1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
210 bfd_elf_mkobject (bfd
*abfd
)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
215 if (elf_tdata (abfd
) == 0)
217 /* Since everything is done at close time, do we need any
224 bfd_elf_mkcorefile (bfd
*abfd
)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd
);
231 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
233 Elf_Internal_Shdr
**i_shdrp
;
234 bfd_byte
*shstrtab
= NULL
;
236 bfd_size_type shstrtabsize
;
238 i_shdrp
= elf_elfsections (abfd
);
239 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
242 shstrtab
= i_shdrp
[shindex
]->contents
;
243 if (shstrtab
== NULL
)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset
= i_shdrp
[shindex
]->sh_offset
;
247 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize
+ 1 == 0
252 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
253 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
255 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
257 if (bfd_get_error () != bfd_error_system_call
)
258 bfd_set_error (bfd_error_file_truncated
);
262 shstrtab
[shstrtabsize
] = '\0';
263 i_shdrp
[shindex
]->contents
= shstrtab
;
265 return (char *) shstrtab
;
269 bfd_elf_string_from_elf_section (bfd
*abfd
,
270 unsigned int shindex
,
271 unsigned int strindex
)
273 Elf_Internal_Shdr
*hdr
;
278 hdr
= elf_elfsections (abfd
)[shindex
];
280 if (hdr
->contents
== NULL
281 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
284 if (strindex
>= hdr
->sh_size
)
286 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
287 (*_bfd_error_handler
)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
290 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
292 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
296 return ((char *) hdr
->contents
) + strindex
;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
306 bfd_elf_get_elf_syms (bfd
*ibfd
,
307 Elf_Internal_Shdr
*symtab_hdr
,
310 Elf_Internal_Sym
*intsym_buf
,
312 Elf_External_Sym_Shndx
*extshndx_buf
)
314 Elf_Internal_Shdr
*shndx_hdr
;
316 const bfd_byte
*esym
;
317 Elf_External_Sym_Shndx
*alloc_extshndx
;
318 Elf_External_Sym_Shndx
*shndx
;
319 Elf_Internal_Sym
*isym
;
320 Elf_Internal_Sym
*isymend
;
321 const struct elf_backend_data
*bed
;
329 /* Normal syms might have section extension entries. */
331 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
332 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
334 /* Read the symbols. */
336 alloc_extshndx
= NULL
;
337 bed
= get_elf_backend_data (ibfd
);
338 extsym_size
= bed
->s
->sizeof_sym
;
339 amt
= symcount
* extsym_size
;
340 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
341 if (extsym_buf
== NULL
)
343 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
344 extsym_buf
= alloc_ext
;
346 if (extsym_buf
== NULL
347 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
348 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
354 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
358 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
359 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
360 if (extshndx_buf
== NULL
)
362 alloc_extshndx
= bfd_malloc2 (symcount
,
363 sizeof (Elf_External_Sym_Shndx
));
364 extshndx_buf
= alloc_extshndx
;
366 if (extshndx_buf
== NULL
367 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
368 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
375 if (intsym_buf
== NULL
)
377 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
378 if (intsym_buf
== NULL
)
382 /* Convert the symbols to internal form. */
383 isymend
= intsym_buf
+ symcount
;
384 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
386 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
387 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
390 if (alloc_ext
!= NULL
)
392 if (alloc_extshndx
!= NULL
)
393 free (alloc_extshndx
);
398 /* Look up a symbol name. */
400 bfd_elf_sym_name (bfd
*abfd
,
401 Elf_Internal_Shdr
*symtab_hdr
,
402 Elf_Internal_Sym
*isym
,
406 unsigned int iname
= isym
->st_name
;
407 unsigned int shindex
= symtab_hdr
->sh_link
;
409 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym
->st_shndx
< elf_numsections (abfd
)
412 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 else if (sym_sec
&& *name
== '\0')
422 name
= bfd_section_name (abfd
, sym_sec
);
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
431 typedef union elf_internal_group
{
432 Elf_Internal_Shdr
*shdr
;
434 } Elf_Internal_Group
;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
440 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
442 Elf_Internal_Shdr
*hdr
;
443 unsigned char esym
[sizeof (Elf64_External_Sym
)];
444 Elf_External_Sym_Shndx eshndx
;
445 Elf_Internal_Sym isym
;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
450 if (hdr
->sh_type
!= SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
454 /* Go read the symbol. */
455 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
456 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
457 &isym
, esym
, &eshndx
) == NULL
)
460 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
466 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
468 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
474 unsigned int i
, shnum
;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum
= elf_numsections (abfd
);
480 for (i
= 0; i
< shnum
; i
++)
482 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
483 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
489 num_group
= (unsigned) -1;
490 elf_tdata (abfd
)->num_group
= num_group
;
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
498 elf_tdata (abfd
)->num_group
= num_group
;
499 elf_tdata (abfd
)->group_sect_ptr
500 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
501 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
505 for (i
= 0; i
< shnum
; i
++)
507 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
508 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
511 Elf_Internal_Group
*dest
;
513 /* Add to list of sections. */
514 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest
) >= 4);
519 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
520 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
522 if (shdr
->contents
== NULL
523 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
524 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
532 src
= shdr
->contents
+ shdr
->sh_size
;
533 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
540 idx
= H_GET_32 (abfd
, src
);
541 if (src
== shdr
->contents
)
544 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
545 shdr
->bfd_section
->flags
546 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
551 ((*_bfd_error_handler
)
552 (_("%B: invalid SHT_GROUP entry"), abfd
));
555 dest
->shdr
= elf_elfsections (abfd
)[idx
];
562 if (num_group
!= (unsigned) -1)
566 for (i
= 0; i
< num_group
; i
++)
568 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
569 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
570 unsigned int n_elt
= shdr
->sh_size
/ 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
575 if ((++idx
)->shdr
== hdr
)
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
582 idx
= (Elf_Internal_Group
*) shdr
->contents
;
583 n_elt
= shdr
->sh_size
/ 4;
585 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
586 && elf_next_in_group (s
) != NULL
)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect
) = elf_group_name (s
);
593 elf_next_in_group (newsect
) = elf_next_in_group (s
);
594 elf_next_in_group (s
) = newsect
;
600 gname
= group_signature (abfd
, shdr
);
603 elf_group_name (newsect
) = gname
;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect
) = newsect
;
609 /* If the group section has been created, point to the
611 if (shdr
->bfd_section
!= NULL
)
612 elf_next_in_group (shdr
->bfd_section
) = newsect
;
620 if (elf_group_name (newsect
) == NULL
)
622 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
629 _bfd_elf_setup_sections (bfd
*abfd
)
632 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
633 bfd_boolean result
= TRUE
;
636 /* Process SHF_LINK_ORDER. */
637 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
639 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
640 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
642 unsigned int elfsec
= this_hdr
->sh_link
;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
648 const struct elf_backend_data
*bed
649 = get_elf_backend_data (abfd
);
650 if (bed
->link_order_error_handler
)
651 bed
->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
659 this_hdr
= elf_elfsections (abfd
)[elfsec
];
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link
= this_hdr
->bfd_section
;
667 (*_bfd_error_handler
)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s
->owner
, s
, elfsec
);
673 elf_linked_to_section (s
) = link
;
678 /* Process section groups. */
679 if (num_group
== (unsigned) -1)
682 for (i
= 0; i
< num_group
; i
++)
684 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
685 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
686 unsigned int n_elt
= shdr
->sh_size
/ 4;
689 if ((++idx
)->shdr
->bfd_section
)
690 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
691 else if (idx
->shdr
->sh_type
== SHT_RELA
692 || idx
->shdr
->sh_type
== SHT_REL
)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
698 shdr
->bfd_section
->size
-= 4;
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler
)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
705 (unsigned int) idx
->shdr
->sh_type
,
706 bfd_elf_string_from_elf_section (abfd
,
707 (elf_elfheader (abfd
)
710 shdr
->bfd_section
->name
);
718 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
720 return elf_next_in_group (sec
) != NULL
;
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
727 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
728 Elf_Internal_Shdr
*hdr
,
734 const struct elf_backend_data
*bed
;
736 if (hdr
->bfd_section
!= NULL
)
738 BFD_ASSERT (strcmp (name
,
739 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
743 newsect
= bfd_make_section_anyway (abfd
, name
);
747 hdr
->bfd_section
= newsect
;
748 elf_section_data (newsect
)->this_hdr
= *hdr
;
749 elf_section_data (newsect
)->this_idx
= shindex
;
751 /* Always use the real type/flags. */
752 elf_section_type (newsect
) = hdr
->sh_type
;
753 elf_section_flags (newsect
) = hdr
->sh_flags
;
755 newsect
->filepos
= hdr
->sh_offset
;
757 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
758 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
759 || ! bfd_set_section_alignment (abfd
, newsect
,
760 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
763 flags
= SEC_NO_FLAGS
;
764 if (hdr
->sh_type
!= SHT_NOBITS
)
765 flags
|= SEC_HAS_CONTENTS
;
766 if (hdr
->sh_type
== SHT_GROUP
)
767 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
768 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
771 if (hdr
->sh_type
!= SHT_NOBITS
)
774 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
775 flags
|= SEC_READONLY
;
776 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
778 else if ((flags
& SEC_LOAD
) != 0)
780 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
783 newsect
->entsize
= hdr
->sh_entsize
;
784 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
785 flags
|= SEC_STRINGS
;
787 if (hdr
->sh_flags
& SHF_GROUP
)
788 if (!setup_group (abfd
, hdr
, newsect
))
790 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
791 flags
|= SEC_THREAD_LOCAL
;
793 if ((flags
& SEC_ALLOC
) == 0)
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
801 } debug_sections
[] =
803 { "debug", 5 }, /* 'd' */
804 { NULL
, 0 }, /* 'e' */
805 { NULL
, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL
, 0 }, /* 'h' */
808 { NULL
, 0 }, /* 'i' */
809 { NULL
, 0 }, /* 'j' */
810 { NULL
, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL
, 0 }, /* 'm' */
813 { NULL
, 0 }, /* 'n' */
814 { NULL
, 0 }, /* 'o' */
815 { NULL
, 0 }, /* 'p' */
816 { NULL
, 0 }, /* 'q' */
817 { NULL
, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
823 int i
= name
[1] - 'd';
825 && i
< (int) ARRAY_SIZE (debug_sections
)
826 && debug_sections
[i
].name
!= NULL
827 && strncmp (&name
[1], debug_sections
[i
].name
,
828 debug_sections
[i
].len
) == 0)
829 flags
|= SEC_DEBUGGING
;
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect
) == NULL
)
841 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
843 bed
= get_elf_backend_data (abfd
);
844 if (bed
->elf_backend_section_flags
)
845 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
848 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
851 if ((flags
& SEC_ALLOC
) != 0)
853 Elf_Internal_Phdr
*phdr
;
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr
= elf_tdata (abfd
)->phdr
;
860 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
862 if (phdr
->p_paddr
!= 0)
865 if (i
< elf_elfheader (abfd
)->e_phnum
)
867 phdr
= elf_tdata (abfd
)->phdr
;
868 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr
->p_type
== PT_LOAD
883 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
884 && (hdr
->sh_offset
+ hdr
->sh_size
885 <= phdr
->p_offset
+ phdr
->p_memsz
)
886 && ((flags
& SEC_LOAD
) == 0
887 || (hdr
->sh_offset
+ hdr
->sh_size
888 <= phdr
->p_offset
+ phdr
->p_filesz
)))
890 if ((flags
& SEC_LOAD
) == 0)
891 newsect
->lma
= (phdr
->p_paddr
892 + hdr
->sh_addr
- phdr
->p_vaddr
);
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect
->lma
= (phdr
->p_paddr
902 + hdr
->sh_offset
- phdr
->p_offset
);
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr
->sh_addr
>= phdr
->p_vaddr
909 && (hdr
->sh_addr
+ hdr
->sh_size
910 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
935 struct elf_internal_shdr
*
936 bfd_elf_find_section (bfd
*abfd
, char *name
)
938 Elf_Internal_Shdr
**i_shdrp
;
943 i_shdrp
= elf_elfsections (abfd
);
946 shstrtab
= bfd_elf_get_str_section (abfd
,
947 elf_elfheader (abfd
)->e_shstrndx
);
948 if (shstrtab
!= NULL
)
950 max
= elf_numsections (abfd
);
951 for (i
= 1; i
< max
; i
++)
952 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
959 const char *const bfd_elf_section_type_names
[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
977 arelent
*reloc_entry
,
979 void *data ATTRIBUTE_UNUSED
,
980 asection
*input_section
,
982 char **error_message ATTRIBUTE_UNUSED
)
984 if (output_bfd
!= NULL
985 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
986 && (! reloc_entry
->howto
->partial_inplace
987 || reloc_entry
->addend
== 0))
989 reloc_entry
->address
+= input_section
->output_offset
;
993 return bfd_reloc_continue
;
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
999 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1002 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1003 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1006 /* Finish SHF_MERGE section merging. */
1009 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1014 if (!is_elf_hash_table (info
->hash
))
1017 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1018 if ((ibfd
->flags
& DYNAMIC
) == 0)
1019 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1020 if ((sec
->flags
& SEC_MERGE
) != 0
1021 && !bfd_is_abs_section (sec
->output_section
))
1023 struct bfd_elf_section_data
*secdata
;
1025 secdata
= elf_section_data (sec
);
1026 if (! _bfd_add_merge_section (abfd
,
1027 &elf_hash_table (info
)->merge_info
,
1028 sec
, &secdata
->sec_info
))
1030 else if (secdata
->sec_info
)
1031 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1034 if (elf_hash_table (info
)->merge_info
!= NULL
)
1035 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1036 merge_sections_remove_hook
);
1041 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1043 sec
->output_section
= bfd_abs_section_ptr
;
1044 sec
->output_offset
= sec
->vma
;
1045 if (!is_elf_hash_table (info
->hash
))
1048 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1051 /* Copy the program header and other data from one object module to
1055 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1057 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1061 BFD_ASSERT (!elf_flags_init (obfd
)
1062 || (elf_elfheader (obfd
)->e_flags
1063 == elf_elfheader (ibfd
)->e_flags
));
1065 elf_gp (obfd
) = elf_gp (ibfd
);
1066 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1067 elf_flags_init (obfd
) = TRUE
;
1072 get_segment_type (unsigned int p_type
)
1077 case PT_NULL
: pt
= "NULL"; break;
1078 case PT_LOAD
: pt
= "LOAD"; break;
1079 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1080 case PT_INTERP
: pt
= "INTERP"; break;
1081 case PT_NOTE
: pt
= "NOTE"; break;
1082 case PT_SHLIB
: pt
= "SHLIB"; break;
1083 case PT_PHDR
: pt
= "PHDR"; break;
1084 case PT_TLS
: pt
= "TLS"; break;
1085 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1086 case PT_GNU_STACK
: pt
= "STACK"; break;
1087 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1088 default: pt
= NULL
; break;
1093 /* Print out the program headers. */
1096 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1099 Elf_Internal_Phdr
*p
;
1101 bfd_byte
*dynbuf
= NULL
;
1103 p
= elf_tdata (abfd
)->phdr
;
1108 fprintf (f
, _("\nProgram Header:\n"));
1109 c
= elf_elfheader (abfd
)->e_phnum
;
1110 for (i
= 0; i
< c
; i
++, p
++)
1112 const char *pt
= get_segment_type (p
->p_type
);
1117 sprintf (buf
, "0x%lx", p
->p_type
);
1120 fprintf (f
, "%8s off 0x", pt
);
1121 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1122 fprintf (f
, " vaddr 0x");
1123 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1124 fprintf (f
, " paddr 0x");
1125 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1126 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1127 fprintf (f
, " filesz 0x");
1128 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1129 fprintf (f
, " memsz 0x");
1130 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1131 fprintf (f
, " flags %c%c%c",
1132 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1133 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1134 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1135 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1136 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1141 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1145 unsigned long shlink
;
1146 bfd_byte
*extdyn
, *extdynend
;
1148 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1150 fprintf (f
, _("\nDynamic Section:\n"));
1152 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1155 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1158 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1160 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1161 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1164 extdynend
= extdyn
+ s
->size
;
1165 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1167 Elf_Internal_Dyn dyn
;
1170 bfd_boolean stringp
;
1172 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1174 if (dyn
.d_tag
== DT_NULL
)
1181 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1185 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1186 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1187 case DT_PLTGOT
: name
= "PLTGOT"; break;
1188 case DT_HASH
: name
= "HASH"; break;
1189 case DT_STRTAB
: name
= "STRTAB"; break;
1190 case DT_SYMTAB
: name
= "SYMTAB"; break;
1191 case DT_RELA
: name
= "RELA"; break;
1192 case DT_RELASZ
: name
= "RELASZ"; break;
1193 case DT_RELAENT
: name
= "RELAENT"; break;
1194 case DT_STRSZ
: name
= "STRSZ"; break;
1195 case DT_SYMENT
: name
= "SYMENT"; break;
1196 case DT_INIT
: name
= "INIT"; break;
1197 case DT_FINI
: name
= "FINI"; break;
1198 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1199 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1200 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1201 case DT_REL
: name
= "REL"; break;
1202 case DT_RELSZ
: name
= "RELSZ"; break;
1203 case DT_RELENT
: name
= "RELENT"; break;
1204 case DT_PLTREL
: name
= "PLTREL"; break;
1205 case DT_DEBUG
: name
= "DEBUG"; break;
1206 case DT_TEXTREL
: name
= "TEXTREL"; break;
1207 case DT_JMPREL
: name
= "JMPREL"; break;
1208 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1209 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1214 case DT_FLAGS
: name
= "FLAGS"; break;
1215 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1218 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1219 case DT_MOVEENT
: name
= "MOVEENT"; break;
1220 case DT_MOVESZ
: name
= "MOVESZ"; break;
1221 case DT_FEATURE
: name
= "FEATURE"; break;
1222 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1223 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1224 case DT_SYMINENT
: name
= "SYMINENT"; break;
1225 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1226 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1227 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1228 case DT_PLTPAD
: name
= "PLTPAD"; break;
1229 case DT_MOVETAB
: name
= "MOVETAB"; break;
1230 case DT_SYMINFO
: name
= "SYMINFO"; break;
1231 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1232 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1233 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1234 case DT_VERSYM
: name
= "VERSYM"; break;
1235 case DT_VERDEF
: name
= "VERDEF"; break;
1236 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1237 case DT_VERNEED
: name
= "VERNEED"; break;
1238 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1239 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1240 case DT_USED
: name
= "USED"; break;
1241 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1244 fprintf (f
, " %-11s ", name
);
1246 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1250 unsigned int tagv
= dyn
.d_un
.d_val
;
1252 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1255 fprintf (f
, "%s", string
);
1264 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1265 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1267 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1271 if (elf_dynverdef (abfd
) != 0)
1273 Elf_Internal_Verdef
*t
;
1275 fprintf (f
, _("\nVersion definitions:\n"));
1276 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1278 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1279 t
->vd_flags
, t
->vd_hash
,
1280 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1281 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1283 Elf_Internal_Verdaux
*a
;
1286 for (a
= t
->vd_auxptr
->vda_nextptr
;
1290 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1296 if (elf_dynverref (abfd
) != 0)
1298 Elf_Internal_Verneed
*t
;
1300 fprintf (f
, _("\nVersion References:\n"));
1301 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1303 Elf_Internal_Vernaux
*a
;
1305 fprintf (f
, _(" required from %s:\n"),
1306 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1307 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1308 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1309 a
->vna_flags
, a
->vna_other
,
1310 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1322 /* Display ELF-specific fields of a symbol. */
1325 bfd_elf_print_symbol (bfd
*abfd
,
1328 bfd_print_symbol_type how
)
1333 case bfd_print_symbol_name
:
1334 fprintf (file
, "%s", symbol
->name
);
1336 case bfd_print_symbol_more
:
1337 fprintf (file
, "elf ");
1338 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1339 fprintf (file
, " %lx", (long) symbol
->flags
);
1341 case bfd_print_symbol_all
:
1343 const char *section_name
;
1344 const char *name
= NULL
;
1345 const struct elf_backend_data
*bed
;
1346 unsigned char st_other
;
1349 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1351 bed
= get_elf_backend_data (abfd
);
1352 if (bed
->elf_backend_print_symbol_all
)
1353 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1357 name
= symbol
->name
;
1358 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1361 fprintf (file
, " %s\t", section_name
);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol
->section
))
1367 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1369 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1370 bfd_fprintf_vma (abfd
, file
, val
);
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd
)->dynversym_section
!= 0
1374 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1375 || elf_tdata (abfd
)->dynverref_section
!= 0))
1377 unsigned int vernum
;
1378 const char *version_string
;
1380 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1383 version_string
= "";
1384 else if (vernum
== 1)
1385 version_string
= "Base";
1386 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1388 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1391 Elf_Internal_Verneed
*t
;
1393 version_string
= "";
1394 for (t
= elf_tdata (abfd
)->verref
;
1398 Elf_Internal_Vernaux
*a
;
1400 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1402 if (a
->vna_other
== vernum
)
1404 version_string
= a
->vna_nodename
;
1411 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1412 fprintf (file
, " %-11s", version_string
);
1417 fprintf (file
, " (%s)", version_string
);
1418 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1423 /* If the st_other field is not zero, print it. */
1424 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1429 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1430 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1431 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1433 /* Some other non-defined flags are also present, so print
1435 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1438 fprintf (file
, " %s", name
);
1444 /* Create an entry in an ELF linker hash table. */
1446 struct bfd_hash_entry
*
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1448 struct bfd_hash_table
*table
,
1451 /* Allocate the structure if it has not already been allocated by a
1455 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1460 /* Call the allocation method of the superclass. */
1461 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1464 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1465 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1467 /* Set local fields. */
1470 ret
->got
= htab
->init_got_refcount
;
1471 ret
->plt
= htab
->init_plt_refcount
;
1472 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1473 - offsetof (struct elf_link_hash_entry
, size
)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1489 struct elf_link_hash_entry
*dir
,
1490 struct elf_link_hash_entry
*ind
)
1492 struct elf_link_hash_table
*htab
;
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1497 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1498 dir
->ref_regular
|= ind
->ref_regular
;
1499 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1500 dir
->non_got_ref
|= ind
->non_got_ref
;
1501 dir
->needs_plt
|= ind
->needs_plt
;
1502 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1504 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab
= elf_hash_table (info
);
1510 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1512 if (dir
->got
.refcount
< 0)
1513 dir
->got
.refcount
= 0;
1514 dir
->got
.refcount
+= ind
->got
.refcount
;
1515 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1518 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1520 if (dir
->plt
.refcount
< 0)
1521 dir
->plt
.refcount
= 0;
1522 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1523 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1526 if (ind
->dynindx
!= -1)
1528 if (dir
->dynindx
!= -1)
1529 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1530 dir
->dynindx
= ind
->dynindx
;
1531 dir
->dynstr_index
= ind
->dynstr_index
;
1533 ind
->dynstr_index
= 0;
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1539 struct elf_link_hash_entry
*h
,
1540 bfd_boolean force_local
)
1542 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1546 h
->forced_local
= 1;
1547 if (h
->dynindx
!= -1)
1550 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1556 /* Initialize an ELF linker hash table. */
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table
*table
,
1562 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1563 struct bfd_hash_table
*,
1565 unsigned int entsize
)
1568 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1570 table
->dynamic_sections_created
= FALSE
;
1571 table
->dynobj
= NULL
;
1572 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1573 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1574 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1575 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table
->dynsymcount
= 1;
1578 table
->dynstr
= NULL
;
1579 table
->bucketcount
= 0;
1580 table
->needed
= NULL
;
1582 table
->merge_info
= NULL
;
1583 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1584 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1585 table
->dynlocal
= NULL
;
1586 table
->runpath
= NULL
;
1587 table
->tls_sec
= NULL
;
1588 table
->tls_size
= 0;
1589 table
->loaded
= NULL
;
1590 table
->is_relocatable_executable
= FALSE
;
1592 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1593 table
->root
.type
= bfd_link_elf_hash_table
;
1598 /* Create an ELF linker hash table. */
1600 struct bfd_link_hash_table
*
1601 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1603 struct elf_link_hash_table
*ret
;
1604 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1606 ret
= bfd_malloc (amt
);
1610 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1611 sizeof (struct elf_link_hash_entry
)))
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1625 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1627 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd
) == bfd_object
)
1629 elf_dt_name (abfd
) = name
;
1633 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1636 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd
) == bfd_object
)
1638 lib_class
= elf_dyn_lib_class (abfd
);
1645 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1647 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd
) == bfd_object
)
1649 elf_dyn_lib_class (abfd
) = lib_class
;
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1655 struct bfd_link_needed_list
*
1656 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1657 struct bfd_link_info
*info
)
1659 if (! is_elf_hash_table (info
->hash
))
1661 return elf_hash_table (info
)->needed
;
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1667 struct bfd_link_needed_list
*
1668 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1669 struct bfd_link_info
*info
)
1671 if (! is_elf_hash_table (info
->hash
))
1673 return elf_hash_table (info
)->runpath
;
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1681 bfd_elf_get_dt_soname (bfd
*abfd
)
1683 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd
) == bfd_object
)
1685 return elf_dt_name (abfd
);
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1693 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1694 struct bfd_link_needed_list
**pneeded
)
1697 bfd_byte
*dynbuf
= NULL
;
1699 unsigned long shlink
;
1700 bfd_byte
*extdyn
, *extdynend
;
1702 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1706 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd
) != bfd_object
)
1710 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1711 if (s
== NULL
|| s
->size
== 0)
1714 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1717 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1721 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1723 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1724 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1727 extdynend
= extdyn
+ s
->size
;
1728 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1730 Elf_Internal_Dyn dyn
;
1732 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1734 if (dyn
.d_tag
== DT_NULL
)
1737 if (dyn
.d_tag
== DT_NEEDED
)
1740 struct bfd_link_needed_list
*l
;
1741 unsigned int tagv
= dyn
.d_un
.d_val
;
1744 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1749 l
= bfd_alloc (abfd
, amt
);
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1772 struct bfd_strtab_hash
*
1773 _bfd_elf_stringtab_init (void)
1775 struct bfd_strtab_hash
*ret
;
1777 ret
= _bfd_stringtab_init ();
1782 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1783 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1784 if (loc
== (bfd_size_type
) -1)
1786 _bfd_stringtab_free (ret
);
1793 /* ELF .o/exec file reading */
1795 /* Create a new bfd section from an ELF section header. */
1798 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1800 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1801 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1802 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1805 name
= bfd_elf_string_from_elf_section (abfd
,
1806 elf_elfheader (abfd
)->e_shstrndx
,
1811 switch (hdr
->sh_type
)
1814 /* Inactive section. Throw it away. */
1817 case SHT_PROGBITS
: /* Normal section with contents. */
1818 case SHT_NOBITS
: /* .bss section. */
1819 case SHT_HASH
: /* .hash section. */
1820 case SHT_NOTE
: /* .note section. */
1821 case SHT_INIT_ARRAY
: /* .init_array section. */
1822 case SHT_FINI_ARRAY
: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1827 case SHT_DYNAMIC
: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1830 if (hdr
->sh_link
> elf_numsections (abfd
)
1831 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1833 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1835 Elf_Internal_Shdr
*dynsymhdr
;
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd
) != 0)
1842 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1843 hdr
->sh_link
= dynsymhdr
->sh_link
;
1847 unsigned int i
, num_sec
;
1849 num_sec
= elf_numsections (abfd
);
1850 for (i
= 1; i
< num_sec
; i
++)
1852 dynsymhdr
= elf_elfsections (abfd
)[i
];
1853 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1855 hdr
->sh_link
= dynsymhdr
->sh_link
;
1863 case SHT_SYMTAB
: /* A symbol table */
1864 if (elf_onesymtab (abfd
) == shindex
)
1867 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1869 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1870 elf_onesymtab (abfd
) = shindex
;
1871 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1872 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1873 abfd
->flags
|= HAS_SYMS
;
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1881 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1882 && (abfd
->flags
& DYNAMIC
) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1892 unsigned int i
, num_sec
;
1894 num_sec
= elf_numsections (abfd
);
1895 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1897 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1898 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1899 && hdr2
->sh_link
== shindex
)
1903 for (i
= 1; i
< shindex
; i
++)
1905 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1906 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1907 && hdr2
->sh_link
== shindex
)
1911 return bfd_section_from_shdr (abfd
, i
);
1915 case SHT_DYNSYM
: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd
) == shindex
)
1919 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1921 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1922 elf_dynsymtab (abfd
) = shindex
;
1923 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1924 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1925 abfd
->flags
|= HAS_SYMS
;
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1931 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd
) == shindex
)
1935 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1936 elf_symtab_shndx (abfd
) = shindex
;
1937 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1938 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1941 case SHT_STRTAB
: /* A string table */
1942 if (hdr
->bfd_section
!= NULL
)
1944 if (ehdr
->e_shstrndx
== shindex
)
1946 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1947 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1950 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1953 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1954 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1957 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1960 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1961 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1962 elf_elfsections (abfd
)[shindex
] = hdr
;
1963 /* We also treat this as a regular section, so that objcopy
1965 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1974 unsigned int i
, num_sec
;
1976 num_sec
= elf_numsections (abfd
);
1977 for (i
= 1; i
< num_sec
; i
++)
1979 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1980 if (hdr2
->sh_link
== shindex
)
1982 /* Prevent endless recursion on broken objects. */
1985 if (! bfd_section_from_shdr (abfd
, i
))
1987 if (elf_onesymtab (abfd
) == i
)
1989 if (elf_dynsymtab (abfd
) == i
)
1990 goto dynsymtab_strtab
;
1994 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1998 /* *These* do a lot of work -- but build no sections! */
2000 asection
*target_sect
;
2001 Elf_Internal_Shdr
*hdr2
;
2002 unsigned int num_sec
= elf_numsections (abfd
);
2005 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2006 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2011 || hdr
->sh_link
>= num_sec
)
2013 ((*_bfd_error_handler
)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd
, hdr
->sh_link
, name
, shindex
));
2016 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2028 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2034 for (scan
= 1; scan
< num_sec
; scan
++)
2036 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2037 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2048 hdr
->sh_link
= found
;
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2053 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2054 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2064 || hdr
->sh_info
== SHN_UNDEF
2065 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2066 || hdr
->sh_info
>= num_sec
2067 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2068 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2069 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2072 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2074 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2075 if (target_sect
== NULL
)
2078 if ((target_sect
->flags
& SEC_RELOC
) == 0
2079 || target_sect
->reloc_count
== 0)
2080 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2084 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2085 amt
= sizeof (*hdr2
);
2086 hdr2
= bfd_alloc (abfd
, amt
);
2087 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2090 elf_elfsections (abfd
)[shindex
] = hdr2
;
2091 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2092 target_sect
->flags
|= SEC_RELOC
;
2093 target_sect
->relocation
= NULL
;
2094 target_sect
->rel_filepos
= hdr
->sh_offset
;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr
->sh_size
!= 0)
2098 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2099 abfd
->flags
|= HAS_RELOC
;
2104 case SHT_GNU_verdef
:
2105 elf_dynverdef (abfd
) = shindex
;
2106 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2107 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2110 case SHT_GNU_versym
:
2111 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2113 elf_dynversym (abfd
) = shindex
;
2114 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2115 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2117 case SHT_GNU_verneed
:
2118 elf_dynverref (abfd
) = shindex
;
2119 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2120 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2129 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2131 name
= group_signature (abfd
, hdr
);
2134 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2136 if (hdr
->contents
!= NULL
)
2138 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2139 unsigned int n_elt
= hdr
->sh_size
/ 4;
2142 if (idx
->flags
& GRP_COMDAT
)
2143 hdr
->bfd_section
->flags
2144 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2146 /* We try to keep the same section order as it comes in. */
2148 while (--n_elt
!= 0)
2149 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2150 && elf_next_in_group (s
) != NULL
)
2152 elf_next_in_group (hdr
->bfd_section
) = s
;
2159 /* Check for any processor-specific section types. */
2160 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
2163 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
2165 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
2166 /* FIXME: How to properly handle allocated section reserved
2167 for applications? */
2168 (*_bfd_error_handler
)
2169 (_("%B: don't know how to handle allocated, application "
2170 "specific section `%s' [0x%8x]"),
2171 abfd
, name
, hdr
->sh_type
);
2173 /* Allow sections reserved for applications. */
2174 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2177 else if (hdr
->sh_type
>= SHT_LOPROC
2178 && hdr
->sh_type
<= SHT_HIPROC
)
2179 /* FIXME: We should handle this section. */
2180 (*_bfd_error_handler
)
2181 (_("%B: don't know how to handle processor specific section "
2183 abfd
, name
, hdr
->sh_type
);
2184 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2185 /* FIXME: We should handle this section. */
2186 (*_bfd_error_handler
)
2187 (_("%B: don't know how to handle OS specific section "
2189 abfd
, name
, hdr
->sh_type
);
2191 /* FIXME: We should handle this section. */
2192 (*_bfd_error_handler
)
2193 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2194 abfd
, name
, hdr
->sh_type
);
2202 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2203 Return SEC for sections that have no elf section, and NULL on error. */
2206 bfd_section_from_r_symndx (bfd
*abfd
,
2207 struct sym_sec_cache
*cache
,
2209 unsigned long r_symndx
)
2211 Elf_Internal_Shdr
*symtab_hdr
;
2212 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2213 Elf_External_Sym_Shndx eshndx
;
2214 Elf_Internal_Sym isym
;
2215 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2217 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2218 return cache
->sec
[ent
];
2220 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2221 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2222 &isym
, esym
, &eshndx
) == NULL
)
2225 if (cache
->abfd
!= abfd
)
2227 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2230 cache
->indx
[ent
] = r_symndx
;
2231 cache
->sec
[ent
] = sec
;
2232 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2233 || isym
.st_shndx
> SHN_HIRESERVE
)
2236 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2238 cache
->sec
[ent
] = s
;
2240 return cache
->sec
[ent
];
2243 /* Given an ELF section number, retrieve the corresponding BFD
2247 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2249 if (index
>= elf_numsections (abfd
))
2251 return elf_elfsections (abfd
)[index
]->bfd_section
;
2254 static const struct bfd_elf_special_section special_sections_b
[] =
2256 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2257 { NULL
, 0, 0, 0, 0 }
2260 static const struct bfd_elf_special_section special_sections_c
[] =
2262 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2263 { NULL
, 0, 0, 0, 0 }
2266 static const struct bfd_elf_special_section special_sections_d
[] =
2268 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2269 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2270 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2271 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2272 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2273 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2274 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2275 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2276 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2277 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2278 { NULL
, 0, 0, 0, 0 }
2281 static const struct bfd_elf_special_section special_sections_f
[] =
2283 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2284 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2285 { NULL
, 0, 0, 0, 0 }
2288 static const struct bfd_elf_special_section special_sections_g
[] =
2290 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2291 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2292 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2293 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2294 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2295 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2296 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2297 { NULL
, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_h
[] =
2302 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2303 { NULL
, 0, 0, 0, 0 }
2306 static const struct bfd_elf_special_section special_sections_i
[] =
2308 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2309 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2310 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2311 { NULL
, 0, 0, 0, 0 }
2314 static const struct bfd_elf_special_section special_sections_l
[] =
2316 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2317 { NULL
, 0, 0, 0, 0 }
2320 static const struct bfd_elf_special_section special_sections_n
[] =
2322 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2323 { ".note", 5, -1, SHT_NOTE
, 0 },
2324 { NULL
, 0, 0, 0, 0 }
2327 static const struct bfd_elf_special_section special_sections_p
[] =
2329 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2330 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2331 { NULL
, 0, 0, 0, 0 }
2334 static const struct bfd_elf_special_section special_sections_r
[] =
2336 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2337 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2338 { ".rela", 5, -1, SHT_RELA
, 0 },
2339 { ".rel", 4, -1, SHT_REL
, 0 },
2340 { NULL
, 0, 0, 0, 0 }
2343 static const struct bfd_elf_special_section special_sections_s
[] =
2345 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2346 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2347 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2348 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2349 { NULL
, 0, 0, 0, 0 }
2352 static const struct bfd_elf_special_section special_sections_t
[] =
2354 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2355 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2356 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2357 { NULL
, 0, 0, 0, 0 }
2360 static const struct bfd_elf_special_section
*special_sections
[] =
2362 special_sections_b
, /* 'b' */
2363 special_sections_c
, /* 'b' */
2364 special_sections_d
, /* 'd' */
2366 special_sections_f
, /* 'f' */
2367 special_sections_g
, /* 'g' */
2368 special_sections_h
, /* 'h' */
2369 special_sections_i
, /* 'i' */
2372 special_sections_l
, /* 'l' */
2374 special_sections_n
, /* 'n' */
2376 special_sections_p
, /* 'p' */
2378 special_sections_r
, /* 'r' */
2379 special_sections_s
, /* 's' */
2380 special_sections_t
, /* 't' */
2383 const struct bfd_elf_special_section
*
2384 _bfd_elf_get_special_section (const char *name
,
2385 const struct bfd_elf_special_section
*spec
,
2391 len
= strlen (name
);
2393 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2396 int prefix_len
= spec
[i
].prefix_length
;
2398 if (len
< prefix_len
)
2400 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2403 suffix_len
= spec
[i
].suffix_length
;
2404 if (suffix_len
<= 0)
2406 if (name
[prefix_len
] != 0)
2408 if (suffix_len
== 0)
2410 if (name
[prefix_len
] != '.'
2411 && (suffix_len
== -2
2412 || (rela
&& spec
[i
].type
== SHT_REL
)))
2418 if (len
< prefix_len
+ suffix_len
)
2420 if (memcmp (name
+ len
- suffix_len
,
2421 spec
[i
].prefix
+ prefix_len
,
2431 const struct bfd_elf_special_section
*
2432 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2435 const struct bfd_elf_special_section
*spec
;
2436 const struct elf_backend_data
*bed
;
2438 /* See if this is one of the special sections. */
2439 if (sec
->name
== NULL
)
2442 bed
= get_elf_backend_data (abfd
);
2443 spec
= bed
->special_sections
;
2446 spec
= _bfd_elf_get_special_section (sec
->name
,
2447 bed
->special_sections
,
2453 if (sec
->name
[0] != '.')
2456 i
= sec
->name
[1] - 'b';
2457 if (i
< 0 || i
> 't' - 'b')
2460 spec
= special_sections
[i
];
2465 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2469 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2471 struct bfd_elf_section_data
*sdata
;
2472 const struct elf_backend_data
*bed
;
2473 const struct bfd_elf_special_section
*ssect
;
2475 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2478 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2481 sec
->used_by_bfd
= sdata
;
2484 /* Indicate whether or not this section should use RELA relocations. */
2485 bed
= get_elf_backend_data (abfd
);
2486 sec
->use_rela_p
= bed
->default_use_rela_p
;
2488 /* When we read a file, we don't need to set ELF section type and
2489 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2490 anyway. We will set ELF section type and flags for all linker
2491 created sections. If user specifies BFD section flags, we will
2492 set ELF section type and flags based on BFD section flags in
2493 elf_fake_sections. */
2494 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2495 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2497 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2500 elf_section_type (sec
) = ssect
->type
;
2501 elf_section_flags (sec
) = ssect
->attr
;
2505 return _bfd_generic_new_section_hook (abfd
, sec
);
2508 /* Create a new bfd section from an ELF program header.
2510 Since program segments have no names, we generate a synthetic name
2511 of the form segment<NUM>, where NUM is generally the index in the
2512 program header table. For segments that are split (see below) we
2513 generate the names segment<NUM>a and segment<NUM>b.
2515 Note that some program segments may have a file size that is different than
2516 (less than) the memory size. All this means is that at execution the
2517 system must allocate the amount of memory specified by the memory size,
2518 but only initialize it with the first "file size" bytes read from the
2519 file. This would occur for example, with program segments consisting
2520 of combined data+bss.
2522 To handle the above situation, this routine generates TWO bfd sections
2523 for the single program segment. The first has the length specified by
2524 the file size of the segment, and the second has the length specified
2525 by the difference between the two sizes. In effect, the segment is split
2526 into it's initialized and uninitialized parts.
2531 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2532 Elf_Internal_Phdr
*hdr
,
2534 const char *typename
)
2542 split
= ((hdr
->p_memsz
> 0)
2543 && (hdr
->p_filesz
> 0)
2544 && (hdr
->p_memsz
> hdr
->p_filesz
));
2545 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2546 len
= strlen (namebuf
) + 1;
2547 name
= bfd_alloc (abfd
, len
);
2550 memcpy (name
, namebuf
, len
);
2551 newsect
= bfd_make_section (abfd
, name
);
2552 if (newsect
== NULL
)
2554 newsect
->vma
= hdr
->p_vaddr
;
2555 newsect
->lma
= hdr
->p_paddr
;
2556 newsect
->size
= hdr
->p_filesz
;
2557 newsect
->filepos
= hdr
->p_offset
;
2558 newsect
->flags
|= SEC_HAS_CONTENTS
;
2559 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2560 if (hdr
->p_type
== PT_LOAD
)
2562 newsect
->flags
|= SEC_ALLOC
;
2563 newsect
->flags
|= SEC_LOAD
;
2564 if (hdr
->p_flags
& PF_X
)
2566 /* FIXME: all we known is that it has execute PERMISSION,
2568 newsect
->flags
|= SEC_CODE
;
2571 if (!(hdr
->p_flags
& PF_W
))
2573 newsect
->flags
|= SEC_READONLY
;
2578 sprintf (namebuf
, "%s%db", typename
, index
);
2579 len
= strlen (namebuf
) + 1;
2580 name
= bfd_alloc (abfd
, len
);
2583 memcpy (name
, namebuf
, len
);
2584 newsect
= bfd_make_section (abfd
, name
);
2585 if (newsect
== NULL
)
2587 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2588 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2589 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2590 if (hdr
->p_type
== PT_LOAD
)
2592 newsect
->flags
|= SEC_ALLOC
;
2593 if (hdr
->p_flags
& PF_X
)
2594 newsect
->flags
|= SEC_CODE
;
2596 if (!(hdr
->p_flags
& PF_W
))
2597 newsect
->flags
|= SEC_READONLY
;
2604 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2606 const struct elf_backend_data
*bed
;
2608 switch (hdr
->p_type
)
2611 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2614 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2617 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2620 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2623 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2625 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2630 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2633 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2635 case PT_GNU_EH_FRAME
:
2636 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2640 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2643 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2646 /* Check for any processor-specific program segment types. */
2647 bed
= get_elf_backend_data (abfd
);
2648 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2652 /* Initialize REL_HDR, the section-header for new section, containing
2653 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2654 relocations; otherwise, we use REL relocations. */
2657 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2658 Elf_Internal_Shdr
*rel_hdr
,
2660 bfd_boolean use_rela_p
)
2663 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2664 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2666 name
= bfd_alloc (abfd
, amt
);
2669 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2671 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2673 if (rel_hdr
->sh_name
== (unsigned int) -1)
2675 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2676 rel_hdr
->sh_entsize
= (use_rela_p
2677 ? bed
->s
->sizeof_rela
2678 : bed
->s
->sizeof_rel
);
2679 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2680 rel_hdr
->sh_flags
= 0;
2681 rel_hdr
->sh_addr
= 0;
2682 rel_hdr
->sh_size
= 0;
2683 rel_hdr
->sh_offset
= 0;
2688 /* Set up an ELF internal section header for a section. */
2691 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2693 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2694 bfd_boolean
*failedptr
= failedptrarg
;
2695 Elf_Internal_Shdr
*this_hdr
;
2699 /* We already failed; just get out of the bfd_map_over_sections
2704 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2706 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2707 asect
->name
, FALSE
);
2708 if (this_hdr
->sh_name
== (unsigned int) -1)
2714 /* Don't clear sh_flags. Assembler may set additional bits. */
2716 if ((asect
->flags
& SEC_ALLOC
) != 0
2717 || asect
->user_set_vma
)
2718 this_hdr
->sh_addr
= asect
->vma
;
2720 this_hdr
->sh_addr
= 0;
2722 this_hdr
->sh_offset
= 0;
2723 this_hdr
->sh_size
= asect
->size
;
2724 this_hdr
->sh_link
= 0;
2725 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2726 /* The sh_entsize and sh_info fields may have been set already by
2727 copy_private_section_data. */
2729 this_hdr
->bfd_section
= asect
;
2730 this_hdr
->contents
= NULL
;
2732 /* If the section type is unspecified, we set it based on
2734 if (this_hdr
->sh_type
== SHT_NULL
)
2736 if ((asect
->flags
& SEC_GROUP
) != 0)
2737 this_hdr
->sh_type
= SHT_GROUP
;
2738 else if ((asect
->flags
& SEC_ALLOC
) != 0
2739 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2740 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2741 this_hdr
->sh_type
= SHT_NOBITS
;
2743 this_hdr
->sh_type
= SHT_PROGBITS
;
2746 switch (this_hdr
->sh_type
)
2752 case SHT_INIT_ARRAY
:
2753 case SHT_FINI_ARRAY
:
2754 case SHT_PREINIT_ARRAY
:
2761 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2765 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2769 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2773 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2774 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2778 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2779 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2782 case SHT_GNU_versym
:
2783 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2786 case SHT_GNU_verdef
:
2787 this_hdr
->sh_entsize
= 0;
2788 /* objcopy or strip will copy over sh_info, but may not set
2789 cverdefs. The linker will set cverdefs, but sh_info will be
2791 if (this_hdr
->sh_info
== 0)
2792 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2794 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2795 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2798 case SHT_GNU_verneed
:
2799 this_hdr
->sh_entsize
= 0;
2800 /* objcopy or strip will copy over sh_info, but may not set
2801 cverrefs. The linker will set cverrefs, but sh_info will be
2803 if (this_hdr
->sh_info
== 0)
2804 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2806 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2807 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2811 this_hdr
->sh_entsize
= 4;
2815 if ((asect
->flags
& SEC_ALLOC
) != 0)
2816 this_hdr
->sh_flags
|= SHF_ALLOC
;
2817 if ((asect
->flags
& SEC_READONLY
) == 0)
2818 this_hdr
->sh_flags
|= SHF_WRITE
;
2819 if ((asect
->flags
& SEC_CODE
) != 0)
2820 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2821 if ((asect
->flags
& SEC_MERGE
) != 0)
2823 this_hdr
->sh_flags
|= SHF_MERGE
;
2824 this_hdr
->sh_entsize
= asect
->entsize
;
2825 if ((asect
->flags
& SEC_STRINGS
) != 0)
2826 this_hdr
->sh_flags
|= SHF_STRINGS
;
2828 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2829 this_hdr
->sh_flags
|= SHF_GROUP
;
2830 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2832 this_hdr
->sh_flags
|= SHF_TLS
;
2833 if (asect
->size
== 0
2834 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2836 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2838 this_hdr
->sh_size
= 0;
2841 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2842 if (this_hdr
->sh_size
!= 0)
2843 this_hdr
->sh_type
= SHT_NOBITS
;
2848 /* Check for processor-specific section types. */
2849 if (bed
->elf_backend_fake_sections
2850 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2853 /* If the section has relocs, set up a section header for the
2854 SHT_REL[A] section. If two relocation sections are required for
2855 this section, it is up to the processor-specific back-end to
2856 create the other. */
2857 if ((asect
->flags
& SEC_RELOC
) != 0
2858 && !_bfd_elf_init_reloc_shdr (abfd
,
2859 &elf_section_data (asect
)->rel_hdr
,
2865 /* Fill in the contents of a SHT_GROUP section. */
2868 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2870 bfd_boolean
*failedptr
= failedptrarg
;
2871 unsigned long symindx
;
2872 asection
*elt
, *first
;
2876 /* Ignore linker created group section. See elfNN_ia64_object_p in
2878 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2883 if (elf_group_id (sec
) != NULL
)
2884 symindx
= elf_group_id (sec
)->udata
.i
;
2888 /* If called from the assembler, swap_out_syms will have set up
2889 elf_section_syms; If called for "ld -r", use target_index. */
2890 if (elf_section_syms (abfd
) != NULL
)
2891 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2893 symindx
= sec
->target_index
;
2895 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2897 /* The contents won't be allocated for "ld -r" or objcopy. */
2899 if (sec
->contents
== NULL
)
2902 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2904 /* Arrange for the section to be written out. */
2905 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2906 if (sec
->contents
== NULL
)
2913 loc
= sec
->contents
+ sec
->size
;
2915 /* Get the pointer to the first section in the group that gas
2916 squirreled away here. objcopy arranges for this to be set to the
2917 start of the input section group. */
2918 first
= elt
= elf_next_in_group (sec
);
2920 /* First element is a flag word. Rest of section is elf section
2921 indices for all the sections of the group. Write them backwards
2922 just to keep the group in the same order as given in .section
2923 directives, not that it matters. */
2932 s
= s
->output_section
;
2935 idx
= elf_section_data (s
)->this_idx
;
2936 H_PUT_32 (abfd
, idx
, loc
);
2937 elt
= elf_next_in_group (elt
);
2942 if ((loc
-= 4) != sec
->contents
)
2945 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2948 /* Assign all ELF section numbers. The dummy first section is handled here
2949 too. The link/info pointers for the standard section types are filled
2950 in here too, while we're at it. */
2953 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2955 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2957 unsigned int section_number
, secn
;
2958 Elf_Internal_Shdr
**i_shdrp
;
2959 struct bfd_elf_section_data
*d
;
2963 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2965 /* SHT_GROUP sections are in relocatable files only. */
2966 if (link_info
== NULL
|| link_info
->relocatable
)
2968 /* Put SHT_GROUP sections first. */
2969 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2971 d
= elf_section_data (sec
);
2973 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2975 if (sec
->flags
& SEC_LINKER_CREATED
)
2977 /* Remove the linker created SHT_GROUP sections. */
2978 bfd_section_list_remove (abfd
, sec
);
2979 abfd
->section_count
--;
2983 if (section_number
== SHN_LORESERVE
)
2984 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2985 d
->this_idx
= section_number
++;
2991 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2993 d
= elf_section_data (sec
);
2995 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2997 if (section_number
== SHN_LORESERVE
)
2998 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2999 d
->this_idx
= section_number
++;
3001 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
3002 if ((sec
->flags
& SEC_RELOC
) == 0)
3006 if (section_number
== SHN_LORESERVE
)
3007 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3008 d
->rel_idx
= section_number
++;
3009 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
3014 if (section_number
== SHN_LORESERVE
)
3015 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3016 d
->rel_idx2
= section_number
++;
3017 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
3023 if (section_number
== SHN_LORESERVE
)
3024 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3025 t
->shstrtab_section
= section_number
++;
3026 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
3027 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
3029 if (bfd_get_symcount (abfd
) > 0)
3031 if (section_number
== SHN_LORESERVE
)
3032 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3033 t
->symtab_section
= section_number
++;
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3035 if (section_number
> SHN_LORESERVE
- 2)
3037 if (section_number
== SHN_LORESERVE
)
3038 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3039 t
->symtab_shndx_section
= section_number
++;
3040 t
->symtab_shndx_hdr
.sh_name
3041 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3042 ".symtab_shndx", FALSE
);
3043 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3046 if (section_number
== SHN_LORESERVE
)
3047 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3048 t
->strtab_section
= section_number
++;
3049 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3052 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3053 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3055 elf_numsections (abfd
) = section_number
;
3056 elf_elfheader (abfd
)->e_shnum
= section_number
;
3057 if (section_number
> SHN_LORESERVE
)
3058 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3060 /* Set up the list of section header pointers, in agreement with the
3062 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3063 if (i_shdrp
== NULL
)
3066 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3067 if (i_shdrp
[0] == NULL
)
3069 bfd_release (abfd
, i_shdrp
);
3073 elf_elfsections (abfd
) = i_shdrp
;
3075 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3076 if (bfd_get_symcount (abfd
) > 0)
3078 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3079 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3081 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3082 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3084 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3085 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3088 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3090 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3094 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3095 if (d
->rel_idx
!= 0)
3096 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3097 if (d
->rel_idx2
!= 0)
3098 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3100 /* Fill in the sh_link and sh_info fields while we're at it. */
3102 /* sh_link of a reloc section is the section index of the symbol
3103 table. sh_info is the section index of the section to which
3104 the relocation entries apply. */
3105 if (d
->rel_idx
!= 0)
3107 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3108 d
->rel_hdr
.sh_info
= d
->this_idx
;
3110 if (d
->rel_idx2
!= 0)
3112 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3113 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3116 /* We need to set up sh_link for SHF_LINK_ORDER. */
3117 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3119 s
= elf_linked_to_section (sec
);
3122 /* elf_linked_to_section points to the input section. */
3123 if (link_info
!= NULL
)
3125 /* Check discarded linkonce section. */
3126 if (elf_discarded_section (s
))
3129 (*_bfd_error_handler
)
3130 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3131 abfd
, d
->this_hdr
.bfd_section
,
3133 /* Point to the kept section if it has the same
3134 size as the discarded one. */
3135 kept
= _bfd_elf_check_kept_section (s
);
3138 bfd_set_error (bfd_error_bad_value
);
3144 s
= s
->output_section
;
3145 BFD_ASSERT (s
!= NULL
);
3149 /* Handle objcopy. */
3150 if (s
->output_section
== NULL
)
3152 (*_bfd_error_handler
)
3153 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3154 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3155 bfd_set_error (bfd_error_bad_value
);
3158 s
= s
->output_section
;
3160 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3165 The Intel C compiler generates SHT_IA_64_UNWIND with
3166 SHF_LINK_ORDER. But it doesn't set the sh_link or
3167 sh_info fields. Hence we could get the situation
3169 const struct elf_backend_data
*bed
3170 = get_elf_backend_data (abfd
);
3171 if (bed
->link_order_error_handler
)
3172 bed
->link_order_error_handler
3173 (_("%B: warning: sh_link not set for section `%A'"),
3178 switch (d
->this_hdr
.sh_type
)
3182 /* A reloc section which we are treating as a normal BFD
3183 section. sh_link is the section index of the symbol
3184 table. sh_info is the section index of the section to
3185 which the relocation entries apply. We assume that an
3186 allocated reloc section uses the dynamic symbol table.
3187 FIXME: How can we be sure? */
3188 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3190 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3192 /* We look up the section the relocs apply to by name. */
3194 if (d
->this_hdr
.sh_type
== SHT_REL
)
3198 s
= bfd_get_section_by_name (abfd
, name
);
3200 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3204 /* We assume that a section named .stab*str is a stabs
3205 string section. We look for a section with the same name
3206 but without the trailing ``str'', and set its sh_link
3207 field to point to this section. */
3208 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3209 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3214 len
= strlen (sec
->name
);
3215 alc
= bfd_malloc (len
- 2);
3218 memcpy (alc
, sec
->name
, len
- 3);
3219 alc
[len
- 3] = '\0';
3220 s
= bfd_get_section_by_name (abfd
, alc
);
3224 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3226 /* This is a .stab section. */
3227 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3228 elf_section_data (s
)->this_hdr
.sh_entsize
3229 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3236 case SHT_GNU_verneed
:
3237 case SHT_GNU_verdef
:
3238 /* sh_link is the section header index of the string table
3239 used for the dynamic entries, or the symbol table, or the
3241 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3243 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3246 case SHT_GNU_LIBLIST
:
3247 /* sh_link is the section header index of the prelink library
3249 used for the dynamic entries, or the symbol table, or the
3251 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3252 ? ".dynstr" : ".gnu.libstr");
3254 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3258 case SHT_GNU_versym
:
3259 /* sh_link is the section header index of the symbol table
3260 this hash table or version table is for. */
3261 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3263 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3267 d
->this_hdr
.sh_link
= t
->symtab_section
;
3271 for (secn
= 1; secn
< section_number
; ++secn
)
3272 if (i_shdrp
[secn
] == NULL
)
3273 i_shdrp
[secn
] = i_shdrp
[0];
3275 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3276 i_shdrp
[secn
]->sh_name
);
3280 /* Map symbol from it's internal number to the external number, moving
3281 all local symbols to be at the head of the list. */
3284 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3286 /* If the backend has a special mapping, use it. */
3287 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3288 if (bed
->elf_backend_sym_is_global
)
3289 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3291 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3292 || bfd_is_und_section (bfd_get_section (sym
))
3293 || bfd_is_com_section (bfd_get_section (sym
)));
3297 elf_map_symbols (bfd
*abfd
)
3299 unsigned int symcount
= bfd_get_symcount (abfd
);
3300 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3301 asymbol
**sect_syms
;
3302 unsigned int num_locals
= 0;
3303 unsigned int num_globals
= 0;
3304 unsigned int num_locals2
= 0;
3305 unsigned int num_globals2
= 0;
3312 fprintf (stderr
, "elf_map_symbols\n");
3316 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3318 if (max_index
< asect
->index
)
3319 max_index
= asect
->index
;
3323 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3324 if (sect_syms
== NULL
)
3326 elf_section_syms (abfd
) = sect_syms
;
3327 elf_num_section_syms (abfd
) = max_index
;
3329 /* Init sect_syms entries for any section symbols we have already
3330 decided to output. */
3331 for (idx
= 0; idx
< symcount
; idx
++)
3333 asymbol
*sym
= syms
[idx
];
3335 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3342 if (sec
->owner
!= NULL
)
3344 if (sec
->owner
!= abfd
)
3346 if (sec
->output_offset
!= 0)
3349 sec
= sec
->output_section
;
3351 /* Empty sections in the input files may have had a
3352 section symbol created for them. (See the comment
3353 near the end of _bfd_generic_link_output_symbols in
3354 linker.c). If the linker script discards such
3355 sections then we will reach this point. Since we know
3356 that we cannot avoid this case, we detect it and skip
3357 the abort and the assignment to the sect_syms array.
3358 To reproduce this particular case try running the
3359 linker testsuite test ld-scripts/weak.exp for an ELF
3360 port that uses the generic linker. */
3361 if (sec
->owner
== NULL
)
3364 BFD_ASSERT (sec
->owner
== abfd
);
3366 sect_syms
[sec
->index
] = syms
[idx
];
3371 /* Classify all of the symbols. */
3372 for (idx
= 0; idx
< symcount
; idx
++)
3374 if (!sym_is_global (abfd
, syms
[idx
]))
3380 /* We will be adding a section symbol for each BFD section. Most normal
3381 sections will already have a section symbol in outsymbols, but
3382 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3383 at least in that case. */
3384 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3386 if (sect_syms
[asect
->index
] == NULL
)
3388 if (!sym_is_global (abfd
, asect
->symbol
))
3395 /* Now sort the symbols so the local symbols are first. */
3396 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3398 if (new_syms
== NULL
)
3401 for (idx
= 0; idx
< symcount
; idx
++)
3403 asymbol
*sym
= syms
[idx
];
3406 if (!sym_is_global (abfd
, sym
))
3409 i
= num_locals
+ num_globals2
++;
3411 sym
->udata
.i
= i
+ 1;
3413 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3415 if (sect_syms
[asect
->index
] == NULL
)
3417 asymbol
*sym
= asect
->symbol
;
3420 sect_syms
[asect
->index
] = sym
;
3421 if (!sym_is_global (abfd
, sym
))
3424 i
= num_locals
+ num_globals2
++;
3426 sym
->udata
.i
= i
+ 1;
3430 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3432 elf_num_locals (abfd
) = num_locals
;
3433 elf_num_globals (abfd
) = num_globals
;
3437 /* Align to the maximum file alignment that could be required for any
3438 ELF data structure. */
3440 static inline file_ptr
3441 align_file_position (file_ptr off
, int align
)
3443 return (off
+ align
- 1) & ~(align
- 1);
3446 /* Assign a file position to a section, optionally aligning to the
3447 required section alignment. */
3450 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3458 al
= i_shdrp
->sh_addralign
;
3460 offset
= BFD_ALIGN (offset
, al
);
3462 i_shdrp
->sh_offset
= offset
;
3463 if (i_shdrp
->bfd_section
!= NULL
)
3464 i_shdrp
->bfd_section
->filepos
= offset
;
3465 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3466 offset
+= i_shdrp
->sh_size
;
3470 /* Compute the file positions we are going to put the sections at, and
3471 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3472 is not NULL, this is being called by the ELF backend linker. */
3475 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3476 struct bfd_link_info
*link_info
)
3478 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3480 struct bfd_strtab_hash
*strtab
= NULL
;
3481 Elf_Internal_Shdr
*shstrtab_hdr
;
3483 if (abfd
->output_has_begun
)
3486 /* Do any elf backend specific processing first. */
3487 if (bed
->elf_backend_begin_write_processing
)
3488 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3490 if (! prep_headers (abfd
))
3493 /* Post process the headers if necessary. */
3494 if (bed
->elf_backend_post_process_headers
)
3495 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3498 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3502 if (!assign_section_numbers (abfd
, link_info
))
3505 /* The backend linker builds symbol table information itself. */
3506 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3508 /* Non-zero if doing a relocatable link. */
3509 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3511 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3515 if (link_info
== NULL
)
3517 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3522 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3523 /* sh_name was set in prep_headers. */
3524 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3525 shstrtab_hdr
->sh_flags
= 0;
3526 shstrtab_hdr
->sh_addr
= 0;
3527 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3528 shstrtab_hdr
->sh_entsize
= 0;
3529 shstrtab_hdr
->sh_link
= 0;
3530 shstrtab_hdr
->sh_info
= 0;
3531 /* sh_offset is set in assign_file_positions_except_relocs. */
3532 shstrtab_hdr
->sh_addralign
= 1;
3534 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3537 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3540 Elf_Internal_Shdr
*hdr
;
3542 off
= elf_tdata (abfd
)->next_file_pos
;
3544 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3545 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3547 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3548 if (hdr
->sh_size
!= 0)
3549 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3551 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3552 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3554 elf_tdata (abfd
)->next_file_pos
= off
;
3556 /* Now that we know where the .strtab section goes, write it
3558 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3559 || ! _bfd_stringtab_emit (abfd
, strtab
))
3561 _bfd_stringtab_free (strtab
);
3564 abfd
->output_has_begun
= TRUE
;
3569 /* Create a mapping from a set of sections to a program segment. */
3571 static struct elf_segment_map
*
3572 make_mapping (bfd
*abfd
,
3573 asection
**sections
,
3578 struct elf_segment_map
*m
;
3583 amt
= sizeof (struct elf_segment_map
);
3584 amt
+= (to
- from
- 1) * sizeof (asection
*);
3585 m
= bfd_zalloc (abfd
, amt
);
3589 m
->p_type
= PT_LOAD
;
3590 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3591 m
->sections
[i
- from
] = *hdrpp
;
3592 m
->count
= to
- from
;
3594 if (from
== 0 && phdr
)
3596 /* Include the headers in the first PT_LOAD segment. */
3597 m
->includes_filehdr
= 1;
3598 m
->includes_phdrs
= 1;
3604 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3607 struct elf_segment_map
*
3608 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3610 struct elf_segment_map
*m
;
3612 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3616 m
->p_type
= PT_DYNAMIC
;
3618 m
->sections
[0] = dynsec
;
3623 /* Set up a mapping from BFD sections to program segments. */
3626 map_sections_to_segments (bfd
*abfd
)
3628 asection
**sections
= NULL
;
3632 struct elf_segment_map
*mfirst
;
3633 struct elf_segment_map
**pm
;
3634 struct elf_segment_map
*m
;
3637 unsigned int phdr_index
;
3638 bfd_vma maxpagesize
;
3640 bfd_boolean phdr_in_segment
= TRUE
;
3641 bfd_boolean writable
;
3643 asection
*first_tls
= NULL
;
3644 asection
*dynsec
, *eh_frame_hdr
;
3647 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3650 if (bfd_count_sections (abfd
) == 0)
3653 /* Select the allocated sections, and sort them. */
3655 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3656 if (sections
== NULL
)
3660 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3662 if ((s
->flags
& SEC_ALLOC
) != 0)
3668 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3671 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3673 /* Build the mapping. */
3678 /* If we have a .interp section, then create a PT_PHDR segment for
3679 the program headers and a PT_INTERP segment for the .interp
3681 s
= bfd_get_section_by_name (abfd
, ".interp");
3682 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3684 amt
= sizeof (struct elf_segment_map
);
3685 m
= bfd_zalloc (abfd
, amt
);
3689 m
->p_type
= PT_PHDR
;
3690 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3691 m
->p_flags
= PF_R
| PF_X
;
3692 m
->p_flags_valid
= 1;
3693 m
->includes_phdrs
= 1;
3698 amt
= sizeof (struct elf_segment_map
);
3699 m
= bfd_zalloc (abfd
, amt
);
3703 m
->p_type
= PT_INTERP
;
3711 /* Look through the sections. We put sections in the same program
3712 segment when the start of the second section can be placed within
3713 a few bytes of the end of the first section. */
3717 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3719 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3721 && (dynsec
->flags
& SEC_LOAD
) == 0)
3724 /* Deal with -Ttext or something similar such that the first section
3725 is not adjacent to the program headers. This is an
3726 approximation, since at this point we don't know exactly how many
3727 program headers we will need. */
3730 bfd_size_type phdr_size
;
3732 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3734 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3735 if ((abfd
->flags
& D_PAGED
) == 0
3736 || sections
[0]->lma
< phdr_size
3737 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3738 phdr_in_segment
= FALSE
;
3741 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3744 bfd_boolean new_segment
;
3748 /* See if this section and the last one will fit in the same
3751 if (last_hdr
== NULL
)
3753 /* If we don't have a segment yet, then we don't need a new
3754 one (we build the last one after this loop). */
3755 new_segment
= FALSE
;
3757 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3759 /* If this section has a different relation between the
3760 virtual address and the load address, then we need a new
3764 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3765 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3767 /* If putting this section in this segment would force us to
3768 skip a page in the segment, then we need a new segment. */
3771 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3772 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3774 /* We don't want to put a loadable section after a
3775 nonloadable section in the same segment.
3776 Consider .tbss sections as loadable for this purpose. */
3779 else if ((abfd
->flags
& D_PAGED
) == 0)
3781 /* If the file is not demand paged, which means that we
3782 don't require the sections to be correctly aligned in the
3783 file, then there is no other reason for a new segment. */
3784 new_segment
= FALSE
;
3787 && (hdr
->flags
& SEC_READONLY
) == 0
3788 && (((last_hdr
->lma
+ last_size
- 1)
3789 & ~(maxpagesize
- 1))
3790 != (hdr
->lma
& ~(maxpagesize
- 1))))
3792 /* We don't want to put a writable section in a read only
3793 segment, unless they are on the same page in memory
3794 anyhow. We already know that the last section does not
3795 bring us past the current section on the page, so the
3796 only case in which the new section is not on the same
3797 page as the previous section is when the previous section
3798 ends precisely on a page boundary. */
3803 /* Otherwise, we can use the same segment. */
3804 new_segment
= FALSE
;
3809 if ((hdr
->flags
& SEC_READONLY
) == 0)
3812 /* .tbss sections effectively have zero size. */
3813 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3814 last_size
= hdr
->size
;
3820 /* We need a new program segment. We must create a new program
3821 header holding all the sections from phdr_index until hdr. */
3823 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3830 if ((hdr
->flags
& SEC_READONLY
) == 0)
3836 /* .tbss sections effectively have zero size. */
3837 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3838 last_size
= hdr
->size
;
3842 phdr_in_segment
= FALSE
;
3845 /* Create a final PT_LOAD program segment. */
3846 if (last_hdr
!= NULL
)
3848 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3856 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3859 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3866 /* For each loadable .note section, add a PT_NOTE segment. We don't
3867 use bfd_get_section_by_name, because if we link together
3868 nonloadable .note sections and loadable .note sections, we will
3869 generate two .note sections in the output file. FIXME: Using
3870 names for section types is bogus anyhow. */
3871 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3873 if ((s
->flags
& SEC_LOAD
) != 0
3874 && strncmp (s
->name
, ".note", 5) == 0)
3876 amt
= sizeof (struct elf_segment_map
);
3877 m
= bfd_zalloc (abfd
, amt
);
3881 m
->p_type
= PT_NOTE
;
3888 if (s
->flags
& SEC_THREAD_LOCAL
)
3896 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3901 amt
= sizeof (struct elf_segment_map
);
3902 amt
+= (tls_count
- 1) * sizeof (asection
*);
3903 m
= bfd_zalloc (abfd
, amt
);
3908 m
->count
= tls_count
;
3909 /* Mandated PF_R. */
3911 m
->p_flags_valid
= 1;
3912 for (i
= 0; i
< tls_count
; ++i
)
3914 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3915 m
->sections
[i
] = first_tls
;
3916 first_tls
= first_tls
->next
;
3923 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3925 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3926 if (eh_frame_hdr
!= NULL
3927 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3929 amt
= sizeof (struct elf_segment_map
);
3930 m
= bfd_zalloc (abfd
, amt
);
3934 m
->p_type
= PT_GNU_EH_FRAME
;
3936 m
->sections
[0] = eh_frame_hdr
->output_section
;
3942 if (elf_tdata (abfd
)->stack_flags
)
3944 amt
= sizeof (struct elf_segment_map
);
3945 m
= bfd_zalloc (abfd
, amt
);
3949 m
->p_type
= PT_GNU_STACK
;
3950 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3951 m
->p_flags_valid
= 1;
3957 if (elf_tdata (abfd
)->relro
)
3959 amt
= sizeof (struct elf_segment_map
);
3960 m
= bfd_zalloc (abfd
, amt
);
3964 m
->p_type
= PT_GNU_RELRO
;
3966 m
->p_flags_valid
= 1;
3975 elf_tdata (abfd
)->segment_map
= mfirst
;
3979 if (sections
!= NULL
)
3984 /* Sort sections by address. */
3987 elf_sort_sections (const void *arg1
, const void *arg2
)
3989 const asection
*sec1
= *(const asection
**) arg1
;
3990 const asection
*sec2
= *(const asection
**) arg2
;
3991 bfd_size_type size1
, size2
;
3993 /* Sort by LMA first, since this is the address used to
3994 place the section into a segment. */
3995 if (sec1
->lma
< sec2
->lma
)
3997 else if (sec1
->lma
> sec2
->lma
)
4000 /* Then sort by VMA. Normally the LMA and the VMA will be
4001 the same, and this will do nothing. */
4002 if (sec1
->vma
< sec2
->vma
)
4004 else if (sec1
->vma
> sec2
->vma
)
4007 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4009 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4015 /* If the indicies are the same, do not return 0
4016 here, but continue to try the next comparison. */
4017 if (sec1
->target_index
- sec2
->target_index
!= 0)
4018 return sec1
->target_index
- sec2
->target_index
;
4023 else if (TOEND (sec2
))
4028 /* Sort by size, to put zero sized sections
4029 before others at the same address. */
4031 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4032 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4039 return sec1
->target_index
- sec2
->target_index
;
4042 /* Ian Lance Taylor writes:
4044 We shouldn't be using % with a negative signed number. That's just
4045 not good. We have to make sure either that the number is not
4046 negative, or that the number has an unsigned type. When the types
4047 are all the same size they wind up as unsigned. When file_ptr is a
4048 larger signed type, the arithmetic winds up as signed long long,
4051 What we're trying to say here is something like ``increase OFF by
4052 the least amount that will cause it to be equal to the VMA modulo
4054 /* In other words, something like:
4056 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4057 off_offset = off % bed->maxpagesize;
4058 if (vma_offset < off_offset)
4059 adjustment = vma_offset + bed->maxpagesize - off_offset;
4061 adjustment = vma_offset - off_offset;
4063 which can can be collapsed into the expression below. */
4066 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4068 return ((vma
- off
) % maxpagesize
);
4072 print_segment_map (bfd
*abfd
)
4074 struct elf_segment_map
*m
;
4077 fprintf (stderr
, _(" Section to Segment mapping:\n"));
4078 fprintf (stderr
, _(" Segment Sections...\n"));
4080 for (i
= 0, m
= elf_tdata (abfd
)->segment_map
;
4084 const char *pt
= get_segment_type (m
->p_type
);
4089 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4090 sprintf (buf
, "LOPROC+%7.7x",
4091 (unsigned int) (m
->p_type
- PT_LOPROC
));
4092 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4093 sprintf (buf
, "LOOS+%7.7x",
4094 (unsigned int) (m
->p_type
- PT_LOOS
));
4096 snprintf (buf
, sizeof (buf
), "%8.8x",
4097 (unsigned int) m
->p_type
);
4100 fprintf (stderr
, " %2.2d: %14.14s: ", i
, pt
);
4101 for (j
= 0; j
< m
->count
; j
++)
4102 fprintf (stderr
, "%s ", m
->sections
[j
]->name
);
4107 /* Assign file positions to the sections based on the mapping from
4108 sections to segments. This function also sets up some fields in
4112 assign_file_positions_for_load_sections (bfd
*abfd
,
4113 struct bfd_link_info
*link_info
)
4115 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4116 struct elf_segment_map
*m
;
4117 Elf_Internal_Phdr
*phdrs
;
4118 Elf_Internal_Phdr
*p
;
4124 if (elf_tdata (abfd
)->segment_map
== NULL
)
4126 if (! map_sections_to_segments (abfd
))
4131 /* The placement algorithm assumes that non allocated sections are
4132 not in PT_LOAD segments. We ensure this here by removing such
4133 sections from the segment map. We also remove excluded
4135 for (m
= elf_tdata (abfd
)->segment_map
;
4139 unsigned int new_count
;
4142 for (i
= 0; i
< m
->count
; i
++)
4144 if ((m
->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
4145 && ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0
4146 || m
->p_type
!= PT_LOAD
))
4149 m
->sections
[new_count
] = m
->sections
[i
];
4155 if (new_count
!= m
->count
)
4156 m
->count
= new_count
;
4160 if (bed
->elf_backend_modify_segment_map
)
4162 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
4167 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4170 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4171 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4172 elf_elfheader (abfd
)->e_phnum
= count
;
4176 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4180 /* If we already counted the number of program segments, make sure
4181 that we allocated enough space. This happens when SIZEOF_HEADERS
4182 is used in a linker script. */
4183 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
4184 if (alloc
!= 0 && count
> alloc
)
4186 ((*_bfd_error_handler
)
4187 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4188 abfd
, alloc
, count
));
4189 print_segment_map (abfd
);
4190 bfd_set_error (bfd_error_bad_value
);
4197 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4200 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4201 elf_tdata (abfd
)->phdr
= phdrs
;
4205 off
= bed
->s
->sizeof_ehdr
;
4206 off
+= alloc
* bed
->s
->sizeof_phdr
;
4208 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4214 /* If elf_segment_map is not from map_sections_to_segments, the
4215 sections may not be correctly ordered. NOTE: sorting should
4216 not be done to the PT_NOTE section of a corefile, which may
4217 contain several pseudo-sections artificially created by bfd.
4218 Sorting these pseudo-sections breaks things badly. */
4220 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4221 && m
->p_type
== PT_NOTE
))
4222 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4225 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4226 number of sections with contents contributing to both p_filesz
4227 and p_memsz, followed by a number of sections with no contents
4228 that just contribute to p_memsz. In this loop, OFF tracks next
4229 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4230 an adjustment we use for segments that have no file contents
4231 but need zero filled memory allocation. */
4233 p
->p_type
= m
->p_type
;
4234 p
->p_flags
= m
->p_flags
;
4236 if (p
->p_type
== PT_LOAD
4239 bfd_size_type align
;
4241 unsigned int align_power
= 0;
4243 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4245 unsigned int secalign
;
4247 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4248 if (secalign
> align_power
)
4249 align_power
= secalign
;
4251 align
= (bfd_size_type
) 1 << align_power
;
4253 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> align
)
4254 align
= bed
->maxpagesize
;
4256 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4259 && !m
->includes_filehdr
4260 && !m
->includes_phdrs
4261 && (ufile_ptr
) off
>= align
)
4263 /* If the first section isn't loadable, the same holds for
4264 any other sections. Since the segment won't need file
4265 space, we can make p_offset overlap some prior segment.
4266 However, .tbss is special. If a segment starts with
4267 .tbss, we need to look at the next section to decide
4268 whether the segment has any loadable sections. */
4270 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4272 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4276 voff
= adjust
- align
;
4282 /* Make sure the .dynamic section is the first section in the
4283 PT_DYNAMIC segment. */
4284 else if (p
->p_type
== PT_DYNAMIC
4286 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4289 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4291 bfd_set_error (bfd_error_bad_value
);
4298 p
->p_vaddr
= m
->sections
[0]->vma
;
4300 if (m
->p_paddr_valid
)
4301 p
->p_paddr
= m
->p_paddr
;
4302 else if (m
->count
== 0)
4305 p
->p_paddr
= m
->sections
[0]->lma
;
4307 if (p
->p_type
== PT_LOAD
4308 && (abfd
->flags
& D_PAGED
) != 0)
4309 p
->p_align
= bed
->maxpagesize
;
4310 else if (m
->count
== 0)
4311 p
->p_align
= 1 << bed
->s
->log_file_align
;
4319 if (m
->includes_filehdr
)
4321 if (! m
->p_flags_valid
)
4324 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4325 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4328 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4330 if (p
->p_vaddr
< (bfd_vma
) off
)
4332 (*_bfd_error_handler
)
4333 (_("%B: Not enough room for program headers, try linking with -N"),
4335 bfd_set_error (bfd_error_bad_value
);
4340 if (! m
->p_paddr_valid
)
4345 if (m
->includes_phdrs
)
4347 if (! m
->p_flags_valid
)
4350 if (!m
->includes_filehdr
)
4352 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4356 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4357 p
->p_vaddr
-= off
- p
->p_offset
;
4358 if (! m
->p_paddr_valid
)
4359 p
->p_paddr
-= off
- p
->p_offset
;
4363 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4364 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4367 if (p
->p_type
== PT_LOAD
4368 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4370 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4371 p
->p_offset
= off
+ voff
;
4376 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4377 p
->p_filesz
+= adjust
;
4378 p
->p_memsz
+= adjust
;
4382 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4383 maps. Set filepos for sections in PT_LOAD segments, and in
4384 core files, for sections in PT_NOTE segments.
4385 assign_file_positions_for_non_load_sections will set filepos
4386 for other sections and update p_filesz for other segments. */
4387 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4391 bfd_size_type align
;
4395 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4397 if (p
->p_type
== PT_LOAD
4398 || p
->p_type
== PT_TLS
)
4400 bfd_signed_vma adjust
;
4402 if ((flags
& SEC_LOAD
) != 0)
4404 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4407 (*_bfd_error_handler
)
4408 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4409 abfd
, sec
, (unsigned long) sec
->lma
);
4413 p
->p_filesz
+= adjust
;
4414 p
->p_memsz
+= adjust
;
4416 /* .tbss is special. It doesn't contribute to p_memsz of
4418 else if ((flags
& SEC_ALLOC
) != 0
4419 && ((flags
& SEC_THREAD_LOCAL
) == 0
4420 || p
->p_type
== PT_TLS
))
4422 /* The section VMA must equal the file position
4423 modulo the page size. */
4424 bfd_size_type page
= align
;
4425 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> page
)
4426 page
= bed
->maxpagesize
;
4427 adjust
= vma_page_aligned_bias (sec
->vma
,
4428 p
->p_vaddr
+ p
->p_memsz
,
4430 p
->p_memsz
+= adjust
;
4434 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4436 /* The section at i == 0 is the one that actually contains
4442 p
->p_filesz
= sec
->size
;
4448 /* The rest are fake sections that shouldn't be written. */
4457 if (p
->p_type
== PT_LOAD
)
4460 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4461 1997, and the exact reason for it isn't clear. One
4462 plausible explanation is that it is to work around
4463 a problem we have with linker scripts using data
4464 statements in NOLOAD sections. I don't think it
4465 makes a great deal of sense to have such a section
4466 assigned to a PT_LOAD segment, but apparently
4467 people do this. The data statement results in a
4468 bfd_data_link_order being built, and these need
4469 section contents to write into. Eventually, we get
4470 to _bfd_elf_write_object_contents which writes any
4471 section with contents to the output. Make room
4472 here for the write, so that following segments are
4474 if ((flags
& SEC_LOAD
) != 0
4475 || (flags
& SEC_HAS_CONTENTS
) != 0)
4479 if ((flags
& SEC_LOAD
) != 0)
4481 p
->p_filesz
+= sec
->size
;
4482 p
->p_memsz
+= sec
->size
;
4485 /* .tbss is special. It doesn't contribute to p_memsz of
4487 else if ((flags
& SEC_ALLOC
) != 0
4488 && ((flags
& SEC_THREAD_LOCAL
) == 0
4489 || p
->p_type
== PT_TLS
))
4490 p
->p_memsz
+= sec
->size
;
4492 if (p
->p_type
== PT_TLS
4494 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4496 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4498 p
->p_memsz
+= o
->offset
+ o
->size
;
4501 if (align
> p
->p_align
4502 && (p
->p_type
!= PT_LOAD
4503 || (abfd
->flags
& D_PAGED
) == 0
4504 || ((p
->p_vaddr
- p
->p_offset
) & (align
- 1)) == 0))
4508 if (! m
->p_flags_valid
)
4511 if ((flags
& SEC_CODE
) != 0)
4513 if ((flags
& SEC_READONLY
) == 0)
4519 /* Clear out any program headers we allocated but did not use. */
4520 for (; count
< alloc
; count
++, p
++)
4522 memset (p
, 0, sizeof *p
);
4523 p
->p_type
= PT_NULL
;
4526 elf_tdata (abfd
)->next_file_pos
= off
;
4530 /* Assign file positions for the other sections. */
4533 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4534 struct bfd_link_info
*link_info
)
4536 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4537 Elf_Internal_Shdr
**i_shdrpp
;
4538 Elf_Internal_Shdr
**hdrpp
;
4539 Elf_Internal_Phdr
*phdrs
;
4540 Elf_Internal_Phdr
*p
;
4541 struct elf_segment_map
*m
;
4542 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4543 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4545 unsigned int num_sec
;
4549 i_shdrpp
= elf_elfsections (abfd
);
4550 num_sec
= elf_numsections (abfd
);
4551 off
= elf_tdata (abfd
)->next_file_pos
;
4552 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4554 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4555 Elf_Internal_Shdr
*hdr
;
4558 if (hdr
->bfd_section
!= NULL
4559 && hdr
->bfd_section
->filepos
!= 0)
4560 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4561 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4563 ((*_bfd_error_handler
)
4564 (_("%B: warning: allocated section `%s' not in segment"),
4566 (hdr
->bfd_section
== NULL
4568 : hdr
->bfd_section
->name
)));
4569 if ((abfd
->flags
& D_PAGED
) != 0)
4570 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4573 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4575 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4578 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4579 && hdr
->bfd_section
== NULL
)
4580 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4581 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4582 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4583 hdr
->sh_offset
= -1;
4585 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4587 if (i
== SHN_LORESERVE
- 1)
4589 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4590 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4594 /* Now that we have set the section file positions, we can set up
4595 the file positions for the non PT_LOAD segments. */
4599 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4601 phdrs
= elf_tdata (abfd
)->phdr
;
4602 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4607 if (p
->p_type
!= PT_LOAD
)
4610 if (m
->includes_filehdr
)
4612 filehdr_vaddr
= p
->p_vaddr
;
4613 filehdr_paddr
= p
->p_paddr
;
4615 if (m
->includes_phdrs
)
4617 phdrs_vaddr
= p
->p_vaddr
;
4618 phdrs_paddr
= p
->p_paddr
;
4619 if (m
->includes_filehdr
)
4621 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4622 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4627 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4633 if (p
->p_type
!= PT_LOAD
4634 && (p
->p_type
!= PT_NOTE
|| bfd_get_format (abfd
) != bfd_core
))
4636 Elf_Internal_Shdr
*hdr
;
4637 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4639 hdr
= &elf_section_data (m
->sections
[m
->count
- 1])->this_hdr
;
4640 p
->p_filesz
= (m
->sections
[m
->count
- 1]->filepos
4641 - m
->sections
[0]->filepos
);
4642 if (hdr
->sh_type
!= SHT_NOBITS
)
4643 p
->p_filesz
+= hdr
->sh_size
;
4645 p
->p_offset
= m
->sections
[0]->filepos
;
4650 if (m
->includes_filehdr
)
4652 p
->p_vaddr
= filehdr_vaddr
;
4653 if (! m
->p_paddr_valid
)
4654 p
->p_paddr
= filehdr_paddr
;
4656 else if (m
->includes_phdrs
)
4658 p
->p_vaddr
= phdrs_vaddr
;
4659 if (! m
->p_paddr_valid
)
4660 p
->p_paddr
= phdrs_paddr
;
4662 else if (p
->p_type
== PT_GNU_RELRO
)
4664 Elf_Internal_Phdr
*lp
;
4666 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4668 if (lp
->p_type
== PT_LOAD
4669 && lp
->p_vaddr
<= link_info
->relro_end
4670 && lp
->p_vaddr
>= link_info
->relro_start
4671 && lp
->p_vaddr
+ lp
->p_filesz
4672 >= link_info
->relro_end
)
4676 if (lp
< phdrs
+ count
4677 && link_info
->relro_end
> lp
->p_vaddr
)
4679 p
->p_vaddr
= lp
->p_vaddr
;
4680 p
->p_paddr
= lp
->p_paddr
;
4681 p
->p_offset
= lp
->p_offset
;
4682 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4683 p
->p_memsz
= p
->p_filesz
;
4685 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4689 memset (p
, 0, sizeof *p
);
4690 p
->p_type
= PT_NULL
;
4696 elf_tdata (abfd
)->next_file_pos
= off
;
4701 /* Get the size of the program header.
4703 If this is called by the linker before any of the section VMA's are set, it
4704 can't calculate the correct value for a strange memory layout. This only
4705 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4706 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4707 data segment (exclusive of .interp and .dynamic).
4709 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4710 will be two segments. */
4712 static bfd_size_type
4713 get_program_header_size (bfd
*abfd
)
4717 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4719 /* We can't return a different result each time we're called. */
4720 if (elf_tdata (abfd
)->program_header_size
!= 0)
4721 return elf_tdata (abfd
)->program_header_size
;
4723 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4725 struct elf_segment_map
*m
;
4728 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4730 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4731 return elf_tdata (abfd
)->program_header_size
;
4734 /* Assume we will need exactly two PT_LOAD segments: one for text
4735 and one for data. */
4738 s
= bfd_get_section_by_name (abfd
, ".interp");
4739 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4741 /* If we have a loadable interpreter section, we need a
4742 PT_INTERP segment. In this case, assume we also need a
4743 PT_PHDR segment, although that may not be true for all
4748 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4750 /* We need a PT_DYNAMIC segment. */
4754 if (elf_tdata (abfd
)->eh_frame_hdr
)
4756 /* We need a PT_GNU_EH_FRAME segment. */
4760 if (elf_tdata (abfd
)->stack_flags
)
4762 /* We need a PT_GNU_STACK segment. */
4766 if (elf_tdata (abfd
)->relro
)
4768 /* We need a PT_GNU_RELRO segment. */
4772 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4774 if ((s
->flags
& SEC_LOAD
) != 0
4775 && strncmp (s
->name
, ".note", 5) == 0)
4777 /* We need a PT_NOTE segment. */
4782 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4784 if (s
->flags
& SEC_THREAD_LOCAL
)
4786 /* We need a PT_TLS segment. */
4792 /* Let the backend count up any program headers it might need. */
4793 if (bed
->elf_backend_additional_program_headers
)
4797 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4803 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4804 return elf_tdata (abfd
)->program_header_size
;
4807 /* Work out the file positions of all the sections. This is called by
4808 _bfd_elf_compute_section_file_positions. All the section sizes and
4809 VMAs must be known before this is called.
4811 Reloc sections come in two flavours: Those processed specially as
4812 "side-channel" data attached to a section to which they apply, and
4813 those that bfd doesn't process as relocations. The latter sort are
4814 stored in a normal bfd section by bfd_section_from_shdr. We don't
4815 consider the former sort here, unless they form part of the loadable
4816 image. Reloc sections not assigned here will be handled later by
4817 assign_file_positions_for_relocs.
4819 We also don't set the positions of the .symtab and .strtab here. */
4822 assign_file_positions_except_relocs (bfd
*abfd
,
4823 struct bfd_link_info
*link_info
)
4825 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4826 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4828 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4830 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4831 && bfd_get_format (abfd
) != bfd_core
)
4833 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4834 unsigned int num_sec
= elf_numsections (abfd
);
4835 Elf_Internal_Shdr
**hdrpp
;
4838 /* Start after the ELF header. */
4839 off
= i_ehdrp
->e_ehsize
;
4841 /* We are not creating an executable, which means that we are
4842 not creating a program header, and that the actual order of
4843 the sections in the file is unimportant. */
4844 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4846 Elf_Internal_Shdr
*hdr
;
4849 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4850 && hdr
->bfd_section
== NULL
)
4851 || i
== tdata
->symtab_section
4852 || i
== tdata
->symtab_shndx_section
4853 || i
== tdata
->strtab_section
)
4855 hdr
->sh_offset
= -1;
4858 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4860 if (i
== SHN_LORESERVE
- 1)
4862 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4863 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4871 /* Assign file positions for the loaded sections based on the
4872 assignment of sections to segments. */
4873 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
4876 /* And for non-load sections. */
4877 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
4880 /* Write out the program headers. */
4881 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
4882 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4883 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
4886 off
= tdata
->next_file_pos
;
4889 /* Place the section headers. */
4890 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4891 i_ehdrp
->e_shoff
= off
;
4892 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4894 tdata
->next_file_pos
= off
;
4900 prep_headers (bfd
*abfd
)
4902 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4903 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4904 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4905 struct elf_strtab_hash
*shstrtab
;
4906 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4908 i_ehdrp
= elf_elfheader (abfd
);
4909 i_shdrp
= elf_elfsections (abfd
);
4911 shstrtab
= _bfd_elf_strtab_init ();
4912 if (shstrtab
== NULL
)
4915 elf_shstrtab (abfd
) = shstrtab
;
4917 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4918 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4919 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4920 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4922 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4923 i_ehdrp
->e_ident
[EI_DATA
] =
4924 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4925 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4927 if ((abfd
->flags
& DYNAMIC
) != 0)
4928 i_ehdrp
->e_type
= ET_DYN
;
4929 else if ((abfd
->flags
& EXEC_P
) != 0)
4930 i_ehdrp
->e_type
= ET_EXEC
;
4931 else if (bfd_get_format (abfd
) == bfd_core
)
4932 i_ehdrp
->e_type
= ET_CORE
;
4934 i_ehdrp
->e_type
= ET_REL
;
4936 switch (bfd_get_arch (abfd
))
4938 case bfd_arch_unknown
:
4939 i_ehdrp
->e_machine
= EM_NONE
;
4942 /* There used to be a long list of cases here, each one setting
4943 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4944 in the corresponding bfd definition. To avoid duplication,
4945 the switch was removed. Machines that need special handling
4946 can generally do it in elf_backend_final_write_processing(),
4947 unless they need the information earlier than the final write.
4948 Such need can generally be supplied by replacing the tests for
4949 e_machine with the conditions used to determine it. */
4951 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4954 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4955 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4957 /* No program header, for now. */
4958 i_ehdrp
->e_phoff
= 0;
4959 i_ehdrp
->e_phentsize
= 0;
4960 i_ehdrp
->e_phnum
= 0;
4962 /* Each bfd section is section header entry. */
4963 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4964 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4966 /* If we're building an executable, we'll need a program header table. */
4967 if (abfd
->flags
& EXEC_P
)
4968 /* It all happens later. */
4972 i_ehdrp
->e_phentsize
= 0;
4974 i_ehdrp
->e_phoff
= 0;
4977 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4978 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4979 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4980 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4981 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4982 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4983 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4984 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4985 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4991 /* Assign file positions for all the reloc sections which are not part
4992 of the loadable file image. */
4995 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4998 unsigned int i
, num_sec
;
4999 Elf_Internal_Shdr
**shdrpp
;
5001 off
= elf_tdata (abfd
)->next_file_pos
;
5003 num_sec
= elf_numsections (abfd
);
5004 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5006 Elf_Internal_Shdr
*shdrp
;
5009 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5010 && shdrp
->sh_offset
== -1)
5011 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5014 elf_tdata (abfd
)->next_file_pos
= off
;
5018 _bfd_elf_write_object_contents (bfd
*abfd
)
5020 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5021 Elf_Internal_Ehdr
*i_ehdrp
;
5022 Elf_Internal_Shdr
**i_shdrp
;
5024 unsigned int count
, num_sec
;
5026 if (! abfd
->output_has_begun
5027 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5030 i_shdrp
= elf_elfsections (abfd
);
5031 i_ehdrp
= elf_elfheader (abfd
);
5034 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5038 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5040 /* After writing the headers, we need to write the sections too... */
5041 num_sec
= elf_numsections (abfd
);
5042 for (count
= 1; count
< num_sec
; count
++)
5044 if (bed
->elf_backend_section_processing
)
5045 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5046 if (i_shdrp
[count
]->contents
)
5048 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5050 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5051 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5054 if (count
== SHN_LORESERVE
- 1)
5055 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5058 /* Write out the section header names. */
5059 if (elf_shstrtab (abfd
) != NULL
5060 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5061 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5064 if (bed
->elf_backend_final_write_processing
)
5065 (*bed
->elf_backend_final_write_processing
) (abfd
,
5066 elf_tdata (abfd
)->linker
);
5068 return bed
->s
->write_shdrs_and_ehdr (abfd
);
5072 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5074 /* Hopefully this can be done just like an object file. */
5075 return _bfd_elf_write_object_contents (abfd
);
5078 /* Given a section, search the header to find them. */
5081 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5083 const struct elf_backend_data
*bed
;
5086 if (elf_section_data (asect
) != NULL
5087 && elf_section_data (asect
)->this_idx
!= 0)
5088 return elf_section_data (asect
)->this_idx
;
5090 if (bfd_is_abs_section (asect
))
5092 else if (bfd_is_com_section (asect
))
5094 else if (bfd_is_und_section (asect
))
5099 bed
= get_elf_backend_data (abfd
);
5100 if (bed
->elf_backend_section_from_bfd_section
)
5104 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5109 bfd_set_error (bfd_error_nonrepresentable_section
);
5114 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5118 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5120 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5122 flagword flags
= asym_ptr
->flags
;
5124 /* When gas creates relocations against local labels, it creates its
5125 own symbol for the section, but does put the symbol into the
5126 symbol chain, so udata is 0. When the linker is generating
5127 relocatable output, this section symbol may be for one of the
5128 input sections rather than the output section. */
5129 if (asym_ptr
->udata
.i
== 0
5130 && (flags
& BSF_SECTION_SYM
)
5131 && asym_ptr
->section
)
5135 if (asym_ptr
->section
->output_section
!= NULL
)
5136 indx
= asym_ptr
->section
->output_section
->index
;
5138 indx
= asym_ptr
->section
->index
;
5139 if (indx
< elf_num_section_syms (abfd
)
5140 && elf_section_syms (abfd
)[indx
] != NULL
)
5141 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5144 idx
= asym_ptr
->udata
.i
;
5148 /* This case can occur when using --strip-symbol on a symbol
5149 which is used in a relocation entry. */
5150 (*_bfd_error_handler
)
5151 (_("%B: symbol `%s' required but not present"),
5152 abfd
, bfd_asymbol_name (asym_ptr
));
5153 bfd_set_error (bfd_error_no_symbols
);
5160 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5161 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5162 elf_symbol_flags (flags
));
5170 /* Rewrite program header information. */
5173 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5175 Elf_Internal_Ehdr
*iehdr
;
5176 struct elf_segment_map
*map
;
5177 struct elf_segment_map
*map_first
;
5178 struct elf_segment_map
**pointer_to_map
;
5179 Elf_Internal_Phdr
*segment
;
5182 unsigned int num_segments
;
5183 bfd_boolean phdr_included
= FALSE
;
5184 bfd_vma maxpagesize
;
5185 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5186 unsigned int phdr_adjust_num
= 0;
5187 const struct elf_backend_data
*bed
;
5189 bed
= get_elf_backend_data (ibfd
);
5190 iehdr
= elf_elfheader (ibfd
);
5193 pointer_to_map
= &map_first
;
5195 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5196 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5198 /* Returns the end address of the segment + 1. */
5199 #define SEGMENT_END(segment, start) \
5200 (start + (segment->p_memsz > segment->p_filesz \
5201 ? segment->p_memsz : segment->p_filesz))
5203 #define SECTION_SIZE(section, segment) \
5204 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5205 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5206 ? section->size : 0)
5208 /* Returns TRUE if the given section is contained within
5209 the given segment. VMA addresses are compared. */
5210 #define IS_CONTAINED_BY_VMA(section, segment) \
5211 (section->vma >= segment->p_vaddr \
5212 && (section->vma + SECTION_SIZE (section, segment) \
5213 <= (SEGMENT_END (segment, segment->p_vaddr))))
5215 /* Returns TRUE if the given section is contained within
5216 the given segment. LMA addresses are compared. */
5217 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5218 (section->lma >= base \
5219 && (section->lma + SECTION_SIZE (section, segment) \
5220 <= SEGMENT_END (segment, base)))
5222 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5223 #define IS_COREFILE_NOTE(p, s) \
5224 (p->p_type == PT_NOTE \
5225 && bfd_get_format (ibfd) == bfd_core \
5226 && s->vma == 0 && s->lma == 0 \
5227 && (bfd_vma) s->filepos >= p->p_offset \
5228 && ((bfd_vma) s->filepos + s->size \
5229 <= p->p_offset + p->p_filesz))
5231 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5232 linker, which generates a PT_INTERP section with p_vaddr and
5233 p_memsz set to 0. */
5234 #define IS_SOLARIS_PT_INTERP(p, s) \
5236 && p->p_paddr == 0 \
5237 && p->p_memsz == 0 \
5238 && p->p_filesz > 0 \
5239 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5241 && (bfd_vma) s->filepos >= p->p_offset \
5242 && ((bfd_vma) s->filepos + s->size \
5243 <= p->p_offset + p->p_filesz))
5245 /* Decide if the given section should be included in the given segment.
5246 A section will be included if:
5247 1. It is within the address space of the segment -- we use the LMA
5248 if that is set for the segment and the VMA otherwise,
5249 2. It is an allocated segment,
5250 3. There is an output section associated with it,
5251 4. The section has not already been allocated to a previous segment.
5252 5. PT_GNU_STACK segments do not include any sections.
5253 6. PT_TLS segment includes only SHF_TLS sections.
5254 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5255 8. PT_DYNAMIC should not contain empty sections at the beginning
5256 (with the possible exception of .dynamic). */
5257 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5258 ((((segment->p_paddr \
5259 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5260 : IS_CONTAINED_BY_VMA (section, segment)) \
5261 && (section->flags & SEC_ALLOC) != 0) \
5262 || IS_COREFILE_NOTE (segment, section)) \
5263 && section->output_section != NULL \
5264 && segment->p_type != PT_GNU_STACK \
5265 && (segment->p_type != PT_TLS \
5266 || (section->flags & SEC_THREAD_LOCAL)) \
5267 && (segment->p_type == PT_LOAD \
5268 || segment->p_type == PT_TLS \
5269 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5270 && (segment->p_type != PT_DYNAMIC \
5271 || SECTION_SIZE (section, segment) > 0 \
5272 || (segment->p_paddr \
5273 ? segment->p_paddr != section->lma \
5274 : segment->p_vaddr != section->vma) \
5275 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5277 && ! section->segment_mark)
5279 /* Returns TRUE iff seg1 starts after the end of seg2. */
5280 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5281 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5283 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5284 their VMA address ranges and their LMA address ranges overlap.
5285 It is possible to have overlapping VMA ranges without overlapping LMA
5286 ranges. RedBoot images for example can have both .data and .bss mapped
5287 to the same VMA range, but with the .data section mapped to a different
5289 #define SEGMENT_OVERLAPS(seg1, seg2) \
5290 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5291 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5292 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5293 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5295 /* Initialise the segment mark field. */
5296 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5297 section
->segment_mark
= FALSE
;
5299 /* Scan through the segments specified in the program header
5300 of the input BFD. For this first scan we look for overlaps
5301 in the loadable segments. These can be created by weird
5302 parameters to objcopy. Also, fix some solaris weirdness. */
5303 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5308 Elf_Internal_Phdr
*segment2
;
5310 if (segment
->p_type
== PT_INTERP
)
5311 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5312 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5314 /* Mininal change so that the normal section to segment
5315 assignment code will work. */
5316 segment
->p_vaddr
= section
->vma
;
5320 if (segment
->p_type
!= PT_LOAD
)
5323 /* Determine if this segment overlaps any previous segments. */
5324 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5326 bfd_signed_vma extra_length
;
5328 if (segment2
->p_type
!= PT_LOAD
5329 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5332 /* Merge the two segments together. */
5333 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5335 /* Extend SEGMENT2 to include SEGMENT and then delete
5338 SEGMENT_END (segment
, segment
->p_vaddr
)
5339 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5341 if (extra_length
> 0)
5343 segment2
->p_memsz
+= extra_length
;
5344 segment2
->p_filesz
+= extra_length
;
5347 segment
->p_type
= PT_NULL
;
5349 /* Since we have deleted P we must restart the outer loop. */
5351 segment
= elf_tdata (ibfd
)->phdr
;
5356 /* Extend SEGMENT to include SEGMENT2 and then delete
5359 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5360 - SEGMENT_END (segment
, segment
->p_vaddr
);
5362 if (extra_length
> 0)
5364 segment
->p_memsz
+= extra_length
;
5365 segment
->p_filesz
+= extra_length
;
5368 segment2
->p_type
= PT_NULL
;
5373 /* The second scan attempts to assign sections to segments. */
5374 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5378 unsigned int section_count
;
5379 asection
** sections
;
5380 asection
* output_section
;
5382 bfd_vma matching_lma
;
5383 bfd_vma suggested_lma
;
5387 if (segment
->p_type
== PT_NULL
)
5390 /* Compute how many sections might be placed into this segment. */
5391 for (section
= ibfd
->sections
, section_count
= 0;
5393 section
= section
->next
)
5394 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5397 /* Allocate a segment map big enough to contain
5398 all of the sections we have selected. */
5399 amt
= sizeof (struct elf_segment_map
);
5400 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5401 map
= bfd_alloc (obfd
, amt
);
5405 /* Initialise the fields of the segment map. Default to
5406 using the physical address of the segment in the input BFD. */
5408 map
->p_type
= segment
->p_type
;
5409 map
->p_flags
= segment
->p_flags
;
5410 map
->p_flags_valid
= 1;
5411 map
->p_paddr
= segment
->p_paddr
;
5412 map
->p_paddr_valid
= 1;
5414 /* Determine if this segment contains the ELF file header
5415 and if it contains the program headers themselves. */
5416 map
->includes_filehdr
= (segment
->p_offset
== 0
5417 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5419 map
->includes_phdrs
= 0;
5421 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5423 map
->includes_phdrs
=
5424 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5425 && (segment
->p_offset
+ segment
->p_filesz
5426 >= ((bfd_vma
) iehdr
->e_phoff
5427 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5429 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5430 phdr_included
= TRUE
;
5433 if (section_count
== 0)
5435 /* Special segments, such as the PT_PHDR segment, may contain
5436 no sections, but ordinary, loadable segments should contain
5437 something. They are allowed by the ELF spec however, so only
5438 a warning is produced. */
5439 if (segment
->p_type
== PT_LOAD
)
5440 (*_bfd_error_handler
)
5441 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5445 *pointer_to_map
= map
;
5446 pointer_to_map
= &map
->next
;
5451 /* Now scan the sections in the input BFD again and attempt
5452 to add their corresponding output sections to the segment map.
5453 The problem here is how to handle an output section which has
5454 been moved (ie had its LMA changed). There are four possibilities:
5456 1. None of the sections have been moved.
5457 In this case we can continue to use the segment LMA from the
5460 2. All of the sections have been moved by the same amount.
5461 In this case we can change the segment's LMA to match the LMA
5462 of the first section.
5464 3. Some of the sections have been moved, others have not.
5465 In this case those sections which have not been moved can be
5466 placed in the current segment which will have to have its size,
5467 and possibly its LMA changed, and a new segment or segments will
5468 have to be created to contain the other sections.
5470 4. The sections have been moved, but not by the same amount.
5471 In this case we can change the segment's LMA to match the LMA
5472 of the first section and we will have to create a new segment
5473 or segments to contain the other sections.
5475 In order to save time, we allocate an array to hold the section
5476 pointers that we are interested in. As these sections get assigned
5477 to a segment, they are removed from this array. */
5479 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5480 to work around this long long bug. */
5481 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5482 if (sections
== NULL
)
5485 /* Step One: Scan for segment vs section LMA conflicts.
5486 Also add the sections to the section array allocated above.
5487 Also add the sections to the current segment. In the common
5488 case, where the sections have not been moved, this means that
5489 we have completely filled the segment, and there is nothing
5495 for (j
= 0, section
= ibfd
->sections
;
5497 section
= section
->next
)
5499 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5501 output_section
= section
->output_section
;
5503 sections
[j
++] = section
;
5505 /* The Solaris native linker always sets p_paddr to 0.
5506 We try to catch that case here, and set it to the
5507 correct value. Note - some backends require that
5508 p_paddr be left as zero. */
5509 if (segment
->p_paddr
== 0
5510 && segment
->p_vaddr
!= 0
5511 && (! bed
->want_p_paddr_set_to_zero
)
5513 && output_section
->lma
!= 0
5514 && (output_section
->vma
== (segment
->p_vaddr
5515 + (map
->includes_filehdr
5518 + (map
->includes_phdrs
5520 * iehdr
->e_phentsize
)
5522 map
->p_paddr
= segment
->p_vaddr
;
5524 /* Match up the physical address of the segment with the
5525 LMA address of the output section. */
5526 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5527 || IS_COREFILE_NOTE (segment
, section
)
5528 || (bed
->want_p_paddr_set_to_zero
&&
5529 IS_CONTAINED_BY_VMA (output_section
, segment
))
5532 if (matching_lma
== 0)
5533 matching_lma
= output_section
->lma
;
5535 /* We assume that if the section fits within the segment
5536 then it does not overlap any other section within that
5538 map
->sections
[isec
++] = output_section
;
5540 else if (suggested_lma
== 0)
5541 suggested_lma
= output_section
->lma
;
5545 BFD_ASSERT (j
== section_count
);
5547 /* Step Two: Adjust the physical address of the current segment,
5549 if (isec
== section_count
)
5551 /* All of the sections fitted within the segment as currently
5552 specified. This is the default case. Add the segment to
5553 the list of built segments and carry on to process the next
5554 program header in the input BFD. */
5555 map
->count
= section_count
;
5556 *pointer_to_map
= map
;
5557 pointer_to_map
= &map
->next
;
5564 if (matching_lma
!= 0)
5566 /* At least one section fits inside the current segment.
5567 Keep it, but modify its physical address to match the
5568 LMA of the first section that fitted. */
5569 map
->p_paddr
= matching_lma
;
5573 /* None of the sections fitted inside the current segment.
5574 Change the current segment's physical address to match
5575 the LMA of the first section. */
5576 map
->p_paddr
= suggested_lma
;
5579 /* Offset the segment physical address from the lma
5580 to allow for space taken up by elf headers. */
5581 if (map
->includes_filehdr
)
5582 map
->p_paddr
-= iehdr
->e_ehsize
;
5584 if (map
->includes_phdrs
)
5586 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5588 /* iehdr->e_phnum is just an estimate of the number
5589 of program headers that we will need. Make a note
5590 here of the number we used and the segment we chose
5591 to hold these headers, so that we can adjust the
5592 offset when we know the correct value. */
5593 phdr_adjust_num
= iehdr
->e_phnum
;
5594 phdr_adjust_seg
= map
;
5598 /* Step Three: Loop over the sections again, this time assigning
5599 those that fit to the current segment and removing them from the
5600 sections array; but making sure not to leave large gaps. Once all
5601 possible sections have been assigned to the current segment it is
5602 added to the list of built segments and if sections still remain
5603 to be assigned, a new segment is constructed before repeating
5611 /* Fill the current segment with sections that fit. */
5612 for (j
= 0; j
< section_count
; j
++)
5614 section
= sections
[j
];
5616 if (section
== NULL
)
5619 output_section
= section
->output_section
;
5621 BFD_ASSERT (output_section
!= NULL
);
5623 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5624 || IS_COREFILE_NOTE (segment
, section
))
5626 if (map
->count
== 0)
5628 /* If the first section in a segment does not start at
5629 the beginning of the segment, then something is
5631 if (output_section
->lma
!=
5633 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5634 + (map
->includes_phdrs
5635 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5641 asection
* prev_sec
;
5643 prev_sec
= map
->sections
[map
->count
- 1];
5645 /* If the gap between the end of the previous section
5646 and the start of this section is more than
5647 maxpagesize then we need to start a new segment. */
5648 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5650 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5651 || ((prev_sec
->lma
+ prev_sec
->size
)
5652 > output_section
->lma
))
5654 if (suggested_lma
== 0)
5655 suggested_lma
= output_section
->lma
;
5661 map
->sections
[map
->count
++] = output_section
;
5664 section
->segment_mark
= TRUE
;
5666 else if (suggested_lma
== 0)
5667 suggested_lma
= output_section
->lma
;
5670 BFD_ASSERT (map
->count
> 0);
5672 /* Add the current segment to the list of built segments. */
5673 *pointer_to_map
= map
;
5674 pointer_to_map
= &map
->next
;
5676 if (isec
< section_count
)
5678 /* We still have not allocated all of the sections to
5679 segments. Create a new segment here, initialise it
5680 and carry on looping. */
5681 amt
= sizeof (struct elf_segment_map
);
5682 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5683 map
= bfd_alloc (obfd
, amt
);
5690 /* Initialise the fields of the segment map. Set the physical
5691 physical address to the LMA of the first section that has
5692 not yet been assigned. */
5694 map
->p_type
= segment
->p_type
;
5695 map
->p_flags
= segment
->p_flags
;
5696 map
->p_flags_valid
= 1;
5697 map
->p_paddr
= suggested_lma
;
5698 map
->p_paddr_valid
= 1;
5699 map
->includes_filehdr
= 0;
5700 map
->includes_phdrs
= 0;
5703 while (isec
< section_count
);
5708 /* The Solaris linker creates program headers in which all the
5709 p_paddr fields are zero. When we try to objcopy or strip such a
5710 file, we get confused. Check for this case, and if we find it
5711 reset the p_paddr_valid fields. */
5712 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5713 if (map
->p_paddr
!= 0)
5716 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5717 map
->p_paddr_valid
= 0;
5719 elf_tdata (obfd
)->segment_map
= map_first
;
5721 /* If we had to estimate the number of program headers that were
5722 going to be needed, then check our estimate now and adjust
5723 the offset if necessary. */
5724 if (phdr_adjust_seg
!= NULL
)
5728 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5731 if (count
> phdr_adjust_num
)
5732 phdr_adjust_seg
->p_paddr
5733 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5738 #undef IS_CONTAINED_BY_VMA
5739 #undef IS_CONTAINED_BY_LMA
5740 #undef IS_COREFILE_NOTE
5741 #undef IS_SOLARIS_PT_INTERP
5742 #undef INCLUDE_SECTION_IN_SEGMENT
5743 #undef SEGMENT_AFTER_SEGMENT
5744 #undef SEGMENT_OVERLAPS
5748 /* Copy ELF program header information. */
5751 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5753 Elf_Internal_Ehdr
*iehdr
;
5754 struct elf_segment_map
*map
;
5755 struct elf_segment_map
*map_first
;
5756 struct elf_segment_map
**pointer_to_map
;
5757 Elf_Internal_Phdr
*segment
;
5759 unsigned int num_segments
;
5760 bfd_boolean phdr_included
= FALSE
;
5762 iehdr
= elf_elfheader (ibfd
);
5765 pointer_to_map
= &map_first
;
5767 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5768 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5773 unsigned int section_count
;
5775 Elf_Internal_Shdr
*this_hdr
;
5777 /* FIXME: Do we need to copy PT_NULL segment? */
5778 if (segment
->p_type
== PT_NULL
)
5781 /* Compute how many sections are in this segment. */
5782 for (section
= ibfd
->sections
, section_count
= 0;
5784 section
= section
->next
)
5786 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5787 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5791 /* Allocate a segment map big enough to contain
5792 all of the sections we have selected. */
5793 amt
= sizeof (struct elf_segment_map
);
5794 if (section_count
!= 0)
5795 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5796 map
= bfd_alloc (obfd
, amt
);
5800 /* Initialize the fields of the output segment map with the
5803 map
->p_type
= segment
->p_type
;
5804 map
->p_flags
= segment
->p_flags
;
5805 map
->p_flags_valid
= 1;
5806 map
->p_paddr
= segment
->p_paddr
;
5807 map
->p_paddr_valid
= 1;
5809 /* Determine if this segment contains the ELF file header
5810 and if it contains the program headers themselves. */
5811 map
->includes_filehdr
= (segment
->p_offset
== 0
5812 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5814 map
->includes_phdrs
= 0;
5815 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5817 map
->includes_phdrs
=
5818 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5819 && (segment
->p_offset
+ segment
->p_filesz
5820 >= ((bfd_vma
) iehdr
->e_phoff
5821 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5823 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5824 phdr_included
= TRUE
;
5827 if (section_count
!= 0)
5829 unsigned int isec
= 0;
5831 for (section
= ibfd
->sections
;
5833 section
= section
->next
)
5835 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5836 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5837 map
->sections
[isec
++] = section
->output_section
;
5841 map
->count
= section_count
;
5842 *pointer_to_map
= map
;
5843 pointer_to_map
= &map
->next
;
5846 elf_tdata (obfd
)->segment_map
= map_first
;
5850 /* Copy private BFD data. This copies or rewrites ELF program header
5854 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5856 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5857 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5860 if (elf_tdata (ibfd
)->phdr
== NULL
)
5863 if (ibfd
->xvec
== obfd
->xvec
)
5865 /* Check if any sections in the input BFD covered by ELF program
5866 header are changed. */
5867 Elf_Internal_Phdr
*segment
;
5868 asection
*section
, *osec
;
5869 unsigned int i
, num_segments
;
5870 Elf_Internal_Shdr
*this_hdr
;
5872 /* Initialize the segment mark field. */
5873 for (section
= obfd
->sections
; section
!= NULL
;
5874 section
= section
->next
)
5875 section
->segment_mark
= FALSE
;
5877 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5878 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5882 for (section
= ibfd
->sections
;
5883 section
!= NULL
; section
= section
->next
)
5885 /* We mark the output section so that we know it comes
5886 from the input BFD. */
5887 osec
= section
->output_section
;
5889 osec
->segment_mark
= TRUE
;
5891 /* Check if this section is covered by the segment. */
5892 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5893 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5895 /* FIXME: Check if its output section is changed or
5896 removed. What else do we need to check? */
5898 || section
->flags
!= osec
->flags
5899 || section
->lma
!= osec
->lma
5900 || section
->vma
!= osec
->vma
5901 || section
->size
!= osec
->size
5902 || section
->rawsize
!= osec
->rawsize
5903 || section
->alignment_power
!= osec
->alignment_power
)
5909 /* Check to see if any output section doesn't come from the
5911 for (section
= obfd
->sections
; section
!= NULL
;
5912 section
= section
->next
)
5914 if (section
->segment_mark
== FALSE
)
5917 section
->segment_mark
= FALSE
;
5920 return copy_elf_program_header (ibfd
, obfd
);
5924 return rewrite_elf_program_header (ibfd
, obfd
);
5927 /* Initialize private output section information from input section. */
5930 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5934 struct bfd_link_info
*link_info
)
5937 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5938 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5940 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5941 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5944 /* Don't copy the output ELF section type from input if the
5945 output BFD section flags has been set to something different.
5946 elf_fake_sections will set ELF section type based on BFD
5948 if (osec
->flags
== isec
->flags
5949 || (osec
->flags
== 0 && elf_section_type (osec
) == SHT_NULL
))
5950 elf_section_type (osec
) = elf_section_type (isec
);
5952 /* Set things up for objcopy and relocatable link. The output
5953 SHT_GROUP section will have its elf_next_in_group pointing back
5954 to the input group members. Ignore linker created group section.
5955 See elfNN_ia64_object_p in elfxx-ia64.c. */
5959 if (elf_sec_group (isec
) == NULL
5960 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5962 if (elf_section_flags (isec
) & SHF_GROUP
)
5963 elf_section_flags (osec
) |= SHF_GROUP
;
5964 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5965 elf_group_name (osec
) = elf_group_name (isec
);
5969 ihdr
= &elf_section_data (isec
)->this_hdr
;
5971 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5972 don't use the output section of the linked-to section since it
5973 may be NULL at this point. */
5974 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
5976 ohdr
= &elf_section_data (osec
)->this_hdr
;
5977 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
5978 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
5981 osec
->use_rela_p
= isec
->use_rela_p
;
5986 /* Copy private section information. This copies over the entsize
5987 field, and sometimes the info field. */
5990 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5995 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5997 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5998 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6001 ihdr
= &elf_section_data (isec
)->this_hdr
;
6002 ohdr
= &elf_section_data (osec
)->this_hdr
;
6004 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6006 if (ihdr
->sh_type
== SHT_SYMTAB
6007 || ihdr
->sh_type
== SHT_DYNSYM
6008 || ihdr
->sh_type
== SHT_GNU_verneed
6009 || ihdr
->sh_type
== SHT_GNU_verdef
)
6010 ohdr
->sh_info
= ihdr
->sh_info
;
6012 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6016 /* Copy private header information. */
6019 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6021 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6022 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6025 /* Copy over private BFD data if it has not already been copied.
6026 This must be done here, rather than in the copy_private_bfd_data
6027 entry point, because the latter is called after the section
6028 contents have been set, which means that the program headers have
6029 already been worked out. */
6030 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6032 if (! copy_private_bfd_data (ibfd
, obfd
))
6039 /* Copy private symbol information. If this symbol is in a section
6040 which we did not map into a BFD section, try to map the section
6041 index correctly. We use special macro definitions for the mapped
6042 section indices; these definitions are interpreted by the
6043 swap_out_syms function. */
6045 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6046 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6047 #define MAP_STRTAB (SHN_HIOS + 3)
6048 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6049 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6052 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6057 elf_symbol_type
*isym
, *osym
;
6059 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6060 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6063 isym
= elf_symbol_from (ibfd
, isymarg
);
6064 osym
= elf_symbol_from (obfd
, osymarg
);
6068 && bfd_is_abs_section (isym
->symbol
.section
))
6072 shndx
= isym
->internal_elf_sym
.st_shndx
;
6073 if (shndx
== elf_onesymtab (ibfd
))
6074 shndx
= MAP_ONESYMTAB
;
6075 else if (shndx
== elf_dynsymtab (ibfd
))
6076 shndx
= MAP_DYNSYMTAB
;
6077 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6079 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6080 shndx
= MAP_SHSTRTAB
;
6081 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6082 shndx
= MAP_SYM_SHNDX
;
6083 osym
->internal_elf_sym
.st_shndx
= shndx
;
6089 /* Swap out the symbols. */
6092 swap_out_syms (bfd
*abfd
,
6093 struct bfd_strtab_hash
**sttp
,
6096 const struct elf_backend_data
*bed
;
6099 struct bfd_strtab_hash
*stt
;
6100 Elf_Internal_Shdr
*symtab_hdr
;
6101 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6102 Elf_Internal_Shdr
*symstrtab_hdr
;
6103 bfd_byte
*outbound_syms
;
6104 bfd_byte
*outbound_shndx
;
6107 bfd_boolean name_local_sections
;
6109 if (!elf_map_symbols (abfd
))
6112 /* Dump out the symtabs. */
6113 stt
= _bfd_elf_stringtab_init ();
6117 bed
= get_elf_backend_data (abfd
);
6118 symcount
= bfd_get_symcount (abfd
);
6119 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6120 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6121 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6122 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6123 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6124 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6126 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6127 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6129 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6130 if (outbound_syms
== NULL
)
6132 _bfd_stringtab_free (stt
);
6135 symtab_hdr
->contents
= outbound_syms
;
6137 outbound_shndx
= NULL
;
6138 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6139 if (symtab_shndx_hdr
->sh_name
!= 0)
6141 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6142 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6143 sizeof (Elf_External_Sym_Shndx
));
6144 if (outbound_shndx
== NULL
)
6146 _bfd_stringtab_free (stt
);
6150 symtab_shndx_hdr
->contents
= outbound_shndx
;
6151 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6152 symtab_shndx_hdr
->sh_size
= amt
;
6153 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6154 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6157 /* Now generate the data (for "contents"). */
6159 /* Fill in zeroth symbol and swap it out. */
6160 Elf_Internal_Sym sym
;
6166 sym
.st_shndx
= SHN_UNDEF
;
6167 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6168 outbound_syms
+= bed
->s
->sizeof_sym
;
6169 if (outbound_shndx
!= NULL
)
6170 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6174 = (bed
->elf_backend_name_local_section_symbols
6175 && bed
->elf_backend_name_local_section_symbols (abfd
));
6177 syms
= bfd_get_outsymbols (abfd
);
6178 for (idx
= 0; idx
< symcount
; idx
++)
6180 Elf_Internal_Sym sym
;
6181 bfd_vma value
= syms
[idx
]->value
;
6182 elf_symbol_type
*type_ptr
;
6183 flagword flags
= syms
[idx
]->flags
;
6186 if (!name_local_sections
6187 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6189 /* Local section symbols have no name. */
6194 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6197 if (sym
.st_name
== (unsigned long) -1)
6199 _bfd_stringtab_free (stt
);
6204 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6206 if ((flags
& BSF_SECTION_SYM
) == 0
6207 && bfd_is_com_section (syms
[idx
]->section
))
6209 /* ELF common symbols put the alignment into the `value' field,
6210 and the size into the `size' field. This is backwards from
6211 how BFD handles it, so reverse it here. */
6212 sym
.st_size
= value
;
6213 if (type_ptr
== NULL
6214 || type_ptr
->internal_elf_sym
.st_value
== 0)
6215 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6217 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6218 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6219 (abfd
, syms
[idx
]->section
);
6223 asection
*sec
= syms
[idx
]->section
;
6226 if (sec
->output_section
)
6228 value
+= sec
->output_offset
;
6229 sec
= sec
->output_section
;
6232 /* Don't add in the section vma for relocatable output. */
6233 if (! relocatable_p
)
6235 sym
.st_value
= value
;
6236 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6238 if (bfd_is_abs_section (sec
)
6240 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6242 /* This symbol is in a real ELF section which we did
6243 not create as a BFD section. Undo the mapping done
6244 by copy_private_symbol_data. */
6245 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6249 shndx
= elf_onesymtab (abfd
);
6252 shndx
= elf_dynsymtab (abfd
);
6255 shndx
= elf_tdata (abfd
)->strtab_section
;
6258 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6261 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6269 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6275 /* Writing this would be a hell of a lot easier if
6276 we had some decent documentation on bfd, and
6277 knew what to expect of the library, and what to
6278 demand of applications. For example, it
6279 appears that `objcopy' might not set the
6280 section of a symbol to be a section that is
6281 actually in the output file. */
6282 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6285 _bfd_error_handler (_("\
6286 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6287 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6289 bfd_set_error (bfd_error_invalid_operation
);
6290 _bfd_stringtab_free (stt
);
6294 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6295 BFD_ASSERT (shndx
!= -1);
6299 sym
.st_shndx
= shndx
;
6302 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6304 else if ((flags
& BSF_FUNCTION
) != 0)
6306 else if ((flags
& BSF_OBJECT
) != 0)
6311 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6314 /* Processor-specific types. */
6315 if (type_ptr
!= NULL
6316 && bed
->elf_backend_get_symbol_type
)
6317 type
= ((*bed
->elf_backend_get_symbol_type
)
6318 (&type_ptr
->internal_elf_sym
, type
));
6320 if (flags
& BSF_SECTION_SYM
)
6322 if (flags
& BSF_GLOBAL
)
6323 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6325 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6327 else if (bfd_is_com_section (syms
[idx
]->section
))
6328 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6329 else if (bfd_is_und_section (syms
[idx
]->section
))
6330 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6334 else if (flags
& BSF_FILE
)
6335 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6338 int bind
= STB_LOCAL
;
6340 if (flags
& BSF_LOCAL
)
6342 else if (flags
& BSF_WEAK
)
6344 else if (flags
& BSF_GLOBAL
)
6347 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6350 if (type_ptr
!= NULL
)
6351 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6355 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6356 outbound_syms
+= bed
->s
->sizeof_sym
;
6357 if (outbound_shndx
!= NULL
)
6358 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6362 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6363 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6365 symstrtab_hdr
->sh_flags
= 0;
6366 symstrtab_hdr
->sh_addr
= 0;
6367 symstrtab_hdr
->sh_entsize
= 0;
6368 symstrtab_hdr
->sh_link
= 0;
6369 symstrtab_hdr
->sh_info
= 0;
6370 symstrtab_hdr
->sh_addralign
= 1;
6375 /* Return the number of bytes required to hold the symtab vector.
6377 Note that we base it on the count plus 1, since we will null terminate
6378 the vector allocated based on this size. However, the ELF symbol table
6379 always has a dummy entry as symbol #0, so it ends up even. */
6382 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6386 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6388 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6389 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6391 symtab_size
-= sizeof (asymbol
*);
6397 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6401 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6403 if (elf_dynsymtab (abfd
) == 0)
6405 bfd_set_error (bfd_error_invalid_operation
);
6409 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6410 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6412 symtab_size
-= sizeof (asymbol
*);
6418 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6421 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6424 /* Canonicalize the relocs. */
6427 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6434 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6436 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6439 tblptr
= section
->relocation
;
6440 for (i
= 0; i
< section
->reloc_count
; i
++)
6441 *relptr
++ = tblptr
++;
6445 return section
->reloc_count
;
6449 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6451 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6452 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6455 bfd_get_symcount (abfd
) = symcount
;
6460 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6461 asymbol
**allocation
)
6463 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6464 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6467 bfd_get_dynamic_symcount (abfd
) = symcount
;
6471 /* Return the size required for the dynamic reloc entries. Any loadable
6472 section that was actually installed in the BFD, and has type SHT_REL
6473 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6474 dynamic reloc section. */
6477 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6482 if (elf_dynsymtab (abfd
) == 0)
6484 bfd_set_error (bfd_error_invalid_operation
);
6488 ret
= sizeof (arelent
*);
6489 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6490 if ((s
->flags
& SEC_LOAD
) != 0
6491 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6492 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6493 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6494 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6495 * sizeof (arelent
*));
6500 /* Canonicalize the dynamic relocation entries. Note that we return the
6501 dynamic relocations as a single block, although they are actually
6502 associated with particular sections; the interface, which was
6503 designed for SunOS style shared libraries, expects that there is only
6504 one set of dynamic relocs. Any loadable section that was actually
6505 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6506 dynamic symbol table, is considered to be a dynamic reloc section. */
6509 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6513 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6517 if (elf_dynsymtab (abfd
) == 0)
6519 bfd_set_error (bfd_error_invalid_operation
);
6523 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6525 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6527 if ((s
->flags
& SEC_LOAD
) != 0
6528 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6529 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6530 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6535 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6537 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6539 for (i
= 0; i
< count
; i
++)
6550 /* Read in the version information. */
6553 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6555 bfd_byte
*contents
= NULL
;
6556 unsigned int freeidx
= 0;
6558 if (elf_dynverref (abfd
) != 0)
6560 Elf_Internal_Shdr
*hdr
;
6561 Elf_External_Verneed
*everneed
;
6562 Elf_Internal_Verneed
*iverneed
;
6564 bfd_byte
*contents_end
;
6566 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6568 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6569 sizeof (Elf_Internal_Verneed
));
6570 if (elf_tdata (abfd
)->verref
== NULL
)
6573 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6575 contents
= bfd_malloc (hdr
->sh_size
);
6576 if (contents
== NULL
)
6578 error_return_verref
:
6579 elf_tdata (abfd
)->verref
= NULL
;
6580 elf_tdata (abfd
)->cverrefs
= 0;
6583 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6584 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6585 goto error_return_verref
;
6587 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6588 goto error_return_verref
;
6590 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6591 == sizeof (Elf_External_Vernaux
));
6592 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6593 everneed
= (Elf_External_Verneed
*) contents
;
6594 iverneed
= elf_tdata (abfd
)->verref
;
6595 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6597 Elf_External_Vernaux
*evernaux
;
6598 Elf_Internal_Vernaux
*ivernaux
;
6601 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6603 iverneed
->vn_bfd
= abfd
;
6605 iverneed
->vn_filename
=
6606 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6608 if (iverneed
->vn_filename
== NULL
)
6609 goto error_return_verref
;
6611 if (iverneed
->vn_cnt
== 0)
6612 iverneed
->vn_auxptr
= NULL
;
6615 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6616 sizeof (Elf_Internal_Vernaux
));
6617 if (iverneed
->vn_auxptr
== NULL
)
6618 goto error_return_verref
;
6621 if (iverneed
->vn_aux
6622 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6623 goto error_return_verref
;
6625 evernaux
= ((Elf_External_Vernaux
*)
6626 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6627 ivernaux
= iverneed
->vn_auxptr
;
6628 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6630 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6632 ivernaux
->vna_nodename
=
6633 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6634 ivernaux
->vna_name
);
6635 if (ivernaux
->vna_nodename
== NULL
)
6636 goto error_return_verref
;
6638 if (j
+ 1 < iverneed
->vn_cnt
)
6639 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6641 ivernaux
->vna_nextptr
= NULL
;
6643 if (ivernaux
->vna_next
6644 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6645 goto error_return_verref
;
6647 evernaux
= ((Elf_External_Vernaux
*)
6648 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6650 if (ivernaux
->vna_other
> freeidx
)
6651 freeidx
= ivernaux
->vna_other
;
6654 if (i
+ 1 < hdr
->sh_info
)
6655 iverneed
->vn_nextref
= iverneed
+ 1;
6657 iverneed
->vn_nextref
= NULL
;
6659 if (iverneed
->vn_next
6660 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6661 goto error_return_verref
;
6663 everneed
= ((Elf_External_Verneed
*)
6664 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6671 if (elf_dynverdef (abfd
) != 0)
6673 Elf_Internal_Shdr
*hdr
;
6674 Elf_External_Verdef
*everdef
;
6675 Elf_Internal_Verdef
*iverdef
;
6676 Elf_Internal_Verdef
*iverdefarr
;
6677 Elf_Internal_Verdef iverdefmem
;
6679 unsigned int maxidx
;
6680 bfd_byte
*contents_end_def
, *contents_end_aux
;
6682 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6684 contents
= bfd_malloc (hdr
->sh_size
);
6685 if (contents
== NULL
)
6687 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6688 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6691 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6694 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6695 >= sizeof (Elf_External_Verdaux
));
6696 contents_end_def
= contents
+ hdr
->sh_size
6697 - sizeof (Elf_External_Verdef
);
6698 contents_end_aux
= contents
+ hdr
->sh_size
6699 - sizeof (Elf_External_Verdaux
);
6701 /* We know the number of entries in the section but not the maximum
6702 index. Therefore we have to run through all entries and find
6704 everdef
= (Elf_External_Verdef
*) contents
;
6706 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6708 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6710 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6711 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6713 if (iverdefmem
.vd_next
6714 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6717 everdef
= ((Elf_External_Verdef
*)
6718 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6721 if (default_imported_symver
)
6723 if (freeidx
> maxidx
)
6728 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6729 sizeof (Elf_Internal_Verdef
));
6730 if (elf_tdata (abfd
)->verdef
== NULL
)
6733 elf_tdata (abfd
)->cverdefs
= maxidx
;
6735 everdef
= (Elf_External_Verdef
*) contents
;
6736 iverdefarr
= elf_tdata (abfd
)->verdef
;
6737 for (i
= 0; i
< hdr
->sh_info
; i
++)
6739 Elf_External_Verdaux
*everdaux
;
6740 Elf_Internal_Verdaux
*iverdaux
;
6743 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6745 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6747 error_return_verdef
:
6748 elf_tdata (abfd
)->verdef
= NULL
;
6749 elf_tdata (abfd
)->cverdefs
= 0;
6753 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6754 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6756 iverdef
->vd_bfd
= abfd
;
6758 if (iverdef
->vd_cnt
== 0)
6759 iverdef
->vd_auxptr
= NULL
;
6762 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6763 sizeof (Elf_Internal_Verdaux
));
6764 if (iverdef
->vd_auxptr
== NULL
)
6765 goto error_return_verdef
;
6769 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6770 goto error_return_verdef
;
6772 everdaux
= ((Elf_External_Verdaux
*)
6773 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6774 iverdaux
= iverdef
->vd_auxptr
;
6775 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6777 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6779 iverdaux
->vda_nodename
=
6780 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6781 iverdaux
->vda_name
);
6782 if (iverdaux
->vda_nodename
== NULL
)
6783 goto error_return_verdef
;
6785 if (j
+ 1 < iverdef
->vd_cnt
)
6786 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6788 iverdaux
->vda_nextptr
= NULL
;
6790 if (iverdaux
->vda_next
6791 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6792 goto error_return_verdef
;
6794 everdaux
= ((Elf_External_Verdaux
*)
6795 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6798 if (iverdef
->vd_cnt
)
6799 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6801 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6802 iverdef
->vd_nextdef
= iverdef
+ 1;
6804 iverdef
->vd_nextdef
= NULL
;
6806 everdef
= ((Elf_External_Verdef
*)
6807 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6813 else if (default_imported_symver
)
6820 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6821 sizeof (Elf_Internal_Verdef
));
6822 if (elf_tdata (abfd
)->verdef
== NULL
)
6825 elf_tdata (abfd
)->cverdefs
= freeidx
;
6828 /* Create a default version based on the soname. */
6829 if (default_imported_symver
)
6831 Elf_Internal_Verdef
*iverdef
;
6832 Elf_Internal_Verdaux
*iverdaux
;
6834 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6836 iverdef
->vd_version
= VER_DEF_CURRENT
;
6837 iverdef
->vd_flags
= 0;
6838 iverdef
->vd_ndx
= freeidx
;
6839 iverdef
->vd_cnt
= 1;
6841 iverdef
->vd_bfd
= abfd
;
6843 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6844 if (iverdef
->vd_nodename
== NULL
)
6845 goto error_return_verdef
;
6846 iverdef
->vd_nextdef
= NULL
;
6847 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6848 if (iverdef
->vd_auxptr
== NULL
)
6849 goto error_return_verdef
;
6851 iverdaux
= iverdef
->vd_auxptr
;
6852 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6853 iverdaux
->vda_nextptr
= NULL
;
6859 if (contents
!= NULL
)
6865 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6867 elf_symbol_type
*newsym
;
6868 bfd_size_type amt
= sizeof (elf_symbol_type
);
6870 newsym
= bfd_zalloc (abfd
, amt
);
6875 newsym
->symbol
.the_bfd
= abfd
;
6876 return &newsym
->symbol
;
6881 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6885 bfd_symbol_info (symbol
, ret
);
6888 /* Return whether a symbol name implies a local symbol. Most targets
6889 use this function for the is_local_label_name entry point, but some
6893 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6896 /* Normal local symbols start with ``.L''. */
6897 if (name
[0] == '.' && name
[1] == 'L')
6900 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6901 DWARF debugging symbols starting with ``..''. */
6902 if (name
[0] == '.' && name
[1] == '.')
6905 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6906 emitting DWARF debugging output. I suspect this is actually a
6907 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6908 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6909 underscore to be emitted on some ELF targets). For ease of use,
6910 we treat such symbols as local. */
6911 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6918 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6919 asymbol
*symbol ATTRIBUTE_UNUSED
)
6926 _bfd_elf_set_arch_mach (bfd
*abfd
,
6927 enum bfd_architecture arch
,
6928 unsigned long machine
)
6930 /* If this isn't the right architecture for this backend, and this
6931 isn't the generic backend, fail. */
6932 if (arch
!= get_elf_backend_data (abfd
)->arch
6933 && arch
!= bfd_arch_unknown
6934 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6937 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6940 /* Find the function to a particular section and offset,
6941 for error reporting. */
6944 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6948 const char **filename_ptr
,
6949 const char **functionname_ptr
)
6951 const char *filename
;
6952 asymbol
*func
, *file
;
6955 /* ??? Given multiple file symbols, it is impossible to reliably
6956 choose the right file name for global symbols. File symbols are
6957 local symbols, and thus all file symbols must sort before any
6958 global symbols. The ELF spec may be interpreted to say that a
6959 file symbol must sort before other local symbols, but currently
6960 ld -r doesn't do this. So, for ld -r output, it is possible to
6961 make a better choice of file name for local symbols by ignoring
6962 file symbols appearing after a given local symbol. */
6963 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6969 state
= nothing_seen
;
6971 for (p
= symbols
; *p
!= NULL
; p
++)
6975 q
= (elf_symbol_type
*) *p
;
6977 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6983 if (state
== symbol_seen
)
6984 state
= file_after_symbol_seen
;
6988 if (bfd_get_section (&q
->symbol
) == section
6989 && q
->symbol
.value
>= low_func
6990 && q
->symbol
.value
<= offset
)
6992 func
= (asymbol
*) q
;
6993 low_func
= q
->symbol
.value
;
6996 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
6997 || state
!= file_after_symbol_seen
))
6998 filename
= bfd_asymbol_name (file
);
7002 if (state
== nothing_seen
)
7003 state
= symbol_seen
;
7010 *filename_ptr
= filename
;
7011 if (functionname_ptr
)
7012 *functionname_ptr
= bfd_asymbol_name (func
);
7017 /* Find the nearest line to a particular section and offset,
7018 for error reporting. */
7021 _bfd_elf_find_nearest_line (bfd
*abfd
,
7025 const char **filename_ptr
,
7026 const char **functionname_ptr
,
7027 unsigned int *line_ptr
)
7031 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7032 filename_ptr
, functionname_ptr
,
7035 if (!*functionname_ptr
)
7036 elf_find_function (abfd
, section
, symbols
, offset
,
7037 *filename_ptr
? NULL
: filename_ptr
,
7043 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7044 filename_ptr
, functionname_ptr
,
7046 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7048 if (!*functionname_ptr
)
7049 elf_find_function (abfd
, section
, symbols
, offset
,
7050 *filename_ptr
? NULL
: filename_ptr
,
7056 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7057 &found
, filename_ptr
,
7058 functionname_ptr
, line_ptr
,
7059 &elf_tdata (abfd
)->line_info
))
7061 if (found
&& (*functionname_ptr
|| *line_ptr
))
7064 if (symbols
== NULL
)
7067 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7068 filename_ptr
, functionname_ptr
))
7075 /* Find the line for a symbol. */
7078 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7079 const char **filename_ptr
, unsigned int *line_ptr
)
7081 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7082 filename_ptr
, line_ptr
, 0,
7083 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7086 /* After a call to bfd_find_nearest_line, successive calls to
7087 bfd_find_inliner_info can be used to get source information about
7088 each level of function inlining that terminated at the address
7089 passed to bfd_find_nearest_line. Currently this is only supported
7090 for DWARF2 with appropriate DWARF3 extensions. */
7093 _bfd_elf_find_inliner_info (bfd
*abfd
,
7094 const char **filename_ptr
,
7095 const char **functionname_ptr
,
7096 unsigned int *line_ptr
)
7099 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7100 functionname_ptr
, line_ptr
,
7101 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7106 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
7110 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
7112 ret
+= get_program_header_size (abfd
);
7117 _bfd_elf_set_section_contents (bfd
*abfd
,
7119 const void *location
,
7121 bfd_size_type count
)
7123 Elf_Internal_Shdr
*hdr
;
7126 if (! abfd
->output_has_begun
7127 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7130 hdr
= &elf_section_data (section
)->this_hdr
;
7131 pos
= hdr
->sh_offset
+ offset
;
7132 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7133 || bfd_bwrite (location
, count
, abfd
) != count
)
7140 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7141 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7142 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7147 /* Try to convert a non-ELF reloc into an ELF one. */
7150 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7152 /* Check whether we really have an ELF howto. */
7154 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7156 bfd_reloc_code_real_type code
;
7157 reloc_howto_type
*howto
;
7159 /* Alien reloc: Try to determine its type to replace it with an
7160 equivalent ELF reloc. */
7162 if (areloc
->howto
->pc_relative
)
7164 switch (areloc
->howto
->bitsize
)
7167 code
= BFD_RELOC_8_PCREL
;
7170 code
= BFD_RELOC_12_PCREL
;
7173 code
= BFD_RELOC_16_PCREL
;
7176 code
= BFD_RELOC_24_PCREL
;
7179 code
= BFD_RELOC_32_PCREL
;
7182 code
= BFD_RELOC_64_PCREL
;
7188 howto
= bfd_reloc_type_lookup (abfd
, code
);
7190 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7192 if (howto
->pcrel_offset
)
7193 areloc
->addend
+= areloc
->address
;
7195 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7200 switch (areloc
->howto
->bitsize
)
7206 code
= BFD_RELOC_14
;
7209 code
= BFD_RELOC_16
;
7212 code
= BFD_RELOC_26
;
7215 code
= BFD_RELOC_32
;
7218 code
= BFD_RELOC_64
;
7224 howto
= bfd_reloc_type_lookup (abfd
, code
);
7228 areloc
->howto
= howto
;
7236 (*_bfd_error_handler
)
7237 (_("%B: unsupported relocation type %s"),
7238 abfd
, areloc
->howto
->name
);
7239 bfd_set_error (bfd_error_bad_value
);
7244 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7246 if (bfd_get_format (abfd
) == bfd_object
)
7248 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7249 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7250 _bfd_dwarf2_cleanup_debug_info (abfd
);
7253 return _bfd_generic_close_and_cleanup (abfd
);
7256 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7257 in the relocation's offset. Thus we cannot allow any sort of sanity
7258 range-checking to interfere. There is nothing else to do in processing
7261 bfd_reloc_status_type
7262 _bfd_elf_rel_vtable_reloc_fn
7263 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7264 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7265 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7266 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7268 return bfd_reloc_ok
;
7271 /* Elf core file support. Much of this only works on native
7272 toolchains, since we rely on knowing the
7273 machine-dependent procfs structure in order to pick
7274 out details about the corefile. */
7276 #ifdef HAVE_SYS_PROCFS_H
7277 # include <sys/procfs.h>
7280 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7283 elfcore_make_pid (bfd
*abfd
)
7285 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7286 + (elf_tdata (abfd
)->core_pid
));
7289 /* If there isn't a section called NAME, make one, using
7290 data from SECT. Note, this function will generate a
7291 reference to NAME, so you shouldn't deallocate or
7295 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7299 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7302 sect2
= bfd_make_section (abfd
, name
);
7306 sect2
->size
= sect
->size
;
7307 sect2
->filepos
= sect
->filepos
;
7308 sect2
->flags
= sect
->flags
;
7309 sect2
->alignment_power
= sect
->alignment_power
;
7313 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7314 actually creates up to two pseudosections:
7315 - For the single-threaded case, a section named NAME, unless
7316 such a section already exists.
7317 - For the multi-threaded case, a section named "NAME/PID", where
7318 PID is elfcore_make_pid (abfd).
7319 Both pseudosections have identical contents. */
7321 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7327 char *threaded_name
;
7331 /* Build the section name. */
7333 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7334 len
= strlen (buf
) + 1;
7335 threaded_name
= bfd_alloc (abfd
, len
);
7336 if (threaded_name
== NULL
)
7338 memcpy (threaded_name
, buf
, len
);
7340 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
7344 sect
->filepos
= filepos
;
7345 sect
->flags
= SEC_HAS_CONTENTS
;
7346 sect
->alignment_power
= 2;
7348 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7351 /* prstatus_t exists on:
7353 linux 2.[01] + glibc
7357 #if defined (HAVE_PRSTATUS_T)
7360 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7365 if (note
->descsz
== sizeof (prstatus_t
))
7369 size
= sizeof (prstat
.pr_reg
);
7370 offset
= offsetof (prstatus_t
, pr_reg
);
7371 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7373 /* Do not overwrite the core signal if it
7374 has already been set by another thread. */
7375 if (elf_tdata (abfd
)->core_signal
== 0)
7376 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7377 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7379 /* pr_who exists on:
7382 pr_who doesn't exist on:
7385 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7386 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7389 #if defined (HAVE_PRSTATUS32_T)
7390 else if (note
->descsz
== sizeof (prstatus32_t
))
7392 /* 64-bit host, 32-bit corefile */
7393 prstatus32_t prstat
;
7395 size
= sizeof (prstat
.pr_reg
);
7396 offset
= offsetof (prstatus32_t
, pr_reg
);
7397 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7399 /* Do not overwrite the core signal if it
7400 has already been set by another thread. */
7401 if (elf_tdata (abfd
)->core_signal
== 0)
7402 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7403 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7405 /* pr_who exists on:
7408 pr_who doesn't exist on:
7411 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7412 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7415 #endif /* HAVE_PRSTATUS32_T */
7418 /* Fail - we don't know how to handle any other
7419 note size (ie. data object type). */
7423 /* Make a ".reg/999" section and a ".reg" section. */
7424 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7425 size
, note
->descpos
+ offset
);
7427 #endif /* defined (HAVE_PRSTATUS_T) */
7429 /* Create a pseudosection containing the exact contents of NOTE. */
7431 elfcore_make_note_pseudosection (bfd
*abfd
,
7433 Elf_Internal_Note
*note
)
7435 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7436 note
->descsz
, note
->descpos
);
7439 /* There isn't a consistent prfpregset_t across platforms,
7440 but it doesn't matter, because we don't have to pick this
7441 data structure apart. */
7444 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7446 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7449 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7450 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7454 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7456 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7459 #if defined (HAVE_PRPSINFO_T)
7460 typedef prpsinfo_t elfcore_psinfo_t
;
7461 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7462 typedef prpsinfo32_t elfcore_psinfo32_t
;
7466 #if defined (HAVE_PSINFO_T)
7467 typedef psinfo_t elfcore_psinfo_t
;
7468 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7469 typedef psinfo32_t elfcore_psinfo32_t
;
7473 /* return a malloc'ed copy of a string at START which is at
7474 most MAX bytes long, possibly without a terminating '\0'.
7475 the copy will always have a terminating '\0'. */
7478 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7481 char *end
= memchr (start
, '\0', max
);
7489 dups
= bfd_alloc (abfd
, len
+ 1);
7493 memcpy (dups
, start
, len
);
7499 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7501 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7503 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7505 elfcore_psinfo_t psinfo
;
7507 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7509 elf_tdata (abfd
)->core_program
7510 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7511 sizeof (psinfo
.pr_fname
));
7513 elf_tdata (abfd
)->core_command
7514 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7515 sizeof (psinfo
.pr_psargs
));
7517 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7518 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7520 /* 64-bit host, 32-bit corefile */
7521 elfcore_psinfo32_t psinfo
;
7523 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7525 elf_tdata (abfd
)->core_program
7526 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7527 sizeof (psinfo
.pr_fname
));
7529 elf_tdata (abfd
)->core_command
7530 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7531 sizeof (psinfo
.pr_psargs
));
7537 /* Fail - we don't know how to handle any other
7538 note size (ie. data object type). */
7542 /* Note that for some reason, a spurious space is tacked
7543 onto the end of the args in some (at least one anyway)
7544 implementations, so strip it off if it exists. */
7547 char *command
= elf_tdata (abfd
)->core_command
;
7548 int n
= strlen (command
);
7550 if (0 < n
&& command
[n
- 1] == ' ')
7551 command
[n
- 1] = '\0';
7556 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7558 #if defined (HAVE_PSTATUS_T)
7560 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7562 if (note
->descsz
== sizeof (pstatus_t
)
7563 #if defined (HAVE_PXSTATUS_T)
7564 || note
->descsz
== sizeof (pxstatus_t
)
7570 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7572 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7574 #if defined (HAVE_PSTATUS32_T)
7575 else if (note
->descsz
== sizeof (pstatus32_t
))
7577 /* 64-bit host, 32-bit corefile */
7580 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7582 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7585 /* Could grab some more details from the "representative"
7586 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7587 NT_LWPSTATUS note, presumably. */
7591 #endif /* defined (HAVE_PSTATUS_T) */
7593 #if defined (HAVE_LWPSTATUS_T)
7595 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7597 lwpstatus_t lwpstat
;
7603 if (note
->descsz
!= sizeof (lwpstat
)
7604 #if defined (HAVE_LWPXSTATUS_T)
7605 && note
->descsz
!= sizeof (lwpxstatus_t
)
7610 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7612 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7613 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7615 /* Make a ".reg/999" section. */
7617 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7618 len
= strlen (buf
) + 1;
7619 name
= bfd_alloc (abfd
, len
);
7622 memcpy (name
, buf
, len
);
7624 sect
= bfd_make_section_anyway (abfd
, name
);
7628 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7629 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7630 sect
->filepos
= note
->descpos
7631 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7634 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7635 sect
->size
= sizeof (lwpstat
.pr_reg
);
7636 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7639 sect
->flags
= SEC_HAS_CONTENTS
;
7640 sect
->alignment_power
= 2;
7642 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7645 /* Make a ".reg2/999" section */
7647 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7648 len
= strlen (buf
) + 1;
7649 name
= bfd_alloc (abfd
, len
);
7652 memcpy (name
, buf
, len
);
7654 sect
= bfd_make_section_anyway (abfd
, name
);
7658 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7659 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7660 sect
->filepos
= note
->descpos
7661 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7664 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7665 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7666 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7669 sect
->flags
= SEC_HAS_CONTENTS
;
7670 sect
->alignment_power
= 2;
7672 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7674 #endif /* defined (HAVE_LWPSTATUS_T) */
7676 #if defined (HAVE_WIN32_PSTATUS_T)
7678 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7684 win32_pstatus_t pstatus
;
7686 if (note
->descsz
< sizeof (pstatus
))
7689 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7691 switch (pstatus
.data_type
)
7693 case NOTE_INFO_PROCESS
:
7694 /* FIXME: need to add ->core_command. */
7695 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7696 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7699 case NOTE_INFO_THREAD
:
7700 /* Make a ".reg/999" section. */
7701 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7703 len
= strlen (buf
) + 1;
7704 name
= bfd_alloc (abfd
, len
);
7708 memcpy (name
, buf
, len
);
7710 sect
= bfd_make_section_anyway (abfd
, name
);
7714 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7715 sect
->filepos
= (note
->descpos
7716 + offsetof (struct win32_pstatus
,
7717 data
.thread_info
.thread_context
));
7718 sect
->flags
= SEC_HAS_CONTENTS
;
7719 sect
->alignment_power
= 2;
7721 if (pstatus
.data
.thread_info
.is_active_thread
)
7722 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7726 case NOTE_INFO_MODULE
:
7727 /* Make a ".module/xxxxxxxx" section. */
7728 sprintf (buf
, ".module/%08lx",
7729 (long) pstatus
.data
.module_info
.base_address
);
7731 len
= strlen (buf
) + 1;
7732 name
= bfd_alloc (abfd
, len
);
7736 memcpy (name
, buf
, len
);
7738 sect
= bfd_make_section_anyway (abfd
, name
);
7743 sect
->size
= note
->descsz
;
7744 sect
->filepos
= note
->descpos
;
7745 sect
->flags
= SEC_HAS_CONTENTS
;
7746 sect
->alignment_power
= 2;
7755 #endif /* HAVE_WIN32_PSTATUS_T */
7758 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7760 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7768 if (bed
->elf_backend_grok_prstatus
)
7769 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7771 #if defined (HAVE_PRSTATUS_T)
7772 return elfcore_grok_prstatus (abfd
, note
);
7777 #if defined (HAVE_PSTATUS_T)
7779 return elfcore_grok_pstatus (abfd
, note
);
7782 #if defined (HAVE_LWPSTATUS_T)
7784 return elfcore_grok_lwpstatus (abfd
, note
);
7787 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7788 return elfcore_grok_prfpreg (abfd
, note
);
7790 #if defined (HAVE_WIN32_PSTATUS_T)
7791 case NT_WIN32PSTATUS
:
7792 return elfcore_grok_win32pstatus (abfd
, note
);
7795 case NT_PRXFPREG
: /* Linux SSE extension */
7796 if (note
->namesz
== 6
7797 && strcmp (note
->namedata
, "LINUX") == 0)
7798 return elfcore_grok_prxfpreg (abfd
, note
);
7804 if (bed
->elf_backend_grok_psinfo
)
7805 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7807 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7808 return elfcore_grok_psinfo (abfd
, note
);
7815 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7819 sect
->size
= note
->descsz
;
7820 sect
->filepos
= note
->descpos
;
7821 sect
->flags
= SEC_HAS_CONTENTS
;
7822 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7830 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7834 cp
= strchr (note
->namedata
, '@');
7837 *lwpidp
= atoi(cp
+ 1);
7844 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7847 /* Signal number at offset 0x08. */
7848 elf_tdata (abfd
)->core_signal
7849 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7851 /* Process ID at offset 0x50. */
7852 elf_tdata (abfd
)->core_pid
7853 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7855 /* Command name at 0x7c (max 32 bytes, including nul). */
7856 elf_tdata (abfd
)->core_command
7857 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7859 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7864 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7868 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7869 elf_tdata (abfd
)->core_lwpid
= lwp
;
7871 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7873 /* NetBSD-specific core "procinfo". Note that we expect to
7874 find this note before any of the others, which is fine,
7875 since the kernel writes this note out first when it
7876 creates a core file. */
7878 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7881 /* As of Jan 2002 there are no other machine-independent notes
7882 defined for NetBSD core files. If the note type is less
7883 than the start of the machine-dependent note types, we don't
7886 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7890 switch (bfd_get_arch (abfd
))
7892 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7893 PT_GETFPREGS == mach+2. */
7895 case bfd_arch_alpha
:
7896 case bfd_arch_sparc
:
7899 case NT_NETBSDCORE_FIRSTMACH
+0:
7900 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7902 case NT_NETBSDCORE_FIRSTMACH
+2:
7903 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7909 /* On all other arch's, PT_GETREGS == mach+1 and
7910 PT_GETFPREGS == mach+3. */
7915 case NT_NETBSDCORE_FIRSTMACH
+1:
7916 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7918 case NT_NETBSDCORE_FIRSTMACH
+3:
7919 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7929 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7931 void *ddata
= note
->descdata
;
7938 /* nto_procfs_status 'pid' field is at offset 0. */
7939 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7941 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7942 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7944 /* nto_procfs_status 'flags' field is at offset 8. */
7945 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7947 /* nto_procfs_status 'what' field is at offset 14. */
7948 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7950 elf_tdata (abfd
)->core_signal
= sig
;
7951 elf_tdata (abfd
)->core_lwpid
= *tid
;
7954 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7955 do not come from signals so we make sure we set the current
7956 thread just in case. */
7957 if (flags
& 0x00000080)
7958 elf_tdata (abfd
)->core_lwpid
= *tid
;
7960 /* Make a ".qnx_core_status/%d" section. */
7961 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7963 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7968 sect
= bfd_make_section_anyway (abfd
, name
);
7972 sect
->size
= note
->descsz
;
7973 sect
->filepos
= note
->descpos
;
7974 sect
->flags
= SEC_HAS_CONTENTS
;
7975 sect
->alignment_power
= 2;
7977 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7981 elfcore_grok_nto_regs (bfd
*abfd
,
7982 Elf_Internal_Note
*note
,
7990 /* Make a "(base)/%d" section. */
7991 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7993 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7998 sect
= bfd_make_section_anyway (abfd
, name
);
8002 sect
->size
= note
->descsz
;
8003 sect
->filepos
= note
->descpos
;
8004 sect
->flags
= SEC_HAS_CONTENTS
;
8005 sect
->alignment_power
= 2;
8007 /* This is the current thread. */
8008 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8009 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8014 #define BFD_QNT_CORE_INFO 7
8015 #define BFD_QNT_CORE_STATUS 8
8016 #define BFD_QNT_CORE_GREG 9
8017 #define BFD_QNT_CORE_FPREG 10
8020 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8022 /* Every GREG section has a STATUS section before it. Store the
8023 tid from the previous call to pass down to the next gregs
8025 static pid_t tid
= 1;
8029 case BFD_QNT_CORE_INFO
:
8030 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8031 case BFD_QNT_CORE_STATUS
:
8032 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8033 case BFD_QNT_CORE_GREG
:
8034 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8035 case BFD_QNT_CORE_FPREG
:
8036 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8042 /* Function: elfcore_write_note
8049 size of data for note
8052 End of buffer containing note. */
8055 elfcore_write_note (bfd
*abfd
,
8063 Elf_External_Note
*xnp
;
8073 const struct elf_backend_data
*bed
;
8075 namesz
= strlen (name
) + 1;
8076 bed
= get_elf_backend_data (abfd
);
8077 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
8080 newspace
= 12 + namesz
+ pad
+ size
;
8082 p
= realloc (buf
, *bufsiz
+ newspace
);
8084 *bufsiz
+= newspace
;
8085 xnp
= (Elf_External_Note
*) dest
;
8086 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8087 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8088 H_PUT_32 (abfd
, type
, xnp
->type
);
8092 memcpy (dest
, name
, namesz
);
8100 memcpy (dest
, input
, size
);
8104 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8106 elfcore_write_prpsinfo (bfd
*abfd
,
8113 char *note_name
= "CORE";
8115 #if defined (HAVE_PSINFO_T)
8117 note_type
= NT_PSINFO
;
8120 note_type
= NT_PRPSINFO
;
8123 memset (&data
, 0, sizeof (data
));
8124 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8125 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8126 return elfcore_write_note (abfd
, buf
, bufsiz
,
8127 note_name
, note_type
, &data
, sizeof (data
));
8129 #endif /* PSINFO_T or PRPSINFO_T */
8131 #if defined (HAVE_PRSTATUS_T)
8133 elfcore_write_prstatus (bfd
*abfd
,
8141 char *note_name
= "CORE";
8143 memset (&prstat
, 0, sizeof (prstat
));
8144 prstat
.pr_pid
= pid
;
8145 prstat
.pr_cursig
= cursig
;
8146 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8147 return elfcore_write_note (abfd
, buf
, bufsiz
,
8148 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8150 #endif /* HAVE_PRSTATUS_T */
8152 #if defined (HAVE_LWPSTATUS_T)
8154 elfcore_write_lwpstatus (bfd
*abfd
,
8161 lwpstatus_t lwpstat
;
8162 char *note_name
= "CORE";
8164 memset (&lwpstat
, 0, sizeof (lwpstat
));
8165 lwpstat
.pr_lwpid
= pid
>> 16;
8166 lwpstat
.pr_cursig
= cursig
;
8167 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8168 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8169 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8171 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8172 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8174 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8175 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8178 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8179 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8181 #endif /* HAVE_LWPSTATUS_T */
8183 #if defined (HAVE_PSTATUS_T)
8185 elfcore_write_pstatus (bfd
*abfd
,
8189 int cursig ATTRIBUTE_UNUSED
,
8190 const void *gregs ATTRIBUTE_UNUSED
)
8193 char *note_name
= "CORE";
8195 memset (&pstat
, 0, sizeof (pstat
));
8196 pstat
.pr_pid
= pid
& 0xffff;
8197 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8198 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8201 #endif /* HAVE_PSTATUS_T */
8204 elfcore_write_prfpreg (bfd
*abfd
,
8210 char *note_name
= "CORE";
8211 return elfcore_write_note (abfd
, buf
, bufsiz
,
8212 note_name
, NT_FPREGSET
, fpregs
, size
);
8216 elfcore_write_prxfpreg (bfd
*abfd
,
8219 const void *xfpregs
,
8222 char *note_name
= "LINUX";
8223 return elfcore_write_note (abfd
, buf
, bufsiz
,
8224 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8228 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8236 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8239 buf
= bfd_malloc (size
);
8243 if (bfd_bread (buf
, size
, abfd
) != size
)
8251 while (p
< buf
+ size
)
8253 /* FIXME: bad alignment assumption. */
8254 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8255 Elf_Internal_Note in
;
8257 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8259 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8260 in
.namedata
= xnp
->name
;
8262 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8263 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8264 in
.descpos
= offset
+ (in
.descdata
- buf
);
8266 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
8268 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8271 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
8273 if (! elfcore_grok_nto_note (abfd
, &in
))
8278 if (! elfcore_grok_note (abfd
, &in
))
8282 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8289 /* Providing external access to the ELF program header table. */
8291 /* Return an upper bound on the number of bytes required to store a
8292 copy of ABFD's program header table entries. Return -1 if an error
8293 occurs; bfd_get_error will return an appropriate code. */
8296 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8298 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8300 bfd_set_error (bfd_error_wrong_format
);
8304 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8307 /* Copy ABFD's program header table entries to *PHDRS. The entries
8308 will be stored as an array of Elf_Internal_Phdr structures, as
8309 defined in include/elf/internal.h. To find out how large the
8310 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8312 Return the number of program header table entries read, or -1 if an
8313 error occurs; bfd_get_error will return an appropriate code. */
8316 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8320 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8322 bfd_set_error (bfd_error_wrong_format
);
8326 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8327 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8328 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8334 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8337 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8339 i_ehdrp
= elf_elfheader (abfd
);
8340 if (i_ehdrp
== NULL
)
8341 sprintf_vma (buf
, value
);
8344 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8346 #if BFD_HOST_64BIT_LONG
8347 sprintf (buf
, "%016lx", value
);
8349 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8350 _bfd_int64_low (value
));
8354 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8357 sprintf_vma (buf
, value
);
8362 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8365 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8367 i_ehdrp
= elf_elfheader (abfd
);
8368 if (i_ehdrp
== NULL
)
8369 fprintf_vma ((FILE *) stream
, value
);
8372 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8374 #if BFD_HOST_64BIT_LONG
8375 fprintf ((FILE *) stream
, "%016lx", value
);
8377 fprintf ((FILE *) stream
, "%08lx%08lx",
8378 _bfd_int64_high (value
), _bfd_int64_low (value
));
8382 fprintf ((FILE *) stream
, "%08lx",
8383 (unsigned long) (value
& 0xffffffff));
8386 fprintf_vma ((FILE *) stream
, value
);
8390 enum elf_reloc_type_class
8391 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8393 return reloc_class_normal
;
8396 /* For RELA architectures, return the relocation value for a
8397 relocation against a local symbol. */
8400 _bfd_elf_rela_local_sym (bfd
*abfd
,
8401 Elf_Internal_Sym
*sym
,
8403 Elf_Internal_Rela
*rel
)
8405 asection
*sec
= *psec
;
8408 relocation
= (sec
->output_section
->vma
8409 + sec
->output_offset
8411 if ((sec
->flags
& SEC_MERGE
)
8412 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8413 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8416 _bfd_merged_section_offset (abfd
, psec
,
8417 elf_section_data (sec
)->sec_info
,
8418 sym
->st_value
+ rel
->r_addend
);
8421 /* If we have changed the section, and our original section is
8422 marked with SEC_EXCLUDE, it means that the original
8423 SEC_MERGE section has been completely subsumed in some
8424 other SEC_MERGE section. In this case, we need to leave
8425 some info around for --emit-relocs. */
8426 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8427 sec
->kept_section
= *psec
;
8430 rel
->r_addend
-= relocation
;
8431 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8437 _bfd_elf_rel_local_sym (bfd
*abfd
,
8438 Elf_Internal_Sym
*sym
,
8442 asection
*sec
= *psec
;
8444 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8445 return sym
->st_value
+ addend
;
8447 return _bfd_merged_section_offset (abfd
, psec
,
8448 elf_section_data (sec
)->sec_info
,
8449 sym
->st_value
+ addend
);
8453 _bfd_elf_section_offset (bfd
*abfd
,
8454 struct bfd_link_info
*info
,
8458 switch (sec
->sec_info_type
)
8460 case ELF_INFO_TYPE_STABS
:
8461 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8463 case ELF_INFO_TYPE_EH_FRAME
:
8464 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8470 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8471 reconstruct an ELF file by reading the segments out of remote memory
8472 based on the ELF file header at EHDR_VMA and the ELF program headers it
8473 points to. If not null, *LOADBASEP is filled in with the difference
8474 between the VMAs from which the segments were read, and the VMAs the
8475 file headers (and hence BFD's idea of each section's VMA) put them at.
8477 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8478 remote memory at target address VMA into the local buffer at MYADDR; it
8479 should return zero on success or an `errno' code on failure. TEMPL must
8480 be a BFD for an ELF target with the word size and byte order found in
8481 the remote memory. */
8484 bfd_elf_bfd_from_remote_memory
8488 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8490 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8491 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8495 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8496 long symcount ATTRIBUTE_UNUSED
,
8497 asymbol
**syms ATTRIBUTE_UNUSED
,
8502 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8505 const char *relplt_name
;
8506 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8510 Elf_Internal_Shdr
*hdr
;
8516 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8519 if (dynsymcount
<= 0)
8522 if (!bed
->plt_sym_val
)
8525 relplt_name
= bed
->relplt_name
;
8526 if (relplt_name
== NULL
)
8527 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8528 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8532 hdr
= &elf_section_data (relplt
)->this_hdr
;
8533 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8534 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8537 plt
= bfd_get_section_by_name (abfd
, ".plt");
8541 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8542 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8545 count
= relplt
->size
/ hdr
->sh_entsize
;
8546 size
= count
* sizeof (asymbol
);
8547 p
= relplt
->relocation
;
8548 for (i
= 0; i
< count
; i
++, s
++, p
++)
8549 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8551 s
= *ret
= bfd_malloc (size
);
8555 names
= (char *) (s
+ count
);
8556 p
= relplt
->relocation
;
8558 for (i
= 0; i
< count
; i
++, s
++, p
++)
8563 addr
= bed
->plt_sym_val (i
, plt
, p
);
8564 if (addr
== (bfd_vma
) -1)
8567 *s
= **p
->sym_ptr_ptr
;
8568 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8569 we are defining a symbol, ensure one of them is set. */
8570 if ((s
->flags
& BSF_LOCAL
) == 0)
8571 s
->flags
|= BSF_GLOBAL
;
8573 s
->value
= addr
- plt
->vma
;
8575 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8576 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8578 memcpy (names
, "@plt", sizeof ("@plt"));
8579 names
+= sizeof ("@plt");
8586 /* Sort symbol by binding and section. We want to put definitions
8587 sorted by section at the beginning. */
8590 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8592 const Elf_Internal_Sym
*s1
;
8593 const Elf_Internal_Sym
*s2
;
8596 /* Make sure that undefined symbols are at the end. */
8597 s1
= (const Elf_Internal_Sym
*) arg1
;
8598 if (s1
->st_shndx
== SHN_UNDEF
)
8600 s2
= (const Elf_Internal_Sym
*) arg2
;
8601 if (s2
->st_shndx
== SHN_UNDEF
)
8604 /* Sorted by section index. */
8605 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8609 /* Sorted by binding. */
8610 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8615 Elf_Internal_Sym
*sym
;
8620 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8622 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8623 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8624 return strcmp (s1
->name
, s2
->name
);
8627 /* Check if 2 sections define the same set of local and global
8631 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8634 const struct elf_backend_data
*bed1
, *bed2
;
8635 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8636 bfd_size_type symcount1
, symcount2
;
8637 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8638 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8639 Elf_Internal_Sym
*isymend
;
8640 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8641 bfd_size_type count1
, count2
, i
;
8648 /* If both are .gnu.linkonce sections, they have to have the same
8650 if (strncmp (sec1
->name
, ".gnu.linkonce",
8651 sizeof ".gnu.linkonce" - 1) == 0
8652 && strncmp (sec2
->name
, ".gnu.linkonce",
8653 sizeof ".gnu.linkonce" - 1) == 0)
8654 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8655 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8657 /* Both sections have to be in ELF. */
8658 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8659 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8662 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8665 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8666 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8668 /* If both are members of section groups, they have to have the
8670 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8674 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8675 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8676 if (shndx1
== -1 || shndx2
== -1)
8679 bed1
= get_elf_backend_data (bfd1
);
8680 bed2
= get_elf_backend_data (bfd2
);
8681 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8682 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8683 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8684 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8686 if (symcount1
== 0 || symcount2
== 0)
8689 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8691 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8695 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8698 /* Sort symbols by binding and section. Global definitions are at
8700 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8701 elf_sort_elf_symbol
);
8702 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8703 elf_sort_elf_symbol
);
8705 /* Count definitions in the section. */
8707 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8708 isym
< isymend
; isym
++)
8710 if (isym
->st_shndx
== (unsigned int) shndx1
)
8717 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8722 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8723 isym
< isymend
; isym
++)
8725 if (isym
->st_shndx
== (unsigned int) shndx2
)
8732 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8736 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8739 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8740 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8742 if (symtable1
== NULL
|| symtable2
== NULL
)
8746 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8747 isym
< isymend
; isym
++)
8750 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8757 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8758 isym
< isymend
; isym
++)
8761 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8767 /* Sort symbol by name. */
8768 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8769 elf_sym_name_compare
);
8770 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8771 elf_sym_name_compare
);
8773 for (i
= 0; i
< count1
; i
++)
8774 /* Two symbols must have the same binding, type and name. */
8775 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8776 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8777 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8795 /* It is only used by x86-64 so far. */
8796 asection _bfd_elf_large_com_section
8797 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8798 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8800 /* Return TRUE if 2 section types are compatible. */
8803 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8804 bfd
*bbfd
, const asection
*bsec
)
8808 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8809 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8812 return elf_section_type (asec
) == elf_section_type (bsec
);