1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
48 static int elf_sort_sections (const void *, const void *);
49 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
50 static bfd_boolean
prep_headers (bfd
*);
51 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
52 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
53 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
56 /* Swap version information in and out. The version information is
57 currently size independent. If that ever changes, this code will
58 need to move into elfcode.h. */
60 /* Swap in a Verdef structure. */
63 _bfd_elf_swap_verdef_in (bfd
*abfd
,
64 const Elf_External_Verdef
*src
,
65 Elf_Internal_Verdef
*dst
)
67 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
68 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
69 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
70 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
71 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
72 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
73 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
76 /* Swap out a Verdef structure. */
79 _bfd_elf_swap_verdef_out (bfd
*abfd
,
80 const Elf_Internal_Verdef
*src
,
81 Elf_External_Verdef
*dst
)
83 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
84 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
85 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
86 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
87 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
88 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
89 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
92 /* Swap in a Verdaux structure. */
95 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
96 const Elf_External_Verdaux
*src
,
97 Elf_Internal_Verdaux
*dst
)
99 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
100 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
103 /* Swap out a Verdaux structure. */
106 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
107 const Elf_Internal_Verdaux
*src
,
108 Elf_External_Verdaux
*dst
)
110 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
111 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
114 /* Swap in a Verneed structure. */
117 _bfd_elf_swap_verneed_in (bfd
*abfd
,
118 const Elf_External_Verneed
*src
,
119 Elf_Internal_Verneed
*dst
)
121 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
122 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
123 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
124 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
125 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
128 /* Swap out a Verneed structure. */
131 _bfd_elf_swap_verneed_out (bfd
*abfd
,
132 const Elf_Internal_Verneed
*src
,
133 Elf_External_Verneed
*dst
)
135 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
136 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
137 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
138 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
139 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
142 /* Swap in a Vernaux structure. */
145 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
146 const Elf_External_Vernaux
*src
,
147 Elf_Internal_Vernaux
*dst
)
149 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
150 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
151 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
152 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
153 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
156 /* Swap out a Vernaux structure. */
159 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
160 const Elf_Internal_Vernaux
*src
,
161 Elf_External_Vernaux
*dst
)
163 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
164 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
165 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
166 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
167 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
170 /* Swap in a Versym structure. */
173 _bfd_elf_swap_versym_in (bfd
*abfd
,
174 const Elf_External_Versym
*src
,
175 Elf_Internal_Versym
*dst
)
177 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
180 /* Swap out a Versym structure. */
183 _bfd_elf_swap_versym_out (bfd
*abfd
,
184 const Elf_Internal_Versym
*src
,
185 Elf_External_Versym
*dst
)
187 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
190 /* Standard ELF hash function. Do not change this function; you will
191 cause invalid hash tables to be generated. */
194 bfd_elf_hash (const char *namearg
)
196 const unsigned char *name
= (const unsigned char *) namearg
;
201 while ((ch
= *name
++) != '\0')
204 if ((g
= (h
& 0xf0000000)) != 0)
207 /* The ELF ABI says `h &= ~g', but this is equivalent in
208 this case and on some machines one insn instead of two. */
212 return h
& 0xffffffff;
215 /* DT_GNU_HASH hash function. Do not change this function; you will
216 cause invalid hash tables to be generated. */
219 bfd_elf_gnu_hash (const char *namearg
)
221 const unsigned char *name
= (const unsigned char *) namearg
;
222 unsigned long h
= 5381;
225 while ((ch
= *name
++) != '\0')
226 h
= (h
<< 5) + h
+ ch
;
227 return h
& 0xffffffff;
230 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
231 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
233 bfd_elf_allocate_object (bfd
*abfd
,
235 enum elf_object_id object_id
)
237 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
238 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
239 if (abfd
->tdata
.any
== NULL
)
242 elf_object_id (abfd
) = object_id
;
243 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
249 bfd_elf_make_generic_object (bfd
*abfd
)
251 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
256 bfd_elf_mkcorefile (bfd
*abfd
)
258 /* I think this can be done just like an object file. */
259 return bfd_elf_make_generic_object (abfd
);
263 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
265 Elf_Internal_Shdr
**i_shdrp
;
266 bfd_byte
*shstrtab
= NULL
;
268 bfd_size_type shstrtabsize
;
270 i_shdrp
= elf_elfsections (abfd
);
272 || shindex
>= elf_numsections (abfd
)
273 || i_shdrp
[shindex
] == 0)
276 shstrtab
= i_shdrp
[shindex
]->contents
;
277 if (shstrtab
== NULL
)
279 /* No cached one, attempt to read, and cache what we read. */
280 offset
= i_shdrp
[shindex
]->sh_offset
;
281 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
283 /* Allocate and clear an extra byte at the end, to prevent crashes
284 in case the string table is not terminated. */
285 if (shstrtabsize
+ 1 <= 1
286 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
287 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
289 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
291 if (bfd_get_error () != bfd_error_system_call
)
292 bfd_set_error (bfd_error_file_truncated
);
294 /* Once we've failed to read it, make sure we don't keep
295 trying. Otherwise, we'll keep allocating space for
296 the string table over and over. */
297 i_shdrp
[shindex
]->sh_size
= 0;
300 shstrtab
[shstrtabsize
] = '\0';
301 i_shdrp
[shindex
]->contents
= shstrtab
;
303 return (char *) shstrtab
;
307 bfd_elf_string_from_elf_section (bfd
*abfd
,
308 unsigned int shindex
,
309 unsigned int strindex
)
311 Elf_Internal_Shdr
*hdr
;
316 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
319 hdr
= elf_elfsections (abfd
)[shindex
];
321 if (hdr
->contents
== NULL
322 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
325 if (strindex
>= hdr
->sh_size
)
327 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
328 (*_bfd_error_handler
)
329 (_("%B: invalid string offset %u >= %lu for section `%s'"),
330 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
331 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
333 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
337 return ((char *) hdr
->contents
) + strindex
;
340 /* Read and convert symbols to internal format.
341 SYMCOUNT specifies the number of symbols to read, starting from
342 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
343 are non-NULL, they are used to store the internal symbols, external
344 symbols, and symbol section index extensions, respectively.
345 Returns a pointer to the internal symbol buffer (malloced if necessary)
346 or NULL if there were no symbols or some kind of problem. */
349 bfd_elf_get_elf_syms (bfd
*ibfd
,
350 Elf_Internal_Shdr
*symtab_hdr
,
353 Elf_Internal_Sym
*intsym_buf
,
355 Elf_External_Sym_Shndx
*extshndx_buf
)
357 Elf_Internal_Shdr
*shndx_hdr
;
359 const bfd_byte
*esym
;
360 Elf_External_Sym_Shndx
*alloc_extshndx
;
361 Elf_External_Sym_Shndx
*shndx
;
362 Elf_Internal_Sym
*alloc_intsym
;
363 Elf_Internal_Sym
*isym
;
364 Elf_Internal_Sym
*isymend
;
365 const struct elf_backend_data
*bed
;
370 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
376 /* Normal syms might have section extension entries. */
378 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
379 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
381 /* Read the symbols. */
383 alloc_extshndx
= NULL
;
385 bed
= get_elf_backend_data (ibfd
);
386 extsym_size
= bed
->s
->sizeof_sym
;
387 amt
= symcount
* extsym_size
;
388 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
389 if (extsym_buf
== NULL
)
391 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
392 extsym_buf
= alloc_ext
;
394 if (extsym_buf
== NULL
395 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
396 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
402 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
406 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
407 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
408 if (extshndx_buf
== NULL
)
410 alloc_extshndx
= bfd_malloc2 (symcount
,
411 sizeof (Elf_External_Sym_Shndx
));
412 extshndx_buf
= alloc_extshndx
;
414 if (extshndx_buf
== NULL
415 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
416 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
423 if (intsym_buf
== NULL
)
425 alloc_intsym
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
426 intsym_buf
= alloc_intsym
;
427 if (intsym_buf
== NULL
)
431 /* Convert the symbols to internal form. */
432 isymend
= intsym_buf
+ symcount
;
433 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
435 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
436 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
438 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
439 (*_bfd_error_handler
) (_("%B symbol number %lu references "
440 "nonexistent SHT_SYMTAB_SHNDX section"),
441 ibfd
, (unsigned long) symoffset
);
442 if (alloc_intsym
!= NULL
)
449 if (alloc_ext
!= NULL
)
451 if (alloc_extshndx
!= NULL
)
452 free (alloc_extshndx
);
457 /* Look up a symbol name. */
459 bfd_elf_sym_name (bfd
*abfd
,
460 Elf_Internal_Shdr
*symtab_hdr
,
461 Elf_Internal_Sym
*isym
,
465 unsigned int iname
= isym
->st_name
;
466 unsigned int shindex
= symtab_hdr
->sh_link
;
468 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
469 /* Check for a bogus st_shndx to avoid crashing. */
470 && isym
->st_shndx
< elf_numsections (abfd
))
472 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
473 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
476 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
479 else if (sym_sec
&& *name
== '\0')
480 name
= bfd_section_name (abfd
, sym_sec
);
485 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
486 sections. The first element is the flags, the rest are section
489 typedef union elf_internal_group
{
490 Elf_Internal_Shdr
*shdr
;
492 } Elf_Internal_Group
;
494 /* Return the name of the group signature symbol. Why isn't the
495 signature just a string? */
498 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
500 Elf_Internal_Shdr
*hdr
;
501 unsigned char esym
[sizeof (Elf64_External_Sym
)];
502 Elf_External_Sym_Shndx eshndx
;
503 Elf_Internal_Sym isym
;
505 /* First we need to ensure the symbol table is available. Make sure
506 that it is a symbol table section. */
507 if (ghdr
->sh_link
>= elf_numsections (abfd
))
509 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
510 if (hdr
->sh_type
!= SHT_SYMTAB
511 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
514 /* Go read the symbol. */
515 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
516 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
517 &isym
, esym
, &eshndx
) == NULL
)
520 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
523 /* Set next_in_group list pointer, and group name for NEWSECT. */
526 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
528 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
530 /* If num_group is zero, read in all SHT_GROUP sections. The count
531 is set to -1 if there are no SHT_GROUP sections. */
534 unsigned int i
, shnum
;
536 /* First count the number of groups. If we have a SHT_GROUP
537 section with just a flag word (ie. sh_size is 4), ignore it. */
538 shnum
= elf_numsections (abfd
);
541 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
542 ( (shdr)->sh_type == SHT_GROUP \
543 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
544 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
545 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
547 for (i
= 0; i
< shnum
; i
++)
549 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
551 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
557 num_group
= (unsigned) -1;
558 elf_tdata (abfd
)->num_group
= num_group
;
562 /* We keep a list of elf section headers for group sections,
563 so we can find them quickly. */
566 elf_tdata (abfd
)->num_group
= num_group
;
567 elf_tdata (abfd
)->group_sect_ptr
568 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
569 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
573 for (i
= 0; i
< shnum
; i
++)
575 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
577 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
580 Elf_Internal_Group
*dest
;
582 /* Add to list of sections. */
583 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
586 /* Read the raw contents. */
587 BFD_ASSERT (sizeof (*dest
) >= 4);
588 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
589 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
591 /* PR binutils/4110: Handle corrupt group headers. */
592 if (shdr
->contents
== NULL
)
595 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
596 bfd_set_error (bfd_error_bad_value
);
600 memset (shdr
->contents
, 0, amt
);
602 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
603 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
607 /* Translate raw contents, a flag word followed by an
608 array of elf section indices all in target byte order,
609 to the flag word followed by an array of elf section
611 src
= shdr
->contents
+ shdr
->sh_size
;
612 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
619 idx
= H_GET_32 (abfd
, src
);
620 if (src
== shdr
->contents
)
623 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
624 shdr
->bfd_section
->flags
625 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
630 ((*_bfd_error_handler
)
631 (_("%B: invalid SHT_GROUP entry"), abfd
));
634 dest
->shdr
= elf_elfsections (abfd
)[idx
];
641 if (num_group
!= (unsigned) -1)
645 for (i
= 0; i
< num_group
; i
++)
647 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
648 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
649 unsigned int n_elt
= shdr
->sh_size
/ 4;
651 /* Look through this group's sections to see if current
652 section is a member. */
654 if ((++idx
)->shdr
== hdr
)
658 /* We are a member of this group. Go looking through
659 other members to see if any others are linked via
661 idx
= (Elf_Internal_Group
*) shdr
->contents
;
662 n_elt
= shdr
->sh_size
/ 4;
664 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
665 && elf_next_in_group (s
) != NULL
)
669 /* Snarf the group name from other member, and
670 insert current section in circular list. */
671 elf_group_name (newsect
) = elf_group_name (s
);
672 elf_next_in_group (newsect
) = elf_next_in_group (s
);
673 elf_next_in_group (s
) = newsect
;
679 gname
= group_signature (abfd
, shdr
);
682 elf_group_name (newsect
) = gname
;
684 /* Start a circular list with one element. */
685 elf_next_in_group (newsect
) = newsect
;
688 /* If the group section has been created, point to the
690 if (shdr
->bfd_section
!= NULL
)
691 elf_next_in_group (shdr
->bfd_section
) = newsect
;
699 if (elf_group_name (newsect
) == NULL
)
701 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
708 _bfd_elf_setup_sections (bfd
*abfd
)
711 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
712 bfd_boolean result
= TRUE
;
715 /* Process SHF_LINK_ORDER. */
716 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
718 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
719 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
721 unsigned int elfsec
= this_hdr
->sh_link
;
722 /* FIXME: The old Intel compiler and old strip/objcopy may
723 not set the sh_link or sh_info fields. Hence we could
724 get the situation where elfsec is 0. */
727 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
728 if (bed
->link_order_error_handler
)
729 bed
->link_order_error_handler
730 (_("%B: warning: sh_link not set for section `%A'"),
735 asection
*link
= NULL
;
737 if (elfsec
< elf_numsections (abfd
))
739 this_hdr
= elf_elfsections (abfd
)[elfsec
];
740 link
= this_hdr
->bfd_section
;
744 Some strip/objcopy may leave an incorrect value in
745 sh_link. We don't want to proceed. */
748 (*_bfd_error_handler
)
749 (_("%B: sh_link [%d] in section `%A' is incorrect"),
750 s
->owner
, s
, elfsec
);
754 elf_linked_to_section (s
) = link
;
759 /* Process section groups. */
760 if (num_group
== (unsigned) -1)
763 for (i
= 0; i
< num_group
; i
++)
765 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
766 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
767 unsigned int n_elt
= shdr
->sh_size
/ 4;
770 if ((++idx
)->shdr
->bfd_section
)
771 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
772 else if (idx
->shdr
->sh_type
== SHT_RELA
773 || idx
->shdr
->sh_type
== SHT_REL
)
774 /* We won't include relocation sections in section groups in
775 output object files. We adjust the group section size here
776 so that relocatable link will work correctly when
777 relocation sections are in section group in input object
779 shdr
->bfd_section
->size
-= 4;
782 /* There are some unknown sections in the group. */
783 (*_bfd_error_handler
)
784 (_("%B: unknown [%d] section `%s' in group [%s]"),
786 (unsigned int) idx
->shdr
->sh_type
,
787 bfd_elf_string_from_elf_section (abfd
,
788 (elf_elfheader (abfd
)
791 shdr
->bfd_section
->name
);
799 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
801 return elf_next_in_group (sec
) != NULL
;
804 /* Make a BFD section from an ELF section. We store a pointer to the
805 BFD section in the bfd_section field of the header. */
808 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
809 Elf_Internal_Shdr
*hdr
,
815 const struct elf_backend_data
*bed
;
817 if (hdr
->bfd_section
!= NULL
)
819 BFD_ASSERT (strcmp (name
,
820 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
824 newsect
= bfd_make_section_anyway (abfd
, name
);
828 hdr
->bfd_section
= newsect
;
829 elf_section_data (newsect
)->this_hdr
= *hdr
;
830 elf_section_data (newsect
)->this_idx
= shindex
;
832 /* Always use the real type/flags. */
833 elf_section_type (newsect
) = hdr
->sh_type
;
834 elf_section_flags (newsect
) = hdr
->sh_flags
;
836 newsect
->filepos
= hdr
->sh_offset
;
838 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
839 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
840 || ! bfd_set_section_alignment (abfd
, newsect
,
841 bfd_log2 (hdr
->sh_addralign
)))
844 flags
= SEC_NO_FLAGS
;
845 if (hdr
->sh_type
!= SHT_NOBITS
)
846 flags
|= SEC_HAS_CONTENTS
;
847 if (hdr
->sh_type
== SHT_GROUP
)
848 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
849 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
852 if (hdr
->sh_type
!= SHT_NOBITS
)
855 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
856 flags
|= SEC_READONLY
;
857 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
859 else if ((flags
& SEC_LOAD
) != 0)
861 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
864 newsect
->entsize
= hdr
->sh_entsize
;
865 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
866 flags
|= SEC_STRINGS
;
868 if (hdr
->sh_flags
& SHF_GROUP
)
869 if (!setup_group (abfd
, hdr
, newsect
))
871 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
872 flags
|= SEC_THREAD_LOCAL
;
874 if ((flags
& SEC_ALLOC
) == 0)
876 /* The debugging sections appear to be recognized only by name,
877 not any sort of flag. Their SEC_ALLOC bits are cleared. */
882 } debug_sections
[] =
884 { STRING_COMMA_LEN ("debug") }, /* 'd' */
885 { NULL
, 0 }, /* 'e' */
886 { NULL
, 0 }, /* 'f' */
887 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
888 { NULL
, 0 }, /* 'h' */
889 { NULL
, 0 }, /* 'i' */
890 { NULL
, 0 }, /* 'j' */
891 { NULL
, 0 }, /* 'k' */
892 { STRING_COMMA_LEN ("line") }, /* 'l' */
893 { NULL
, 0 }, /* 'm' */
894 { NULL
, 0 }, /* 'n' */
895 { NULL
, 0 }, /* 'o' */
896 { NULL
, 0 }, /* 'p' */
897 { NULL
, 0 }, /* 'q' */
898 { NULL
, 0 }, /* 'r' */
899 { STRING_COMMA_LEN ("stab") }, /* 's' */
900 { NULL
, 0 }, /* 't' */
901 { NULL
, 0 }, /* 'u' */
902 { NULL
, 0 }, /* 'v' */
903 { NULL
, 0 }, /* 'w' */
904 { NULL
, 0 }, /* 'x' */
905 { NULL
, 0 }, /* 'y' */
906 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
911 int i
= name
[1] - 'd';
913 && i
< (int) ARRAY_SIZE (debug_sections
)
914 && debug_sections
[i
].name
!= NULL
915 && strncmp (&name
[1], debug_sections
[i
].name
,
916 debug_sections
[i
].len
) == 0)
917 flags
|= SEC_DEBUGGING
;
921 /* As a GNU extension, if the name begins with .gnu.linkonce, we
922 only link a single copy of the section. This is used to support
923 g++. g++ will emit each template expansion in its own section.
924 The symbols will be defined as weak, so that multiple definitions
925 are permitted. The GNU linker extension is to actually discard
926 all but one of the sections. */
927 if (CONST_STRNEQ (name
, ".gnu.linkonce")
928 && elf_next_in_group (newsect
) == NULL
)
929 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
931 bed
= get_elf_backend_data (abfd
);
932 if (bed
->elf_backend_section_flags
)
933 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
936 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
939 /* We do not parse the PT_NOTE segments as we are interested even in the
940 separate debug info files which may have the segments offsets corrupted.
941 PT_NOTEs from the core files are currently not parsed using BFD. */
942 if (hdr
->sh_type
== SHT_NOTE
)
946 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
949 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
953 if ((flags
& SEC_ALLOC
) != 0)
955 Elf_Internal_Phdr
*phdr
;
956 unsigned int i
, nload
;
958 /* Some ELF linkers produce binaries with all the program header
959 p_paddr fields zero. If we have such a binary with more than
960 one PT_LOAD header, then leave the section lma equal to vma
961 so that we don't create sections with overlapping lma. */
962 phdr
= elf_tdata (abfd
)->phdr
;
963 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
964 if (phdr
->p_paddr
!= 0)
966 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
968 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
971 phdr
= elf_tdata (abfd
)->phdr
;
972 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
974 /* This section is part of this segment if its file
975 offset plus size lies within the segment's memory
976 span and, if the section is loaded, the extent of the
977 loaded data lies within the extent of the segment.
979 Note - we used to check the p_paddr field as well, and
980 refuse to set the LMA if it was 0. This is wrong
981 though, as a perfectly valid initialised segment can
982 have a p_paddr of zero. Some architectures, eg ARM,
983 place special significance on the address 0 and
984 executables need to be able to have a segment which
985 covers this address. */
986 if (phdr
->p_type
== PT_LOAD
987 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
988 && (hdr
->sh_offset
+ hdr
->sh_size
989 <= phdr
->p_offset
+ phdr
->p_memsz
)
990 && ((flags
& SEC_LOAD
) == 0
991 || (hdr
->sh_offset
+ hdr
->sh_size
992 <= phdr
->p_offset
+ phdr
->p_filesz
)))
994 if ((flags
& SEC_LOAD
) == 0)
995 newsect
->lma
= (phdr
->p_paddr
996 + hdr
->sh_addr
- phdr
->p_vaddr
);
998 /* We used to use the same adjustment for SEC_LOAD
999 sections, but that doesn't work if the segment
1000 is packed with code from multiple VMAs.
1001 Instead we calculate the section LMA based on
1002 the segment LMA. It is assumed that the
1003 segment will contain sections with contiguous
1004 LMAs, even if the VMAs are not. */
1005 newsect
->lma
= (phdr
->p_paddr
1006 + hdr
->sh_offset
- phdr
->p_offset
);
1008 /* With contiguous segments, we can't tell from file
1009 offsets whether a section with zero size should
1010 be placed at the end of one segment or the
1011 beginning of the next. Decide based on vaddr. */
1012 if (hdr
->sh_addr
>= phdr
->p_vaddr
1013 && (hdr
->sh_addr
+ hdr
->sh_size
1014 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1023 const char *const bfd_elf_section_type_names
[] = {
1024 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1025 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1026 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1029 /* ELF relocs are against symbols. If we are producing relocatable
1030 output, and the reloc is against an external symbol, and nothing
1031 has given us any additional addend, the resulting reloc will also
1032 be against the same symbol. In such a case, we don't want to
1033 change anything about the way the reloc is handled, since it will
1034 all be done at final link time. Rather than put special case code
1035 into bfd_perform_relocation, all the reloc types use this howto
1036 function. It just short circuits the reloc if producing
1037 relocatable output against an external symbol. */
1039 bfd_reloc_status_type
1040 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1041 arelent
*reloc_entry
,
1043 void *data ATTRIBUTE_UNUSED
,
1044 asection
*input_section
,
1046 char **error_message ATTRIBUTE_UNUSED
)
1048 if (output_bfd
!= NULL
1049 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1050 && (! reloc_entry
->howto
->partial_inplace
1051 || reloc_entry
->addend
== 0))
1053 reloc_entry
->address
+= input_section
->output_offset
;
1054 return bfd_reloc_ok
;
1057 return bfd_reloc_continue
;
1060 /* Copy the program header and other data from one object module to
1064 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1066 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1067 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1070 BFD_ASSERT (!elf_flags_init (obfd
)
1071 || (elf_elfheader (obfd
)->e_flags
1072 == elf_elfheader (ibfd
)->e_flags
));
1074 elf_gp (obfd
) = elf_gp (ibfd
);
1075 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1076 elf_flags_init (obfd
) = TRUE
;
1078 /* Copy object attributes. */
1079 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1085 get_segment_type (unsigned int p_type
)
1090 case PT_NULL
: pt
= "NULL"; break;
1091 case PT_LOAD
: pt
= "LOAD"; break;
1092 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1093 case PT_INTERP
: pt
= "INTERP"; break;
1094 case PT_NOTE
: pt
= "NOTE"; break;
1095 case PT_SHLIB
: pt
= "SHLIB"; break;
1096 case PT_PHDR
: pt
= "PHDR"; break;
1097 case PT_TLS
: pt
= "TLS"; break;
1098 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1099 case PT_GNU_STACK
: pt
= "STACK"; break;
1100 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1101 default: pt
= NULL
; break;
1106 /* Print out the program headers. */
1109 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1112 Elf_Internal_Phdr
*p
;
1114 bfd_byte
*dynbuf
= NULL
;
1116 p
= elf_tdata (abfd
)->phdr
;
1121 fprintf (f
, _("\nProgram Header:\n"));
1122 c
= elf_elfheader (abfd
)->e_phnum
;
1123 for (i
= 0; i
< c
; i
++, p
++)
1125 const char *pt
= get_segment_type (p
->p_type
);
1130 sprintf (buf
, "0x%lx", p
->p_type
);
1133 fprintf (f
, "%8s off 0x", pt
);
1134 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1135 fprintf (f
, " vaddr 0x");
1136 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1137 fprintf (f
, " paddr 0x");
1138 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1139 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1140 fprintf (f
, " filesz 0x");
1141 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1142 fprintf (f
, " memsz 0x");
1143 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1144 fprintf (f
, " flags %c%c%c",
1145 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1146 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1147 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1148 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1149 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1154 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1157 unsigned int elfsec
;
1158 unsigned long shlink
;
1159 bfd_byte
*extdyn
, *extdynend
;
1161 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1163 fprintf (f
, _("\nDynamic Section:\n"));
1165 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1168 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1169 if (elfsec
== SHN_BAD
)
1171 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1173 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1174 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1177 extdynend
= extdyn
+ s
->size
;
1178 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1180 Elf_Internal_Dyn dyn
;
1181 const char *name
= "";
1183 bfd_boolean stringp
;
1184 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1186 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1188 if (dyn
.d_tag
== DT_NULL
)
1195 if (bed
->elf_backend_get_target_dtag
)
1196 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1198 if (!strcmp (name
, ""))
1200 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1205 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1206 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1207 case DT_PLTGOT
: name
= "PLTGOT"; break;
1208 case DT_HASH
: name
= "HASH"; break;
1209 case DT_STRTAB
: name
= "STRTAB"; break;
1210 case DT_SYMTAB
: name
= "SYMTAB"; break;
1211 case DT_RELA
: name
= "RELA"; break;
1212 case DT_RELASZ
: name
= "RELASZ"; break;
1213 case DT_RELAENT
: name
= "RELAENT"; break;
1214 case DT_STRSZ
: name
= "STRSZ"; break;
1215 case DT_SYMENT
: name
= "SYMENT"; break;
1216 case DT_INIT
: name
= "INIT"; break;
1217 case DT_FINI
: name
= "FINI"; break;
1218 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1219 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1220 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1221 case DT_REL
: name
= "REL"; break;
1222 case DT_RELSZ
: name
= "RELSZ"; break;
1223 case DT_RELENT
: name
= "RELENT"; break;
1224 case DT_PLTREL
: name
= "PLTREL"; break;
1225 case DT_DEBUG
: name
= "DEBUG"; break;
1226 case DT_TEXTREL
: name
= "TEXTREL"; break;
1227 case DT_JMPREL
: name
= "JMPREL"; break;
1228 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1229 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1230 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1231 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1232 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1233 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1234 case DT_FLAGS
: name
= "FLAGS"; break;
1235 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1236 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1237 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1238 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1239 case DT_MOVEENT
: name
= "MOVEENT"; break;
1240 case DT_MOVESZ
: name
= "MOVESZ"; break;
1241 case DT_FEATURE
: name
= "FEATURE"; break;
1242 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1243 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1244 case DT_SYMINENT
: name
= "SYMINENT"; break;
1245 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1246 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1247 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1248 case DT_PLTPAD
: name
= "PLTPAD"; break;
1249 case DT_MOVETAB
: name
= "MOVETAB"; break;
1250 case DT_SYMINFO
: name
= "SYMINFO"; break;
1251 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1252 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1253 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1254 case DT_VERSYM
: name
= "VERSYM"; break;
1255 case DT_VERDEF
: name
= "VERDEF"; break;
1256 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1257 case DT_VERNEED
: name
= "VERNEED"; break;
1258 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1259 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1260 case DT_USED
: name
= "USED"; break;
1261 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1262 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1265 fprintf (f
, " %-20s ", name
);
1269 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1274 unsigned int tagv
= dyn
.d_un
.d_val
;
1276 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1279 fprintf (f
, "%s", string
);
1288 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1289 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1291 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1295 if (elf_dynverdef (abfd
) != 0)
1297 Elf_Internal_Verdef
*t
;
1299 fprintf (f
, _("\nVersion definitions:\n"));
1300 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1302 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1303 t
->vd_flags
, t
->vd_hash
,
1304 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1305 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1307 Elf_Internal_Verdaux
*a
;
1310 for (a
= t
->vd_auxptr
->vda_nextptr
;
1314 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1320 if (elf_dynverref (abfd
) != 0)
1322 Elf_Internal_Verneed
*t
;
1324 fprintf (f
, _("\nVersion References:\n"));
1325 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1327 Elf_Internal_Vernaux
*a
;
1329 fprintf (f
, _(" required from %s:\n"),
1330 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1331 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1332 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1333 a
->vna_flags
, a
->vna_other
,
1334 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1346 /* Display ELF-specific fields of a symbol. */
1349 bfd_elf_print_symbol (bfd
*abfd
,
1352 bfd_print_symbol_type how
)
1357 case bfd_print_symbol_name
:
1358 fprintf (file
, "%s", symbol
->name
);
1360 case bfd_print_symbol_more
:
1361 fprintf (file
, "elf ");
1362 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1363 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1365 case bfd_print_symbol_all
:
1367 const char *section_name
;
1368 const char *name
= NULL
;
1369 const struct elf_backend_data
*bed
;
1370 unsigned char st_other
;
1373 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1375 bed
= get_elf_backend_data (abfd
);
1376 if (bed
->elf_backend_print_symbol_all
)
1377 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1381 name
= symbol
->name
;
1382 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1385 fprintf (file
, " %s\t", section_name
);
1386 /* Print the "other" value for a symbol. For common symbols,
1387 we've already printed the size; now print the alignment.
1388 For other symbols, we have no specified alignment, and
1389 we've printed the address; now print the size. */
1390 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1391 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1393 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1394 bfd_fprintf_vma (abfd
, file
, val
);
1396 /* If we have version information, print it. */
1397 if (elf_tdata (abfd
)->dynversym_section
!= 0
1398 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1399 || elf_tdata (abfd
)->dynverref_section
!= 0))
1401 unsigned int vernum
;
1402 const char *version_string
;
1404 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1407 version_string
= "";
1408 else if (vernum
== 1)
1409 version_string
= "Base";
1410 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1412 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1415 Elf_Internal_Verneed
*t
;
1417 version_string
= "";
1418 for (t
= elf_tdata (abfd
)->verref
;
1422 Elf_Internal_Vernaux
*a
;
1424 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1426 if (a
->vna_other
== vernum
)
1428 version_string
= a
->vna_nodename
;
1435 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1436 fprintf (file
, " %-11s", version_string
);
1441 fprintf (file
, " (%s)", version_string
);
1442 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1447 /* If the st_other field is not zero, print it. */
1448 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1453 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1454 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1455 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1457 /* Some other non-defined flags are also present, so print
1459 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1462 fprintf (file
, " %s", name
);
1468 /* Allocate an ELF string table--force the first byte to be zero. */
1470 struct bfd_strtab_hash
*
1471 _bfd_elf_stringtab_init (void)
1473 struct bfd_strtab_hash
*ret
;
1475 ret
= _bfd_stringtab_init ();
1480 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1481 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1482 if (loc
== (bfd_size_type
) -1)
1484 _bfd_stringtab_free (ret
);
1491 /* ELF .o/exec file reading */
1493 /* Create a new bfd section from an ELF section header. */
1496 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1498 Elf_Internal_Shdr
*hdr
;
1499 Elf_Internal_Ehdr
*ehdr
;
1500 const struct elf_backend_data
*bed
;
1503 if (shindex
>= elf_numsections (abfd
))
1506 hdr
= elf_elfsections (abfd
)[shindex
];
1507 ehdr
= elf_elfheader (abfd
);
1508 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1513 bed
= get_elf_backend_data (abfd
);
1514 switch (hdr
->sh_type
)
1517 /* Inactive section. Throw it away. */
1520 case SHT_PROGBITS
: /* Normal section with contents. */
1521 case SHT_NOBITS
: /* .bss section. */
1522 case SHT_HASH
: /* .hash section. */
1523 case SHT_NOTE
: /* .note section. */
1524 case SHT_INIT_ARRAY
: /* .init_array section. */
1525 case SHT_FINI_ARRAY
: /* .fini_array section. */
1526 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1527 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1528 case SHT_GNU_HASH
: /* .gnu.hash section. */
1529 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1531 case SHT_DYNAMIC
: /* Dynamic linking information. */
1532 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1534 if (hdr
->sh_link
> elf_numsections (abfd
)
1535 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1537 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1539 Elf_Internal_Shdr
*dynsymhdr
;
1541 /* The shared libraries distributed with hpux11 have a bogus
1542 sh_link field for the ".dynamic" section. Find the
1543 string table for the ".dynsym" section instead. */
1544 if (elf_dynsymtab (abfd
) != 0)
1546 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1547 hdr
->sh_link
= dynsymhdr
->sh_link
;
1551 unsigned int i
, num_sec
;
1553 num_sec
= elf_numsections (abfd
);
1554 for (i
= 1; i
< num_sec
; i
++)
1556 dynsymhdr
= elf_elfsections (abfd
)[i
];
1557 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1559 hdr
->sh_link
= dynsymhdr
->sh_link
;
1567 case SHT_SYMTAB
: /* A symbol table */
1568 if (elf_onesymtab (abfd
) == shindex
)
1571 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1573 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1575 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1576 elf_onesymtab (abfd
) = shindex
;
1577 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1578 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1579 abfd
->flags
|= HAS_SYMS
;
1581 /* Sometimes a shared object will map in the symbol table. If
1582 SHF_ALLOC is set, and this is a shared object, then we also
1583 treat this section as a BFD section. We can not base the
1584 decision purely on SHF_ALLOC, because that flag is sometimes
1585 set in a relocatable object file, which would confuse the
1587 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1588 && (abfd
->flags
& DYNAMIC
) != 0
1589 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1593 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1594 can't read symbols without that section loaded as well. It
1595 is most likely specified by the next section header. */
1596 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1598 unsigned int i
, num_sec
;
1600 num_sec
= elf_numsections (abfd
);
1601 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1603 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1604 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1605 && hdr2
->sh_link
== shindex
)
1609 for (i
= 1; i
< shindex
; i
++)
1611 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1612 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1613 && hdr2
->sh_link
== shindex
)
1617 return bfd_section_from_shdr (abfd
, i
);
1621 case SHT_DYNSYM
: /* A dynamic symbol table */
1622 if (elf_dynsymtab (abfd
) == shindex
)
1625 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1627 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1628 elf_dynsymtab (abfd
) = shindex
;
1629 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1630 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1631 abfd
->flags
|= HAS_SYMS
;
1633 /* Besides being a symbol table, we also treat this as a regular
1634 section, so that objcopy can handle it. */
1635 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1637 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1638 if (elf_symtab_shndx (abfd
) == shindex
)
1641 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1642 elf_symtab_shndx (abfd
) = shindex
;
1643 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1644 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1647 case SHT_STRTAB
: /* A string table */
1648 if (hdr
->bfd_section
!= NULL
)
1650 if (ehdr
->e_shstrndx
== shindex
)
1652 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1653 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1656 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1659 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1660 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1663 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1666 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1667 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1668 elf_elfsections (abfd
)[shindex
] = hdr
;
1669 /* We also treat this as a regular section, so that objcopy
1671 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1675 /* If the string table isn't one of the above, then treat it as a
1676 regular section. We need to scan all the headers to be sure,
1677 just in case this strtab section appeared before the above. */
1678 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1680 unsigned int i
, num_sec
;
1682 num_sec
= elf_numsections (abfd
);
1683 for (i
= 1; i
< num_sec
; i
++)
1685 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1686 if (hdr2
->sh_link
== shindex
)
1688 /* Prevent endless recursion on broken objects. */
1691 if (! bfd_section_from_shdr (abfd
, i
))
1693 if (elf_onesymtab (abfd
) == i
)
1695 if (elf_dynsymtab (abfd
) == i
)
1696 goto dynsymtab_strtab
;
1700 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1704 /* *These* do a lot of work -- but build no sections! */
1706 asection
*target_sect
;
1707 Elf_Internal_Shdr
*hdr2
;
1708 unsigned int num_sec
= elf_numsections (abfd
);
1711 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1712 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1715 /* Check for a bogus link to avoid crashing. */
1716 if (hdr
->sh_link
>= num_sec
)
1718 ((*_bfd_error_handler
)
1719 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1720 abfd
, hdr
->sh_link
, name
, shindex
));
1721 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1725 /* For some incomprehensible reason Oracle distributes
1726 libraries for Solaris in which some of the objects have
1727 bogus sh_link fields. It would be nice if we could just
1728 reject them, but, unfortunately, some people need to use
1729 them. We scan through the section headers; if we find only
1730 one suitable symbol table, we clobber the sh_link to point
1731 to it. I hope this doesn't break anything.
1733 Don't do it on executable nor shared library. */
1734 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1735 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1736 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1742 for (scan
= 1; scan
< num_sec
; scan
++)
1744 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1745 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1756 hdr
->sh_link
= found
;
1759 /* Get the symbol table. */
1760 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1761 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1762 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1765 /* If this reloc section does not use the main symbol table we
1766 don't treat it as a reloc section. BFD can't adequately
1767 represent such a section, so at least for now, we don't
1768 try. We just present it as a normal section. We also
1769 can't use it as a reloc section if it points to the null
1770 section, an invalid section, another reloc section, or its
1771 sh_link points to the null section. */
1772 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1773 || hdr
->sh_link
== SHN_UNDEF
1774 || hdr
->sh_info
== SHN_UNDEF
1775 || hdr
->sh_info
>= num_sec
1776 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1777 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1778 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1781 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1783 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1784 if (target_sect
== NULL
)
1787 if ((target_sect
->flags
& SEC_RELOC
) == 0
1788 || target_sect
->reloc_count
== 0)
1789 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1793 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1794 amt
= sizeof (*hdr2
);
1795 hdr2
= bfd_alloc (abfd
, amt
);
1798 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1801 elf_elfsections (abfd
)[shindex
] = hdr2
;
1802 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1803 target_sect
->flags
|= SEC_RELOC
;
1804 target_sect
->relocation
= NULL
;
1805 target_sect
->rel_filepos
= hdr
->sh_offset
;
1806 /* In the section to which the relocations apply, mark whether
1807 its relocations are of the REL or RELA variety. */
1808 if (hdr
->sh_size
!= 0)
1809 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1810 abfd
->flags
|= HAS_RELOC
;
1814 case SHT_GNU_verdef
:
1815 elf_dynverdef (abfd
) = shindex
;
1816 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1817 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1819 case SHT_GNU_versym
:
1820 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1822 elf_dynversym (abfd
) = shindex
;
1823 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1824 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1826 case SHT_GNU_verneed
:
1827 elf_dynverref (abfd
) = shindex
;
1828 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1829 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1835 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1837 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1839 if (hdr
->contents
!= NULL
)
1841 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1842 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1845 if (idx
->flags
& GRP_COMDAT
)
1846 hdr
->bfd_section
->flags
1847 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1849 /* We try to keep the same section order as it comes in. */
1851 while (--n_elt
!= 0)
1855 if (idx
->shdr
!= NULL
1856 && (s
= idx
->shdr
->bfd_section
) != NULL
1857 && elf_next_in_group (s
) != NULL
)
1859 elf_next_in_group (hdr
->bfd_section
) = s
;
1867 /* Possibly an attributes section. */
1868 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1869 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1871 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1873 _bfd_elf_parse_attributes (abfd
, hdr
);
1877 /* Check for any processor-specific section types. */
1878 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1881 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1883 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1884 /* FIXME: How to properly handle allocated section reserved
1885 for applications? */
1886 (*_bfd_error_handler
)
1887 (_("%B: don't know how to handle allocated, application "
1888 "specific section `%s' [0x%8x]"),
1889 abfd
, name
, hdr
->sh_type
);
1891 /* Allow sections reserved for applications. */
1892 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1895 else if (hdr
->sh_type
>= SHT_LOPROC
1896 && hdr
->sh_type
<= SHT_HIPROC
)
1897 /* FIXME: We should handle this section. */
1898 (*_bfd_error_handler
)
1899 (_("%B: don't know how to handle processor specific section "
1901 abfd
, name
, hdr
->sh_type
);
1902 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1904 /* Unrecognised OS-specific sections. */
1905 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1906 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1907 required to correctly process the section and the file should
1908 be rejected with an error message. */
1909 (*_bfd_error_handler
)
1910 (_("%B: don't know how to handle OS specific section "
1912 abfd
, name
, hdr
->sh_type
);
1914 /* Otherwise it should be processed. */
1915 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1918 /* FIXME: We should handle this section. */
1919 (*_bfd_error_handler
)
1920 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1921 abfd
, name
, hdr
->sh_type
);
1929 /* Return the local symbol specified by ABFD, R_SYMNDX. */
1932 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
1934 unsigned long r_symndx
)
1936 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
1938 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
1940 Elf_Internal_Shdr
*symtab_hdr
;
1941 unsigned char esym
[sizeof (Elf64_External_Sym
)];
1942 Elf_External_Sym_Shndx eshndx
;
1944 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1945 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
1946 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
1949 if (cache
->abfd
!= abfd
)
1951 memset (cache
->indx
, -1, sizeof (cache
->indx
));
1954 cache
->indx
[ent
] = r_symndx
;
1957 return &cache
->sym
[ent
];
1960 /* Given an ELF section number, retrieve the corresponding BFD
1964 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
1966 if (index
>= elf_numsections (abfd
))
1968 return elf_elfsections (abfd
)[index
]->bfd_section
;
1971 static const struct bfd_elf_special_section special_sections_b
[] =
1973 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
1974 { NULL
, 0, 0, 0, 0 }
1977 static const struct bfd_elf_special_section special_sections_c
[] =
1979 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
1980 { NULL
, 0, 0, 0, 0 }
1983 static const struct bfd_elf_special_section special_sections_d
[] =
1985 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1986 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
1987 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
1988 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
1989 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
1990 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
1991 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
1992 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
1993 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
1994 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
1995 { NULL
, 0, 0, 0, 0 }
1998 static const struct bfd_elf_special_section special_sections_f
[] =
2000 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2001 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2002 { NULL
, 0, 0, 0, 0 }
2005 static const struct bfd_elf_special_section special_sections_g
[] =
2007 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2008 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2009 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2010 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2011 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2012 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2013 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2014 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2015 { NULL
, 0, 0, 0, 0 }
2018 static const struct bfd_elf_special_section special_sections_h
[] =
2020 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2021 { NULL
, 0, 0, 0, 0 }
2024 static const struct bfd_elf_special_section special_sections_i
[] =
2026 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2027 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2028 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2029 { NULL
, 0, 0, 0, 0 }
2032 static const struct bfd_elf_special_section special_sections_l
[] =
2034 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2035 { NULL
, 0, 0, 0, 0 }
2038 static const struct bfd_elf_special_section special_sections_n
[] =
2040 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2041 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2042 { NULL
, 0, 0, 0, 0 }
2045 static const struct bfd_elf_special_section special_sections_p
[] =
2047 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2048 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2049 { NULL
, 0, 0, 0, 0 }
2052 static const struct bfd_elf_special_section special_sections_r
[] =
2054 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2055 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2056 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2057 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2058 { NULL
, 0, 0, 0, 0 }
2061 static const struct bfd_elf_special_section special_sections_s
[] =
2063 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2064 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2065 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2066 /* See struct bfd_elf_special_section declaration for the semantics of
2067 this special case where .prefix_length != strlen (.prefix). */
2068 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2069 { NULL
, 0, 0, 0, 0 }
2072 static const struct bfd_elf_special_section special_sections_t
[] =
2074 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2075 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2076 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2077 { NULL
, 0, 0, 0, 0 }
2080 static const struct bfd_elf_special_section special_sections_z
[] =
2082 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2083 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2084 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2085 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2086 { NULL
, 0, 0, 0, 0 }
2089 static const struct bfd_elf_special_section
*special_sections
[] =
2091 special_sections_b
, /* 'b' */
2092 special_sections_c
, /* 'c' */
2093 special_sections_d
, /* 'd' */
2095 special_sections_f
, /* 'f' */
2096 special_sections_g
, /* 'g' */
2097 special_sections_h
, /* 'h' */
2098 special_sections_i
, /* 'i' */
2101 special_sections_l
, /* 'l' */
2103 special_sections_n
, /* 'n' */
2105 special_sections_p
, /* 'p' */
2107 special_sections_r
, /* 'r' */
2108 special_sections_s
, /* 's' */
2109 special_sections_t
, /* 't' */
2115 special_sections_z
/* 'z' */
2118 const struct bfd_elf_special_section
*
2119 _bfd_elf_get_special_section (const char *name
,
2120 const struct bfd_elf_special_section
*spec
,
2126 len
= strlen (name
);
2128 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2131 int prefix_len
= spec
[i
].prefix_length
;
2133 if (len
< prefix_len
)
2135 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2138 suffix_len
= spec
[i
].suffix_length
;
2139 if (suffix_len
<= 0)
2141 if (name
[prefix_len
] != 0)
2143 if (suffix_len
== 0)
2145 if (name
[prefix_len
] != '.'
2146 && (suffix_len
== -2
2147 || (rela
&& spec
[i
].type
== SHT_REL
)))
2153 if (len
< prefix_len
+ suffix_len
)
2155 if (memcmp (name
+ len
- suffix_len
,
2156 spec
[i
].prefix
+ prefix_len
,
2166 const struct bfd_elf_special_section
*
2167 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2170 const struct bfd_elf_special_section
*spec
;
2171 const struct elf_backend_data
*bed
;
2173 /* See if this is one of the special sections. */
2174 if (sec
->name
== NULL
)
2177 bed
= get_elf_backend_data (abfd
);
2178 spec
= bed
->special_sections
;
2181 spec
= _bfd_elf_get_special_section (sec
->name
,
2182 bed
->special_sections
,
2188 if (sec
->name
[0] != '.')
2191 i
= sec
->name
[1] - 'b';
2192 if (i
< 0 || i
> 'z' - 'b')
2195 spec
= special_sections
[i
];
2200 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2204 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2206 struct bfd_elf_section_data
*sdata
;
2207 const struct elf_backend_data
*bed
;
2208 const struct bfd_elf_special_section
*ssect
;
2210 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2213 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2216 sec
->used_by_bfd
= sdata
;
2219 /* Indicate whether or not this section should use RELA relocations. */
2220 bed
= get_elf_backend_data (abfd
);
2221 sec
->use_rela_p
= bed
->default_use_rela_p
;
2223 /* When we read a file, we don't need to set ELF section type and
2224 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2225 anyway. We will set ELF section type and flags for all linker
2226 created sections. If user specifies BFD section flags, we will
2227 set ELF section type and flags based on BFD section flags in
2228 elf_fake_sections. */
2229 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2230 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2232 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2235 elf_section_type (sec
) = ssect
->type
;
2236 elf_section_flags (sec
) = ssect
->attr
;
2240 return _bfd_generic_new_section_hook (abfd
, sec
);
2243 /* Create a new bfd section from an ELF program header.
2245 Since program segments have no names, we generate a synthetic name
2246 of the form segment<NUM>, where NUM is generally the index in the
2247 program header table. For segments that are split (see below) we
2248 generate the names segment<NUM>a and segment<NUM>b.
2250 Note that some program segments may have a file size that is different than
2251 (less than) the memory size. All this means is that at execution the
2252 system must allocate the amount of memory specified by the memory size,
2253 but only initialize it with the first "file size" bytes read from the
2254 file. This would occur for example, with program segments consisting
2255 of combined data+bss.
2257 To handle the above situation, this routine generates TWO bfd sections
2258 for the single program segment. The first has the length specified by
2259 the file size of the segment, and the second has the length specified
2260 by the difference between the two sizes. In effect, the segment is split
2261 into its initialized and uninitialized parts.
2266 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2267 Elf_Internal_Phdr
*hdr
,
2269 const char *typename
)
2277 split
= ((hdr
->p_memsz
> 0)
2278 && (hdr
->p_filesz
> 0)
2279 && (hdr
->p_memsz
> hdr
->p_filesz
));
2281 if (hdr
->p_filesz
> 0)
2283 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2284 len
= strlen (namebuf
) + 1;
2285 name
= bfd_alloc (abfd
, len
);
2288 memcpy (name
, namebuf
, len
);
2289 newsect
= bfd_make_section (abfd
, name
);
2290 if (newsect
== NULL
)
2292 newsect
->vma
= hdr
->p_vaddr
;
2293 newsect
->lma
= hdr
->p_paddr
;
2294 newsect
->size
= hdr
->p_filesz
;
2295 newsect
->filepos
= hdr
->p_offset
;
2296 newsect
->flags
|= SEC_HAS_CONTENTS
;
2297 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2298 if (hdr
->p_type
== PT_LOAD
)
2300 newsect
->flags
|= SEC_ALLOC
;
2301 newsect
->flags
|= SEC_LOAD
;
2302 if (hdr
->p_flags
& PF_X
)
2304 /* FIXME: all we known is that it has execute PERMISSION,
2306 newsect
->flags
|= SEC_CODE
;
2309 if (!(hdr
->p_flags
& PF_W
))
2311 newsect
->flags
|= SEC_READONLY
;
2315 if (hdr
->p_memsz
> hdr
->p_filesz
)
2319 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "b" : "");
2320 len
= strlen (namebuf
) + 1;
2321 name
= bfd_alloc (abfd
, len
);
2324 memcpy (name
, namebuf
, len
);
2325 newsect
= bfd_make_section (abfd
, name
);
2326 if (newsect
== NULL
)
2328 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2329 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2330 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2331 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2332 align
= newsect
->vma
& -newsect
->vma
;
2333 if (align
== 0 || align
> hdr
->p_align
)
2334 align
= hdr
->p_align
;
2335 newsect
->alignment_power
= bfd_log2 (align
);
2336 if (hdr
->p_type
== PT_LOAD
)
2338 /* Hack for gdb. Segments that have not been modified do
2339 not have their contents written to a core file, on the
2340 assumption that a debugger can find the contents in the
2341 executable. We flag this case by setting the fake
2342 section size to zero. Note that "real" bss sections will
2343 always have their contents dumped to the core file. */
2344 if (bfd_get_format (abfd
) == bfd_core
)
2346 newsect
->flags
|= SEC_ALLOC
;
2347 if (hdr
->p_flags
& PF_X
)
2348 newsect
->flags
|= SEC_CODE
;
2350 if (!(hdr
->p_flags
& PF_W
))
2351 newsect
->flags
|= SEC_READONLY
;
2358 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2360 const struct elf_backend_data
*bed
;
2362 switch (hdr
->p_type
)
2365 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2368 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2371 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2374 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2377 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2379 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2384 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2387 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2389 case PT_GNU_EH_FRAME
:
2390 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2394 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2397 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2400 /* Check for any processor-specific program segment types. */
2401 bed
= get_elf_backend_data (abfd
);
2402 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2406 /* Initialize REL_HDR, the section-header for new section, containing
2407 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2408 relocations; otherwise, we use REL relocations. */
2411 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2412 Elf_Internal_Shdr
*rel_hdr
,
2414 bfd_boolean use_rela_p
)
2417 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2418 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2420 name
= bfd_alloc (abfd
, amt
);
2423 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2425 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2427 if (rel_hdr
->sh_name
== (unsigned int) -1)
2429 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2430 rel_hdr
->sh_entsize
= (use_rela_p
2431 ? bed
->s
->sizeof_rela
2432 : bed
->s
->sizeof_rel
);
2433 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2434 rel_hdr
->sh_flags
= 0;
2435 rel_hdr
->sh_addr
= 0;
2436 rel_hdr
->sh_size
= 0;
2437 rel_hdr
->sh_offset
= 0;
2442 /* Set up an ELF internal section header for a section. */
2445 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2447 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2448 bfd_boolean
*failedptr
= failedptrarg
;
2449 Elf_Internal_Shdr
*this_hdr
;
2450 unsigned int sh_type
;
2454 /* We already failed; just get out of the bfd_map_over_sections
2459 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2461 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2462 asect
->name
, FALSE
);
2463 if (this_hdr
->sh_name
== (unsigned int) -1)
2469 /* Don't clear sh_flags. Assembler may set additional bits. */
2471 if ((asect
->flags
& SEC_ALLOC
) != 0
2472 || asect
->user_set_vma
)
2473 this_hdr
->sh_addr
= asect
->vma
;
2475 this_hdr
->sh_addr
= 0;
2477 this_hdr
->sh_offset
= 0;
2478 this_hdr
->sh_size
= asect
->size
;
2479 this_hdr
->sh_link
= 0;
2480 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2481 /* The sh_entsize and sh_info fields may have been set already by
2482 copy_private_section_data. */
2484 this_hdr
->bfd_section
= asect
;
2485 this_hdr
->contents
= NULL
;
2487 /* If the section type is unspecified, we set it based on
2489 if ((asect
->flags
& SEC_GROUP
) != 0)
2490 sh_type
= SHT_GROUP
;
2491 else if ((asect
->flags
& SEC_ALLOC
) != 0
2492 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2493 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2494 sh_type
= SHT_NOBITS
;
2496 sh_type
= SHT_PROGBITS
;
2498 if (this_hdr
->sh_type
== SHT_NULL
)
2499 this_hdr
->sh_type
= sh_type
;
2500 else if (this_hdr
->sh_type
== SHT_NOBITS
2501 && sh_type
== SHT_PROGBITS
2502 && (asect
->flags
& SEC_ALLOC
) != 0)
2504 /* Warn if we are changing a NOBITS section to PROGBITS, but
2505 allow the link to proceed. This can happen when users link
2506 non-bss input sections to bss output sections, or emit data
2507 to a bss output section via a linker script. */
2508 (*_bfd_error_handler
)
2509 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2510 this_hdr
->sh_type
= sh_type
;
2513 switch (this_hdr
->sh_type
)
2519 case SHT_INIT_ARRAY
:
2520 case SHT_FINI_ARRAY
:
2521 case SHT_PREINIT_ARRAY
:
2528 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2532 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2536 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2540 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2541 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2545 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2546 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2549 case SHT_GNU_versym
:
2550 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2553 case SHT_GNU_verdef
:
2554 this_hdr
->sh_entsize
= 0;
2555 /* objcopy or strip will copy over sh_info, but may not set
2556 cverdefs. The linker will set cverdefs, but sh_info will be
2558 if (this_hdr
->sh_info
== 0)
2559 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2561 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2562 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2565 case SHT_GNU_verneed
:
2566 this_hdr
->sh_entsize
= 0;
2567 /* objcopy or strip will copy over sh_info, but may not set
2568 cverrefs. The linker will set cverrefs, but sh_info will be
2570 if (this_hdr
->sh_info
== 0)
2571 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2573 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2574 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2578 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2582 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2586 if ((asect
->flags
& SEC_ALLOC
) != 0)
2587 this_hdr
->sh_flags
|= SHF_ALLOC
;
2588 if ((asect
->flags
& SEC_READONLY
) == 0)
2589 this_hdr
->sh_flags
|= SHF_WRITE
;
2590 if ((asect
->flags
& SEC_CODE
) != 0)
2591 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2592 if ((asect
->flags
& SEC_MERGE
) != 0)
2594 this_hdr
->sh_flags
|= SHF_MERGE
;
2595 this_hdr
->sh_entsize
= asect
->entsize
;
2596 if ((asect
->flags
& SEC_STRINGS
) != 0)
2597 this_hdr
->sh_flags
|= SHF_STRINGS
;
2599 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2600 this_hdr
->sh_flags
|= SHF_GROUP
;
2601 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2603 this_hdr
->sh_flags
|= SHF_TLS
;
2604 if (asect
->size
== 0
2605 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2607 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2609 this_hdr
->sh_size
= 0;
2612 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2613 if (this_hdr
->sh_size
!= 0)
2614 this_hdr
->sh_type
= SHT_NOBITS
;
2619 /* Check for processor-specific section types. */
2620 sh_type
= this_hdr
->sh_type
;
2621 if (bed
->elf_backend_fake_sections
2622 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2625 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2627 /* Don't change the header type from NOBITS if we are being
2628 called for objcopy --only-keep-debug. */
2629 this_hdr
->sh_type
= sh_type
;
2632 /* If the section has relocs, set up a section header for the
2633 SHT_REL[A] section. If two relocation sections are required for
2634 this section, it is up to the processor-specific back-end to
2635 create the other. */
2636 if ((asect
->flags
& SEC_RELOC
) != 0
2637 && !_bfd_elf_init_reloc_shdr (abfd
,
2638 &elf_section_data (asect
)->rel_hdr
,
2644 /* Fill in the contents of a SHT_GROUP section. Called from
2645 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2646 when ELF targets use the generic linker, ld. Called for ld -r
2647 from bfd_elf_final_link. */
2650 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2652 bfd_boolean
*failedptr
= failedptrarg
;
2653 asection
*elt
, *first
;
2657 /* Ignore linker created group section. See elfNN_ia64_object_p in
2659 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2663 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2665 unsigned long symindx
= 0;
2667 /* elf_group_id will have been set up by objcopy and the
2669 if (elf_group_id (sec
) != NULL
)
2670 symindx
= elf_group_id (sec
)->udata
.i
;
2674 /* If called from the assembler, swap_out_syms will have set up
2675 elf_section_syms. */
2676 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2677 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2679 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2681 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2683 /* The ELF backend linker sets sh_info to -2 when the group
2684 signature symbol is global, and thus the index can't be
2685 set until all local symbols are output. */
2686 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2687 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2688 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2689 unsigned long extsymoff
= 0;
2690 struct elf_link_hash_entry
*h
;
2692 if (!elf_bad_symtab (igroup
->owner
))
2694 Elf_Internal_Shdr
*symtab_hdr
;
2696 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2697 extsymoff
= symtab_hdr
->sh_info
;
2699 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2700 while (h
->root
.type
== bfd_link_hash_indirect
2701 || h
->root
.type
== bfd_link_hash_warning
)
2702 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2704 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2707 /* The contents won't be allocated for "ld -r" or objcopy. */
2709 if (sec
->contents
== NULL
)
2712 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2714 /* Arrange for the section to be written out. */
2715 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2716 if (sec
->contents
== NULL
)
2723 loc
= sec
->contents
+ sec
->size
;
2725 /* Get the pointer to the first section in the group that gas
2726 squirreled away here. objcopy arranges for this to be set to the
2727 start of the input section group. */
2728 first
= elt
= elf_next_in_group (sec
);
2730 /* First element is a flag word. Rest of section is elf section
2731 indices for all the sections of the group. Write them backwards
2732 just to keep the group in the same order as given in .section
2733 directives, not that it matters. */
2740 if (! elf_discarded_section (s
))
2744 s
= s
->output_section
;
2747 idx
= elf_section_data (s
)->this_idx
;
2748 H_PUT_32 (abfd
, idx
, loc
);
2750 elt
= elf_next_in_group (elt
);
2755 if ((loc
-= 4) != sec
->contents
)
2758 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2761 /* Assign all ELF section numbers. The dummy first section is handled here
2762 too. The link/info pointers for the standard section types are filled
2763 in here too, while we're at it. */
2766 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2768 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2770 unsigned int section_number
, secn
;
2771 Elf_Internal_Shdr
**i_shdrp
;
2772 struct bfd_elf_section_data
*d
;
2773 bfd_boolean need_symtab
;
2777 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2779 /* SHT_GROUP sections are in relocatable files only. */
2780 if (link_info
== NULL
|| link_info
->relocatable
)
2782 /* Put SHT_GROUP sections first. */
2783 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2785 d
= elf_section_data (sec
);
2787 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2789 if (sec
->flags
& SEC_LINKER_CREATED
)
2791 /* Remove the linker created SHT_GROUP sections. */
2792 bfd_section_list_remove (abfd
, sec
);
2793 abfd
->section_count
--;
2796 d
->this_idx
= section_number
++;
2801 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2803 d
= elf_section_data (sec
);
2805 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2806 d
->this_idx
= section_number
++;
2807 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2808 if ((sec
->flags
& SEC_RELOC
) == 0)
2812 d
->rel_idx
= section_number
++;
2813 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2818 d
->rel_idx2
= section_number
++;
2819 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2825 t
->shstrtab_section
= section_number
++;
2826 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2827 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2829 need_symtab
= (bfd_get_symcount (abfd
) > 0
2830 || (link_info
== NULL
2831 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
2835 t
->symtab_section
= section_number
++;
2836 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2837 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2839 t
->symtab_shndx_section
= section_number
++;
2840 t
->symtab_shndx_hdr
.sh_name
2841 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2842 ".symtab_shndx", FALSE
);
2843 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2846 t
->strtab_section
= section_number
++;
2847 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2850 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2851 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2853 elf_numsections (abfd
) = section_number
;
2854 elf_elfheader (abfd
)->e_shnum
= section_number
;
2856 /* Set up the list of section header pointers, in agreement with the
2858 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
2859 if (i_shdrp
== NULL
)
2862 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
2863 if (i_shdrp
[0] == NULL
)
2865 bfd_release (abfd
, i_shdrp
);
2869 elf_elfsections (abfd
) = i_shdrp
;
2871 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2874 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2875 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
2877 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2878 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2880 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2881 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2884 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2886 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2890 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2891 if (d
->rel_idx
!= 0)
2892 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2893 if (d
->rel_idx2
!= 0)
2894 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2896 /* Fill in the sh_link and sh_info fields while we're at it. */
2898 /* sh_link of a reloc section is the section index of the symbol
2899 table. sh_info is the section index of the section to which
2900 the relocation entries apply. */
2901 if (d
->rel_idx
!= 0)
2903 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2904 d
->rel_hdr
.sh_info
= d
->this_idx
;
2906 if (d
->rel_idx2
!= 0)
2908 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2909 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2912 /* We need to set up sh_link for SHF_LINK_ORDER. */
2913 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2915 s
= elf_linked_to_section (sec
);
2918 /* elf_linked_to_section points to the input section. */
2919 if (link_info
!= NULL
)
2921 /* Check discarded linkonce section. */
2922 if (elf_discarded_section (s
))
2925 (*_bfd_error_handler
)
2926 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2927 abfd
, d
->this_hdr
.bfd_section
,
2929 /* Point to the kept section if it has the same
2930 size as the discarded one. */
2931 kept
= _bfd_elf_check_kept_section (s
, link_info
);
2934 bfd_set_error (bfd_error_bad_value
);
2940 s
= s
->output_section
;
2941 BFD_ASSERT (s
!= NULL
);
2945 /* Handle objcopy. */
2946 if (s
->output_section
== NULL
)
2948 (*_bfd_error_handler
)
2949 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2950 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
2951 bfd_set_error (bfd_error_bad_value
);
2954 s
= s
->output_section
;
2956 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2961 The Intel C compiler generates SHT_IA_64_UNWIND with
2962 SHF_LINK_ORDER. But it doesn't set the sh_link or
2963 sh_info fields. Hence we could get the situation
2965 const struct elf_backend_data
*bed
2966 = get_elf_backend_data (abfd
);
2967 if (bed
->link_order_error_handler
)
2968 bed
->link_order_error_handler
2969 (_("%B: warning: sh_link not set for section `%A'"),
2974 switch (d
->this_hdr
.sh_type
)
2978 /* A reloc section which we are treating as a normal BFD
2979 section. sh_link is the section index of the symbol
2980 table. sh_info is the section index of the section to
2981 which the relocation entries apply. We assume that an
2982 allocated reloc section uses the dynamic symbol table.
2983 FIXME: How can we be sure? */
2984 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2986 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2988 /* We look up the section the relocs apply to by name. */
2990 if (d
->this_hdr
.sh_type
== SHT_REL
)
2994 s
= bfd_get_section_by_name (abfd
, name
);
2996 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3000 /* We assume that a section named .stab*str is a stabs
3001 string section. We look for a section with the same name
3002 but without the trailing ``str'', and set its sh_link
3003 field to point to this section. */
3004 if (CONST_STRNEQ (sec
->name
, ".stab")
3005 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3010 len
= strlen (sec
->name
);
3011 alc
= bfd_malloc (len
- 2);
3014 memcpy (alc
, sec
->name
, len
- 3);
3015 alc
[len
- 3] = '\0';
3016 s
= bfd_get_section_by_name (abfd
, alc
);
3020 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3022 /* This is a .stab section. */
3023 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3024 elf_section_data (s
)->this_hdr
.sh_entsize
3025 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3032 case SHT_GNU_verneed
:
3033 case SHT_GNU_verdef
:
3034 /* sh_link is the section header index of the string table
3035 used for the dynamic entries, or the symbol table, or the
3037 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3039 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3042 case SHT_GNU_LIBLIST
:
3043 /* sh_link is the section header index of the prelink library
3044 list used for the dynamic entries, or the symbol table, or
3045 the version strings. */
3046 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3047 ? ".dynstr" : ".gnu.libstr");
3049 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3054 case SHT_GNU_versym
:
3055 /* sh_link is the section header index of the symbol table
3056 this hash table or version table is for. */
3057 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3059 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3063 d
->this_hdr
.sh_link
= t
->symtab_section
;
3067 for (secn
= 1; secn
< section_number
; ++secn
)
3068 if (i_shdrp
[secn
] == NULL
)
3069 i_shdrp
[secn
] = i_shdrp
[0];
3071 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3072 i_shdrp
[secn
]->sh_name
);
3076 /* Map symbol from it's internal number to the external number, moving
3077 all local symbols to be at the head of the list. */
3080 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3082 /* If the backend has a special mapping, use it. */
3083 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3084 if (bed
->elf_backend_sym_is_global
)
3085 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3087 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3088 || bfd_is_und_section (bfd_get_section (sym
))
3089 || bfd_is_com_section (bfd_get_section (sym
)));
3092 /* Don't output section symbols for sections that are not going to be
3096 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3098 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3099 && !(sym
->section
->owner
== abfd
3100 || (sym
->section
->output_section
->owner
== abfd
3101 && sym
->section
->output_offset
== 0)));
3105 elf_map_symbols (bfd
*abfd
)
3107 unsigned int symcount
= bfd_get_symcount (abfd
);
3108 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3109 asymbol
**sect_syms
;
3110 unsigned int num_locals
= 0;
3111 unsigned int num_globals
= 0;
3112 unsigned int num_locals2
= 0;
3113 unsigned int num_globals2
= 0;
3120 fprintf (stderr
, "elf_map_symbols\n");
3124 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3126 if (max_index
< asect
->index
)
3127 max_index
= asect
->index
;
3131 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3132 if (sect_syms
== NULL
)
3134 elf_section_syms (abfd
) = sect_syms
;
3135 elf_num_section_syms (abfd
) = max_index
;
3137 /* Init sect_syms entries for any section symbols we have already
3138 decided to output. */
3139 for (idx
= 0; idx
< symcount
; idx
++)
3141 asymbol
*sym
= syms
[idx
];
3143 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3145 && !ignore_section_sym (abfd
, sym
))
3147 asection
*sec
= sym
->section
;
3149 if (sec
->owner
!= abfd
)
3150 sec
= sec
->output_section
;
3152 sect_syms
[sec
->index
] = syms
[idx
];
3156 /* Classify all of the symbols. */
3157 for (idx
= 0; idx
< symcount
; idx
++)
3159 if (ignore_section_sym (abfd
, syms
[idx
]))
3161 if (!sym_is_global (abfd
, syms
[idx
]))
3167 /* We will be adding a section symbol for each normal BFD section. Most
3168 sections will already have a section symbol in outsymbols, but
3169 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3170 at least in that case. */
3171 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3173 if (sect_syms
[asect
->index
] == NULL
)
3175 if (!sym_is_global (abfd
, asect
->symbol
))
3182 /* Now sort the symbols so the local symbols are first. */
3183 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3185 if (new_syms
== NULL
)
3188 for (idx
= 0; idx
< symcount
; idx
++)
3190 asymbol
*sym
= syms
[idx
];
3193 if (ignore_section_sym (abfd
, sym
))
3195 if (!sym_is_global (abfd
, sym
))
3198 i
= num_locals
+ num_globals2
++;
3200 sym
->udata
.i
= i
+ 1;
3202 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3204 if (sect_syms
[asect
->index
] == NULL
)
3206 asymbol
*sym
= asect
->symbol
;
3209 sect_syms
[asect
->index
] = sym
;
3210 if (!sym_is_global (abfd
, sym
))
3213 i
= num_locals
+ num_globals2
++;
3215 sym
->udata
.i
= i
+ 1;
3219 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3221 elf_num_locals (abfd
) = num_locals
;
3222 elf_num_globals (abfd
) = num_globals
;
3226 /* Align to the maximum file alignment that could be required for any
3227 ELF data structure. */
3229 static inline file_ptr
3230 align_file_position (file_ptr off
, int align
)
3232 return (off
+ align
- 1) & ~(align
- 1);
3235 /* Assign a file position to a section, optionally aligning to the
3236 required section alignment. */
3239 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3243 if (align
&& i_shdrp
->sh_addralign
> 1)
3244 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3245 i_shdrp
->sh_offset
= offset
;
3246 if (i_shdrp
->bfd_section
!= NULL
)
3247 i_shdrp
->bfd_section
->filepos
= offset
;
3248 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3249 offset
+= i_shdrp
->sh_size
;
3253 /* Compute the file positions we are going to put the sections at, and
3254 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3255 is not NULL, this is being called by the ELF backend linker. */
3258 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3259 struct bfd_link_info
*link_info
)
3261 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3263 struct bfd_strtab_hash
*strtab
= NULL
;
3264 Elf_Internal_Shdr
*shstrtab_hdr
;
3265 bfd_boolean need_symtab
;
3267 if (abfd
->output_has_begun
)
3270 /* Do any elf backend specific processing first. */
3271 if (bed
->elf_backend_begin_write_processing
)
3272 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3274 if (! prep_headers (abfd
))
3277 /* Post process the headers if necessary. */
3278 if (bed
->elf_backend_post_process_headers
)
3279 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3282 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3286 if (!assign_section_numbers (abfd
, link_info
))
3289 /* The backend linker builds symbol table information itself. */
3290 need_symtab
= (link_info
== NULL
3291 && (bfd_get_symcount (abfd
) > 0
3292 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3296 /* Non-zero if doing a relocatable link. */
3297 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3299 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3303 if (link_info
== NULL
)
3305 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3310 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3311 /* sh_name was set in prep_headers. */
3312 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3313 shstrtab_hdr
->sh_flags
= 0;
3314 shstrtab_hdr
->sh_addr
= 0;
3315 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3316 shstrtab_hdr
->sh_entsize
= 0;
3317 shstrtab_hdr
->sh_link
= 0;
3318 shstrtab_hdr
->sh_info
= 0;
3319 /* sh_offset is set in assign_file_positions_except_relocs. */
3320 shstrtab_hdr
->sh_addralign
= 1;
3322 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3328 Elf_Internal_Shdr
*hdr
;
3330 off
= elf_tdata (abfd
)->next_file_pos
;
3332 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3333 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3335 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3336 if (hdr
->sh_size
!= 0)
3337 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3339 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3340 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3342 elf_tdata (abfd
)->next_file_pos
= off
;
3344 /* Now that we know where the .strtab section goes, write it
3346 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3347 || ! _bfd_stringtab_emit (abfd
, strtab
))
3349 _bfd_stringtab_free (strtab
);
3352 abfd
->output_has_begun
= TRUE
;
3357 /* Make an initial estimate of the size of the program header. If we
3358 get the number wrong here, we'll redo section placement. */
3360 static bfd_size_type
3361 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3365 const struct elf_backend_data
*bed
;
3367 /* Assume we will need exactly two PT_LOAD segments: one for text
3368 and one for data. */
3371 s
= bfd_get_section_by_name (abfd
, ".interp");
3372 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3374 /* If we have a loadable interpreter section, we need a
3375 PT_INTERP segment. In this case, assume we also need a
3376 PT_PHDR segment, although that may not be true for all
3381 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3383 /* We need a PT_DYNAMIC segment. */
3387 if (info
!= NULL
&& info
->relro
)
3389 /* We need a PT_GNU_RELRO segment. */
3393 if (elf_tdata (abfd
)->eh_frame_hdr
)
3395 /* We need a PT_GNU_EH_FRAME segment. */
3399 if (elf_tdata (abfd
)->stack_flags
)
3401 /* We need a PT_GNU_STACK segment. */
3405 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3407 if ((s
->flags
& SEC_LOAD
) != 0
3408 && CONST_STRNEQ (s
->name
, ".note"))
3410 /* We need a PT_NOTE segment. */
3412 /* Try to create just one PT_NOTE segment
3413 for all adjacent loadable .note* sections.
3414 gABI requires that within a PT_NOTE segment
3415 (and also inside of each SHT_NOTE section)
3416 each note is padded to a multiple of 4 size,
3417 so we check whether the sections are correctly
3419 if (s
->alignment_power
== 2)
3420 while (s
->next
!= NULL
3421 && s
->next
->alignment_power
== 2
3422 && (s
->next
->flags
& SEC_LOAD
) != 0
3423 && CONST_STRNEQ (s
->next
->name
, ".note"))
3428 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3430 if (s
->flags
& SEC_THREAD_LOCAL
)
3432 /* We need a PT_TLS segment. */
3438 /* Let the backend count up any program headers it might need. */
3439 bed
= get_elf_backend_data (abfd
);
3440 if (bed
->elf_backend_additional_program_headers
)
3444 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3450 return segs
* bed
->s
->sizeof_phdr
;
3453 /* Find the segment that contains the output_section of section. */
3456 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3458 struct elf_segment_map
*m
;
3459 Elf_Internal_Phdr
*p
;
3461 for (m
= elf_tdata (abfd
)->segment_map
,
3462 p
= elf_tdata (abfd
)->phdr
;
3468 for (i
= m
->count
- 1; i
>= 0; i
--)
3469 if (m
->sections
[i
] == section
)
3476 /* Create a mapping from a set of sections to a program segment. */
3478 static struct elf_segment_map
*
3479 make_mapping (bfd
*abfd
,
3480 asection
**sections
,
3485 struct elf_segment_map
*m
;
3490 amt
= sizeof (struct elf_segment_map
);
3491 amt
+= (to
- from
- 1) * sizeof (asection
*);
3492 m
= bfd_zalloc (abfd
, amt
);
3496 m
->p_type
= PT_LOAD
;
3497 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3498 m
->sections
[i
- from
] = *hdrpp
;
3499 m
->count
= to
- from
;
3501 if (from
== 0 && phdr
)
3503 /* Include the headers in the first PT_LOAD segment. */
3504 m
->includes_filehdr
= 1;
3505 m
->includes_phdrs
= 1;
3511 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3514 struct elf_segment_map
*
3515 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3517 struct elf_segment_map
*m
;
3519 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3523 m
->p_type
= PT_DYNAMIC
;
3525 m
->sections
[0] = dynsec
;
3530 /* Possibly add or remove segments from the segment map. */
3533 elf_modify_segment_map (bfd
*abfd
,
3534 struct bfd_link_info
*info
,
3535 bfd_boolean remove_empty_load
)
3537 struct elf_segment_map
**m
;
3538 const struct elf_backend_data
*bed
;
3540 /* The placement algorithm assumes that non allocated sections are
3541 not in PT_LOAD segments. We ensure this here by removing such
3542 sections from the segment map. We also remove excluded
3543 sections. Finally, any PT_LOAD segment without sections is
3545 m
= &elf_tdata (abfd
)->segment_map
;
3548 unsigned int i
, new_count
;
3550 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3552 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3553 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3554 || (*m
)->p_type
!= PT_LOAD
))
3556 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3560 (*m
)->count
= new_count
;
3562 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3568 bed
= get_elf_backend_data (abfd
);
3569 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3571 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3578 /* Set up a mapping from BFD sections to program segments. */
3581 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3584 struct elf_segment_map
*m
;
3585 asection
**sections
= NULL
;
3586 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3587 bfd_boolean no_user_phdrs
;
3589 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3590 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3594 struct elf_segment_map
*mfirst
;
3595 struct elf_segment_map
**pm
;
3598 unsigned int phdr_index
;
3599 bfd_vma maxpagesize
;
3601 bfd_boolean phdr_in_segment
= TRUE
;
3602 bfd_boolean writable
;
3604 asection
*first_tls
= NULL
;
3605 asection
*dynsec
, *eh_frame_hdr
;
3608 /* Select the allocated sections, and sort them. */
3610 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3611 if (sections
== NULL
)
3615 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3617 if ((s
->flags
& SEC_ALLOC
) != 0)
3623 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3626 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3628 /* Build the mapping. */
3633 /* If we have a .interp section, then create a PT_PHDR segment for
3634 the program headers and a PT_INTERP segment for the .interp
3636 s
= bfd_get_section_by_name (abfd
, ".interp");
3637 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3639 amt
= sizeof (struct elf_segment_map
);
3640 m
= bfd_zalloc (abfd
, amt
);
3644 m
->p_type
= PT_PHDR
;
3645 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3646 m
->p_flags
= PF_R
| PF_X
;
3647 m
->p_flags_valid
= 1;
3648 m
->includes_phdrs
= 1;
3653 amt
= sizeof (struct elf_segment_map
);
3654 m
= bfd_zalloc (abfd
, amt
);
3658 m
->p_type
= PT_INTERP
;
3666 /* Look through the sections. We put sections in the same program
3667 segment when the start of the second section can be placed within
3668 a few bytes of the end of the first section. */
3672 maxpagesize
= bed
->maxpagesize
;
3674 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3676 && (dynsec
->flags
& SEC_LOAD
) == 0)
3679 /* Deal with -Ttext or something similar such that the first section
3680 is not adjacent to the program headers. This is an
3681 approximation, since at this point we don't know exactly how many
3682 program headers we will need. */
3685 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3687 if (phdr_size
== (bfd_size_type
) -1)
3688 phdr_size
= get_program_header_size (abfd
, info
);
3689 if ((abfd
->flags
& D_PAGED
) == 0
3690 || sections
[0]->lma
< phdr_size
3691 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3692 phdr_in_segment
= FALSE
;
3695 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3698 bfd_boolean new_segment
;
3702 /* See if this section and the last one will fit in the same
3705 if (last_hdr
== NULL
)
3707 /* If we don't have a segment yet, then we don't need a new
3708 one (we build the last one after this loop). */
3709 new_segment
= FALSE
;
3711 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3713 /* If this section has a different relation between the
3714 virtual address and the load address, then we need a new
3718 /* In the next test we have to be careful when last_hdr->lma is close
3719 to the end of the address space. If the aligned address wraps
3720 around to the start of the address space, then there are no more
3721 pages left in memory and it is OK to assume that the current
3722 section can be included in the current segment. */
3723 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3725 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3728 /* If putting this section in this segment would force us to
3729 skip a page in the segment, then we need a new segment. */
3732 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3733 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3735 /* We don't want to put a loadable section after a
3736 nonloadable section in the same segment.
3737 Consider .tbss sections as loadable for this purpose. */
3740 else if ((abfd
->flags
& D_PAGED
) == 0)
3742 /* If the file is not demand paged, which means that we
3743 don't require the sections to be correctly aligned in the
3744 file, then there is no other reason for a new segment. */
3745 new_segment
= FALSE
;
3748 && (hdr
->flags
& SEC_READONLY
) == 0
3749 && (((last_hdr
->lma
+ last_size
- 1)
3750 & ~(maxpagesize
- 1))
3751 != (hdr
->lma
& ~(maxpagesize
- 1))))
3753 /* We don't want to put a writable section in a read only
3754 segment, unless they are on the same page in memory
3755 anyhow. We already know that the last section does not
3756 bring us past the current section on the page, so the
3757 only case in which the new section is not on the same
3758 page as the previous section is when the previous section
3759 ends precisely on a page boundary. */
3764 /* Otherwise, we can use the same segment. */
3765 new_segment
= FALSE
;
3768 /* Allow interested parties a chance to override our decision. */
3769 if (last_hdr
!= NULL
3771 && info
->callbacks
->override_segment_assignment
!= NULL
)
3773 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3779 if ((hdr
->flags
& SEC_READONLY
) == 0)
3782 /* .tbss sections effectively have zero size. */
3783 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3784 != SEC_THREAD_LOCAL
)
3785 last_size
= hdr
->size
;
3791 /* We need a new program segment. We must create a new program
3792 header holding all the sections from phdr_index until hdr. */
3794 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3801 if ((hdr
->flags
& SEC_READONLY
) == 0)
3807 /* .tbss sections effectively have zero size. */
3808 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3809 last_size
= hdr
->size
;
3813 phdr_in_segment
= FALSE
;
3816 /* Create a final PT_LOAD program segment. */
3817 if (last_hdr
!= NULL
)
3819 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3827 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3830 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3837 /* For each batch of consecutive loadable .note sections,
3838 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3839 because if we link together nonloadable .note sections and
3840 loadable .note sections, we will generate two .note sections
3841 in the output file. FIXME: Using names for section types is
3843 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3845 if ((s
->flags
& SEC_LOAD
) != 0
3846 && CONST_STRNEQ (s
->name
, ".note"))
3850 amt
= sizeof (struct elf_segment_map
);
3851 if (s
->alignment_power
== 2)
3852 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
3854 if (s2
->next
->alignment_power
== 2
3855 && (s2
->next
->flags
& SEC_LOAD
) != 0
3856 && CONST_STRNEQ (s2
->next
->name
, ".note")
3857 && align_power (s2
->vma
+ s2
->size
, 2)
3863 amt
+= (count
- 1) * sizeof (asection
*);
3864 m
= bfd_zalloc (abfd
, amt
);
3868 m
->p_type
= PT_NOTE
;
3872 m
->sections
[m
->count
- count
--] = s
;
3873 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3876 m
->sections
[m
->count
- 1] = s
;
3877 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
3881 if (s
->flags
& SEC_THREAD_LOCAL
)
3889 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3894 amt
= sizeof (struct elf_segment_map
);
3895 amt
+= (tls_count
- 1) * sizeof (asection
*);
3896 m
= bfd_zalloc (abfd
, amt
);
3901 m
->count
= tls_count
;
3902 /* Mandated PF_R. */
3904 m
->p_flags_valid
= 1;
3905 for (i
= 0; i
< tls_count
; ++i
)
3907 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3908 m
->sections
[i
] = first_tls
;
3909 first_tls
= first_tls
->next
;
3916 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3918 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3919 if (eh_frame_hdr
!= NULL
3920 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3922 amt
= sizeof (struct elf_segment_map
);
3923 m
= bfd_zalloc (abfd
, amt
);
3927 m
->p_type
= PT_GNU_EH_FRAME
;
3929 m
->sections
[0] = eh_frame_hdr
->output_section
;
3935 if (elf_tdata (abfd
)->stack_flags
)
3937 amt
= sizeof (struct elf_segment_map
);
3938 m
= bfd_zalloc (abfd
, amt
);
3942 m
->p_type
= PT_GNU_STACK
;
3943 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3944 m
->p_flags_valid
= 1;
3950 if (info
!= NULL
&& info
->relro
)
3952 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
3954 if (m
->p_type
== PT_LOAD
)
3956 asection
*last
= m
->sections
[m
->count
- 1];
3957 bfd_vma vaddr
= m
->sections
[0]->vma
;
3958 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
3960 if (vaddr
< info
->relro_end
3961 && vaddr
>= info
->relro_start
3962 && (vaddr
+ filesz
) >= info
->relro_end
)
3967 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3970 amt
= sizeof (struct elf_segment_map
);
3971 m
= bfd_zalloc (abfd
, amt
);
3975 m
->p_type
= PT_GNU_RELRO
;
3977 m
->p_flags_valid
= 1;
3985 elf_tdata (abfd
)->segment_map
= mfirst
;
3988 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
3991 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3993 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
3998 if (sections
!= NULL
)
4003 /* Sort sections by address. */
4006 elf_sort_sections (const void *arg1
, const void *arg2
)
4008 const asection
*sec1
= *(const asection
**) arg1
;
4009 const asection
*sec2
= *(const asection
**) arg2
;
4010 bfd_size_type size1
, size2
;
4012 /* Sort by LMA first, since this is the address used to
4013 place the section into a segment. */
4014 if (sec1
->lma
< sec2
->lma
)
4016 else if (sec1
->lma
> sec2
->lma
)
4019 /* Then sort by VMA. Normally the LMA and the VMA will be
4020 the same, and this will do nothing. */
4021 if (sec1
->vma
< sec2
->vma
)
4023 else if (sec1
->vma
> sec2
->vma
)
4026 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4028 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4034 /* If the indicies are the same, do not return 0
4035 here, but continue to try the next comparison. */
4036 if (sec1
->target_index
- sec2
->target_index
!= 0)
4037 return sec1
->target_index
- sec2
->target_index
;
4042 else if (TOEND (sec2
))
4047 /* Sort by size, to put zero sized sections
4048 before others at the same address. */
4050 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4051 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4058 return sec1
->target_index
- sec2
->target_index
;
4061 /* Ian Lance Taylor writes:
4063 We shouldn't be using % with a negative signed number. That's just
4064 not good. We have to make sure either that the number is not
4065 negative, or that the number has an unsigned type. When the types
4066 are all the same size they wind up as unsigned. When file_ptr is a
4067 larger signed type, the arithmetic winds up as signed long long,
4070 What we're trying to say here is something like ``increase OFF by
4071 the least amount that will cause it to be equal to the VMA modulo
4073 /* In other words, something like:
4075 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4076 off_offset = off % bed->maxpagesize;
4077 if (vma_offset < off_offset)
4078 adjustment = vma_offset + bed->maxpagesize - off_offset;
4080 adjustment = vma_offset - off_offset;
4082 which can can be collapsed into the expression below. */
4085 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4087 return ((vma
- off
) % maxpagesize
);
4091 print_segment_map (const struct elf_segment_map
*m
)
4094 const char *pt
= get_segment_type (m
->p_type
);
4099 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4100 sprintf (buf
, "LOPROC+%7.7x",
4101 (unsigned int) (m
->p_type
- PT_LOPROC
));
4102 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4103 sprintf (buf
, "LOOS+%7.7x",
4104 (unsigned int) (m
->p_type
- PT_LOOS
));
4106 snprintf (buf
, sizeof (buf
), "%8.8x",
4107 (unsigned int) m
->p_type
);
4110 fprintf (stderr
, "%s:", pt
);
4111 for (j
= 0; j
< m
->count
; j
++)
4112 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4116 /* Assign file positions to the sections based on the mapping from
4117 sections to segments. This function also sets up some fields in
4121 assign_file_positions_for_load_sections (bfd
*abfd
,
4122 struct bfd_link_info
*link_info
)
4124 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4125 struct elf_segment_map
*m
;
4126 Elf_Internal_Phdr
*phdrs
;
4127 Elf_Internal_Phdr
*p
;
4129 bfd_size_type maxpagesize
;
4132 bfd_vma header_pad
= 0;
4134 if (link_info
== NULL
4135 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4139 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4143 header_pad
= m
->header_size
;
4146 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4147 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4148 elf_elfheader (abfd
)->e_phnum
= alloc
;
4150 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4151 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4153 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4154 >= alloc
* bed
->s
->sizeof_phdr
);
4158 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4162 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4163 see assign_file_positions_except_relocs, so make sure we have
4164 that amount allocated, with trailing space cleared.
4165 The variable alloc contains the computed need, while elf_tdata
4166 (abfd)->program_header_size contains the size used for the
4168 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4169 where the layout is forced to according to a larger size in the
4170 last iterations for the testcase ld-elf/header. */
4171 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4173 phdrs
= bfd_zalloc2 (abfd
,
4174 (elf_tdata (abfd
)->program_header_size
4175 / bed
->s
->sizeof_phdr
),
4176 sizeof (Elf_Internal_Phdr
));
4177 elf_tdata (abfd
)->phdr
= phdrs
;
4182 if ((abfd
->flags
& D_PAGED
) != 0)
4183 maxpagesize
= bed
->maxpagesize
;
4185 off
= bed
->s
->sizeof_ehdr
;
4186 off
+= alloc
* bed
->s
->sizeof_phdr
;
4187 if (header_pad
< (bfd_vma
) off
)
4193 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4195 m
= m
->next
, p
++, j
++)
4199 bfd_boolean no_contents
;
4201 /* If elf_segment_map is not from map_sections_to_segments, the
4202 sections may not be correctly ordered. NOTE: sorting should
4203 not be done to the PT_NOTE section of a corefile, which may
4204 contain several pseudo-sections artificially created by bfd.
4205 Sorting these pseudo-sections breaks things badly. */
4207 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4208 && m
->p_type
== PT_NOTE
))
4209 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4212 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4213 number of sections with contents contributing to both p_filesz
4214 and p_memsz, followed by a number of sections with no contents
4215 that just contribute to p_memsz. In this loop, OFF tracks next
4216 available file offset for PT_LOAD and PT_NOTE segments. */
4217 p
->p_type
= m
->p_type
;
4218 p
->p_flags
= m
->p_flags
;
4223 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4225 if (m
->p_paddr_valid
)
4226 p
->p_paddr
= m
->p_paddr
;
4227 else if (m
->count
== 0)
4230 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4232 if (p
->p_type
== PT_LOAD
4233 && (abfd
->flags
& D_PAGED
) != 0)
4235 /* p_align in demand paged PT_LOAD segments effectively stores
4236 the maximum page size. When copying an executable with
4237 objcopy, we set m->p_align from the input file. Use this
4238 value for maxpagesize rather than bed->maxpagesize, which
4239 may be different. Note that we use maxpagesize for PT_TLS
4240 segment alignment later in this function, so we are relying
4241 on at least one PT_LOAD segment appearing before a PT_TLS
4243 if (m
->p_align_valid
)
4244 maxpagesize
= m
->p_align
;
4246 p
->p_align
= maxpagesize
;
4248 else if (m
->p_align_valid
)
4249 p
->p_align
= m
->p_align
;
4250 else if (m
->count
== 0)
4251 p
->p_align
= 1 << bed
->s
->log_file_align
;
4255 no_contents
= FALSE
;
4257 if (p
->p_type
== PT_LOAD
4260 bfd_size_type align
;
4261 unsigned int align_power
= 0;
4263 if (m
->p_align_valid
)
4267 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4269 unsigned int secalign
;
4271 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4272 if (secalign
> align_power
)
4273 align_power
= secalign
;
4275 align
= (bfd_size_type
) 1 << align_power
;
4276 if (align
< maxpagesize
)
4277 align
= maxpagesize
;
4280 for (i
= 0; i
< m
->count
; i
++)
4281 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4282 /* If we aren't making room for this section, then
4283 it must be SHT_NOBITS regardless of what we've
4284 set via struct bfd_elf_special_section. */
4285 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4287 /* Find out whether this segment contains any loadable
4290 for (i
= 0; i
< m
->count
; i
++)
4291 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4293 no_contents
= FALSE
;
4297 off_adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4301 /* We shouldn't need to align the segment on disk since
4302 the segment doesn't need file space, but the gABI
4303 arguably requires the alignment and glibc ld.so
4304 checks it. So to comply with the alignment
4305 requirement but not waste file space, we adjust
4306 p_offset for just this segment. (OFF_ADJUST is
4307 subtracted from OFF later.) This may put p_offset
4308 past the end of file, but that shouldn't matter. */
4313 /* Make sure the .dynamic section is the first section in the
4314 PT_DYNAMIC segment. */
4315 else if (p
->p_type
== PT_DYNAMIC
4317 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4320 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4322 bfd_set_error (bfd_error_bad_value
);
4325 /* Set the note section type to SHT_NOTE. */
4326 else if (p
->p_type
== PT_NOTE
)
4327 for (i
= 0; i
< m
->count
; i
++)
4328 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4334 if (m
->includes_filehdr
)
4336 if (!m
->p_flags_valid
)
4338 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4339 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4342 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4344 if (p
->p_vaddr
< (bfd_vma
) off
)
4346 (*_bfd_error_handler
)
4347 (_("%B: Not enough room for program headers, try linking with -N"),
4349 bfd_set_error (bfd_error_bad_value
);
4354 if (!m
->p_paddr_valid
)
4359 if (m
->includes_phdrs
)
4361 if (!m
->p_flags_valid
)
4364 if (!m
->includes_filehdr
)
4366 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4370 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4371 p
->p_vaddr
-= off
- p
->p_offset
;
4372 if (!m
->p_paddr_valid
)
4373 p
->p_paddr
-= off
- p
->p_offset
;
4377 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4378 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4381 p
->p_filesz
+= header_pad
;
4382 p
->p_memsz
+= header_pad
;
4386 if (p
->p_type
== PT_LOAD
4387 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4389 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4395 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4397 p
->p_filesz
+= adjust
;
4398 p
->p_memsz
+= adjust
;
4402 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4403 maps. Set filepos for sections in PT_LOAD segments, and in
4404 core files, for sections in PT_NOTE segments.
4405 assign_file_positions_for_non_load_sections will set filepos
4406 for other sections and update p_filesz for other segments. */
4407 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4410 bfd_size_type align
;
4411 Elf_Internal_Shdr
*this_hdr
;
4414 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4415 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4417 if ((p
->p_type
== PT_LOAD
4418 || p
->p_type
== PT_TLS
)
4419 && (this_hdr
->sh_type
!= SHT_NOBITS
4420 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4421 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4422 || p
->p_type
== PT_TLS
))))
4424 bfd_signed_vma adjust
= sec
->vma
- (p
->p_vaddr
+ p
->p_memsz
);
4428 (*_bfd_error_handler
)
4429 (_("%B: section %A vma 0x%lx overlaps previous sections"),
4430 abfd
, sec
, (unsigned long) sec
->vma
);
4433 p
->p_memsz
+= adjust
;
4435 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4438 p
->p_filesz
+= adjust
;
4442 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4444 /* The section at i == 0 is the one that actually contains
4448 this_hdr
->sh_offset
= sec
->filepos
= off
;
4449 off
+= this_hdr
->sh_size
;
4450 p
->p_filesz
= this_hdr
->sh_size
;
4456 /* The rest are fake sections that shouldn't be written. */
4465 if (p
->p_type
== PT_LOAD
)
4467 this_hdr
->sh_offset
= sec
->filepos
= off
;
4468 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4469 off
+= this_hdr
->sh_size
;
4472 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4474 p
->p_filesz
+= this_hdr
->sh_size
;
4475 /* A load section without SHF_ALLOC is something like
4476 a note section in a PT_NOTE segment. These take
4477 file space but are not loaded into memory. */
4478 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4479 p
->p_memsz
+= this_hdr
->sh_size
;
4481 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4483 if (p
->p_type
== PT_TLS
)
4484 p
->p_memsz
+= this_hdr
->sh_size
;
4486 /* .tbss is special. It doesn't contribute to p_memsz of
4488 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4489 p
->p_memsz
+= this_hdr
->sh_size
;
4492 if (align
> p
->p_align
4493 && !m
->p_align_valid
4494 && (p
->p_type
!= PT_LOAD
4495 || (abfd
->flags
& D_PAGED
) == 0))
4499 if (!m
->p_flags_valid
)
4502 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4504 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4510 /* Check that all sections are in a PT_LOAD segment.
4511 Don't check funky gdb generated core files. */
4512 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4513 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4515 Elf_Internal_Shdr
*this_hdr
;
4519 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4520 if (this_hdr
->sh_size
!= 0
4521 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, p
))
4523 (*_bfd_error_handler
)
4524 (_("%B: section `%A' can't be allocated in segment %d"),
4526 print_segment_map (m
);
4527 bfd_set_error (bfd_error_bad_value
);
4533 elf_tdata (abfd
)->next_file_pos
= off
;
4537 /* Assign file positions for the other sections. */
4540 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4541 struct bfd_link_info
*link_info
)
4543 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4544 Elf_Internal_Shdr
**i_shdrpp
;
4545 Elf_Internal_Shdr
**hdrpp
;
4546 Elf_Internal_Phdr
*phdrs
;
4547 Elf_Internal_Phdr
*p
;
4548 struct elf_segment_map
*m
;
4549 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4550 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4552 unsigned int num_sec
;
4556 i_shdrpp
= elf_elfsections (abfd
);
4557 num_sec
= elf_numsections (abfd
);
4558 off
= elf_tdata (abfd
)->next_file_pos
;
4559 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4561 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4562 Elf_Internal_Shdr
*hdr
;
4565 if (hdr
->bfd_section
!= NULL
4566 && (hdr
->bfd_section
->filepos
!= 0
4567 || (hdr
->sh_type
== SHT_NOBITS
4568 && hdr
->contents
== NULL
)))
4569 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4570 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4572 if (hdr
->sh_size
!= 0)
4573 ((*_bfd_error_handler
)
4574 (_("%B: warning: allocated section `%s' not in segment"),
4576 (hdr
->bfd_section
== NULL
4578 : hdr
->bfd_section
->name
)));
4579 /* We don't need to page align empty sections. */
4580 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4581 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4584 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4586 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4589 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4590 && hdr
->bfd_section
== NULL
)
4591 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4592 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4593 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4594 hdr
->sh_offset
= -1;
4596 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4599 /* Now that we have set the section file positions, we can set up
4600 the file positions for the non PT_LOAD segments. */
4604 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4606 phdrs
= elf_tdata (abfd
)->phdr
;
4607 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4612 if (p
->p_type
!= PT_LOAD
)
4615 if (m
->includes_filehdr
)
4617 filehdr_vaddr
= p
->p_vaddr
;
4618 filehdr_paddr
= p
->p_paddr
;
4620 if (m
->includes_phdrs
)
4622 phdrs_vaddr
= p
->p_vaddr
;
4623 phdrs_paddr
= p
->p_paddr
;
4624 if (m
->includes_filehdr
)
4626 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4627 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4632 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4636 if (p
->p_type
== PT_GNU_RELRO
)
4638 const Elf_Internal_Phdr
*lp
;
4640 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4642 if (link_info
!= NULL
)
4644 /* During linking the range of the RELRO segment is passed
4646 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4648 if (lp
->p_type
== PT_LOAD
4649 && lp
->p_vaddr
>= link_info
->relro_start
4650 && lp
->p_vaddr
< link_info
->relro_end
4651 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4657 /* Otherwise we are copying an executable or shared
4658 library, but we need to use the same linker logic. */
4659 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4661 if (lp
->p_type
== PT_LOAD
4662 && lp
->p_paddr
== p
->p_paddr
)
4667 if (lp
< phdrs
+ count
)
4669 p
->p_vaddr
= lp
->p_vaddr
;
4670 p
->p_paddr
= lp
->p_paddr
;
4671 p
->p_offset
= lp
->p_offset
;
4672 if (link_info
!= NULL
)
4673 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4674 else if (m
->p_size_valid
)
4675 p
->p_filesz
= m
->p_size
;
4678 p
->p_memsz
= p
->p_filesz
;
4680 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4684 memset (p
, 0, sizeof *p
);
4685 p
->p_type
= PT_NULL
;
4688 else if (m
->count
!= 0)
4690 if (p
->p_type
!= PT_LOAD
4691 && (p
->p_type
!= PT_NOTE
4692 || bfd_get_format (abfd
) != bfd_core
))
4694 Elf_Internal_Shdr
*hdr
;
4697 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4699 sect
= m
->sections
[m
->count
- 1];
4700 hdr
= &elf_section_data (sect
)->this_hdr
;
4701 p
->p_filesz
= sect
->filepos
- m
->sections
[0]->filepos
;
4702 if (hdr
->sh_type
!= SHT_NOBITS
)
4703 p
->p_filesz
+= hdr
->sh_size
;
4704 p
->p_offset
= m
->sections
[0]->filepos
;
4707 else if (m
->includes_filehdr
)
4709 p
->p_vaddr
= filehdr_vaddr
;
4710 if (! m
->p_paddr_valid
)
4711 p
->p_paddr
= filehdr_paddr
;
4713 else if (m
->includes_phdrs
)
4715 p
->p_vaddr
= phdrs_vaddr
;
4716 if (! m
->p_paddr_valid
)
4717 p
->p_paddr
= phdrs_paddr
;
4721 elf_tdata (abfd
)->next_file_pos
= off
;
4726 /* Work out the file positions of all the sections. This is called by
4727 _bfd_elf_compute_section_file_positions. All the section sizes and
4728 VMAs must be known before this is called.
4730 Reloc sections come in two flavours: Those processed specially as
4731 "side-channel" data attached to a section to which they apply, and
4732 those that bfd doesn't process as relocations. The latter sort are
4733 stored in a normal bfd section by bfd_section_from_shdr. We don't
4734 consider the former sort here, unless they form part of the loadable
4735 image. Reloc sections not assigned here will be handled later by
4736 assign_file_positions_for_relocs.
4738 We also don't set the positions of the .symtab and .strtab here. */
4741 assign_file_positions_except_relocs (bfd
*abfd
,
4742 struct bfd_link_info
*link_info
)
4744 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4745 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4747 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4749 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4750 && bfd_get_format (abfd
) != bfd_core
)
4752 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4753 unsigned int num_sec
= elf_numsections (abfd
);
4754 Elf_Internal_Shdr
**hdrpp
;
4757 /* Start after the ELF header. */
4758 off
= i_ehdrp
->e_ehsize
;
4760 /* We are not creating an executable, which means that we are
4761 not creating a program header, and that the actual order of
4762 the sections in the file is unimportant. */
4763 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4765 Elf_Internal_Shdr
*hdr
;
4768 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4769 && hdr
->bfd_section
== NULL
)
4770 || i
== tdata
->symtab_section
4771 || i
== tdata
->symtab_shndx_section
4772 || i
== tdata
->strtab_section
)
4774 hdr
->sh_offset
= -1;
4777 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4784 /* Assign file positions for the loaded sections based on the
4785 assignment of sections to segments. */
4786 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4789 /* And for non-load sections. */
4790 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4793 if (bed
->elf_backend_modify_program_headers
!= NULL
)
4795 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
4799 /* Write out the program headers. */
4800 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4801 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4802 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4805 off
= tdata
->next_file_pos
;
4808 /* Place the section headers. */
4809 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4810 i_ehdrp
->e_shoff
= off
;
4811 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4813 tdata
->next_file_pos
= off
;
4819 prep_headers (bfd
*abfd
)
4821 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4822 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4823 struct elf_strtab_hash
*shstrtab
;
4824 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4826 i_ehdrp
= elf_elfheader (abfd
);
4828 shstrtab
= _bfd_elf_strtab_init ();
4829 if (shstrtab
== NULL
)
4832 elf_shstrtab (abfd
) = shstrtab
;
4834 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4835 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4836 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4837 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4839 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4840 i_ehdrp
->e_ident
[EI_DATA
] =
4841 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4842 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4844 if ((abfd
->flags
& DYNAMIC
) != 0)
4845 i_ehdrp
->e_type
= ET_DYN
;
4846 else if ((abfd
->flags
& EXEC_P
) != 0)
4847 i_ehdrp
->e_type
= ET_EXEC
;
4848 else if (bfd_get_format (abfd
) == bfd_core
)
4849 i_ehdrp
->e_type
= ET_CORE
;
4851 i_ehdrp
->e_type
= ET_REL
;
4853 switch (bfd_get_arch (abfd
))
4855 case bfd_arch_unknown
:
4856 i_ehdrp
->e_machine
= EM_NONE
;
4859 /* There used to be a long list of cases here, each one setting
4860 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4861 in the corresponding bfd definition. To avoid duplication,
4862 the switch was removed. Machines that need special handling
4863 can generally do it in elf_backend_final_write_processing(),
4864 unless they need the information earlier than the final write.
4865 Such need can generally be supplied by replacing the tests for
4866 e_machine with the conditions used to determine it. */
4868 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4871 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4872 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4874 /* No program header, for now. */
4875 i_ehdrp
->e_phoff
= 0;
4876 i_ehdrp
->e_phentsize
= 0;
4877 i_ehdrp
->e_phnum
= 0;
4879 /* Each bfd section is section header entry. */
4880 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4881 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4883 /* If we're building an executable, we'll need a program header table. */
4884 if (abfd
->flags
& EXEC_P
)
4885 /* It all happens later. */
4889 i_ehdrp
->e_phentsize
= 0;
4891 i_ehdrp
->e_phoff
= 0;
4894 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4895 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4896 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4897 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4898 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4899 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4900 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4901 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4902 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4908 /* Assign file positions for all the reloc sections which are not part
4909 of the loadable file image. */
4912 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4915 unsigned int i
, num_sec
;
4916 Elf_Internal_Shdr
**shdrpp
;
4918 off
= elf_tdata (abfd
)->next_file_pos
;
4920 num_sec
= elf_numsections (abfd
);
4921 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4923 Elf_Internal_Shdr
*shdrp
;
4926 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4927 && shdrp
->sh_offset
== -1)
4928 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4931 elf_tdata (abfd
)->next_file_pos
= off
;
4935 _bfd_elf_write_object_contents (bfd
*abfd
)
4937 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4938 Elf_Internal_Ehdr
*i_ehdrp
;
4939 Elf_Internal_Shdr
**i_shdrp
;
4941 unsigned int count
, num_sec
;
4943 if (! abfd
->output_has_begun
4944 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4947 i_shdrp
= elf_elfsections (abfd
);
4948 i_ehdrp
= elf_elfheader (abfd
);
4951 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4955 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4957 /* After writing the headers, we need to write the sections too... */
4958 num_sec
= elf_numsections (abfd
);
4959 for (count
= 1; count
< num_sec
; count
++)
4961 if (bed
->elf_backend_section_processing
)
4962 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4963 if (i_shdrp
[count
]->contents
)
4965 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4967 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4968 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4973 /* Write out the section header names. */
4974 if (elf_shstrtab (abfd
) != NULL
4975 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4976 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4979 if (bed
->elf_backend_final_write_processing
)
4980 (*bed
->elf_backend_final_write_processing
) (abfd
,
4981 elf_tdata (abfd
)->linker
);
4983 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
4986 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4987 if (elf_tdata (abfd
)->after_write_object_contents
)
4988 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
4994 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4996 /* Hopefully this can be done just like an object file. */
4997 return _bfd_elf_write_object_contents (abfd
);
5000 /* Given a section, search the header to find them. */
5003 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5005 const struct elf_backend_data
*bed
;
5008 if (elf_section_data (asect
) != NULL
5009 && elf_section_data (asect
)->this_idx
!= 0)
5010 return elf_section_data (asect
)->this_idx
;
5012 if (bfd_is_abs_section (asect
))
5014 else if (bfd_is_com_section (asect
))
5016 else if (bfd_is_und_section (asect
))
5021 bed
= get_elf_backend_data (abfd
);
5022 if (bed
->elf_backend_section_from_bfd_section
)
5026 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5030 if (index
== SHN_BAD
)
5031 bfd_set_error (bfd_error_nonrepresentable_section
);
5036 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5040 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5042 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5044 flagword flags
= asym_ptr
->flags
;
5046 /* When gas creates relocations against local labels, it creates its
5047 own symbol for the section, but does put the symbol into the
5048 symbol chain, so udata is 0. When the linker is generating
5049 relocatable output, this section symbol may be for one of the
5050 input sections rather than the output section. */
5051 if (asym_ptr
->udata
.i
== 0
5052 && (flags
& BSF_SECTION_SYM
)
5053 && asym_ptr
->section
)
5058 sec
= asym_ptr
->section
;
5059 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5060 sec
= sec
->output_section
;
5061 if (sec
->owner
== abfd
5062 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5063 && elf_section_syms (abfd
)[indx
] != NULL
)
5064 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5067 idx
= asym_ptr
->udata
.i
;
5071 /* This case can occur when using --strip-symbol on a symbol
5072 which is used in a relocation entry. */
5073 (*_bfd_error_handler
)
5074 (_("%B: symbol `%s' required but not present"),
5075 abfd
, bfd_asymbol_name (asym_ptr
));
5076 bfd_set_error (bfd_error_no_symbols
);
5083 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5084 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5085 elf_symbol_flags (flags
));
5093 /* Rewrite program header information. */
5096 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5098 Elf_Internal_Ehdr
*iehdr
;
5099 struct elf_segment_map
*map
;
5100 struct elf_segment_map
*map_first
;
5101 struct elf_segment_map
**pointer_to_map
;
5102 Elf_Internal_Phdr
*segment
;
5105 unsigned int num_segments
;
5106 bfd_boolean phdr_included
= FALSE
;
5107 bfd_boolean p_paddr_valid
;
5108 bfd_vma maxpagesize
;
5109 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5110 unsigned int phdr_adjust_num
= 0;
5111 const struct elf_backend_data
*bed
;
5113 bed
= get_elf_backend_data (ibfd
);
5114 iehdr
= elf_elfheader (ibfd
);
5117 pointer_to_map
= &map_first
;
5119 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5120 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5122 /* Returns the end address of the segment + 1. */
5123 #define SEGMENT_END(segment, start) \
5124 (start + (segment->p_memsz > segment->p_filesz \
5125 ? segment->p_memsz : segment->p_filesz))
5127 #define SECTION_SIZE(section, segment) \
5128 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5129 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5130 ? section->size : 0)
5132 /* Returns TRUE if the given section is contained within
5133 the given segment. VMA addresses are compared. */
5134 #define IS_CONTAINED_BY_VMA(section, segment) \
5135 (section->vma >= segment->p_vaddr \
5136 && (section->vma + SECTION_SIZE (section, segment) \
5137 <= (SEGMENT_END (segment, segment->p_vaddr))))
5139 /* Returns TRUE if the given section is contained within
5140 the given segment. LMA addresses are compared. */
5141 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5142 (section->lma >= base \
5143 && (section->lma + SECTION_SIZE (section, segment) \
5144 <= SEGMENT_END (segment, base)))
5146 /* Handle PT_NOTE segment. */
5147 #define IS_NOTE(p, s) \
5148 (p->p_type == PT_NOTE \
5149 && elf_section_type (s) == SHT_NOTE \
5150 && (bfd_vma) s->filepos >= p->p_offset \
5151 && ((bfd_vma) s->filepos + s->size \
5152 <= p->p_offset + p->p_filesz))
5154 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5156 #define IS_COREFILE_NOTE(p, s) \
5158 && bfd_get_format (ibfd) == bfd_core \
5162 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5163 linker, which generates a PT_INTERP section with p_vaddr and
5164 p_memsz set to 0. */
5165 #define IS_SOLARIS_PT_INTERP(p, s) \
5167 && p->p_paddr == 0 \
5168 && p->p_memsz == 0 \
5169 && p->p_filesz > 0 \
5170 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5172 && (bfd_vma) s->filepos >= p->p_offset \
5173 && ((bfd_vma) s->filepos + s->size \
5174 <= p->p_offset + p->p_filesz))
5176 /* Decide if the given section should be included in the given segment.
5177 A section will be included if:
5178 1. It is within the address space of the segment -- we use the LMA
5179 if that is set for the segment and the VMA otherwise,
5180 2. It is an allocated section or a NOTE section in a PT_NOTE
5182 3. There is an output section associated with it,
5183 4. The section has not already been allocated to a previous segment.
5184 5. PT_GNU_STACK segments do not include any sections.
5185 6. PT_TLS segment includes only SHF_TLS sections.
5186 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5187 8. PT_DYNAMIC should not contain empty sections at the beginning
5188 (with the possible exception of .dynamic). */
5189 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5190 ((((segment->p_paddr \
5191 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5192 : IS_CONTAINED_BY_VMA (section, segment)) \
5193 && (section->flags & SEC_ALLOC) != 0) \
5194 || IS_NOTE (segment, section)) \
5195 && segment->p_type != PT_GNU_STACK \
5196 && (segment->p_type != PT_TLS \
5197 || (section->flags & SEC_THREAD_LOCAL)) \
5198 && (segment->p_type == PT_LOAD \
5199 || segment->p_type == PT_TLS \
5200 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5201 && (segment->p_type != PT_DYNAMIC \
5202 || SECTION_SIZE (section, segment) > 0 \
5203 || (segment->p_paddr \
5204 ? segment->p_paddr != section->lma \
5205 : segment->p_vaddr != section->vma) \
5206 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5208 && !section->segment_mark)
5210 /* If the output section of a section in the input segment is NULL,
5211 it is removed from the corresponding output segment. */
5212 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5213 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5214 && section->output_section != NULL)
5216 /* Returns TRUE iff seg1 starts after the end of seg2. */
5217 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5218 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5220 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5221 their VMA address ranges and their LMA address ranges overlap.
5222 It is possible to have overlapping VMA ranges without overlapping LMA
5223 ranges. RedBoot images for example can have both .data and .bss mapped
5224 to the same VMA range, but with the .data section mapped to a different
5226 #define SEGMENT_OVERLAPS(seg1, seg2) \
5227 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5228 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5229 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5230 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5232 /* Initialise the segment mark field. */
5233 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5234 section
->segment_mark
= FALSE
;
5236 /* The Solaris linker creates program headers in which all the
5237 p_paddr fields are zero. When we try to objcopy or strip such a
5238 file, we get confused. Check for this case, and if we find it
5239 don't set the p_paddr_valid fields. */
5240 p_paddr_valid
= FALSE
;
5241 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5244 if (segment
->p_paddr
!= 0)
5246 p_paddr_valid
= TRUE
;
5250 /* Scan through the segments specified in the program header
5251 of the input BFD. For this first scan we look for overlaps
5252 in the loadable segments. These can be created by weird
5253 parameters to objcopy. Also, fix some solaris weirdness. */
5254 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5259 Elf_Internal_Phdr
*segment2
;
5261 if (segment
->p_type
== PT_INTERP
)
5262 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5263 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5265 /* Mininal change so that the normal section to segment
5266 assignment code will work. */
5267 segment
->p_vaddr
= section
->vma
;
5271 if (segment
->p_type
!= PT_LOAD
)
5273 /* Remove PT_GNU_RELRO segment. */
5274 if (segment
->p_type
== PT_GNU_RELRO
)
5275 segment
->p_type
= PT_NULL
;
5279 /* Determine if this segment overlaps any previous segments. */
5280 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5282 bfd_signed_vma extra_length
;
5284 if (segment2
->p_type
!= PT_LOAD
5285 || !SEGMENT_OVERLAPS (segment
, segment2
))
5288 /* Merge the two segments together. */
5289 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5291 /* Extend SEGMENT2 to include SEGMENT and then delete
5293 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5294 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5296 if (extra_length
> 0)
5298 segment2
->p_memsz
+= extra_length
;
5299 segment2
->p_filesz
+= extra_length
;
5302 segment
->p_type
= PT_NULL
;
5304 /* Since we have deleted P we must restart the outer loop. */
5306 segment
= elf_tdata (ibfd
)->phdr
;
5311 /* Extend SEGMENT to include SEGMENT2 and then delete
5313 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5314 - SEGMENT_END (segment
, segment
->p_vaddr
));
5316 if (extra_length
> 0)
5318 segment
->p_memsz
+= extra_length
;
5319 segment
->p_filesz
+= extra_length
;
5322 segment2
->p_type
= PT_NULL
;
5327 /* The second scan attempts to assign sections to segments. */
5328 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5332 unsigned int section_count
;
5333 asection
**sections
;
5334 asection
*output_section
;
5336 bfd_vma matching_lma
;
5337 bfd_vma suggested_lma
;
5340 asection
*first_section
;
5341 bfd_boolean first_matching_lma
;
5342 bfd_boolean first_suggested_lma
;
5344 if (segment
->p_type
== PT_NULL
)
5347 first_section
= NULL
;
5348 /* Compute how many sections might be placed into this segment. */
5349 for (section
= ibfd
->sections
, section_count
= 0;
5351 section
= section
->next
)
5353 /* Find the first section in the input segment, which may be
5354 removed from the corresponding output segment. */
5355 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5357 if (first_section
== NULL
)
5358 first_section
= section
;
5359 if (section
->output_section
!= NULL
)
5364 /* Allocate a segment map big enough to contain
5365 all of the sections we have selected. */
5366 amt
= sizeof (struct elf_segment_map
);
5367 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5368 map
= bfd_zalloc (obfd
, amt
);
5372 /* Initialise the fields of the segment map. Default to
5373 using the physical address of the segment in the input BFD. */
5375 map
->p_type
= segment
->p_type
;
5376 map
->p_flags
= segment
->p_flags
;
5377 map
->p_flags_valid
= 1;
5379 /* If the first section in the input segment is removed, there is
5380 no need to preserve segment physical address in the corresponding
5382 if (!first_section
|| first_section
->output_section
!= NULL
)
5384 map
->p_paddr
= segment
->p_paddr
;
5385 map
->p_paddr_valid
= p_paddr_valid
;
5388 /* Determine if this segment contains the ELF file header
5389 and if it contains the program headers themselves. */
5390 map
->includes_filehdr
= (segment
->p_offset
== 0
5391 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5392 map
->includes_phdrs
= 0;
5394 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5396 map
->includes_phdrs
=
5397 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5398 && (segment
->p_offset
+ segment
->p_filesz
5399 >= ((bfd_vma
) iehdr
->e_phoff
5400 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5402 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5403 phdr_included
= TRUE
;
5406 if (section_count
== 0)
5408 /* Special segments, such as the PT_PHDR segment, may contain
5409 no sections, but ordinary, loadable segments should contain
5410 something. They are allowed by the ELF spec however, so only
5411 a warning is produced. */
5412 if (segment
->p_type
== PT_LOAD
)
5413 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5414 " detected, is this intentional ?\n"),
5418 *pointer_to_map
= map
;
5419 pointer_to_map
= &map
->next
;
5424 /* Now scan the sections in the input BFD again and attempt
5425 to add their corresponding output sections to the segment map.
5426 The problem here is how to handle an output section which has
5427 been moved (ie had its LMA changed). There are four possibilities:
5429 1. None of the sections have been moved.
5430 In this case we can continue to use the segment LMA from the
5433 2. All of the sections have been moved by the same amount.
5434 In this case we can change the segment's LMA to match the LMA
5435 of the first section.
5437 3. Some of the sections have been moved, others have not.
5438 In this case those sections which have not been moved can be
5439 placed in the current segment which will have to have its size,
5440 and possibly its LMA changed, and a new segment or segments will
5441 have to be created to contain the other sections.
5443 4. The sections have been moved, but not by the same amount.
5444 In this case we can change the segment's LMA to match the LMA
5445 of the first section and we will have to create a new segment
5446 or segments to contain the other sections.
5448 In order to save time, we allocate an array to hold the section
5449 pointers that we are interested in. As these sections get assigned
5450 to a segment, they are removed from this array. */
5452 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5453 if (sections
== NULL
)
5456 /* Step One: Scan for segment vs section LMA conflicts.
5457 Also add the sections to the section array allocated above.
5458 Also add the sections to the current segment. In the common
5459 case, where the sections have not been moved, this means that
5460 we have completely filled the segment, and there is nothing
5465 first_matching_lma
= TRUE
;
5466 first_suggested_lma
= TRUE
;
5468 for (section
= ibfd
->sections
;
5470 section
= section
->next
)
5471 if (section
== first_section
)
5474 for (j
= 0; section
!= NULL
; section
= section
->next
)
5476 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5478 output_section
= section
->output_section
;
5480 sections
[j
++] = section
;
5482 /* The Solaris native linker always sets p_paddr to 0.
5483 We try to catch that case here, and set it to the
5484 correct value. Note - some backends require that
5485 p_paddr be left as zero. */
5487 && segment
->p_vaddr
!= 0
5488 && !bed
->want_p_paddr_set_to_zero
5490 && output_section
->lma
!= 0
5491 && output_section
->vma
== (segment
->p_vaddr
5492 + (map
->includes_filehdr
5495 + (map
->includes_phdrs
5497 * iehdr
->e_phentsize
)
5499 map
->p_paddr
= segment
->p_vaddr
;
5501 /* Match up the physical address of the segment with the
5502 LMA address of the output section. */
5503 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5504 || IS_COREFILE_NOTE (segment
, section
)
5505 || (bed
->want_p_paddr_set_to_zero
5506 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5508 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5510 matching_lma
= output_section
->lma
;
5511 first_matching_lma
= FALSE
;
5514 /* We assume that if the section fits within the segment
5515 then it does not overlap any other section within that
5517 map
->sections
[isec
++] = output_section
;
5519 else if (first_suggested_lma
)
5521 suggested_lma
= output_section
->lma
;
5522 first_suggested_lma
= FALSE
;
5525 if (j
== section_count
)
5530 BFD_ASSERT (j
== section_count
);
5532 /* Step Two: Adjust the physical address of the current segment,
5534 if (isec
== section_count
)
5536 /* All of the sections fitted within the segment as currently
5537 specified. This is the default case. Add the segment to
5538 the list of built segments and carry on to process the next
5539 program header in the input BFD. */
5540 map
->count
= section_count
;
5541 *pointer_to_map
= map
;
5542 pointer_to_map
= &map
->next
;
5545 && !bed
->want_p_paddr_set_to_zero
5546 && matching_lma
!= map
->p_paddr
5547 && !map
->includes_filehdr
5548 && !map
->includes_phdrs
)
5549 /* There is some padding before the first section in the
5550 segment. So, we must account for that in the output
5552 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5559 if (!first_matching_lma
)
5561 /* At least one section fits inside the current segment.
5562 Keep it, but modify its physical address to match the
5563 LMA of the first section that fitted. */
5564 map
->p_paddr
= matching_lma
;
5568 /* None of the sections fitted inside the current segment.
5569 Change the current segment's physical address to match
5570 the LMA of the first section. */
5571 map
->p_paddr
= suggested_lma
;
5574 /* Offset the segment physical address from the lma
5575 to allow for space taken up by elf headers. */
5576 if (map
->includes_filehdr
)
5578 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5579 map
->p_paddr
-= iehdr
->e_ehsize
;
5582 map
->includes_filehdr
= FALSE
;
5583 map
->includes_phdrs
= FALSE
;
5587 if (map
->includes_phdrs
)
5589 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5591 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5593 /* iehdr->e_phnum is just an estimate of the number
5594 of program headers that we will need. Make a note
5595 here of the number we used and the segment we chose
5596 to hold these headers, so that we can adjust the
5597 offset when we know the correct value. */
5598 phdr_adjust_num
= iehdr
->e_phnum
;
5599 phdr_adjust_seg
= map
;
5602 map
->includes_phdrs
= FALSE
;
5606 /* Step Three: Loop over the sections again, this time assigning
5607 those that fit to the current segment and removing them from the
5608 sections array; but making sure not to leave large gaps. Once all
5609 possible sections have been assigned to the current segment it is
5610 added to the list of built segments and if sections still remain
5611 to be assigned, a new segment is constructed before repeating
5618 first_suggested_lma
= TRUE
;
5620 /* Fill the current segment with sections that fit. */
5621 for (j
= 0; j
< section_count
; j
++)
5623 section
= sections
[j
];
5625 if (section
== NULL
)
5628 output_section
= section
->output_section
;
5630 BFD_ASSERT (output_section
!= NULL
);
5632 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5633 || IS_COREFILE_NOTE (segment
, section
))
5635 if (map
->count
== 0)
5637 /* If the first section in a segment does not start at
5638 the beginning of the segment, then something is
5640 if (output_section
->lma
5642 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5643 + (map
->includes_phdrs
5644 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5652 prev_sec
= map
->sections
[map
->count
- 1];
5654 /* If the gap between the end of the previous section
5655 and the start of this section is more than
5656 maxpagesize then we need to start a new segment. */
5657 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5659 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5660 || (prev_sec
->lma
+ prev_sec
->size
5661 > output_section
->lma
))
5663 if (first_suggested_lma
)
5665 suggested_lma
= output_section
->lma
;
5666 first_suggested_lma
= FALSE
;
5673 map
->sections
[map
->count
++] = output_section
;
5676 section
->segment_mark
= TRUE
;
5678 else if (first_suggested_lma
)
5680 suggested_lma
= output_section
->lma
;
5681 first_suggested_lma
= FALSE
;
5685 BFD_ASSERT (map
->count
> 0);
5687 /* Add the current segment to the list of built segments. */
5688 *pointer_to_map
= map
;
5689 pointer_to_map
= &map
->next
;
5691 if (isec
< section_count
)
5693 /* We still have not allocated all of the sections to
5694 segments. Create a new segment here, initialise it
5695 and carry on looping. */
5696 amt
= sizeof (struct elf_segment_map
);
5697 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5698 map
= bfd_alloc (obfd
, amt
);
5705 /* Initialise the fields of the segment map. Set the physical
5706 physical address to the LMA of the first section that has
5707 not yet been assigned. */
5709 map
->p_type
= segment
->p_type
;
5710 map
->p_flags
= segment
->p_flags
;
5711 map
->p_flags_valid
= 1;
5712 map
->p_paddr
= suggested_lma
;
5713 map
->p_paddr_valid
= p_paddr_valid
;
5714 map
->includes_filehdr
= 0;
5715 map
->includes_phdrs
= 0;
5718 while (isec
< section_count
);
5723 elf_tdata (obfd
)->segment_map
= map_first
;
5725 /* If we had to estimate the number of program headers that were
5726 going to be needed, then check our estimate now and adjust
5727 the offset if necessary. */
5728 if (phdr_adjust_seg
!= NULL
)
5732 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5735 if (count
> phdr_adjust_num
)
5736 phdr_adjust_seg
->p_paddr
5737 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5742 #undef IS_CONTAINED_BY_VMA
5743 #undef IS_CONTAINED_BY_LMA
5745 #undef IS_COREFILE_NOTE
5746 #undef IS_SOLARIS_PT_INTERP
5747 #undef IS_SECTION_IN_INPUT_SEGMENT
5748 #undef INCLUDE_SECTION_IN_SEGMENT
5749 #undef SEGMENT_AFTER_SEGMENT
5750 #undef SEGMENT_OVERLAPS
5754 /* Copy ELF program header information. */
5757 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5759 Elf_Internal_Ehdr
*iehdr
;
5760 struct elf_segment_map
*map
;
5761 struct elf_segment_map
*map_first
;
5762 struct elf_segment_map
**pointer_to_map
;
5763 Elf_Internal_Phdr
*segment
;
5765 unsigned int num_segments
;
5766 bfd_boolean phdr_included
= FALSE
;
5767 bfd_boolean p_paddr_valid
;
5769 iehdr
= elf_elfheader (ibfd
);
5772 pointer_to_map
= &map_first
;
5774 /* If all the segment p_paddr fields are zero, don't set
5775 map->p_paddr_valid. */
5776 p_paddr_valid
= FALSE
;
5777 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5778 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5781 if (segment
->p_paddr
!= 0)
5783 p_paddr_valid
= TRUE
;
5787 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5792 unsigned int section_count
;
5794 Elf_Internal_Shdr
*this_hdr
;
5795 asection
*first_section
= NULL
;
5796 asection
*lowest_section
= NULL
;
5798 /* Compute how many sections are in this segment. */
5799 for (section
= ibfd
->sections
, section_count
= 0;
5801 section
= section
->next
)
5803 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5804 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5807 first_section
= lowest_section
= section
;
5808 if (section
->lma
< lowest_section
->lma
)
5809 lowest_section
= section
;
5814 /* Allocate a segment map big enough to contain
5815 all of the sections we have selected. */
5816 amt
= sizeof (struct elf_segment_map
);
5817 if (section_count
!= 0)
5818 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5819 map
= bfd_zalloc (obfd
, amt
);
5823 /* Initialize the fields of the output segment map with the
5826 map
->p_type
= segment
->p_type
;
5827 map
->p_flags
= segment
->p_flags
;
5828 map
->p_flags_valid
= 1;
5829 map
->p_paddr
= segment
->p_paddr
;
5830 map
->p_paddr_valid
= p_paddr_valid
;
5831 map
->p_align
= segment
->p_align
;
5832 map
->p_align_valid
= 1;
5833 map
->p_vaddr_offset
= 0;
5835 if (map
->p_type
== PT_GNU_RELRO
)
5837 /* The PT_GNU_RELRO segment may contain the first a few
5838 bytes in the .got.plt section even if the whole .got.plt
5839 section isn't in the PT_GNU_RELRO segment. We won't
5840 change the size of the PT_GNU_RELRO segment. */
5841 map
->p_size
= segment
->p_memsz
;
5842 map
->p_size_valid
= 1;
5845 /* Determine if this segment contains the ELF file header
5846 and if it contains the program headers themselves. */
5847 map
->includes_filehdr
= (segment
->p_offset
== 0
5848 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5850 map
->includes_phdrs
= 0;
5851 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5853 map
->includes_phdrs
=
5854 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5855 && (segment
->p_offset
+ segment
->p_filesz
5856 >= ((bfd_vma
) iehdr
->e_phoff
5857 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5859 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5860 phdr_included
= TRUE
;
5863 if (map
->includes_filehdr
&& first_section
)
5864 /* We need to keep the space used by the headers fixed. */
5865 map
->header_size
= first_section
->vma
- segment
->p_vaddr
;
5867 if (!map
->includes_phdrs
5868 && !map
->includes_filehdr
5869 && map
->p_paddr_valid
)
5870 /* There is some other padding before the first section. */
5871 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
5872 - segment
->p_paddr
);
5874 if (section_count
!= 0)
5876 unsigned int isec
= 0;
5878 for (section
= first_section
;
5880 section
= section
->next
)
5882 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5883 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5885 map
->sections
[isec
++] = section
->output_section
;
5886 if (isec
== section_count
)
5892 map
->count
= section_count
;
5893 *pointer_to_map
= map
;
5894 pointer_to_map
= &map
->next
;
5897 elf_tdata (obfd
)->segment_map
= map_first
;
5901 /* Copy private BFD data. This copies or rewrites ELF program header
5905 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5907 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5908 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5911 if (elf_tdata (ibfd
)->phdr
== NULL
)
5914 if (ibfd
->xvec
== obfd
->xvec
)
5916 /* Check to see if any sections in the input BFD
5917 covered by ELF program header have changed. */
5918 Elf_Internal_Phdr
*segment
;
5919 asection
*section
, *osec
;
5920 unsigned int i
, num_segments
;
5921 Elf_Internal_Shdr
*this_hdr
;
5922 const struct elf_backend_data
*bed
;
5924 bed
= get_elf_backend_data (ibfd
);
5926 /* Regenerate the segment map if p_paddr is set to 0. */
5927 if (bed
->want_p_paddr_set_to_zero
)
5930 /* Initialize the segment mark field. */
5931 for (section
= obfd
->sections
; section
!= NULL
;
5932 section
= section
->next
)
5933 section
->segment_mark
= FALSE
;
5935 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5936 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5940 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5941 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5942 which severly confuses things, so always regenerate the segment
5943 map in this case. */
5944 if (segment
->p_paddr
== 0
5945 && segment
->p_memsz
== 0
5946 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
5949 for (section
= ibfd
->sections
;
5950 section
!= NULL
; section
= section
->next
)
5952 /* We mark the output section so that we know it comes
5953 from the input BFD. */
5954 osec
= section
->output_section
;
5956 osec
->segment_mark
= TRUE
;
5958 /* Check if this section is covered by the segment. */
5959 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5960 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5962 /* FIXME: Check if its output section is changed or
5963 removed. What else do we need to check? */
5965 || section
->flags
!= osec
->flags
5966 || section
->lma
!= osec
->lma
5967 || section
->vma
!= osec
->vma
5968 || section
->size
!= osec
->size
5969 || section
->rawsize
!= osec
->rawsize
5970 || section
->alignment_power
!= osec
->alignment_power
)
5976 /* Check to see if any output section do not come from the
5978 for (section
= obfd
->sections
; section
!= NULL
;
5979 section
= section
->next
)
5981 if (section
->segment_mark
== FALSE
)
5984 section
->segment_mark
= FALSE
;
5987 return copy_elf_program_header (ibfd
, obfd
);
5991 return rewrite_elf_program_header (ibfd
, obfd
);
5994 /* Initialize private output section information from input section. */
5997 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6001 struct bfd_link_info
*link_info
)
6004 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6005 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
6007 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6008 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6011 /* Don't copy the output ELF section type from input if the
6012 output BFD section flags have been set to something different.
6013 elf_fake_sections will set ELF section type based on BFD
6015 if (elf_section_type (osec
) == SHT_NULL
6016 && (osec
->flags
== isec
->flags
|| !osec
->flags
))
6017 elf_section_type (osec
) = elf_section_type (isec
);
6019 /* FIXME: Is this correct for all OS/PROC specific flags? */
6020 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6021 & (SHF_MASKOS
| SHF_MASKPROC
));
6023 /* Set things up for objcopy and relocatable link. The output
6024 SHT_GROUP section will have its elf_next_in_group pointing back
6025 to the input group members. Ignore linker created group section.
6026 See elfNN_ia64_object_p in elfxx-ia64.c. */
6029 if (elf_sec_group (isec
) == NULL
6030 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6032 if (elf_section_flags (isec
) & SHF_GROUP
)
6033 elf_section_flags (osec
) |= SHF_GROUP
;
6034 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6035 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6039 ihdr
= &elf_section_data (isec
)->this_hdr
;
6041 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6042 don't use the output section of the linked-to section since it
6043 may be NULL at this point. */
6044 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6046 ohdr
= &elf_section_data (osec
)->this_hdr
;
6047 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6048 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6051 osec
->use_rela_p
= isec
->use_rela_p
;
6056 /* Copy private section information. This copies over the entsize
6057 field, and sometimes the info field. */
6060 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6065 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6067 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6068 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6071 ihdr
= &elf_section_data (isec
)->this_hdr
;
6072 ohdr
= &elf_section_data (osec
)->this_hdr
;
6074 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6076 if (ihdr
->sh_type
== SHT_SYMTAB
6077 || ihdr
->sh_type
== SHT_DYNSYM
6078 || ihdr
->sh_type
== SHT_GNU_verneed
6079 || ihdr
->sh_type
== SHT_GNU_verdef
)
6080 ohdr
->sh_info
= ihdr
->sh_info
;
6082 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6086 /* Copy private header information. */
6089 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6093 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6094 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6097 /* Copy over private BFD data if it has not already been copied.
6098 This must be done here, rather than in the copy_private_bfd_data
6099 entry point, because the latter is called after the section
6100 contents have been set, which means that the program headers have
6101 already been worked out. */
6102 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6104 if (! copy_private_bfd_data (ibfd
, obfd
))
6108 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6109 but this might be wrong if we deleted the group section. */
6110 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6111 if (elf_section_type (isec
) == SHT_GROUP
6112 && isec
->output_section
== NULL
)
6114 asection
*first
= elf_next_in_group (isec
);
6115 asection
*s
= first
;
6118 if (s
->output_section
!= NULL
)
6120 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6121 elf_group_name (s
->output_section
) = NULL
;
6123 s
= elf_next_in_group (s
);
6132 /* Copy private symbol information. If this symbol is in a section
6133 which we did not map into a BFD section, try to map the section
6134 index correctly. We use special macro definitions for the mapped
6135 section indices; these definitions are interpreted by the
6136 swap_out_syms function. */
6138 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6139 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6140 #define MAP_STRTAB (SHN_HIOS + 3)
6141 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6142 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6145 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6150 elf_symbol_type
*isym
, *osym
;
6152 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6153 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6156 isym
= elf_symbol_from (ibfd
, isymarg
);
6157 osym
= elf_symbol_from (obfd
, osymarg
);
6160 && isym
->internal_elf_sym
.st_shndx
!= 0
6162 && bfd_is_abs_section (isym
->symbol
.section
))
6166 shndx
= isym
->internal_elf_sym
.st_shndx
;
6167 if (shndx
== elf_onesymtab (ibfd
))
6168 shndx
= MAP_ONESYMTAB
;
6169 else if (shndx
== elf_dynsymtab (ibfd
))
6170 shndx
= MAP_DYNSYMTAB
;
6171 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6173 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6174 shndx
= MAP_SHSTRTAB
;
6175 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6176 shndx
= MAP_SYM_SHNDX
;
6177 osym
->internal_elf_sym
.st_shndx
= shndx
;
6183 /* Swap out the symbols. */
6186 swap_out_syms (bfd
*abfd
,
6187 struct bfd_strtab_hash
**sttp
,
6190 const struct elf_backend_data
*bed
;
6193 struct bfd_strtab_hash
*stt
;
6194 Elf_Internal_Shdr
*symtab_hdr
;
6195 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6196 Elf_Internal_Shdr
*symstrtab_hdr
;
6197 bfd_byte
*outbound_syms
;
6198 bfd_byte
*outbound_shndx
;
6201 bfd_boolean name_local_sections
;
6203 if (!elf_map_symbols (abfd
))
6206 /* Dump out the symtabs. */
6207 stt
= _bfd_elf_stringtab_init ();
6211 bed
= get_elf_backend_data (abfd
);
6212 symcount
= bfd_get_symcount (abfd
);
6213 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6214 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6215 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6216 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6217 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6218 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6220 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6221 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6223 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6224 if (outbound_syms
== NULL
)
6226 _bfd_stringtab_free (stt
);
6229 symtab_hdr
->contents
= outbound_syms
;
6231 outbound_shndx
= NULL
;
6232 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6233 if (symtab_shndx_hdr
->sh_name
!= 0)
6235 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6236 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6237 sizeof (Elf_External_Sym_Shndx
));
6238 if (outbound_shndx
== NULL
)
6240 _bfd_stringtab_free (stt
);
6244 symtab_shndx_hdr
->contents
= outbound_shndx
;
6245 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6246 symtab_shndx_hdr
->sh_size
= amt
;
6247 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6248 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6251 /* Now generate the data (for "contents"). */
6253 /* Fill in zeroth symbol and swap it out. */
6254 Elf_Internal_Sym sym
;
6260 sym
.st_shndx
= SHN_UNDEF
;
6261 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6262 outbound_syms
+= bed
->s
->sizeof_sym
;
6263 if (outbound_shndx
!= NULL
)
6264 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6268 = (bed
->elf_backend_name_local_section_symbols
6269 && bed
->elf_backend_name_local_section_symbols (abfd
));
6271 syms
= bfd_get_outsymbols (abfd
);
6272 for (idx
= 0; idx
< symcount
; idx
++)
6274 Elf_Internal_Sym sym
;
6275 bfd_vma value
= syms
[idx
]->value
;
6276 elf_symbol_type
*type_ptr
;
6277 flagword flags
= syms
[idx
]->flags
;
6280 if (!name_local_sections
6281 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6283 /* Local section symbols have no name. */
6288 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6291 if (sym
.st_name
== (unsigned long) -1)
6293 _bfd_stringtab_free (stt
);
6298 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6300 if ((flags
& BSF_SECTION_SYM
) == 0
6301 && bfd_is_com_section (syms
[idx
]->section
))
6303 /* ELF common symbols put the alignment into the `value' field,
6304 and the size into the `size' field. This is backwards from
6305 how BFD handles it, so reverse it here. */
6306 sym
.st_size
= value
;
6307 if (type_ptr
== NULL
6308 || type_ptr
->internal_elf_sym
.st_value
== 0)
6309 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6311 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6312 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6313 (abfd
, syms
[idx
]->section
);
6317 asection
*sec
= syms
[idx
]->section
;
6320 if (sec
->output_section
)
6322 value
+= sec
->output_offset
;
6323 sec
= sec
->output_section
;
6326 /* Don't add in the section vma for relocatable output. */
6327 if (! relocatable_p
)
6329 sym
.st_value
= value
;
6330 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6332 if (bfd_is_abs_section (sec
)
6334 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6336 /* This symbol is in a real ELF section which we did
6337 not create as a BFD section. Undo the mapping done
6338 by copy_private_symbol_data. */
6339 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6343 shndx
= elf_onesymtab (abfd
);
6346 shndx
= elf_dynsymtab (abfd
);
6349 shndx
= elf_tdata (abfd
)->strtab_section
;
6352 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6355 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6363 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6365 if (shndx
== SHN_BAD
)
6369 /* Writing this would be a hell of a lot easier if
6370 we had some decent documentation on bfd, and
6371 knew what to expect of the library, and what to
6372 demand of applications. For example, it
6373 appears that `objcopy' might not set the
6374 section of a symbol to be a section that is
6375 actually in the output file. */
6376 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6379 _bfd_error_handler (_("\
6380 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6381 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6383 bfd_set_error (bfd_error_invalid_operation
);
6384 _bfd_stringtab_free (stt
);
6388 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6389 BFD_ASSERT (shndx
!= SHN_BAD
);
6393 sym
.st_shndx
= shndx
;
6396 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6398 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6399 type
= STT_GNU_IFUNC
;
6400 else if ((flags
& BSF_FUNCTION
) != 0)
6402 else if ((flags
& BSF_OBJECT
) != 0)
6404 else if ((flags
& BSF_RELC
) != 0)
6406 else if ((flags
& BSF_SRELC
) != 0)
6411 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6414 /* Processor-specific types. */
6415 if (type_ptr
!= NULL
6416 && bed
->elf_backend_get_symbol_type
)
6417 type
= ((*bed
->elf_backend_get_symbol_type
)
6418 (&type_ptr
->internal_elf_sym
, type
));
6420 if (flags
& BSF_SECTION_SYM
)
6422 if (flags
& BSF_GLOBAL
)
6423 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6425 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6427 else if (bfd_is_com_section (syms
[idx
]->section
))
6429 #ifdef USE_STT_COMMON
6430 if (type
== STT_OBJECT
)
6431 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6434 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6436 else if (bfd_is_und_section (syms
[idx
]->section
))
6437 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6441 else if (flags
& BSF_FILE
)
6442 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6445 int bind
= STB_LOCAL
;
6447 if (flags
& BSF_LOCAL
)
6449 else if (flags
& BSF_WEAK
)
6451 else if (flags
& BSF_GLOBAL
)
6454 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6457 if (type_ptr
!= NULL
)
6458 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6462 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6463 outbound_syms
+= bed
->s
->sizeof_sym
;
6464 if (outbound_shndx
!= NULL
)
6465 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6469 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6470 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6472 symstrtab_hdr
->sh_flags
= 0;
6473 symstrtab_hdr
->sh_addr
= 0;
6474 symstrtab_hdr
->sh_entsize
= 0;
6475 symstrtab_hdr
->sh_link
= 0;
6476 symstrtab_hdr
->sh_info
= 0;
6477 symstrtab_hdr
->sh_addralign
= 1;
6482 /* Return the number of bytes required to hold the symtab vector.
6484 Note that we base it on the count plus 1, since we will null terminate
6485 the vector allocated based on this size. However, the ELF symbol table
6486 always has a dummy entry as symbol #0, so it ends up even. */
6489 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6493 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6495 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6496 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6498 symtab_size
-= sizeof (asymbol
*);
6504 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6508 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6510 if (elf_dynsymtab (abfd
) == 0)
6512 bfd_set_error (bfd_error_invalid_operation
);
6516 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6517 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6519 symtab_size
-= sizeof (asymbol
*);
6525 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6528 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6531 /* Canonicalize the relocs. */
6534 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6541 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6543 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6546 tblptr
= section
->relocation
;
6547 for (i
= 0; i
< section
->reloc_count
; i
++)
6548 *relptr
++ = tblptr
++;
6552 return section
->reloc_count
;
6556 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6558 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6559 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6562 bfd_get_symcount (abfd
) = symcount
;
6567 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6568 asymbol
**allocation
)
6570 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6571 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6574 bfd_get_dynamic_symcount (abfd
) = symcount
;
6578 /* Return the size required for the dynamic reloc entries. Any loadable
6579 section that was actually installed in the BFD, and has type SHT_REL
6580 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6581 dynamic reloc section. */
6584 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6589 if (elf_dynsymtab (abfd
) == 0)
6591 bfd_set_error (bfd_error_invalid_operation
);
6595 ret
= sizeof (arelent
*);
6596 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6597 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6598 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6599 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6600 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6601 * sizeof (arelent
*));
6606 /* Canonicalize the dynamic relocation entries. Note that we return the
6607 dynamic relocations as a single block, although they are actually
6608 associated with particular sections; the interface, which was
6609 designed for SunOS style shared libraries, expects that there is only
6610 one set of dynamic relocs. Any loadable section that was actually
6611 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6612 dynamic symbol table, is considered to be a dynamic reloc section. */
6615 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6619 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6623 if (elf_dynsymtab (abfd
) == 0)
6625 bfd_set_error (bfd_error_invalid_operation
);
6629 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6631 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6633 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6634 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6635 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6640 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6642 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6644 for (i
= 0; i
< count
; i
++)
6655 /* Read in the version information. */
6658 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6660 bfd_byte
*contents
= NULL
;
6661 unsigned int freeidx
= 0;
6663 if (elf_dynverref (abfd
) != 0)
6665 Elf_Internal_Shdr
*hdr
;
6666 Elf_External_Verneed
*everneed
;
6667 Elf_Internal_Verneed
*iverneed
;
6669 bfd_byte
*contents_end
;
6671 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6673 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6674 sizeof (Elf_Internal_Verneed
));
6675 if (elf_tdata (abfd
)->verref
== NULL
)
6678 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6680 contents
= bfd_malloc (hdr
->sh_size
);
6681 if (contents
== NULL
)
6683 error_return_verref
:
6684 elf_tdata (abfd
)->verref
= NULL
;
6685 elf_tdata (abfd
)->cverrefs
= 0;
6688 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6689 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6690 goto error_return_verref
;
6692 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6693 goto error_return_verref
;
6695 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6696 == sizeof (Elf_External_Vernaux
));
6697 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6698 everneed
= (Elf_External_Verneed
*) contents
;
6699 iverneed
= elf_tdata (abfd
)->verref
;
6700 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6702 Elf_External_Vernaux
*evernaux
;
6703 Elf_Internal_Vernaux
*ivernaux
;
6706 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6708 iverneed
->vn_bfd
= abfd
;
6710 iverneed
->vn_filename
=
6711 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6713 if (iverneed
->vn_filename
== NULL
)
6714 goto error_return_verref
;
6716 if (iverneed
->vn_cnt
== 0)
6717 iverneed
->vn_auxptr
= NULL
;
6720 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6721 sizeof (Elf_Internal_Vernaux
));
6722 if (iverneed
->vn_auxptr
== NULL
)
6723 goto error_return_verref
;
6726 if (iverneed
->vn_aux
6727 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6728 goto error_return_verref
;
6730 evernaux
= ((Elf_External_Vernaux
*)
6731 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6732 ivernaux
= iverneed
->vn_auxptr
;
6733 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6735 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6737 ivernaux
->vna_nodename
=
6738 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6739 ivernaux
->vna_name
);
6740 if (ivernaux
->vna_nodename
== NULL
)
6741 goto error_return_verref
;
6743 if (j
+ 1 < iverneed
->vn_cnt
)
6744 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6746 ivernaux
->vna_nextptr
= NULL
;
6748 if (ivernaux
->vna_next
6749 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6750 goto error_return_verref
;
6752 evernaux
= ((Elf_External_Vernaux
*)
6753 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6755 if (ivernaux
->vna_other
> freeidx
)
6756 freeidx
= ivernaux
->vna_other
;
6759 if (i
+ 1 < hdr
->sh_info
)
6760 iverneed
->vn_nextref
= iverneed
+ 1;
6762 iverneed
->vn_nextref
= NULL
;
6764 if (iverneed
->vn_next
6765 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6766 goto error_return_verref
;
6768 everneed
= ((Elf_External_Verneed
*)
6769 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6776 if (elf_dynverdef (abfd
) != 0)
6778 Elf_Internal_Shdr
*hdr
;
6779 Elf_External_Verdef
*everdef
;
6780 Elf_Internal_Verdef
*iverdef
;
6781 Elf_Internal_Verdef
*iverdefarr
;
6782 Elf_Internal_Verdef iverdefmem
;
6784 unsigned int maxidx
;
6785 bfd_byte
*contents_end_def
, *contents_end_aux
;
6787 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6789 contents
= bfd_malloc (hdr
->sh_size
);
6790 if (contents
== NULL
)
6792 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6793 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6796 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6799 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6800 >= sizeof (Elf_External_Verdaux
));
6801 contents_end_def
= contents
+ hdr
->sh_size
6802 - sizeof (Elf_External_Verdef
);
6803 contents_end_aux
= contents
+ hdr
->sh_size
6804 - sizeof (Elf_External_Verdaux
);
6806 /* We know the number of entries in the section but not the maximum
6807 index. Therefore we have to run through all entries and find
6809 everdef
= (Elf_External_Verdef
*) contents
;
6811 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6813 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6815 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6816 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6818 if (iverdefmem
.vd_next
6819 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6822 everdef
= ((Elf_External_Verdef
*)
6823 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6826 if (default_imported_symver
)
6828 if (freeidx
> maxidx
)
6833 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6834 sizeof (Elf_Internal_Verdef
));
6835 if (elf_tdata (abfd
)->verdef
== NULL
)
6838 elf_tdata (abfd
)->cverdefs
= maxidx
;
6840 everdef
= (Elf_External_Verdef
*) contents
;
6841 iverdefarr
= elf_tdata (abfd
)->verdef
;
6842 for (i
= 0; i
< hdr
->sh_info
; i
++)
6844 Elf_External_Verdaux
*everdaux
;
6845 Elf_Internal_Verdaux
*iverdaux
;
6848 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6850 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6852 error_return_verdef
:
6853 elf_tdata (abfd
)->verdef
= NULL
;
6854 elf_tdata (abfd
)->cverdefs
= 0;
6858 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6859 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6861 iverdef
->vd_bfd
= abfd
;
6863 if (iverdef
->vd_cnt
== 0)
6864 iverdef
->vd_auxptr
= NULL
;
6867 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6868 sizeof (Elf_Internal_Verdaux
));
6869 if (iverdef
->vd_auxptr
== NULL
)
6870 goto error_return_verdef
;
6874 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6875 goto error_return_verdef
;
6877 everdaux
= ((Elf_External_Verdaux
*)
6878 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6879 iverdaux
= iverdef
->vd_auxptr
;
6880 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6882 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6884 iverdaux
->vda_nodename
=
6885 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6886 iverdaux
->vda_name
);
6887 if (iverdaux
->vda_nodename
== NULL
)
6888 goto error_return_verdef
;
6890 if (j
+ 1 < iverdef
->vd_cnt
)
6891 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6893 iverdaux
->vda_nextptr
= NULL
;
6895 if (iverdaux
->vda_next
6896 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6897 goto error_return_verdef
;
6899 everdaux
= ((Elf_External_Verdaux
*)
6900 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6903 if (iverdef
->vd_cnt
)
6904 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6906 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6907 iverdef
->vd_nextdef
= iverdef
+ 1;
6909 iverdef
->vd_nextdef
= NULL
;
6911 everdef
= ((Elf_External_Verdef
*)
6912 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6918 else if (default_imported_symver
)
6925 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6926 sizeof (Elf_Internal_Verdef
));
6927 if (elf_tdata (abfd
)->verdef
== NULL
)
6930 elf_tdata (abfd
)->cverdefs
= freeidx
;
6933 /* Create a default version based on the soname. */
6934 if (default_imported_symver
)
6936 Elf_Internal_Verdef
*iverdef
;
6937 Elf_Internal_Verdaux
*iverdaux
;
6939 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6941 iverdef
->vd_version
= VER_DEF_CURRENT
;
6942 iverdef
->vd_flags
= 0;
6943 iverdef
->vd_ndx
= freeidx
;
6944 iverdef
->vd_cnt
= 1;
6946 iverdef
->vd_bfd
= abfd
;
6948 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6949 if (iverdef
->vd_nodename
== NULL
)
6950 goto error_return_verdef
;
6951 iverdef
->vd_nextdef
= NULL
;
6952 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6953 if (iverdef
->vd_auxptr
== NULL
)
6954 goto error_return_verdef
;
6956 iverdaux
= iverdef
->vd_auxptr
;
6957 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6958 iverdaux
->vda_nextptr
= NULL
;
6964 if (contents
!= NULL
)
6970 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6972 elf_symbol_type
*newsym
;
6973 bfd_size_type amt
= sizeof (elf_symbol_type
);
6975 newsym
= bfd_zalloc (abfd
, amt
);
6980 newsym
->symbol
.the_bfd
= abfd
;
6981 return &newsym
->symbol
;
6986 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6990 bfd_symbol_info (symbol
, ret
);
6993 /* Return whether a symbol name implies a local symbol. Most targets
6994 use this function for the is_local_label_name entry point, but some
6998 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7001 /* Normal local symbols start with ``.L''. */
7002 if (name
[0] == '.' && name
[1] == 'L')
7005 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7006 DWARF debugging symbols starting with ``..''. */
7007 if (name
[0] == '.' && name
[1] == '.')
7010 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7011 emitting DWARF debugging output. I suspect this is actually a
7012 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7013 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7014 underscore to be emitted on some ELF targets). For ease of use,
7015 we treat such symbols as local. */
7016 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7023 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7024 asymbol
*symbol ATTRIBUTE_UNUSED
)
7031 _bfd_elf_set_arch_mach (bfd
*abfd
,
7032 enum bfd_architecture arch
,
7033 unsigned long machine
)
7035 /* If this isn't the right architecture for this backend, and this
7036 isn't the generic backend, fail. */
7037 if (arch
!= get_elf_backend_data (abfd
)->arch
7038 && arch
!= bfd_arch_unknown
7039 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7042 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7045 /* Find the function to a particular section and offset,
7046 for error reporting. */
7049 elf_find_function (bfd
*abfd
,
7053 const char **filename_ptr
,
7054 const char **functionname_ptr
)
7056 const char *filename
;
7057 asymbol
*func
, *file
;
7060 /* ??? Given multiple file symbols, it is impossible to reliably
7061 choose the right file name for global symbols. File symbols are
7062 local symbols, and thus all file symbols must sort before any
7063 global symbols. The ELF spec may be interpreted to say that a
7064 file symbol must sort before other local symbols, but currently
7065 ld -r doesn't do this. So, for ld -r output, it is possible to
7066 make a better choice of file name for local symbols by ignoring
7067 file symbols appearing after a given local symbol. */
7068 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7069 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7075 state
= nothing_seen
;
7077 for (p
= symbols
; *p
!= NULL
; p
++)
7082 q
= (elf_symbol_type
*) *p
;
7084 type
= ELF_ST_TYPE (q
->internal_elf_sym
.st_info
);
7089 if (state
== symbol_seen
)
7090 state
= file_after_symbol_seen
;
7093 if (!bed
->is_function_type (type
))
7096 if (bfd_get_section (&q
->symbol
) == section
7097 && q
->symbol
.value
>= low_func
7098 && q
->symbol
.value
<= offset
)
7100 func
= (asymbol
*) q
;
7101 low_func
= q
->symbol
.value
;
7104 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7105 || state
!= file_after_symbol_seen
))
7106 filename
= bfd_asymbol_name (file
);
7110 if (state
== nothing_seen
)
7111 state
= symbol_seen
;
7118 *filename_ptr
= filename
;
7119 if (functionname_ptr
)
7120 *functionname_ptr
= bfd_asymbol_name (func
);
7125 /* Find the nearest line to a particular section and offset,
7126 for error reporting. */
7129 _bfd_elf_find_nearest_line (bfd
*abfd
,
7133 const char **filename_ptr
,
7134 const char **functionname_ptr
,
7135 unsigned int *line_ptr
)
7139 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7140 filename_ptr
, functionname_ptr
,
7143 if (!*functionname_ptr
)
7144 elf_find_function (abfd
, section
, symbols
, offset
,
7145 *filename_ptr
? NULL
: filename_ptr
,
7151 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7152 filename_ptr
, functionname_ptr
,
7154 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7156 if (!*functionname_ptr
)
7157 elf_find_function (abfd
, section
, symbols
, offset
,
7158 *filename_ptr
? NULL
: filename_ptr
,
7164 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7165 &found
, filename_ptr
,
7166 functionname_ptr
, line_ptr
,
7167 &elf_tdata (abfd
)->line_info
))
7169 if (found
&& (*functionname_ptr
|| *line_ptr
))
7172 if (symbols
== NULL
)
7175 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7176 filename_ptr
, functionname_ptr
))
7183 /* Find the line for a symbol. */
7186 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7187 const char **filename_ptr
, unsigned int *line_ptr
)
7189 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7190 filename_ptr
, line_ptr
, 0,
7191 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7194 /* After a call to bfd_find_nearest_line, successive calls to
7195 bfd_find_inliner_info can be used to get source information about
7196 each level of function inlining that terminated at the address
7197 passed to bfd_find_nearest_line. Currently this is only supported
7198 for DWARF2 with appropriate DWARF3 extensions. */
7201 _bfd_elf_find_inliner_info (bfd
*abfd
,
7202 const char **filename_ptr
,
7203 const char **functionname_ptr
,
7204 unsigned int *line_ptr
)
7207 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7208 functionname_ptr
, line_ptr
,
7209 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7214 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7216 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7217 int ret
= bed
->s
->sizeof_ehdr
;
7219 if (!info
->relocatable
)
7221 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7223 if (phdr_size
== (bfd_size_type
) -1)
7225 struct elf_segment_map
*m
;
7228 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7229 phdr_size
+= bed
->s
->sizeof_phdr
;
7232 phdr_size
= get_program_header_size (abfd
, info
);
7235 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7243 _bfd_elf_set_section_contents (bfd
*abfd
,
7245 const void *location
,
7247 bfd_size_type count
)
7249 Elf_Internal_Shdr
*hdr
;
7252 if (! abfd
->output_has_begun
7253 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7256 hdr
= &elf_section_data (section
)->this_hdr
;
7257 pos
= hdr
->sh_offset
+ offset
;
7258 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7259 || bfd_bwrite (location
, count
, abfd
) != count
)
7266 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7267 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7268 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7273 /* Try to convert a non-ELF reloc into an ELF one. */
7276 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7278 /* Check whether we really have an ELF howto. */
7280 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7282 bfd_reloc_code_real_type code
;
7283 reloc_howto_type
*howto
;
7285 /* Alien reloc: Try to determine its type to replace it with an
7286 equivalent ELF reloc. */
7288 if (areloc
->howto
->pc_relative
)
7290 switch (areloc
->howto
->bitsize
)
7293 code
= BFD_RELOC_8_PCREL
;
7296 code
= BFD_RELOC_12_PCREL
;
7299 code
= BFD_RELOC_16_PCREL
;
7302 code
= BFD_RELOC_24_PCREL
;
7305 code
= BFD_RELOC_32_PCREL
;
7308 code
= BFD_RELOC_64_PCREL
;
7314 howto
= bfd_reloc_type_lookup (abfd
, code
);
7316 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7318 if (howto
->pcrel_offset
)
7319 areloc
->addend
+= areloc
->address
;
7321 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7326 switch (areloc
->howto
->bitsize
)
7332 code
= BFD_RELOC_14
;
7335 code
= BFD_RELOC_16
;
7338 code
= BFD_RELOC_26
;
7341 code
= BFD_RELOC_32
;
7344 code
= BFD_RELOC_64
;
7350 howto
= bfd_reloc_type_lookup (abfd
, code
);
7354 areloc
->howto
= howto
;
7362 (*_bfd_error_handler
)
7363 (_("%B: unsupported relocation type %s"),
7364 abfd
, areloc
->howto
->name
);
7365 bfd_set_error (bfd_error_bad_value
);
7370 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7372 if (bfd_get_format (abfd
) == bfd_object
)
7374 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7375 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7376 _bfd_dwarf2_cleanup_debug_info (abfd
);
7379 return _bfd_generic_close_and_cleanup (abfd
);
7382 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7383 in the relocation's offset. Thus we cannot allow any sort of sanity
7384 range-checking to interfere. There is nothing else to do in processing
7387 bfd_reloc_status_type
7388 _bfd_elf_rel_vtable_reloc_fn
7389 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7390 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7391 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7392 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7394 return bfd_reloc_ok
;
7397 /* Elf core file support. Much of this only works on native
7398 toolchains, since we rely on knowing the
7399 machine-dependent procfs structure in order to pick
7400 out details about the corefile. */
7402 #ifdef HAVE_SYS_PROCFS_H
7403 # include <sys/procfs.h>
7406 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7409 elfcore_make_pid (bfd
*abfd
)
7411 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7412 + (elf_tdata (abfd
)->core_pid
));
7415 /* If there isn't a section called NAME, make one, using
7416 data from SECT. Note, this function will generate a
7417 reference to NAME, so you shouldn't deallocate or
7421 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7425 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7428 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7432 sect2
->size
= sect
->size
;
7433 sect2
->filepos
= sect
->filepos
;
7434 sect2
->alignment_power
= sect
->alignment_power
;
7438 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7439 actually creates up to two pseudosections:
7440 - For the single-threaded case, a section named NAME, unless
7441 such a section already exists.
7442 - For the multi-threaded case, a section named "NAME/PID", where
7443 PID is elfcore_make_pid (abfd).
7444 Both pseudosections have identical contents. */
7446 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7452 char *threaded_name
;
7456 /* Build the section name. */
7458 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7459 len
= strlen (buf
) + 1;
7460 threaded_name
= bfd_alloc (abfd
, len
);
7461 if (threaded_name
== NULL
)
7463 memcpy (threaded_name
, buf
, len
);
7465 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7470 sect
->filepos
= filepos
;
7471 sect
->alignment_power
= 2;
7473 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7476 /* prstatus_t exists on:
7478 linux 2.[01] + glibc
7482 #if defined (HAVE_PRSTATUS_T)
7485 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7490 if (note
->descsz
== sizeof (prstatus_t
))
7494 size
= sizeof (prstat
.pr_reg
);
7495 offset
= offsetof (prstatus_t
, pr_reg
);
7496 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7498 /* Do not overwrite the core signal if it
7499 has already been set by another thread. */
7500 if (elf_tdata (abfd
)->core_signal
== 0)
7501 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7502 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7504 /* pr_who exists on:
7507 pr_who doesn't exist on:
7510 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7511 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7514 #if defined (HAVE_PRSTATUS32_T)
7515 else if (note
->descsz
== sizeof (prstatus32_t
))
7517 /* 64-bit host, 32-bit corefile */
7518 prstatus32_t prstat
;
7520 size
= sizeof (prstat
.pr_reg
);
7521 offset
= offsetof (prstatus32_t
, pr_reg
);
7522 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7524 /* Do not overwrite the core signal if it
7525 has already been set by another thread. */
7526 if (elf_tdata (abfd
)->core_signal
== 0)
7527 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7528 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7530 /* pr_who exists on:
7533 pr_who doesn't exist on:
7536 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7537 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7540 #endif /* HAVE_PRSTATUS32_T */
7543 /* Fail - we don't know how to handle any other
7544 note size (ie. data object type). */
7548 /* Make a ".reg/999" section and a ".reg" section. */
7549 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7550 size
, note
->descpos
+ offset
);
7552 #endif /* defined (HAVE_PRSTATUS_T) */
7554 /* Create a pseudosection containing the exact contents of NOTE. */
7556 elfcore_make_note_pseudosection (bfd
*abfd
,
7558 Elf_Internal_Note
*note
)
7560 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7561 note
->descsz
, note
->descpos
);
7564 /* There isn't a consistent prfpregset_t across platforms,
7565 but it doesn't matter, because we don't have to pick this
7566 data structure apart. */
7569 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7571 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7574 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7575 type of NT_PRXFPREG. Just include the whole note's contents
7579 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7581 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7585 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7587 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7591 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7593 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7596 #if defined (HAVE_PRPSINFO_T)
7597 typedef prpsinfo_t elfcore_psinfo_t
;
7598 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7599 typedef prpsinfo32_t elfcore_psinfo32_t
;
7603 #if defined (HAVE_PSINFO_T)
7604 typedef psinfo_t elfcore_psinfo_t
;
7605 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7606 typedef psinfo32_t elfcore_psinfo32_t
;
7610 /* return a malloc'ed copy of a string at START which is at
7611 most MAX bytes long, possibly without a terminating '\0'.
7612 the copy will always have a terminating '\0'. */
7615 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7618 char *end
= memchr (start
, '\0', max
);
7626 dups
= bfd_alloc (abfd
, len
+ 1);
7630 memcpy (dups
, start
, len
);
7636 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7638 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7640 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7642 elfcore_psinfo_t psinfo
;
7644 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7646 elf_tdata (abfd
)->core_program
7647 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7648 sizeof (psinfo
.pr_fname
));
7650 elf_tdata (abfd
)->core_command
7651 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7652 sizeof (psinfo
.pr_psargs
));
7654 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7655 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7657 /* 64-bit host, 32-bit corefile */
7658 elfcore_psinfo32_t psinfo
;
7660 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7662 elf_tdata (abfd
)->core_program
7663 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7664 sizeof (psinfo
.pr_fname
));
7666 elf_tdata (abfd
)->core_command
7667 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7668 sizeof (psinfo
.pr_psargs
));
7674 /* Fail - we don't know how to handle any other
7675 note size (ie. data object type). */
7679 /* Note that for some reason, a spurious space is tacked
7680 onto the end of the args in some (at least one anyway)
7681 implementations, so strip it off if it exists. */
7684 char *command
= elf_tdata (abfd
)->core_command
;
7685 int n
= strlen (command
);
7687 if (0 < n
&& command
[n
- 1] == ' ')
7688 command
[n
- 1] = '\0';
7693 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7695 #if defined (HAVE_PSTATUS_T)
7697 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7699 if (note
->descsz
== sizeof (pstatus_t
)
7700 #if defined (HAVE_PXSTATUS_T)
7701 || note
->descsz
== sizeof (pxstatus_t
)
7707 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7709 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7711 #if defined (HAVE_PSTATUS32_T)
7712 else if (note
->descsz
== sizeof (pstatus32_t
))
7714 /* 64-bit host, 32-bit corefile */
7717 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7719 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7722 /* Could grab some more details from the "representative"
7723 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7724 NT_LWPSTATUS note, presumably. */
7728 #endif /* defined (HAVE_PSTATUS_T) */
7730 #if defined (HAVE_LWPSTATUS_T)
7732 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7734 lwpstatus_t lwpstat
;
7740 if (note
->descsz
!= sizeof (lwpstat
)
7741 #if defined (HAVE_LWPXSTATUS_T)
7742 && note
->descsz
!= sizeof (lwpxstatus_t
)
7747 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7749 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7750 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7752 /* Make a ".reg/999" section. */
7754 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7755 len
= strlen (buf
) + 1;
7756 name
= bfd_alloc (abfd
, len
);
7759 memcpy (name
, buf
, len
);
7761 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7765 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7766 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7767 sect
->filepos
= note
->descpos
7768 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7771 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7772 sect
->size
= sizeof (lwpstat
.pr_reg
);
7773 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7776 sect
->alignment_power
= 2;
7778 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7781 /* Make a ".reg2/999" section */
7783 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7784 len
= strlen (buf
) + 1;
7785 name
= bfd_alloc (abfd
, len
);
7788 memcpy (name
, buf
, len
);
7790 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7794 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7795 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7796 sect
->filepos
= note
->descpos
7797 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7800 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7801 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7802 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7805 sect
->alignment_power
= 2;
7807 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7809 #endif /* defined (HAVE_LWPSTATUS_T) */
7812 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7819 int is_active_thread
;
7822 if (note
->descsz
< 728)
7825 if (! CONST_STRNEQ (note
->namedata
, "win32"))
7828 type
= bfd_get_32 (abfd
, note
->descdata
);
7832 case 1 /* NOTE_INFO_PROCESS */:
7833 /* FIXME: need to add ->core_command. */
7834 /* process_info.pid */
7835 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7836 /* process_info.signal */
7837 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
7840 case 2 /* NOTE_INFO_THREAD */:
7841 /* Make a ".reg/999" section. */
7842 /* thread_info.tid */
7843 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
7845 len
= strlen (buf
) + 1;
7846 name
= bfd_alloc (abfd
, len
);
7850 memcpy (name
, buf
, len
);
7852 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7856 /* sizeof (thread_info.thread_context) */
7858 /* offsetof (thread_info.thread_context) */
7859 sect
->filepos
= note
->descpos
+ 12;
7860 sect
->alignment_power
= 2;
7862 /* thread_info.is_active_thread */
7863 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
7865 if (is_active_thread
)
7866 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7870 case 3 /* NOTE_INFO_MODULE */:
7871 /* Make a ".module/xxxxxxxx" section. */
7872 /* module_info.base_address */
7873 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
7874 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
7876 len
= strlen (buf
) + 1;
7877 name
= bfd_alloc (abfd
, len
);
7881 memcpy (name
, buf
, len
);
7883 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
7888 sect
->size
= note
->descsz
;
7889 sect
->filepos
= note
->descpos
;
7890 sect
->alignment_power
= 2;
7901 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7903 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7911 if (bed
->elf_backend_grok_prstatus
)
7912 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7914 #if defined (HAVE_PRSTATUS_T)
7915 return elfcore_grok_prstatus (abfd
, note
);
7920 #if defined (HAVE_PSTATUS_T)
7922 return elfcore_grok_pstatus (abfd
, note
);
7925 #if defined (HAVE_LWPSTATUS_T)
7927 return elfcore_grok_lwpstatus (abfd
, note
);
7930 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7931 return elfcore_grok_prfpreg (abfd
, note
);
7933 case NT_WIN32PSTATUS
:
7934 return elfcore_grok_win32pstatus (abfd
, note
);
7936 case NT_PRXFPREG
: /* Linux SSE extension */
7937 if (note
->namesz
== 6
7938 && strcmp (note
->namedata
, "LINUX") == 0)
7939 return elfcore_grok_prxfpreg (abfd
, note
);
7944 if (note
->namesz
== 6
7945 && strcmp (note
->namedata
, "LINUX") == 0)
7946 return elfcore_grok_ppc_vmx (abfd
, note
);
7951 if (note
->namesz
== 6
7952 && strcmp (note
->namedata
, "LINUX") == 0)
7953 return elfcore_grok_ppc_vsx (abfd
, note
);
7959 if (bed
->elf_backend_grok_psinfo
)
7960 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7962 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7963 return elfcore_grok_psinfo (abfd
, note
);
7970 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
7975 sect
->size
= note
->descsz
;
7976 sect
->filepos
= note
->descpos
;
7977 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7985 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
7987 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
7988 elf_tdata (abfd
)->build_id
= bfd_alloc (abfd
, note
->descsz
);
7989 if (elf_tdata (abfd
)->build_id
== NULL
)
7992 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
7998 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8005 case NT_GNU_BUILD_ID
:
8006 return elfobj_grok_gnu_build_id (abfd
, note
);
8011 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8015 cp
= strchr (note
->namedata
, '@');
8018 *lwpidp
= atoi(cp
+ 1);
8025 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8027 /* Signal number at offset 0x08. */
8028 elf_tdata (abfd
)->core_signal
8029 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8031 /* Process ID at offset 0x50. */
8032 elf_tdata (abfd
)->core_pid
8033 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8035 /* Command name at 0x7c (max 32 bytes, including nul). */
8036 elf_tdata (abfd
)->core_command
8037 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8039 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8044 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8048 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8049 elf_tdata (abfd
)->core_lwpid
= lwp
;
8051 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8053 /* NetBSD-specific core "procinfo". Note that we expect to
8054 find this note before any of the others, which is fine,
8055 since the kernel writes this note out first when it
8056 creates a core file. */
8058 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8061 /* As of Jan 2002 there are no other machine-independent notes
8062 defined for NetBSD core files. If the note type is less
8063 than the start of the machine-dependent note types, we don't
8066 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8070 switch (bfd_get_arch (abfd
))
8072 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8073 PT_GETFPREGS == mach+2. */
8075 case bfd_arch_alpha
:
8076 case bfd_arch_sparc
:
8079 case NT_NETBSDCORE_FIRSTMACH
+0:
8080 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8082 case NT_NETBSDCORE_FIRSTMACH
+2:
8083 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8089 /* On all other arch's, PT_GETREGS == mach+1 and
8090 PT_GETFPREGS == mach+3. */
8095 case NT_NETBSDCORE_FIRSTMACH
+1:
8096 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8098 case NT_NETBSDCORE_FIRSTMACH
+3:
8099 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8109 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8111 /* Signal number at offset 0x08. */
8112 elf_tdata (abfd
)->core_signal
8113 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8115 /* Process ID at offset 0x20. */
8116 elf_tdata (abfd
)->core_pid
8117 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8119 /* Command name at 0x48 (max 32 bytes, including nul). */
8120 elf_tdata (abfd
)->core_command
8121 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8127 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8129 if (note
->type
== NT_OPENBSD_PROCINFO
)
8130 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8132 if (note
->type
== NT_OPENBSD_REGS
)
8133 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8135 if (note
->type
== NT_OPENBSD_FPREGS
)
8136 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8138 if (note
->type
== NT_OPENBSD_XFPREGS
)
8139 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8141 if (note
->type
== NT_OPENBSD_AUXV
)
8143 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8148 sect
->size
= note
->descsz
;
8149 sect
->filepos
= note
->descpos
;
8150 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8155 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8157 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8162 sect
->size
= note
->descsz
;
8163 sect
->filepos
= note
->descpos
;
8164 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8173 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8175 void *ddata
= note
->descdata
;
8182 /* nto_procfs_status 'pid' field is at offset 0. */
8183 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8185 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8186 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8188 /* nto_procfs_status 'flags' field is at offset 8. */
8189 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8191 /* nto_procfs_status 'what' field is at offset 14. */
8192 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8194 elf_tdata (abfd
)->core_signal
= sig
;
8195 elf_tdata (abfd
)->core_lwpid
= *tid
;
8198 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8199 do not come from signals so we make sure we set the current
8200 thread just in case. */
8201 if (flags
& 0x00000080)
8202 elf_tdata (abfd
)->core_lwpid
= *tid
;
8204 /* Make a ".qnx_core_status/%d" section. */
8205 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8207 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8212 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8216 sect
->size
= note
->descsz
;
8217 sect
->filepos
= note
->descpos
;
8218 sect
->alignment_power
= 2;
8220 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8224 elfcore_grok_nto_regs (bfd
*abfd
,
8225 Elf_Internal_Note
*note
,
8233 /* Make a "(base)/%d" section. */
8234 sprintf (buf
, "%s/%ld", base
, tid
);
8236 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
8241 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8245 sect
->size
= note
->descsz
;
8246 sect
->filepos
= note
->descpos
;
8247 sect
->alignment_power
= 2;
8249 /* This is the current thread. */
8250 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8251 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8256 #define BFD_QNT_CORE_INFO 7
8257 #define BFD_QNT_CORE_STATUS 8
8258 #define BFD_QNT_CORE_GREG 9
8259 #define BFD_QNT_CORE_FPREG 10
8262 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8264 /* Every GREG section has a STATUS section before it. Store the
8265 tid from the previous call to pass down to the next gregs
8267 static long tid
= 1;
8271 case BFD_QNT_CORE_INFO
:
8272 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8273 case BFD_QNT_CORE_STATUS
:
8274 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8275 case BFD_QNT_CORE_GREG
:
8276 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8277 case BFD_QNT_CORE_FPREG
:
8278 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8285 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8291 /* Use note name as section name. */
8293 name
= bfd_alloc (abfd
, len
);
8296 memcpy (name
, note
->namedata
, len
);
8297 name
[len
- 1] = '\0';
8299 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8303 sect
->size
= note
->descsz
;
8304 sect
->filepos
= note
->descpos
;
8305 sect
->alignment_power
= 1;
8310 /* Function: elfcore_write_note
8313 buffer to hold note, and current size of buffer
8317 size of data for note
8319 Writes note to end of buffer. ELF64 notes are written exactly as
8320 for ELF32, despite the current (as of 2006) ELF gabi specifying
8321 that they ought to have 8-byte namesz and descsz field, and have
8322 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8325 Pointer to realloc'd buffer, *BUFSIZ updated. */
8328 elfcore_write_note (bfd
*abfd
,
8336 Elf_External_Note
*xnp
;
8343 namesz
= strlen (name
) + 1;
8345 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8347 buf
= realloc (buf
, *bufsiz
+ newspace
);
8350 dest
= buf
+ *bufsiz
;
8351 *bufsiz
+= newspace
;
8352 xnp
= (Elf_External_Note
*) dest
;
8353 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8354 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8355 H_PUT_32 (abfd
, type
, xnp
->type
);
8359 memcpy (dest
, name
, namesz
);
8367 memcpy (dest
, input
, size
);
8377 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8379 elfcore_write_prpsinfo (bfd
*abfd
,
8385 const char *note_name
= "CORE";
8386 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8388 if (bed
->elf_backend_write_core_note
!= NULL
)
8391 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8392 NT_PRPSINFO
, fname
, psargs
);
8397 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8398 if (bed
->s
->elfclass
== ELFCLASS32
)
8400 #if defined (HAVE_PSINFO32_T)
8402 int note_type
= NT_PSINFO
;
8405 int note_type
= NT_PRPSINFO
;
8408 memset (&data
, 0, sizeof (data
));
8409 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8410 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8411 return elfcore_write_note (abfd
, buf
, bufsiz
,
8412 note_name
, note_type
, &data
, sizeof (data
));
8417 #if defined (HAVE_PSINFO_T)
8419 int note_type
= NT_PSINFO
;
8422 int note_type
= NT_PRPSINFO
;
8425 memset (&data
, 0, sizeof (data
));
8426 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8427 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8428 return elfcore_write_note (abfd
, buf
, bufsiz
,
8429 note_name
, note_type
, &data
, sizeof (data
));
8432 #endif /* PSINFO_T or PRPSINFO_T */
8434 #if defined (HAVE_PRSTATUS_T)
8436 elfcore_write_prstatus (bfd
*abfd
,
8443 const char *note_name
= "CORE";
8444 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8446 if (bed
->elf_backend_write_core_note
!= NULL
)
8449 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8451 pid
, cursig
, gregs
);
8456 #if defined (HAVE_PRSTATUS32_T)
8457 if (bed
->s
->elfclass
== ELFCLASS32
)
8459 prstatus32_t prstat
;
8461 memset (&prstat
, 0, sizeof (prstat
));
8462 prstat
.pr_pid
= pid
;
8463 prstat
.pr_cursig
= cursig
;
8464 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8465 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8466 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8473 memset (&prstat
, 0, sizeof (prstat
));
8474 prstat
.pr_pid
= pid
;
8475 prstat
.pr_cursig
= cursig
;
8476 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8477 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8478 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8481 #endif /* HAVE_PRSTATUS_T */
8483 #if defined (HAVE_LWPSTATUS_T)
8485 elfcore_write_lwpstatus (bfd
*abfd
,
8492 lwpstatus_t lwpstat
;
8493 const char *note_name
= "CORE";
8495 memset (&lwpstat
, 0, sizeof (lwpstat
));
8496 lwpstat
.pr_lwpid
= pid
>> 16;
8497 lwpstat
.pr_cursig
= cursig
;
8498 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8499 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8500 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8502 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8503 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8505 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8506 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8509 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8510 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8512 #endif /* HAVE_LWPSTATUS_T */
8514 #if defined (HAVE_PSTATUS_T)
8516 elfcore_write_pstatus (bfd
*abfd
,
8520 int cursig ATTRIBUTE_UNUSED
,
8521 const void *gregs ATTRIBUTE_UNUSED
)
8523 const char *note_name
= "CORE";
8524 #if defined (HAVE_PSTATUS32_T)
8525 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8527 if (bed
->s
->elfclass
== ELFCLASS32
)
8531 memset (&pstat
, 0, sizeof (pstat
));
8532 pstat
.pr_pid
= pid
& 0xffff;
8533 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8534 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8542 memset (&pstat
, 0, sizeof (pstat
));
8543 pstat
.pr_pid
= pid
& 0xffff;
8544 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8545 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8549 #endif /* HAVE_PSTATUS_T */
8552 elfcore_write_prfpreg (bfd
*abfd
,
8558 const char *note_name
= "CORE";
8559 return elfcore_write_note (abfd
, buf
, bufsiz
,
8560 note_name
, NT_FPREGSET
, fpregs
, size
);
8564 elfcore_write_prxfpreg (bfd
*abfd
,
8567 const void *xfpregs
,
8570 char *note_name
= "LINUX";
8571 return elfcore_write_note (abfd
, buf
, bufsiz
,
8572 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8576 elfcore_write_ppc_vmx (bfd
*abfd
,
8579 const void *ppc_vmx
,
8582 char *note_name
= "LINUX";
8583 return elfcore_write_note (abfd
, buf
, bufsiz
,
8584 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
8588 elfcore_write_ppc_vsx (bfd
*abfd
,
8591 const void *ppc_vsx
,
8594 char *note_name
= "LINUX";
8595 return elfcore_write_note (abfd
, buf
, bufsiz
,
8596 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
8600 elfcore_write_register_note (bfd
*abfd
,
8603 const char *section
,
8607 if (strcmp (section
, ".reg2") == 0)
8608 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
8609 if (strcmp (section
, ".reg-xfp") == 0)
8610 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
8611 if (strcmp (section
, ".reg-ppc-vmx") == 0)
8612 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
8613 if (strcmp (section
, ".reg-ppc-vsx") == 0)
8614 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
8619 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
8624 while (p
< buf
+ size
)
8626 /* FIXME: bad alignment assumption. */
8627 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8628 Elf_Internal_Note in
;
8630 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
8633 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8635 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8636 in
.namedata
= xnp
->name
;
8637 if (in
.namesz
> buf
- in
.namedata
+ size
)
8640 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8641 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8642 in
.descpos
= offset
+ (in
.descdata
- buf
);
8644 && (in
.descdata
>= buf
+ size
8645 || in
.descsz
> buf
- in
.descdata
+ size
))
8648 switch (bfd_get_format (abfd
))
8654 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
8656 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8659 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
8661 if (! elfcore_grok_openbsd_note (abfd
, &in
))
8664 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
8666 if (! elfcore_grok_nto_note (abfd
, &in
))
8669 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
8671 if (! elfcore_grok_spu_note (abfd
, &in
))
8676 if (! elfcore_grok_note (abfd
, &in
))
8682 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
8684 if (! elfobj_grok_gnu_note (abfd
, &in
))
8690 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8697 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8704 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8707 buf
= bfd_malloc (size
);
8711 if (bfd_bread (buf
, size
, abfd
) != size
8712 || !elf_parse_notes (abfd
, buf
, size
, offset
))
8722 /* Providing external access to the ELF program header table. */
8724 /* Return an upper bound on the number of bytes required to store a
8725 copy of ABFD's program header table entries. Return -1 if an error
8726 occurs; bfd_get_error will return an appropriate code. */
8729 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8731 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8733 bfd_set_error (bfd_error_wrong_format
);
8737 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8740 /* Copy ABFD's program header table entries to *PHDRS. The entries
8741 will be stored as an array of Elf_Internal_Phdr structures, as
8742 defined in include/elf/internal.h. To find out how large the
8743 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8745 Return the number of program header table entries read, or -1 if an
8746 error occurs; bfd_get_error will return an appropriate code. */
8749 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8753 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8755 bfd_set_error (bfd_error_wrong_format
);
8759 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8760 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8761 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8766 enum elf_reloc_type_class
8767 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8769 return reloc_class_normal
;
8772 /* For RELA architectures, return the relocation value for a
8773 relocation against a local symbol. */
8776 _bfd_elf_rela_local_sym (bfd
*abfd
,
8777 Elf_Internal_Sym
*sym
,
8779 Elf_Internal_Rela
*rel
)
8781 asection
*sec
= *psec
;
8784 relocation
= (sec
->output_section
->vma
8785 + sec
->output_offset
8787 if ((sec
->flags
& SEC_MERGE
)
8788 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8789 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8792 _bfd_merged_section_offset (abfd
, psec
,
8793 elf_section_data (sec
)->sec_info
,
8794 sym
->st_value
+ rel
->r_addend
);
8797 /* If we have changed the section, and our original section is
8798 marked with SEC_EXCLUDE, it means that the original
8799 SEC_MERGE section has been completely subsumed in some
8800 other SEC_MERGE section. In this case, we need to leave
8801 some info around for --emit-relocs. */
8802 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8803 sec
->kept_section
= *psec
;
8806 rel
->r_addend
-= relocation
;
8807 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8813 _bfd_elf_rel_local_sym (bfd
*abfd
,
8814 Elf_Internal_Sym
*sym
,
8818 asection
*sec
= *psec
;
8820 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8821 return sym
->st_value
+ addend
;
8823 return _bfd_merged_section_offset (abfd
, psec
,
8824 elf_section_data (sec
)->sec_info
,
8825 sym
->st_value
+ addend
);
8829 _bfd_elf_section_offset (bfd
*abfd
,
8830 struct bfd_link_info
*info
,
8834 switch (sec
->sec_info_type
)
8836 case ELF_INFO_TYPE_STABS
:
8837 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8839 case ELF_INFO_TYPE_EH_FRAME
:
8840 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8846 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8847 reconstruct an ELF file by reading the segments out of remote memory
8848 based on the ELF file header at EHDR_VMA and the ELF program headers it
8849 points to. If not null, *LOADBASEP is filled in with the difference
8850 between the VMAs from which the segments were read, and the VMAs the
8851 file headers (and hence BFD's idea of each section's VMA) put them at.
8853 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8854 remote memory at target address VMA into the local buffer at MYADDR; it
8855 should return zero on success or an `errno' code on failure. TEMPL must
8856 be a BFD for an ELF target with the word size and byte order found in
8857 the remote memory. */
8860 bfd_elf_bfd_from_remote_memory
8864 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8866 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8867 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8871 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8872 long symcount ATTRIBUTE_UNUSED
,
8873 asymbol
**syms ATTRIBUTE_UNUSED
,
8878 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8881 const char *relplt_name
;
8882 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8886 Elf_Internal_Shdr
*hdr
;
8892 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8895 if (dynsymcount
<= 0)
8898 if (!bed
->plt_sym_val
)
8901 relplt_name
= bed
->relplt_name
;
8902 if (relplt_name
== NULL
)
8903 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
8904 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8908 hdr
= &elf_section_data (relplt
)->this_hdr
;
8909 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8910 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8913 plt
= bfd_get_section_by_name (abfd
, ".plt");
8917 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8918 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8921 count
= relplt
->size
/ hdr
->sh_entsize
;
8922 size
= count
* sizeof (asymbol
);
8923 p
= relplt
->relocation
;
8924 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8925 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8927 s
= *ret
= bfd_malloc (size
);
8931 names
= (char *) (s
+ count
);
8932 p
= relplt
->relocation
;
8934 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
8939 addr
= bed
->plt_sym_val (i
, plt
, p
);
8940 if (addr
== (bfd_vma
) -1)
8943 *s
= **p
->sym_ptr_ptr
;
8944 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8945 we are defining a symbol, ensure one of them is set. */
8946 if ((s
->flags
& BSF_LOCAL
) == 0)
8947 s
->flags
|= BSF_GLOBAL
;
8948 s
->flags
|= BSF_SYNTHETIC
;
8950 s
->value
= addr
- plt
->vma
;
8953 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8954 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8956 memcpy (names
, "@plt", sizeof ("@plt"));
8957 names
+= sizeof ("@plt");
8964 /* It is only used by x86-64 so far. */
8965 asection _bfd_elf_large_com_section
8966 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8967 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8970 _bfd_elf_set_osabi (bfd
* abfd
,
8971 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
8973 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
8975 i_ehdrp
= elf_elfheader (abfd
);
8977 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
8979 /* To make things simpler for the loader on Linux systems we set the
8980 osabi field to ELFOSABI_LINUX if the binary contains symbols of
8981 the STT_GNU_IFUNC type. */
8982 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
8983 && elf_tdata (abfd
)->has_ifunc_symbols
)
8984 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
8988 /* Return TRUE for ELF symbol types that represent functions.
8989 This is the default version of this function, which is sufficient for
8990 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
8993 _bfd_elf_is_function_type (unsigned int type
)
8995 return (type
== STT_FUNC
8996 || type
== STT_GNU_IFUNC
);