
577 2, /* size (0 = byte, 1 = short, 2 = long) */
579 false, /* pc_relative */
581 complain_overflow_signed
, /* complain_on_overflow */
582 _bfd_mips_elf_gprel16_reloc
, /* special_function */
583 "R_MIPS_LITERAL", /* name */
584 true, /* partial_inplace */
585 0xffff, /* src_mask */
586 0xffff, /* dst_mask */
587 false), /* pcrel_offset */
589 /* Reference to global offset table. */
590 HOWTO (R_MIPS_GOT16
, /* type */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
594 false, /* pc_relative */
596 complain_overflow_signed
, /* complain_on_overflow */
597 _bfd_mips_elf_got16_reloc
, /* special_function */
598 "R_MIPS_GOT16", /* name */
599 false, /* partial_inplace */
600 0xffff, /* src_mask */
601 0xffff, /* dst_mask */
602 false), /* pcrel_offset */
604 /* 16 bit PC relative reference. */
605 HOWTO (R_MIPS_PC16
, /* type */
607 2, /* size (0 = byte, 1 = short, 2 = long) */
609 true, /* pc_relative */
611 complain_overflow_signed
, /* complain_on_overflow */
612 bfd_elf_generic_reloc
, /* special_function */
613 "R_MIPS_PC16", /* name */
614 true, /* partial_inplace */
615 0xffff, /* src_mask */
616 0xffff, /* dst_mask */
617 false), /* pcrel_offset */
619 /* 16 bit call through global offset table. */
620 HOWTO (R_MIPS_CALL16
, /* type */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
624 false, /* pc_relative */
626 complain_overflow_signed
, /* complain_on_overflow */
627 bfd_elf_generic_reloc
, /* special_function */
628 "R_MIPS_CALL16", /* name */
629 false, /* partial_inplace */
630 0xffff, /* src_mask */
631 0xffff, /* dst_mask */
632 false), /* pcrel_offset */
634 /* 32 bit GP relative reference. */
635 HOWTO (R_MIPS_GPREL32
, /* type */
637 2, /* size (0 = byte, 1 = short, 2 = long) */
639 false, /* pc_relative */
641 complain_overflow_bitfield
, /* complain_on_overflow */
642 _bfd_mips_elf_gprel32_reloc
, /* special_function */
643 "R_MIPS_GPREL32", /* name */
644 true, /* partial_inplace */
645 0xffffffff, /* src_mask */
646 0xffffffff, /* dst_mask */
647 false), /* pcrel_offset */
649 /* The remaining relocs are defined on Irix 5, although they are
650 not defined by the ABI. */
655 /* A 5 bit shift field. */
656 HOWTO (R_MIPS_SHIFT5
, /* type */
658 2, /* size (0 = byte, 1 = short, 2 = long) */
660 false, /* pc_relative */
662 complain_overflow_bitfield
, /* complain_on_overflow */
663 bfd_elf_generic_reloc
, /* special_function */
664 "R_MIPS_SHIFT5", /* name */
665 true, /* partial_inplace */
666 0x000007c0, /* src_mask */
667 0x000007c0, /* dst_mask */
668 false), /* pcrel_offset */
670 /* A 6 bit shift field. */
671 /* FIXME: This is not handled correctly; a special function is
672 needed to put the most significant bit in the right place. */
673 HOWTO (R_MIPS_SHIFT6
, /* type */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
677 false, /* pc_relative */
679 complain_overflow_bitfield
, /* complain_on_overflow */
680 bfd_elf_generic_reloc
, /* special_function */
681 "R_MIPS_SHIFT6", /* name */
682 true, /* partial_inplace */
683 0x000007c4, /* src_mask */
684 0x000007c4, /* dst_mask */
685 false), /* pcrel_offset */
687 /* A 64 bit relocation. */
688 HOWTO (R_MIPS_64
, /* type */
690 4, /* size (0 = byte, 1 = short, 2 = long) */
692 false, /* pc_relative */
694 complain_overflow_bitfield
, /* complain_on_overflow */
695 mips32_64bit_reloc
, /* special_function */
696 "R_MIPS_64", /* name */
697 true, /* partial_inplace */
698 MINUS_ONE
, /* src_mask */
699 MINUS_ONE
, /* dst_mask */
700 false), /* pcrel_offset */
702 /* Displacement in the global offset table. */
703 HOWTO (R_MIPS_GOT_DISP
, /* type */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
707 false, /* pc_relative */
709 complain_overflow_bitfield
, /* complain_on_overflow */
710 bfd_elf_generic_reloc
, /* special_function */
711 "R_MIPS_GOT_DISP", /* name */
712 true, /* partial_inplace */
713 0x0000ffff, /* src_mask */
714 0x0000ffff, /* dst_mask */
715 false), /* pcrel_offset */
717 /* Displacement to page pointer in the global offset table. */
718 HOWTO (R_MIPS_GOT_PAGE
, /* type */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
722 false, /* pc_relative */
724 complain_overflow_bitfield
, /* complain_on_overflow */
725 bfd_elf_generic_reloc
, /* special_function */
726 "R_MIPS_GOT_PAGE", /* name */
727 true, /* partial_inplace */
728 0x0000ffff, /* src_mask */
729 0x0000ffff, /* dst_mask */
730 false), /* pcrel_offset */
732 /* Offset from page pointer in the global offset table. */
733 HOWTO (R_MIPS_GOT_OFST
, /* type */
735 2, /* size (0 = byte, 1 = short, 2 = long) */
737 false, /* pc_relative */
739 complain_overflow_bitfield
, /* complain_on_overflow */
740 bfd_elf_generic_reloc
, /* special_function */
741 "R_MIPS_GOT_OFST", /* name */
742 true, /* partial_inplace */
743 0x0000ffff, /* src_mask */
744 0x0000ffff, /* dst_mask */
745 false), /* pcrel_offset */
747 /* High 16 bits of displacement in global offset table. */
748 HOWTO (R_MIPS_GOT_HI16
, /* type */
750 2, /* size (0 = byte, 1 = short, 2 = long) */
752 false, /* pc_relative */
754 complain_overflow_dont
, /* complain_on_overflow */
755 bfd_elf_generic_reloc
, /* special_function */
756 "R_MIPS_GOT_HI16", /* name */
757 true, /* partial_inplace */
758 0x0000ffff, /* src_mask */
759 0x0000ffff, /* dst_mask */
760 false), /* pcrel_offset */
762 /* Low 16 bits of displacement in global offset table. */
763 HOWTO (R_MIPS_GOT_LO16
, /* type */
765 2, /* size (0 = byte, 1 = short, 2 = long) */
767 false, /* pc_relative */
769 complain_overflow_dont
, /* complain_on_overflow */
770 bfd_elf_generic_reloc
, /* special_function */
771 "R_MIPS_GOT_LO16", /* name */
772 true, /* partial_inplace */
773 0x0000ffff, /* src_mask */
774 0x0000ffff, /* dst_mask */
775 false), /* pcrel_offset */
777 /* 64 bit subtraction. Used in the N32 ABI. */
778 HOWTO (R_MIPS_SUB
, /* type */
780 4, /* size (0 = byte, 1 = short, 2 = long) */
782 false, /* pc_relative */
784 complain_overflow_bitfield
, /* complain_on_overflow */
785 bfd_elf_generic_reloc
, /* special_function */
786 "R_MIPS_SUB", /* name */
787 true, /* partial_inplace */
788 MINUS_ONE
, /* src_mask */
789 MINUS_ONE
, /* dst_mask */
790 false), /* pcrel_offset */
792 /* Used to cause the linker to insert and delete instructions? */
793 EMPTY_HOWTO (R_MIPS_INSERT_A
),
794 EMPTY_HOWTO (R_MIPS_INSERT_B
),
795 EMPTY_HOWTO (R_MIPS_DELETE
),
797 /* Get the higher value of a 64 bit addend. */
798 HOWTO (R_MIPS_HIGHER
, /* type */
800 2, /* size (0 = byte, 1 = short, 2 = long) */
802 false, /* pc_relative */
804 complain_overflow_dont
, /* complain_on_overflow */
805 bfd_elf_generic_reloc
, /* special_function */
806 "R_MIPS_HIGHER", /* name */
807 true, /* partial_inplace */
809 0xffff, /* dst_mask */
810 false), /* pcrel_offset */
812 /* Get the highest value of a 64 bit addend. */
813 HOWTO (R_MIPS_HIGHEST
, /* type */
815 2, /* size (0 = byte, 1 = short, 2 = long) */
817 false, /* pc_relative */
819 complain_overflow_dont
, /* complain_on_overflow */
820 bfd_elf_generic_reloc
, /* special_function */
821 "R_MIPS_HIGHEST", /* name */
822 true, /* partial_inplace */
824 0xffff, /* dst_mask */
825 false), /* pcrel_offset */
827 /* High 16 bits of displacement in global offset table. */
828 HOWTO (R_MIPS_CALL_HI16
, /* type */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
832 false, /* pc_relative */
834 complain_overflow_dont
, /* complain_on_overflow */
835 bfd_elf_generic_reloc
, /* special_function */
836 "R_MIPS_CALL_HI16", /* name */
837 true, /* partial_inplace */
838 0x0000ffff, /* src_mask */
839 0x0000ffff, /* dst_mask */
840 false), /* pcrel_offset */
842 /* Low 16 bits of displacement in global offset table. */
843 HOWTO (R_MIPS_CALL_LO16
, /* type */
845 2, /* size (0 = byte, 1 = short, 2 = long) */
847 false, /* pc_relative */
849 complain_overflow_dont
, /* complain_on_overflow */
850 bfd_elf_generic_reloc
, /* special_function */
851 "R_MIPS_CALL_LO16", /* name */
852 true, /* partial_inplace */
853 0x0000ffff, /* src_mask */
854 0x0000ffff, /* dst_mask */
855 false), /* pcrel_offset */
857 /* Section displacement. */
858 HOWTO (R_MIPS_SCN_DISP
, /* type */
860 2, /* size (0 = byte, 1 = short, 2 = long) */
862 false, /* pc_relative */
864 complain_overflow_dont
, /* complain_on_overflow */
865 bfd_elf_generic_reloc
, /* special_function */
866 "R_MIPS_SCN_DISP", /* name */
867 false, /* partial_inplace */
868 0xffffffff, /* src_mask */
869 0xffffffff, /* dst_mask */
870 false), /* pcrel_offset */
872 EMPTY_HOWTO (R_MIPS_REL16
),
873 EMPTY_HOWTO (R_MIPS_ADD_IMMEDIATE
),
874 EMPTY_HOWTO (R_MIPS_PJUMP
),
875 EMPTY_HOWTO (R_MIPS_RELGOT
),
877 /* Protected jump conversion. This is an optimization hint. No
878 relocation is required for correctness. */
879 HOWTO (R_MIPS_JALR
, /* type */
881 0, /* size (0 = byte, 1 = short, 2 = long) */
883 false, /* pc_relative */
885 complain_overflow_dont
, /* complain_on_overflow */
886 bfd_elf_generic_reloc
, /* special_function */
887 "R_MIPS_JALR", /* name */
888 false, /* partial_inplace */
889 0x00000000, /* src_mask */
890 0x00000000, /* dst_mask */
891 false), /* pcrel_offset */
894 /* The reloc used for BFD_RELOC_CTOR when doing a 64 bit link. This
895 is a hack to make the linker think that we need 64 bit values. */
896 static reloc_howto_type elf_mips_ctor64_howto
=
897 HOWTO (R_MIPS_64
, /* type */
899 4, /* size (0 = byte, 1 = short, 2 = long) */
901 false, /* pc_relative */
903 complain_overflow_signed
, /* complain_on_overflow */
904 mips32_64bit_reloc
, /* special_function */
905 "R_MIPS_64", /* name */
906 true, /* partial_inplace */
907 0xffffffff, /* src_mask */
908 0xffffffff, /* dst_mask */
909 false); /* pcrel_offset */
911 /* The reloc used for the mips16 jump instruction. */
912 static reloc_howto_type elf_mips16_jump_howto
=
913 HOWTO (R_MIPS16_26
, /* type */
915 2, /* size (0 = byte, 1 = short, 2 = long) */
917 false, /* pc_relative */
919 complain_overflow_dont
, /* complain_on_overflow */
920 /* This needs complex overflow
921 detection, because the upper four
922 bits must match the PC. */
923 mips16_jump_reloc
, /* special_function */
924 "R_MIPS16_26", /* name */
925 true, /* partial_inplace */
926 0x3ffffff, /* src_mask */
927 0x3ffffff, /* dst_mask */
928 false); /* pcrel_offset */
930 /* The reloc used for the mips16 gprel instruction. */
931 static reloc_howto_type elf_mips16_gprel_howto
=
932 HOWTO (R_MIPS16_GPREL
, /* type */
934 2, /* size (0 = byte, 1 = short, 2 = long) */
936 false, /* pc_relative */
938 complain_overflow_signed
, /* complain_on_overflow */
939 mips16_gprel_reloc
, /* special_function */
940 "R_MIPS16_GPREL", /* name */
941 true, /* partial_inplace */
942 0x07ff001f, /* src_mask */
943 0x07ff001f, /* dst_mask */
944 false); /* pcrel_offset */
947 /* GNU extension to record C++ vtable hierarchy */
948 static reloc_howto_type elf_mips_gnu_vtinherit_howto
=
949 HOWTO (R_MIPS_GNU_VTINHERIT
, /* type */
951 2, /* size (0 = byte, 1 = short, 2 = long) */
953 false, /* pc_relative */
955 complain_overflow_dont
, /* complain_on_overflow */
956 NULL
, /* special_function */
957 "R_MIPS_GNU_VTINHERIT", /* name */
958 false, /* partial_inplace */
961 false); /* pcrel_offset */
963 /* GNU extension to record C++ vtable member usage */
964 static reloc_howto_type elf_mips_gnu_vtentry_howto
=
965 HOWTO (R_MIPS_GNU_VTENTRY
, /* type */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
969 false, /* pc_relative */
971 complain_overflow_dont
, /* complain_on_overflow */
972 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
973 "R_MIPS_GNU_VTENTRY", /* name */
974 false, /* partial_inplace */
977 false); /* pcrel_offset */
979 /* Do a R_MIPS_HI16 relocation. This has to be done in combination
980 with a R_MIPS_LO16 reloc, because there is a carry from the LO16 to
981 the HI16. Here we just save the information we need; we do the
982 actual relocation when we see the LO16. MIPS ELF requires that the
983 LO16 immediately follow the HI16. As a GNU extension, we permit an
984 arbitrary number of HI16 relocs to be associated with a single LO16
985 reloc. This extension permits gcc to output the HI and LO relocs
990 struct mips_hi16
*next
;
995 /* FIXME: This should not be a static variable. */
997 static struct mips_hi16
*mips_hi16_list
;
999 bfd_reloc_status_type
1000 _bfd_mips_elf_hi16_reloc (abfd
,
1007 bfd
*abfd ATTRIBUTE_UNUSED
;
1008 arelent
*reloc_entry
;
1011 asection
*input_section
;
1013 char **error_message
;
1015 bfd_reloc_status_type ret
;
1017 struct mips_hi16
*n
;
1019 /* If we're relocating, and this an external symbol, we don't want
1020 to change anything. */
1021 if (output_bfd
!= (bfd
*) NULL
1022 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1023 && reloc_entry
->addend
== 0)
1025 reloc_entry
->address
+= input_section
->output_offset
;
1026 return bfd_reloc_ok
;
1031 if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1033 boolean relocateable
;
1036 if (ret
== bfd_reloc_undefined
)
1039 if (output_bfd
!= NULL
)
1040 relocateable
= true;
1043 relocateable
= false;
1044 output_bfd
= symbol
->section
->output_section
->owner
;
1047 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
,
1048 error_message
, &gp
);
1049 if (ret
!= bfd_reloc_ok
)
1052 relocation
= gp
- reloc_entry
->address
;
1056 if (bfd_is_und_section (symbol
->section
)
1057 && output_bfd
== (bfd
*) NULL
)
1058 ret
= bfd_reloc_undefined
;
1060 if (bfd_is_com_section (symbol
->section
))
1063 relocation
= symbol
->value
;
1066 relocation
+= symbol
->section
->output_section
->vma
;
1067 relocation
+= symbol
->section
->output_offset
;
1068 relocation
+= reloc_entry
->addend
;
1070 if (reloc_entry
->address
> input_section
->_cooked_size
)
1071 return bfd_reloc_outofrange
;
1073 /* Save the information, and let LO16 do the actual relocation. */
1074 n
= (struct mips_hi16
*) bfd_malloc (sizeof *n
);
1076 return bfd_reloc_outofrange
;
1077 n
->addr
= (bfd_byte
*) data
+ reloc_entry
->address
;
1078 n
->addend
= relocation
;
1079 n
->next
= mips_hi16_list
;
1082 if (output_bfd
!= (bfd
*) NULL
)
1083 reloc_entry
->address
+= input_section
->output_offset
;
1088 /* Do a R_MIPS_LO16 relocation. This is a straightforward 16 bit
1089 inplace relocation; this function exists in order to do the
1090 R_MIPS_HI16 relocation described above. */
1092 bfd_reloc_status_type
1093 _bfd_mips_elf_lo16_reloc (abfd
,
1101 arelent
*reloc_entry
;
1104 asection
*input_section
;
1106 char **error_message
;
1108 arelent gp_disp_relent
;
1110 if (mips_hi16_list
!= NULL
)
1112 struct mips_hi16
*l
;
1119 unsigned long vallo
;
1120 struct mips_hi16
*next
;
1122 /* Do the HI16 relocation. Note that we actually don't need
1123 to know anything about the LO16 itself, except where to
1124 find the low 16 bits of the addend needed by the LO16. */
1125 insn
= bfd_get_32 (abfd
, l
->addr
);
1126 vallo
= (bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
)
1128 val
= ((insn
& 0xffff) << 16) + vallo
;
1131 /* The low order 16 bits are always treated as a signed
1132 value. Therefore, a negative value in the low order bits
1133 requires an adjustment in the high order bits. We need
1134 to make this adjustment in two ways: once for the bits we
1135 took from the data, and once for the bits we are putting
1136 back in to the data. */
1137 if ((vallo
& 0x8000) != 0)
1139 if ((val
& 0x8000) != 0)
1142 insn
= (insn
&~ 0xffff) | ((val
>> 16) & 0xffff);
1143 bfd_put_32 (abfd
, insn
, l
->addr
);
1145 if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1147 gp_disp_relent
= *reloc_entry
;
1148 reloc_entry
= &gp_disp_relent
;
1149 reloc_entry
->addend
= l
->addend
;
1157 mips_hi16_list
= NULL
;
1159 else if (strcmp (bfd_asymbol_name (symbol
), "_gp_disp") == 0)
1161 bfd_reloc_status_type ret
;
1162 bfd_vma gp
, relocation
;
1164 /* FIXME: Does this case ever occur? */
1166 ret
= mips_elf_final_gp (output_bfd
, symbol
, true, error_message
, &gp
);
1167 if (ret
!= bfd_reloc_ok
)
1170 relocation
= gp
- reloc_entry
->address
;
1171 relocation
+= symbol
->section
->output_section
->vma
;
1172 relocation
+= symbol
->section
->output_offset
;
1173 relocation
+= reloc_entry
->addend
;
1175 if (reloc_entry
->address
> input_section
->_cooked_size
)
1176 return bfd_reloc_outofrange
;
1178 gp_disp_relent
= *reloc_entry
;
1179 reloc_entry
= &gp_disp_relent
;
1180 reloc_entry
->addend
= relocation
- 4;
1183 /* Now do the LO16 reloc in the usual way. */
1184 return bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1185 input_section
, output_bfd
, error_message
);
1188 /* Do a R_MIPS_GOT16 reloc. This is a reloc against the global offset
1189 table used for PIC code. If the symbol is an external symbol, the
1190 instruction is modified to contain the offset of the appropriate
1191 entry in the global offset table. If the symbol is a section
1192 symbol, the next reloc is a R_MIPS_LO16 reloc. The two 16 bit
1193 addends are combined to form the real addend against the section
1194 symbol; the GOT16 is modified to contain the offset of an entry in
1195 the global offset table, and the LO16 is modified to offset it
1196 appropriately. Thus an offset larger than 16 bits requires a
1197 modified value in the global offset table.
1199 This implementation suffices for the assembler, but the linker does
1200 not yet know how to create global offset tables. */
1202 bfd_reloc_status_type
1203 _bfd_mips_elf_got16_reloc (abfd
,
1211 arelent
*reloc_entry
;
1214 asection
*input_section
;
1216 char **error_message
;
1218 /* If we're relocating, and this an external symbol, we don't want
1219 to change anything. */
1220 if (output_bfd
!= (bfd
*) NULL
1221 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1222 && reloc_entry
->addend
== 0)
1224 reloc_entry
->address
+= input_section
->output_offset
;
1225 return bfd_reloc_ok
;
1228 /* If we're relocating, and this is a local symbol, we can handle it
1230 if (output_bfd
!= (bfd
*) NULL
1231 && (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1232 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
1233 input_section
, output_bfd
, error_message
);
1238 /* Set the GP value for OUTPUT_BFD. Returns false if this is a
1239 dangerous relocation. */
1242 mips_elf_assign_gp (output_bfd
, pgp
)
1250 /* If we've already figured out what GP will be, just return it. */
1251 *pgp
= _bfd_get_gp_value (output_bfd
);
1255 count
= bfd_get_symcount (output_bfd
);
1256 sym
= bfd_get_outsymbols (output_bfd
);
1258 /* The linker script will have created a symbol named `_gp' with the
1259 appropriate value. */
1260 if (sym
== (asymbol
**) NULL
)
1264 for (i
= 0; i
< count
; i
++, sym
++)
1266 register CONST
char *name
;
1268 name
= bfd_asymbol_name (*sym
);
1269 if (*name
== '_' && strcmp (name
, "_gp") == 0)
1271 *pgp
= bfd_asymbol_value (*sym
);
1272 _bfd_set_gp_value (output_bfd
, *pgp
);
1280 /* Only get the error once. */
1282 _bfd_set_gp_value (output_bfd
, *pgp
);
1289 /* We have to figure out the gp value, so that we can adjust the
1290 symbol value correctly. We look up the symbol _gp in the output
1291 BFD. If we can't find it, we're stuck. We cache it in the ELF
1292 target data. We don't need to adjust the symbol value for an
1293 external symbol if we are producing relocateable output. */
1295 static bfd_reloc_status_type
1296 mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
, pgp
)
1299 boolean relocateable
;
1300 char **error_message
;
1303 if (bfd_is_und_section (symbol
->section
)
1307 return bfd_reloc_undefined
;
1310 *pgp
= _bfd_get_gp_value (output_bfd
);
1313 || (symbol
->flags
& BSF_SECTION_SYM
) != 0))
1317 /* Make up a value. */
1318 *pgp
= symbol
->section
->output_section
->vma
+ 0x4000;
1319 _bfd_set_gp_value (output_bfd
, *pgp
);
1321 else if (!mips_elf_assign_gp (output_bfd
, pgp
))
1324 (char *) _("GP relative relocation when _gp not defined");
1325 return bfd_reloc_dangerous
;
1329 return bfd_reloc_ok
;
1332 /* Do a R_MIPS_GPREL16 relocation. This is a 16 bit value which must
1333 become the offset from the gp register. This function also handles
1334 R_MIPS_LITERAL relocations, although those can be handled more
1335 cleverly because the entries in the .lit8 and .lit4 sections can be
1338 static bfd_reloc_status_type gprel16_with_gp
PARAMS ((bfd
*, asymbol
*,
1339 arelent
*, asection
*,
1340 boolean
, PTR
, bfd_vma
));
1342 bfd_reloc_status_type
1343 _bfd_mips_elf_gprel16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1344 output_bfd
, error_message
)
1346 arelent
*reloc_entry
;
1349 asection
*input_section
;
1351 char **error_message
;
1353 boolean relocateable
;
1354 bfd_reloc_status_type ret
;
1357 /* If we're relocating, and this is an external symbol with no
1358 addend, we don't want to change anything. We will only have an
1359 addend if this is a newly created reloc, not read from an ELF
1361 if (output_bfd
!= (bfd
*) NULL
1362 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1363 && reloc_entry
->addend
== 0)
1365 reloc_entry
->address
+= input_section
->output_offset
;
1366 return bfd_reloc_ok
;
1369 if (output_bfd
!= (bfd
*) NULL
)
1370 relocateable
= true;
1373 relocateable
= false;
1374 output_bfd
= symbol
->section
->output_section
->owner
;
1377 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
,
1379 if (ret
!= bfd_reloc_ok
)
1382 return gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
1383 relocateable
, data
, gp
);
1386 static bfd_reloc_status_type
1387 gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
, relocateable
, data
,
1391 arelent
*reloc_entry
;
1392 asection
*input_section
;
1393 boolean relocateable
;
1401 if (bfd_is_com_section (symbol
->section
))
1404 relocation
= symbol
->value
;
1406 relocation
+= symbol
->section
->output_section
->vma
;
1407 relocation
+= symbol
->section
->output_offset
;
1409 if (reloc_entry
->address
> input_section
->_cooked_size
)
1410 return bfd_reloc_outofrange
;
1412 insn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1414 /* Set val to the offset into the section or symbol. */
1415 if (reloc_entry
->howto
->src_mask
== 0)
1417 /* This case occurs with the 64-bit MIPS ELF ABI. */
1418 val
= reloc_entry
->addend
;
1422 val
= ((insn
& 0xffff) + reloc_entry
->addend
) & 0xffff;
1427 /* Adjust val for the final section location and GP value. If we
1428 are producing relocateable output, we don't want to do this for
1429 an external symbol. */
1431 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1432 val
+= relocation
- gp
;
1434 insn
= (insn
&~ 0xffff) | (val
& 0xffff);
1435 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
1438 reloc_entry
->address
+= input_section
->output_offset
;
1440 /* Make sure it fit in 16 bits. */
1441 if (val
>= 0x8000 && val
< 0xffff8000)
1442 return bfd_reloc_overflow
;
1444 return bfd_reloc_ok
;
1447 /* Do a R_MIPS_GPREL32 relocation. Is this 32 bit value the offset
1448 from the gp register? XXX */
1450 static bfd_reloc_status_type gprel32_with_gp
PARAMS ((bfd
*, asymbol
*,
1451 arelent
*, asection
*,
1452 boolean
, PTR
, bfd_vma
));
1454 bfd_reloc_status_type
1455 _bfd_mips_elf_gprel32_reloc (abfd
,
1463 arelent
*reloc_entry
;
1466 asection
*input_section
;
1468 char **error_message
;
1470 boolean relocateable
;
1471 bfd_reloc_status_type ret
;
1474 /* If we're relocating, and this is an external symbol with no
1475 addend, we don't want to change anything. We will only have an
1476 addend if this is a newly created reloc, not read from an ELF
1478 if (output_bfd
!= (bfd
*) NULL
1479 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1480 && reloc_entry
->addend
== 0)
1482 *error_message
= (char *)
1483 _("32bits gp relative relocation occurs for an external symbol");
1484 return bfd_reloc_outofrange
;
1487 if (output_bfd
!= (bfd
*) NULL
)
1489 relocateable
= true;
1490 gp
= _bfd_get_gp_value (output_bfd
);
1494 relocateable
= false;
1495 output_bfd
= symbol
->section
->output_section
->owner
;
1497 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
,
1498 error_message
, &gp
);
1499 if (ret
!= bfd_reloc_ok
)
1503 return gprel32_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
1504 relocateable
, data
, gp
);
1507 static bfd_reloc_status_type
1508 gprel32_with_gp (abfd
, symbol
, reloc_entry
, input_section
, relocateable
, data
,
1512 arelent
*reloc_entry
;
1513 asection
*input_section
;
1514 boolean relocateable
;
1521 if (bfd_is_com_section (symbol
->section
))
1524 relocation
= symbol
->value
;
1526 relocation
+= symbol
->section
->output_section
->vma
;
1527 relocation
+= symbol
->section
->output_offset
;
1529 if (reloc_entry
->address
> input_section
->_cooked_size
)
1530 return bfd_reloc_outofrange
;
1532 if (reloc_entry
->howto
->src_mask
== 0)
1534 /* This case arises with the 64-bit MIPS ELF ABI. */
1538 val
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1540 /* Set val to the offset into the section or symbol. */
1541 val
+= reloc_entry
->addend
;
1543 /* Adjust val for the final section location and GP value. If we
1544 are producing relocateable output, we don't want to do this for
1545 an external symbol. */
1547 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1548 val
+= relocation
- gp
;
1550 bfd_put_32 (abfd
, val
, (bfd_byte
*) data
+ reloc_entry
->address
);
1553 reloc_entry
->address
+= input_section
->output_offset
;
1555 return bfd_reloc_ok
;
1558 /* Handle a 64 bit reloc in a 32 bit MIPS ELF file. These are
1559 generated when addreses are 64 bits. The upper 32 bits are a simle
1562 static bfd_reloc_status_type
1563 mips32_64bit_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1564 output_bfd
, error_message
)
1566 arelent
*reloc_entry
;
1569 asection
*input_section
;
1571 char **error_message
;
1573 bfd_reloc_status_type r
;
1578 r
= bfd_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1579 input_section
, output_bfd
, error_message
);
1580 if (r
!= bfd_reloc_continue
)
1583 /* Do a normal 32 bit relocation on the lower 32 bits. */
1584 reloc32
= *reloc_entry
;
1585 if (bfd_big_endian (abfd
))
1586 reloc32
.address
+= 4;
1587 reloc32
.howto
= &elf_mips_howto_table
[R_MIPS_32
];
1588 r
= bfd_perform_relocation (abfd
, &reloc32
, data
, input_section
,
1589 output_bfd
, error_message
);
1591 /* Sign extend into the upper 32 bits. */
1592 val
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc32
.address
);
1593 if ((val
& 0x80000000) != 0)
1597 addr
= reloc_entry
->address
;
1598 if (bfd_little_endian (abfd
))
1600 bfd_put_32 (abfd
, val
, (bfd_byte
*) data
+ addr
);
1605 /* Handle a mips16 jump. */
1607 static bfd_reloc_status_type
1608 mips16_jump_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1609 output_bfd
, error_message
)
1610 bfd
*abfd ATTRIBUTE_UNUSED
;
1611 arelent
*reloc_entry
;
1613 PTR data ATTRIBUTE_UNUSED
;
1614 asection
*input_section
;
1616 char **error_message ATTRIBUTE_UNUSED
;
1618 if (output_bfd
!= (bfd
*) NULL
1619 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1620 && reloc_entry
->addend
== 0)
1622 reloc_entry
->address
+= input_section
->output_offset
;
1623 return bfd_reloc_ok
;
1628 static boolean warned
;
1631 (*_bfd_error_handler
)
1632 (_("Linking mips16 objects into %s format is not supported"),
1633 bfd_get_target (input_section
->output_section
->owner
));
1637 return bfd_reloc_undefined
;
1640 /* Handle a mips16 GP relative reloc. */
1642 static bfd_reloc_status_type
1643 mips16_gprel_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
1644 output_bfd
, error_message
)
1646 arelent
*reloc_entry
;
1649 asection
*input_section
;
1651 char **error_message
;
1653 boolean relocateable
;
1654 bfd_reloc_status_type ret
;
1656 unsigned short extend
, insn
;
1657 unsigned long final
;
1659 /* If we're relocating, and this is an external symbol with no
1660 addend, we don't want to change anything. We will only have an
1661 addend if this is a newly created reloc, not read from an ELF
1663 if (output_bfd
!= NULL
1664 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1665 && reloc_entry
->addend
== 0)
1667 reloc_entry
->address
+= input_section
->output_offset
;
1668 return bfd_reloc_ok
;
1671 if (output_bfd
!= NULL
)
1672 relocateable
= true;
1675 relocateable
= false;
1676 output_bfd
= symbol
->section
->output_section
->owner
;
1679 ret
= mips_elf_final_gp (output_bfd
, symbol
, relocateable
, error_message
,
1681 if (ret
!= bfd_reloc_ok
)
1684 if (reloc_entry
->address
> input_section
->_cooked_size
)
1685 return bfd_reloc_outofrange
;
1687 /* Pick up the mips16 extend instruction and the real instruction. */
1688 extend
= bfd_get_16 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1689 insn
= bfd_get_16 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
+ 2);
1691 /* Stuff the current addend back as a 32 bit value, do the usual
1692 relocation, and then clean up. */
1694 (((extend
& 0x1f) << 11)
1697 (bfd_byte
*) data
+ reloc_entry
->address
);
1699 ret
= gprel16_with_gp (abfd
, symbol
, reloc_entry
, input_section
,
1700 relocateable
, data
, gp
);
1702 final
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
1705 | ((final
>> 11) & 0x1f)
1707 (bfd_byte
*) data
+ reloc_entry
->address
);
1711 (bfd_byte
*) data
+ reloc_entry
->address
+ 2);
1716 /* Return the ISA for a MIPS e_flags value. */
1719 elf_mips_isa (flags
)
1722 switch (flags
& EF_MIPS_ARCH
)
1736 /* Return the MACH for a MIPS e_flags value. */
1739 elf_mips_mach (flags
)
1742 switch (flags
& EF_MIPS_MACH
)
1744 case E_MIPS_MACH_3900
:
1745 return bfd_mach_mips3900
;
1747 case E_MIPS_MACH_4010
:
1748 return bfd_mach_mips4010
;
1750 case E_MIPS_MACH_4100
:
1751 return bfd_mach_mips4100
;
1753 case E_MIPS_MACH_4111
:
1754 return bfd_mach_mips4111
;
1756 case E_MIPS_MACH_4650
:
1757 return bfd_mach_mips4650
;
1760 switch (flags
& EF_MIPS_ARCH
)
1764 return bfd_mach_mips3000
;
1768 return bfd_mach_mips6000
;
1772 return bfd_mach_mips4000
;
1776 return bfd_mach_mips8000
;
1784 /* Return printable name for ABI. */
1787 elf_mips_abi_name (abfd
)
1792 if (ABI_N32_P (abfd
))
1794 else if (ABI_64_P (abfd
))
1797 flags
= elf_elfheader (abfd
)->e_flags
;
1798 switch (flags
& EF_MIPS_ABI
)
1802 case E_MIPS_ABI_O32
:
1804 case E_MIPS_ABI_O64
:
1806 case E_MIPS_ABI_EABI32
:
1808 case E_MIPS_ABI_EABI64
:
1811 return "unknown abi";
1815 /* A mapping from BFD reloc types to MIPS ELF reloc types. */
1817 struct elf_reloc_map
{
1818 bfd_reloc_code_real_type bfd_reloc_val
;
1819 enum elf_mips_reloc_type elf_reloc_val
;
1822 static CONST
struct elf_reloc_map mips_reloc_map
[] =
1824 { BFD_RELOC_NONE
, R_MIPS_NONE
, },
1825 { BFD_RELOC_16
, R_MIPS_16
},
1826 { BFD_RELOC_32
, R_MIPS_32
},
1827 { BFD_RELOC_64
, R_MIPS_64
},
1828 { BFD_RELOC_MIPS_JMP
, R_MIPS_26
},
1829 { BFD_RELOC_HI16_S
, R_MIPS_HI16
},
1830 { BFD_RELOC_LO16
, R_MIPS_LO16
},
1831 { BFD_RELOC_MIPS_GPREL
, R_MIPS_GPREL16
},
1832 { BFD_RELOC_MIPS_LITERAL
, R_MIPS_LITERAL
},
1833 { BFD_RELOC_MIPS_GOT16
, R_MIPS_GOT16
},
1834 { BFD_RELOC_16_PCREL
, R_MIPS_PC16
},
1835 { BFD_RELOC_MIPS_CALL16
, R_MIPS_CALL16
},
1836 { BFD_RELOC_MIPS_GPREL32
, R_MIPS_GPREL32
},
1837 { BFD_RELOC_MIPS_GOT_HI16
, R_MIPS_GOT_HI16
},
1838 { BFD_RELOC_MIPS_GOT_LO16
, R_MIPS_GOT_LO16
},
1839 { BFD_RELOC_MIPS_CALL_HI16
, R_MIPS_CALL_HI16
},
1840 { BFD_RELOC_MIPS_CALL_LO16
, R_MIPS_CALL_LO16
},
1841 { BFD_RELOC_MIPS_SUB
, R_MIPS_SUB
},
1842 { BFD_RELOC_MIPS_GOT_PAGE
, R_MIPS_GOT_PAGE
},
1843 { BFD_RELOC_MIPS_GOT_OFST
, R_MIPS_GOT_OFST
},
1844 { BFD_RELOC_MIPS_GOT_DISP
, R_MIPS_GOT_DISP
}
1847 /* Given a BFD reloc type, return a howto structure. */
1849 static reloc_howto_type
*
1850 bfd_elf32_bfd_reloc_type_lookup (abfd
, code
)
1852 bfd_reloc_code_real_type code
;
1856 for (i
= 0; i
< sizeof (mips_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
1858 if (mips_reloc_map
[i
].bfd_reloc_val
== code
)
1859 return &elf_mips_howto_table
[(int) mips_reloc_map
[i
].elf_reloc_val
];
1865 bfd_set_error (bfd_error_bad_value
);
1868 case BFD_RELOC_CTOR
:
1869 /* We need to handle BFD_RELOC_CTOR specially.
1870 Select the right relocation (R_MIPS_32 or R_MIPS_64) based on the
1871 size of addresses on this architecture. */
1872 if (bfd_arch_bits_per_address (abfd
) == 32)
1873 return &elf_mips_howto_table
[(int) R_MIPS_32
];
1875 return &elf_mips_ctor64_howto
;
1877 case BFD_RELOC_MIPS16_JMP
:
1878 return &elf_mips16_jump_howto
;
1879 case BFD_RELOC_MIPS16_GPREL
:
1880 return &elf_mips16_gprel_howto
;
1881 case BFD_RELOC_VTABLE_INHERIT
:
1882 return &elf_mips_gnu_vtinherit_howto
;
1883 case BFD_RELOC_VTABLE_ENTRY
:
1884 return &elf_mips_gnu_vtentry_howto
;
1888 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1890 static reloc_howto_type
*
1891 mips_rtype_to_howto (r_type
)
1892 unsigned int r_type
;
1897 return &elf_mips16_jump_howto
;
1899 case R_MIPS16_GPREL
:
1900 return &elf_mips16_gprel_howto
;
1902 case R_MIPS_GNU_VTINHERIT
:
1903 return &elf_mips_gnu_vtinherit_howto
;
1905 case R_MIPS_GNU_VTENTRY
:
1906 return &elf_mips_gnu_vtentry_howto
;
1910 BFD_ASSERT (r_type
< (unsigned int) R_MIPS_max
);
1911 return &elf_mips_howto_table
[r_type
];
1916 /* Given a MIPS Elf32_Internal_Rel, fill in an arelent structure. */
1919 mips_info_to_howto_rel (abfd
, cache_ptr
, dst
)
1922 Elf32_Internal_Rel
*dst
;
1924 unsigned int r_type
;
1926 r_type
= ELF32_R_TYPE (dst
->r_info
);
1927 cache_ptr
->howto
= mips_rtype_to_howto (r_type
);
1929 /* The addend for a GPREL16 or LITERAL relocation comes from the GP
1930 value for the object file. We get the addend now, rather than
1931 when we do the relocation, because the symbol manipulations done
1932 by the linker may cause us to lose track of the input BFD. */
1933 if (((*cache_ptr
->sym_ptr_ptr
)->flags
& BSF_SECTION_SYM
) != 0
1934 && (r_type
== (unsigned int) R_MIPS_GPREL16
1935 || r_type
== (unsigned int) R_MIPS_LITERAL
))
1936 cache_ptr
->addend
= elf_gp (abfd
);
1939 /* Given a MIPS Elf32_Internal_Rela, fill in an arelent structure. */
1942 mips_info_to_howto_rela (abfd
, cache_ptr
, dst
)
1945 Elf32_Internal_Rela
*dst
;
1947 /* Since an Elf32_Internal_Rel is an initial prefix of an
1948 Elf32_Internal_Rela, we can just use mips_info_to_howto_rel
1950 mips_info_to_howto_rel (abfd
, cache_ptr
, (Elf32_Internal_Rel
*) dst
);
1952 /* If we ever need to do any extra processing with dst->r_addend
1953 (the field omitted in an Elf32_Internal_Rel) we can do it here. */
1956 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1957 routines swap this structure in and out. They are used outside of
1958 BFD, so they are globally visible. */
1961 bfd_mips_elf32_swap_reginfo_in (abfd
, ex
, in
)
1963 const Elf32_External_RegInfo
*ex
;
1966 in
->ri_gprmask
= bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_gprmask
);
1967 in
->ri_cprmask
[0] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[0]);
1968 in
->ri_cprmask
[1] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[1]);
1969 in
->ri_cprmask
[2] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[2]);
1970 in
->ri_cprmask
[3] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[3]);
1971 in
->ri_gp_value
= bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_gp_value
);
1975 bfd_mips_elf32_swap_reginfo_out (abfd
, in
, ex
)
1977 const Elf32_RegInfo
*in
;
1978 Elf32_External_RegInfo
*ex
;
1980 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_gprmask
,
1981 (bfd_byte
*) ex
->ri_gprmask
);
1982 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[0],
1983 (bfd_byte
*) ex
->ri_cprmask
[0]);
1984 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[1],
1985 (bfd_byte
*) ex
->ri_cprmask
[1]);
1986 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[2],
1987 (bfd_byte
*) ex
->ri_cprmask
[2]);
1988 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[3],
1989 (bfd_byte
*) ex
->ri_cprmask
[3]);
1990 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_gp_value
,
1991 (bfd_byte
*) ex
->ri_gp_value
);
1994 /* In the 64 bit ABI, the .MIPS.options section holds register
1995 information in an Elf64_Reginfo structure. These routines swap
1996 them in and out. They are globally visible because they are used
1997 outside of BFD. These routines are here so that gas can call them
1998 without worrying about whether the 64 bit ABI has been included. */
2001 bfd_mips_elf64_swap_reginfo_in (abfd
, ex
, in
)
2003 const Elf64_External_RegInfo
*ex
;
2004 Elf64_Internal_RegInfo
*in
;
2006 in
->ri_gprmask
= bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_gprmask
);
2007 in
->ri_pad
= bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_pad
);
2008 in
->ri_cprmask
[0] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[0]);
2009 in
->ri_cprmask
[1] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[1]);
2010 in
->ri_cprmask
[2] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[2]);
2011 in
->ri_cprmask
[3] = bfd_h_get_32 (abfd
, (bfd_byte
*) ex
->ri_cprmask
[3]);
2012 in
->ri_gp_value
= bfd_h_get_64 (abfd
, (bfd_byte
*) ex
->ri_gp_value
);
2016 bfd_mips_elf64_swap_reginfo_out (abfd
, in
, ex
)
2018 const Elf64_Internal_RegInfo
*in
;
2019 Elf64_External_RegInfo
*ex
;
2021 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_gprmask
,
2022 (bfd_byte
*) ex
->ri_gprmask
);
2023 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_pad
,
2024 (bfd_byte
*) ex
->ri_pad
);
2025 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[0],
2026 (bfd_byte
*) ex
->ri_cprmask
[0]);
2027 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[1],
2028 (bfd_byte
*) ex
->ri_cprmask
[1]);
2029 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[2],
2030 (bfd_byte
*) ex
->ri_cprmask
[2]);
2031 bfd_h_put_32 (abfd
, (bfd_vma
) in
->ri_cprmask
[3],
2032 (bfd_byte
*) ex
->ri_cprmask
[3]);
2033 bfd_h_put_64 (abfd
, (bfd_vma
) in
->ri_gp_value
,
2034 (bfd_byte
*) ex
->ri_gp_value
);
2037 /* Swap an entry in a .gptab section. Note that these routines rely
2038 on the equivalence of the two elements of the union. */
2041 bfd_mips_elf32_swap_gptab_in (abfd
, ex
, in
)
2043 const Elf32_External_gptab
*ex
;
2046 in
->gt_entry
.gt_g_value
= bfd_h_get_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2047 in
->gt_entry
.gt_bytes
= bfd_h_get_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2051 bfd_mips_elf32_swap_gptab_out (abfd
, in
, ex
)
2053 const Elf32_gptab
*in
;
2054 Elf32_External_gptab
*ex
;
2056 bfd_h_put_32 (abfd
, (bfd_vma
) in
->gt_entry
.gt_g_value
,
2057 ex
->gt_entry
.gt_g_value
);
2058 bfd_h_put_32 (abfd
, (bfd_vma
) in
->gt_entry
.gt_bytes
,
2059 ex
->gt_entry
.gt_bytes
);
2063 bfd_elf32_swap_compact_rel_out (abfd
, in
, ex
)
2065 const Elf32_compact_rel
*in
;
2066 Elf32_External_compact_rel
*ex
;
2068 bfd_h_put_32 (abfd
, (bfd_vma
) in
->id1
, ex
->id1
);
2069 bfd_h_put_32 (abfd
, (bfd_vma
) in
->num
, ex
->num
);
2070 bfd_h_put_32 (abfd
, (bfd_vma
) in
->id2
, ex
->id2
);
2071 bfd_h_put_32 (abfd
, (bfd_vma
) in
->offset
, ex
->offset
);
2072 bfd_h_put_32 (abfd
, (bfd_vma
) in
->reserved0
, ex
->reserved0
);
2073 bfd_h_put_32 (abfd
, (bfd_vma
) in
->reserved1
, ex
->reserved1
);
2077 bfd_elf32_swap_crinfo_out (abfd
, in
, ex
)
2079 const Elf32_crinfo
*in
;
2080 Elf32_External_crinfo
*ex
;
2084 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2085 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2086 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2087 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2088 bfd_h_put_32 (abfd
, (bfd_vma
) l
, ex
->info
);
2089 bfd_h_put_32 (abfd
, (bfd_vma
) in
->konst
, ex
->konst
);
2090 bfd_h_put_32 (abfd
, (bfd_vma
) in
->vaddr
, ex
->vaddr
);
2093 /* Swap in an options header. */
2096 bfd_mips_elf_swap_options_in (abfd
, ex
, in
)
2098 const Elf_External_Options
*ex
;
2099 Elf_Internal_Options
*in
;
2101 in
->kind
= bfd_h_get_8 (abfd
, ex
->kind
);
2102 in
->size
= bfd_h_get_8 (abfd
, ex
->size
);
2103 in
->section
= bfd_h_get_16 (abfd
, ex
->section
);
2104 in
->info
= bfd_h_get_32 (abfd
, ex
->info
);
2107 /* Swap out an options header. */
2110 bfd_mips_elf_swap_options_out (abfd
, in
, ex
)
2112 const Elf_Internal_Options
*in
;
2113 Elf_External_Options
*ex
;
2115 bfd_h_put_8 (abfd
, in
->kind
, ex
->kind
);
2116 bfd_h_put_8 (abfd
, in
->size
, ex
->size
);
2117 bfd_h_put_16 (abfd
, in
->section
, ex
->section
);
2118 bfd_h_put_32 (abfd
, in
->info
, ex
->info
);
2121 /* Swap in an MSYM entry. */
2124 bfd_mips_elf_swap_msym_in (abfd
, ex
, in
)
2126 const Elf32_External_Msym
*ex
;
2127 Elf32_Internal_Msym
*in
;
2129 in
->ms_hash_value
= bfd_h_get_32 (abfd
, ex
->ms_hash_value
);
2130 in
->ms_info
= bfd_h_get_32 (abfd
, ex
->ms_info
);
2133 /* Swap out an MSYM entry. */
2136 bfd_mips_elf_swap_msym_out (abfd
, in
, ex
)
2138 const Elf32_Internal_Msym
*in
;
2139 Elf32_External_Msym
*ex
;
2141 bfd_h_put_32 (abfd
, in
->ms_hash_value
, ex
->ms_hash_value
);
2142 bfd_h_put_32 (abfd
, in
->ms_info
, ex
->ms_info
);
2146 /* Determine whether a symbol is global for the purposes of splitting
2147 the symbol table into global symbols and local symbols. At least
2148 on Irix 5, this split must be between section symbols and all other
2149 symbols. On most ELF targets the split is between static symbols
2150 and externally visible symbols. */
2154 mips_elf_sym_is_global (abfd
, sym
)
2155 bfd
*abfd ATTRIBUTE_UNUSED
;
2158 return (sym
->flags
& BSF_SECTION_SYM
) == 0 ? true : false;
2161 /* Set the right machine number for a MIPS ELF file. This is used for
2162 both the 32-bit and the 64-bit ABI. */
2165 _bfd_mips_elf_object_p (abfd
)
2168 /* Irix 5 and 6 is broken. Object file symbol tables are not always
2169 sorted correctly such that local symbols precede global symbols,
2170 and the sh_info field in the symbol table is not always right. */
2171 elf_bad_symtab (abfd
) = true;
2173 bfd_default_set_arch_mach (abfd
, bfd_arch_mips
,
2174 elf_mips_mach (elf_elfheader (abfd
)->e_flags
));
2178 /* The final processing done just before writing out a MIPS ELF object
2179 file. This gets the MIPS architecture right based on the machine
2180 number. This is used by both the 32-bit and the 64-bit ABI. */
2184 _bfd_mips_elf_final_write_processing (abfd
, linker
)
2186 boolean linker ATTRIBUTE_UNUSED
;
2190 Elf_Internal_Shdr
**hdrpp
;
2194 switch (bfd_get_mach (abfd
))
2197 case bfd_mach_mips3000
:
2198 val
= E_MIPS_ARCH_1
;
2201 case bfd_mach_mips3900
:
2202 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
2205 case bfd_mach_mips6000
:
2206 val
= E_MIPS_ARCH_2
;
2209 case bfd_mach_mips4000
:
2210 case bfd_mach_mips4300
:
2211 val
= E_MIPS_ARCH_3
;
2214 case bfd_mach_mips4010
:
2215 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
2218 case bfd_mach_mips4100
:
2219 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
2222 case bfd_mach_mips4111
:
2223 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
2226 case bfd_mach_mips4650
:
2227 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
2230 case bfd_mach_mips8000
:
2231 val
= E_MIPS_ARCH_4
;
2235 elf_elfheader (abfd
)->e_flags
&= ~ (EF_MIPS_ARCH
| EF_MIPS_MACH
);
2236 elf_elfheader (abfd
)->e_flags
|= val
;
2238 /* Set the sh_info field for .gptab sections and other appropriate
2239 info for each special section. */
2240 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
2241 i
< elf_elfheader (abfd
)->e_shnum
;
2244 switch ((*hdrpp
)->sh_type
)
2247 case SHT_MIPS_LIBLIST
:
2248 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
2250 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2253 case SHT_MIPS_GPTAB
:
2254 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
2255 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
2256 BFD_ASSERT (name
!= NULL
2257 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
2258 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
2259 BFD_ASSERT (sec
!= NULL
);
2260 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
2263 case SHT_MIPS_CONTENT
:
2264 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
2265 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
2266 BFD_ASSERT (name
!= NULL
2267 && strncmp (name
, ".MIPS.content",
2268 sizeof ".MIPS.content" - 1) == 0);
2269 sec
= bfd_get_section_by_name (abfd
,
2270 name
+ sizeof ".MIPS.content" - 1);
2271 BFD_ASSERT (sec
!= NULL
);
2272 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2275 case SHT_MIPS_SYMBOL_LIB
:
2276 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
2278 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2279 sec
= bfd_get_section_by_name (abfd
, ".liblist");
2281 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
2284 case SHT_MIPS_EVENTS
:
2285 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
2286 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
2287 BFD_ASSERT (name
!= NULL
);
2288 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
2289 sec
= bfd_get_section_by_name (abfd
,
2290 name
+ sizeof ".MIPS.events" - 1);
2293 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
2294 sizeof ".MIPS.post_rel" - 1) == 0);
2295 sec
= bfd_get_section_by_name (abfd
,
2297 + sizeof ".MIPS.post_rel" - 1));
2299 BFD_ASSERT (sec
!= NULL
);
2300 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
2307 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
2310 _bfd_mips_elf_set_private_flags (abfd
, flags
)
2314 BFD_ASSERT (!elf_flags_init (abfd
)
2315 || elf_elfheader (abfd
)->e_flags
== flags
);
2317 elf_elfheader (abfd
)->e_flags
= flags
;
2318 elf_flags_init (abfd
) = true;
2322 /* Copy backend specific data from one object module to another */
2325 _bfd_mips_elf_copy_private_bfd_data (ibfd
, obfd
)
2329 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2330 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2333 BFD_ASSERT (!elf_flags_init (obfd
)
2334 || (elf_elfheader (obfd
)->e_flags
2335 == elf_elfheader (ibfd
)->e_flags
));
2337 elf_gp (obfd
) = elf_gp (ibfd
);
2338 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
2339 elf_flags_init (obfd
) = true;
2343 /* Merge backend specific data from an object file to the output
2344 object file when linking. */
2347 _bfd_mips_elf_merge_private_bfd_data (ibfd
, obfd
)
2355 /* Check if we have the same endianess */
2356 if (ibfd
->xvec
->byteorder
!= obfd
->xvec
->byteorder
2357 && obfd
->xvec
->byteorder
!= BFD_ENDIAN_UNKNOWN
)
2361 if (bfd_big_endian (ibfd
))
2362 msg
= _("%s: compiled for a big endian system and target is little endian");
2364 msg
= _("%s: compiled for a little endian system and target is big endian");
2366 (*_bfd_error_handler
) (msg
, bfd_get_filename (ibfd
));
2368 bfd_set_error (bfd_error_wrong_format
);
2372 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2373 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2376 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2377 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
2378 old_flags
= elf_elfheader (obfd
)->e_flags
;
2380 if (! elf_flags_init (obfd
))
2382 elf_flags_init (obfd
) = true;
2383 elf_elfheader (obfd
)->e_flags
= new_flags
;
2384 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
2385 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
2387 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
2388 && bfd_get_arch_info (obfd
)->the_default
)
2390 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
2391 bfd_get_mach (ibfd
)))
2398 /* Check flag compatibility. */
2400 new_flags
&= ~EF_MIPS_NOREORDER
;
2401 old_flags
&= ~EF_MIPS_NOREORDER
;
2403 if (new_flags
== old_flags
)
2408 if ((new_flags
& EF_MIPS_PIC
) != (old_flags
& EF_MIPS_PIC
))
2410 new_flags
&= ~EF_MIPS_PIC
;
2411 old_flags
&= ~EF_MIPS_PIC
;
2412 (*_bfd_error_handler
)
2413 (_("%s: linking PIC files with non-PIC files"),
2414 bfd_get_filename (ibfd
));
2418 if ((new_flags
& EF_MIPS_CPIC
) != (old_flags
& EF_MIPS_CPIC
))
2420 new_flags
&= ~EF_MIPS_CPIC
;
2421 old_flags
&= ~EF_MIPS_CPIC
;
2422 (*_bfd_error_handler
)
2423 (_("%s: linking abicalls files with non-abicalls files"),
2424 bfd_get_filename (ibfd
));
2428 /* Compare the ISA's. */
2429 if ((new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
))
2430 != (old_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
)))
2432 int new_mach
= new_flags
& EF_MIPS_MACH
;
2433 int old_mach
= old_flags
& EF_MIPS_MACH
;
2434 int new_isa
= elf_mips_isa (new_flags
);
2435 int old_isa
= elf_mips_isa (old_flags
);
2437 /* If either has no machine specified, just compare the general isa's.
2438 Some combinations of machines are ok, if the isa's match. */
2441 || new_mach
== old_mach
2444 /* Don't warn about mixing -mips1 and -mips2 code, or mixing -mips3
2445 and -mips4 code. They will normally use the same data sizes and
2446 calling conventions. */
2448 if ((new_isa
== 1 || new_isa
== 2)
2449 ? (old_isa
!= 1 && old_isa
!= 2)
2450 : (old_isa
== 1 || old_isa
== 2))
2452 (*_bfd_error_handler
)
2453 (_("%s: ISA mismatch (-mips%d) with previous modules (-mips%d)"),
2454 bfd_get_filename (ibfd
), new_isa
, old_isa
);
2461 (*_bfd_error_handler
)
2462 (_("%s: ISA mismatch (%d) with previous modules (%d)"),
2463 bfd_get_filename (ibfd
),
2464 elf_mips_mach (new_flags
),
2465 elf_mips_mach (old_flags
));
2469 new_flags
&= ~ (EF_MIPS_ARCH
| EF_MIPS_MACH
);
2470 old_flags
&= ~ (EF_MIPS_ARCH
| EF_MIPS_MACH
);
2473 /* Compare ABI's. The 64-bit ABI does not use EF_MIPS_ABI. But, it
2474 does set EI_CLASS differently from any 32-bit ABI. */
2475 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
2476 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
2477 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
2479 /* Only error if both are set (to different values). */
2480 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
2481 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
2482 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
2484 (*_bfd_error_handler
)
2485 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
2486 bfd_get_filename (ibfd
),
2487 elf_mips_abi_name (ibfd
),
2488 elf_mips_abi_name (obfd
));
2491 new_flags
&= ~EF_MIPS_ABI
;
2492 old_flags
&= ~EF_MIPS_ABI
;
2495 /* Warn about any other mismatches */
2496 if (new_flags
!= old_flags
)
2498 (*_bfd_error_handler
)
2499 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2500 bfd_get_filename (ibfd
), (unsigned long) new_flags
,
2501 (unsigned long) old_flags
);
2507 bfd_set_error (bfd_error_bad_value
);
2515 _bfd_mips_elf_print_private_bfd_data (abfd
, ptr
)
2519 FILE *file
= (FILE *) ptr
;
2521 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
2523 /* Print normal ELF private data. */
2524 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
2526 /* xgettext:c-format */
2527 fprintf (file
, _ ("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
2529 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
2530 fprintf (file
, _ (" [abi=O32]"));
2531 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
2532 fprintf (file
, _ (" [abi=O64]"));
2533 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
2534 fprintf (file
, _ (" [abi=EABI32]"));
2535 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
2536 fprintf (file
, _ (" [abi=EABI64]"));
2537 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
2538 fprintf (file
, _ (" [abi unknown]"));
2539 else if (ABI_N32_P (abfd
))
2540 fprintf (file
, _ (" [abi=N32]"));
2541 else if (ABI_64_P (abfd
))
2542 fprintf (file
, _ (" [abi=64]"));
2544 fprintf (file
, _ (" [no abi set]"));
2546 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
2547 fprintf (file
, _ (" [mips1]"));
2548 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
2549 fprintf (file
, _ (" [mips2]"));
2550 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
2551 fprintf (file
, _ (" [mips3]"));
2552 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
2553 fprintf (file
, _ (" [mips4]"));
2555 fprintf (file
, _ (" [unknown ISA]"));
2557 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
2558 fprintf (file
, _ (" [32bitmode]"));
2560 fprintf (file
, _ (" [not 32bitmode]"));
2567 /* Handle a MIPS specific section when reading an object file. This
2568 is called when elfcode.h finds a section with an unknown type.
2569 This routine supports both the 32-bit and 64-bit ELF ABI.
2571 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
2575 _bfd_mips_elf_section_from_shdr (abfd
, hdr
, name
)
2577 Elf_Internal_Shdr
*hdr
;
2582 /* There ought to be a place to keep ELF backend specific flags, but
2583 at the moment there isn't one. We just keep track of the
2584 sections by their name, instead. Fortunately, the ABI gives
2585 suggested names for all the MIPS specific sections, so we will
2586 probably get away with this. */
2587 switch (hdr
->sh_type
)
2589 case SHT_MIPS_LIBLIST
:
2590 if (strcmp (name
, ".liblist") != 0)
2594 if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (abfd
)) != 0)
2597 case SHT_MIPS_CONFLICT
:
2598 if (strcmp (name
, ".conflict") != 0)
2601 case SHT_MIPS_GPTAB
:
2602 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
2605 case SHT_MIPS_UCODE
:
2606 if (strcmp (name
, ".ucode") != 0)
2609 case SHT_MIPS_DEBUG
:
2610 if (strcmp (name
, ".mdebug") != 0)
2612 flags
= SEC_DEBUGGING
;
2614 case SHT_MIPS_REGINFO
:
2615 if (strcmp (name
, ".reginfo") != 0
2616 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
2618 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
2620 case SHT_MIPS_IFACE
:
2621 if (strcmp (name
, ".MIPS.interfaces") != 0)
2624 case SHT_MIPS_CONTENT
:
2625 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
2628 case SHT_MIPS_OPTIONS
:
2629 if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) != 0)
2632 case SHT_MIPS_DWARF
:
2633 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
2636 case SHT_MIPS_SYMBOL_LIB
:
2637 if (strcmp (name
, ".MIPS.symlib") != 0)
2640 case SHT_MIPS_EVENTS
:
2641 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
2642 && strncmp (name
, ".MIPS.post_rel",
2643 sizeof ".MIPS.post_rel" - 1) != 0)
2650 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
2655 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
2656 (bfd_get_section_flags (abfd
,
2662 /* FIXME: We should record sh_info for a .gptab section. */
2664 /* For a .reginfo section, set the gp value in the tdata information
2665 from the contents of this section. We need the gp value while
2666 processing relocs, so we just get it now. The .reginfo section
2667 is not used in the 64-bit MIPS ELF ABI. */
2668 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
2670 Elf32_External_RegInfo ext
;
2673 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, (PTR
) &ext
,
2674 (file_ptr
) 0, sizeof ext
))
2676 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
2677 elf_gp (abfd
) = s
.ri_gp_value
;
2680 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
2681 set the gp value based on what we find. We may see both
2682 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
2683 they should agree. */
2684 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
2686 bfd_byte
*contents
, *l
, *lend
;
2688 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
2689 if (contents
== NULL
)
2691 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
2692 (file_ptr
) 0, hdr
->sh_size
))
2698 lend
= contents
+ hdr
->sh_size
;
2699 while (l
+ sizeof (Elf_External_Options
) <= lend
)
2701 Elf_Internal_Options intopt
;
2703 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
2705 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
2707 Elf64_Internal_RegInfo intreg
;
2709 bfd_mips_elf64_swap_reginfo_in
2711 ((Elf64_External_RegInfo
*)
2712 (l
+ sizeof (Elf_External_Options
))),
2714 elf_gp (abfd
) = intreg
.ri_gp_value
;
2716 else if (intopt
.kind
== ODK_REGINFO
)
2718 Elf32_RegInfo intreg
;
2720 bfd_mips_elf32_swap_reginfo_in
2722 ((Elf32_External_RegInfo
*)
2723 (l
+ sizeof (Elf_External_Options
))),
2725 elf_gp (abfd
) = intreg
.ri_gp_value
;
2735 /* Set the correct type for a MIPS ELF section. We do this by the
2736 section name, which is a hack, but ought to work. This routine is
2737 used by both the 32-bit and the 64-bit ABI. */
2740 _bfd_mips_elf_fake_sections (abfd
, hdr
, sec
)
2742 Elf32_Internal_Shdr
*hdr
;
2745 register const char *name
;
2747 name
= bfd_get_section_name (abfd
, sec
);
2749 if (strcmp (name
, ".liblist") == 0)
2751 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
2752 hdr
->sh_info
= sec
->_raw_size
/ sizeof (Elf32_Lib
);
2753 /* The sh_link field is set in final_write_processing. */
2755 else if (strcmp (name
, ".conflict") == 0)
2756 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
2757 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
2759 hdr
->sh_type
= SHT_MIPS_GPTAB
;
2760 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
2761 /* The sh_info field is set in final_write_processing. */
2763 else if (strcmp (name
, ".ucode") == 0)
2764 hdr
->sh_type
= SHT_MIPS_UCODE
;
2765 else if (strcmp (name
, ".mdebug") == 0)
2767 hdr
->sh_type
= SHT_MIPS_DEBUG
;
2768 /* In a shared object on Irix 5.3, the .mdebug section has an
2769 entsize of 0. FIXME: Does this matter? */
2770 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
2771 hdr
->sh_entsize
= 0;
2773 hdr
->sh_entsize
= 1;
2775 else if (strcmp (name
, ".reginfo") == 0)
2777 hdr
->sh_type
= SHT_MIPS_REGINFO
;
2778 /* In a shared object on Irix 5.3, the .reginfo section has an
2779 entsize of 0x18. FIXME: Does this matter? */
2780 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
2781 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
2783 hdr
->sh_entsize
= 1;
2785 else if (SGI_COMPAT (abfd
)
2786 && (strcmp (name
, ".hash") == 0
2787 || strcmp (name
, ".dynamic") == 0
2788 || strcmp (name
, ".dynstr") == 0))
2790 hdr
->sh_entsize
= 0;
2792 /* This isn't how the Irix 6 linker behaves. */
2793 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
2796 else if (strcmp (name
, ".got") == 0
2797 || strcmp (name
, MIPS_ELF_SRDATA_SECTION_NAME (abfd
)) == 0
2798 || strcmp (name
, ".sdata") == 0
2799 || strcmp (name
, ".sbss") == 0
2800 || strcmp (name
, ".lit4") == 0
2801 || strcmp (name
, ".lit8") == 0)
2802 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
2803 else if (strcmp (name
, ".MIPS.interfaces") == 0)
2805 hdr
->sh_type
= SHT_MIPS_IFACE
;
2806 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
2808 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
2810 hdr
->sh_type
= SHT_MIPS_CONTENT
;
2811 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
2812 /* The sh_info field is set in final_write_processing. */
2814 else if (strcmp (name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
2816 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
2817 hdr
->sh_entsize
= 1;
2818 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
2820 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
2821 hdr
->sh_type
= SHT_MIPS_DWARF
;
2822 else if (strcmp (name
, ".MIPS.symlib") == 0)
2824 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
2825 /* The sh_link and sh_info fields are set in
2826 final_write_processing. */
2828 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
2829 || strncmp (name
, ".MIPS.post_rel",
2830 sizeof ".MIPS.post_rel" - 1) == 0)
2832 hdr
->sh_type
= SHT_MIPS_EVENTS
;
2833 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
2834 /* The sh_link field is set in final_write_processing. */
2836 else if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (abfd
)) == 0)
2838 hdr
->sh_type
= SHT_MIPS_MSYM
;
2839 hdr
->sh_flags
|= SHF_ALLOC
;
2840 hdr
->sh_entsize
= 8;
2843 /* The generic elf_fake_sections will set up REL_HDR using the
2844 default kind of relocations. But, we may actually need both
2845 kinds of relocations, so we set up the second header here. */
2846 if ((sec
->flags
& SEC_RELOC
) != 0)
2848 struct bfd_elf_section_data
*esd
;
2850 esd
= elf_section_data (sec
);
2851 BFD_ASSERT (esd
->rel_hdr2
== NULL
);
2853 = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
2856 _bfd_elf_init_reloc_shdr (abfd
, esd
->rel_hdr2
, sec
,
2857 !elf_section_data (sec
)->use_rela_p
);
2863 /* Given a BFD section, try to locate the corresponding ELF section
2864 index. This is used by both the 32-bit and the 64-bit ABI.
2865 Actually, it's not clear to me that the 64-bit ABI supports these,
2866 but for non-PIC objects we will certainly want support for at least
2867 the .scommon section. */
2870 _bfd_mips_elf_section_from_bfd_section (abfd
, hdr
, sec
, retval
)
2871 bfd
*abfd ATTRIBUTE_UNUSED
;
2872 Elf32_Internal_Shdr
*hdr ATTRIBUTE_UNUSED
;
2876 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
2878 *retval
= SHN_MIPS_SCOMMON
;
2881 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
2883 *retval
= SHN_MIPS_ACOMMON
;
2889 /* When are writing out the .options or .MIPS.options section,
2890 remember the bytes we are writing out, so that we can install the
2891 GP value in the section_processing routine. */
2894 _bfd_mips_elf_set_section_contents (abfd
, section
, location
, offset
, count
)
2899 bfd_size_type count
;
2901 if (strcmp (section
->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
2905 if (elf_section_data (section
) == NULL
)
2907 section
->used_by_bfd
=
2908 (PTR
) bfd_zalloc (abfd
, sizeof (struct bfd_elf_section_data
));
2909 if (elf_section_data (section
) == NULL
)
2912 c
= (bfd_byte
*) elf_section_data (section
)->tdata
;
2917 if (section
->_cooked_size
!= 0)
2918 size
= section
->_cooked_size
;
2920 size
= section
->_raw_size
;
2921 c
= (bfd_byte
*) bfd_zalloc (abfd
, size
);
2924 elf_section_data (section
)->tdata
= (PTR
) c
;
2927 memcpy (c
+ offset
, location
, count
);
2930 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
2934 /* Work over a section just before writing it out. This routine is
2935 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
2936 sections that need the SHF_MIPS_GPREL flag by name; there has to be
2940 _bfd_mips_elf_section_processing (abfd
, hdr
)
2942 Elf_Internal_Shdr
*hdr
;
2944 if (hdr
->sh_type
== SHT_MIPS_REGINFO
2945 && hdr
->sh_size
> 0)
2949 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
2950 BFD_ASSERT (hdr
->contents
== NULL
);
2953 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
2956 bfd_h_put_32 (abfd
, (bfd_vma
) elf_gp (abfd
), buf
);
2957 if (bfd_write (buf
, (bfd_size_type
) 1, (bfd_size_type
) 4, abfd
) != 4)
2961 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
2962 && hdr
->bfd_section
!= NULL
2963 && elf_section_data (hdr
->bfd_section
) != NULL
2964 && elf_section_data (hdr
->bfd_section
)->tdata
!= NULL
)
2966 bfd_byte
*contents
, *l
, *lend
;
2968 /* We stored the section contents in the elf_section_data tdata
2969 field in the set_section_contents routine. We save the
2970 section contents so that we don't have to read them again.
2971 At this point we know that elf_gp is set, so we can look
2972 through the section contents to see if there is an
2973 ODK_REGINFO structure. */
2975 contents
= (bfd_byte
*) elf_section_data (hdr
->bfd_section
)->tdata
;
2977 lend
= contents
+ hdr
->sh_size
;
2978 while (l
+ sizeof (Elf_External_Options
) <= lend
)
2980 Elf_Internal_Options intopt
;
2982 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
2984 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
2991 + sizeof (Elf_External_Options
)
2992 + (sizeof (Elf64_External_RegInfo
) - 8)),
2995 bfd_h_put_64 (abfd
, elf_gp (abfd
), buf
);
2996 if (bfd_write (buf
, 1, 8, abfd
) != 8)
2999 else if (intopt
.kind
== ODK_REGINFO
)
3006 + sizeof (Elf_External_Options
)
3007 + (sizeof (Elf32_External_RegInfo
) - 4)),
3010 bfd_h_put_32 (abfd
, elf_gp (abfd
), buf
);
3011 if (bfd_write (buf
, 1, 4, abfd
) != 4)
3018 if (hdr
->bfd_section
!= NULL
)
3020 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
3022 if (strcmp (name
, ".sdata") == 0
3023 || strcmp (name
, ".lit8") == 0
3024 || strcmp (name
, ".lit4") == 0)
3026 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3027 hdr
->sh_type
= SHT_PROGBITS
;
3029 else if (strcmp (name
, ".sbss") == 0)
3031 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3032 hdr
->sh_type
= SHT_NOBITS
;
3034 else if (strcmp (name
, MIPS_ELF_SRDATA_SECTION_NAME (abfd
)) == 0)
3036 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
3037 hdr
->sh_type
= SHT_PROGBITS
;
3039 else if (strcmp (name
, ".compact_rel") == 0)
3042 hdr
->sh_type
= SHT_PROGBITS
;
3044 else if (strcmp (name
, ".rtproc") == 0)
3046 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
3048 unsigned int adjust
;
3050 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
3052 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
3061 /* MIPS ELF uses two common sections. One is the usual one, and the
3062 other is for small objects. All the small objects are kept
3063 together, and then referenced via the gp pointer, which yields
3064 faster assembler code. This is what we use for the small common
3065 section. This approach is copied from ecoff.c. */
3066 static asection mips_elf_scom_section
;
3067 static asymbol mips_elf_scom_symbol
;
3068 static asymbol
*mips_elf_scom_symbol_ptr
;
3070 /* MIPS ELF also uses an acommon section, which represents an
3071 allocated common symbol which may be overridden by a
3072 definition in a shared library. */
3073 static asection mips_elf_acom_section
;
3074 static asymbol mips_elf_acom_symbol
;
3075 static asymbol
*mips_elf_acom_symbol_ptr
;
3077 /* The Irix 5 support uses two virtual sections, which represent
3078 text/data symbols defined in dynamic objects. */
3079 static asection mips_elf_text_section
;
3080 static asection
*mips_elf_text_section_ptr
;
3081 static asymbol mips_elf_text_symbol
;
3082 static asymbol
*mips_elf_text_symbol_ptr
;
3084 static asection mips_elf_data_section
;
3085 static asection
*mips_elf_data_section_ptr
;
3086 static asymbol mips_elf_data_symbol
;
3087 static asymbol
*mips_elf_data_symbol_ptr
;
3089 /* Handle the special MIPS section numbers that a symbol may use.
3090 This is used for both the 32-bit and the 64-bit ABI. */
3093 _bfd_mips_elf_symbol_processing (abfd
, asym
)
3097 elf_symbol_type
*elfsym
;
3099 elfsym
= (elf_symbol_type
*) asym
;
3100 switch (elfsym
->internal_elf_sym
.st_shndx
)
3102 case SHN_MIPS_ACOMMON
:
3103 /* This section is used in a dynamically linked executable file.
3104 It is an allocated common section. The dynamic linker can
3105 either resolve these symbols to something in a shared
3106 library, or it can just leave them here. For our purposes,
3107 we can consider these symbols to be in a new section. */
3108 if (mips_elf_acom_section
.name
== NULL
)
3110 /* Initialize the acommon section. */
3111 mips_elf_acom_section
.name
= ".acommon";
3112 mips_elf_acom_section
.flags
= SEC_ALLOC
;
3113 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
3114 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
3115 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
3116 mips_elf_acom_symbol
.name
= ".acommon";
3117 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
3118 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
3119 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
3121 asym
->section
= &mips_elf_acom_section
;
3125 /* Common symbols less than the GP size are automatically
3126 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
3127 if (asym
->value
> elf_gp_size (abfd
)
3128 || IRIX_COMPAT (abfd
) == ict_irix6
)
3131 case SHN_MIPS_SCOMMON
:
3132 if (mips_elf_scom_section
.name
== NULL
)
3134 /* Initialize the small common section. */
3135 mips_elf_scom_section
.name
= ".scommon";
3136 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
3137 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
3138 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
3139 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
3140 mips_elf_scom_symbol
.name
= ".scommon";
3141 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
3142 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
3143 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
3145 asym
->section
= &mips_elf_scom_section
;
3146 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
3149 case SHN_MIPS_SUNDEFINED
:
3150 asym
->section
= bfd_und_section_ptr
;
3153 #if 0 /* for SGI_COMPAT */
3155 asym
->section
= mips_elf_text_section_ptr
;
3159 asym
->section
= mips_elf_data_section_ptr
;
3165 /* When creating an Irix 5 executable, we need REGINFO and RTPROC
3169 _bfd_mips_elf_additional_program_headers (abfd
)
3175 if (!SGI_COMPAT (abfd
))
3178 /* See if we need a PT_MIPS_REGINFO segment. */
3179 s
= bfd_get_section_by_name (abfd
, ".reginfo");
3180 if (s
&& (s
->flags
& SEC_LOAD
))
3183 /* See if we need a PT_MIPS_OPTIONS segment. */
3184 if (IRIX_COMPAT (abfd
) == ict_irix6
3185 && bfd_get_section_by_name (abfd
,
3186 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
3189 /* See if we need a PT_MIPS_RTPROC segment. */
3190 if (IRIX_COMPAT (abfd
) == ict_irix5
3191 && bfd_get_section_by_name (abfd
, ".dynamic")
3192 && bfd_get_section_by_name (abfd
, ".mdebug"))
3198 /* Modify the segment map for an Irix 5 executable. */
3201 _bfd_mips_elf_modify_segment_map (abfd
)
3205 struct elf_segment_map
*m
, **pm
;
3207 if (! SGI_COMPAT (abfd
))
3210 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
3212 s
= bfd_get_section_by_name (abfd
, ".reginfo");
3213 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3215 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3216 if (m
->p_type
== PT_MIPS_REGINFO
)
3220 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, sizeof *m
);
3224 m
->p_type
= PT_MIPS_REGINFO
;
3228 /* We want to put it after the PHDR and INTERP segments. */
3229 pm
= &elf_tdata (abfd
)->segment_map
;
3231 && ((*pm
)->p_type
== PT_PHDR
3232 || (*pm
)->p_type
== PT_INTERP
))
3240 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
3241 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
3242 PT_OPTIONS segement immediately following the program header
3244 if (IRIX_COMPAT (abfd
) == ict_irix6
)
3248 for (s
= abfd
->sections
; s
; s
= s
->next
)
3249 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
3254 struct elf_segment_map
*options_segment
;
3256 /* Usually, there's a program header table. But, sometimes
3257 there's not (like when running the `ld' testsuite). So,
3258 if there's no program header table, we just put the
3259 options segement at the end. */
3260 for (pm
= &elf_tdata (abfd
)->segment_map
;
3263 if ((*pm
)->p_type
== PT_PHDR
)
3266 options_segment
= bfd_zalloc (abfd
,
3267 sizeof (struct elf_segment_map
));
3268 options_segment
->next
= *pm
;
3269 options_segment
->p_type
= PT_MIPS_OPTIONS
;
3270 options_segment
->p_flags
= PF_R
;
3271 options_segment
->p_flags_valid
= true;
3272 options_segment
->count
= 1;
3273 options_segment
->sections
[0] = s
;
3274 *pm
= options_segment
;
3279 /* If there are .dynamic and .mdebug sections, we make a room
3280 for the RTPROC header. FIXME: Rewrite without section names. */
3281 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
3282 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
3283 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
3285 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3286 if (m
->p_type
== PT_MIPS_RTPROC
)
3290 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, sizeof *m
);
3294 m
->p_type
= PT_MIPS_RTPROC
;
3296 s
= bfd_get_section_by_name (abfd
, ".rtproc");
3301 m
->p_flags_valid
= 1;
3309 /* We want to put it after the DYNAMIC segment. */
3310 pm
= &elf_tdata (abfd
)->segment_map
;
3311 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
3321 /* On Irix 5, the PT_DYNAMIC segment includes the .dynamic,
3322 .dynstr, .dynsym, and .hash sections, and everything in
3324 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
3325 if ((*pm
)->p_type
== PT_DYNAMIC
)
3330 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
3332 static const char *sec_names
[] =
3333 { ".dynamic", ".dynstr", ".dynsym", ".hash" };
3336 struct elf_segment_map
*n
;
3340 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
3342 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
3343 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3349 sz
= s
->_cooked_size
;
3352 if (high
< s
->vma
+ sz
)
3358 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3359 if ((s
->flags
& SEC_LOAD
) != 0
3362 + (s
->_cooked_size
!= 0 ? s
->_cooked_size
: s
->_raw_size
))
3366 n
= ((struct elf_segment_map
*)
3367 bfd_zalloc (abfd
, sizeof *n
+ (c
- 1) * sizeof (asection
*)));
3374 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3376 if ((s
->flags
& SEC_LOAD
) != 0
3379 + (s
->_cooked_size
!= 0 ?
3380 s
->_cooked_size
: s
->_raw_size
))
3395 /* The structure of the runtime procedure descriptor created by the
3396 loader for use by the static exception system. */
3398 typedef struct runtime_pdr
{
3399 bfd_vma adr
; /* memory address of start of procedure */
3400 long regmask
; /* save register mask */
3401 long regoffset
; /* save register offset */
3402 long fregmask
; /* save floating point register mask */
3403 long fregoffset
; /* save floating point register offset */
3404 long frameoffset
; /* frame size */
3405 short framereg
; /* frame pointer register */
3406 short pcreg
; /* offset or reg of return pc */
3407 long irpss
; /* index into the runtime string table */
3409 struct exception_info
*exception_info
;/* pointer to exception array */
3411 #define cbRPDR sizeof(RPDR)
3412 #define rpdNil ((pRPDR) 0)
3414 /* Swap RPDR (runtime procedure table entry) for output. */
3416 static void ecoff_swap_rpdr_out
3417 PARAMS ((bfd
*, const RPDR
*, struct rpdr_ext
*));
3420 ecoff_swap_rpdr_out (abfd
, in
, ex
)
3423 struct rpdr_ext
*ex
;
3425 /* ecoff_put_off was defined in ecoffswap.h. */
3426 ecoff_put_off (abfd
, in
->adr
, (bfd_byte
*) ex
->p_adr
);
3427 bfd_h_put_32 (abfd
, in
->regmask
, (bfd_byte
*) ex
->p_regmask
);
3428 bfd_h_put_32 (abfd
, in
->regoffset
, (bfd_byte
*) ex
->p_regoffset
);
3429 bfd_h_put_32 (abfd
, in
->fregmask
, (bfd_byte
*) ex
->p_fregmask
);
3430 bfd_h_put_32 (abfd
, in
->fregoffset
, (bfd_byte
*) ex
->p_fregoffset
);
3431 bfd_h_put_32 (abfd
, in
->frameoffset
, (bfd_byte
*) ex
->p_frameoffset
);
3433 bfd_h_put_16 (abfd
, in
->framereg
, (bfd_byte
*) ex
->p_framereg
);
3434 bfd_h_put_16 (abfd
, in
->pcreg
, (bfd_byte
*) ex
->p_pcreg
);
3436 bfd_h_put_32 (abfd
, in
->irpss
, (bfd_byte
*) ex
->p_irpss
);
3438 ecoff_put_off (abfd
, in
->exception_info
, (bfd_byte
*) ex
->p_exception_info
);
3442 /* Read ECOFF debugging information from a .mdebug section into a
3443 ecoff_debug_info structure. */
3446 _bfd_mips_elf_read_ecoff_info (abfd
, section
, debug
)
3449 struct ecoff_debug_info
*debug
;
3452 const struct ecoff_debug_swap
*swap
;
3453 char *ext_hdr
= NULL
;
3455 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
3456 memset (debug
, 0, sizeof(*debug
));
3458 ext_hdr
= (char *) bfd_malloc ((size_t) swap
->external_hdr_size
);
3459 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
3462 if (bfd_get_section_contents (abfd
, section
, ext_hdr
, (file_ptr
) 0,
3463 swap
->external_hdr_size
)
3467 symhdr
= &debug
->symbolic_header
;
3468 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
3470 /* The symbolic header contains absolute file offsets and sizes to
3472 #define READ(ptr, offset, count, size, type) \
3473 if (symhdr->count == 0) \
3474 debug->ptr = NULL; \
3477 debug->ptr = (type) bfd_malloc ((size_t) (size * symhdr->count)); \
3478 if (debug->ptr == NULL) \
3479 goto error_return; \
3480 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
3481 || (bfd_read (debug->ptr, size, symhdr->count, \
3482 abfd) != size * symhdr->count)) \
3483 goto error_return; \
3486 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
3487 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, PTR
);
3488 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, PTR
);
3489 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, PTR
);
3490 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, PTR
);
3491 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
3493 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
3494 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
3495 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, PTR
);
3496 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, PTR
);
3497 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, PTR
);
3501 debug
->adjust
= NULL
;
3506 if (ext_hdr
!= NULL
)
3508 if (debug
->line
!= NULL
)
3510 if (debug
->external_dnr
!= NULL
)
3511 free (debug
->external_dnr
);
3512 if (debug
->external_pdr
!= NULL
)
3513 free (debug
->external_pdr
);
3514 if (debug
->external_sym
!= NULL
)
3515 free (debug
->external_sym
);
3516 if (debug
->external_opt
!= NULL
)
3517 free (debug
->external_opt
);
3518 if (debug
->external_aux
!= NULL
)
3519 free (debug
->external_aux
);
3520 if (debug
->ss
!= NULL
)
3522 if (debug
->ssext
!= NULL
)
3523 free (debug
->ssext
);
3524 if (debug
->external_fdr
!= NULL
)
3525 free (debug
->external_fdr
);
3526 if (debug
->external_rfd
!= NULL
)
3527 free (debug
->external_rfd
);
3528 if (debug
->external_ext
!= NULL
)
3529 free (debug
->external_ext
);
3533 /* MIPS ELF local labels start with '$', not 'L'. */
3537 mips_elf_is_local_label_name (abfd
, name
)
3544 /* On Irix 6, the labels go back to starting with '.', so we accept
3545 the generic ELF local label syntax as well. */
3546 return _bfd_elf_is_local_label_name (abfd
, name
);
3549 /* MIPS ELF uses a special find_nearest_line routine in order the
3550 handle the ECOFF debugging information. */
3552 struct mips_elf_find_line
3554 struct ecoff_debug_info d
;
3555 struct ecoff_find_line i
;
3559 _bfd_mips_elf_find_nearest_line (abfd
, section
, symbols
, offset
, filename_ptr
,
3560 functionname_ptr
, line_ptr
)
3565 const char **filename_ptr
;
3566 const char **functionname_ptr
;
3567 unsigned int *line_ptr
;
3571 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
3572 filename_ptr
, functionname_ptr
,
3576 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
3577 filename_ptr
, functionname_ptr
,
3579 ABI_64_P (abfd
) ? 8 : 0))
3582 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
3586 struct mips_elf_find_line
*fi
;
3587 const struct ecoff_debug_swap
* const swap
=
3588 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
3590 /* If we are called during a link, mips_elf_final_link may have
3591 cleared the SEC_HAS_CONTENTS field. We force it back on here
3592 if appropriate (which it normally will be). */
3593 origflags
= msec
->flags
;
3594 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
3595 msec
->flags
|= SEC_HAS_CONTENTS
;
3597 fi
= elf_tdata (abfd
)->find_line_info
;
3600 bfd_size_type external_fdr_size
;
3603 struct fdr
*fdr_ptr
;
3605 fi
= ((struct mips_elf_find_line
*)
3606 bfd_zalloc (abfd
, sizeof (struct mips_elf_find_line
)));
3609 msec
->flags
= origflags
;
3613 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
3615 msec
->flags
= origflags
;
3619 /* Swap in the FDR information. */
3620 fi
->d
.fdr
= ((struct fdr
*)
3622 (fi
->d
.symbolic_header
.ifdMax
*
3623 sizeof (struct fdr
))));
3624 if (fi
->d
.fdr
== NULL
)
3626 msec
->flags
= origflags
;
3629 external_fdr_size
= swap
->external_fdr_size
;
3630 fdr_ptr
= fi
->d
.fdr
;
3631 fraw_src
= (char *) fi
->d
.external_fdr
;
3632 fraw_end
= (fraw_src
3633 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
3634 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
3635 (*swap
->swap_fdr_in
) (abfd
, (PTR
) fraw_src
, fdr_ptr
);
3637 elf_tdata (abfd
)->find_line_info
= fi
;
3639 /* Note that we don't bother to ever free this information.
3640 find_nearest_line is either called all the time, as in
3641 objdump -l, so the information should be saved, or it is
3642 rarely called, as in ld error messages, so the memory
3643 wasted is unimportant. Still, it would probably be a
3644 good idea for free_cached_info to throw it away. */
3647 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
3648 &fi
->i
, filename_ptr
, functionname_ptr
,
3651 msec
->flags
= origflags
;
3655 msec
->flags
= origflags
;
3658 /* Fall back on the generic ELF find_nearest_line routine. */
3660 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
3661 filename_ptr
, functionname_ptr
,
3665 /* The mips16 compiler uses a couple of special sections to handle
3666 floating point arguments.
3668 Section names that look like .mips16.fn.FNNAME contain stubs that
3669 copy floating point arguments from the fp regs to the gp regs and
3670 then jump to FNNAME. If any 32 bit function calls FNNAME, the
3671 call should be redirected to the stub instead. If no 32 bit
3672 function calls FNNAME, the stub should be discarded. We need to
3673 consider any reference to the function, not just a call, because
3674 if the address of the function is taken we will need the stub,
3675 since the address might be passed to a 32 bit function.
3677 Section names that look like .mips16.call.FNNAME contain stubs
3678 that copy floating point arguments from the gp regs to the fp
3679 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
3680 then any 16 bit function that calls FNNAME should be redirected
3681 to the stub instead. If FNNAME is not a 32 bit function, the
3682 stub should be discarded.
3684 .mips16.call.fp.FNNAME sections are similar, but contain stubs
3685 which call FNNAME and then copy the return value from the fp regs
3686 to the gp regs. These stubs store the return value in $18 while
3687 calling FNNAME; any function which might call one of these stubs
3688 must arrange to save $18 around the call. (This case is not
3689 needed for 32 bit functions that call 16 bit functions, because
3690 16 bit functions always return floating point values in both
3693 Note that in all cases FNNAME might be defined statically.
3694 Therefore, FNNAME is not used literally. Instead, the relocation
3695 information will indicate which symbol the section is for.
3697 We record any stubs that we find in the symbol table. */
3699 #define FN_STUB ".mips16.fn."
3700 #define CALL_STUB ".mips16.call."
3701 #define CALL_FP_STUB ".mips16.call.fp."
3703 /* MIPS ELF linker hash table. */
3705 struct mips_elf_link_hash_table
3707 struct elf_link_hash_table root
;
3709 /* We no longer use this. */
3710 /* String section indices for the dynamic section symbols. */
3711 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
3713 /* The number of .rtproc entries. */
3714 bfd_size_type procedure_count
;
3715 /* The size of the .compact_rel section (if SGI_COMPAT). */
3716 bfd_size_type compact_rel_size
;
3717 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
3718 entry is set to the address of __rld_obj_head as in Irix 5. */
3719 boolean use_rld_obj_head
;
3720 /* This is the value of the __rld_map or __rld_obj_head symbol. */
3722 /* This is set if we see any mips16 stub sections. */
3723 boolean mips16_stubs_seen
;
3726 /* Look up an entry in a MIPS ELF linker hash table. */
3728 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
3729 ((struct mips_elf_link_hash_entry *) \
3730 elf_link_hash_lookup (&(table)->root, (string), (create), \
3733 /* Traverse a MIPS ELF linker hash table. */
3735 #define mips_elf_link_hash_traverse(table, func, info) \
3736 (elf_link_hash_traverse \
3738 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
3741 /* Get the MIPS ELF linker hash table from a link_info structure. */
3743 #define mips_elf_hash_table(p) \
3744 ((struct mips_elf_link_hash_table *) ((p)->hash))
3746 static boolean mips_elf_output_extsym
3747 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
3749 /* Create an entry in a MIPS ELF linker hash table. */
3751 static struct bfd_hash_entry
*
3752 mips_elf_link_hash_newfunc (entry
, table
, string
)
3753 struct bfd_hash_entry
*entry
;
3754 struct bfd_hash_table
*table
;
3757 struct mips_elf_link_hash_entry
*ret
=
3758 (struct mips_elf_link_hash_entry
*) entry
;
3760 /* Allocate the structure if it has not already been allocated by a
3762 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
3763 ret
= ((struct mips_elf_link_hash_entry
*)
3764 bfd_hash_allocate (table
,
3765 sizeof (struct mips_elf_link_hash_entry
)));
3766 if (ret
== (struct mips_elf_link_hash_entry
*) NULL
)
3767 return (struct bfd_hash_entry
*) ret
;
3769 /* Call the allocation method of the superclass. */
3770 ret
= ((struct mips_elf_link_hash_entry
*)
3771 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
3773 if (ret
!= (struct mips_elf_link_hash_entry
*) NULL
)
3775 /* Set local fields. */
3776 memset (&ret
->esym
, 0, sizeof (EXTR
));
3777 /* We use -2 as a marker to indicate that the information has
3778 not been set. -1 means there is no associated ifd. */
3780 ret
->possibly_dynamic_relocs
= 0;
3781 ret
->min_dyn_reloc_index
= 0;
3782 ret
->fn_stub
= NULL
;
3783 ret
->need_fn_stub
= false;
3784 ret
->call_stub
= NULL
;
3785 ret
->call_fp_stub
= NULL
;
3788 return (struct bfd_hash_entry
*) ret
;
3791 /* Create a MIPS ELF linker hash table. */
3793 struct bfd_link_hash_table
*
3794 _bfd_mips_elf_link_hash_table_create (abfd
)
3797 struct mips_elf_link_hash_table
*ret
;
3799 ret
= ((struct mips_elf_link_hash_table
*)
3800 bfd_alloc (abfd
, sizeof (struct mips_elf_link_hash_table
)));
3801 if (ret
== (struct mips_elf_link_hash_table
*) NULL
)
3804 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
3805 mips_elf_link_hash_newfunc
))
3807 bfd_release (abfd
, ret
);
3812 /* We no longer use this. */
3813 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
3814 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
3816 ret
->procedure_count
= 0;
3817 ret
->compact_rel_size
= 0;
3818 ret
->use_rld_obj_head
= false;
3820 ret
->mips16_stubs_seen
= false;
3822 return &ret
->root
.root
;
3825 /* Hook called by the linker routine which adds symbols from an object
3826 file. We must handle the special MIPS section numbers here. */
3830 _bfd_mips_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
3832 struct bfd_link_info
*info
;
3833 const Elf_Internal_Sym
*sym
;
3835 flagword
*flagsp ATTRIBUTE_UNUSED
;
3839 if (SGI_COMPAT (abfd
)
3840 && (abfd
->flags
& DYNAMIC
) != 0
3841 && strcmp (*namep
, "_rld_new_interface") == 0)
3843 /* Skip Irix 5 rld entry name. */
3848 switch (sym
->st_shndx
)
3851 /* Common symbols less than the GP size are automatically
3852 treated as SHN_MIPS_SCOMMON symbols. */
3853 if (sym
->st_size
> elf_gp_size (abfd
)
3854 || IRIX_COMPAT (abfd
) == ict_irix6
)
3857 case SHN_MIPS_SCOMMON
:
3858 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
3859 (*secp
)->flags
|= SEC_IS_COMMON
;
3860 *valp
= sym
->st_size
;
3864 /* This section is used in a shared object. */
3865 if (mips_elf_text_section_ptr
== NULL
)
3867 /* Initialize the section. */
3868 mips_elf_text_section
.name
= ".text";
3869 mips_elf_text_section
.flags
= SEC_NO_FLAGS
;
3870 mips_elf_text_section
.output_section
= NULL
;
3871 mips_elf_text_section
.symbol
= &mips_elf_text_symbol
;
3872 mips_elf_text_section
.symbol_ptr_ptr
= &mips_elf_text_symbol_ptr
;
3873 mips_elf_text_symbol
.name
= ".text";
3874 mips_elf_text_symbol
.flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
3875 mips_elf_text_symbol
.section
= &mips_elf_text_section
;
3876 mips_elf_text_symbol_ptr
= &mips_elf_text_symbol
;
3877 mips_elf_text_section_ptr
= &mips_elf_text_section
;
3879 /* This code used to do *secp = bfd_und_section_ptr if
3880 info->shared. I don't know why, and that doesn't make sense,
3881 so I took it out. */
3882 *secp
= mips_elf_text_section_ptr
;
3885 case SHN_MIPS_ACOMMON
:
3886 /* Fall through. XXX Can we treat this as allocated data? */
3888 /* This section is used in a shared object. */
3889 if (mips_elf_data_section_ptr
== NULL
)
3891 /* Initialize the section. */
3892 mips_elf_data_section
.name
= ".data";
3893 mips_elf_data_section
.flags
= SEC_NO_FLAGS
;
3894 mips_elf_data_section
.output_section
= NULL
;
3895 mips_elf_data_section
.symbol
= &mips_elf_data_symbol
;
3896 mips_elf_data_section
.symbol_ptr_ptr
= &mips_elf_data_symbol_ptr
;
3897 mips_elf_data_symbol
.name
= ".data";
3898 mips_elf_data_symbol
.flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
3899 mips_elf_data_symbol
.section
= &mips_elf_data_section
;
3900 mips_elf_data_symbol_ptr
= &mips_elf_data_symbol
;
3901 mips_elf_data_section_ptr
= &mips_elf_data_section
;
3903 /* This code used to do *secp = bfd_und_section_ptr if
3904 info->shared. I don't know why, and that doesn't make sense,
3905 so I took it out. */
3906 *secp
= mips_elf_data_section_ptr
;
3909 case SHN_MIPS_SUNDEFINED
:
3910 *secp
= bfd_und_section_ptr
;
3914 if (SGI_COMPAT (abfd
)
3916 && info
->hash
->creator
== abfd
->xvec
3917 && strcmp (*namep
, "__rld_obj_head") == 0)
3919 struct elf_link_hash_entry
*h
;
3921 /* Mark __rld_obj_head as dynamic. */
3923 if (! (_bfd_generic_link_add_one_symbol
3924 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
,
3925 (bfd_vma
) *valp
, (const char *) NULL
, false,
3926 get_elf_backend_data (abfd
)->collect
,
3927 (struct bfd_link_hash_entry
**) &h
)))
3929 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
3930 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
3931 h
->type
= STT_OBJECT
;
3933 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
3936 mips_elf_hash_table (info
)->use_rld_obj_head
= true;
3939 /* If this is a mips16 text symbol, add 1 to the value to make it
3940 odd. This will cause something like .word SYM to come up with
3941 the right value when it is loaded into the PC. */
3942 if (sym
->st_other
== STO_MIPS16
)
3948 /* Structure used to pass information to mips_elf_output_extsym. */
3953 struct bfd_link_info
*info
;
3954 struct ecoff_debug_info
*debug
;
3955 const struct ecoff_debug_swap
*swap
;
3959 /* This routine is used to write out ECOFF debugging external symbol
3960 information. It is called via mips_elf_link_hash_traverse. The
3961 ECOFF external symbol information must match the ELF external
3962 symbol information. Unfortunately, at this point we don't know
3963 whether a symbol is required by reloc information, so the two
3964 tables may wind up being different. We must sort out the external
3965 symbol information before we can set the final size of the .mdebug
3966 section, and we must set the size of the .mdebug section before we
3967 can relocate any sections, and we can't know which symbols are
3968 required by relocation until we relocate the sections.
3969 Fortunately, it is relatively unlikely that any symbol will be
3970 stripped but required by a reloc. In particular, it can not happen
3971 when generating a final executable. */
3974 mips_elf_output_extsym (h
, data
)
3975 struct mips_elf_link_hash_entry
*h
;
3978 struct extsym_info
*einfo
= (struct extsym_info
*) data
;
3980 asection
*sec
, *output_section
;
3982 if (h
->root
.indx
== -2)
3984 else if (((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3985 || (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
3986 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
3987 && (h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
3989 else if (einfo
->info
->strip
== strip_all
3990 || (einfo
->info
->strip
== strip_some
3991 && bfd_hash_lookup (einfo
->info
->keep_hash
,
3992 h
->root
.root
.root
.string
,
3993 false, false) == NULL
))
4001 if (h
->esym
.ifd
== -2)
4004 h
->esym
.cobol_main
= 0;
4005 h
->esym
.weakext
= 0;
4006 h
->esym
.reserved
= 0;
4007 h
->esym
.ifd
= ifdNil
;
4008 h
->esym
.asym
.value
= 0;
4009 h
->esym
.asym
.st
= stGlobal
;
4011 if (SGI_COMPAT (einfo
->abfd
)
4012 && (h
->root
.root
.type
== bfd_link_hash_undefined
4013 || h
->root
.root
.type
== bfd_link_hash_undefweak
))
4017 /* Use undefined class. Also, set class and type for some
4019 name
= h
->root
.root
.root
.string
;
4020 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
4021 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
4023 h
->esym
.asym
.sc
= scData
;
4024 h
->esym
.asym
.st
= stLabel
;
4025 h
->esym
.asym
.value
= 0;
4027 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
4029 h
->esym
.asym
.sc
= scAbs
;
4030 h
->esym
.asym
.st
= stLabel
;
4031 h
->esym
.asym
.value
=
4032 mips_elf_hash_table (einfo
->info
)->procedure_count
;
4034 else if (strcmp (name
, "_gp_disp") == 0)
4036 h
->esym
.asym
.sc
= scAbs
;
4037 h
->esym
.asym
.st
= stLabel
;
4038 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
4041 h
->esym
.asym
.sc
= scUndefined
;
4043 else if (h
->root
.root
.type
!= bfd_link_hash_defined
4044 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
4045 h
->esym
.asym
.sc
= scAbs
;
4050 sec
= h
->root
.root
.u
.def
.section
;
4051 output_section
= sec
->output_section
;
4053 /* When making a shared library and symbol h is the one from
4054 the another shared library, OUTPUT_SECTION may be null. */
4055 if (output_section
== NULL
)
4056 h
->esym
.asym
.sc
= scUndefined
;
4059 name
= bfd_section_name (output_section
->owner
, output_section
);
4061 if (strcmp (name
, ".text") == 0)
4062 h
->esym
.asym
.sc
= scText
;
4063 else if (strcmp (name
, ".data") == 0)
4064 h
->esym
.asym
.sc
= scData
;
4065 else if (strcmp (name
, ".sdata") == 0)
4066 h
->esym
.asym
.sc
= scSData
;
4067 else if (strcmp (name
, ".rodata") == 0
4068 || strcmp (name
, ".rdata") == 0)
4069 h
->esym
.asym
.sc
= scRData
;
4070 else if (strcmp (name
, ".bss") == 0)
4071 h
->esym
.asym
.sc
= scBss
;
4072 else if (strcmp (name
, ".sbss") == 0)
4073 h
->esym
.asym
.sc
= scSBss
;
4074 else if (strcmp (name
, ".init") == 0)
4075 h
->esym
.asym
.sc
= scInit
;
4076 else if (strcmp (name
, ".fini") == 0)
4077 h
->esym
.asym
.sc
= scFini
;
4079 h
->esym
.asym
.sc
= scAbs
;
4083 h
->esym
.asym
.reserved
= 0;
4084 h
->esym
.asym
.index
= indexNil
;
4087 if (h
->root
.root
.type
== bfd_link_hash_common
)
4088 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
4089 else if (h
->root
.root
.type
== bfd_link_hash_defined
4090 || h
->root
.root
.type
== bfd_link_hash_defweak
)
4092 if (h
->esym
.asym
.sc
== scCommon
)
4093 h
->esym
.asym
.sc
= scBss
;
4094 else if (h
->esym
.asym
.sc
== scSCommon
)
4095 h
->esym
.asym
.sc
= scSBss
;
4097 sec
= h
->root
.root
.u
.def
.section
;
4098 output_section
= sec
->output_section
;
4099 if (output_section
!= NULL
)
4100 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
4101 + sec
->output_offset
4102 + output_section
->vma
);
4104 h
->esym
.asym
.value
= 0;
4106 else if ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
4108 /* Set type and value for a symbol with a function stub. */
4109 h
->esym
.asym
.st
= stProc
;
4110 sec
= h
->root
.root
.u
.def
.section
;
4112 h
->esym
.asym
.value
= 0;
4115 output_section
= sec
->output_section
;
4116 if (output_section
!= NULL
)
4117 h
->esym
.asym
.value
= (h
->root
.plt
.offset
4118 + sec
->output_offset
4119 + output_section
->vma
);
4121 h
->esym
.asym
.value
= 0;
4128 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
4129 h
->root
.root
.root
.string
,
4132 einfo
->failed
= true;
4139 /* Create a runtime procedure table from the .mdebug section. */
4142 mips_elf_create_procedure_table (handle
, abfd
, info
, s
, debug
)
4145 struct bfd_link_info
*info
;
4147 struct ecoff_debug_info
*debug
;
4149 const struct ecoff_debug_swap
*swap
;
4150 HDRR
*hdr
= &debug
->symbolic_header
;
4152 struct rpdr_ext
*erp
;
4154 struct pdr_ext
*epdr
;
4155 struct sym_ext
*esym
;
4158 unsigned long size
, count
;
4159 unsigned long sindex
;
4163 const char *no_name_func
= _("static procedure (no name)");
4171 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
4173 sindex
= strlen (no_name_func
) + 1;
4174 count
= hdr
->ipdMax
;
4177 size
= swap
->external_pdr_size
;
4179 epdr
= (struct pdr_ext
*) bfd_malloc (size
* count
);
4183 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (PTR
) epdr
))
4186 size
= sizeof (RPDR
);
4187 rp
= rpdr
= (RPDR
*) bfd_malloc (size
* count
);
4191 sv
= (char **) bfd_malloc (sizeof (char *) * count
);
4195 count
= hdr
->isymMax
;
4196 size
= swap
->external_sym_size
;
4197 esym
= (struct sym_ext
*) bfd_malloc (size
* count
);
4201 if (! _bfd_ecoff_get_accumulated_sym (handle
, (PTR
) esym
))
4204 count
= hdr
->issMax
;
4205 ss
= (char *) bfd_malloc (count
);
4208 if (! _bfd_ecoff_get_accumulated_ss (handle
, (PTR
) ss
))
4211 count
= hdr
->ipdMax
;
4212 for (i
= 0; i
< count
; i
++, rp
++)
4214 (*swap
->swap_pdr_in
) (abfd
, (PTR
) (epdr
+ i
), &pdr
);
4215 (*swap
->swap_sym_in
) (abfd
, (PTR
) &esym
[pdr
.isym
], &sym
);
4216 rp
->adr
= sym
.value
;
4217 rp
->regmask
= pdr
.regmask
;
4218 rp
->regoffset
= pdr
.regoffset
;
4219 rp
->fregmask
= pdr
.fregmask
;
4220 rp
->fregoffset
= pdr
.fregoffset
;
4221 rp
->frameoffset
= pdr
.frameoffset
;
4222 rp
->framereg
= pdr
.framereg
;
4223 rp
->pcreg
= pdr
.pcreg
;
4225 sv
[i
] = ss
+ sym
.iss
;
4226 sindex
+= strlen (sv
[i
]) + 1;
4230 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
4231 size
= BFD_ALIGN (size
, 16);
4232 rtproc
= (PTR
) bfd_alloc (abfd
, size
);
4235 mips_elf_hash_table (info
)->procedure_count
= 0;
4239 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
4241 erp
= (struct rpdr_ext
*) rtproc
;
4242 memset (erp
, 0, sizeof (struct rpdr_ext
));
4244 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
4245 strcpy (str
, no_name_func
);
4246 str
+= strlen (no_name_func
) + 1;
4247 for (i
= 0; i
< count
; i
++)
4249 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
4250 strcpy (str
, sv
[i
]);
4251 str
+= strlen (sv
[i
]) + 1;
4253 ecoff_put_off (abfd
, (bfd_vma
) -1, (bfd_byte
*) (erp
+ count
)->p_adr
);
4255 /* Set the size and contents of .rtproc section. */
4256 s
->_raw_size
= size
;
4257 s
->contents
= (bfd_byte
*) rtproc
;
4259 /* Skip this section later on (I don't think this currently
4260 matters, but someday it might). */
4261 s
->link_order_head
= (struct bfd_link_order
*) NULL
;
4290 /* A comparison routine used to sort .gptab entries. */
4293 gptab_compare (p1
, p2
)
4297 const Elf32_gptab
*a1
= (const Elf32_gptab
*) p1
;
4298 const Elf32_gptab
*a2
= (const Elf32_gptab
*) p2
;
4300 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
4303 /* We need to use a special link routine to handle the .reginfo and
4304 the .mdebug sections. We need to merge all instances of these
4305 sections together, not write them all out sequentially. */
4308 _bfd_mips_elf_final_link (abfd
, info
)
4310 struct bfd_link_info
*info
;
4314 struct bfd_link_order
*p
;
4315 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
4316 asection
*rtproc_sec
;
4317 Elf32_RegInfo reginfo
;
4318 struct ecoff_debug_info debug
;
4319 const struct ecoff_debug_swap
*swap
4320 = get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
4321 HDRR
*symhdr
= &debug
.symbolic_header
;
4322 PTR mdebug_handle
= NULL
;
4324 /* If all the things we linked together were PIC, but we're
4325 producing an executable (rather than a shared object), then the
4326 resulting file is CPIC (i.e., it calls PIC code.) */
4328 && !info
->relocateable
4329 && elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
4331 elf_elfheader (abfd
)->e_flags
&= ~EF_MIPS_PIC
;
4332 elf_elfheader (abfd
)->e_flags
|= EF_MIPS_CPIC
;
4335 /* We'd carefully arranged the dynamic symbol indices, and then the
4336 generic size_dynamic_sections renumbered them out from under us.
4337 Rather than trying somehow to prevent the renumbering, just do
4339 if (elf_hash_table (info
)->dynamic_sections_created
)
4343 struct mips_got_info
*g
;
4345 /* When we resort, we must tell mips_elf_sort_hash_table what
4346 the lowest index it may use is. That's the number of section
4347 symbols we're going to add. The generic ELF linker only
4348 adds these symbols when building a shared object. Note that
4349 we count the sections after (possibly) removing the .options
4351 if (!mips_elf_sort_hash_table (info
, (info
->shared
4352 ? bfd_count_sections (abfd
) + 1
4356 /* Make sure we didn't grow the global .got region. */
4357 dynobj
= elf_hash_table (info
)->dynobj
;
4358 got
= bfd_get_section_by_name (dynobj
, ".got");
4359 g
= (struct mips_got_info
*) elf_section_data (got
)->tdata
;
4361 if (g
->global_gotsym
!= NULL
)
4362 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
4363 - g
->global_gotsym
->dynindx
)
4364 <= g
->global_gotno
);
4367 /* On IRIX5, we omit the .options section. On IRIX6, however, we
4368 include it, even though we don't process it quite right. (Some
4369 entries are supposed to be merged.) Empirically, we seem to be
4370 better off including it then not. */
4371 if (IRIX_COMPAT (abfd
) == ict_irix5
)
4372 for (secpp
= &abfd
->sections
; *secpp
!= NULL
; secpp
= &(*secpp
)->next
)
4374 if (strcmp ((*secpp
)->name
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)) == 0)
4376 for (p
= (*secpp
)->link_order_head
; p
!= NULL
; p
= p
->next
)
4377 if (p
->type
== bfd_indirect_link_order
)
4378 p
->u
.indirect
.section
->flags
&=~ SEC_HAS_CONTENTS
;
4379 (*secpp
)->link_order_head
= NULL
;
4380 *secpp
= (*secpp
)->next
;
4381 --abfd
->section_count
;
4387 /* Get a value for the GP register. */
4388 if (elf_gp (abfd
) == 0)
4390 struct bfd_link_hash_entry
*h
;
4392 h
= bfd_link_hash_lookup (info
->hash
, "_gp", false, false, true);
4393 if (h
!= (struct bfd_link_hash_entry
*) NULL
4394 && h
->type
== bfd_link_hash_defined
)
4395 elf_gp (abfd
) = (h
->u
.def
.value
4396 + h
->u
.def
.section
->output_section
->vma
4397 + h
->u
.def
.section
->output_offset
);
4398 else if (info
->relocateable
)
4402 /* Find the GP-relative section with the lowest offset. */
4404 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4406 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
4409 /* And calculate GP relative to that. */
4410 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (abfd
);
4414 /* If the relocate_section function needs to do a reloc
4415 involving the GP value, it should make a reloc_dangerous
4416 callback to warn that GP is not defined. */
4420 /* Go through the sections and collect the .reginfo and .mdebug
4424 gptab_data_sec
= NULL
;
4425 gptab_bss_sec
= NULL
;
4426 for (o
= abfd
->sections
; o
!= (asection
*) NULL
; o
= o
->next
)
4428 if (strcmp (o
->name
, ".reginfo") == 0)
4430 memset (®info
, 0, sizeof reginfo
);
4432 /* We have found the .reginfo section in the output file.
4433 Look through all the link_orders comprising it and merge
4434 the information together. */
4435 for (p
= o
->link_order_head
;
4436 p
!= (struct bfd_link_order
*) NULL
;
4439 asection
*input_section
;
4441 Elf32_External_RegInfo ext
;
4444 if (p
->type
!= bfd_indirect_link_order
)
4446 if (p
->type
== bfd_fill_link_order
)
4451 input_section
= p
->u
.indirect
.section
;
4452 input_bfd
= input_section
->owner
;
4454 /* The linker emulation code has probably clobbered the
4455 size to be zero bytes. */
4456 if (input_section
->_raw_size
== 0)
4457 input_section
->_raw_size
= sizeof (Elf32_External_RegInfo
);
4459 if (! bfd_get_section_contents (input_bfd
, input_section
,
4465 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
4467 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
4468 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
4469 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
4470 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
4471 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
4473 /* ri_gp_value is set by the function
4474 mips_elf32_section_processing when the section is
4475 finally written out. */
4477 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4478 elf_link_input_bfd ignores this section. */
4479 input_section
->flags
&=~ SEC_HAS_CONTENTS
;
4482 /* Size has been set in mips_elf_always_size_sections */
4483 BFD_ASSERT(o
->_raw_size
== sizeof (Elf32_External_RegInfo
));
4485 /* Skip this section later on (I don't think this currently
4486 matters, but someday it might). */
4487 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
4492 if (strcmp (o
->name
, ".mdebug") == 0)
4494 struct extsym_info einfo
;
4496 /* We have found the .mdebug section in the output file.
4497 Look through all the link_orders comprising it and merge
4498 the information together. */
4499 symhdr
->magic
= swap
->sym_magic
;
4500 /* FIXME: What should the version stamp be? */
4502 symhdr
->ilineMax
= 0;
4506 symhdr
->isymMax
= 0;
4507 symhdr
->ioptMax
= 0;
4508 symhdr
->iauxMax
= 0;
4510 symhdr
->issExtMax
= 0;
4513 symhdr
->iextMax
= 0;
4515 /* We accumulate the debugging information itself in the
4516 debug_info structure. */
4518 debug
.external_dnr
= NULL
;
4519 debug
.external_pdr
= NULL
;
4520 debug
.external_sym
= NULL
;
4521 debug
.external_opt
= NULL
;
4522 debug
.external_aux
= NULL
;
4524 debug
.ssext
= debug
.ssext_end
= NULL
;
4525 debug
.external_fdr
= NULL
;
4526 debug
.external_rfd
= NULL
;
4527 debug
.external_ext
= debug
.external_ext_end
= NULL
;
4529 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
4530 if (mdebug_handle
== (PTR
) NULL
)
4533 if (SGI_COMPAT (abfd
))
4539 static const char * const name
[] =
4540 { ".text", ".init", ".fini", ".data",
4541 ".rodata", ".sdata", ".sbss", ".bss" };
4542 static const int sc
[] = { scText
, scInit
, scFini
, scData
,
4543 scRData
, scSData
, scSBss
, scBss
};
4546 esym
.cobol_main
= 0;
4550 esym
.asym
.iss
= issNil
;
4551 esym
.asym
.st
= stLocal
;
4552 esym
.asym
.reserved
= 0;
4553 esym
.asym
.index
= indexNil
;
4555 for (i
= 0; i
< 8; i
++)
4557 esym
.asym
.sc
= sc
[i
];
4558 s
= bfd_get_section_by_name (abfd
, name
[i
]);
4561 esym
.asym
.value
= s
->vma
;
4562 last
= s
->vma
+ s
->_raw_size
;
4565 esym
.asym
.value
= last
;
4567 if (! bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
4573 for (p
= o
->link_order_head
;
4574 p
!= (struct bfd_link_order
*) NULL
;
4577 asection
*input_section
;
4579 const struct ecoff_debug_swap
*input_swap
;
4580 struct ecoff_debug_info input_debug
;
4584 if (p
->type
!= bfd_indirect_link_order
)
4586 if (p
->type
== bfd_fill_link_order
)
4591 input_section
= p
->u
.indirect
.section
;
4592 input_bfd
= input_section
->owner
;
4594 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
4595 || (get_elf_backend_data (input_bfd
)
4596 ->elf_backend_ecoff_debug_swap
) == NULL
)
4598 /* I don't know what a non MIPS ELF bfd would be
4599 doing with a .mdebug section, but I don't really
4600 want to deal with it. */
4604 input_swap
= (get_elf_backend_data (input_bfd
)
4605 ->elf_backend_ecoff_debug_swap
);
4607 BFD_ASSERT (p
->size
== input_section
->_raw_size
);
4609 /* The ECOFF linking code expects that we have already
4610 read in the debugging information and set up an
4611 ecoff_debug_info structure, so we do that now. */
4612 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
4616 if (! (bfd_ecoff_debug_accumulate
4617 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
4618 &input_debug
, input_swap
, info
)))
4621 /* Loop through the external symbols. For each one with
4622 interesting information, try to find the symbol in
4623 the linker global hash table and save the information
4624 for the output external symbols. */
4625 eraw_src
= input_debug
.external_ext
;
4626 eraw_end
= (eraw_src
4627 + (input_debug
.symbolic_header
.iextMax
4628 * input_swap
->external_ext_size
));
4630 eraw_src
< eraw_end
;
4631 eraw_src
+= input_swap
->external_ext_size
)
4635 struct mips_elf_link_hash_entry
*h
;
4637 (*input_swap
->swap_ext_in
) (input_bfd
, (PTR
) eraw_src
, &ext
);
4638 if (ext
.asym
.sc
== scNil
4639 || ext
.asym
.sc
== scUndefined
4640 || ext
.asym
.sc
== scSUndefined
)
4643 name
= input_debug
.ssext
+ ext
.asym
.iss
;
4644 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
4645 name
, false, false, true);
4646 if (h
== NULL
|| h
->esym
.ifd
!= -2)
4652 < input_debug
.symbolic_header
.ifdMax
);
4653 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
4659 /* Free up the information we just read. */
4660 free (input_debug
.line
);
4661 free (input_debug
.external_dnr
);
4662 free (input_debug
.external_pdr
);
4663 free (input_debug
.external_sym
);
4664 free (input_debug
.external_opt
);
4665 free (input_debug
.external_aux
);
4666 free (input_debug
.ss
);
4667 free (input_debug
.ssext
);
4668 free (input_debug
.external_fdr
);
4669 free (input_debug
.external_rfd
);
4670 free (input_debug
.external_ext
);
4672 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4673 elf_link_input_bfd ignores this section. */
4674 input_section
->flags
&=~ SEC_HAS_CONTENTS
;
4677 if (SGI_COMPAT (abfd
) && info
->shared
)
4679 /* Create .rtproc section. */
4680 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
4681 if (rtproc_sec
== NULL
)
4683 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4684 | SEC_LINKER_CREATED
| SEC_READONLY
);
4686 rtproc_sec
= bfd_make_section (abfd
, ".rtproc");
4687 if (rtproc_sec
== NULL
4688 || ! bfd_set_section_flags (abfd
, rtproc_sec
, flags
)
4689 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
4693 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
4694 info
, rtproc_sec
, &debug
))
4698 /* Build the external symbol information. */
4701 einfo
.debug
= &debug
;
4703 einfo
.failed
= false;
4704 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
4705 mips_elf_output_extsym
,
4710 /* Set the size of the .mdebug section. */
4711 o
->_raw_size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
4713 /* Skip this section later on (I don't think this currently
4714 matters, but someday it might). */
4715 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
4720 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
4722 const char *subname
;
4725 Elf32_External_gptab
*ext_tab
;
4728 /* The .gptab.sdata and .gptab.sbss sections hold
4729 information describing how the small data area would
4730 change depending upon the -G switch. These sections
4731 not used in executables files. */
4732 if (! info
->relocateable
)
4736 for (p
= o
->link_order_head
;
4737 p
!= (struct bfd_link_order
*) NULL
;
4740 asection
*input_section
;
4742 if (p
->type
!= bfd_indirect_link_order
)
4744 if (p
->type
== bfd_fill_link_order
)
4749 input_section
= p
->u
.indirect
.section
;
4751 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4752 elf_link_input_bfd ignores this section. */
4753 input_section
->flags
&=~ SEC_HAS_CONTENTS
;
4756 /* Skip this section later on (I don't think this
4757 currently matters, but someday it might). */
4758 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
4760 /* Really remove the section. */
4761 for (secpp
= &abfd
->sections
;
4763 secpp
= &(*secpp
)->next
)
4765 *secpp
= (*secpp
)->next
;
4766 --abfd
->section_count
;
4771 /* There is one gptab for initialized data, and one for
4772 uninitialized data. */
4773 if (strcmp (o
->name
, ".gptab.sdata") == 0)
4775 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
4779 (*_bfd_error_handler
)
4780 (_("%s: illegal section name `%s'"),
4781 bfd_get_filename (abfd
), o
->name
);
4782 bfd_set_error (bfd_error_nonrepresentable_section
);
4786 /* The linker script always combines .gptab.data and
4787 .gptab.sdata into .gptab.sdata, and likewise for
4788 .gptab.bss and .gptab.sbss. It is possible that there is
4789 no .sdata or .sbss section in the output file, in which
4790 case we must change the name of the output section. */
4791 subname
= o
->name
+ sizeof ".gptab" - 1;
4792 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
4794 if (o
== gptab_data_sec
)
4795 o
->name
= ".gptab.data";
4797 o
->name
= ".gptab.bss";
4798 subname
= o
->name
+ sizeof ".gptab" - 1;
4799 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
4802 /* Set up the first entry. */
4804 tab
= (Elf32_gptab
*) bfd_malloc (c
* sizeof (Elf32_gptab
));
4807 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
4808 tab
[0].gt_header
.gt_unused
= 0;
4810 /* Combine the input sections. */
4811 for (p
= o
->link_order_head
;
4812 p
!= (struct bfd_link_order
*) NULL
;
4815 asection
*input_section
;
4819 bfd_size_type gpentry
;
4821 if (p
->type
!= bfd_indirect_link_order
)
4823 if (p
->type
== bfd_fill_link_order
)
4828 input_section
= p
->u
.indirect
.section
;
4829 input_bfd
= input_section
->owner
;
4831 /* Combine the gptab entries for this input section one
4832 by one. We know that the input gptab entries are
4833 sorted by ascending -G value. */
4834 size
= bfd_section_size (input_bfd
, input_section
);
4836 for (gpentry
= sizeof (Elf32_External_gptab
);
4838 gpentry
+= sizeof (Elf32_External_gptab
))
4840 Elf32_External_gptab ext_gptab
;
4841 Elf32_gptab int_gptab
;
4847 if (! (bfd_get_section_contents
4848 (input_bfd
, input_section
, (PTR
) &ext_gptab
,
4849 gpentry
, sizeof (Elf32_External_gptab
))))
4855 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
4857 val
= int_gptab
.gt_entry
.gt_g_value
;
4858 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
4861 for (look
= 1; look
< c
; look
++)
4863 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
4864 tab
[look
].gt_entry
.gt_bytes
+= add
;
4866 if (tab
[look
].gt_entry
.gt_g_value
== val
)
4872 Elf32_gptab
*new_tab
;
4875 /* We need a new table entry. */
4876 new_tab
= ((Elf32_gptab
*)
4877 bfd_realloc ((PTR
) tab
,
4878 (c
+ 1) * sizeof (Elf32_gptab
)));
4879 if (new_tab
== NULL
)
4885 tab
[c
].gt_entry
.gt_g_value
= val
;
4886 tab
[c
].gt_entry
.gt_bytes
= add
;
4888 /* Merge in the size for the next smallest -G
4889 value, since that will be implied by this new
4892 for (look
= 1; look
< c
; look
++)
4894 if (tab
[look
].gt_entry
.gt_g_value
< val
4896 || (tab
[look
].gt_entry
.gt_g_value
4897 > tab
[max
].gt_entry
.gt_g_value
)))
4901 tab
[c
].gt_entry
.gt_bytes
+=
4902 tab
[max
].gt_entry
.gt_bytes
;
4907 last
= int_gptab
.gt_entry
.gt_bytes
;
4910 /* Hack: reset the SEC_HAS_CONTENTS flag so that
4911 elf_link_input_bfd ignores this section. */
4912 input_section
->flags
&=~ SEC_HAS_CONTENTS
;
4915 /* The table must be sorted by -G value. */
4917 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
4919 /* Swap out the table. */
4920 ext_tab
= ((Elf32_External_gptab
*)
4921 bfd_alloc (abfd
, c
* sizeof (Elf32_External_gptab
)));
4922 if (ext_tab
== NULL
)
4928 for (i
= 0; i
< c
; i
++)
4929 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ i
, ext_tab
+ i
);
4932 o
->_raw_size
= c
* sizeof (Elf32_External_gptab
);
4933 o
->contents
= (bfd_byte
*) ext_tab
;
4935 /* Skip this section later on (I don't think this currently
4936 matters, but someday it might). */
4937 o
->link_order_head
= (struct bfd_link_order
*) NULL
;
4941 /* Invoke the regular ELF backend linker to do all the work. */
4942 if (ABI_64_P (abfd
))
4945 if (!bfd_elf64_bfd_final_link (abfd
, info
))
4952 else if (!bfd_elf32_bfd_final_link (abfd
, info
))
4955 /* Now write out the computed sections. */
4957 if (reginfo_sec
!= (asection
*) NULL
)
4959 Elf32_External_RegInfo ext
;
4961 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
4962 if (! bfd_set_section_contents (abfd
, reginfo_sec
, (PTR
) &ext
,
4963 (file_ptr
) 0, sizeof ext
))
4967 if (mdebug_sec
!= (asection
*) NULL
)
4969 BFD_ASSERT (abfd
->output_has_begun
);
4970 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
4972 mdebug_sec
->filepos
))
4975 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
4978 if (gptab_data_sec
!= (asection
*) NULL
)
4980 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
4981 gptab_data_sec
->contents
,
4983 gptab_data_sec
->_raw_size
))
4987 if (gptab_bss_sec
!= (asection
*) NULL
)
4989 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
4990 gptab_bss_sec
->contents
,
4992 gptab_bss_sec
->_raw_size
))
4996 if (SGI_COMPAT (abfd
))
4998 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
4999 if (rtproc_sec
!= NULL
)
5001 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
5002 rtproc_sec
->contents
,
5004 rtproc_sec
->_raw_size
))
5012 /* Returns the GOT section for ABFD. */
5015 mips_elf_got_section (abfd
)
5018 return bfd_get_section_by_name (abfd
, ".got");
5021 /* Returns the GOT information associated with the link indicated by
5022 INFO. If SGOTP is non-NULL, it is filled in with the GOT
5025 static struct mips_got_info
*
5026 mips_elf_got_info (abfd
, sgotp
)
5031 struct mips_got_info
*g
;
5033 sgot
= mips_elf_got_section (abfd
);
5034 BFD_ASSERT (sgot
!= NULL
);
5035 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
5036 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
5037 BFD_ASSERT (g
!= NULL
);
5044 /* Return whether a relocation is against a local symbol. */
5047 mips_elf_local_relocation_p (input_bfd
, relocation
, local_sections
)
5049 const Elf_Internal_Rela
*relocation
;
5050 asection
**local_sections
;
5052 unsigned long r_symndx
;
5053 Elf_Internal_Shdr
*symtab_hdr
;
5055 r_symndx
= ELF32_R_SYM (relocation
->r_info
);
5056 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5057 if (! elf_bad_symtab (input_bfd
))
5058 return r_symndx
< symtab_hdr
->sh_info
;
5061 /* The symbol table does not follow the rule that local symbols
5062 must come before globals. */
5063 return local_sections
[r_symndx
] != NULL
;
5067 /* Sign-extend VALUE, which has the indicated number of BITS. */
5070 mips_elf_sign_extend (value
, bits
)
5074 if (value
& ((bfd_vma
)1 << (bits
- 1)))
5075 /* VALUE is negative. */
5076 value
|= ((bfd_vma
) - 1) << bits
;
5081 /* Return non-zero if the indicated VALUE has overflowed the maximum
5082 range expressable by a signed number with the indicated number of
5086 mips_elf_overflow_p (value
, bits
)
5090 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
5092 if (svalue
> (1 << (bits
- 1)) - 1)
5093 /* The value is too big. */
5095 else if (svalue
< -(1 << (bits
- 1)))
5096 /* The value is too small. */
5103 /* Calculate the %high function. */
5106 mips_elf_high (value
)
5109 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
5112 /* Calculate the %higher function. */
5115 mips_elf_higher (value
)
5116 bfd_vma value ATTRIBUTE_UNUSED
;
5119 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
5122 return (bfd_vma
) -1;
5126 /* Calculate the %highest function. */
5129 mips_elf_highest (value
)
5130 bfd_vma value ATTRIBUTE_UNUSED
;
5133 return ((value
+ (bfd_vma
) 0x800080008000) >> 48) & 0xffff;
5136 return (bfd_vma
) -1;
5140 /* Returns the GOT index for the global symbol indicated by H. */
5143 mips_elf_global_got_index (abfd
, h
)
5145 struct elf_link_hash_entry
*h
;
5149 struct mips_got_info
*g
;
5151 g
= mips_elf_got_info (abfd
, &sgot
);
5153 /* Once we determine the global GOT entry with the lowest dynamic
5154 symbol table index, we must put all dynamic symbols with greater
5155 indices into the GOT. That makes it easy to calculate the GOT
5157 BFD_ASSERT (h
->dynindx
>= g
->global_gotsym
->dynindx
);
5158 index
= ((h
->dynindx
- g
->global_gotsym
->dynindx
+ g
->local_gotno
)
5159 * MIPS_ELF_GOT_SIZE (abfd
));
5160 BFD_ASSERT (index
< sgot
->_raw_size
);
5165 /* Returns the offset for the entry at the INDEXth position
5169 mips_elf_got_offset_from_index (dynobj
, output_bfd
, index
)
5177 sgot
= mips_elf_got_section (dynobj
);
5178 gp
= _bfd_get_gp_value (output_bfd
);
5179 return (sgot
->output_section
->vma
+ sgot
->output_offset
+ index
-
5183 /* If H is a symbol that needs a global GOT entry, but has a dynamic
5184 symbol table index lower than any we've seen to date, record it for
5188 mips_elf_record_global_got_symbol (h
, info
, g
)
5189 struct elf_link_hash_entry
*h
;
5190 struct bfd_link_info
*info
;
5191 struct mips_got_info
*g ATTRIBUTE_UNUSED
;
5193 /* A global symbol in the GOT must also be in the dynamic symbol
5195 if (h
->dynindx
== -1
5196 && !bfd_elf32_link_record_dynamic_symbol (info
, h
))
5199 /* If we've already marked this entry as need GOT space, we don't
5200 need to do it again. */
5201 if (h
->got
.offset
!= (bfd_vma
) - 1)
5204 /* By setting this to a value other than -1, we are indicating that
5205 there needs to be a GOT entry for H. */
5211 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
5212 the dynamic symbols. */
5214 struct mips_elf_hash_sort_data
5216 /* The symbol in the global GOT with the lowest dynamic symbol table
5218 struct elf_link_hash_entry
*low
;
5219 /* The least dynamic symbol table index corresponding to a symbol
5220 with a GOT entry. */
5221 long min_got_dynindx
;
5222 /* The greatest dynamic symbol table index not corresponding to a
5223 symbol without a GOT entry. */
5224 long max_non_got_dynindx
;
5227 /* If H needs a GOT entry, assign it the highest available dynamic
5228 index. Otherwise, assign it the lowest available dynamic
5232 mips_elf_sort_hash_table_f (h
, data
)
5233 struct mips_elf_link_hash_entry
*h
;
5236 struct mips_elf_hash_sort_data
*hsd
5237 = (struct mips_elf_hash_sort_data
*) data
;
5239 /* Symbols without dynamic symbol table entries aren't interesting
5241 if (h
->root
.dynindx
== -1)
5244 if (h
->root
.got
.offset
!= 0)
5245 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
5248 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
5249 hsd
->low
= (struct elf_link_hash_entry
*) h
;
5255 /* Sort the dynamic symbol table so that symbols that need GOT entries
5256 appear towards the end. This reduces the amount of GOT space
5257 required. MAX_LOCAL is used to set the number of local symbols
5258 known to be in the dynamic symbol table. During
5259 mips_elf_size_dynamic_sections, this value is 1. Afterward, the
5260 section symbols are added and the count is higher. */
5263 mips_elf_sort_hash_table (info
, max_local
)
5264 struct bfd_link_info
*info
;
5265 unsigned long max_local
;
5267 struct mips_elf_hash_sort_data hsd
;
5268 struct mips_got_info
*g
;
5271 dynobj
= elf_hash_table (info
)->dynobj
;
5274 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
;
5275 hsd
.max_non_got_dynindx
= max_local
;
5276 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
5277 elf_hash_table (info
)),
5278 mips_elf_sort_hash_table_f
,
5281 /* There shoud have been enough room in the symbol table to
5282 accomodate both the GOT and non-GOT symbols. */
5283 BFD_ASSERT (hsd
.min_got_dynindx
== hsd
.max_non_got_dynindx
);
5285 /* Now we know which dynamic symbol has the lowest dynamic symbol
5286 table index in the GOT. */
5287 g
= mips_elf_got_info (dynobj
, NULL
);
5288 g
->global_gotsym
= hsd
.low
;
5293 /* Create a local GOT entry for VALUE. Return the index of the entry,
5294 or -1 if it could not be created. */
5297 mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
)
5299 struct mips_got_info
*g
;
5303 if (g
->assigned_gotno
>= g
->local_gotno
)
5305 /* We didn't allocate enough space in the GOT. */
5306 (*_bfd_error_handler
)
5307 (_("not enough GOT space for local GOT entries"));
5308 bfd_set_error (bfd_error_bad_value
);
5309 return (bfd_vma
) -1;
5312 MIPS_ELF_PUT_WORD (abfd
, value
,
5314 + MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
));
5315 return MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
5318 /* Returns the GOT offset at which the indicated address can be found.
5319 If there is not yet a GOT entry for this value, create one. Returns
5320 -1 if no satisfactory GOT offset can be found. */
5323 mips_elf_local_got_index (abfd
, info
, value
)
5325 struct bfd_link_info
*info
;
5329 struct mips_got_info
*g
;
5332 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
5334 /* Look to see if we already have an appropriate entry. */
5335 for (entry
= (sgot
->contents
5336 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
5337 entry
!= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
5338 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
5340 bfd_vma address
= MIPS_ELF_GET_WORD (abfd
, entry
);
5341 if (address
== value
)
5342 return entry
- sgot
->contents
;
5345 return mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
5348 /* Find a GOT entry that is within 32KB of the VALUE. These entries
5349 are supposed to be placed at small offsets in the GOT, i.e.,
5350 within 32KB of GP. Return the index into the GOT for this page,
5351 and store the offset from this entry to the desired address in
5352 OFFSETP, if it is non-NULL. */
5355 mips_elf_got_page (abfd
, info
, value
, offsetp
)
5357 struct bfd_link_info
*info
;
5362 struct mips_got_info
*g
;
5364 bfd_byte
*last_entry
;
5368 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
5370 /* Look to see if we aleady have an appropriate entry. */
5371 last_entry
= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
5372 for (entry
= (sgot
->contents
5373 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
5374 entry
!= last_entry
;
5375 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
5377 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
5379 if (!mips_elf_overflow_p (value
- address
, 16))
5381 /* This entry will serve as the page pointer. We can add a
5382 16-bit number to it to get the actual address. */
5383 index
= entry
- sgot
->contents
;
5388 /* If we didn't have an appropriate entry, we create one now. */
5389 if (entry
== last_entry
)
5390 index
= mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
5394 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
5395 *offsetp
= value
- address
;
5401 /* Find a GOT entry whose higher-order 16 bits are the same as those
5402 for value. Return the index into the GOT for this entry. */
5405 mips_elf_got16_entry (abfd
, info
, value
)
5407 struct bfd_link_info
*info
;
5411 struct mips_got_info
*g
;
5413 bfd_byte
*last_entry
;
5417 /* Although the ABI says that it is "the high-order 16 bits" that we
5418 want, it is really the %high value. The complete value is
5419 calculated with a `addiu' of a LO16 relocation, just as with a
5421 value
= mips_elf_high (value
) << 16;
5422 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
5424 /* Look to see if we already have an appropriate entry. */
5425 last_entry
= sgot
->contents
+ MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
;
5426 for (entry
= (sgot
->contents
5427 + MIPS_ELF_GOT_SIZE (abfd
) * MIPS_RESERVED_GOTNO
);
5428 entry
!= last_entry
;
5429 entry
+= MIPS_ELF_GOT_SIZE (abfd
))
5431 address
= MIPS_ELF_GET_WORD (abfd
, entry
);
5432 if ((address
& 0xffff0000) == value
)
5434 /* This entry has the right high-order 16 bits. */
5435 index
= entry
- sgot
->contents
;
5440 /* If we didn't have an appropriate entry, we create one now. */
5441 if (entry
== last_entry
)
5442 index
= mips_elf_create_local_got_entry (abfd
, g
, sgot
, value
);
5447 /* Returns the first R_MIPS_LO16 relocation found, beginning with
5448 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5450 static const Elf_Internal_Rela
*
5451 mips_elf_next_lo16_relocation (relocation
, relend
)
5452 const Elf_Internal_Rela
*relocation
;
5453 const Elf_Internal_Rela
*relend
;
5455 /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be
5456 immediately following. However, for the IRIX6 ABI, the next
5457 relocation may be a composed relocation consisting of several
5458 relocations for the same address. In that case, the R_MIPS_LO16
5459 relocation may occur as one of these. We permit a similar
5460 extension in general, as that is useful for GCC. */
5461 while (relocation
< relend
)
5463 if (ELF32_R_TYPE (relocation
->r_info
) == R_MIPS_LO16
)
5469 /* We didn't find it. */
5470 bfd_set_error (bfd_error_bad_value
);
5474 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5475 is the original relocation, which is now being transformed into a
5476 dyanmic relocation. The ADDENDP is adjusted if necessary; the
5477 caller should store the result in place of the original addend. */
5480 mips_elf_create_dynamic_relocation (output_bfd
, info
, rel
, h
, sec
,
5481 symbol
, addendp
, input_section
)
5483 struct bfd_link_info
*info
;
5484 const Elf_Internal_Rela
*rel
;
5485 struct mips_elf_link_hash_entry
*h
;
5489 asection
*input_section
;
5491 Elf_Internal_Rel outrel
;
5497 r_type
= ELF32_R_TYPE (rel
->r_info
);
5498 dynobj
= elf_hash_table (info
)->dynobj
;
5500 = bfd_get_section_by_name (dynobj
,
5501 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
));
5502 BFD_ASSERT (sreloc
!= NULL
);
5506 /* We begin by assuming that the offset for the dynamic relocation
5507 is the same as for the original relocation. We'll adjust this
5508 later to reflect the correct output offsets. */
5509 if (elf_section_data (input_section
)->stab_info
== NULL
)
5510 outrel
.r_offset
= rel
->r_offset
;
5513 /* Except that in a stab section things are more complex.
5514 Because we compress stab information, the offset given in the
5515 relocation may not be the one we want; we must let the stabs
5516 machinery tell us the offset. */
5518 = (_bfd_stab_section_offset
5519 (output_bfd
, &elf_hash_table (info
)->stab_info
,
5521 &elf_section_data (input_section
)->stab_info
,
5523 /* If we didn't need the relocation at all, this value will be
5525 if (outrel
.r_offset
== (bfd_vma
) -1)
5529 /* If we've decided to skip this relocation, just output an emtpy
5530 record. Note that R_MIPS_NONE == 0, so that this call to memset
5531 is a way of setting R_TYPE to R_MIPS_NONE. */
5533 memset (&outrel
, 0, sizeof (outrel
));
5537 bfd_vma section_offset
;
5539 /* We must now calculate the dynamic symbol table index to use
5540 in the relocation. */
5542 && (! info
->symbolic
|| (h
->root
.elf_link_hash_flags
5543 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
5545 indx
= h
->root
.dynindx
;
5546 BFD_ASSERT (indx
!= -1);
5550 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
5552 else if (sec
== NULL
|| sec
->owner
== NULL
)
5554 bfd_set_error (bfd_error_bad_value
);
5559 indx
= elf_section_data (sec
->output_section
)->dynindx
;
5564 /* Figure out how far the target of the relocation is from
5565 the beginning of its section. */
5566 section_offset
= symbol
- sec
->output_section
->vma
;
5567 /* The relocation we're building is section-relative.
5568 Therefore, the original addend must be adjusted by the
5570 *addendp
+= symbol
- sec
->output_section
->vma
;
5571 /* Now, the relocation is just against the section. */
5572 symbol
= sec
->output_section
->vma
;
5575 /* If the relocation was previously an absolute relocation, we
5576 must adjust it by the value we give it in the dynamic symbol
5578 if (r_type
!= R_MIPS_REL32
)
5581 /* The relocation is always an REL32 relocation because we don't
5582 know where the shared library will wind up at load-time. */
5583 outrel
.r_info
= ELF32_R_INFO (indx
, R_MIPS_REL32
);
5585 /* Adjust the output offset of the relocation to reference the
5586 correct location in the output file. */
5587 outrel
.r_offset
+= (input_section
->output_section
->vma
5588 + input_section
->output_offset
);
5591 /* Put the relocation back out. We have to use the special
5592 relocation outputter in the 64-bit case since the 64-bit
5593 relocation format is non-standard. */
5594 if (ABI_64_P (output_bfd
))
5596 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
5597 (output_bfd
, &outrel
,
5599 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
5602 bfd_elf32_swap_reloc_out (output_bfd
, &outrel
,
5603 (((Elf32_External_Rel
*)
5605 + sreloc
->reloc_count
));
5607 /* Record the index of the first relocation referencing H. This
5608 information is later emitted in the .msym section. */
5610 && (h
->min_dyn_reloc_index
== 0
5611 || sreloc
->reloc_count
< h
->min_dyn_reloc_index
))
5612 h
->min_dyn_reloc_index
= sreloc
->reloc_count
;
5614 /* We've now added another relocation. */
5615 ++sreloc
->reloc_count
;
5617 /* Make sure the output section is writable. The dynamic linker
5618 will be writing to it. */
5619 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
5622 /* On IRIX5, make an entry of compact relocation info. */
5623 if (! skip
&& IRIX_COMPAT (output_bfd
) == ict_irix5
)
5625 asection
* scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
5630 Elf32_crinfo cptrel
;
5632 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
5633 cptrel
.vaddr
= (rel
->r_offset
5634 + input_section
->output_section
->vma
5635 + input_section
->output_offset
);
5636 if (r_type
== R_MIPS_REL32
)
5637 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
5639 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
5640 mips_elf_set_cr_dist2to (cptrel
, 0);
5641 cptrel
.konst
= *addendp
;
5643 cr
= (scpt
->contents
5644 + sizeof (Elf32_External_compact_rel
));
5645 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
5646 ((Elf32_External_crinfo
*) cr
5647 + scpt
->reloc_count
));
5648 ++scpt
->reloc_count
;
5655 /* Calculate the value produced by the RELOCATION (which comes from
5656 the INPUT_BFD). The ADDEND is the addend to use for this
5657 RELOCATION; RELOCATION->R_ADDEND is ignored.
5659 The result of the relocation calculation is stored in VALUEP.
5660 REQUIRE_JALXP indicates whether or not the opcode used with this
5661 relocation must be JALX.
5663 This function returns bfd_reloc_continue if the caller need take no
5664 further action regarding this relocation, bfd_reloc_notsupported if
5665 something goes dramatically wrong, bfd_reloc_overflow if an
5666 overflow occurs, and bfd_reloc_ok to indicate success. */
5668 static bfd_reloc_status_type
5669 mips_elf_calculate_relocation (abfd
,
5683 asection
*input_section
;
5684 struct bfd_link_info
*info
;
5685 const Elf_Internal_Rela
*relocation
;
5687 reloc_howto_type
*howto
;
5688 Elf_Internal_Sym
*local_syms
;
5689 asection
**local_sections
;
5692 boolean
*require_jalxp
;
5694 /* The eventual value we will return. */
5696 /* The address of the symbol against which the relocation is
5699 /* The final GP value to be used for the relocatable, executable, or
5700 shared object file being produced. */
5701 bfd_vma gp
= (bfd_vma
) - 1;
5702 /* The place (section offset or address) of the storage unit being
5705 /* The value of GP used to create the relocatable object. */
5706 bfd_vma gp0
= (bfd_vma
) - 1;
5707 /* The offset into the global offset table at which the address of
5708 the relocation entry symbol, adjusted by the addend, resides
5709 during execution. */
5710 bfd_vma g
= (bfd_vma
) - 1;
5711 /* The section in which the symbol referenced by the relocation is
5713 asection
*sec
= NULL
;
5714 struct mips_elf_link_hash_entry
* h
= NULL
;
5715 /* True if the symbol referred to by this relocation is a local
5718 /* True if the symbol referred to by this relocation is "_gp_disp". */
5719 boolean gp_disp_p
= false;
5720 Elf_Internal_Shdr
*symtab_hdr
;
5722 unsigned long r_symndx
;
5724 /* True if overflow occurred during the calculation of the
5725 relocation value. */
5726 boolean overflowed_p
;
5727 /* True if this relocation refers to a MIPS16 function. */
5728 boolean target_is_16_bit_code_p
= false;
5730 /* Parse the relocation. */
5731 r_symndx
= ELF32_R_SYM (relocation
->r_info
);
5732 r_type
= ELF32_R_TYPE (relocation
->r_info
);
5733 p
= (input_section
->output_section
->vma
5734 + input_section
->output_offset
5735 + relocation
->r_offset
);
5737 /* Assume that there will be no overflow. */
5738 overflowed_p
= false;
5740 /* Figure out whether or not the symbol is local, and get the offset
5741 used in the array of hash table entries. */
5742 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5743 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5745 if (! elf_bad_symtab (input_bfd
))
5746 extsymoff
= symtab_hdr
->sh_info
;
5749 /* The symbol table does not follow the rule that local symbols
5750 must come before globals. */
5754 /* Figure out the value of the symbol. */
5757 Elf_Internal_Sym
*sym
;
5759 sym
= local_syms
+ r_symndx
;
5760 sec
= local_sections
[r_symndx
];
5762 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5763 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
5764 symbol
+= sym
->st_value
;
5766 /* MIPS16 text labels should be treated as odd. */
5767 if (sym
->st_other
== STO_MIPS16
)
5770 /* Record the name of this symbol, for our caller. */
5771 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
5772 symtab_hdr
->sh_link
,
5775 *namep
= bfd_section_name (input_bfd
, sec
);
5777 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
5781 /* For global symbols we look up the symbol in the hash-table. */
5782 h
= ((struct mips_elf_link_hash_entry
*)
5783 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
5784 /* Find the real hash-table entry for this symbol. */
5785 while (h
->root
.type
== bfd_link_hash_indirect
5786 || h
->root
.type
== bfd_link_hash_warning
)
5787 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5789 /* Record the name of this symbol, for our caller. */
5790 *namep
= h
->root
.root
.root
.string
;
5792 /* See if this is the special _gp_disp symbol. Note that such a
5793 symbol must always be a global symbol. */
5794 if (strcmp (h
->root
.root
.root
.string
, "_gp_disp") == 0)
5796 /* Relocations against _gp_disp are permitted only with
5797 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5798 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
)
5799 return bfd_reloc_notsupported
;
5803 /* If this symbol is defined, calculate its address. Note that
5804 _gp_disp is a magic symbol, always implicitly defined by the
5805 linker, so it's inappropriate to check to see whether or not
5807 else if ((h
->root
.root
.type
== bfd_link_hash_defined
5808 || h
->root
.root
.type
== bfd_link_hash_defweak
)
5809 && h
->root
.root
.u
.def
.section
)
5811 sec
= h
->root
.root
.u
.def
.section
;
5812 if (sec
->output_section
)
5813 symbol
= (h
->root
.root
.u
.def
.value
5814 + sec
->output_section
->vma
5815 + sec
->output_offset
);
5817 symbol
= h
->root
.root
.u
.def
.value
;
5819 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
5820 /* We allow relocations against undefined weak symbols, giving
5821 it the value zero, so that you can undefined weak functions
5822 and check to see if they exist by looking at their
5825 else if (info
->shared
&& !info
->symbolic
&& !info
->no_undefined
)
5827 else if (strcmp (h
->root
.root
.root
.string
, "_DYNAMIC_LINK") == 0)
5829 /* If this is a dynamic link, we should have created a
5830 _DYNAMIC_LINK symbol in mips_elf_create_dynamic_sections.
5831 Otherwise, we should define the symbol with a value of 0.
5832 FIXME: It should probably get into the symbol table
5834 BFD_ASSERT (! info
->shared
);
5835 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
5840 if (! ((*info
->callbacks
->undefined_symbol
)
5841 (info
, h
->root
.root
.root
.string
, input_bfd
,
5842 input_section
, relocation
->r_offset
,
5843 (!info
->shared
|| info
->no_undefined
))))
5844 return bfd_reloc_undefined
;
5848 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
5851 /* If this is a 32-bit call to a 16-bit function with a stub, we
5852 need to redirect the call to the stub, unless we're already *in*
5854 if (r_type
!= R_MIPS16_26
&& !info
->relocateable
5855 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
5856 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
5857 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5858 && !mips_elf_stub_section_p (input_bfd
, input_section
))
5860 /* This is a 32-bit call to a 16-bit function. We should
5861 have already noticed that we were going to need the
5864 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5867 BFD_ASSERT (h
->need_fn_stub
);
5871 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5873 /* If this is a 16-bit call to a 32-bit function with a stub, we
5874 need to redirect the call to the stub. */
5875 else if (r_type
== R_MIPS16_26
&& !info
->relocateable
5877 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
5878 && !target_is_16_bit_code_p
)
5880 /* If both call_stub and call_fp_stub are defined, we can figure
5881 out which one to use by seeing which one appears in the input
5883 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5888 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5890 if (strncmp (bfd_get_section_name (input_bfd
, o
),
5891 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
5893 sec
= h
->call_fp_stub
;
5900 else if (h
->call_stub
!= NULL
)
5903 sec
= h
->call_fp_stub
;
5905 BFD_ASSERT (sec
->_raw_size
> 0);
5906 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5909 /* Calls from 16-bit code to 32-bit code and vice versa require the
5910 special jalx instruction. */
5911 *require_jalxp
= (!info
->relocateable
5912 && ((r_type
== R_MIPS16_26
) != target_is_16_bit_code_p
));
5914 /* If we haven't already determined the GOT offset, or the GP value,
5915 and we're going to need it, get it now. */
5920 case R_MIPS_GOT_DISP
:
5921 case R_MIPS_GOT_HI16
:
5922 case R_MIPS_CALL_HI16
:
5923 case R_MIPS_GOT_LO16
:
5924 case R_MIPS_CALL_LO16
:
5925 /* Find the index into the GOT where this value is located. */
5928 BFD_ASSERT (addend
== 0);
5929 g
= mips_elf_global_got_index
5930 (elf_hash_table (info
)->dynobj
,
5931 (struct elf_link_hash_entry
*) h
);
5933 else if (r_type
== R_MIPS_GOT16
)
5934 /* There's no need to create a local GOT entry here; the
5935 calculation for a local GOT16 entry does not involve G. */
5939 g
= mips_elf_local_got_index (abfd
, info
, symbol
+ addend
);
5940 if (g
== (bfd_vma
) -1)
5944 /* Convert GOT indices to actual offsets. */
5945 g
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
5951 case R_MIPS_GPREL16
:
5952 case R_MIPS_GPREL32
:
5953 case R_MIPS_LITERAL
:
5954 gp0
= _bfd_get_gp_value (input_bfd
);
5955 gp
= _bfd_get_gp_value (abfd
);
5962 /* Figure out what kind of relocation is being performed. */
5966 return bfd_reloc_continue
;
5969 value
= symbol
+ mips_elf_sign_extend (addend
, 16);
5970 overflowed_p
= mips_elf_overflow_p (value
, 16);
5977 || (elf_hash_table (info
)->dynamic_sections_created
5979 && ((h
->root
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
5981 && (input_section
->flags
& SEC_ALLOC
) != 0)
5983 /* If we're creating a shared library, or this relocation is
5984 against a symbol in a shared library, then we can't know
5985 where the symbol will end up. So, we create a relocation
5986 record in the output, and leave the job up to the dynamic
5989 if (!mips_elf_create_dynamic_relocation (abfd
,
6001 if (r_type
!= R_MIPS_REL32
)
6002 value
= symbol
+ addend
;
6006 value
&= howto
->dst_mask
;
6010 /* The calculation for R_MIPS_26 is just the same as for an
6011 R_MIPS_26. It's only the storage of the relocated field into
6012 the output file that's different. That's handled in
6013 mips_elf_perform_relocation. So, we just fall through to the
6014 R_MIPS_26 case here. */
6017 value
= (((addend
<< 2) | (p
& 0xf0000000)) + symbol
) >> 2;
6019 value
= (mips_elf_sign_extend (addend
<< 2, 28) + symbol
) >> 2;
6020 value
&= howto
->dst_mask
;
6026 value
= mips_elf_high (addend
+ symbol
);
6027 value
&= howto
->dst_mask
;
6031 value
= mips_elf_high (addend
+ gp
- p
);
6032 overflowed_p
= mips_elf_overflow_p (value
, 16);
6038 value
= (symbol
+ addend
) & howto
->dst_mask
;
6041 value
= addend
+ gp
- p
+ 4;
6042 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6043 for overflow. But, on, say, Irix 5, relocations against
6044 _gp_disp are normally generated from the .cpload
6045 pseudo-op. It generates code that normally looks like
6048 lui $gp,%hi(_gp_disp)
6049 addiu $gp,$gp,%lo(_gp_disp)
6052 Here $t9 holds the address of the function being called,
6053 as required by the MIPS ELF ABI. The R_MIPS_LO16
6054 relocation can easily overflow in this situation, but the
6055 R_MIPS_HI16 relocation will handle the overflow.
6056 Therefore, we consider this a bug in the MIPS ABI, and do
6057 not check for overflow here. */
6061 case R_MIPS_LITERAL
:
6062 /* Because we don't merge literal sections, we can handle this
6063 just like R_MIPS_GPREL16. In the long run, we should merge
6064 shared literals, and then we will need to additional work
6069 case R_MIPS16_GPREL
:
6070 /* The R_MIPS16_GPREL performs the same calculation as
6071 R_MIPS_GPREL16, but stores the relocated bits in a different
6072 order. We don't need to do anything special here; the
6073 differences are handled in mips_elf_perform_relocation. */
6074 case R_MIPS_GPREL16
:
6076 value
= mips_elf_sign_extend (addend
, 16) + symbol
+ gp0
- gp
;
6078 value
= mips_elf_sign_extend (addend
, 16) + symbol
- gp
;
6079 overflowed_p
= mips_elf_overflow_p (value
, 16);
6085 value
= mips_elf_got16_entry (abfd
, info
, symbol
+ addend
);
6086 if (value
== (bfd_vma
) -1)
6089 = mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
6092 overflowed_p
= mips_elf_overflow_p (value
, 16);
6099 case R_MIPS_GOT_DISP
:
6101 overflowed_p
= mips_elf_overflow_p (value
, 16);
6104 case R_MIPS_GPREL32
:
6105 value
= (addend
+ symbol
+ gp0
- gp
) & howto
->dst_mask
;
6109 value
= mips_elf_sign_extend (addend
, 16) + symbol
- p
;
6110 value
= (bfd_vma
) ((bfd_signed_vma
) value
/ 4);
6111 overflowed_p
= mips_elf_overflow_p (value
, 16);
6114 case R_MIPS_GOT_HI16
:
6115 case R_MIPS_CALL_HI16
:
6116 /* We're allowed to handle these two relocations identically.
6117 The dynamic linker is allowed to handle the CALL relocations
6118 differently by creating a lazy evaluation stub. */
6120 value
= mips_elf_high (value
);
6121 value
&= howto
->dst_mask
;
6124 case R_MIPS_GOT_LO16
:
6125 case R_MIPS_CALL_LO16
:
6126 value
= g
& howto
->dst_mask
;
6129 case R_MIPS_GOT_PAGE
:
6130 value
= mips_elf_got_page (abfd
, info
, symbol
+ addend
, NULL
);
6131 if (value
== (bfd_vma
) -1)
6133 value
= mips_elf_got_offset_from_index (elf_hash_table (info
)->dynobj
,
6136 overflowed_p
= mips_elf_overflow_p (value
, 16);
6139 case R_MIPS_GOT_OFST
:
6140 mips_elf_got_page (abfd
, info
, symbol
+ addend
, &value
);
6141 overflowed_p
= mips_elf_overflow_p (value
, 16);
6145 value
= symbol
- addend
;
6146 value
&= howto
->dst_mask
;
6150 value
= mips_elf_higher (addend
+ symbol
);
6151 value
&= howto
->dst_mask
;
6154 case R_MIPS_HIGHEST
:
6155 value
= mips_elf_highest (addend
+ symbol
);
6156 value
&= howto
->dst_mask
;
6159 case R_MIPS_SCN_DISP
:
6160 value
= symbol
+ addend
- sec
->output_offset
;
6161 value
&= howto
->dst_mask
;
6166 /* Both of these may be ignored. R_MIPS_JALR is an optimization
6167 hint; we could improve performance by honoring that hint. */
6168 return bfd_reloc_continue
;
6170 case R_MIPS_GNU_VTINHERIT
:
6171 case R_MIPS_GNU_VTENTRY
:
6172 /* We don't do anything with these at present. */
6173 return bfd_reloc_continue
;
6176 /* An unrecognized relocation type. */
6177 return bfd_reloc_notsupported
;
6180 /* Store the VALUE for our caller. */
6182 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
6185 /* Obtain the field relocated by RELOCATION. */
6188 mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
)
6189 reloc_howto_type
*howto
;
6190 const Elf_Internal_Rela
*relocation
;
6195 bfd_byte
*location
= contents
+ relocation
->r_offset
;
6197 /* Obtain the bytes. */
6198 x
= bfd_get (8 * bfd_get_reloc_size (howto
), input_bfd
, location
);
6200 if ((ELF32_R_TYPE (relocation
->r_info
) == R_MIPS16_26
6201 || ELF32_R_TYPE (relocation
->r_info
) == R_MIPS16_GPREL
)
6202 && bfd_little_endian (input_bfd
))
6203 /* The two 16-bit words will be reversed on a little-endian
6204 system. See mips_elf_perform_relocation for more details. */
6205 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
6210 /* It has been determined that the result of the RELOCATION is the
6211 VALUE. Use HOWTO to place VALUE into the output file at the
6212 appropriate position. The SECTION is the section to which the
6213 relocation applies. If REQUIRE_JALX is true, then the opcode used
6214 for the relocation must be either JAL or JALX, and it is
6215 unconditionally converted to JALX.
6217 Returns false if anything goes wrong. */
6220 mips_elf_perform_relocation (info
, howto
, relocation
, value
,
6221 input_bfd
, input_section
,
6222 contents
, require_jalx
)
6223 struct bfd_link_info
*info
;
6224 reloc_howto_type
*howto
;
6225 const Elf_Internal_Rela
*relocation
;
6228 asection
*input_section
;
6230 boolean require_jalx
;
6234 int r_type
= ELF32_R_TYPE (relocation
->r_info
);
6236 /* Figure out where the relocation is occurring. */
6237 location
= contents
+ relocation
->r_offset
;
6239 /* Obtain the current value. */
6240 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
6242 /* Clear the field we are setting. */
6243 x
&= ~howto
->dst_mask
;
6245 /* If this is the R_MIPS16_26 relocation, we must store the
6246 value in a funny way. */
6247 if (r_type
== R_MIPS16_26
)
6249 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
6250 Most mips16 instructions are 16 bits, but these instructions
6253 The format of these instructions is:
6255 +--------------+--------------------------------+
6256 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
6257 +--------------+--------------------------------+
6259 +-----------------------------------------------+
6261 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
6262 Note that the immediate value in the first word is swapped.
6264 When producing a relocateable object file, R_MIPS16_26 is
6265 handled mostly like R_MIPS_26. In particular, the addend is
6266 stored as a straight 26-bit value in a 32-bit instruction.
6267 (gas makes life simpler for itself by never adjusting a
6268 R_MIPS16_26 reloc to be against a section, so the addend is
6269 always zero). However, the 32 bit instruction is stored as 2
6270 16-bit values, rather than a single 32-bit value. In a
6271 big-endian file, the result is the same; in a little-endian
6272 file, the two 16-bit halves of the 32 bit value are swapped.
6273 This is so that a disassembler can recognize the jal
6276 When doing a final link, R_MIPS16_26 is treated as a 32 bit
6277 instruction stored as two 16-bit values. The addend A is the
6278 contents of the targ26 field. The calculation is the same as
6279 R_MIPS_26. When storing the calculated value, reorder the
6280 immediate value as shown above, and don't forget to store the
6281 value as two 16-bit values.
6283 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
6287 +--------+----------------------+
6291 +--------+----------------------+
6294 +----------+------+-------------+
6298 +----------+--------------------+
6299 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
6300 ((sub1 << 16) | sub2)).
6302 When producing a relocateable object file, the calculation is
6303 (((A < 2) | (P & 0xf0000000) + S) >> 2)
6304 When producing a fully linked file, the calculation is
6305 let R = (((A < 2) | (P & 0xf0000000) + S) >> 2)
6306 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
6308 if (!info
->relocateable
)
6309 /* Shuffle the bits according to the formula above. */
6310 value
= (((value
& 0x1f0000) << 5)
6311 | ((value
& 0x3e00000) >> 5)
6312 | (value
& 0xffff));
6315 else if (r_type
== R_MIPS16_GPREL
)
6317 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
6318 mode. A typical instruction will have a format like this:
6320 +--------------+--------------------------------+
6321 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
6322 +--------------+--------------------------------+
6323 ! Major ! rx ! ry ! Imm 4:0 !
6324 +--------------+--------------------------------+
6326 EXTEND is the five bit value 11110. Major is the instruction
6329 This is handled exactly like R_MIPS_GPREL16, except that the
6330 addend is retrieved and stored as shown in this diagram; that
6331 is, the Imm fields above replace the V-rel16 field.
6333 All we need to do here is shuffle the bits appropriately. As
6334 above, the two 16-bit halves must be swapped on a
6335 little-endian system. */
6336 value
= (((value
& 0x7e0) << 16)
6337 | ((value
& 0xf800) << 5)
6341 /* Set the field. */
6342 x
|= (value
& howto
->dst_mask
);
6344 /* If required, turn JAL into JALX. */
6348 bfd_vma opcode
= x
>> 26;
6349 bfd_vma jalx_opcode
;
6351 /* Check to see if the opcode is already JAL or JALX. */
6352 if (r_type
== R_MIPS16_26
)
6354 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
6359 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
6363 /* If the opcode is not JAL or JALX, there's a problem. */
6366 (*_bfd_error_handler
)
6367 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
6368 bfd_get_filename (input_bfd
),
6369 input_section
->name
,
6370 (unsigned long) relocation
->r_offset
);
6371 bfd_set_error (bfd_error_bad_value
);
6375 /* Make this the JALX opcode. */
6376 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
6379 /* Swap the high- and low-order 16 bits on little-endian systems
6380 when doing a MIPS16 relocation. */
6381 if ((r_type
== R_MIPS16_GPREL
|| r_type
== R_MIPS16_26
)
6382 && bfd_little_endian (input_bfd
))
6383 x
= (((x
& 0xffff) << 16) | ((x
& 0xffff0000) >> 16));
6385 /* Put the value into the output. */
6386 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
6390 /* Returns true if SECTION is a MIPS16 stub section. */
6393 mips_elf_stub_section_p (abfd
, section
)
6394 bfd
*abfd ATTRIBUTE_UNUSED
;
6397 const char *name
= bfd_get_section_name (abfd
, section
);
6399 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
6400 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
6401 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
6404 /* Relocate a MIPS ELF section. */
6407 _bfd_mips_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
6408 contents
, relocs
, local_syms
, local_sections
)
6410 struct bfd_link_info
*info
;
6412 asection
*input_section
;
6414 Elf_Internal_Rela
*relocs
;
6415 Elf_Internal_Sym
*local_syms
;
6416 asection
**local_sections
;
6418 Elf_Internal_Rela
*rel
;
6419 const Elf_Internal_Rela
*relend
;
6421 boolean use_saved_addend_p
= false;
6422 struct elf_backend_data
*bed
;
6424 bed
= get_elf_backend_data (output_bfd
);
6425 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6426 for (rel
= relocs
; rel
< relend
; ++rel
)
6430 reloc_howto_type
*howto
;
6431 boolean require_jalx
;
6432 /* True if the relocation is a RELA relocation, rather than a
6434 boolean rela_relocation_p
= true;
6435 int r_type
= ELF32_R_TYPE (rel
->r_info
);
6437 /* Find the relocation howto for this relocation. */
6438 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
6440 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6441 64-bit code, but make sure all their addresses are in the
6442 lowermost or uppermost 32-bit section of the 64-bit address
6443 space. Thus, when they use an R_MIPS_64 they mean what is
6444 usually meant by R_MIPS_32, with the exception that the
6445 stored value is sign-extended to 64 bits. */
6446 howto
= elf_mips_howto_table
+ R_MIPS_32
;
6448 /* On big-endian systems, we need to lie about the position
6450 if (bfd_big_endian (input_bfd
))
6454 howto
= mips_rtype_to_howto (r_type
);
6456 if (!use_saved_addend_p
)
6458 Elf_Internal_Shdr
*rel_hdr
;
6460 /* If these relocations were originally of the REL variety,
6461 we must pull the addend out of the field that will be
6462 relocated. Otherwise, we simply use the contents of the
6463 RELA relocation. To determine which flavor or relocation
6464 this is, we depend on the fact that the INPUT_SECTION's
6465 REL_HDR is read before its REL_HDR2. */
6466 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
6467 if ((size_t) (rel
- relocs
)
6468 >= (rel_hdr
->sh_size
/ rel_hdr
->sh_entsize
6469 * bed
->s
->int_rels_per_ext_rel
))
6470 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
6471 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
6473 /* Note that this is a REL relocation. */
6474 rela_relocation_p
= false;
6476 /* Get the addend, which is stored in the input file. */
6477 addend
= mips_elf_obtain_contents (howto
,
6481 addend
&= howto
->src_mask
;
6483 /* For some kinds of relocations, the ADDEND is a
6484 combination of the addend stored in two different
6486 if (r_type
== R_MIPS_HI16
6487 || (r_type
== R_MIPS_GOT16
6488 && mips_elf_local_relocation_p (input_bfd
, rel
,
6492 const Elf_Internal_Rela
*lo16_relocation
;
6493 reloc_howto_type
*lo16_howto
;
6495 /* The combined value is the sum of the HI16 addend,
6496 left-shifted by sixteen bits, and the LO16
6497 addend, sign extended. (Usually, the code does
6498 a `lui' of the HI16 value, and then an `addiu' of
6501 Scan ahead to find a matching R_MIPS_LO16
6504 = mips_elf_next_lo16_relocation (rel
, relend
);
6505 if (lo16_relocation
== NULL
)
6508 /* Obtain the addend kept there. */
6509 lo16_howto
= mips_rtype_to_howto (R_MIPS_LO16
);
6510 l
= mips_elf_obtain_contents (lo16_howto
,
6512 input_bfd
, contents
);
6513 l
&= lo16_howto
->src_mask
;
6514 l
= mips_elf_sign_extend (l
, 16);
6518 /* Compute the combined addend. */
6521 else if (r_type
== R_MIPS16_GPREL
)
6523 /* The addend is scrambled in the object file. See
6524 mips_elf_perform_relocation for details on the
6526 addend
= (((addend
& 0x1f0000) >> 5)
6527 | ((addend
& 0x7e00000) >> 16)
6532 addend
= rel
->r_addend
;
6535 if (info
->relocateable
)
6537 Elf_Internal_Sym
*sym
;
6538 unsigned long r_symndx
;
6540 /* Since we're just relocating, all we need to do is copy
6541 the relocations back out to the object file, unless
6542 they're against a section symbol, in which case we need
6543 to adjust by the section offset, or unless they're GP
6544 relative in which case we need to adjust by the amount
6545 that we're adjusting GP in this relocateable object. */
6547 if (!mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
6548 /* There's nothing to do for non-local relocations. */
6551 if (r_type
== R_MIPS16_GPREL
6552 || r_type
== R_MIPS_GPREL16
6553 || r_type
== R_MIPS_GPREL32
6554 || r_type
== R_MIPS_LITERAL
)
6555 addend
-= (_bfd_get_gp_value (output_bfd
)
6556 - _bfd_get_gp_value (input_bfd
));
6557 else if (r_type
== R_MIPS_26
|| r_type
== R_MIPS16_26
)
6558 /* The addend is stored without its two least
6559 significant bits (which are always zero.) In a
6560 non-relocateable link, calculate_relocation will do
6561 this shift; here, we must do it ourselves. */
6564 r_symndx
= ELF32_R_SYM (rel
->r_info
);
6565 sym
= local_syms
+ r_symndx
;
6566 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
6567 /* Adjust the addend appropriately. */
6568 addend
+= local_sections
[r_symndx
]->output_offset
;
6570 /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16,
6571 then we only want to write out the high-order 16 bits.
6572 The subsequent R_MIPS_LO16 will handle the low-order bits. */
6573 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS_GOT16
)
6574 addend
= mips_elf_high (addend
);
6575 /* If the relocation is for an R_MIPS_26 relocation, then
6576 the two low-order bits are not stored in the object file;
6577 they are implicitly zero. */
6578 else if (r_type
== R_MIPS_26
|| r_type
== R_MIPS16_26
)
6581 if (rela_relocation_p
)
6582 /* If this is a RELA relocation, just update the addend.
6583 We have to cast away constness for REL. */
6584 rel
->r_addend
= addend
;
6587 /* Otherwise, we have to write the value back out. Note
6588 that we use the source mask, rather than the
6589 destination mask because the place to which we are
6590 writing will be source of the addend in the final
6592 addend
&= howto
->src_mask
;
6593 if (!mips_elf_perform_relocation (info
, howto
, rel
, addend
,
6594 input_bfd
, input_section
,
6599 /* Go on to the next relocation. */
6603 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6604 relocations for the same offset. In that case we are
6605 supposed to treat the output of each relocation as the addend
6607 if (rel
+ 1 < relend
6608 && rel
->r_offset
== rel
[1].r_offset
6609 && ELF32_R_TYPE (rel
[1].r_info
) != R_MIPS_NONE
)
6610 use_saved_addend_p
= true;
6612 use_saved_addend_p
= false;
6614 /* Figure out what value we are supposed to relocate. */
6615 switch (mips_elf_calculate_relocation (output_bfd
,
6628 case bfd_reloc_continue
:
6629 /* There's nothing to do. */
6632 case bfd_reloc_undefined
:
6633 /* mips_elf_calculate_relocation already called the
6634 undefined_symbol callback. There's no real point in
6635 trying to perform the relocation at this point, so we
6636 just skip ahead to the next relocation. */
6639 case bfd_reloc_notsupported
:
6643 case bfd_reloc_overflow
:
6644 if (use_saved_addend_p
)
6645 /* Ignore overflow until we reach the last relocation for
6646 a given location. */
6650 BFD_ASSERT (name
!= NULL
);
6651 if (! ((*info
->callbacks
->reloc_overflow
)
6652 (info
, name
, howto
->name
, (bfd_vma
) 0,
6653 input_bfd
, input_section
, rel
->r_offset
)))
6666 /* If we've got another relocation for the address, keep going
6667 until we reach the last one. */
6668 if (use_saved_addend_p
)
6674 if (r_type
== R_MIPS_64
&& !ABI_64_P (output_bfd
))
6675 /* See the comment above about using R_MIPS_64 in the 32-bit
6676 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6677 that calculated the right value. Now, however, we
6678 sign-extend the 32-bit result to 64-bits, and store it as a
6679 64-bit value. We are especially generous here in that we
6680 go to extreme lengths to support this usage on systems with
6681 only a 32-bit VMA. */
6687 if (value
& 0x80000000)
6688 sign_bits
= 0xffffffff;
6692 /* If only a 32-bit VMA is available do two separate
6694 if (bfd_big_endian (input_bfd
))
6696 /* Undo what we did above. */
6698 /* Store the sign-bits (which are most significant)
6700 low_bits
= sign_bits
;
6706 high_bits
= sign_bits
;
6708 bfd_put_32 (input_bfd
, low_bits
,
6709 contents
+ rel
->r_offset
);
6710 bfd_put_32 (input_bfd
, high_bits
,
6711 contents
+ rel
->r_offset
+ 4);
6715 /* Actually perform the relocation. */
6716 if (!mips_elf_perform_relocation (info
, howto
, rel
, value
, input_bfd
,
6717 input_section
, contents
,
6725 /* This hook function is called before the linker writes out a global
6726 symbol. We mark symbols as small common if appropriate. This is
6727 also where we undo the increment of the value for a mips16 symbol. */
6731 _bfd_mips_elf_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
6732 bfd
*abfd ATTRIBUTE_UNUSED
;
6733 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
6734 const char *name ATTRIBUTE_UNUSED
;
6735 Elf_Internal_Sym
*sym
;
6736 asection
*input_sec
;
6738 /* If we see a common symbol, which implies a relocatable link, then
6739 if a symbol was small common in an input file, mark it as small
6740 common in the output file. */
6741 if (sym
->st_shndx
== SHN_COMMON
6742 && strcmp (input_sec
->name
, ".scommon") == 0)
6743 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
6745 if (sym
->st_other
== STO_MIPS16
6746 && (sym
->st_value
& 1) != 0)
6752 /* Functions for the dynamic linker. */
6754 /* The name of the dynamic interpreter. This is put in the .interp
6757 #define ELF_DYNAMIC_INTERPRETER(abfd) \
6758 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
6759 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
6760 : "/usr/lib/libc.so.1")
6762 /* Create dynamic sections when linking against a dynamic object. */
6765 _bfd_mips_elf_create_dynamic_sections (abfd
, info
)
6767 struct bfd_link_info
*info
;
6769 struct elf_link_hash_entry
*h
;
6771 register asection
*s
;
6772 const char * const *namep
;
6774 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
6775 | SEC_LINKER_CREATED
| SEC_READONLY
);
6777 /* Mips ABI requests the .dynamic section to be read only. */
6778 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6781 if (! bfd_set_section_flags (abfd
, s
, flags
))
6785 /* We need to create .got section. */
6786 if (! mips_elf_create_got_section (abfd
, info
))
6789 /* Create the .msym section on IRIX6. It is used by the dynamic
6790 linker to speed up dynamic relocations, and to avoid computing
6791 the ELF hash for symbols. */
6792 if (IRIX_COMPAT (abfd
) == ict_irix6
6793 && !mips_elf_create_msym_section (abfd
))
6796 /* Create .stub section. */
6797 if (bfd_get_section_by_name (abfd
,
6798 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
6800 s
= bfd_make_section (abfd
, MIPS_ELF_STUB_SECTION_NAME (abfd
));
6802 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_CODE
)
6803 || ! bfd_set_section_alignment (abfd
, s
,
6804 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6808 if (IRIX_COMPAT (abfd
) == ict_irix5
6810 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
6812 s
= bfd_make_section (abfd
, ".rld_map");
6814 || ! bfd_set_section_flags (abfd
, s
, flags
& ~SEC_READONLY
)
6815 || ! bfd_set_section_alignment (abfd
, s
,
6816 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6820 /* On IRIX5, we adjust add some additional symbols and change the
6821 alignments of several sections. There is no ABI documentation
6822 indicating that this is necessary on IRIX6, nor any evidence that
6823 the linker takes such action. */
6824 if (IRIX_COMPAT (abfd
) == ict_irix5
)
6826 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
6829 if (! (_bfd_generic_link_add_one_symbol
6830 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
,
6831 (bfd_vma
) 0, (const char *) NULL
, false,
6832 get_elf_backend_data (abfd
)->collect
,
6833 (struct bfd_link_hash_entry
**) &h
)))
6835 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
6836 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
6837 h
->type
= STT_SECTION
;
6839 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
6843 /* We need to create a .compact_rel section. */
6844 if (! mips_elf_create_compact_rel_section (abfd
, info
))
6847 /* Change aligments of some sections. */
6848 s
= bfd_get_section_by_name (abfd
, ".hash");
6850 bfd_set_section_alignment (abfd
, s
, 4);
6851 s
= bfd_get_section_by_name (abfd
, ".dynsym");
6853 bfd_set_section_alignment (abfd
, s
, 4);
6854 s
= bfd_get_section_by_name (abfd
, ".dynstr");
6856 bfd_set_section_alignment (abfd
, s
, 4);
6857 s
= bfd_get_section_by_name (abfd
, ".reginfo");
6859 bfd_set_section_alignment (abfd
, s
, 4);
6860 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6862 bfd_set_section_alignment (abfd
, s
, 4);
6868 if (! (_bfd_generic_link_add_one_symbol
6869 (info
, abfd
, "_DYNAMIC_LINK", BSF_GLOBAL
, bfd_abs_section_ptr
,
6870 (bfd_vma
) 0, (const char *) NULL
, false,
6871 get_elf_backend_data (abfd
)->collect
,
6872 (struct bfd_link_hash_entry
**) &h
)))
6874 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
6875 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
6876 h
->type
= STT_SECTION
;
6878 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
6881 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
6883 /* __rld_map is a four byte word located in the .data section
6884 and is filled in by the rtld to contain a pointer to
6885 the _r_debug structure. Its symbol value will be set in
6886 mips_elf_finish_dynamic_symbol. */
6887 s
= bfd_get_section_by_name (abfd
, ".rld_map");
6888 BFD_ASSERT (s
!= NULL
);
6891 if (! (_bfd_generic_link_add_one_symbol
6892 (info
, abfd
, "__rld_map", BSF_GLOBAL
, s
,
6893 (bfd_vma
) 0, (const char *) NULL
, false,
6894 get_elf_backend_data (abfd
)->collect
,
6895 (struct bfd_link_hash_entry
**) &h
)))
6897 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
6898 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
6899 h
->type
= STT_OBJECT
;
6901 if (! bfd_elf32_link_record_dynamic_symbol (info
, h
))
6909 /* Create the .compact_rel section. */
6912 mips_elf_create_compact_rel_section (abfd
, info
)
6914 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
6917 register asection
*s
;
6919 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
6921 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
6924 s
= bfd_make_section (abfd
, ".compact_rel");
6926 || ! bfd_set_section_flags (abfd
, s
, flags
)
6927 || ! bfd_set_section_alignment (abfd
, s
,
6928 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
6931 s
->_raw_size
= sizeof (Elf32_External_compact_rel
);
6937 /* Create the .got section to hold the global offset table. */
6940 mips_elf_create_got_section (abfd
, info
)
6942 struct bfd_link_info
*info
;
6945 register asection
*s
;
6946 struct elf_link_hash_entry
*h
;
6947 struct mips_got_info
*g
;
6949 /* This function may be called more than once. */
6950 if (mips_elf_got_section (abfd
))
6953 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
6954 | SEC_LINKER_CREATED
);
6956 s
= bfd_make_section (abfd
, ".got");
6958 || ! bfd_set_section_flags (abfd
, s
, flags
)
6959 || ! bfd_set_section_alignment (abfd
, s
, 4))
6962 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
6963 linker script because we don't want to define the symbol if we
6964 are not creating a global offset table. */
6966 if (! (_bfd_generic_link_add_one_symbol
6967 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
6968 (bfd_vma
) 0, (const char *) NULL
, false,
6969 get_elf_backend_data (abfd
)->collect
,
6970 (struct bfd_link_hash_entry
**) &h
)))
6972 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
6973 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
6974 h
->type
= STT_OBJECT
;
6977 && ! bfd_elf32_link_record_dynamic_symbol (info
, h
))
6980 /* The first several global offset table entries are reserved. */
6981 s
->_raw_size
= MIPS_RESERVED_GOTNO
* MIPS_ELF_GOT_SIZE (abfd
);
6983 g
= (struct mips_got_info
*) bfd_alloc (abfd
,
6984 sizeof (struct mips_got_info
));
6987 g
->global_gotsym
= NULL
;
6988 g
->local_gotno
= MIPS_RESERVED_GOTNO
;
6989 g
->assigned_gotno
= MIPS_RESERVED_GOTNO
;
6990 if (elf_section_data (s
) == NULL
)
6993 (PTR
) bfd_zalloc (abfd
, sizeof (struct bfd_elf_section_data
));
6994 if (elf_section_data (s
) == NULL
)
6997 elf_section_data (s
)->tdata
= (PTR
) g
;
6998 elf_section_data (s
)->this_hdr
.sh_flags
6999 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
7004 /* Returns the .msym section for ABFD, creating it if it does not
7005 already exist. Returns NULL to indicate error. */
7008 mips_elf_create_msym_section (abfd
)
7013 s
= bfd_get_section_by_name (abfd
, MIPS_ELF_MSYM_SECTION_NAME (abfd
));
7016 s
= bfd_make_section (abfd
, MIPS_ELF_MSYM_SECTION_NAME (abfd
));
7018 || !bfd_set_section_flags (abfd
, s
,
7022 | SEC_LINKER_CREATED
7024 || !bfd_set_section_alignment (abfd
, s
,
7025 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7032 /* Add room for N relocations to the .rel.dyn section in ABFD. */
7035 mips_elf_allocate_dynamic_relocations (abfd
, n
)
7041 s
= bfd_get_section_by_name (abfd
, MIPS_ELF_REL_DYN_SECTION_NAME (abfd
));
7042 BFD_ASSERT (s
!= NULL
);
7044 if (s
->_raw_size
== 0)
7046 /* Make room for a null element. */
7047 s
->_raw_size
+= MIPS_ELF_REL_SIZE (abfd
);
7050 s
->_raw_size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
7053 /* Look through the relocs for a section during the first phase, and
7054 allocate space in the global offset table. */
7057 _bfd_mips_elf_check_relocs (abfd
, info
, sec
, relocs
)
7059 struct bfd_link_info
*info
;
7061 const Elf_Internal_Rela
*relocs
;
7065 Elf_Internal_Shdr
*symtab_hdr
;
7066 struct elf_link_hash_entry
**sym_hashes
;
7067 struct mips_got_info
*g
;
7069 const Elf_Internal_Rela
*rel
;
7070 const Elf_Internal_Rela
*rel_end
;
7073 struct elf_backend_data
*bed
;
7075 if (info
->relocateable
)
7078 dynobj
= elf_hash_table (info
)->dynobj
;
7079 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7080 sym_hashes
= elf_sym_hashes (abfd
);
7081 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7083 /* Check for the mips16 stub sections. */
7085 name
= bfd_get_section_name (abfd
, sec
);
7086 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
7088 unsigned long r_symndx
;
7090 /* Look at the relocation information to figure out which symbol
7093 r_symndx
= ELF32_R_SYM (relocs
->r_info
);
7095 if (r_symndx
< extsymoff
7096 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7100 /* This stub is for a local symbol. This stub will only be
7101 needed if there is some relocation in this BFD, other
7102 than a 16 bit function call, which refers to this symbol. */
7103 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7105 Elf_Internal_Rela
*sec_relocs
;
7106 const Elf_Internal_Rela
*r
, *rend
;
7108 /* We can ignore stub sections when looking for relocs. */
7109 if ((o
->flags
& SEC_RELOC
) == 0
7110 || o
->reloc_count
== 0
7111 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
7112 sizeof FN_STUB
- 1) == 0
7113 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
7114 sizeof CALL_STUB
- 1) == 0
7115 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
7116 sizeof CALL_FP_STUB
- 1) == 0)
7119 sec_relocs
= (_bfd_elf32_link_read_relocs
7120 (abfd
, o
, (PTR
) NULL
,
7121 (Elf_Internal_Rela
*) NULL
,
7122 info
->keep_memory
));
7123 if (sec_relocs
== NULL
)
7126 rend
= sec_relocs
+ o
->reloc_count
;
7127 for (r
= sec_relocs
; r
< rend
; r
++)
7128 if (ELF32_R_SYM (r
->r_info
) == r_symndx
7129 && ELF32_R_TYPE (r
->r_info
) != R_MIPS16_26
)
7132 if (! info
->keep_memory
)
7141 /* There is no non-call reloc for this stub, so we do
7142 not need it. Since this function is called before
7143 the linker maps input sections to output sections, we
7144 can easily discard it by setting the SEC_EXCLUDE
7146 sec
->flags
|= SEC_EXCLUDE
;
7150 /* Record this stub in an array of local symbol stubs for
7152 if (elf_tdata (abfd
)->local_stubs
== NULL
)
7154 unsigned long symcount
;
7157 if (elf_bad_symtab (abfd
))
7158 symcount
= symtab_hdr
->sh_size
/ symtab_hdr
->sh_entsize
;
7160 symcount
= symtab_hdr
->sh_info
;
7161 n
= (asection
**) bfd_zalloc (abfd
,
7162 symcount
* sizeof (asection
*));
7165 elf_tdata (abfd
)->local_stubs
= n
;
7168 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
7170 /* We don't need to set mips16_stubs_seen in this case.
7171 That flag is used to see whether we need to look through
7172 the global symbol table for stubs. We don't need to set
7173 it here, because we just have a local stub. */
7177 struct mips_elf_link_hash_entry
*h
;
7179 h
= ((struct mips_elf_link_hash_entry
*)
7180 sym_hashes
[r_symndx
- extsymoff
]);
7182 /* H is the symbol this stub is for. */
7185 mips_elf_hash_table (info
)->mips16_stubs_seen
= true;
7188 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
7189 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
7191 unsigned long r_symndx
;
7192 struct mips_elf_link_hash_entry
*h
;
7195 /* Look at the relocation information to figure out which symbol
7198 r_symndx
= ELF32_R_SYM (relocs
->r_info
);
7200 if (r_symndx
< extsymoff
7201 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7203 /* This stub was actually built for a static symbol defined
7204 in the same file. We assume that all static symbols in
7205 mips16 code are themselves mips16, so we can simply
7206 discard this stub. Since this function is called before
7207 the linker maps input sections to output sections, we can
7208 easily discard it by setting the SEC_EXCLUDE flag. */
7209 sec
->flags
|= SEC_EXCLUDE
;
7213 h
= ((struct mips_elf_link_hash_entry
*)
7214 sym_hashes
[r_symndx
- extsymoff
]);
7216 /* H is the symbol this stub is for. */
7218 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
7219 loc
= &h
->call_fp_stub
;
7221 loc
= &h
->call_stub
;
7223 /* If we already have an appropriate stub for this function, we
7224 don't need another one, so we can discard this one. Since
7225 this function is called before the linker maps input sections
7226 to output sections, we can easily discard it by setting the
7227 SEC_EXCLUDE flag. We can also discard this section if we
7228 happen to already know that this is a mips16 function; it is
7229 not necessary to check this here, as it is checked later, but
7230 it is slightly faster to check now. */
7231 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
7233 sec
->flags
|= SEC_EXCLUDE
;
7238 mips_elf_hash_table (info
)->mips16_stubs_seen
= true;
7248 sgot
= mips_elf_got_section (dynobj
);
7253 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
7254 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
7255 BFD_ASSERT (g
!= NULL
);
7260 bed
= get_elf_backend_data (abfd
);
7261 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7262 for (rel
= relocs
; rel
< rel_end
; ++rel
)
7264 unsigned long r_symndx
;
7266 struct elf_link_hash_entry
*h
;
7268 r_symndx
= ELF32_R_SYM (rel
->r_info
);
7269 r_type
= ELF32_R_TYPE (rel
->r_info
);
7271 if (r_symndx
< extsymoff
)
7275 h
= sym_hashes
[r_symndx
- extsymoff
];
7277 /* This may be an indirect symbol created because of a version. */
7280 while (h
->root
.type
== bfd_link_hash_indirect
)
7281 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7285 /* Some relocs require a global offset table. */
7286 if (dynobj
== NULL
|| sgot
== NULL
)
7292 case R_MIPS_CALL_HI16
:
7293 case R_MIPS_CALL_LO16
:
7294 case R_MIPS_GOT_HI16
:
7295 case R_MIPS_GOT_LO16
:
7296 case R_MIPS_GOT_PAGE
:
7297 case R_MIPS_GOT_OFST
:
7298 case R_MIPS_GOT_DISP
:
7300 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7301 if (! mips_elf_create_got_section (dynobj
, info
))
7303 g
= mips_elf_got_info (dynobj
, &sgot
);
7310 && (info
->shared
|| h
!= NULL
)
7311 && (sec
->flags
& SEC_ALLOC
) != 0)
7312 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7320 if (!h
&& (r_type
== R_MIPS_CALL_LO16
7321 || r_type
== R_MIPS_GOT_LO16
7322 || r_type
== R_MIPS_GOT_DISP
))
7324 /* We may need a local GOT entry for this relocation. We
7325 don't count R_MIPS_GOT_PAGE because we can estimate the
7326 maximum number of pages needed by looking at the size of
7327 the segment. Similar comments apply to R_MIPS_GOT16. We
7328 don't count R_MIPS_GOT_HI16, or R_MIPS_CALL_HI16 because
7329 these are always followed by an R_MIPS_GOT_LO16 or
7332 This estimation is very conservative since we can merge
7333 duplicate entries in the GOT. In order to be less
7334 conservative, we could actually build the GOT here,
7335 rather than in relocate_section. */
7337 sgot
->_raw_size
+= MIPS_ELF_GOT_SIZE (dynobj
);
7345 (*_bfd_error_handler
)
7346 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
7347 bfd_get_filename (abfd
), (unsigned long) rel
->r_offset
);
7348 bfd_set_error (bfd_error_bad_value
);
7353 case R_MIPS_CALL_HI16
:
7354 case R_MIPS_CALL_LO16
:
7357 /* This symbol requires a global offset table entry. */
7358 if (!mips_elf_record_global_got_symbol (h
, info
, g
))
7361 /* We need a stub, not a plt entry for the undefined
7362 function. But we record it as if it needs plt. See
7363 elf_adjust_dynamic_symbol in elflink.h. */
7364 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
7370 case R_MIPS_GOT_HI16
:
7371 case R_MIPS_GOT_LO16
:
7372 case R_MIPS_GOT_DISP
:
7373 /* This symbol requires a global offset table entry. */
7374 if (h
&& !mips_elf_record_global_got_symbol (h
, info
, g
))
7381 if ((info
->shared
|| h
!= NULL
)
7382 && (sec
->flags
& SEC_ALLOC
) != 0)
7386 const char *name
= MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
);
7388 sreloc
= bfd_get_section_by_name (dynobj
, name
);
7391 sreloc
= bfd_make_section (dynobj
, name
);
7393 || ! bfd_set_section_flags (dynobj
, sreloc
,
7398 | SEC_LINKER_CREATED
7400 || ! bfd_set_section_alignment (dynobj
, sreloc
,
7406 /* When creating a shared object, we must copy these
7407 reloc types into the output file as R_MIPS_REL32
7408 relocs. We make room for this reloc in the
7409 .rel.dyn reloc section. */
7410 mips_elf_allocate_dynamic_relocations (dynobj
, 1);
7413 struct mips_elf_link_hash_entry
*hmips
;
7415 /* We only need to copy this reloc if the symbol is
7416 defined in a dynamic object. */
7417 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7418 ++hmips
->possibly_dynamic_relocs
;
7421 /* Even though we don't directly need a GOT entry for
7422 this symbol, a symbol must have a dynamic symbol
7423 table index greater that DT_MIPS_GOTSYM if there are
7424 dynamic relocations against it. */
7426 && !mips_elf_record_global_got_symbol (h
, info
, g
))
7430 if (SGI_COMPAT (dynobj
))
7431 mips_elf_hash_table (info
)->compact_rel_size
+=
7432 sizeof (Elf32_External_crinfo
);
7436 case R_MIPS_GPREL16
:
7437 case R_MIPS_LITERAL
:
7438 case R_MIPS_GPREL32
:
7439 if (SGI_COMPAT (dynobj
))
7440 mips_elf_hash_table (info
)->compact_rel_size
+=
7441 sizeof (Elf32_External_crinfo
);
7444 /* This relocation describes the C++ object vtable hierarchy.
7445 Reconstruct it for later use during GC. */
7446 case R_MIPS_GNU_VTINHERIT
:
7447 if (!_bfd_elf32_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
7451 /* This relocation describes which C++ vtable entries are actually
7452 used. Record for later use during GC. */
7453 case R_MIPS_GNU_VTENTRY
:
7454 if (!_bfd_elf32_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
7462 /* If this reloc is not a 16 bit call, and it has a global
7463 symbol, then we will need the fn_stub if there is one.
7464 References from a stub section do not count. */
7466 && r_type
!= R_MIPS16_26
7467 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
7468 sizeof FN_STUB
- 1) != 0
7469 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
7470 sizeof CALL_STUB
- 1) != 0
7471 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
7472 sizeof CALL_FP_STUB
- 1) != 0)
7474 struct mips_elf_link_hash_entry
*mh
;
7476 mh
= (struct mips_elf_link_hash_entry
*) h
;
7477 mh
->need_fn_stub
= true;
7484 /* Return the section that should be marked against GC for a given
7488 _bfd_mips_elf_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
7490 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7491 Elf_Internal_Rela
*rel
;
7492 struct elf_link_hash_entry
*h
;
7493 Elf_Internal_Sym
*sym
;
7495 /* ??? Do mips16 stub sections need to be handled special? */
7499 switch (ELF32_R_TYPE (rel
->r_info
))
7501 case R_MIPS_GNU_VTINHERIT
:
7502 case R_MIPS_GNU_VTENTRY
:
7506 switch (h
->root
.type
)
7508 case bfd_link_hash_defined
:
7509 case bfd_link_hash_defweak
:
7510 return h
->root
.u
.def
.section
;
7512 case bfd_link_hash_common
:
7513 return h
->root
.u
.c
.p
->section
;
7522 if (!(elf_bad_symtab (abfd
)
7523 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7524 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
7525 && sym
->st_shndx
!= SHN_COMMON
))
7527 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
7534 /* Update the got entry reference counts for the section being removed. */
7537 _bfd_mips_elf_gc_sweep_hook (abfd
, info
, sec
, relocs
)
7538 bfd
*abfd ATTRIBUTE_UNUSED
;
7539 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
7540 asection
*sec ATTRIBUTE_UNUSED
;
7541 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
;
7544 Elf_Internal_Shdr
*symtab_hdr
;
7545 struct elf_link_hash_entry
**sym_hashes
;
7546 bfd_signed_vma
*local_got_refcounts
;
7547 const Elf_Internal_Rela
*rel
, *relend
;
7548 unsigned long r_symndx
;
7549 struct elf_link_hash_entry
*h
;
7551 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7552 sym_hashes
= elf_sym_hashes (abfd
);
7553 local_got_refcounts
= elf_local_got_refcounts (abfd
);
7555 relend
= relocs
+ sec
->reloc_count
;
7556 for (rel
= relocs
; rel
< relend
; rel
++)
7557 switch (ELF32_R_TYPE (rel
->r_info
))
7561 case R_MIPS_CALL_HI16
:
7562 case R_MIPS_CALL_LO16
:
7563 case R_MIPS_GOT_HI16
:
7564 case R_MIPS_GOT_LO16
:
7565 /* ??? It would seem that the existing MIPS code does no sort
7566 of reference counting or whatnot on its GOT and PLT entries,
7567 so it is not possible to garbage collect them at this time. */
7579 /* Adjust a symbol defined by a dynamic object and referenced by a
7580 regular object. The current definition is in some section of the
7581 dynamic object, but we're not including those sections. We have to
7582 change the definition to something the rest of the link can
7586 _bfd_mips_elf_adjust_dynamic_symbol (info
, h
)
7587 struct bfd_link_info
*info
;
7588 struct elf_link_hash_entry
*h
;
7591 struct mips_elf_link_hash_entry
*hmips
;
7594 dynobj
= elf_hash_table (info
)->dynobj
;
7596 /* Make sure we know what is going on here. */
7597 BFD_ASSERT (dynobj
!= NULL
7598 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
7599 || h
->weakdef
!= NULL
7600 || ((h
->elf_link_hash_flags
7601 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
7602 && (h
->elf_link_hash_flags
7603 & ELF_LINK_HASH_REF_REGULAR
) != 0
7604 && (h
->elf_link_hash_flags
7605 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
7607 /* If this symbol is defined in a dynamic object, we need to copy
7608 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
7610 hmips
= (struct mips_elf_link_hash_entry
*) h
;
7611 if (! info
->relocateable
7612 && hmips
->possibly_dynamic_relocs
!= 0
7613 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
7614 mips_elf_allocate_dynamic_relocations (dynobj
,
7615 hmips
->possibly_dynamic_relocs
);
7617 /* For a function, create a stub, if needed. */
7618 if (h
->type
== STT_FUNC
7619 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
7621 if (! elf_hash_table (info
)->dynamic_sections_created
)
7624 /* If this symbol is not defined in a regular file, then set
7625 the symbol to the stub location. This is required to make
7626 function pointers compare as equal between the normal
7627 executable and the shared library. */
7628 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
7630 /* We need .stub section. */
7631 s
= bfd_get_section_by_name (dynobj
,
7632 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
7633 BFD_ASSERT (s
!= NULL
);
7635 h
->root
.u
.def
.section
= s
;
7636 h
->root
.u
.def
.value
= s
->_raw_size
;
7638 /* XXX Write this stub address somewhere. */
7639 h
->plt
.offset
= s
->_raw_size
;
7641 /* Make room for this stub code. */
7642 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
7644 /* The last half word of the stub will be filled with the index
7645 of this symbol in .dynsym section. */
7650 /* If this is a weak symbol, and there is a real definition, the
7651 processor independent code will have arranged for us to see the
7652 real definition first, and we can just use the same value. */
7653 if (h
->weakdef
!= NULL
)
7655 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
7656 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
7657 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
7658 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
7662 /* This is a reference to a symbol defined by a dynamic object which
7663 is not a function. */
7668 /* This function is called after all the input files have been read,
7669 and the input sections have been assigned to output sections. We
7670 check for any mips16 stub sections that we can discard. */
7672 static boolean mips_elf_check_mips16_stubs
7673 PARAMS ((struct mips_elf_link_hash_entry
*, PTR
));
7676 _bfd_mips_elf_always_size_sections (output_bfd
, info
)
7678 struct bfd_link_info
*info
;
7682 /* The .reginfo section has a fixed size. */
7683 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
7685 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
7687 if (info
->relocateable
7688 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
)
7691 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
7692 mips_elf_check_mips16_stubs
,
7698 /* Check the mips16 stubs for a particular symbol, and see if we can
7703 mips_elf_check_mips16_stubs (h
, data
)
7704 struct mips_elf_link_hash_entry
*h
;
7705 PTR data ATTRIBUTE_UNUSED
;
7707 if (h
->fn_stub
!= NULL
7708 && ! h
->need_fn_stub
)
7710 /* We don't need the fn_stub; the only references to this symbol
7711 are 16 bit calls. Clobber the size to 0 to prevent it from
7712 being included in the link. */
7713 h
->fn_stub
->_raw_size
= 0;
7714 h
->fn_stub
->_cooked_size
= 0;
7715 h
->fn_stub
->flags
&= ~ SEC_RELOC
;
7716 h
->fn_stub
->reloc_count
= 0;
7717 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
7720 if (h
->call_stub
!= NULL
7721 && h
->root
.other
== STO_MIPS16
)
7723 /* We don't need the call_stub; this is a 16 bit function, so
7724 calls from other 16 bit functions are OK. Clobber the size
7725 to 0 to prevent it from being included in the link. */
7726 h
->call_stub
->_raw_size
= 0;
7727 h
->call_stub
->_cooked_size
= 0;
7728 h
->call_stub
->flags
&= ~ SEC_RELOC
;
7729 h
->call_stub
->reloc_count
= 0;
7730 h
->call_stub
->flags
|= SEC_EXCLUDE
;
7733 if (h
->call_fp_stub
!= NULL
7734 && h
->root
.other
== STO_MIPS16
)
7736 /* We don't need the call_stub; this is a 16 bit function, so
7737 calls from other 16 bit functions are OK. Clobber the size
7738 to 0 to prevent it from being included in the link. */
7739 h
->call_fp_stub
->_raw_size
= 0;
7740 h
->call_fp_stub
->_cooked_size
= 0;
7741 h
->call_fp_stub
->flags
&= ~ SEC_RELOC
;
7742 h
->call_fp_stub
->reloc_count
= 0;
7743 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
7749 /* Set the sizes of the dynamic sections. */
7752 _bfd_mips_elf_size_dynamic_sections (output_bfd
, info
)
7754 struct bfd_link_info
*info
;
7759 struct mips_got_info
*g
= NULL
;
7761 dynobj
= elf_hash_table (info
)->dynobj
;
7762 BFD_ASSERT (dynobj
!= NULL
);
7764 if (elf_hash_table (info
)->dynamic_sections_created
)
7766 /* Set the contents of the .interp section to the interpreter. */
7769 s
= bfd_get_section_by_name (dynobj
, ".interp");
7770 BFD_ASSERT (s
!= NULL
);
7772 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
7774 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
7778 /* The check_relocs and adjust_dynamic_symbol entry points have
7779 determined the sizes of the various dynamic sections. Allocate
7782 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
7787 /* It's OK to base decisions on the section name, because none
7788 of the dynobj section names depend upon the input files. */
7789 name
= bfd_get_section_name (dynobj
, s
);
7791 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
7796 if (strncmp (name
, ".rel", 4) == 0)
7798 if (s
->_raw_size
== 0)
7800 /* We only strip the section if the output section name
7801 has the same name. Otherwise, there might be several
7802 input sections for this output section. FIXME: This
7803 code is probably not needed these days anyhow, since
7804 the linker now does not create empty output sections. */
7805 if (s
->output_section
!= NULL
7807 bfd_get_section_name (s
->output_section
->owner
,
7808 s
->output_section
)) == 0)
7813 const char *outname
;
7816 /* If this relocation section applies to a read only
7817 section, then we probably need a DT_TEXTREL entry.
7818 If the relocation section is .rel.dyn, we always
7819 assert a DT_TEXTREL entry rather than testing whether
7820 there exists a relocation to a read only section or
7822 outname
= bfd_get_section_name (output_bfd
,
7824 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
7826 && (target
->flags
& SEC_READONLY
) != 0
7827 && (target
->flags
& SEC_ALLOC
) != 0)
7829 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
)) == 0)
7832 /* We use the reloc_count field as a counter if we need
7833 to copy relocs into the output file. */
7835 MIPS_ELF_REL_DYN_SECTION_NAME (output_bfd
)) != 0)
7839 else if (strncmp (name
, ".got", 4) == 0)
7842 bfd_size_type loadable_size
= 0;
7843 bfd_size_type local_gotno
;
7846 BFD_ASSERT (elf_section_data (s
) != NULL
);
7847 g
= (struct mips_got_info
*) elf_section_data (s
)->tdata
;
7848 BFD_ASSERT (g
!= NULL
);
7850 /* Calculate the total loadable size of the output. That
7851 will give us the maximum number of GOT_PAGE entries
7853 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
7855 asection
*subsection
;
7857 for (subsection
= sub
->sections
;
7859 subsection
= subsection
->next
)
7861 if ((subsection
->flags
& SEC_ALLOC
) == 0)
7863 loadable_size
+= (subsection
->_raw_size
+ 0xf) & ~0xf;
7866 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
;
7868 /* Assume there are two loadable segments consisting of
7869 contiguous sections. Is 5 enough? */
7870 local_gotno
= (loadable_size
>> 16) + 5;
7871 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
7872 /* It's possible we will need GOT_PAGE entries as well as
7873 GOT16 entries. Often, these will be able to share GOT
7874 entries, but not always. */
7877 g
->local_gotno
+= local_gotno
;
7878 s
->_raw_size
+= local_gotno
* MIPS_ELF_GOT_SIZE (dynobj
);
7880 /* There has to be a global GOT entry for every symbol with
7881 a dynamic symbol table index of DT_MIPS_GOTSYM or
7882 higher. Therefore, it make sense to put those symbols
7883 that need GOT entries at the end of the symbol table. We
7885 if (!mips_elf_sort_hash_table (info
, 1))
7888 if (g
->global_gotsym
!= NULL
)
7889 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
7891 /* If there are no global symbols, or none requiring
7892 relocations, then GLOBAL_GOTSYM will be NULL. */
7894 g
->global_gotno
= i
;
7895 s
->_raw_size
+= i
* MIPS_ELF_GOT_SIZE (dynobj
);
7897 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
7899 /* Irix rld assumes that the function stub isn't at the end
7900 of .text section. So put a dummy. XXX */
7901 s
->_raw_size
+= MIPS_FUNCTION_STUB_SIZE
;
7903 else if (! info
->shared
7904 && ! mips_elf_hash_table (info
)->use_rld_obj_head
7905 && strncmp (name
, ".rld_map", 8) == 0)
7907 /* We add a room for __rld_map. It will be filled in by the
7908 rtld to contain a pointer to the _r_debug structure. */
7911 else if (SGI_COMPAT (output_bfd
)
7912 && strncmp (name
, ".compact_rel", 12) == 0)
7913 s
->_raw_size
+= mips_elf_hash_table (info
)->compact_rel_size
;
7914 else if (strcmp (name
, MIPS_ELF_MSYM_SECTION_NAME (output_bfd
))
7916 s
->_raw_size
= (sizeof (Elf32_External_Msym
)
7917 * (elf_hash_table (info
)->dynsymcount
7918 + bfd_count_sections (output_bfd
)));
7919 else if (strncmp (name
, ".init", 5) != 0)
7921 /* It's not one of our sections, so don't allocate space. */
7927 _bfd_strip_section_from_output (info
, s
);
7931 /* Allocate memory for the section contents. */
7932 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
7933 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
7935 bfd_set_error (bfd_error_no_memory
);
7940 if (elf_hash_table (info
)->dynamic_sections_created
)
7942 /* Add some entries to the .dynamic section. We fill in the
7943 values later, in elf_mips_finish_dynamic_sections, but we
7944 must add the entries now so that we get the correct size for
7945 the .dynamic section. The DT_DEBUG entry is filled in by the
7946 dynamic linker and used by the debugger. */
7949 if (SGI_COMPAT (output_bfd
))
7951 /* SGI object has the equivalence of DT_DEBUG in the
7952 DT_MIPS_RLD_MAP entry. */
7953 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
7957 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
7963 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
7967 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
7970 if (bfd_get_section_by_name (dynobj
,
7971 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
)))
7973 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
7976 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
7979 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
7983 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICTNO
, 0))
7986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLISTNO
, 0))
7989 if (bfd_get_section_by_name (dynobj
, ".conflict") != NULL
)
7991 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_CONFLICT
, 0))
7994 s
= bfd_get_section_by_name (dynobj
, ".liblist");
7995 BFD_ASSERT (s
!= NULL
);
7997 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LIBLIST
, 0))
8001 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
8004 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
8008 /* Time stamps in executable files are a bad idea. */
8009 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_TIME_STAMP
, 0))
8014 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_ICHECKSUM
, 0))
8019 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_IVERSION
, 0))
8023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
8026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
8029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
8032 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
8035 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
8038 if (IRIX_COMPAT (dynobj
) == ict_irix5
8039 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
8042 if (IRIX_COMPAT (dynobj
) == ict_irix6
8043 && (bfd_get_section_by_name
8044 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
8045 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
8048 if (bfd_get_section_by_name (dynobj
,
8049 MIPS_ELF_MSYM_SECTION_NAME (dynobj
))
8050 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_MSYM
, 0))
8057 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8058 adjust it appropriately now. */
8061 mips_elf_irix6_finish_dynamic_symbol (abfd
, name
, sym
)
8062 bfd
*abfd ATTRIBUTE_UNUSED
;
8064 Elf_Internal_Sym
*sym
;
8066 /* The linker script takes care of providing names and values for
8067 these, but we must place them into the right sections. */
8068 static const char* const text_section_symbols
[] = {
8071 "__dso_displacement",
8073 "__program_header_table",
8077 static const char* const data_section_symbols
[] = {
8085 const char* const *p
;
8088 for (i
= 0; i
< 2; ++i
)
8089 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
8092 if (strcmp (*p
, name
) == 0)
8094 /* All of these symbols are given type STT_SECTION by the
8096 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8098 /* The IRIX linker puts these symbols in special sections. */
8100 sym
->st_shndx
= SHN_MIPS_TEXT
;
8102 sym
->st_shndx
= SHN_MIPS_DATA
;
8108 /* Finish up dynamic symbol handling. We set the contents of various
8109 dynamic sections here. */
8112 _bfd_mips_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
8114 struct bfd_link_info
*info
;
8115 struct elf_link_hash_entry
*h
;
8116 Elf_Internal_Sym
*sym
;
8122 struct mips_got_info
*g
;
8124 struct mips_elf_link_hash_entry
*mh
;
8126 dynobj
= elf_hash_table (info
)->dynobj
;
8127 gval
= sym
->st_value
;
8128 mh
= (struct mips_elf_link_hash_entry
*) h
;
8130 if (h
->plt
.offset
!= (bfd_vma
) -1)
8134 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
8136 /* This symbol has a stub. Set it up. */
8138 BFD_ASSERT (h
->dynindx
!= -1);
8140 s
= bfd_get_section_by_name (dynobj
,
8141 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
8142 BFD_ASSERT (s
!= NULL
);
8144 /* Fill the stub. */
8146 bfd_put_32 (output_bfd
, STUB_LW(output_bfd
), p
);
8148 bfd_put_32 (output_bfd
, STUB_MOVE
, p
);
8151 /* FIXME: Can h->dynindex be more than 64K? */
8152 if (h
->dynindx
& 0xffff0000)
8155 bfd_put_32 (output_bfd
, STUB_JALR
, p
);
8157 bfd_put_32 (output_bfd
, STUB_LI16
+ h
->dynindx
, p
);
8159 BFD_ASSERT (h
->plt
.offset
<= s
->_raw_size
);
8160 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
8162 /* Mark the symbol as undefined. plt.offset != -1 occurs
8163 only for the referenced symbol. */
8164 sym
->st_shndx
= SHN_UNDEF
;
8166 /* The run-time linker uses the st_value field of the symbol
8167 to reset the global offset table entry for this external
8168 to its stub address when unlinking a shared object. */
8169 gval
= s
->output_section
->vma
+ s
->output_offset
+ h
->plt
.offset
;
8170 sym
->st_value
= gval
;
8173 BFD_ASSERT (h
->dynindx
!= -1);
8175 sgot
= mips_elf_got_section (dynobj
);
8176 BFD_ASSERT (sgot
!= NULL
);
8177 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
8178 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
8179 BFD_ASSERT (g
!= NULL
);
8181 /* Run through the global symbol table, creating GOT entries for all
8182 the symbols that need them. */
8183 if (g
->global_gotsym
!= NULL
8184 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
8190 value
= sym
->st_value
;
8192 /* For an entity defined in a shared object, this will be
8193 NULL. (For functions in shared objects for
8194 which we have created stubs, ST_VALUE will be non-NULL.
8195 That's because such the functions are now no longer defined
8196 in a shared object.) */
8197 value
= h
->root
.u
.def
.value
;
8199 offset
= mips_elf_global_got_index (dynobj
, h
);
8200 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
8203 /* Create a .msym entry, if appropriate. */
8204 smsym
= bfd_get_section_by_name (dynobj
,
8205 MIPS_ELF_MSYM_SECTION_NAME (dynobj
));
8208 Elf32_Internal_Msym msym
;
8210 msym
.ms_hash_value
= bfd_elf_hash (h
->root
.root
.string
);
8211 /* It is undocumented what the `1' indicates, but IRIX6 uses
8213 msym
.ms_info
= ELF32_MS_INFO (mh
->min_dyn_reloc_index
, 1);
8214 bfd_mips_elf_swap_msym_out
8216 ((Elf32_External_Msym
*) smsym
->contents
) + h
->dynindx
);
8219 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8220 name
= h
->root
.root
.string
;
8221 if (strcmp (name
, "_DYNAMIC") == 0
8222 || strcmp (name
, "_GLOBAL_OFFSET_TABLE_") == 0)
8223 sym
->st_shndx
= SHN_ABS
;
8224 else if (strcmp (name
, "_DYNAMIC_LINK") == 0)
8226 sym
->st_shndx
= SHN_ABS
;
8227 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8230 else if (SGI_COMPAT (output_bfd
))
8232 if (strcmp (name
, "_gp_disp") == 0)
8234 sym
->st_shndx
= SHN_ABS
;
8235 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8236 sym
->st_value
= elf_gp (output_bfd
);
8238 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
8239 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
8241 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8242 sym
->st_other
= STO_PROTECTED
;
8244 sym
->st_shndx
= SHN_MIPS_DATA
;
8246 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
8248 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8249 sym
->st_other
= STO_PROTECTED
;
8250 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
8251 sym
->st_shndx
= SHN_ABS
;
8253 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
8255 if (h
->type
== STT_FUNC
)
8256 sym
->st_shndx
= SHN_MIPS_TEXT
;
8257 else if (h
->type
== STT_OBJECT
)
8258 sym
->st_shndx
= SHN_MIPS_DATA
;
8262 /* Handle the IRIX6-specific symbols. */
8263 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
8264 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
8266 if (SGI_COMPAT (output_bfd
)
8269 if (! mips_elf_hash_table (info
)->use_rld_obj_head
8270 && strcmp (name
, "__rld_map") == 0)
8272 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
8273 BFD_ASSERT (s
!= NULL
);
8274 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
8275 bfd_put_32 (output_bfd
, (bfd_vma
) 0, s
->contents
);
8276 if (mips_elf_hash_table (info
)->rld_value
== 0)
8277 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8279 else if (mips_elf_hash_table (info
)->use_rld_obj_head
8280 && strcmp (name
, "__rld_obj_head") == 0)
8282 /* IRIX6 does not use a .rld_map section. */
8283 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
8284 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
8286 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8290 /* If this is a mips16 symbol, force the value to be even. */
8291 if (sym
->st_other
== STO_MIPS16
8292 && (sym
->st_value
& 1) != 0)
8298 /* Finish up the dynamic sections. */
8301 _bfd_mips_elf_finish_dynamic_sections (output_bfd
, info
)
8303 struct bfd_link_info
*info
;
8308 struct mips_got_info
*g
;
8310 dynobj
= elf_hash_table (info
)->dynobj
;
8312 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
8314 sgot
= mips_elf_got_section (dynobj
);
8319 BFD_ASSERT (elf_section_data (sgot
) != NULL
);
8320 g
= (struct mips_got_info
*) elf_section_data (sgot
)->tdata
;
8321 BFD_ASSERT (g
!= NULL
);
8324 if (elf_hash_table (info
)->dynamic_sections_created
)
8328 BFD_ASSERT (sdyn
!= NULL
);
8329 BFD_ASSERT (g
!= NULL
);
8331 for (b
= sdyn
->contents
;
8332 b
< sdyn
->contents
+ sdyn
->_raw_size
;
8333 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
8335 Elf_Internal_Dyn dyn
;
8341 /* Read in the current dynamic entry. */
8342 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
8344 /* Assume that we're going to modify it and write it out. */
8350 s
= (bfd_get_section_by_name
8352 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
)));
8353 BFD_ASSERT (s
!= NULL
);
8354 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
8358 /* Rewrite DT_STRSZ. */
8360 _bfd_stringtab_size (elf_hash_table (info
)->dynstr
);
8366 case DT_MIPS_CONFLICT
:
8369 case DT_MIPS_LIBLIST
:
8372 s
= bfd_get_section_by_name (output_bfd
, name
);
8373 BFD_ASSERT (s
!= NULL
);
8374 dyn
.d_un
.d_ptr
= s
->vma
;
8377 case DT_MIPS_RLD_VERSION
:
8378 dyn
.d_un
.d_val
= 1; /* XXX */
8382 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
8385 case DT_MIPS_CONFLICTNO
:
8387 elemsize
= sizeof (Elf32_Conflict
);
8390 case DT_MIPS_LIBLISTNO
:
8392 elemsize
= sizeof (Elf32_Lib
);
8394 s
= bfd_get_section_by_name (output_bfd
, name
);
8397 if (s
->_cooked_size
!= 0)
8398 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
8400 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
8406 case DT_MIPS_TIME_STAMP
:
8407 time ((time_t *) &dyn
.d_un
.d_val
);
8410 case DT_MIPS_ICHECKSUM
:
8415 case DT_MIPS_IVERSION
:
8420 case DT_MIPS_BASE_ADDRESS
:
8421 s
= output_bfd
->sections
;
8422 BFD_ASSERT (s
!= NULL
);
8423 dyn
.d_un
.d_ptr
= s
->vma
& ~(0xffff);
8426 case DT_MIPS_LOCAL_GOTNO
:
8427 dyn
.d_un
.d_val
= g
->local_gotno
;
8430 case DT_MIPS_UNREFEXTNO
:
8431 /* The index into the dynamic symbol table which is the
8432 entry of the first external symbol that is not
8433 referenced within the same object. */
8434 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
8437 case DT_MIPS_GOTSYM
:
8438 if (g
->global_gotsym
)
8440 dyn
.d_un
.d_val
= g
->global_gotsym
->dynindx
;
8443 /* In case if we don't have global got symbols we default
8444 to setting DT_MIPS_GOTSYM to the same value as
8445 DT_MIPS_SYMTABNO, so we just fall through. */
8447 case DT_MIPS_SYMTABNO
:
8449 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
8450 s
= bfd_get_section_by_name (output_bfd
, name
);
8451 BFD_ASSERT (s
!= NULL
);
8453 if (s
->_cooked_size
!= 0)
8454 dyn
.d_un
.d_val
= s
->_cooked_size
/ elemsize
;
8456 dyn
.d_un
.d_val
= s
->_raw_size
/ elemsize
;
8459 case DT_MIPS_HIPAGENO
:
8460 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO
;
8463 case DT_MIPS_RLD_MAP
:
8464 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
8467 case DT_MIPS_OPTIONS
:
8468 s
= (bfd_get_section_by_name
8469 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
8470 dyn
.d_un
.d_ptr
= s
->vma
;
8474 s
= (bfd_get_section_by_name
8475 (output_bfd
, MIPS_ELF_MSYM_SECTION_NAME (output_bfd
)));
8476 dyn
.d_un
.d_ptr
= s
->vma
;
8485 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
8490 /* The first entry of the global offset table will be filled at
8491 runtime. The second entry will be used by some runtime loaders.
8492 This isn't the case of Irix rld. */
8493 if (sgot
!= NULL
&& sgot
->_raw_size
> 0)
8495 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
8496 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
8497 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
8501 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
8502 = MIPS_ELF_GOT_SIZE (output_bfd
);
8507 Elf32_compact_rel cpt
;
8509 /* ??? The section symbols for the output sections were set up in
8510 _bfd_elf_final_link. SGI sets the STT_NOTYPE attribute for these
8511 symbols. Should we do so? */
8513 smsym
= bfd_get_section_by_name (dynobj
,
8514 MIPS_ELF_MSYM_SECTION_NAME (dynobj
));
8517 Elf32_Internal_Msym msym
;
8519 msym
.ms_hash_value
= 0;
8520 msym
.ms_info
= ELF32_MS_INFO (0, 1);
8522 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
8524 long dynindx
= elf_section_data (s
)->dynindx
;
8526 bfd_mips_elf_swap_msym_out
8528 (((Elf32_External_Msym
*) smsym
->contents
)
8533 if (SGI_COMPAT (output_bfd
))
8535 /* Write .compact_rel section out. */
8536 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
8540 cpt
.num
= s
->reloc_count
;
8542 cpt
.offset
= (s
->output_section
->filepos
8543 + sizeof (Elf32_External_compact_rel
));
8546 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
8547 ((Elf32_External_compact_rel
*)
8550 /* Clean up a dummy stub function entry in .text. */
8551 s
= bfd_get_section_by_name (dynobj
,
8552 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
8555 file_ptr dummy_offset
;
8557 BFD_ASSERT (s
->_raw_size
>= MIPS_FUNCTION_STUB_SIZE
);
8558 dummy_offset
= s
->_raw_size
- MIPS_FUNCTION_STUB_SIZE
;
8559 memset (s
->contents
+ dummy_offset
, 0,
8560 MIPS_FUNCTION_STUB_SIZE
);
8565 /* Clean up a first relocation in .rel.dyn. */
8566 s
= bfd_get_section_by_name (dynobj
,
8567 MIPS_ELF_REL_DYN_SECTION_NAME (dynobj
));
8568 if (s
!= NULL
&& s
->_raw_size
> 0)
8569 memset (s
->contents
, 0, MIPS_ELF_REL_SIZE (dynobj
));
8575 /* This is almost identical to bfd_generic_get_... except that some
8576 MIPS relocations need to be handled specially. Sigh. */
8579 elf32_mips_get_relocated_section_contents (abfd
, link_info
, link_order
, data
,
8580 relocateable
, symbols
)
8582 struct bfd_link_info
*link_info
;
8583 struct bfd_link_order
*link_order
;
8585 boolean relocateable
;
8588 /* Get enough memory to hold the stuff */
8589 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
8590 asection
*input_section
= link_order
->u
.indirect
.section
;
8592 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
8593 arelent
**reloc_vector
= NULL
;
8599 reloc_vector
= (arelent
**) bfd_malloc (reloc_size
);
8600 if (reloc_vector
== NULL
&& reloc_size
!= 0)
8603 /* read in the section */
8604 if (!bfd_get_section_contents (input_bfd
,
8608 input_section
->_raw_size
))
8611 /* We're not relaxing the section, so just copy the size info */
8612 input_section
->_cooked_size
= input_section
->_raw_size
;
8613 input_section
->reloc_done
= true;
8615 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
8619 if (reloc_count
< 0)
8622 if (reloc_count
> 0)
8627 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
8630 struct bfd_hash_entry
*h
;
8631 struct bfd_link_hash_entry
*lh
;
8632 /* Skip all this stuff if we aren't mixing formats. */
8633 if (abfd
&& input_bfd
8634 && abfd
->xvec
== input_bfd
->xvec
)
8638 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", false, false);
8639 lh
= (struct bfd_link_hash_entry
*) h
;
8646 case bfd_link_hash_undefined
:
8647 case bfd_link_hash_undefweak
:
8648 case bfd_link_hash_common
:
8651 case bfd_link_hash_defined
:
8652 case bfd_link_hash_defweak
:
8654 gp
= lh
->u
.def
.value
;
8656 case bfd_link_hash_indirect
:
8657 case bfd_link_hash_warning
:
8659 /* @@FIXME ignoring warning for now */
8661 case bfd_link_hash_new
:
8670 for (parent
= reloc_vector
; *parent
!= (arelent
*) NULL
;
8673 char *error_message
= (char *) NULL
;
8674 bfd_reloc_status_type r
;
8676 /* Specific to MIPS: Deal with relocation types that require
8677 knowing the gp of the output bfd. */
8678 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
8679 if (bfd_is_abs_section (sym
->section
) && abfd
)
8681 /* The special_function wouldn't get called anyways. */
8685 /* The gp isn't there; let the special function code
8686 fall over on its own. */
8688 else if ((*parent
)->howto
->special_function
8689 == _bfd_mips_elf_gprel16_reloc
)
8691 /* bypass special_function call */
8692 r
= gprel16_with_gp (input_bfd
, sym
, *parent
, input_section
,
8693 relocateable
, (PTR
) data
, gp
);
8694 goto skip_bfd_perform_relocation
;
8696 /* end mips specific stuff */
8698 r
= bfd_perform_relocation (input_bfd
,
8702 relocateable
? abfd
: (bfd
*) NULL
,
8704 skip_bfd_perform_relocation
:
8708 asection
*os
= input_section
->output_section
;
8710 /* A partial link, so keep the relocs */
8711 os
->orelocation
[os
->reloc_count
] = *parent
;
8715 if (r
!= bfd_reloc_ok
)
8719 case bfd_reloc_undefined
:
8720 if (!((*link_info
->callbacks
->undefined_symbol
)
8721 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8722 input_bfd
, input_section
, (*parent
)->address
,
8726 case bfd_reloc_dangerous
:
8727 BFD_ASSERT (error_message
!= (char *) NULL
);
8728 if (!((*link_info
->callbacks
->reloc_dangerous
)
8729 (link_info
, error_message
, input_bfd
, input_section
,
8730 (*parent
)->address
)))
8733 case bfd_reloc_overflow
:
8734 if (!((*link_info
->callbacks
->reloc_overflow
)
8735 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
8736 (*parent
)->howto
->name
, (*parent
)->addend
,
8737 input_bfd
, input_section
, (*parent
)->address
)))
8740 case bfd_reloc_outofrange
:
8749 if (reloc_vector
!= NULL
)
8750 free (reloc_vector
);
8754 if (reloc_vector
!= NULL
)
8755 free (reloc_vector
);
8758 #define bfd_elf32_bfd_get_relocated_section_contents \
8759 elf32_mips_get_relocated_section_contents
8761 /* ECOFF swapping routines. These are used when dealing with the
8762 .mdebug section, which is in the ECOFF debugging format. */
8763 static const struct ecoff_debug_swap mips_elf32_ecoff_debug_swap
=
8765 /* Symbol table magic number. */
8767 /* Alignment of debugging information. E.g., 4. */
8769 /* Sizes of external symbolic information. */
8770 sizeof (struct hdr_ext
),
8771 sizeof (struct dnr_ext
),
8772 sizeof (struct pdr_ext
),
8773 sizeof (struct sym_ext
),
8774 sizeof (struct opt_ext
),
8775 sizeof (struct fdr_ext
),
8776 sizeof (struct rfd_ext
),
8777 sizeof (struct ext_ext
),
8778 /* Functions to swap in external symbolic data. */
8787 _bfd_ecoff_swap_tir_in
,
8788 _bfd_ecoff_swap_rndx_in
,
8789 /* Functions to swap out external symbolic data. */
8798 _bfd_ecoff_swap_tir_out
,
8799 _bfd_ecoff_swap_rndx_out
,
8800 /* Function to read in symbolic data. */
8801 _bfd_mips_elf_read_ecoff_info
8804 #define TARGET_LITTLE_SYM bfd_elf32_littlemips_vec
8805 #define TARGET_LITTLE_NAME "elf32-littlemips"
8806 #define TARGET_BIG_SYM bfd_elf32_bigmips_vec
8807 #define TARGET_BIG_NAME "elf32-bigmips"
8808 #define ELF_ARCH bfd_arch_mips
8809 #define ELF_MACHINE_CODE EM_MIPS
8811 /* The SVR4 MIPS ABI says that this should be 0x10000, but Irix 5 uses
8812 a value of 0x1000, and we are compatible. */
8813 #define ELF_MAXPAGESIZE 0x1000
8815 #define elf_backend_collect true
8816 #define elf_backend_type_change_ok true
8817 #define elf_backend_can_gc_sections true
8818 #define elf_backend_sign_extend_vma true
8819 #define elf_info_to_howto mips_info_to_howto_rela
8820 #define elf_info_to_howto_rel mips_info_to_howto_rel
8821 #define elf_backend_sym_is_global mips_elf_sym_is_global
8822 #define elf_backend_object_p _bfd_mips_elf_object_p
8823 #define elf_backend_section_from_shdr _bfd_mips_elf_section_from_shdr
8824 #define elf_backend_fake_sections _bfd_mips_elf_fake_sections
8825 #define elf_backend_section_from_bfd_section \
8826 _bfd_mips_elf_section_from_bfd_section
8827 #define elf_backend_section_processing _bfd_mips_elf_section_processing
8828 #define elf_backend_symbol_processing _bfd_mips_elf_symbol_processing
8829 #define elf_backend_additional_program_headers \
8830 _bfd_mips_elf_additional_program_headers
8831 #define elf_backend_modify_segment_map _bfd_mips_elf_modify_segment_map
8832 #define elf_backend_final_write_processing \
8833 _bfd_mips_elf_final_write_processing
8834 #define elf_backend_ecoff_debug_swap &mips_elf32_ecoff_debug_swap
8835 #define elf_backend_add_symbol_hook _bfd_mips_elf_add_symbol_hook
8836 #define elf_backend_create_dynamic_sections \
8837 _bfd_mips_elf_create_dynamic_sections
8838 #define elf_backend_check_relocs _bfd_mips_elf_check_relocs
8839 #define elf_backend_adjust_dynamic_symbol \
8840 _bfd_mips_elf_adjust_dynamic_symbol
8841 #define elf_backend_always_size_sections \
8842 _bfd_mips_elf_always_size_sections
8843 #define elf_backend_size_dynamic_sections \
8844 _bfd_mips_elf_size_dynamic_sections
8845 #define elf_backend_relocate_section _bfd_mips_elf_relocate_section
8846 #define elf_backend_link_output_symbol_hook \
8847 _bfd_mips_elf_link_output_symbol_hook
8848 #define elf_backend_finish_dynamic_symbol \
8849 _bfd_mips_elf_finish_dynamic_symbol
8850 #define elf_backend_finish_dynamic_sections \
8851 _bfd_mips_elf_finish_dynamic_sections
8852 #define elf_backend_gc_mark_hook _bfd_mips_elf_gc_mark_hook
8853 #define elf_backend_gc_sweep_hook _bfd_mips_elf_gc_sweep_hook
8855 #define elf_backend_got_header_size (4*MIPS_RESERVED_GOTNO)
8856 #define elf_backend_plt_header_size 0
8858 #define bfd_elf32_bfd_is_local_label_name \
8859 mips_elf_is_local_label_name
8860 #define bfd_elf32_find_nearest_line _bfd_mips_elf_find_nearest_line
8861 #define bfd_elf32_set_section_contents _bfd_mips_elf_set_section_contents
8862 #define bfd_elf32_bfd_link_hash_table_create \
8863 _bfd_mips_elf_link_hash_table_create
8864 #define bfd_elf32_bfd_final_link _bfd_mips_elf_final_link
8865 #define bfd_elf32_bfd_copy_private_bfd_data \
8866 _bfd_mips_elf_copy_private_bfd_data
8867 #define bfd_elf32_bfd_merge_private_bfd_data \
8868 _bfd_mips_elf_merge_private_bfd_data
8869 #define bfd_elf32_bfd_set_private_flags _bfd_mips_elf_set_private_flags
8870 #define bfd_elf32_bfd_print_private_bfd_data \
8871 _bfd_mips_elf_print_private_bfd_data
8872 #include "elf32-target.h"