1 /* Generic support for 64-bit ELF
2 Copyright 1999, 2000 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 #include "alloca-conf.h"
27 #include "elf64-hppa.h"
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
42 LDD PLTOFF+8(%r27),%r27
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
49 struct elf64_hppa_dyn_hash_entry
51 struct bfd_hash_entry root
;
53 /* Offsets for this symbol in various linker sections. */
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry
*h
;
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 unsigned long sym_indx
;
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry
*next
;
84 /* The type of the relocation. */
87 /* The input section of the relocation. */
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
94 /* The offset within the input section of the relocation. */
97 /* The addend for the relocation. */
102 /* Nonzero if this symbol needs an entry in one of the linker
110 struct elf64_hppa_dyn_hash_table
112 struct bfd_hash_table root
;
115 struct elf64_hppa_link_hash_table
117 struct elf_link_hash_table root
;
119 /* Shortcuts to get to the various linker defined sections. */
121 asection
*dlt_rel_sec
;
123 asection
*plt_rel_sec
;
125 asection
*opd_rel_sec
;
126 asection
*other_rel_sec
;
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
138 bfd_vma text_segment_base
;
139 bfd_vma data_segment_base
;
141 struct elf64_hppa_dyn_hash_table dyn_hash_table
;
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
146 bfd
*section_syms_bfd
;
148 /* Array of symbol numbers for each input section attached to the
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
157 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
159 static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table
*ht
, bfd
*abfd
,
161 new_hash_entry_func
new));
162 static struct bfd_hash_entry
*elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
164 const char *string
));
165 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
166 PARAMS ((bfd
*abfd
));
167 static struct elf64_hppa_dyn_hash_entry
*elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
, const char *string
,
169 boolean create
, boolean copy
));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
,
172 boolean (*func
)(struct elf64_hppa_dyn_hash_entry
*, PTR
),
175 static const char *get_dyn_name
176 PARAMS ((asection
*, struct elf_link_hash_entry
*,
177 const Elf_Internal_Rela
*, char **, size_t *));
180 /* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182 #include "elf-hppa.h"
185 static boolean elf64_hppa_object_p
188 static boolean elf64_hppa_section_from_shdr
189 PARAMS ((bfd
*, Elf64_Internal_Shdr
*, char *));
191 static void elf64_hppa_post_process_headers
192 PARAMS ((bfd
*, struct bfd_link_info
*));
194 static boolean elf64_hppa_create_dynamic_sections
195 PARAMS ((bfd
*, struct bfd_link_info
*));
197 static boolean elf64_hppa_adjust_dynamic_symbol
198 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
200 static boolean elf64_hppa_size_dynamic_sections
201 PARAMS ((bfd
*, struct bfd_link_info
*));
203 static boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd
*, struct bfd_link_info
*,
205 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
207 static boolean elf64_hppa_finish_dynamic_sections
208 PARAMS ((bfd
*, struct bfd_link_info
*));
210 static boolean elf64_hppa_check_relocs
211 PARAMS ((bfd
*, struct bfd_link_info
*,
212 asection
*, const Elf_Internal_Rela
*));
214 static boolean elf64_hppa_dynamic_symbol_p
215 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
217 static boolean elf64_hppa_mark_exported_functions
218 PARAMS ((struct elf_link_hash_entry
*, PTR
));
220 static boolean elf64_hppa_finalize_opd
221 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
223 static boolean elf64_hppa_finalize_dlt
224 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
226 static boolean allocate_global_data_dlt
227 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
229 static boolean allocate_global_data_plt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
232 static boolean allocate_global_data_stub
233 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
235 static boolean allocate_global_data_opd
236 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
238 static boolean get_reloc_section
239 PARAMS ((bfd
*, struct elf64_hppa_link_hash_table
*, asection
*));
241 static boolean count_dyn_reloc
242 PARAMS ((bfd
*, struct elf64_hppa_dyn_hash_entry
*,
243 int, asection
*, int, bfd_vma
, bfd_vma
));
245 static boolean allocate_dynrel_entries
246 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
248 static boolean elf64_hppa_finalize_dynreloc
249 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
251 static boolean get_opd
252 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
254 static boolean get_plt
255 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
257 static boolean get_dlt
258 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
260 static boolean get_stub
261 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
264 elf64_hppa_dyn_hash_table_init (ht
, abfd
, new)
265 struct elf64_hppa_dyn_hash_table
*ht
;
266 bfd
*abfd ATTRIBUTE_UNUSED
;
267 new_hash_entry_func
new;
269 memset (ht
, 0, sizeof(*ht
));
270 return bfd_hash_table_init (&ht
->root
, new);
273 static struct bfd_hash_entry
*
274 elf64_hppa_new_dyn_hash_entry (entry
, table
, string
)
275 struct bfd_hash_entry
*entry
;
276 struct bfd_hash_table
*table
;
279 struct elf64_hppa_dyn_hash_entry
*ret
;
280 ret
= (struct elf64_hppa_dyn_hash_entry
*) entry
;
282 /* Allocate the structure if it has not already been allocated by a
285 ret
= bfd_hash_allocate (table
, sizeof (*ret
));
290 /* Initialize our local data. All zeros, and definitely easier
291 than setting 8 bit fields. */
292 memset (ret
, 0, sizeof(*ret
));
294 /* Call the allocation method of the superclass. */
295 ret
= ((struct elf64_hppa_dyn_hash_entry
*)
296 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
301 /* Create the derived linker hash table. The PA64 ELF port uses this
302 derived hash table to keep information specific to the PA ElF
303 linker (without using static variables). */
305 static struct bfd_link_hash_table
*
306 elf64_hppa_hash_table_create (abfd
)
309 struct elf64_hppa_link_hash_table
*ret
;
311 ret
= bfd_zalloc (abfd
, sizeof (*ret
));
314 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
315 _bfd_elf_link_hash_newfunc
))
317 bfd_release (abfd
, ret
);
321 if (!elf64_hppa_dyn_hash_table_init (&ret
->dyn_hash_table
, abfd
,
322 elf64_hppa_new_dyn_hash_entry
))
324 return &ret
->root
.root
;
327 /* Look up an entry in a PA64 ELF linker hash table. */
329 static struct elf64_hppa_dyn_hash_entry
*
330 elf64_hppa_dyn_hash_lookup(table
, string
, create
, copy
)
331 struct elf64_hppa_dyn_hash_table
*table
;
333 boolean create
, copy
;
335 return ((struct elf64_hppa_dyn_hash_entry
*)
336 bfd_hash_lookup (&table
->root
, string
, create
, copy
));
339 /* Traverse a PA64 ELF linker hash table. */
342 elf64_hppa_dyn_hash_traverse (table
, func
, info
)
343 struct elf64_hppa_dyn_hash_table
*table
;
344 boolean (*func
) PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
349 (boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
))) func
,
353 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
355 Additionally we set the default architecture and machine. */
357 elf64_hppa_object_p (abfd
)
360 /* Set the right machine number for an HPPA ELF file. */
361 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
364 /* Given section type (hdr->sh_type), return a boolean indicating
365 whether or not the section is an elf64-hppa specific section. */
367 elf64_hppa_section_from_shdr (abfd
, hdr
, name
)
369 Elf64_Internal_Shdr
*hdr
;
374 switch (hdr
->sh_type
)
377 if (strcmp (name
, ".PARISC.archext") != 0)
380 case SHT_PARISC_UNWIND
:
381 if (strcmp (name
, ".PARISC.unwind") != 0)
385 case SHT_PARISC_ANNOT
:
390 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
392 newsect
= hdr
->bfd_section
;
398 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
399 name describes what was once potentially anonymous memory. We
400 allocate memory as necessary, possibly reusing PBUF/PLEN. */
403 get_dyn_name (sec
, h
, rel
, pbuf
, plen
)
405 struct elf_link_hash_entry
*h
;
406 const Elf_Internal_Rela
*rel
;
414 if (h
&& rel
->r_addend
== 0)
415 return h
->root
.root
.string
;
418 nlen
= strlen (h
->root
.root
.string
);
420 nlen
= 8 + 1 + sizeof (rel
->r_info
) * 2 - 8;
421 tlen
= nlen
+ 1 + sizeof (rel
->r_addend
) * 2 + 1;
429 *pbuf
= buf
= malloc (tlen
);
437 memcpy (buf
, h
->root
.root
.string
, nlen
);
439 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
443 nlen
= sprintf (buf
, "%x:%lx",
444 sec
->id
& 0xffffffff,
445 (long) ELF64_R_SYM (rel
->r_info
));
449 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
456 /* SEC is a section containing relocs for an input BFD when linking; return
457 a suitable section for holding relocs in the output BFD for a link. */
460 get_reloc_section (abfd
, hppa_info
, sec
)
462 struct elf64_hppa_link_hash_table
*hppa_info
;
465 const char *srel_name
;
469 srel_name
= (bfd_elf_string_from_elf_section
470 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
471 elf_section_data(sec
)->rel_hdr
.sh_name
));
472 if (srel_name
== NULL
)
475 BFD_ASSERT ((strncmp (srel_name
, ".rela", 5) == 0
476 && strcmp (bfd_get_section_name (abfd
, sec
),
478 || (strncmp (srel_name
, ".rel", 4) == 0
479 && strcmp (bfd_get_section_name (abfd
, sec
),
482 dynobj
= hppa_info
->root
.dynobj
;
484 hppa_info
->root
.dynobj
= dynobj
= abfd
;
486 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
489 srel
= bfd_make_section (dynobj
, srel_name
);
491 || !bfd_set_section_flags (dynobj
, srel
,
498 || !bfd_set_section_alignment (dynobj
, srel
, 3))
502 hppa_info
->other_rel_sec
= srel
;
506 /* Add a new entry to the list of dynamic relocations against DYN_H.
508 We use this to keep a record of all the FPTR relocations against a
509 particular symbol so that we can create FPTR relocations in the
513 count_dyn_reloc (abfd
, dyn_h
, type
, sec
, sec_symndx
, offset
, addend
)
515 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
522 struct elf64_hppa_dyn_reloc_entry
*rent
;
524 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
525 bfd_alloc (abfd
, sizeof (*rent
));
529 rent
->next
= dyn_h
->reloc_entries
;
532 rent
->sec_symndx
= sec_symndx
;
533 rent
->offset
= offset
;
534 rent
->addend
= addend
;
535 dyn_h
->reloc_entries
= rent
;
540 /* Scan the RELOCS and record the type of dynamic entries that each
541 referenced symbol needs. */
544 elf64_hppa_check_relocs (abfd
, info
, sec
, relocs
)
546 struct bfd_link_info
*info
;
548 const Elf_Internal_Rela
*relocs
;
550 struct elf64_hppa_link_hash_table
*hppa_info
;
551 const Elf_Internal_Rela
*relend
;
552 Elf_Internal_Shdr
*symtab_hdr
;
553 const Elf_Internal_Rela
*rel
;
554 asection
*dlt
, *plt
, *stubs
;
559 if (info
->relocateable
)
562 /* If this is the first dynamic object found in the link, create
563 the special sections required for dynamic linking. */
564 if (! elf_hash_table (info
)->dynamic_sections_created
)
566 if (! bfd_elf64_link_create_dynamic_sections (abfd
, info
))
570 hppa_info
= elf64_hppa_hash_table (info
);
571 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
573 /* If necessary, build a new table holding section symbols indices
574 for this BFD. This is disgusting. */
576 if (info
->shared
&& hppa_info
->section_syms_bfd
!= abfd
)
580 Elf_Internal_Sym
*local_syms
, *isym
;
581 Elf64_External_Sym
*ext_syms
, *esym
;
583 /* We're done with the old cache of section index to section symbol
584 index information. Free it.
586 ?!? Note we leak the last section_syms array. Presumably we
587 could free it in one of the later routines in this file. */
588 if (hppa_info
->section_syms
)
589 free (hppa_info
->section_syms
);
591 /* Allocate memory for the internal and external symbols. */
593 = (Elf_Internal_Sym
*) bfd_malloc (symtab_hdr
->sh_info
594 * sizeof (Elf_Internal_Sym
));
595 if (local_syms
== NULL
)
599 = (Elf64_External_Sym
*) bfd_malloc (symtab_hdr
->sh_info
600 * sizeof (Elf64_External_Sym
));
601 if (ext_syms
== NULL
)
607 /* Read in the local symbols. */
608 if (bfd_seek (abfd
, symtab_hdr
->sh_offset
, SEEK_SET
) != 0
609 || bfd_read (ext_syms
, 1,
611 * sizeof (Elf64_External_Sym
)), abfd
)
612 != (symtab_hdr
->sh_info
* sizeof (Elf64_External_Sym
)))
619 /* Swap in the local symbols, also record the highest section index
620 referenced by the local symbols. */
624 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++, esym
++, isym
++)
626 bfd_elf64_swap_symbol_in (abfd
, esym
, isym
);
627 if (isym
->st_shndx
> highest_shndx
)
628 highest_shndx
= isym
->st_shndx
;
631 /* Now we can free the external symbols. */
634 /* Allocate an array to hold the section index to section symbol index
635 mapping. Bump by one since we start counting at zero. */
637 hppa_info
->section_syms
= (int *) bfd_malloc (highest_shndx
640 /* Now walk the local symbols again. If we find a section symbol,
641 record the index of the symbol into the section_syms array. */
642 for (isym
= local_syms
, i
= 0; i
< symtab_hdr
->sh_info
; i
++, isym
++)
644 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
645 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
648 /* We are finished with the local symbols. Get rid of them. */
651 /* Record which BFD we built the section_syms mapping for. */
652 hppa_info
->section_syms_bfd
= abfd
;
655 /* Record the symbol index for this input section. We may need it for
656 relocations when building shared libraries. When not building shared
657 libraries this value is never really used, but assign it to zero to
658 prevent out of bounds memory accesses in other routines. */
661 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
663 /* If we did not find a section symbol for this section, then
664 something went terribly wrong above. */
665 if (sec_symndx
== -1)
668 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
673 dlt
= plt
= stubs
= NULL
;
677 relend
= relocs
+ sec
->reloc_count
;
678 for (rel
= relocs
; rel
< relend
; ++rel
)
688 struct elf_link_hash_entry
*h
= NULL
;
689 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
690 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
692 const char *addr_name
;
693 boolean maybe_dynamic
;
694 int dynrel_type
= R_PARISC_NONE
;
695 static reloc_howto_type
*howto
;
697 if (r_symndx
>= symtab_hdr
->sh_info
)
699 /* We're dealing with a global symbol -- find its hash entry
700 and mark it as being referenced. */
701 long indx
= r_symndx
- symtab_hdr
->sh_info
;
702 h
= elf_sym_hashes (abfd
)[indx
];
703 while (h
->root
.type
== bfd_link_hash_indirect
704 || h
->root
.type
== bfd_link_hash_warning
)
705 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
707 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
710 /* We can only get preliminary data on whether a symbol is
711 locally or externally defined, as not all of the input files
712 have yet been processed. Do something with what we know, as
713 this may help reduce memory usage and processing time later. */
714 maybe_dynamic
= false;
715 if (h
&& ((info
->shared
&& ! info
->symbolic
)
716 || ! (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
717 || h
->root
.type
== bfd_link_hash_defweak
))
718 maybe_dynamic
= true;
720 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
724 /* These are simple indirect references to symbols through the
725 DLT. We need to create a DLT entry for any symbols which
726 appears in a DLTIND relocation. */
727 case R_PARISC_DLTIND21L
:
728 case R_PARISC_DLTIND14R
:
729 case R_PARISC_DLTIND14F
:
730 case R_PARISC_DLTIND14WR
:
731 case R_PARISC_DLTIND14DR
:
732 need_entry
= NEED_DLT
;
735 /* ?!? These need a DLT entry. But I have no idea what to do with
736 the "link time TP value. */
737 case R_PARISC_LTOFF_TP21L
:
738 case R_PARISC_LTOFF_TP14R
:
739 case R_PARISC_LTOFF_TP14F
:
740 case R_PARISC_LTOFF_TP64
:
741 case R_PARISC_LTOFF_TP14WR
:
742 case R_PARISC_LTOFF_TP14DR
:
743 case R_PARISC_LTOFF_TP16F
:
744 case R_PARISC_LTOFF_TP16WF
:
745 case R_PARISC_LTOFF_TP16DF
:
746 need_entry
= NEED_DLT
;
749 /* These are function calls. Depending on their precise target we
750 may need to make a stub for them. The stub uses the PLT, so we
751 need to create PLT entries for these symbols too. */
752 case R_PARISC_PCREL12F
:
753 case R_PARISC_PCREL17F
:
754 case R_PARISC_PCREL22F
:
755 case R_PARISC_PCREL32
:
756 case R_PARISC_PCREL64
:
757 case R_PARISC_PCREL21L
:
758 case R_PARISC_PCREL17R
:
759 case R_PARISC_PCREL17C
:
760 case R_PARISC_PCREL14R
:
761 case R_PARISC_PCREL14F
:
762 case R_PARISC_PCREL22C
:
763 case R_PARISC_PCREL14WR
:
764 case R_PARISC_PCREL14DR
:
765 case R_PARISC_PCREL16F
:
766 case R_PARISC_PCREL16WF
:
767 case R_PARISC_PCREL16DF
:
768 need_entry
= (NEED_PLT
| NEED_STUB
);
771 case R_PARISC_PLTOFF21L
:
772 case R_PARISC_PLTOFF14R
:
773 case R_PARISC_PLTOFF14F
:
774 case R_PARISC_PLTOFF14WR
:
775 case R_PARISC_PLTOFF14DR
:
776 case R_PARISC_PLTOFF16F
:
777 case R_PARISC_PLTOFF16WF
:
778 case R_PARISC_PLTOFF16DF
:
779 need_entry
= (NEED_PLT
);
783 if (info
->shared
|| maybe_dynamic
)
784 need_entry
= (NEED_DYNREL
);
785 dynrel_type
= R_PARISC_DIR64
;
788 /* This is an indirect reference through the DLT to get the address
789 of a OPD descriptor. Thus we need to make a DLT entry that points
791 case R_PARISC_LTOFF_FPTR21L
:
792 case R_PARISC_LTOFF_FPTR14R
:
793 case R_PARISC_LTOFF_FPTR14WR
:
794 case R_PARISC_LTOFF_FPTR14DR
:
795 case R_PARISC_LTOFF_FPTR32
:
796 case R_PARISC_LTOFF_FPTR64
:
797 case R_PARISC_LTOFF_FPTR16F
:
798 case R_PARISC_LTOFF_FPTR16WF
:
799 case R_PARISC_LTOFF_FPTR16DF
:
800 if (info
->shared
|| maybe_dynamic
)
801 need_entry
= (NEED_DLT
| NEED_OPD
);
803 need_entry
= (NEED_DLT
| NEED_OPD
);
804 dynrel_type
= R_PARISC_FPTR64
;
807 /* This is a simple OPD entry. */
808 case R_PARISC_FPTR64
:
809 if (info
->shared
|| maybe_dynamic
)
810 need_entry
= (NEED_OPD
| NEED_DYNREL
);
812 need_entry
= (NEED_OPD
);
813 dynrel_type
= R_PARISC_FPTR64
;
816 /* Add more cases as needed. */
822 /* Collect a canonical name for this address. */
823 addr_name
= get_dyn_name (sec
, h
, rel
, &buf
, &buf_len
);
825 /* Collect the canonical entry data for this address. */
826 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
827 addr_name
, true, true);
830 /* Stash away enough information to be able to find this symbol
831 regardless of whether or not it is local or global. */
834 dyn_h
->sym_indx
= r_symndx
;
836 /* ?!? We may need to do some error checking in here. */
837 /* Create what's needed. */
838 if (need_entry
& NEED_DLT
)
840 if (! hppa_info
->dlt_sec
841 && ! get_dlt (abfd
, info
, hppa_info
))
846 if (need_entry
& NEED_PLT
)
848 if (! hppa_info
->plt_sec
849 && ! get_plt (abfd
, info
, hppa_info
))
854 if (need_entry
& NEED_STUB
)
856 if (! hppa_info
->stub_sec
857 && ! get_stub (abfd
, info
, hppa_info
))
859 dyn_h
->want_stub
= 1;
862 if (need_entry
& NEED_OPD
)
864 if (! hppa_info
->opd_sec
865 && ! get_opd (abfd
, info
, hppa_info
))
870 /* FPTRs are not allocated by the dynamic linker for PA64, though
871 it is possible that will change in the future. */
873 /* This could be a local function that had its address taken, in
874 which case H will be NULL. */
876 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
879 /* Add a new dynamic relocation to the chain of dynamic
880 relocations for this symbol. */
881 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
883 if (! hppa_info
->other_rel_sec
884 && ! get_reloc_section (abfd
, hppa_info
, sec
))
887 if (!count_dyn_reloc (abfd
, dyn_h
, dynrel_type
, sec
,
888 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
891 /* If we are building a shared library and we just recorded
892 a dynamic R_PARISC_FPTR64 relocation, then make sure the
893 section symbol for this section ends up in the dynamic
895 if (info
->shared
&& dynrel_type
== R_PARISC_FPTR64
896 && ! (_bfd_elf64_link_record_local_dynamic_symbol
897 (info
, abfd
, sec_symndx
)))
912 struct elf64_hppa_allocate_data
914 struct bfd_link_info
*info
;
918 /* Should we do dynamic things to this symbol? */
921 elf64_hppa_dynamic_symbol_p (h
, info
)
922 struct elf_link_hash_entry
*h
;
923 struct bfd_link_info
*info
;
928 while (h
->root
.type
== bfd_link_hash_indirect
929 || h
->root
.type
== bfd_link_hash_warning
)
930 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
932 if (h
->dynindx
== -1)
935 if (h
->root
.type
== bfd_link_hash_undefweak
936 || h
->root
.type
== bfd_link_hash_defweak
)
939 if (h
->root
.root
.string
[0] == '$' && h
->root
.root
.string
[1] == '$')
942 if ((info
->shared
&& !info
->symbolic
)
943 || ((h
->elf_link_hash_flags
944 & (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
))
945 == (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_REGULAR
)))
951 /* Mark all funtions exported by this file so that we can later allocate
952 entries in .opd for them. */
955 elf64_hppa_mark_exported_functions (h
, data
)
956 struct elf_link_hash_entry
*h
;
959 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
960 struct elf64_hppa_link_hash_table
*hppa_info
;
962 hppa_info
= elf64_hppa_hash_table (info
);
965 && (h
->root
.type
== bfd_link_hash_defined
966 || h
->root
.type
== bfd_link_hash_defweak
)
967 && h
->root
.u
.def
.section
->output_section
!= NULL
968 && h
->type
== STT_FUNC
)
970 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
972 /* Add this symbol to the PA64 linker hash table. */
973 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
974 h
->root
.root
.string
, true, true);
978 if (! hppa_info
->opd_sec
979 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
983 /* Put a flag here for output_symbol_hook. */
984 dyn_h
->st_shndx
= -1;
985 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
991 /* Allocate space for a DLT entry. */
994 allocate_global_data_dlt (dyn_h
, data
)
995 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
998 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1000 if (dyn_h
->want_dlt
)
1002 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1004 if (x
->info
->shared
)
1006 /* Possibly add the symbol to the local dynamic symbol
1007 table since we might need to create a dynamic relocation
1010 || (h
&& h
->dynindx
== -1))
1013 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1015 if (!_bfd_elf64_link_record_local_dynamic_symbol
1016 (x
->info
, owner
, dyn_h
->sym_indx
))
1021 dyn_h
->dlt_offset
= x
->ofs
;
1022 x
->ofs
+= DLT_ENTRY_SIZE
;
1027 /* Allocate space for a DLT.PLT entry. */
1030 allocate_global_data_plt (dyn_h
, data
)
1031 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1034 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1037 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1038 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1039 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1040 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1042 dyn_h
->plt_offset
= x
->ofs
;
1043 x
->ofs
+= PLT_ENTRY_SIZE
;
1044 if (dyn_h
->plt_offset
< 0x2000)
1045 elf64_hppa_hash_table (x
->info
)->gp_offset
= dyn_h
->plt_offset
;
1048 dyn_h
->want_plt
= 0;
1053 /* Allocate space for a STUB entry. */
1056 allocate_global_data_stub (dyn_h
, data
)
1057 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1060 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1062 if (dyn_h
->want_stub
1063 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1064 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1065 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1066 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1068 dyn_h
->stub_offset
= x
->ofs
;
1069 x
->ofs
+= sizeof (plt_stub
);
1072 dyn_h
->want_stub
= 0;
1076 /* Allocate space for a FPTR entry. */
1079 allocate_global_data_opd (dyn_h
, data
)
1080 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1083 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1085 if (dyn_h
->want_opd
)
1087 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1090 while (h
->root
.type
== bfd_link_hash_indirect
1091 || h
->root
.type
== bfd_link_hash_warning
)
1092 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1094 /* We never need an opd entry for a symbol which is not
1095 defined by this output file. */
1096 if (h
&& h
->root
.type
== bfd_link_hash_undefined
)
1097 dyn_h
->want_opd
= 0;
1099 /* If we are creating a shared library, took the address of a local
1100 function or might export this function from this object file, then
1101 we have to create an opd descriptor. */
1102 else if (x
->info
->shared
1105 || ((h
->root
.type
== bfd_link_hash_defined
1106 || h
->root
.type
== bfd_link_hash_defweak
)
1107 && h
->root
.u
.def
.section
->output_section
!= NULL
))
1109 /* If we are creating a shared library, then we will have to
1110 create a runtime relocation for the symbol to properly
1111 initialize the .opd entry. Make sure the symbol gets
1112 added to the dynamic symbol table. */
1114 && (h
== NULL
|| (h
->dynindx
== -1)))
1117 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1119 if (!_bfd_elf64_link_record_local_dynamic_symbol
1120 (x
->info
, owner
, dyn_h
->sym_indx
))
1124 /* This may not be necessary or desirable anymore now that
1125 we have some support for dealing with section symbols
1126 in dynamic relocs. But name munging does make the result
1127 much easier to debug. ie, the EPLT reloc will reference
1128 a symbol like .foobar, instead of .text + offset. */
1129 if (x
->info
->shared
&& h
)
1132 struct elf_link_hash_entry
*nh
;
1134 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
1136 strcpy (new_name
+ 1, h
->root
.root
.string
);
1138 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1139 new_name
, true, true, true);
1141 nh
->root
.type
= h
->root
.type
;
1142 nh
->root
.u
.def
.value
= h
->root
.u
.def
.value
;
1143 nh
->root
.u
.def
.section
= h
->root
.u
.def
.section
;
1145 if (! bfd_elf64_link_record_dynamic_symbol (x
->info
, nh
))
1149 dyn_h
->opd_offset
= x
->ofs
;
1150 x
->ofs
+= OPD_ENTRY_SIZE
;
1153 /* Otherwise we do not need an opd entry. */
1155 dyn_h
->want_opd
= 0;
1160 /* HP requires the EI_OSABI field to be filled in. The assignment to
1161 EI_ABIVERSION may not be strictly necessary. */
1164 elf64_hppa_post_process_headers (abfd
, link_info
)
1166 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
1168 Elf_Internal_Ehdr
* i_ehdrp
;
1170 i_ehdrp
= elf_elfheader (abfd
);
1172 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
1173 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1176 /* Create function descriptor section (.opd). This section is called .opd
1177 because it contains "official prodecure descriptors". The "official"
1178 refers to the fact that these descriptors are used when taking the address
1179 of a procedure, thus ensuring a unique address for each procedure. */
1182 get_opd (abfd
, info
, hppa_info
)
1184 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1185 struct elf64_hppa_link_hash_table
*hppa_info
;
1190 opd
= hppa_info
->opd_sec
;
1193 dynobj
= hppa_info
->root
.dynobj
;
1195 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1197 opd
= bfd_make_section (dynobj
, ".opd");
1199 || !bfd_set_section_flags (dynobj
, opd
,
1204 | SEC_LINKER_CREATED
))
1205 || !bfd_set_section_alignment (abfd
, opd
, 3))
1211 hppa_info
->opd_sec
= opd
;
1217 /* Create the PLT section. */
1220 get_plt (abfd
, info
, hppa_info
)
1222 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1223 struct elf64_hppa_link_hash_table
*hppa_info
;
1228 plt
= hppa_info
->plt_sec
;
1231 dynobj
= hppa_info
->root
.dynobj
;
1233 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1235 plt
= bfd_make_section (dynobj
, ".plt");
1237 || !bfd_set_section_flags (dynobj
, plt
,
1242 | SEC_LINKER_CREATED
))
1243 || !bfd_set_section_alignment (abfd
, plt
, 3))
1249 hppa_info
->plt_sec
= plt
;
1255 /* Create the DLT section. */
1258 get_dlt (abfd
, info
, hppa_info
)
1260 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1261 struct elf64_hppa_link_hash_table
*hppa_info
;
1266 dlt
= hppa_info
->dlt_sec
;
1269 dynobj
= hppa_info
->root
.dynobj
;
1271 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1273 dlt
= bfd_make_section (dynobj
, ".dlt");
1275 || !bfd_set_section_flags (dynobj
, dlt
,
1280 | SEC_LINKER_CREATED
))
1281 || !bfd_set_section_alignment (abfd
, dlt
, 3))
1287 hppa_info
->dlt_sec
= dlt
;
1293 /* Create the stubs section. */
1296 get_stub (abfd
, info
, hppa_info
)
1298 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1299 struct elf64_hppa_link_hash_table
*hppa_info
;
1304 stub
= hppa_info
->stub_sec
;
1307 dynobj
= hppa_info
->root
.dynobj
;
1309 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1311 stub
= bfd_make_section (dynobj
, ".stub");
1313 || !bfd_set_section_flags (dynobj
, stub
,
1319 | SEC_LINKER_CREATED
))
1320 || !bfd_set_section_alignment (abfd
, stub
, 3))
1326 hppa_info
->stub_sec
= stub
;
1332 /* Create sections necessary for dynamic linking. This is only a rough
1333 cut and will likely change as we learn more about the somewhat
1334 unusual dynamic linking scheme HP uses.
1337 Contains code to implement cross-space calls. The first time one
1338 of the stubs is used it will call into the dynamic linker, later
1339 calls will go straight to the target.
1341 The only stub we support right now looks like
1345 ldd OFFSET+8(%dp),%dp
1347 Other stubs may be needed in the future. We may want the remove
1348 the break/nop instruction. It is only used right now to keep the
1349 offset of a .plt entry and a .stub entry in sync.
1352 This is what most people call the .got. HP used a different name.
1356 Relocations for the DLT.
1359 Function pointers as address,gp pairs.
1362 Should contain dynamic IPLT (and EPLT?) relocations.
1368 EPLT relocations for symbols exported from shared libraries. */
1371 elf64_hppa_create_dynamic_sections (abfd
, info
)
1373 struct bfd_link_info
*info
;
1377 if (! get_stub (abfd
, info
, elf64_hppa_hash_table (info
)))
1380 if (! get_dlt (abfd
, info
, elf64_hppa_hash_table (info
)))
1383 if (! get_plt (abfd
, info
, elf64_hppa_hash_table (info
)))
1386 if (! get_opd (abfd
, info
, elf64_hppa_hash_table (info
)))
1389 s
= bfd_make_section(abfd
, ".rela.dlt");
1391 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1395 | SEC_LINKER_CREATED
))
1396 || !bfd_set_section_alignment (abfd
, s
, 3))
1398 elf64_hppa_hash_table (info
)->dlt_rel_sec
= s
;
1400 s
= bfd_make_section(abfd
, ".rela.plt");
1402 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1406 | SEC_LINKER_CREATED
))
1407 || !bfd_set_section_alignment (abfd
, s
, 3))
1409 elf64_hppa_hash_table (info
)->plt_rel_sec
= s
;
1411 s
= bfd_make_section(abfd
, ".rela.data");
1413 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1417 | SEC_LINKER_CREATED
))
1418 || !bfd_set_section_alignment (abfd
, s
, 3))
1420 elf64_hppa_hash_table (info
)->other_rel_sec
= s
;
1422 s
= bfd_make_section(abfd
, ".rela.opd");
1424 || !bfd_set_section_flags (abfd
, s
, (SEC_ALLOC
| SEC_LOAD
1428 | SEC_LINKER_CREATED
))
1429 || !bfd_set_section_alignment (abfd
, s
, 3))
1431 elf64_hppa_hash_table (info
)->opd_rel_sec
= s
;
1436 /* Allocate dynamic relocations for those symbols that turned out
1440 allocate_dynrel_entries (dyn_h
, data
)
1441 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1444 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1445 struct elf64_hppa_link_hash_table
*hppa_info
;
1446 struct elf64_hppa_dyn_reloc_entry
*rent
;
1447 boolean dynamic_symbol
, shared
;
1449 hppa_info
= elf64_hppa_hash_table (x
->info
);
1450 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
);
1451 shared
= x
->info
->shared
;
1453 /* We may need to allocate relocations for a non-dynamic symbol
1454 when creating a shared library. */
1455 if (!dynamic_symbol
&& !shared
)
1458 /* Take care of the normal data relocations. */
1460 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
1464 case R_PARISC_FPTR64
:
1465 /* Allocate one iff we are not building a shared library and
1466 !want_opd, which by this point will be true only if we're
1467 actually allocating one statically in the main executable. */
1468 if (!x
->info
->shared
&& dyn_h
->want_opd
)
1472 hppa_info
->other_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1474 /* Make sure this symbol gets into the dynamic symbol table if it is
1475 not already recorded. ?!? This should not be in the loop since
1476 the symbol need only be added once. */
1477 if (dyn_h
->h
== 0 || dyn_h
->h
->dynindx
== -1)
1478 if (!_bfd_elf64_link_record_local_dynamic_symbol
1479 (x
->info
, rent
->sec
->owner
, dyn_h
->sym_indx
))
1483 /* Take care of the GOT and PLT relocations. */
1485 if ((dynamic_symbol
|| shared
) && dyn_h
->want_dlt
)
1486 hppa_info
->dlt_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1488 /* If we are building a shared library, then every symbol that has an
1489 opd entry will need an EPLT relocation to relocate the symbol's address
1490 and __gp value based on the runtime load address. */
1491 if (shared
&& dyn_h
->want_opd
)
1492 hppa_info
->opd_rel_sec
->_raw_size
+= sizeof (Elf64_External_Rela
);
1494 if (dyn_h
->want_plt
&& dynamic_symbol
)
1496 bfd_size_type t
= 0;
1498 /* Dynamic symbols get one IPLT relocation. Local symbols in
1499 shared libraries get two REL relocations. Local symbols in
1500 main applications get nothing. */
1502 t
= sizeof (Elf64_External_Rela
);
1504 t
= 2 * sizeof (Elf64_External_Rela
);
1506 hppa_info
->plt_rel_sec
->_raw_size
+= t
;
1512 /* Adjust a symbol defined by a dynamic object and referenced by a
1516 elf64_hppa_adjust_dynamic_symbol (info
, h
)
1517 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1518 struct elf_link_hash_entry
*h
;
1520 /* ??? Undefined symbols with PLT entries should be re-defined
1521 to be the PLT entry. */
1523 /* If this is a weak symbol, and there is a real definition, the
1524 processor independent code will have arranged for us to see the
1525 real definition first, and we can just use the same value. */
1526 if (h
->weakdef
!= NULL
)
1528 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1529 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1530 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1531 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1535 /* If this is a reference to a symbol defined by a dynamic object which
1536 is not a function, we might allocate the symbol in our .dynbss section
1537 and allocate a COPY dynamic relocation.
1539 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1545 /* Set the final sizes of the dynamic sections and allocate memory for
1546 the contents of our special sections. */
1549 elf64_hppa_size_dynamic_sections (output_bfd
, info
)
1551 struct bfd_link_info
*info
;
1558 struct elf64_hppa_allocate_data data
;
1559 struct elf64_hppa_link_hash_table
*hppa_info
;
1561 hppa_info
= elf64_hppa_hash_table (info
);
1563 dynobj
= elf_hash_table (info
)->dynobj
;
1564 BFD_ASSERT (dynobj
!= NULL
);
1566 if (elf_hash_table (info
)->dynamic_sections_created
)
1568 /* Set the contents of the .interp section to the interpreter. */
1571 s
= bfd_get_section_by_name (dynobj
, ".interp");
1572 BFD_ASSERT (s
!= NULL
);
1573 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1574 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1579 /* We may have created entries in the .rela.got section.
1580 However, if we are not creating the dynamic sections, we will
1581 not actually use these entries. Reset the size of .rela.dlt,
1582 which will cause it to get stripped from the output file
1584 s
= bfd_get_section_by_name (dynobj
, ".rela.dlt");
1589 /* Allocate the GOT entries. */
1592 if (elf64_hppa_hash_table (info
)->dlt_sec
)
1595 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1596 allocate_global_data_dlt
, &data
);
1597 hppa_info
->dlt_sec
->_raw_size
= data
.ofs
;
1600 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1601 allocate_global_data_plt
, &data
);
1602 hppa_info
->plt_sec
->_raw_size
= data
.ofs
;
1605 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1606 allocate_global_data_stub
, &data
);
1607 hppa_info
->stub_sec
->_raw_size
= data
.ofs
;
1610 /* Mark each function this program exports so that we will allocate
1611 space in the .opd section for each function's FPTR.
1613 We have to traverse the main linker hash table since we have to
1614 find functions which may not have been mentioned in any relocs. */
1615 elf_link_hash_traverse (elf_hash_table (info
),
1616 elf64_hppa_mark_exported_functions
,
1619 /* Allocate space for entries in the .opd section. */
1620 if (elf64_hppa_hash_table (info
)->opd_sec
)
1623 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1624 allocate_global_data_opd
, &data
);
1625 hppa_info
->opd_sec
->_raw_size
= data
.ofs
;
1628 /* Now allocate space for dynamic relocations, if necessary. */
1629 if (hppa_info
->root
.dynamic_sections_created
)
1630 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1631 allocate_dynrel_entries
, &data
);
1633 /* The sizes of all the sections are set. Allocate memory for them. */
1637 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1642 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1645 /* It's OK to base decisions on the section name, because none
1646 of the dynobj section names depend upon the input files. */
1647 name
= bfd_get_section_name (dynobj
, s
);
1651 if (strcmp (name
, ".plt") == 0)
1653 if (s
->_raw_size
== 0)
1655 /* Strip this section if we don't need it; see the
1661 /* Remember whether there is a PLT. */
1665 else if (strcmp (name
, ".dlt") == 0)
1667 if (s
->_raw_size
== 0)
1669 /* Strip this section if we don't need it; see the
1674 else if (strcmp (name
, ".opd") == 0)
1676 if (s
->_raw_size
== 0)
1678 /* Strip this section if we don't need it; see the
1683 else if (strncmp (name
, ".rela", 4) == 0)
1685 if (s
->_raw_size
== 0)
1687 /* If we don't need this section, strip it from the
1688 output file. This is mostly to handle .rela.bss and
1689 .rela.plt. We must create both sections in
1690 create_dynamic_sections, because they must be created
1691 before the linker maps input sections to output
1692 sections. The linker does that before
1693 adjust_dynamic_symbol is called, and it is that
1694 function which decides whether anything needs to go
1695 into these sections. */
1702 /* Remember whether there are any reloc sections other
1704 if (strcmp (name
, ".rela.plt") != 0)
1706 const char *outname
;
1710 /* If this relocation section applies to a read only
1711 section, then we probably need a DT_TEXTREL
1712 entry. The entries in the .rela.plt section
1713 really apply to the .got section, which we
1714 created ourselves and so know is not readonly. */
1715 outname
= bfd_get_section_name (output_bfd
,
1717 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1719 && (target
->flags
& SEC_READONLY
) != 0
1720 && (target
->flags
& SEC_ALLOC
) != 0)
1724 /* We use the reloc_count field as a counter if we need
1725 to copy relocs into the output file. */
1729 else if (strncmp (name
, ".dlt", 4) != 0
1730 && strcmp (name
, ".stub") != 0
1731 && strcmp (name
, ".got") != 0)
1733 /* It's not one of our sections, so don't allocate space. */
1739 _bfd_strip_section_from_output (info
, s
);
1743 /* Allocate memory for the section contents if it has not
1744 been allocated already. We use bfd_zalloc here in case
1745 unused entries are not reclaimed before the section's
1746 contents are written out. This should not happen, but this
1747 way if it does, we get a R_PARISC_NONE reloc instead of
1749 if (s
->contents
== NULL
)
1751 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1752 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1757 if (elf_hash_table (info
)->dynamic_sections_created
)
1759 /* Always create a DT_PLTGOT. It actually has nothing to do with
1760 the PLT, it is how we communicate the __gp value of a load
1761 module to the dynamic linker. */
1762 if (! bfd_elf64_add_dynamic_entry (info
, DT_HP_DLD_FLAGS
, 0)
1763 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTGOT
, 0))
1766 /* Add some entries to the .dynamic section. We fill in the
1767 values later, in elf64_hppa_finish_dynamic_sections, but we
1768 must add the entries now so that we get the correct size for
1769 the .dynamic section. The DT_DEBUG entry is filled in by the
1770 dynamic linker and used by the debugger. */
1773 if (! bfd_elf64_add_dynamic_entry (info
, DT_DEBUG
, 0)
1774 || ! bfd_elf64_add_dynamic_entry (info
, DT_HP_DLD_HOOK
, 0)
1775 || ! bfd_elf64_add_dynamic_entry (info
, DT_HP_LOAD_MAP
, 0))
1781 if (! bfd_elf64_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1782 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTREL
, DT_RELA
)
1783 || ! bfd_elf64_add_dynamic_entry (info
, DT_JMPREL
, 0))
1789 if (! bfd_elf64_add_dynamic_entry (info
, DT_RELA
, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELASZ
, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELAENT
,
1792 sizeof (Elf64_External_Rela
)))
1798 if (! bfd_elf64_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1800 info
->flags
|= DF_TEXTREL
;
1807 /* Called after we have output the symbol into the dynamic symbol
1808 table, but before we output the symbol into the normal symbol
1811 For some symbols we had to change their address when outputting
1812 the dynamic symbol table. We undo that change here so that
1813 the symbols have their expected value in the normal symbol
1817 elf64_hppa_link_output_symbol_hook (abfd
, info
, name
, sym
, input_sec
)
1818 bfd
*abfd ATTRIBUTE_UNUSED
;
1819 struct bfd_link_info
*info
;
1821 Elf_Internal_Sym
*sym
;
1822 asection
*input_sec ATTRIBUTE_UNUSED
;
1824 struct elf64_hppa_link_hash_table
*hppa_info
;
1825 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1827 /* We may be called with the file symbol or section symbols.
1828 They never need munging, so it is safe to ignore them. */
1832 /* Get the PA dyn_symbol (if any) associated with NAME. */
1833 hppa_info
= elf64_hppa_hash_table (info
);
1834 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1835 name
, false, false);
1837 /* Function symbols for which we created .opd entries *may* have been
1838 munged by finish_dynamic_symbol and have to be un-munged here.
1840 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1841 into non-dynamic ones, so we initialize st_shndx to -1 in
1842 mark_exported_functions and check to see if it was overwritten
1843 here instead of just checking dyn_h->h->dynindx. */
1844 if (dyn_h
&& dyn_h
->want_opd
&& dyn_h
->st_shndx
!= -1)
1846 /* Restore the saved value and section index. */
1847 sym
->st_value
= dyn_h
->st_value
;
1848 sym
->st_shndx
= dyn_h
->st_shndx
;
1854 /* Finish up dynamic symbol handling. We set the contents of various
1855 dynamic sections here. */
1858 elf64_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1860 struct bfd_link_info
*info
;
1861 struct elf_link_hash_entry
*h
;
1862 Elf_Internal_Sym
*sym
;
1864 asection
*stub
, *splt
, *sdlt
, *sopd
, *spltrel
, *sdltrel
;
1865 struct elf64_hppa_link_hash_table
*hppa_info
;
1866 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1868 hppa_info
= elf64_hppa_hash_table (info
);
1869 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1870 h
->root
.root
.string
, false, false);
1872 stub
= hppa_info
->stub_sec
;
1873 splt
= hppa_info
->plt_sec
;
1874 sdlt
= hppa_info
->dlt_sec
;
1875 sopd
= hppa_info
->opd_sec
;
1876 spltrel
= hppa_info
->plt_rel_sec
;
1877 sdltrel
= hppa_info
->dlt_rel_sec
;
1879 BFD_ASSERT (stub
!= NULL
&& splt
!= NULL
1880 && sopd
!= NULL
&& sdlt
!= NULL
)
1882 /* Incredible. It is actually necessary to NOT use the symbol's real
1883 value when building the dynamic symbol table for a shared library.
1884 At least for symbols that refer to functions.
1886 We will store a new value and section index into the symbol long
1887 enough to output it into the dynamic symbol table, then we restore
1888 the original values (in elf64_hppa_link_output_symbol_hook). */
1889 if (dyn_h
&& dyn_h
->want_opd
)
1891 /* Save away the original value and section index so that we
1892 can restore them later. */
1893 dyn_h
->st_value
= sym
->st_value
;
1894 dyn_h
->st_shndx
= sym
->st_shndx
;
1896 /* For the dynamic symbol table entry, we want the value to be
1897 address of this symbol's entry within the .opd section. */
1898 sym
->st_value
= (dyn_h
->opd_offset
1899 + sopd
->output_offset
1900 + sopd
->output_section
->vma
);
1901 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1902 sopd
->output_section
);
1905 /* Initialize a .plt entry if requested. */
1906 if (dyn_h
&& dyn_h
->want_plt
1907 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1910 Elf_Internal_Rela rel
;
1912 /* We do not actually care about the value in the PLT entry
1913 if we are creating a shared library and the symbol is
1914 still undefined, we create a dynamic relocation to fill
1915 in the correct value. */
1916 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
1919 value
= (h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->vma
);
1921 /* Fill in the entry in the procedure linkage table.
1923 The format of a plt entry is
1926 plt_offset is the offset within the PLT section at which to
1927 install the PLT entry.
1929 We are modifying the in-memory PLT contents here, so we do not add
1930 in the output_offset of the PLT section. */
1932 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
);
1933 value
= _bfd_get_gp_value (splt
->output_section
->owner
);
1934 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
+ 0x8);
1936 /* Create a dynamic IPLT relocation for this entry.
1938 We are creating a relocation in the output file's PLT section,
1939 which is included within the DLT secton. So we do need to include
1940 the PLT's output_offset in the computation of the relocation's
1942 rel
.r_offset
= (dyn_h
->plt_offset
+ splt
->output_offset
1943 + splt
->output_section
->vma
);
1944 rel
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
1947 bfd_elf64_swap_reloca_out (splt
->output_section
->owner
, &rel
,
1948 (((Elf64_External_Rela
*)
1950 + spltrel
->reloc_count
));
1951 spltrel
->reloc_count
++;
1954 /* Initialize an external call stub entry if requested. */
1955 if (dyn_h
&& dyn_h
->want_stub
1956 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1961 /* Install the generic stub template.
1963 We are modifying the contents of the stub section, so we do not
1964 need to include the stub section's output_offset here. */
1965 memcpy (stub
->contents
+ dyn_h
->stub_offset
, plt_stub
, sizeof (plt_stub
));
1967 /* Fix up the first ldd instruction.
1969 We are modifying the contents of the STUB section in memory,
1970 so we do not need to include its output offset in this computation.
1972 Note the plt_offset value is the value of the PLT entry relative to
1973 the start of the PLT section. These instructions will reference
1974 data relative to the value of __gp, which may not necessarily have
1975 the same address as the start of the PLT section.
1977 gp_offset contains the offset of __gp within the PLT section. */
1978 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
;
1980 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
);
1982 insn
|= ((value
& 0x2000) >> 13);
1985 bfd_put_32 (stub
->owner
, (insn
| value
),
1986 stub
->contents
+ dyn_h
->stub_offset
);
1988 /* Fix up the second ldd instruction. */
1989 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
+ 8;
1991 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
+ 8);
1993 insn
|= ((value
& 0x2000) >> 13);
1996 bfd_put_32 (stub
->owner
, (insn
| value
),
1997 stub
->contents
+ dyn_h
->stub_offset
+ 8);
2000 /* Millicode symbols should not be put in the dynamic
2001 symbol table under any circumstances. */
2002 if (ELF_ST_TYPE (sym
->st_info
) == STT_PARISC_MILLI
)
2008 /* The .opd section contains FPTRs for each function this file
2009 exports. Initialize the FPTR entries. */
2012 elf64_hppa_finalize_opd (dyn_h
, data
)
2013 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2016 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2017 struct elf64_hppa_link_hash_table
*hppa_info
;
2018 struct elf_link_hash_entry
*h
= dyn_h
->h
;
2022 hppa_info
= elf64_hppa_hash_table (info
);
2023 sopd
= hppa_info
->opd_sec
;
2024 sopdrel
= hppa_info
->opd_rel_sec
;
2026 if (h
&& dyn_h
&& dyn_h
->want_opd
)
2030 /* The first two words of an .opd entry are zero.
2032 We are modifying the contents of the OPD section in memory, so we
2033 do not need to include its output offset in this computation. */
2034 memset (sopd
->contents
+ dyn_h
->opd_offset
, 0, 16);
2036 value
= (h
->root
.u
.def
.value
2037 + h
->root
.u
.def
.section
->output_section
->vma
2038 + h
->root
.u
.def
.section
->output_offset
);
2040 /* The next word is the address of the function. */
2041 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 16);
2043 /* The last word is our local __gp value. */
2044 value
= _bfd_get_gp_value (sopd
->output_section
->owner
);
2045 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 24);
2048 /* If we are generating a shared library, we must generate EPLT relocations
2049 for each entry in the .opd, even for static functions (they may have
2050 had their address taken). */
2051 if (info
->shared
&& dyn_h
&& dyn_h
->want_opd
)
2053 Elf64_Internal_Rela rel
;
2056 /* We may need to do a relocation against a local symbol, in
2057 which case we have to look up it's dynamic symbol index off
2058 the local symbol hash table. */
2059 if (h
&& h
->dynindx
!= -1)
2060 dynindx
= h
->dynindx
;
2063 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2066 /* The offset of this relocation is the absolute address of the
2067 .opd entry for this symbol. */
2068 rel
.r_offset
= (dyn_h
->opd_offset
+ sopd
->output_offset
2069 + sopd
->output_section
->vma
);
2071 /* If H is non-null, then we have an external symbol.
2073 It is imperative that we use a different dynamic symbol for the
2074 EPLT relocation if the symbol has global scope.
2076 In the dynamic symbol table, the function symbol will have a value
2077 which is address of the function's .opd entry.
2079 Thus, we can not use that dynamic symbol for the EPLT relocation
2080 (if we did, the data in the .opd would reference itself rather
2081 than the actual address of the function). Instead we have to use
2082 a new dynamic symbol which has the same value as the original global
2085 We prefix the original symbol with a "." and use the new symbol in
2086 the EPLT relocation. This new symbol has already been recorded in
2087 the symbol table, we just have to look it up and use it.
2089 We do not have such problems with static functions because we do
2090 not make their addresses in the dynamic symbol table point to
2091 the .opd entry. Ultimately this should be safe since a static
2092 function can not be directly referenced outside of its shared
2095 We do have to play similar games for FPTR relocations in shared
2096 libraries, including those for static symbols. See the FPTR
2097 handling in elf64_hppa_finalize_dynreloc. */
2101 struct elf_link_hash_entry
*nh
;
2103 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
2105 strcpy (new_name
+ 1, h
->root
.root
.string
);
2107 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2108 new_name
, false, false, false);
2110 /* All we really want from the new symbol is its dynamic
2112 dynindx
= nh
->dynindx
;
2116 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2118 bfd_elf64_swap_reloca_out (sopd
->output_section
->owner
, &rel
,
2119 (((Elf64_External_Rela
*)
2121 + sopdrel
->reloc_count
));
2122 sopdrel
->reloc_count
++;
2127 /* The .dlt section contains addresses for items referenced through the
2128 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2129 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2132 elf64_hppa_finalize_dlt (dyn_h
, data
)
2133 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2136 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2137 struct elf64_hppa_link_hash_table
*hppa_info
;
2138 asection
*sdlt
, *sdltrel
;
2139 struct elf_link_hash_entry
*h
= dyn_h
->h
;
2141 hppa_info
= elf64_hppa_hash_table (info
);
2143 sdlt
= hppa_info
->dlt_sec
;
2144 sdltrel
= hppa_info
->dlt_rel_sec
;
2146 /* H/DYN_H may refer to a local variable and we know it's
2147 address, so there is no need to create a relocation. Just install
2148 the proper value into the DLT, note this shortcut can not be
2149 skipped when building a shared library. */
2150 if (! info
->shared
&& h
&& dyn_h
&& dyn_h
->want_dlt
)
2154 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2155 to point to the FPTR entry in the .opd section.
2157 We include the OPD's output offset in this computation as
2158 we are referring to an absolute address in the resulting
2160 if (dyn_h
->want_opd
)
2162 value
= (dyn_h
->opd_offset
2163 + hppa_info
->opd_sec
->output_offset
2164 + hppa_info
->opd_sec
->output_section
->vma
);
2168 value
= (h
->root
.u
.def
.value
2169 + h
->root
.u
.def
.section
->output_offset
);
2171 if (h
->root
.u
.def
.section
->output_section
)
2172 value
+= h
->root
.u
.def
.section
->output_section
->vma
;
2174 value
+= h
->root
.u
.def
.section
->vma
;
2177 /* We do not need to include the output offset of the DLT section
2178 here because we are modifying the in-memory contents. */
2179 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ dyn_h
->dlt_offset
);
2182 /* Create a relocation for the DLT entry assocated with this symbol.
2183 When building a shared library the symbol does not have to be dynamic. */
2185 && (elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
) || info
->shared
))
2187 Elf64_Internal_Rela rel
;
2190 /* We may need to do a relocation against a local symbol, in
2191 which case we have to look up it's dynamic symbol index off
2192 the local symbol hash table. */
2193 if (h
&& h
->dynindx
!= -1)
2194 dynindx
= h
->dynindx
;
2197 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2201 /* Create a dynamic relocation for this entry. Do include the output
2202 offset of the DLT entry since we need an absolute address in the
2203 resulting object file. */
2204 rel
.r_offset
= (dyn_h
->dlt_offset
+ sdlt
->output_offset
2205 + sdlt
->output_section
->vma
);
2206 if (h
&& h
->type
== STT_FUNC
)
2207 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2209 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2212 bfd_elf64_swap_reloca_out (sdlt
->output_section
->owner
, &rel
,
2213 (((Elf64_External_Rela
*)
2215 + sdltrel
->reloc_count
));
2216 sdltrel
->reloc_count
++;
2221 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2222 for dynamic functions used to initialize static data. */
2225 elf64_hppa_finalize_dynreloc (dyn_h
, data
)
2226 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2229 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2230 struct elf64_hppa_link_hash_table
*hppa_info
;
2231 struct elf_link_hash_entry
*h
;
2234 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
);
2236 if (!dynamic_symbol
&& !info
->shared
)
2239 if (dyn_h
->reloc_entries
)
2241 struct elf64_hppa_dyn_reloc_entry
*rent
;
2244 hppa_info
= elf64_hppa_hash_table (info
);
2247 /* We may need to do a relocation against a local symbol, in
2248 which case we have to look up it's dynamic symbol index off
2249 the local symbol hash table. */
2250 if (h
&& h
->dynindx
!= -1)
2251 dynindx
= h
->dynindx
;
2254 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2257 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
2259 Elf64_Internal_Rela rel
;
2263 case R_PARISC_FPTR64
:
2264 /* Allocate one iff we are not building a shared library and
2265 !want_opd, which by this point will be true only if we're
2266 actually allocating one statically in the main executable. */
2267 if (!info
->shared
&& dyn_h
->want_opd
)
2272 /* Create a dynamic relocation for this entry.
2274 We need the output offset for the reloc's section because
2275 we are creating an absolute address in the resulting object
2277 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2278 + rent
->sec
->output_section
->vma
);
2280 /* An FPTR64 relocation implies that we took the address of
2281 a function and that the function has an entry in the .opd
2282 section. We want the FPTR64 relocation to reference the
2285 We could munge the symbol value in the dynamic symbol table
2286 (in fact we already do for functions with global scope) to point
2287 to the .opd entry. Then we could use that dynamic symbol in
2290 Or we could do something sensible, not munge the symbol's
2291 address and instead just use a different symbol to reference
2292 the .opd entry. At least that seems sensible until you
2293 realize there's no local dynamic symbols we can use for that
2294 purpose. Thus the hair in the check_relocs routine.
2296 We use a section symbol recorded by check_relocs as the
2297 base symbol for the relocation. The addend is the difference
2298 between the section symbol and the address of the .opd entry. */
2299 if (info
->shared
&& rent
->type
== R_PARISC_FPTR64
)
2301 bfd_vma value
, value2
;
2303 /* First compute the address of the opd entry for this symbol. */
2304 value
= (dyn_h
->opd_offset
2305 + hppa_info
->opd_sec
->output_section
->vma
2306 + hppa_info
->opd_sec
->output_offset
);
2308 /* Compute the value of the start of the section with
2310 value2
= (rent
->sec
->output_section
->vma
2311 + rent
->sec
->output_offset
);
2313 /* Compute the difference between the start of the section
2314 with the relocation and the opd entry. */
2317 /* The result becomes the addend of the relocation. */
2318 rel
.r_addend
= value
;
2320 /* The section symbol becomes the symbol for the dynamic
2323 = _bfd_elf_link_lookup_local_dynindx (info
,
2328 rel
.r_addend
= rent
->addend
;
2330 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2332 bfd_elf64_swap_reloca_out (hppa_info
->other_rel_sec
->output_section
->owner
,
2334 (((Elf64_External_Rela
*)
2335 hppa_info
->other_rel_sec
->contents
)
2336 + hppa_info
->other_rel_sec
->reloc_count
));
2337 hppa_info
->other_rel_sec
->reloc_count
++;
2344 /* Finish up the dynamic sections. */
2347 elf64_hppa_finish_dynamic_sections (output_bfd
, info
)
2349 struct bfd_link_info
*info
;
2353 struct elf64_hppa_link_hash_table
*hppa_info
;
2355 hppa_info
= elf64_hppa_hash_table (info
);
2357 /* Finalize the contents of the .opd section. */
2358 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2359 elf64_hppa_finalize_opd
,
2362 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2363 elf64_hppa_finalize_dynreloc
,
2366 /* Finalize the contents of the .dlt section. */
2367 dynobj
= elf_hash_table (info
)->dynobj
;
2368 /* Finalize the contents of the .dlt section. */
2369 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2370 elf64_hppa_finalize_dlt
,
2374 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2376 if (elf_hash_table (info
)->dynamic_sections_created
)
2378 Elf64_External_Dyn
*dyncon
, *dynconend
;
2380 BFD_ASSERT (sdyn
!= NULL
);
2382 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2383 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2384 for (; dyncon
< dynconend
; dyncon
++)
2386 Elf_Internal_Dyn dyn
;
2389 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2396 case DT_HP_LOAD_MAP
:
2397 /* Compute the absolute address of 16byte scratchpad area
2398 for the dynamic linker.
2400 By convention the linker script will allocate the scratchpad
2401 area at the start of the .data section. So all we have to
2402 to is find the start of the .data section. */
2403 s
= bfd_get_section_by_name (output_bfd
, ".data");
2404 dyn
.d_un
.d_ptr
= s
->vma
;
2405 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2409 /* HP's use PLTGOT to set the GOT register. */
2410 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2411 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2415 s
= hppa_info
->plt_rel_sec
;
2416 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2417 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2421 s
= hppa_info
->plt_rel_sec
;
2422 dyn
.d_un
.d_val
= s
->_raw_size
;
2423 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2427 s
= hppa_info
->other_rel_sec
;
2429 s
= hppa_info
->dlt_rel_sec
;
2430 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2431 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2435 s
= hppa_info
->other_rel_sec
;
2436 dyn
.d_un
.d_val
= s
->_raw_size
;
2437 s
= hppa_info
->dlt_rel_sec
;
2438 dyn
.d_un
.d_val
+= s
->_raw_size
;
2439 s
= hppa_info
->opd_rel_sec
;
2440 dyn
.d_un
.d_val
+= s
->_raw_size
;
2441 /* There is some question about whether or not the size of
2442 the PLT relocs should be included here. HP's tools do
2443 it, so we'll emulate them. */
2444 s
= hppa_info
->plt_rel_sec
;
2445 dyn
.d_un
.d_val
+= s
->_raw_size
;
2446 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2457 /* Return the number of additional phdrs we will need.
2459 The generic ELF code only creates PT_PHDRs for executables. The HP
2460 dynamic linker requires PT_PHDRs for dynamic libraries too.
2462 This routine indicates that the backend needs one additional program
2463 header for that case.
2465 Note we do not have access to the link info structure here, so we have
2466 to guess whether or not we are building a shared library based on the
2467 existence of a .interp section. */
2470 elf64_hppa_additional_program_headers (abfd
)
2475 /* If we are creating a shared library, then we have to create a
2476 PT_PHDR segment. HP's dynamic linker chokes without it. */
2477 s
= bfd_get_section_by_name (abfd
, ".interp");
2483 /* Allocate and initialize any program headers required by this
2486 The generic ELF code only creates PT_PHDRs for executables. The HP
2487 dynamic linker requires PT_PHDRs for dynamic libraries too.
2489 This allocates the PT_PHDR and initializes it in a manner suitable
2492 Note we do not have access to the link info structure here, so we have
2493 to guess whether or not we are building a shared library based on the
2494 existence of a .interp section. */
2497 elf64_hppa_modify_segment_map (abfd
)
2500 struct elf_segment_map
*m
;
2503 s
= bfd_get_section_by_name (abfd
, ".interp");
2506 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2507 if (m
->p_type
== PT_PHDR
)
2511 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, sizeof *m
);
2515 m
->p_type
= PT_PHDR
;
2516 m
->p_flags
= PF_R
| PF_X
;
2517 m
->p_flags_valid
= 1;
2518 m
->p_paddr_valid
= 1;
2519 m
->includes_phdrs
= 1;
2521 m
->next
= elf_tdata (abfd
)->segment_map
;
2522 elf_tdata (abfd
)->segment_map
= m
;
2526 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2527 if (m
->p_type
== PT_LOAD
)
2531 for (i
= 0; i
< m
->count
; i
++)
2533 /* The code "hint" is not really a hint. It is a requirement
2534 for certain versions of the HP dynamic linker. Worse yet,
2535 it must be set even if the shared library does not have
2536 any code in its "text" segment (thus the check for .hash
2537 to catch this situation). */
2538 if (m
->sections
[i
]->flags
& SEC_CODE
2539 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2540 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2547 /* The hash bucket size is the standard one, namely 4. */
2549 const struct elf_size_info hppa64_elf_size_info
=
2551 sizeof (Elf64_External_Ehdr
),
2552 sizeof (Elf64_External_Phdr
),
2553 sizeof (Elf64_External_Shdr
),
2554 sizeof (Elf64_External_Rel
),
2555 sizeof (Elf64_External_Rela
),
2556 sizeof (Elf64_External_Sym
),
2557 sizeof (Elf64_External_Dyn
),
2558 sizeof (Elf_External_Note
),
2562 ELFCLASS64
, EV_CURRENT
,
2563 bfd_elf64_write_out_phdrs
,
2564 bfd_elf64_write_shdrs_and_ehdr
,
2565 bfd_elf64_write_relocs
,
2566 bfd_elf64_swap_symbol_out
,
2567 bfd_elf64_slurp_reloc_table
,
2568 bfd_elf64_slurp_symbol_table
,
2569 bfd_elf64_swap_dyn_in
,
2570 bfd_elf64_swap_dyn_out
,
2577 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2578 #define TARGET_BIG_NAME "elf64-hppa"
2579 #define ELF_ARCH bfd_arch_hppa
2580 #define ELF_MACHINE_CODE EM_PARISC
2581 /* This is not strictly correct. The maximum page size for PA2.0 is
2582 64M. But everything still uses 4k. */
2583 #define ELF_MAXPAGESIZE 0x1000
2584 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2585 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2586 #define elf_info_to_howto elf_hppa_info_to_howto
2587 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2589 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2590 #define elf_backend_object_p elf64_hppa_object_p
2591 #define elf_backend_final_write_processing \
2592 elf_hppa_final_write_processing
2593 #define elf_backend_fake_sections elf_hppa_fake_sections
2594 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2596 #define elf_backend_relocate_section elf_hppa_relocate_section
2598 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2600 #define elf_backend_create_dynamic_sections \
2601 elf64_hppa_create_dynamic_sections
2602 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2604 #define elf_backend_adjust_dynamic_symbol \
2605 elf64_hppa_adjust_dynamic_symbol
2607 #define elf_backend_size_dynamic_sections \
2608 elf64_hppa_size_dynamic_sections
2610 #define elf_backend_finish_dynamic_symbol \
2611 elf64_hppa_finish_dynamic_symbol
2612 #define elf_backend_finish_dynamic_sections \
2613 elf64_hppa_finish_dynamic_sections
2615 /* Stuff for the BFD linker: */
2616 #define bfd_elf64_bfd_link_hash_table_create \
2617 elf64_hppa_hash_table_create
2619 #define elf_backend_check_relocs \
2620 elf64_hppa_check_relocs
2622 #define elf_backend_size_info \
2623 hppa64_elf_size_info
2625 #define elf_backend_additional_program_headers \
2626 elf64_hppa_additional_program_headers
2628 #define elf_backend_modify_segment_map \
2629 elf64_hppa_modify_segment_map
2631 #define elf_backend_link_output_symbol_hook \
2632 elf64_hppa_link_output_symbol_hook
2635 #define elf_backend_want_got_plt 0
2636 #define elf_backend_plt_readonly 0
2637 #define elf_backend_want_plt_sym 0
2638 #define elf_backend_got_header_size 0
2639 #define elf_backend_plt_header_size 0
2640 #define elf_backend_type_change_ok true
2642 #include "elf64-target.h"