1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
24 Elements in the table are generic pointers.
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
38 #include <sys/types.h>
50 #include "libiberty.h"
53 /* This macro defines reserved value for empty table entry. */
55 #define EMPTY_ENTRY ((PTR) 0)
57 /* This macro defines reserved value for table entry which contained
60 #define DELETED_ENTRY ((PTR) 1)
62 static unsigned long higher_prime_number
PARAMS ((unsigned long));
63 static hashval_t hash_pointer
PARAMS ((const void *));
64 static int eq_pointer
PARAMS ((const void *, const void *));
65 static int htab_expand
PARAMS ((htab_t
));
66 static PTR
*find_empty_slot_for_expand
PARAMS ((htab_t
, hashval_t
));
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer
= hash_pointer
;
72 htab_eq htab_eq_pointer
= eq_pointer
;
74 /* The following function returns the nearest prime number which is
75 greater than a given source number, N. */
78 higher_prime_number (n
)
83 /* Ensure we have a larger number and then force to odd. */
87 /* All odd numbers < 9 are prime. */
91 /* Otherwise find the next prime using a sieve. */
95 for (i
= 3; i
* i
<= n
; i
+= 2)
105 /* Returns a hash code for P. */
111 return (hashval_t
) ((long)p
>> 3);
114 /* Returns non-zero if P1 and P2 are equal. */
124 /* This function creates table with length slightly longer than given
125 source length. Created hash table is initiated as empty (all the
126 hash table entries are EMPTY_ENTRY). The function returns the
127 created hash table. Memory allocation must not fail. */
130 htab_create (size
, hash_f
, eq_f
, del_f
)
138 size
= higher_prime_number (size
);
139 result
= (htab_t
) xcalloc (1, sizeof (struct htab
));
140 result
->entries
= (PTR
*) xcalloc (size
, sizeof (PTR
));
142 result
->hash_f
= hash_f
;
144 result
->del_f
= del_f
;
145 result
->return_allocation_failure
= 0;
149 /* This function creates table with length slightly longer than given
150 source length. The created hash table is initiated as empty (all the
151 hash table entries are EMPTY_ENTRY). The function returns the created
152 hash table. Memory allocation may fail; it may return NULL. */
155 htab_try_create (size
, hash_f
, eq_f
, del_f
)
163 size
= higher_prime_number (size
);
164 result
= (htab_t
) calloc (1, sizeof (struct htab
));
168 result
->entries
= (PTR
*) calloc (size
, sizeof (PTR
));
169 if (result
->entries
== NULL
)
176 result
->hash_f
= hash_f
;
178 result
->del_f
= del_f
;
179 result
->return_allocation_failure
= 1;
183 /* This function frees all memory allocated for given hash table.
184 Naturally the hash table must already exist. */
193 for (i
= htab
->size
- 1; i
>= 0; i
--)
194 if (htab
->entries
[i
] != EMPTY_ENTRY
195 && htab
->entries
[i
] != DELETED_ENTRY
)
196 (*htab
->del_f
) (htab
->entries
[i
]);
198 free (htab
->entries
);
202 /* This function clears all entries in the given hash table. */
211 for (i
= htab
->size
- 1; i
>= 0; i
--)
212 if (htab
->entries
[i
] != EMPTY_ENTRY
213 && htab
->entries
[i
] != DELETED_ENTRY
)
214 (*htab
->del_f
) (htab
->entries
[i
]);
216 memset (htab
->entries
, 0, htab
->size
* sizeof (PTR
));
219 /* Similar to htab_find_slot, but without several unwanted side effects:
220 - Does not call htab->eq_f when it finds an existing entry.
221 - Does not change the count of elements/searches/collisions in the
223 This function also assumes there are no deleted entries in the table.
224 HASH is the hash value for the element to be inserted. */
227 find_empty_slot_for_expand (htab
, hash
)
231 size_t size
= htab
->size
;
232 hashval_t hash2
= 1 + hash
% (size
- 2);
233 unsigned int index
= hash
% size
;
237 PTR
*slot
= htab
->entries
+ index
;
239 if (*slot
== EMPTY_ENTRY
)
241 else if (*slot
== DELETED_ENTRY
)
250 /* The following function changes size of memory allocated for the
251 entries and repeatedly inserts the table elements. The occupancy
252 of the table after the call will be about 50%. Naturally the hash
253 table must already exist. Remember also that the place of the
254 table entries is changed. If memory allocation failures are allowed,
255 this function will return zero, indicating that the table could not be
256 expanded. If all goes well, it will return a non-zero value. */
266 oentries
= htab
->entries
;
267 olimit
= oentries
+ htab
->size
;
269 htab
->size
= higher_prime_number (htab
->size
* 2);
271 if (htab
->return_allocation_failure
)
273 PTR
*nentries
= (PTR
*) calloc (htab
->size
, sizeof (PTR
*));
274 if (nentries
== NULL
)
276 htab
->entries
= nentries
;
279 htab
->entries
= (PTR
*) xcalloc (htab
->size
, sizeof (PTR
*));
281 htab
->n_elements
-= htab
->n_deleted
;
289 if (x
!= EMPTY_ENTRY
&& x
!= DELETED_ENTRY
)
291 PTR
*q
= find_empty_slot_for_expand (htab
, (*htab
->hash_f
) (x
));
304 /* This function searches for a hash table entry equal to the given
305 element. It cannot be used to insert or delete an element. */
308 htab_find_with_hash (htab
, element
, hash
)
322 entry
= htab
->entries
[index
];
323 if (entry
== EMPTY_ENTRY
324 || (entry
!= DELETED_ENTRY
&& (*htab
->eq_f
) (entry
, element
)))
327 hash2
= 1 + hash
% (size
- 2);
336 entry
= htab
->entries
[index
];
337 if (entry
== EMPTY_ENTRY
338 || (entry
!= DELETED_ENTRY
&& (*htab
->eq_f
) (entry
, element
)))
343 /* Like htab_find_slot_with_hash, but compute the hash value from the
347 htab_find (htab
, element
)
351 return htab_find_with_hash (htab
, element
, (*htab
->hash_f
) (element
));
354 /* This function searches for a hash table slot containing an entry
355 equal to the given element. To delete an entry, call this with
356 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
357 after doing some checks). To insert an entry, call this with
358 INSERT = 1, then write the value you want into the returned slot.
359 When inserting an entry, NULL may be returned if memory allocation
363 htab_find_slot_with_hash (htab
, element
, hash
, insert
)
367 enum insert_option insert
;
369 PTR
*first_deleted_slot
;
374 if (insert
== INSERT
&& htab
->size
* 3 <= htab
->n_elements
* 4
375 && htab_expand (htab
) == 0)
379 hash2
= 1 + hash
% (size
- 2);
383 first_deleted_slot
= NULL
;
387 PTR entry
= htab
->entries
[index
];
388 if (entry
== EMPTY_ENTRY
)
390 if (insert
== NO_INSERT
)
395 if (first_deleted_slot
)
397 *first_deleted_slot
= EMPTY_ENTRY
;
398 return first_deleted_slot
;
401 return &htab
->entries
[index
];
404 if (entry
== DELETED_ENTRY
)
406 if (!first_deleted_slot
)
407 first_deleted_slot
= &htab
->entries
[index
];
409 else if ((*htab
->eq_f
) (entry
, element
))
410 return &htab
->entries
[index
];
419 /* Like htab_find_slot_with_hash, but compute the hash value from the
423 htab_find_slot (htab
, element
, insert
)
426 enum insert_option insert
;
428 return htab_find_slot_with_hash (htab
, element
, (*htab
->hash_f
) (element
),
432 /* This function deletes an element with the given value from hash
433 table. If there is no matching element in the hash table, this
434 function does nothing. */
437 htab_remove_elt (htab
, element
)
443 slot
= htab_find_slot (htab
, element
, NO_INSERT
);
444 if (*slot
== EMPTY_ENTRY
)
448 (*htab
->del_f
) (*slot
);
450 *slot
= DELETED_ENTRY
;
454 /* This function clears a specified slot in a hash table. It is
455 useful when you've already done the lookup and don't want to do it
459 htab_clear_slot (htab
, slot
)
463 if (slot
< htab
->entries
|| slot
>= htab
->entries
+ htab
->size
464 || *slot
== EMPTY_ENTRY
|| *slot
== DELETED_ENTRY
)
468 (*htab
->del_f
) (*slot
);
470 *slot
= DELETED_ENTRY
;
474 /* This function scans over the entire hash table calling
475 CALLBACK for each live entry. If CALLBACK returns false,
476 the iteration stops. INFO is passed as CALLBACK's second
480 htab_traverse (htab
, callback
, info
)
485 PTR
*slot
= htab
->entries
;
486 PTR
*limit
= slot
+ htab
->size
;
492 if (x
!= EMPTY_ENTRY
&& x
!= DELETED_ENTRY
)
493 if (!(*callback
) (slot
, info
))
496 while (++slot
< limit
);
499 /* Return the current size of given hash table. */
508 /* Return the current number of elements in given hash table. */
514 return htab
->n_elements
- htab
->n_deleted
;
517 /* Return the fraction of fixed collisions during all work with given
521 htab_collisions (htab
)
524 if (htab
->searches
== 0)
527 return (double) htab
->collisions
/ (double) htab
->searches
;