Add GNU Free Documentation License
[binutils.git] / libiberty / hashtab.c
blob9778998b240a0ec1c1e769ebd980147ad6a48c6f
1 /* An expandable hash tables datatype.
2 Copyright (C) 1999, 2000 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov (vmakarov@cygnus.com).
5 This file is part of the libiberty library.
6 Libiberty is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
11 Libiberty is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
16 You should have received a copy of the GNU Library General Public
17 License along with libiberty; see the file COPYING.LIB. If
18 not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 /* This package implements basic hash table functionality. It is possible
22 to search for an entry, create an entry and destroy an entry.
24 Elements in the table are generic pointers.
26 The size of the table is not fixed; if the occupancy of the table
27 grows too high the hash table will be expanded.
29 The abstract data implementation is based on generalized Algorithm D
30 from Knuth's book "The art of computer programming". Hash table is
31 expanded by creation of new hash table and transferring elements from
32 the old table to the new table. */
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
38 #include <sys/types.h>
40 #ifdef HAVE_STDLIB_H
41 #include <stdlib.h>
42 #endif
44 #ifdef HAVE_STRING_H
45 #include <string.h>
46 #endif
48 #include <stdio.h>
50 #include "libiberty.h"
51 #include "hashtab.h"
53 /* This macro defines reserved value for empty table entry. */
55 #define EMPTY_ENTRY ((PTR) 0)
57 /* This macro defines reserved value for table entry which contained
58 a deleted element. */
60 #define DELETED_ENTRY ((PTR) 1)
62 static unsigned long higher_prime_number PARAMS ((unsigned long));
63 static hashval_t hash_pointer PARAMS ((const void *));
64 static int eq_pointer PARAMS ((const void *, const void *));
65 static int htab_expand PARAMS ((htab_t));
66 static PTR *find_empty_slot_for_expand PARAMS ((htab_t, hashval_t));
68 /* At some point, we could make these be NULL, and modify the
69 hash-table routines to handle NULL specially; that would avoid
70 function-call overhead for the common case of hashing pointers. */
71 htab_hash htab_hash_pointer = hash_pointer;
72 htab_eq htab_eq_pointer = eq_pointer;
74 /* The following function returns the nearest prime number which is
75 greater than a given source number, N. */
77 static unsigned long
78 higher_prime_number (n)
79 unsigned long n;
81 unsigned long i;
83 /* Ensure we have a larger number and then force to odd. */
84 n++;
85 n |= 0x01;
87 /* All odd numbers < 9 are prime. */
88 if (n < 9)
89 return n;
91 /* Otherwise find the next prime using a sieve. */
93 next:
95 for (i = 3; i * i <= n; i += 2)
96 if (n % i == 0)
98 n += 2;
99 goto next;
102 return n;
105 /* Returns a hash code for P. */
107 static hashval_t
108 hash_pointer (p)
109 const PTR p;
111 return (hashval_t) ((long)p >> 3);
114 /* Returns non-zero if P1 and P2 are equal. */
116 static int
117 eq_pointer (p1, p2)
118 const PTR p1;
119 const PTR p2;
121 return p1 == p2;
124 /* This function creates table with length slightly longer than given
125 source length. Created hash table is initiated as empty (all the
126 hash table entries are EMPTY_ENTRY). The function returns the
127 created hash table. Memory allocation must not fail. */
129 htab_t
130 htab_create (size, hash_f, eq_f, del_f)
131 size_t size;
132 htab_hash hash_f;
133 htab_eq eq_f;
134 htab_del del_f;
136 htab_t result;
138 size = higher_prime_number (size);
139 result = (htab_t) xcalloc (1, sizeof (struct htab));
140 result->entries = (PTR *) xcalloc (size, sizeof (PTR));
141 result->size = size;
142 result->hash_f = hash_f;
143 result->eq_f = eq_f;
144 result->del_f = del_f;
145 result->return_allocation_failure = 0;
146 return result;
149 /* This function creates table with length slightly longer than given
150 source length. The created hash table is initiated as empty (all the
151 hash table entries are EMPTY_ENTRY). The function returns the created
152 hash table. Memory allocation may fail; it may return NULL. */
154 htab_t
155 htab_try_create (size, hash_f, eq_f, del_f)
156 size_t size;
157 htab_hash hash_f;
158 htab_eq eq_f;
159 htab_del del_f;
161 htab_t result;
163 size = higher_prime_number (size);
164 result = (htab_t) calloc (1, sizeof (struct htab));
165 if (result == NULL)
166 return NULL;
168 result->entries = (PTR *) calloc (size, sizeof (PTR));
169 if (result->entries == NULL)
171 free (result);
172 return NULL;
175 result->size = size;
176 result->hash_f = hash_f;
177 result->eq_f = eq_f;
178 result->del_f = del_f;
179 result->return_allocation_failure = 1;
180 return result;
183 /* This function frees all memory allocated for given hash table.
184 Naturally the hash table must already exist. */
186 void
187 htab_delete (htab)
188 htab_t htab;
190 int i;
192 if (htab->del_f)
193 for (i = htab->size - 1; i >= 0; i--)
194 if (htab->entries[i] != EMPTY_ENTRY
195 && htab->entries[i] != DELETED_ENTRY)
196 (*htab->del_f) (htab->entries[i]);
198 free (htab->entries);
199 free (htab);
202 /* This function clears all entries in the given hash table. */
204 void
205 htab_empty (htab)
206 htab_t htab;
208 int i;
210 if (htab->del_f)
211 for (i = htab->size - 1; i >= 0; i--)
212 if (htab->entries[i] != EMPTY_ENTRY
213 && htab->entries[i] != DELETED_ENTRY)
214 (*htab->del_f) (htab->entries[i]);
216 memset (htab->entries, 0, htab->size * sizeof (PTR));
219 /* Similar to htab_find_slot, but without several unwanted side effects:
220 - Does not call htab->eq_f when it finds an existing entry.
221 - Does not change the count of elements/searches/collisions in the
222 hash table.
223 This function also assumes there are no deleted entries in the table.
224 HASH is the hash value for the element to be inserted. */
226 static PTR *
227 find_empty_slot_for_expand (htab, hash)
228 htab_t htab;
229 hashval_t hash;
231 size_t size = htab->size;
232 hashval_t hash2 = 1 + hash % (size - 2);
233 unsigned int index = hash % size;
235 for (;;)
237 PTR *slot = htab->entries + index;
239 if (*slot == EMPTY_ENTRY)
240 return slot;
241 else if (*slot == DELETED_ENTRY)
242 abort ();
244 index += hash2;
245 if (index >= size)
246 index -= size;
250 /* The following function changes size of memory allocated for the
251 entries and repeatedly inserts the table elements. The occupancy
252 of the table after the call will be about 50%. Naturally the hash
253 table must already exist. Remember also that the place of the
254 table entries is changed. If memory allocation failures are allowed,
255 this function will return zero, indicating that the table could not be
256 expanded. If all goes well, it will return a non-zero value. */
258 static int
259 htab_expand (htab)
260 htab_t htab;
262 PTR *oentries;
263 PTR *olimit;
264 PTR *p;
266 oentries = htab->entries;
267 olimit = oentries + htab->size;
269 htab->size = higher_prime_number (htab->size * 2);
271 if (htab->return_allocation_failure)
273 PTR *nentries = (PTR *) calloc (htab->size, sizeof (PTR *));
274 if (nentries == NULL)
275 return 0;
276 htab->entries = nentries;
278 else
279 htab->entries = (PTR *) xcalloc (htab->size, sizeof (PTR *));
281 htab->n_elements -= htab->n_deleted;
282 htab->n_deleted = 0;
284 p = oentries;
287 PTR x = *p;
289 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
291 PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));
293 *q = x;
296 p++;
298 while (p < olimit);
300 free (oentries);
301 return 1;
304 /* This function searches for a hash table entry equal to the given
305 element. It cannot be used to insert or delete an element. */
308 htab_find_with_hash (htab, element, hash)
309 htab_t htab;
310 const PTR element;
311 hashval_t hash;
313 unsigned int index;
314 hashval_t hash2;
315 size_t size;
316 PTR entry;
318 htab->searches++;
319 size = htab->size;
320 index = hash % size;
322 entry = htab->entries[index];
323 if (entry == EMPTY_ENTRY
324 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
325 return entry;
327 hash2 = 1 + hash % (size - 2);
329 for (;;)
331 htab->collisions++;
332 index += hash2;
333 if (index >= size)
334 index -= size;
336 entry = htab->entries[index];
337 if (entry == EMPTY_ENTRY
338 || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
339 return entry;
343 /* Like htab_find_slot_with_hash, but compute the hash value from the
344 element. */
347 htab_find (htab, element)
348 htab_t htab;
349 const PTR element;
351 return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
354 /* This function searches for a hash table slot containing an entry
355 equal to the given element. To delete an entry, call this with
356 INSERT = 0, then call htab_clear_slot on the slot returned (possibly
357 after doing some checks). To insert an entry, call this with
358 INSERT = 1, then write the value you want into the returned slot.
359 When inserting an entry, NULL may be returned if memory allocation
360 fails. */
362 PTR *
363 htab_find_slot_with_hash (htab, element, hash, insert)
364 htab_t htab;
365 const PTR element;
366 hashval_t hash;
367 enum insert_option insert;
369 PTR *first_deleted_slot;
370 unsigned int index;
371 hashval_t hash2;
372 size_t size;
374 if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
375 && htab_expand (htab) == 0)
376 return NULL;
378 size = htab->size;
379 hash2 = 1 + hash % (size - 2);
380 index = hash % size;
382 htab->searches++;
383 first_deleted_slot = NULL;
385 for (;;)
387 PTR entry = htab->entries[index];
388 if (entry == EMPTY_ENTRY)
390 if (insert == NO_INSERT)
391 return NULL;
393 htab->n_elements++;
395 if (first_deleted_slot)
397 *first_deleted_slot = EMPTY_ENTRY;
398 return first_deleted_slot;
401 return &htab->entries[index];
404 if (entry == DELETED_ENTRY)
406 if (!first_deleted_slot)
407 first_deleted_slot = &htab->entries[index];
409 else if ((*htab->eq_f) (entry, element))
410 return &htab->entries[index];
412 htab->collisions++;
413 index += hash2;
414 if (index >= size)
415 index -= size;
419 /* Like htab_find_slot_with_hash, but compute the hash value from the
420 element. */
422 PTR *
423 htab_find_slot (htab, element, insert)
424 htab_t htab;
425 const PTR element;
426 enum insert_option insert;
428 return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
429 insert);
432 /* This function deletes an element with the given value from hash
433 table. If there is no matching element in the hash table, this
434 function does nothing. */
436 void
437 htab_remove_elt (htab, element)
438 htab_t htab;
439 PTR element;
441 PTR *slot;
443 slot = htab_find_slot (htab, element, NO_INSERT);
444 if (*slot == EMPTY_ENTRY)
445 return;
447 if (htab->del_f)
448 (*htab->del_f) (*slot);
450 *slot = DELETED_ENTRY;
451 htab->n_deleted++;
454 /* This function clears a specified slot in a hash table. It is
455 useful when you've already done the lookup and don't want to do it
456 again. */
458 void
459 htab_clear_slot (htab, slot)
460 htab_t htab;
461 PTR *slot;
463 if (slot < htab->entries || slot >= htab->entries + htab->size
464 || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
465 abort ();
467 if (htab->del_f)
468 (*htab->del_f) (*slot);
470 *slot = DELETED_ENTRY;
471 htab->n_deleted++;
474 /* This function scans over the entire hash table calling
475 CALLBACK for each live entry. If CALLBACK returns false,
476 the iteration stops. INFO is passed as CALLBACK's second
477 argument. */
479 void
480 htab_traverse (htab, callback, info)
481 htab_t htab;
482 htab_trav callback;
483 PTR info;
485 PTR *slot = htab->entries;
486 PTR *limit = slot + htab->size;
490 PTR x = *slot;
492 if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
493 if (!(*callback) (slot, info))
494 break;
496 while (++slot < limit);
499 /* Return the current size of given hash table. */
501 size_t
502 htab_size (htab)
503 htab_t htab;
505 return htab->size;
508 /* Return the current number of elements in given hash table. */
510 size_t
511 htab_elements (htab)
512 htab_t htab;
514 return htab->n_elements - htab->n_deleted;
517 /* Return the fraction of fixed collisions during all work with given
518 hash table. */
520 double
521 htab_collisions (htab)
522 htab_t htab;
524 if (htab->searches == 0)
525 return 0.0;
527 return (double) htab->collisions / (double) htab->searches;