1 /* tc-cr16.c -- Assembler code for the CR16 CPU core.
2 Copyright 2007 Free Software Foundation, Inc.
4 Contributed by M R Swami Reddy <MR.Swami.Reddy@nsc.com>
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the
20 Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
24 #include "safe-ctype.h"
25 #include "dwarf2dbg.h"
26 #include "opcode/cr16.h"
30 /* Word is considered here as a 16-bit unsigned short int. */
33 /* Register is 2-byte size. */
36 /* Maximum size of a single instruction (in words). */
37 #define INSN_MAX_SIZE 3
39 /* Maximum bits which may be set in a `mask16' operand. */
40 #define MAX_REGS_IN_MASK16 8
42 /* Assign a number NUM, shifted by SHIFT bytes, into a location
43 pointed by index BYTE of array 'output_opcode'. */
44 #define CR16_PRINT(BYTE, NUM, SHIFT) output_opcode[BYTE] |= (NUM << SHIFT)
49 OP_LEGAL
= 0, /* Legal operand. */
50 OP_OUT_OF_RANGE
, /* Operand not within permitted range. */
51 OP_NOT_EVEN
/* Operand is Odd number, should be even. */
55 /* Opcode mnemonics hash table. */
56 static struct hash_control
*cr16_inst_hash
;
57 /* CR16 registers hash table. */
58 static struct hash_control
*reg_hash
;
59 /* CR16 register pair hash table. */
60 static struct hash_control
*regp_hash
;
61 /* CR16 processor registers hash table. */
62 static struct hash_control
*preg_hash
;
63 /* CR16 processor registers 32 bit hash table. */
64 static struct hash_control
*pregp_hash
;
65 /* Current instruction we're assembling. */
66 const inst
*instruction
;
69 static int code_label
= 0;
71 /* Global variables. */
73 /* Array to hold an instruction encoding. */
74 long output_opcode
[2];
76 /* Nonzero means a relocatable symbol. */
79 /* A copy of the original instruction (used in error messages). */
80 char ins_parse
[MAX_INST_LEN
];
82 /* The current processed argument number. */
85 /* Generic assembler global variables which must be defined by all targets. */
87 /* Characters which always start a comment. */
88 const char comment_chars
[] = "#";
90 /* Characters which start a comment at the beginning of a line. */
91 const char line_comment_chars
[] = "#";
93 /* This array holds machine specific line separator characters. */
94 const char line_separator_chars
[] = ";";
96 /* Chars that can be used to separate mant from exp in floating point nums. */
97 const char EXP_CHARS
[] = "eE";
99 /* Chars that mean this number is a floating point constant as in 0f12.456 */
100 const char FLT_CHARS
[] = "f'";
102 /* Target-specific multicharacter options, not const-declared at usage. */
103 const char *md_shortopts
= "";
104 struct option md_longopts
[] =
106 {NULL
, no_argument
, NULL
, 0}
108 size_t md_longopts_size
= sizeof (md_longopts
);
116 #ifdef md_flush_pending_output
117 md_flush_pending_output ();
120 if (is_it_end_of_statement ())
122 demand_empty_rest_of_line ();
126 #ifdef TC_ADDRESS_BYTES
128 nbytes
= TC_ADDRESS_BYTES ();
132 md_cons_align (nbytes
);
138 unsigned int bits_available
= BITS_PER_CHAR
* nbytes
;
139 char *hold
= input_line_pointer
;
143 if (*input_line_pointer
== ':')
152 if (*input_line_pointer
!= ':')
154 input_line_pointer
= hold
;
157 if (exp
.X_op
== O_absent
)
159 as_warn (_("using a bit field width of zero"));
160 exp
.X_add_number
= 0;
161 exp
.X_op
= O_constant
;
164 if (exp
.X_op
!= O_constant
)
166 *input_line_pointer
= '\0';
167 as_bad (_("field width \"%s\" too complex for a bitfield"), hold
);
168 *input_line_pointer
= ':';
169 demand_empty_rest_of_line ();
173 if ((width
= exp
.X_add_number
) >
174 (unsigned int)(BITS_PER_CHAR
* nbytes
))
176 as_warn (_("field width %lu too big to fit in %d bytes: truncated to %d bits"), width
, nbytes
, (BITS_PER_CHAR
* nbytes
));
177 width
= BITS_PER_CHAR
* nbytes
;
181 if (width
> bits_available
)
183 /* FIXME-SOMEDAY: backing up and reparsing is wasteful. */
184 input_line_pointer
= hold
;
185 exp
.X_add_number
= value
;
190 hold
= ++input_line_pointer
;
193 if (exp
.X_op
!= O_constant
)
195 char cache
= *input_line_pointer
;
197 *input_line_pointer
= '\0';
198 as_bad (_("field value \"%s\" too complex for a bitfield"), hold
);
199 *input_line_pointer
= cache
;
200 demand_empty_rest_of_line ();
204 value
|= ((~(-1 << width
) & exp
.X_add_number
)
205 << ((BITS_PER_CHAR
* nbytes
) - bits_available
));
207 if ((bits_available
-= width
) == 0
208 || is_it_end_of_statement ()
209 || *input_line_pointer
!= ',')
212 hold
= ++input_line_pointer
;
216 exp
.X_add_number
= value
;
217 exp
.X_op
= O_constant
;
221 if ((*(input_line_pointer
) == '@') && (*(input_line_pointer
+1) == 'c'))
223 emit_expr (&exp
, (unsigned int) nbytes
);
225 if ((*(input_line_pointer
) == '@') && (*(input_line_pointer
+1) == 'c'))
227 input_line_pointer
+=3;
231 while ((*input_line_pointer
++ == ','));
233 /* Put terminator back into stream. */
234 input_line_pointer
--;
236 demand_empty_rest_of_line ();
240 /* This table describes all the machine specific pseudo-ops
241 the assembler has to support. The fields are:
242 *** Pseudo-op name without dot.
243 *** Function to call to execute this pseudo-op.
244 *** Integer arg to pass to the function. */
246 const pseudo_typeS md_pseudo_table
[] =
248 /* In CR16 machine, align is in bytes (not a ptwo boundary). */
249 {"align", s_align_bytes
, 0},
250 {"long", l_cons
, 4 },
254 /* CR16 relaxation table. */
255 const relax_typeS md_relax_table
[] =
258 {0x7f, -0x80, 2, 1}, /* 8 */
259 {0xfffe, -0x10000, 4, 2}, /* 16 */
260 {0xfffffe, -0x1000000, 6, 0}, /* 24 */
263 /* Return the bit size for a given operand. */
266 get_opbits (operand_type op
)
269 return cr16_optab
[op
].bit_size
;
274 /* Return the argument type of a given operand. */
277 get_optype (operand_type op
)
280 return cr16_optab
[op
].arg_type
;
285 /* Return the flags of a given operand. */
288 get_opflags (operand_type op
)
291 return cr16_optab
[op
].flags
;
296 /* Get the cc code. */
299 get_cc (char *cc_name
)
303 for (i
= 0; i
< cr16_num_cc
; i
++)
304 if (strcmp (cc_name
, cr16_b_cond_tab
[i
]) == 0)
310 /* Get the core processor register 'reg_name'. */
313 get_register (char *reg_name
)
315 const reg_entry
*reg
;
317 reg
= (const reg_entry
*) hash_find (reg_hash
, reg_name
);
320 return reg
->value
.reg_val
;
324 /* Get the core processor register-pair 'reg_name'. */
327 get_register_pair (char *reg_name
)
329 const reg_entry
*reg
;
330 char tmp_rp
[16]="\0";
332 /* Add '(' and ')' to the reg pair, if its not present. */
333 if (reg_name
[0] != '(')
336 strcat (tmp_rp
, reg_name
);
338 reg
= (const reg_entry
*) hash_find (regp_hash
, tmp_rp
);
341 reg
= (const reg_entry
*) hash_find (regp_hash
, reg_name
);
344 return reg
->value
.reg_val
;
349 /* Get the index register 'reg_name'. */
352 get_index_register (char *reg_name
)
354 const reg_entry
*reg
;
356 reg
= (const reg_entry
*) hash_find (reg_hash
, reg_name
);
359 && ((reg
->value
.reg_val
== 12) || (reg
->value
.reg_val
== 13)))
360 return reg
->value
.reg_val
;
364 /* Get the core processor index register-pair 'reg_name'. */
367 get_index_register_pair (char *reg_name
)
369 const reg_entry
*reg
;
371 reg
= (const reg_entry
*) hash_find (regp_hash
, reg_name
);
375 if ((reg
->value
.reg_val
!= 1) || (reg
->value
.reg_val
!= 7)
376 || (reg
->value
.reg_val
!= 9) || (reg
->value
.reg_val
> 10))
377 return reg
->value
.reg_val
;
379 as_bad (_("Unknown register pair - index relative mode: `%d'"), reg
->value
.reg_val
);
385 /* Get the processor register 'preg_name'. */
388 get_pregister (char *preg_name
)
390 const reg_entry
*preg
;
392 preg
= (const reg_entry
*) hash_find (preg_hash
, preg_name
);
395 return preg
->value
.preg_val
;
397 return nullpregister
;
400 /* Get the processor register 'preg_name 32 bit'. */
403 get_pregisterp (char *preg_name
)
405 const reg_entry
*preg
;
407 preg
= (const reg_entry
*) hash_find (pregp_hash
, preg_name
);
410 return preg
->value
.preg_val
;
412 return nullpregister
;
416 /* Round up a section size to the appropriate boundary. */
419 md_section_align (segT seg
, valueT val
)
421 /* Round .text section to a multiple of 2. */
422 if (seg
== text_section
)
423 return (val
+ 1) & ~1;
427 /* Parse an operand that is machine-specific (remove '*'). */
430 md_operand (expressionS
* exp
)
432 char c
= *input_line_pointer
;
437 input_line_pointer
++;
445 /* Reset global variables before parsing a new instruction. */
448 reset_vars (char *op
)
450 cur_arg_num
= relocatable
= 0;
451 memset (& output_opcode
, '\0', sizeof (output_opcode
));
453 /* Save a copy of the original OP (used in error messages). */
454 strncpy (ins_parse
, op
, sizeof ins_parse
- 1);
455 ins_parse
[sizeof ins_parse
- 1] = 0;
458 /* This macro decides whether a particular reloc is an entry in a
459 switch table. It is used when relaxing, because the linker needs
460 to know about all such entries so that it can adjust them if
463 #define SWITCH_TABLE(fix) \
464 ( (fix)->fx_addsy != NULL \
465 && (fix)->fx_subsy != NULL \
466 && S_GET_SEGMENT ((fix)->fx_addsy) == \
467 S_GET_SEGMENT ((fix)->fx_subsy) \
468 && S_GET_SEGMENT (fix->fx_addsy) != undefined_section \
469 && ( (fix)->fx_r_type == BFD_RELOC_CR16_NUM8 \
470 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM16 \
471 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM32 \
472 || (fix)->fx_r_type == BFD_RELOC_CR16_NUM32a))
474 /* See whether we need to force a relocation into the output file.
475 This is used to force out switch and PC relative relocations when
479 cr16_force_relocation (fixS
*fix
)
481 if (generic_force_reloc (fix
) || SWITCH_TABLE (fix
))
487 /* Record a fixup for a cons expression. */
490 cr16_cons_fix_new (fragS
*frag
, int offset
, int len
, expressionS
*exp
)
495 default: rtype
= BFD_RELOC_NONE
; break;
496 case 1: rtype
= BFD_RELOC_CR16_NUM8
; break;
497 case 2: rtype
= BFD_RELOC_CR16_NUM16
; break;
501 rtype
= BFD_RELOC_CR16_NUM32a
;
505 rtype
= BFD_RELOC_CR16_NUM32
;
509 fix_new_exp (frag
, offset
, len
, exp
, 0, rtype
);
512 /* Generate a relocation entry for a fixup. */
515 tc_gen_reloc (asection
*section ATTRIBUTE_UNUSED
, fixS
* fixP
)
519 reloc
= xmalloc (sizeof (arelent
));
520 reloc
->sym_ptr_ptr
= xmalloc (sizeof (asymbol
*));
521 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixP
->fx_addsy
);
522 reloc
->address
= fixP
->fx_frag
->fr_address
+ fixP
->fx_where
;
523 reloc
->addend
= fixP
->fx_offset
;
525 if (fixP
->fx_subsy
!= NULL
)
527 if (SWITCH_TABLE (fixP
))
529 /* Keep the current difference in the addend. */
530 reloc
->addend
= (S_GET_VALUE (fixP
->fx_addsy
)
531 - S_GET_VALUE (fixP
->fx_subsy
) + fixP
->fx_offset
);
533 switch (fixP
->fx_r_type
)
535 case BFD_RELOC_CR16_NUM8
:
536 fixP
->fx_r_type
= BFD_RELOC_CR16_SWITCH8
;
538 case BFD_RELOC_CR16_NUM16
:
539 fixP
->fx_r_type
= BFD_RELOC_CR16_SWITCH16
;
541 case BFD_RELOC_CR16_NUM32
:
542 fixP
->fx_r_type
= BFD_RELOC_CR16_SWITCH32
;
544 case BFD_RELOC_CR16_NUM32a
:
545 fixP
->fx_r_type
= BFD_RELOC_CR16_NUM32a
;
554 /* We only resolve difference expressions in the same section. */
555 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
556 _("can't resolve `%s' {%s section} - `%s' {%s section}"),
557 fixP
->fx_addsy
? S_GET_NAME (fixP
->fx_addsy
) : "0",
558 segment_name (fixP
->fx_addsy
559 ? S_GET_SEGMENT (fixP
->fx_addsy
)
561 S_GET_NAME (fixP
->fx_subsy
),
562 segment_name (S_GET_SEGMENT (fixP
->fx_addsy
)));
566 assert ((int) fixP
->fx_r_type
> 0);
567 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, fixP
->fx_r_type
);
569 if (reloc
->howto
== NULL
)
571 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
572 _("internal error: reloc %d (`%s') not supported by object file format"),
574 bfd_get_reloc_code_name (fixP
->fx_r_type
));
577 assert (!fixP
->fx_pcrel
== !reloc
->howto
->pc_relative
);
582 /* Prepare machine-dependent frags for relaxation. */
585 md_estimate_size_before_relax (fragS
*fragp
, asection
*seg
)
587 /* If symbol is undefined or located in a different section,
588 select the largest supported relocation. */
589 relax_substateT subtype
;
590 relax_substateT rlx_state
[] = {0, 2};
592 for (subtype
= 0; subtype
< ARRAY_SIZE (rlx_state
); subtype
+= 2)
594 if (fragp
->fr_subtype
== rlx_state
[subtype
]
595 && (!S_IS_DEFINED (fragp
->fr_symbol
)
596 || seg
!= S_GET_SEGMENT (fragp
->fr_symbol
)))
598 fragp
->fr_subtype
= rlx_state
[subtype
+ 1];
603 if (fragp
->fr_subtype
>= ARRAY_SIZE (md_relax_table
))
606 return md_relax_table
[fragp
->fr_subtype
].rlx_length
;
610 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
, fragS
*fragP
)
612 /* 'opcode' points to the start of the instruction, whether
613 we need to change the instruction's fixed encoding. */
614 char *opcode
= fragP
->fr_literal
+ fragP
->fr_fix
;
615 bfd_reloc_code_real_type reloc
;
617 subseg_change (sec
, 0);
619 switch (fragP
->fr_subtype
)
622 reloc
= BFD_RELOC_CR16_DISP8
;
625 /* If the subtype is not changed due to :m operand qualifier,
626 then no need to update the opcode value. */
627 if ((int)opcode
[1] != 0x18)
629 opcode
[0] = (opcode
[0] & 0xf0);
632 reloc
= BFD_RELOC_CR16_DISP16
;
635 /* If the subtype is not changed due to :l operand qualifier,
636 then no need to update the opcode value. */
637 if ((int)opcode
[1] != 0)
639 opcode
[2] = opcode
[0];
640 opcode
[0] = opcode
[1];
643 reloc
= BFD_RELOC_CR16_DISP24
;
649 fix_new (fragP
, fragP
->fr_fix
,
650 bfd_get_reloc_size (bfd_reloc_type_lookup (stdoutput
, reloc
)),
651 fragP
->fr_symbol
, fragP
->fr_offset
, 1, reloc
);
653 fragP
->fr_fix
+= md_relax_table
[fragP
->fr_subtype
].rlx_length
;
656 /* Process machine-dependent command line options. Called once for
657 each option on the command line that the machine-independent part of
658 GAS does not understand. */
661 md_parse_option (int c ATTRIBUTE_UNUSED
, char *arg ATTRIBUTE_UNUSED
)
666 /* Machine-dependent usage-output. */
669 md_show_usage (FILE *stream ATTRIBUTE_UNUSED
)
675 md_atof (int type
, char *litP
, int *sizeP
)
677 return ieee_md_atof (type
, litP
, sizeP
, target_big_endian
);
680 /* Apply a fixS (fixup of an instruction or data that we didn't have
681 enough info to complete immediately) to the data in a frag.
682 Since linkrelax is nonzero and TC_LINKRELAX_FIXUP is defined to disable
683 relaxation of debug sections, this function is called only when
684 fixuping relocations of debug sections. */
687 md_apply_fix (fixS
*fixP
, valueT
*valP
, segT seg
)
690 char *buf
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
693 switch (fixP
->fx_r_type
)
695 case BFD_RELOC_CR16_NUM8
:
696 bfd_put_8 (stdoutput
, (unsigned char) val
, buf
);
698 case BFD_RELOC_CR16_NUM16
:
699 bfd_put_16 (stdoutput
, val
, buf
);
701 case BFD_RELOC_CR16_NUM32
:
702 bfd_put_32 (stdoutput
, val
, buf
);
704 case BFD_RELOC_CR16_NUM32a
:
705 bfd_put_32 (stdoutput
, val
, buf
);
708 /* We shouldn't ever get here because linkrelax is nonzero. */
715 if (fixP
->fx_addsy
== NULL
716 && fixP
->fx_pcrel
== 0)
719 if (fixP
->fx_pcrel
== 1
720 && fixP
->fx_addsy
!= NULL
721 && S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
725 /* The location from which a PC relative jump should be calculated,
726 given a PC relative reloc. */
729 md_pcrel_from (fixS
*fixp
)
731 return fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
735 initialise_reg_hash_table (struct hash_control
** hash_table
,
736 const reg_entry
* register_table
,
737 const unsigned int num_entries
)
739 const reg_entry
* reg
;
742 if ((* hash_table
= hash_new ()) == NULL
)
743 as_fatal (_("Virtual memory exhausted"));
745 for (reg
= register_table
;
746 reg
< (register_table
+ num_entries
);
749 hashret
= hash_insert (* hash_table
, reg
->name
, (char *) reg
);
751 as_fatal (_("Internal Error: Can't hash %s: %s"),
756 /* This function is called once, at assembler startup time. This should
757 set up all the tables, etc that the MD part of the assembler needs. */
764 /* Set up a hash table for the instructions. */
765 if ((cr16_inst_hash
= hash_new ()) == NULL
)
766 as_fatal (_("Virtual memory exhausted"));
768 while (cr16_instruction
[i
].mnemonic
!= NULL
)
771 const char *mnemonic
= cr16_instruction
[i
].mnemonic
;
773 hashret
= hash_insert (cr16_inst_hash
, mnemonic
,
774 (char *)(cr16_instruction
+ i
));
776 if (hashret
!= NULL
&& *hashret
!= '\0')
777 as_fatal (_("Can't hash `%s': %s\n"), cr16_instruction
[i
].mnemonic
,
778 *hashret
== 0 ? _("(unknown reason)") : hashret
);
780 /* Insert unique names into hash table. The CR16 instruction set
781 has many identical opcode names that have different opcodes based
782 on the operands. This hash table then provides a quick index to
783 the first opcode with a particular name in the opcode table. */
788 while (cr16_instruction
[i
].mnemonic
!= NULL
789 && streq (cr16_instruction
[i
].mnemonic
, mnemonic
));
792 /* Initialize reg_hash hash table. */
793 initialise_reg_hash_table (& reg_hash
, cr16_regtab
, NUMREGS
);
794 /* Initialize regp_hash hash table. */
795 initialise_reg_hash_table (& regp_hash
, cr16_regptab
, NUMREGPS
);
796 /* Initialize preg_hash hash table. */
797 initialise_reg_hash_table (& preg_hash
, cr16_pregtab
, NUMPREGS
);
798 /* Initialize pregp_hash hash table. */
799 initialise_reg_hash_table (& pregp_hash
, cr16_pregptab
, NUMPREGPS
);
801 /* Set linkrelax here to avoid fixups in most sections. */
805 /* Process constants (immediate/absolute)
806 and labels (jump targets/Memory locations). */
809 process_label_constant (char *str
, ins
* cr16_ins
)
811 char *saved_input_line_pointer
;
812 int symbol_with_at
= 0;
813 int symbol_with_s
= 0;
814 int symbol_with_m
= 0;
815 int symbol_with_l
= 0;
816 argument
*cur_arg
= cr16_ins
->arg
+ cur_arg_num
; /* Current argument. */
818 saved_input_line_pointer
= input_line_pointer
;
819 input_line_pointer
= str
;
821 expression (&cr16_ins
->exp
);
823 switch (cr16_ins
->exp
.X_op
)
827 /* Missing or bad expr becomes absolute 0. */
828 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
830 cr16_ins
->exp
.X_op
= O_constant
;
831 cr16_ins
->exp
.X_add_number
= 0;
832 cr16_ins
->exp
.X_add_symbol
= NULL
;
833 cr16_ins
->exp
.X_op_symbol
= NULL
;
837 cur_arg
->X_op
= O_constant
;
838 cur_arg
->constant
= cr16_ins
->exp
.X_add_number
;
844 cur_arg
->X_op
= O_symbol
;
845 cr16_ins
->rtype
= BFD_RELOC_NONE
;
848 if (strneq (input_line_pointer
, "@c", 2))
851 if (strneq (input_line_pointer
, "@l", 2)
852 || strneq (input_line_pointer
, ":l", 2))
855 if (strneq (input_line_pointer
, "@m", 2)
856 || strneq (input_line_pointer
, ":m", 2))
859 if (strneq (input_line_pointer
, "@s", 2)
860 || strneq (input_line_pointer
, ":s", 2))
863 switch (cur_arg
->type
)
866 if (IS_INSN_TYPE (LD_STOR_INS
) || IS_INSN_TYPE (CSTBIT_INS
))
868 if (cur_arg
->size
== 20)
869 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL20
;
871 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL20a
;
876 if (IS_INSN_TYPE (LD_STOR_INS
) || IS_INSN_TYPE (CSTBIT_INS
))
877 switch (instruction
->size
)
880 switch (cur_arg
->size
)
883 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL0
;
886 if (IS_INSN_MNEMONIC ("loadb") || IS_INSN_MNEMONIC ("storb"))
887 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL4
;
889 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL4a
;
895 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL16
;
898 if (cur_arg
->size
== 20)
899 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL20
;
901 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL20a
;
909 if (IS_INSN_TYPE (LD_STOR_INS
) || IS_INSN_TYPE (CSTBIT_INS
))
910 cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL20
;
914 if (IS_INSN_TYPE (LD_STOR_INS
) || IS_INSN_TYPE (CSTBIT_INS
))
915 switch (instruction
->size
)
917 case 1: cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL0
; break;
918 case 2: cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL14
; break;
919 case 3: cr16_ins
->rtype
= BFD_RELOC_CR16_REGREL20
; break;
925 if (IS_INSN_MNEMONIC ("bal"))
926 cr16_ins
->rtype
= BFD_RELOC_CR16_DISP24
;
927 else if (IS_INSN_TYPE (BRANCH_INS
))
930 cr16_ins
->rtype
= BFD_RELOC_CR16_DISP24
;
931 else if (symbol_with_m
)
932 cr16_ins
->rtype
= BFD_RELOC_CR16_DISP16
;
934 cr16_ins
->rtype
= BFD_RELOC_CR16_DISP8
;
936 else if (IS_INSN_TYPE (STOR_IMM_INS
) || IS_INSN_TYPE (LD_STOR_INS
)
937 || IS_INSN_TYPE (CSTBIT_INS
))
940 as_bad (_("operand %d: illegal use expression: `%s`"), cur_arg_num
+ 1, str
);
942 cr16_ins
->rtype
= BFD_RELOC_CR16_ABS20
;
943 else /* Default to (symbol_with_l) */
944 cr16_ins
->rtype
= BFD_RELOC_CR16_ABS24
;
946 else if (IS_INSN_TYPE (BRANCH_NEQ_INS
))
947 cr16_ins
->rtype
= BFD_RELOC_CR16_DISP4
;
951 if (IS_INSN_TYPE (ARITH_INS
))
954 cr16_ins
->rtype
= BFD_RELOC_CR16_IMM4
;
955 else if (symbol_with_m
)
956 cr16_ins
->rtype
= BFD_RELOC_CR16_IMM20
;
957 else if (symbol_with_at
)
958 cr16_ins
->rtype
= BFD_RELOC_CR16_IMM32a
;
959 else /* Default to (symbol_with_l) */
960 cr16_ins
->rtype
= BFD_RELOC_CR16_IMM32
;
962 else if (IS_INSN_TYPE (ARITH_BYTE_INS
))
964 cr16_ins
->rtype
= BFD_RELOC_CR16_IMM16
;
973 cur_arg
->X_op
= cr16_ins
->exp
.X_op
;
977 input_line_pointer
= saved_input_line_pointer
;
981 /* Retrieve the opcode image of a given register.
982 If the register is illegal for the current instruction,
988 const reg_entry
*reg
;
990 int is_procreg
= 0; /* Nonzero means argument should be processor reg. */
992 /* Check whether the register is in registers table. */
994 reg
= cr16_regtab
+ r
;
995 else /* Register not found. */
997 as_bad (_("Unknown register: `%d'"), r
);
1001 reg_name
= reg
->name
;
1003 /* Issue a error message when register is illegal. */
1005 as_bad (_("Illegal register (`%s') in Instruction: `%s'"), \
1006 reg_name, ins_parse); \
1011 case CR16_R_REGTYPE
:
1017 case CR16_P_REGTYPE
:
1028 /* Parsing different types of operands
1029 -> constants Immediate/Absolute/Relative numbers
1030 -> Labels Relocatable symbols
1031 -> (reg pair base) Register pair base
1032 -> (rbase) Register base
1033 -> disp(rbase) Register relative
1034 -> [rinx]disp(reg pair) Register index with reg pair mode
1035 -> disp(rbase,ridx,scl) Register index mode. */
1038 set_operand (char *operand
, ins
* cr16_ins
)
1040 char *operandS
; /* Pointer to start of sub-opearand. */
1041 char *operandE
; /* Pointer to end of sub-opearand. */
1043 argument
*cur_arg
= &cr16_ins
->arg
[cur_arg_num
]; /* Current argument. */
1045 /* Initialize pointers. */
1046 operandS
= operandE
= operand
;
1048 switch (cur_arg
->type
)
1050 case arg_ic
: /* Case $0x18. */
1052 case arg_c
: /* Case 0x18. */
1054 process_label_constant (operandS
, cr16_ins
);
1056 if (cur_arg
->type
!= arg_ic
)
1057 cur_arg
->type
= arg_c
;
1060 case arg_icr
: /* Case $0x18(r1). */
1062 case arg_cr
: /* Case 0x18(r1). */
1063 /* Set displacement constant. */
1064 while (*operandE
!= '(')
1067 process_label_constant (operandS
, cr16_ins
);
1068 operandS
= operandE
;
1069 case arg_rbase
: /* Case (r1) or (r1,r0). */
1071 /* Set register base. */
1072 while (*operandE
!= ')')
1075 if ((cur_arg
->r
= get_register (operandS
)) == nullregister
)
1076 as_bad (_("Illegal register `%s' in Instruction `%s'"),
1077 operandS
, ins_parse
);
1079 /* set the arg->rp, if reg is "r12" or "r13" or "14" or "15" */
1080 if ((cur_arg
->type
!= arg_rbase
)
1081 && ((getreg_image (cur_arg
->r
) == 12)
1082 || (getreg_image (cur_arg
->r
) == 13)
1083 || (getreg_image (cur_arg
->r
) == 14)
1084 || (getreg_image (cur_arg
->r
) == 15)))
1086 cur_arg
->type
= arg_crp
;
1087 cur_arg
->rp
= cur_arg
->r
;
1091 case arg_crp
: /* Case 0x18(r1,r0). */
1092 /* Set displacement constant. */
1093 while (*operandE
!= '(')
1096 process_label_constant (operandS
, cr16_ins
);
1097 operandS
= operandE
;
1099 /* Set register pair base. */
1100 while (*operandE
!= ')')
1103 if ((cur_arg
->rp
= get_register_pair (operandS
)) == nullregister
)
1104 as_bad (_("Illegal register pair `%s' in Instruction `%s'"),
1105 operandS
, ins_parse
);
1109 /* Set register pair base. */
1110 if ((strchr (operandS
,'(') != NULL
))
1112 while ((*operandE
!= '(') && (! ISSPACE (*operandE
)))
1114 if ((cur_arg
->rp
= get_index_register_pair (operandE
)) == nullregister
)
1115 as_bad (_("Illegal register pair `%s' in Instruction `%s'"),
1116 operandS
, ins_parse
);
1118 cur_arg
->type
= arg_idxrp
;
1123 operandE
= operandS
;
1124 /* Set displacement constant. */
1125 while (*operandE
!= ']')
1127 process_label_constant (++operandE
, cr16_ins
);
1129 operandE
= operandS
;
1131 /* Set index register . */
1132 operandS
= strchr (operandE
,'[');
1133 if (operandS
!= NULL
)
1134 { /* Eliminate '[', detach from rest of operand. */
1137 operandE
= strchr (operandS
, ']');
1139 if (operandE
== NULL
)
1140 as_bad (_("unmatched '['"));
1142 { /* Eliminate ']' and make sure it was the last thing
1145 if (*(operandE
+ 1) != '\0')
1146 as_bad (_("garbage after index spec ignored"));
1150 if ((cur_arg
->i_r
= get_index_register (operandS
)) == nullregister
)
1151 as_bad (_("Illegal register `%s' in Instruction `%s'"),
1152 operandS
, ins_parse
);
1162 /* Parse a single operand.
1163 operand - Current operand to parse.
1164 cr16_ins - Current assembled instruction. */
1167 parse_operand (char *operand
, ins
* cr16_ins
)
1170 argument
*cur_arg
= cr16_ins
->arg
+ cur_arg_num
; /* Current argument. */
1172 /* Initialize the type to NULL before parsing. */
1173 cur_arg
->type
= nullargs
;
1175 /* Check whether this is a condition code . */
1176 if ((IS_INSN_MNEMONIC ("b")) && ((ret_val
= get_cc (operand
)) != -1))
1178 cur_arg
->type
= arg_cc
;
1179 cur_arg
->cc
= ret_val
;
1180 cur_arg
->X_op
= O_register
;
1184 /* Check whether this is a general processor register. */
1185 if ((ret_val
= get_register (operand
)) != nullregister
)
1187 cur_arg
->type
= arg_r
;
1188 cur_arg
->r
= ret_val
;
1193 /* Check whether this is a general processor register pair. */
1194 if ((operand
[0] == '(')
1195 && ((ret_val
= get_register_pair (operand
)) != nullregister
))
1197 cur_arg
->type
= arg_rp
;
1198 cur_arg
->rp
= ret_val
;
1199 cur_arg
->X_op
= O_register
;
1203 /* Check whether the operand is a processor register.
1204 For "lprd" and "sprd" instruction, only 32 bit
1205 processor registers used. */
1206 if (!(IS_INSN_MNEMONIC ("lprd") || (IS_INSN_MNEMONIC ("sprd")))
1207 && ((ret_val
= get_pregister (operand
)) != nullpregister
))
1209 cur_arg
->type
= arg_pr
;
1210 cur_arg
->pr
= ret_val
;
1211 cur_arg
->X_op
= O_register
;
1215 /* Check whether this is a processor register - 32 bit. */
1216 if ((ret_val
= get_pregisterp (operand
)) != nullpregister
)
1218 cur_arg
->type
= arg_prp
;
1219 cur_arg
->prp
= ret_val
;
1220 cur_arg
->X_op
= O_register
;
1224 /* Deal with special characters. */
1228 if (strchr (operand
, '(') != NULL
)
1229 cur_arg
->type
= arg_icr
;
1231 cur_arg
->type
= arg_ic
;
1236 cur_arg
->type
= arg_rbase
;
1241 cur_arg
->type
= arg_idxr
;
1249 if (strchr (operand
, '(') != NULL
)
1251 if (strchr (operand
, ',') != NULL
1252 && (strchr (operand
, ',') > strchr (operand
, '(')))
1253 cur_arg
->type
= arg_crp
;
1255 cur_arg
->type
= arg_cr
;
1258 cur_arg
->type
= arg_c
;
1260 /* Parse an operand according to its type. */
1262 cur_arg
->constant
= 0;
1263 set_operand (operand
, cr16_ins
);
1266 /* Parse the various operands. Each operand is then analyzed to fillup
1267 the fields in the cr16_ins data structure. */
1270 parse_operands (ins
* cr16_ins
, char *operands
)
1272 char *operandS
; /* Operands string. */
1273 char *operandH
, *operandT
; /* Single operand head/tail pointers. */
1274 int allocated
= 0; /* Indicates a new operands string was allocated.*/
1275 char *operand
[MAX_OPERANDS
];/* Separating the operands. */
1276 int op_num
= 0; /* Current operand number we are parsing. */
1277 int bracket_flag
= 0; /* Indicates a bracket '(' was found. */
1278 int sq_bracket_flag
= 0; /* Indicates a square bracket '[' was found. */
1280 /* Preprocess the list of registers, if necessary. */
1281 operandS
= operandH
= operandT
= operands
;
1283 while (*operandT
!= '\0')
1285 if (*operandT
== ',' && bracket_flag
!= 1 && sq_bracket_flag
!= 1)
1288 operand
[op_num
++] = strdup (operandH
);
1289 operandH
= operandT
;
1293 if (*operandT
== ' ')
1294 as_bad (_("Illegal operands (whitespace): `%s'"), ins_parse
);
1296 if (*operandT
== '(')
1298 else if (*operandT
== '[')
1299 sq_bracket_flag
= 1;
1301 if (*operandT
== ')')
1306 as_fatal (_("Missing matching brackets : `%s'"), ins_parse
);
1308 else if (*operandT
== ']')
1310 if (sq_bracket_flag
)
1311 sq_bracket_flag
= 0;
1313 as_fatal (_("Missing matching brackets : `%s'"), ins_parse
);
1316 if (bracket_flag
== 1 && *operandT
== ')')
1318 else if (sq_bracket_flag
== 1 && *operandT
== ']')
1319 sq_bracket_flag
= 0;
1324 /* Adding the last operand. */
1325 operand
[op_num
++] = strdup (operandH
);
1326 cr16_ins
->nargs
= op_num
;
1328 /* Verifying correct syntax of operands (all brackets should be closed). */
1329 if (bracket_flag
|| sq_bracket_flag
)
1330 as_fatal (_("Missing matching brackets : `%s'"), ins_parse
);
1332 /* Now we parse each operand separately. */
1333 for (op_num
= 0; op_num
< cr16_ins
->nargs
; op_num
++)
1335 cur_arg_num
= op_num
;
1336 parse_operand (operand
[op_num
], cr16_ins
);
1337 free (operand
[op_num
]);
1344 /* Get the trap index in dispatch table, given its name.
1345 This routine is used by assembling the 'excp' instruction. */
1350 const trap_entry
*trap
;
1352 for (trap
= cr16_traps
; trap
< (cr16_traps
+ NUMTRAPS
); trap
++)
1353 if (strcasecmp (trap
->name
, s
) == 0)
1356 /* To make compatable with CR16 4.1 tools, the below 3-lines of
1357 * code added. Refer: Development Tracker item #123 */
1358 for (trap
= cr16_traps
; trap
< (cr16_traps
+ NUMTRAPS
); trap
++)
1359 if (trap
->entry
== (unsigned int) atoi (s
))
1362 as_bad (_("Unknown exception: `%s'"), s
);
1366 /* Top level module where instruction parsing starts.
1367 cr16_ins - data structure holds some information.
1368 operands - holds the operands part of the whole instruction. */
1371 parse_insn (ins
*insn
, char *operands
)
1375 /* Handle instructions with no operands. */
1376 for (i
= 0; cr16_no_op_insn
[i
] != NULL
; i
++)
1378 if (streq (cr16_no_op_insn
[i
], instruction
->mnemonic
))
1385 /* Handle 'excp' instructions. */
1386 if (IS_INSN_MNEMONIC ("excp"))
1389 insn
->arg
[0].type
= arg_ic
;
1390 insn
->arg
[0].constant
= gettrap (operands
);
1391 insn
->arg
[0].X_op
= O_constant
;
1395 if (operands
!= NULL
)
1396 parse_operands (insn
, operands
);
1399 /* bCC instruction requires special handling. */
1401 get_b_cc (char * op
)
1406 for (i
= 1; i
< strlen (op
); i
++)
1411 for (i
= 0; i
< cr16_num_cc
; i
++)
1412 if (streq (op1
, cr16_b_cond_tab
[i
]))
1413 return (char *) cr16_b_cond_tab
[i
];
1418 /* bCC instruction requires special handling. */
1420 is_bcc_insn (char * op
)
1422 if (!(streq (op
, "bal") || streq (op
, "beq0b") || streq (op
, "bnq0b")
1423 || streq (op
, "beq0w") || streq (op
, "bnq0w")))
1424 if ((op
[0] == 'b') && (get_b_cc (op
) != NULL
))
1429 /* Cinv instruction requires special handling. */
1432 check_cinv_options (char * operand
)
1435 int i_used
= 0, u_used
= 0, d_used
= 0;
1439 if (*p
== ',' || *p
== ' ')
1449 as_bad (_("Illegal `cinv' parameter: `%c'"), *p
);
1455 /* Retrieve the opcode image of a given register pair.
1456 If the register is illegal for the current instruction,
1460 getregp_image (reg r
)
1462 const reg_entry
*reg
;
1465 /* Check whether the register is in registers table. */
1467 reg
= cr16_regptab
+ r
;
1468 /* Register not found. */
1471 as_bad (_("Unknown register pair: `%d'"), r
);
1475 reg_name
= reg
->name
;
1477 /* Issue a error message when register pair is illegal. */
1478 #define RPAIR_IMAGE_ERR \
1479 as_bad (_("Illegal register pair (`%s') in Instruction: `%s'"), \
1480 reg_name, ins_parse); \
1485 case CR16_RP_REGTYPE
:
1494 /* Retrieve the opcode image of a given index register pair.
1495 If the register is illegal for the current instruction,
1499 getidxregp_image (reg r
)
1501 const reg_entry
*reg
;
1504 /* Check whether the register is in registers table. */
1506 reg
= cr16_regptab
+ r
;
1507 /* Register not found. */
1510 as_bad (_("Unknown register pair: `%d'"), r
);
1514 reg_name
= reg
->name
;
1516 /* Issue a error message when register pair is illegal. */
1517 #define IDX_RPAIR_IMAGE_ERR \
1518 as_bad (_("Illegal index register pair (`%s') in Instruction: `%s'"), \
1519 reg_name, ins_parse); \
1521 if (reg->type == CR16_RP_REGTYPE)
1525 case 0: return 0; break;
1526 case 2: return 1; break;
1527 case 4: return 2; break;
1528 case 6: return 3; break;
1529 case 8: return 4; break;
1530 case 10: return 5; break;
1531 case 3: return 6; break;
1532 case 5: return 7; break;
1538 IDX_RPAIR_IMAGE_ERR
;
1542 /* Retrieve the opcode image of a given processort register.
1543 If the register is illegal for the current instruction,
1546 getprocreg_image (reg r
)
1548 const reg_entry
*reg
;
1551 /* Check whether the register is in registers table. */
1553 reg
= &cr16_pregtab
[r
- MAX_REG
];
1554 /* Register not found. */
1557 as_bad (_("Unknown processor register : `%d'"), r
);
1561 reg_name
= reg
->name
;
1563 /* Issue a error message when register pair is illegal. */
1564 #define PROCREG_IMAGE_ERR \
1565 as_bad (_("Illegal processor register (`%s') in Instruction: `%s'"), \
1566 reg_name, ins_parse); \
1571 case CR16_P_REGTYPE
:
1580 /* Retrieve the opcode image of a given processort register.
1581 If the register is illegal for the current instruction,
1584 getprocregp_image (reg r
)
1586 const reg_entry
*reg
;
1588 int pregptab_disp
= 0;
1590 /* Check whether the register is in registers table. */
1596 case 4: pregptab_disp
= 1; break;
1597 case 6: pregptab_disp
= 2; break;
1601 pregptab_disp
= 3; break;
1603 pregptab_disp
= 4; break;
1605 pregptab_disp
= 5; break;
1608 reg
= &cr16_pregptab
[r
- pregptab_disp
];
1610 /* Register not found. */
1613 as_bad (_("Unknown processor register (32 bit) : `%d'"), r
);
1617 reg_name
= reg
->name
;
1619 /* Issue a error message when register pair is illegal. */
1620 #define PROCREGP_IMAGE_ERR \
1621 as_bad (_("Illegal 32 bit - processor register (`%s') in Instruction: `%s'"),\
1622 reg_name, ins_parse); \
1627 case CR16_P_REGTYPE
:
1636 /* Routine used to represent integer X using NBITS bits. */
1639 getconstant (long x
, int nbits
)
1641 /* The following expression avoids overflow if
1642 'nbits' is the number of bits in 'bfd_vma'. */
1643 return (x
& ((((1 << (nbits
- 1)) - 1) << 1) | 1));
1646 /* Print a constant value to 'output_opcode':
1647 ARG holds the operand's type and value.
1648 SHIFT represents the location of the operand to be print into.
1649 NBITS determines the size (in bits) of the constant. */
1652 print_constant (int nbits
, int shift
, argument
*arg
)
1654 unsigned long mask
= 0;
1656 long constant
= getconstant (arg
->constant
, nbits
);
1662 /* mask the upper part of the constant, that is, the bits
1663 going to the lowest byte of output_opcode[0].
1664 The upper part of output_opcode[1] is always filled,
1665 therefore it is always masked with 0xFFFF. */
1666 mask
= (1 << (nbits
- 16)) - 1;
1667 /* Divide the constant between two consecutive words :
1669 +---------+---------+---------+---------+
1670 | | X X X X | x X x X | |
1671 +---------+---------+---------+---------+
1672 output_opcode[0] output_opcode[1] */
1674 CR16_PRINT (0, (constant
>> WORD_SHIFT
) & mask
, 0);
1675 CR16_PRINT (1, (constant
& 0xFFFF), WORD_SHIFT
);
1679 if ((nbits
== 21) && (IS_INSN_TYPE (LD_STOR_INS
))) nbits
= 20;
1683 /* mask the upper part of the constant, that is, the bits
1684 going to the lowest byte of output_opcode[0].
1685 The upper part of output_opcode[1] is always filled,
1686 therefore it is always masked with 0xFFFF. */
1687 mask
= (1 << (nbits
- 16)) - 1;
1688 /* Divide the constant between two consecutive words :
1690 +---------+---------+---------+---------+
1691 | | X X X X | - X - X | |
1692 +---------+---------+---------+---------+
1693 output_opcode[0] output_opcode[1] */
1695 if ((instruction
->size
> 2) && (shift
== WORD_SHIFT
))
1697 if (arg
->type
== arg_idxrp
)
1699 CR16_PRINT (0, ((constant
>> WORD_SHIFT
) & mask
) << 8, 0);
1700 CR16_PRINT (1, (constant
& 0xFFFF), WORD_SHIFT
);
1704 CR16_PRINT (0, (((((constant
>> WORD_SHIFT
) & mask
) << 8) & 0x0f00) | ((((constant
>> WORD_SHIFT
) & mask
) >> 4) & 0xf)),0);
1705 CR16_PRINT (1, (constant
& 0xFFFF), WORD_SHIFT
);
1709 CR16_PRINT (0, constant
, shift
);
1713 if (arg
->type
== arg_idxrp
)
1715 if (instruction
->size
== 2)
1717 CR16_PRINT (0, ((constant
) & 0xf), shift
); /* 0-3 bits. */
1718 CR16_PRINT (0, ((constant
>> 4) & 0x3), (shift
+ 20)); /* 4-5 bits. */
1719 CR16_PRINT (0, ((constant
>> 6) & 0x3), (shift
+ 14)); /* 6-7 bits. */
1720 CR16_PRINT (0, ((constant
>> 8) & 0x3f), (shift
+ 8)); /* 8-13 bits. */
1723 CR16_PRINT (0, constant
, shift
);
1729 /* When instruction size is 3 and 'shift' is 16, a 16-bit constant is
1730 always filling the upper part of output_opcode[1]. If we mistakenly
1731 write it to output_opcode[0], the constant prefix (that is, 'match')
1734 +---------+---------+---------+---------+
1735 | 'match' | | X X X X | |
1736 +---------+---------+---------+---------+
1737 output_opcode[0] output_opcode[1] */
1739 if ((instruction
->size
> 2) && (shift
== WORD_SHIFT
))
1740 CR16_PRINT (1, constant
, WORD_SHIFT
);
1742 CR16_PRINT (0, constant
, shift
);
1746 CR16_PRINT (0, ((constant
/ 2) & 0xf), shift
);
1747 CR16_PRINT (0, ((constant
/ 2) >> 4), (shift
+ 8));
1751 CR16_PRINT (0, constant
, shift
);
1756 /* Print an operand to 'output_opcode', which later on will be
1757 printed to the object file:
1758 ARG holds the operand's type, size and value.
1759 SHIFT represents the printing location of operand.
1760 NBITS determines the size (in bits) of a constant operand. */
1763 print_operand (int nbits
, int shift
, argument
*arg
)
1768 CR16_PRINT (0, arg
->cc
, shift
);
1772 CR16_PRINT (0, getreg_image (arg
->r
), shift
);
1776 CR16_PRINT (0, getregp_image (arg
->rp
), shift
);
1780 CR16_PRINT (0, getprocreg_image (arg
->pr
), shift
);
1784 CR16_PRINT (0, getprocregp_image (arg
->prp
), shift
);
1789 +-----------------------------+
1790 | r_index | disp | rp_base |
1791 +-----------------------------+ */
1793 if (instruction
->size
== 3)
1795 CR16_PRINT (0, getidxregp_image (arg
->rp
), 0);
1796 if (getreg_image (arg
->i_r
) == 12)
1797 CR16_PRINT (0, 0, 3);
1799 CR16_PRINT (0, 1, 3);
1803 CR16_PRINT (0, getidxregp_image (arg
->rp
), 16);
1804 if (getreg_image (arg
->i_r
) == 12)
1805 CR16_PRINT (0, 0, 19);
1807 CR16_PRINT (0, 1, 19);
1809 print_constant (nbits
, shift
, arg
);
1813 if (getreg_image (arg
->i_r
) == 12)
1814 if (IS_INSN_MNEMONIC ("cbitb") || IS_INSN_MNEMONIC ("sbitb")
1815 || IS_INSN_MNEMONIC ("tbitb"))
1816 CR16_PRINT (0, 0, 23);
1817 else CR16_PRINT (0, 0, 24);
1819 if (IS_INSN_MNEMONIC ("cbitb") || IS_INSN_MNEMONIC ("sbitb")
1820 || IS_INSN_MNEMONIC ("tbitb"))
1821 CR16_PRINT (0, 1, 23);
1822 else CR16_PRINT (0, 1, 24);
1824 print_constant (nbits
, shift
, arg
);
1829 print_constant (nbits
, shift
, arg
);
1833 CR16_PRINT (0, getreg_image (arg
->r
), shift
);
1837 print_constant (nbits
, shift
, arg
);
1838 /* Add the register argument to the output_opcode. */
1839 CR16_PRINT (0, getreg_image (arg
->r
), (shift
+16));
1843 print_constant (nbits
, shift
, arg
);
1844 if (instruction
->size
> 1)
1845 CR16_PRINT (0, getregp_image (arg
->rp
), (shift
+ 16));
1846 else if (IS_INSN_TYPE (LD_STOR_INS
) || (IS_INSN_TYPE (CSTBIT_INS
)))
1848 if (instruction
->size
== 2)
1849 CR16_PRINT (0, getregp_image (arg
->rp
), (shift
- 8));
1850 else if (instruction
->size
== 1)
1851 CR16_PRINT (0, getregp_image (arg
->rp
), 16);
1854 CR16_PRINT (0, getregp_image (arg
->rp
), shift
);
1862 /* Retrieve the number of operands for the current assembled instruction. */
1865 get_number_of_operands (void)
1869 for (i
= 0; instruction
->operands
[i
].op_type
&& i
< MAX_OPERANDS
; i
++)
1874 /* Verify that the number NUM can be represented in BITS bits (that is,
1875 within its permitted range), based on the instruction's FLAGS.
1876 If UPDATE is nonzero, update the value of NUM if necessary.
1877 Return OP_LEGAL upon success, actual error type upon failure. */
1880 check_range (long *num
, int bits
, int unsigned flags
, int update
)
1883 int retval
= OP_LEGAL
;
1886 if (bits
== 0 && value
> 0) return OP_OUT_OF_RANGE
;
1888 /* For hosts witah longs bigger than 32-bits make sure that the top
1889 bits of a 32-bit negative value read in by the parser are set,
1890 so that the correct comparisons are made. */
1891 if (value
& 0x80000000)
1892 value
|= (-1L << 31);
1895 /* Verify operand value is even. */
1896 if (flags
& OP_EVEN
)
1909 if (flags
& OP_SHIFT
)
1915 else if (flags
& OP_SHIFT_DEC
)
1917 value
= (value
>> 1) - 1;
1922 if (flags
& OP_ABS20
)
1924 if (value
> 0xEFFFF)
1925 return OP_OUT_OF_RANGE
;
1930 if (value
== 0xB || value
== 0x9)
1931 return OP_OUT_OF_RANGE
;
1932 else if (value
== -1)
1940 if (flags
& OP_ESC1
)
1943 return OP_OUT_OF_RANGE
;
1946 if (flags
& OP_SIGNED
)
1948 max
= (1 << (bits
- 1)) - 1;
1949 min
= - (1 << (bits
- 1));
1950 if ((value
> max
) || (value
< min
))
1951 retval
= OP_OUT_OF_RANGE
;
1953 else if (flags
& OP_UNSIGNED
)
1955 max
= ((((1 << (bits
- 1)) - 1) << 1) | 1);
1957 if (((unsigned long) value
> (unsigned long) max
)
1958 || ((unsigned long) value
< (unsigned long) min
))
1959 retval
= OP_OUT_OF_RANGE
;
1961 else if (flags
& OP_NEG
)
1964 min
= - ((1 << (bits
- 1)) - 1);
1965 if ((value
> max
) || (value
< min
))
1966 retval
= OP_OUT_OF_RANGE
;
1971 /* Bunch of error checkings.
1972 The checks are made after a matching instruction was found. */
1975 warn_if_needed (ins
*insn
)
1977 /* If the post-increment address mode is used and the load/store
1978 source register is the same as rbase, the result of the
1979 instruction is undefined. */
1980 if (IS_INSN_TYPE (LD_STOR_INS_INC
))
1982 /* Enough to verify that one of the arguments is a simple reg. */
1983 if ((insn
->arg
[0].type
== arg_r
) || (insn
->arg
[1].type
== arg_r
))
1984 if (insn
->arg
[0].r
== insn
->arg
[1].r
)
1985 as_bad (_("Same src/dest register is used (`r%d'), result is undefined"), insn
->arg
[0].r
);
1988 if (IS_INSN_MNEMONIC ("pop")
1989 || IS_INSN_MNEMONIC ("push")
1990 || IS_INSN_MNEMONIC ("popret"))
1992 unsigned int count
= insn
->arg
[0].constant
, reg_val
;
1994 /* Check if count operand caused to save/retrive the RA twice
1995 to generate warning message. */
1996 if (insn
->nargs
> 2)
1998 reg_val
= getreg_image (insn
->arg
[1].r
);
2000 if ( ((reg_val
== 9) && (count
> 7))
2001 || ((reg_val
== 10) && (count
> 6))
2002 || ((reg_val
== 11) && (count
> 5))
2003 || ((reg_val
== 12) && (count
> 4))
2004 || ((reg_val
== 13) && (count
> 2))
2005 || ((reg_val
== 14) && (count
> 0)))
2006 as_warn (_("RA register is saved twice."));
2008 /* Check if the third operand is "RA" or "ra" */
2009 if (!(((insn
->arg
[2].r
) == ra
) || ((insn
->arg
[2].r
) == RA
)))
2010 as_bad (_("`%s' Illegal use of registers."), ins_parse
);
2013 if (insn
->nargs
> 1)
2015 reg_val
= getreg_image (insn
->arg
[1].r
);
2017 /* If register is a register pair ie r12/r13/r14 in operand1, then
2018 the count constant should be validated. */
2019 if (((reg_val
== 11) && (count
> 7))
2020 || ((reg_val
== 12) && (count
> 6))
2021 || ((reg_val
== 13) && (count
> 4))
2022 || ((reg_val
== 14) && (count
> 2))
2023 || ((reg_val
== 15) && (count
> 0)))
2024 as_bad (_("`%s' Illegal count-register combination."), ins_parse
);
2028 /* Check if the operand is "RA" or "ra" */
2029 if (!(((insn
->arg
[0].r
) == ra
) || ((insn
->arg
[0].r
) == RA
)))
2030 as_bad (_("`%s' Illegal use of register."), ins_parse
);
2034 /* Some instruction assume the stack pointer as rptr operand.
2035 Issue an error when the register to be loaded is also SP. */
2036 if (instruction
->flags
& NO_SP
)
2038 if (getreg_image (insn
->arg
[1].r
) == getreg_image (sp
))
2039 as_bad (_("`%s' has undefined result"), ins_parse
);
2042 /* If the rptr register is specified as one of the registers to be loaded,
2043 the final contents of rptr are undefined. Thus, we issue an error. */
2044 if (instruction
->flags
& NO_RPTR
)
2046 if ((1 << getreg_image (insn
->arg
[0].r
)) & insn
->arg
[1].constant
)
2047 as_bad (_("Same src/dest register is used (`r%d'),result is undefined"),
2048 getreg_image (insn
->arg
[0].r
));
2052 /* In some cases, we need to adjust the instruction pointer although a
2053 match was already found. Here, we gather all these cases.
2054 Returns 1 if instruction pointer was adjusted, otherwise 0. */
2057 adjust_if_needed (ins
*insn ATTRIBUTE_UNUSED
)
2061 if ((IS_INSN_TYPE (CSTBIT_INS
)) || (IS_INSN_TYPE (LD_STOR_INS
)))
2063 if ((instruction
->operands
[0].op_type
== abs24
)
2064 && ((insn
->arg
[0].constant
) > 0xF00000))
2066 insn
->arg
[0].constant
&= 0xFFFFF;
2075 /* Assemble a single instruction:
2076 INSN is already parsed (that is, all operand values and types are set).
2077 For instruction to be assembled, we need to find an appropriate template in
2078 the instruction table, meeting the following conditions:
2079 1: Has the same number of operands.
2080 2: Has the same operand types.
2081 3: Each operand size is sufficient to represent the instruction's values.
2082 Returns 1 upon success, 0 upon failure. */
2085 assemble_insn (char *mnemonic
, ins
*insn
)
2087 /* Type of each operand in the current template. */
2088 argtype cur_type
[MAX_OPERANDS
];
2089 /* Size (in bits) of each operand in the current template. */
2090 unsigned int cur_size
[MAX_OPERANDS
];
2091 /* Flags of each operand in the current template. */
2092 unsigned int cur_flags
[MAX_OPERANDS
];
2093 /* Instruction type to match. */
2094 unsigned int ins_type
;
2095 /* Boolean flag to mark whether a match was found. */
2098 /* Nonzero if an instruction with same number of operands was found. */
2099 int found_same_number_of_operands
= 0;
2100 /* Nonzero if an instruction with same argument types was found. */
2101 int found_same_argument_types
= 0;
2102 /* Nonzero if a constant was found within the required range. */
2103 int found_const_within_range
= 0;
2104 /* Argument number of an operand with invalid type. */
2105 int invalid_optype
= -1;
2106 /* Argument number of an operand with invalid constant value. */
2107 int invalid_const
= -1;
2108 /* Operand error (used for issuing various constant error messages). */
2109 op_err op_error
, const_err
= OP_LEGAL
;
2111 /* Retrieve data (based on FUNC) for each operand of a given instruction. */
2112 #define GET_CURRENT_DATA(FUNC, ARRAY) \
2113 for (i = 0; i < insn->nargs; i++) \
2114 ARRAY[i] = FUNC (instruction->operands[i].op_type)
2116 #define GET_CURRENT_TYPE GET_CURRENT_DATA (get_optype, cur_type)
2117 #define GET_CURRENT_SIZE GET_CURRENT_DATA (get_opbits, cur_size)
2118 #define GET_CURRENT_FLAGS GET_CURRENT_DATA (get_opflags, cur_flags)
2120 /* Instruction has no operands -> only copy the constant opcode. */
2121 if (insn
->nargs
== 0)
2123 output_opcode
[0] = BIN (instruction
->match
, instruction
->match_bits
);
2127 /* In some case, same mnemonic can appear with different instruction types.
2128 For example, 'storb' is supported with 3 different types :
2129 LD_STOR_INS, LD_STOR_INS_INC, STOR_IMM_INS.
2130 We assume that when reaching this point, the instruction type was
2131 pre-determined. We need to make sure that the type stays the same
2132 during a search for matching instruction. */
2133 ins_type
= CR16_INS_TYPE (instruction
->flags
);
2135 while (/* Check that match is still not found. */
2137 /* Check we didn't get to end of table. */
2138 && instruction
->mnemonic
!= NULL
2139 /* Check that the actual mnemonic is still available. */
2140 && IS_INSN_MNEMONIC (mnemonic
)
2141 /* Check that the instruction type wasn't changed. */
2142 && IS_INSN_TYPE (ins_type
))
2144 /* Check whether number of arguments is legal. */
2145 if (get_number_of_operands () != insn
->nargs
)
2147 found_same_number_of_operands
= 1;
2149 /* Initialize arrays with data of each operand in current template. */
2154 /* Check for type compatibility. */
2155 for (i
= 0; i
< insn
->nargs
; i
++)
2157 if (cur_type
[i
] != insn
->arg
[i
].type
)
2159 if (invalid_optype
== -1)
2160 invalid_optype
= i
+ 1;
2164 found_same_argument_types
= 1;
2166 for (i
= 0; i
< insn
->nargs
; i
++)
2168 /* If 'bal' instruction size is '2' and reg operand is not 'ra'
2169 then goto next instruction. */
2170 if (IS_INSN_MNEMONIC ("bal") && (i
== 0)
2171 && (instruction
->size
== 2) && (insn
->arg
[i
].rp
!= 14))
2174 /* If 'storb' instruction with 'sp' reg and 16-bit disp of
2175 * reg-pair, leads to undifined trap, so this should use
2176 * 20-bit disp of reg-pair. */
2177 if (IS_INSN_MNEMONIC ("storb") && (instruction
->size
== 2)
2178 && (insn
->arg
[i
].r
== 15) && (insn
->arg
[i
+ 1].type
== arg_crp
))
2181 /* Only check range - don't update the constant's value, since the
2182 current instruction may not be the last we try to match.
2183 The constant's value will be updated later, right before printing
2184 it to the object file. */
2185 if ((insn
->arg
[i
].X_op
== O_constant
)
2186 && (op_error
= check_range (&insn
->arg
[i
].constant
, cur_size
[i
],
2189 if (invalid_const
== -1)
2191 invalid_const
= i
+ 1;
2192 const_err
= op_error
;
2196 /* For symbols, we make sure the relocation size (which was already
2197 determined) is sufficient. */
2198 else if ((insn
->arg
[i
].X_op
== O_symbol
)
2199 && ((bfd_reloc_type_lookup (stdoutput
, insn
->rtype
))->bitsize
2203 found_const_within_range
= 1;
2205 /* If we got till here -> Full match is found. */
2209 /* Try again with next instruction. */
2216 /* We haven't found a match - instruction can't be assembled. */
2217 if (!found_same_number_of_operands
)
2218 as_bad (_("Incorrect number of operands"));
2219 else if (!found_same_argument_types
)
2220 as_bad (_("Illegal type of operand (arg %d)"), invalid_optype
);
2221 else if (!found_const_within_range
)
2225 case OP_OUT_OF_RANGE
:
2226 as_bad (_("Operand out of range (arg %d)"), invalid_const
);
2229 as_bad (_("Operand has odd displacement (arg %d)"), invalid_const
);
2232 as_bad (_("Illegal operand (arg %d)"), invalid_const
);
2240 /* Full match - print the encoding to output file. */
2242 /* Make further checkings (such that couldn't be made earlier).
2243 Warn the user if necessary. */
2244 warn_if_needed (insn
);
2246 /* Check whether we need to adjust the instruction pointer. */
2247 if (adjust_if_needed (insn
))
2248 /* If instruction pointer was adjusted, we need to update
2249 the size of the current template operands. */
2252 for (i
= 0; i
< insn
->nargs
; i
++)
2254 int j
= instruction
->flags
& REVERSE_MATCH
?
2259 /* This time, update constant value before printing it. */
2260 if ((insn
->arg
[j
].X_op
== O_constant
)
2261 && (check_range (&insn
->arg
[j
].constant
, cur_size
[j
],
2262 cur_flags
[j
], 1) != OP_LEGAL
))
2263 as_fatal (_("Illegal operand (arg %d)"), j
+1);
2266 /* First, copy the instruction's opcode. */
2267 output_opcode
[0] = BIN (instruction
->match
, instruction
->match_bits
);
2269 for (i
= 0; i
< insn
->nargs
; i
++)
2271 /* For BAL (ra),disp17 instuction only. And also set the
2272 DISP24a relocation type. */
2273 if (IS_INSN_MNEMONIC ("bal") && (instruction
->size
== 2) && i
== 0)
2275 insn
->rtype
= BFD_RELOC_CR16_DISP24a
;
2279 print_operand (cur_size
[i
], instruction
->operands
[i
].shift
,
2287 /* Print the instruction.
2288 Handle also cases where the instruction is relaxable/relocatable. */
2291 print_insn (ins
*insn
)
2293 unsigned int i
, j
, insn_size
;
2295 unsigned short words
[4];
2298 /* Arrange the insn encodings in a WORD size array. */
2299 for (i
= 0, j
= 0; i
< 2; i
++)
2301 words
[j
++] = (output_opcode
[i
] >> 16) & 0xFFFF;
2302 words
[j
++] = output_opcode
[i
] & 0xFFFF;
2305 /* Handle relocation. */
2306 if ((instruction
->flags
& RELAXABLE
) && relocatable
)
2309 /* Write the maximal instruction size supported. */
2310 insn_size
= INSN_MAX_SIZE
;
2312 if (IS_INSN_TYPE (BRANCH_INS
))
2314 switch (insn
->rtype
)
2316 case BFD_RELOC_CR16_DISP24
:
2319 case BFD_RELOC_CR16_DISP16
:
2330 this_frag
= frag_var (rs_machine_dependent
, insn_size
*2,
2332 insn
->exp
.X_add_symbol
,
2333 insn
->exp
.X_add_number
,
2338 insn_size
= instruction
->size
;
2339 this_frag
= frag_more (insn_size
* 2);
2341 if ((relocatable
) && (insn
->rtype
!= BFD_RELOC_NONE
))
2343 reloc_howto_type
*reloc_howto
;
2346 reloc_howto
= bfd_reloc_type_lookup (stdoutput
, insn
->rtype
);
2351 size
= bfd_get_reloc_size (reloc_howto
);
2353 if (size
< 1 || size
> 4)
2356 fix_new_exp (frag_now
, this_frag
- frag_now
->fr_literal
,
2357 size
, &insn
->exp
, reloc_howto
->pc_relative
,
2362 /* Verify a 2-byte code alignment. */
2363 addr_mod
= frag_now_fix () & 1;
2364 if (frag_now
->has_code
&& frag_now
->insn_addr
!= addr_mod
)
2365 as_bad (_("instruction address is not a multiple of 2"));
2366 frag_now
->insn_addr
= addr_mod
;
2367 frag_now
->has_code
= 1;
2369 /* Write the instruction encoding to frag. */
2370 for (i
= 0; i
< insn_size
; i
++)
2372 md_number_to_chars (this_frag
, (valueT
) words
[i
], 2);
2377 /* This is the guts of the machine-dependent assembler. OP points to a
2378 machine dependent instruction. This function is supposed to emit
2379 the frags/bytes it assembles to. */
2382 md_assemble (char *op
)
2385 char *param
, param1
[32];
2388 /* Reset global variables for a new instruction. */
2391 /* Strip the mnemonic. */
2392 for (param
= op
; *param
!= 0 && !ISSPACE (*param
); param
++)
2397 /* bCC instuctions and adjust the mnemonic by adding extra white spaces. */
2398 if (is_bcc_insn (op
))
2400 strcpy (param1
, get_b_cc (op
));
2402 strcat (param1
,",");
2403 strcat (param1
, param
);
2404 param
= (char *) ¶m1
;
2407 /* Checking the cinv options and adjust the mnemonic by removing the
2408 extra white spaces. */
2409 if (streq ("cinv", op
))
2411 /* Validate the cinv options. */
2412 check_cinv_options (param
);
2416 /* MAPPING - SHIFT INSN, if imm4/imm16 positive values
2417 lsh[b/w] imm4/imm6, reg ==> ashu[b/w] imm4/imm16, reg
2418 as CR16 core doesn't support lsh[b/w] right shift operaions. */
2419 if ((streq ("lshb", op
) || streq ("lshw", op
) || streq ("lshd", op
))
2420 && (param
[0] == '$'))
2422 strcpy (param1
, param
);
2423 /* Find the instruction. */
2424 instruction
= (const inst
*) hash_find (cr16_inst_hash
, op
);
2425 parse_operands (&cr16_ins
, param1
);
2426 if (((&cr16_ins
)->arg
[0].type
== arg_ic
)
2427 && ((&cr16_ins
)->arg
[0].constant
>= 0))
2429 if (streq ("lshb", op
))
2431 else if (streq ("lshd", op
))
2438 /* Find the instruction. */
2439 instruction
= (const inst
*) hash_find (cr16_inst_hash
, op
);
2440 if (instruction
== NULL
)
2442 as_bad (_("Unknown opcode: `%s'"), op
);
2446 /* Tie dwarf2 debug info to the address at the start of the insn. */
2447 dwarf2_emit_insn (0);
2449 /* Parse the instruction's operands. */
2450 parse_insn (&cr16_ins
, param
);
2452 /* Assemble the instruction - return upon failure. */
2453 if (assemble_insn (op
, &cr16_ins
) == 0)
2456 /* Print the instruction. */
2457 print_insn (&cr16_ins
);