1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
31 #include "safe-ctype.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
47 #define DEFAULT_ARCH "i386"
52 #define INLINE __inline__
58 /* Prefixes will be emitted in the order defined below.
59 WAIT_PREFIX must be the first prefix since FWAIT is really is an
60 instruction, and so must come before any prefixes.
61 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 #define LOCKREP_PREFIX 4
68 #define REX_PREFIX 5 /* must come last. */
69 #define MAX_PREFIXES 6 /* max prefixes per opcode */
71 /* we define the syntax here (modulo base,index,scale syntax) */
72 #define REGISTER_PREFIX '%'
73 #define IMMEDIATE_PREFIX '$'
74 #define ABSOLUTE_PREFIX '*'
76 /* these are the instruction mnemonic suffixes in AT&T syntax or
77 memory operand size in Intel syntax. */
78 #define WORD_MNEM_SUFFIX 'w'
79 #define BYTE_MNEM_SUFFIX 'b'
80 #define SHORT_MNEM_SUFFIX 's'
81 #define LONG_MNEM_SUFFIX 'l'
82 #define QWORD_MNEM_SUFFIX 'q'
83 #define XMMWORD_MNEM_SUFFIX 'x'
84 #define YMMWORD_MNEM_SUFFIX 'y'
85 /* Intel Syntax. Use a non-ascii letter since since it never appears
87 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
89 #define END_OF_INSN '\0'
92 'templates' is for grouping together 'template' structures for opcodes
93 of the same name. This is only used for storing the insns in the grand
94 ole hash table of insns.
95 The templates themselves start at START and range up to (but not including)
100 const template *start
;
105 /* 386 operand encoding bytes: see 386 book for details of this. */
108 unsigned int regmem
; /* codes register or memory operand */
109 unsigned int reg
; /* codes register operand (or extended opcode) */
110 unsigned int mode
; /* how to interpret regmem & reg */
114 /* x86-64 extension prefix. */
115 typedef int rex_byte
;
117 /* The SSE5 instructions have a two bit instruction modifier (OC) that
118 is stored in two separate bytes in the instruction. Pick apart OC
119 into the 2 separate bits for instruction. */
120 #define DREX_OC0(x) (((x) & 1) != 0)
121 #define DREX_OC1(x) (((x) & 2) != 0)
123 #define DREX_OC0_MASK (1 << 3) /* set OC0 in byte 4 */
124 #define DREX_OC1_MASK (1 << 2) /* set OC1 in byte 3 */
127 #define DREX_XMEM_X1_X2_X2 0 /* 4 op insn, dest = src3, src1 = reg/mem */
128 #define DREX_X1_XMEM_X2_X2 1 /* 4 op insn, dest = src3, src2 = reg/mem */
129 #define DREX_X1_XMEM_X2_X1 2 /* 4 op insn, dest = src1, src2 = reg/mem */
130 #define DREX_X1_X2_XMEM_X1 3 /* 4 op insn, dest = src1, src3 = reg/mem */
132 #define DREX_XMEM_X1_X2 0 /* 3 op insn, src1 = reg/mem */
133 #define DREX_X1_XMEM_X2 1 /* 3 op insn, src1 = reg/mem */
135 /* Information needed to create the DREX byte in SSE5 instructions. */
138 unsigned int reg
; /* register */
139 unsigned int rex
; /* REX flags */
140 unsigned int modrm_reg
; /* which arg goes in the modrm.reg field */
141 unsigned int modrm_regmem
; /* which arg goes in the modrm.regmem field */
144 /* 386 opcode byte to code indirect addressing. */
153 /* x86 arch names, types and features */
156 const char *name
; /* arch name */
157 enum processor_type type
; /* arch type */
158 i386_cpu_flags flags
; /* cpu feature flags */
162 static void set_code_flag (int);
163 static void set_16bit_gcc_code_flag (int);
164 static void set_intel_syntax (int);
165 static void set_intel_mnemonic (int);
166 static void set_allow_index_reg (int);
167 static void set_sse_check (int);
168 static void set_cpu_arch (int);
170 static void pe_directive_secrel (int);
172 static void signed_cons (int);
173 static char *output_invalid (int c
);
174 static int i386_att_operand (char *);
175 static int i386_intel_operand (char *, int);
176 static const reg_entry
*parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static void optimize_imm (void);
182 static void optimize_disp (void);
183 static const template *match_template (void);
184 static int check_string (void);
185 static int process_suffix (void);
186 static int check_byte_reg (void);
187 static int check_long_reg (void);
188 static int check_qword_reg (void);
189 static int check_word_reg (void);
190 static int finalize_imm (void);
191 static void process_drex (void);
192 static int process_operands (void);
193 static const seg_entry
*build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS
*, offsetT
);
196 static void output_disp (fragS
*, offsetT
);
198 static void s_bss (int);
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED
);
204 static const char *default_arch
= DEFAULT_ARCH
;
209 /* VEX prefix is either 2 byte or 3 byte. */
210 unsigned char bytes
[3];
212 /* Destination or source register specifier. */
213 const reg_entry
*register_specifier
;
216 /* 'md_assemble ()' gathers together information and puts it into a
223 const reg_entry
*regs
;
228 /* TM holds the template for the insn were currently assembling. */
231 /* SUFFIX holds the instruction size suffix for byte, word, dword
232 or qword, if given. */
235 /* OPERANDS gives the number of given operands. */
236 unsigned int operands
;
238 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
239 of given register, displacement, memory operands and immediate
241 unsigned int reg_operands
, disp_operands
, mem_operands
, imm_operands
;
243 /* TYPES [i] is the type (see above #defines) which tells us how to
244 use OP[i] for the corresponding operand. */
245 i386_operand_type types
[MAX_OPERANDS
];
247 /* Displacement expression, immediate expression, or register for each
249 union i386_op op
[MAX_OPERANDS
];
251 /* Flags for operands. */
252 unsigned int flags
[MAX_OPERANDS
];
253 #define Operand_PCrel 1
255 /* Relocation type for operand */
256 enum bfd_reloc_code_real reloc
[MAX_OPERANDS
];
258 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
259 the base index byte below. */
260 const reg_entry
*base_reg
;
261 const reg_entry
*index_reg
;
262 unsigned int log2_scale_factor
;
264 /* SEG gives the seg_entries of this insn. They are zero unless
265 explicit segment overrides are given. */
266 const seg_entry
*seg
[2];
268 /* PREFIX holds all the given prefix opcodes (usually null).
269 PREFIXES is the number of prefix opcodes. */
270 unsigned int prefixes
;
271 unsigned char prefix
[MAX_PREFIXES
];
273 /* RM and SIB are the modrm byte and the sib byte where the
274 addressing modes of this insn are encoded. DREX is the byte
275 added by the SSE5 instructions. */
283 /* Swap operand in encoding. */
284 unsigned int swap_operand
: 1;
287 typedef struct _i386_insn i386_insn
;
289 /* List of chars besides those in app.c:symbol_chars that can start an
290 operand. Used to prevent the scrubber eating vital white-space. */
291 const char extra_symbol_chars
[] = "*%-(["
300 #if (defined (TE_I386AIX) \
301 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
302 && !defined (TE_GNU) \
303 && !defined (TE_LINUX) \
304 && !defined (TE_NETWARE) \
305 && !defined (TE_FreeBSD) \
306 && !defined (TE_NetBSD)))
307 /* This array holds the chars that always start a comment. If the
308 pre-processor is disabled, these aren't very useful. The option
309 --divide will remove '/' from this list. */
310 const char *i386_comment_chars
= "#/";
311 #define SVR4_COMMENT_CHARS 1
312 #define PREFIX_SEPARATOR '\\'
315 const char *i386_comment_chars
= "#";
316 #define PREFIX_SEPARATOR '/'
319 /* This array holds the chars that only start a comment at the beginning of
320 a line. If the line seems to have the form '# 123 filename'
321 .line and .file directives will appear in the pre-processed output.
322 Note that input_file.c hand checks for '#' at the beginning of the
323 first line of the input file. This is because the compiler outputs
324 #NO_APP at the beginning of its output.
325 Also note that comments started like this one will always work if
326 '/' isn't otherwise defined. */
327 const char line_comment_chars
[] = "#/";
329 const char line_separator_chars
[] = ";";
331 /* Chars that can be used to separate mant from exp in floating point
333 const char EXP_CHARS
[] = "eE";
335 /* Chars that mean this number is a floating point constant
338 const char FLT_CHARS
[] = "fFdDxX";
340 /* Tables for lexical analysis. */
341 static char mnemonic_chars
[256];
342 static char register_chars
[256];
343 static char operand_chars
[256];
344 static char identifier_chars
[256];
345 static char digit_chars
[256];
347 /* Lexical macros. */
348 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
349 #define is_operand_char(x) (operand_chars[(unsigned char) x])
350 #define is_register_char(x) (register_chars[(unsigned char) x])
351 #define is_space_char(x) ((x) == ' ')
352 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
353 #define is_digit_char(x) (digit_chars[(unsigned char) x])
355 /* All non-digit non-letter characters that may occur in an operand. */
356 static char operand_special_chars
[] = "%$-+(,)*._~/<>|&^!:[@]";
358 /* md_assemble() always leaves the strings it's passed unaltered. To
359 effect this we maintain a stack of saved characters that we've smashed
360 with '\0's (indicating end of strings for various sub-fields of the
361 assembler instruction). */
362 static char save_stack
[32];
363 static char *save_stack_p
;
364 #define END_STRING_AND_SAVE(s) \
365 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
366 #define RESTORE_END_STRING(s) \
367 do { *(s) = *--save_stack_p; } while (0)
369 /* The instruction we're assembling. */
372 /* Possible templates for current insn. */
373 static const templates
*current_templates
;
375 /* Per instruction expressionS buffers: max displacements & immediates. */
376 static expressionS disp_expressions
[MAX_MEMORY_OPERANDS
];
377 static expressionS im_expressions
[MAX_IMMEDIATE_OPERANDS
];
379 /* Current operand we are working on. */
380 static int this_operand
;
382 /* We support four different modes. FLAG_CODE variable is used to distinguish
390 static enum flag_code flag_code
;
391 static unsigned int object_64bit
;
392 static int use_rela_relocations
= 0;
394 /* The names used to print error messages. */
395 static const char *flag_code_names
[] =
402 /* 1 for intel syntax,
404 static int intel_syntax
= 0;
406 /* 1 for intel mnemonic,
407 0 if att mnemonic. */
408 static int intel_mnemonic
= !SYSV386_COMPAT
;
410 /* 1 if support old (<= 2.8.1) versions of gcc. */
411 static int old_gcc
= OLDGCC_COMPAT
;
413 /* 1 if pseudo registers are permitted. */
414 static int allow_pseudo_reg
= 0;
416 /* 1 if register prefix % not required. */
417 static int allow_naked_reg
= 0;
419 /* 1 if pseudo index register, eiz/riz, is allowed . */
420 static int allow_index_reg
= 0;
430 /* Register prefix used for error message. */
431 static const char *register_prefix
= "%";
433 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
434 leave, push, and pop instructions so that gcc has the same stack
435 frame as in 32 bit mode. */
436 static char stackop_size
= '\0';
438 /* Non-zero to optimize code alignment. */
439 int optimize_align_code
= 1;
441 /* Non-zero to quieten some warnings. */
442 static int quiet_warnings
= 0;
445 static const char *cpu_arch_name
= NULL
;
446 static char *cpu_sub_arch_name
= NULL
;
448 /* CPU feature flags. */
449 static i386_cpu_flags cpu_arch_flags
= CPU_UNKNOWN_FLAGS
;
451 /* If we have selected a cpu we are generating instructions for. */
452 static int cpu_arch_tune_set
= 0;
454 /* Cpu we are generating instructions for. */
455 enum processor_type cpu_arch_tune
= PROCESSOR_UNKNOWN
;
457 /* CPU feature flags of cpu we are generating instructions for. */
458 static i386_cpu_flags cpu_arch_tune_flags
;
460 /* CPU instruction set architecture used. */
461 enum processor_type cpu_arch_isa
= PROCESSOR_UNKNOWN
;
463 /* CPU feature flags of instruction set architecture used. */
464 i386_cpu_flags cpu_arch_isa_flags
;
466 /* If set, conditional jumps are not automatically promoted to handle
467 larger than a byte offset. */
468 static unsigned int no_cond_jump_promotion
= 0;
470 /* Encode SSE instructions with VEX prefix. */
471 static unsigned int sse2avx
;
473 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
474 static symbolS
*GOT_symbol
;
476 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
477 unsigned int x86_dwarf2_return_column
;
479 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
480 int x86_cie_data_alignment
;
482 /* Interface to relax_segment.
483 There are 3 major relax states for 386 jump insns because the
484 different types of jumps add different sizes to frags when we're
485 figuring out what sort of jump to choose to reach a given label. */
488 #define UNCOND_JUMP 0
490 #define COND_JUMP86 2
495 #define SMALL16 (SMALL | CODE16)
497 #define BIG16 (BIG | CODE16)
501 #define INLINE __inline__
507 #define ENCODE_RELAX_STATE(type, size) \
508 ((relax_substateT) (((type) << 2) | (size)))
509 #define TYPE_FROM_RELAX_STATE(s) \
511 #define DISP_SIZE_FROM_RELAX_STATE(s) \
512 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
514 /* This table is used by relax_frag to promote short jumps to long
515 ones where necessary. SMALL (short) jumps may be promoted to BIG
516 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
517 don't allow a short jump in a 32 bit code segment to be promoted to
518 a 16 bit offset jump because it's slower (requires data size
519 prefix), and doesn't work, unless the destination is in the bottom
520 64k of the code segment (The top 16 bits of eip are zeroed). */
522 const relax_typeS md_relax_table
[] =
525 1) most positive reach of this state,
526 2) most negative reach of this state,
527 3) how many bytes this mode will have in the variable part of the frag
528 4) which index into the table to try if we can't fit into this one. */
530 /* UNCOND_JUMP states. */
531 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
)},
532 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
)},
533 /* dword jmp adds 4 bytes to frag:
534 0 extra opcode bytes, 4 displacement bytes. */
536 /* word jmp adds 2 byte2 to frag:
537 0 extra opcode bytes, 2 displacement bytes. */
540 /* COND_JUMP states. */
541 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG
)},
542 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP
, BIG16
)},
543 /* dword conditionals adds 5 bytes to frag:
544 1 extra opcode byte, 4 displacement bytes. */
546 /* word conditionals add 3 bytes to frag:
547 1 extra opcode byte, 2 displacement bytes. */
550 /* COND_JUMP86 states. */
551 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG
)},
552 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
)},
553 /* dword conditionals adds 5 bytes to frag:
554 1 extra opcode byte, 4 displacement bytes. */
556 /* word conditionals add 4 bytes to frag:
557 1 displacement byte and a 3 byte long branch insn. */
561 static const arch_entry cpu_arch
[] =
563 { "generic32", PROCESSOR_GENERIC32
,
564 CPU_GENERIC32_FLAGS
},
565 { "generic64", PROCESSOR_GENERIC64
,
566 CPU_GENERIC64_FLAGS
},
567 { "i8086", PROCESSOR_UNKNOWN
,
569 { "i186", PROCESSOR_UNKNOWN
,
571 { "i286", PROCESSOR_UNKNOWN
,
573 { "i386", PROCESSOR_I386
,
575 { "i486", PROCESSOR_I486
,
577 { "i586", PROCESSOR_PENTIUM
,
579 { "i686", PROCESSOR_PENTIUMPRO
,
581 { "pentium", PROCESSOR_PENTIUM
,
583 { "pentiumpro", PROCESSOR_PENTIUMPRO
,
585 { "pentiumii", PROCESSOR_PENTIUMPRO
,
587 { "pentiumiii",PROCESSOR_PENTIUMPRO
,
589 { "pentium4", PROCESSOR_PENTIUM4
,
591 { "prescott", PROCESSOR_NOCONA
,
593 { "nocona", PROCESSOR_NOCONA
,
595 { "yonah", PROCESSOR_CORE
,
597 { "core", PROCESSOR_CORE
,
599 { "merom", PROCESSOR_CORE2
,
601 { "core2", PROCESSOR_CORE2
,
603 { "corei7", PROCESSOR_COREI7
,
605 { "k6", PROCESSOR_K6
,
607 { "k6_2", PROCESSOR_K6
,
609 { "athlon", PROCESSOR_ATHLON
,
611 { "sledgehammer", PROCESSOR_K8
,
613 { "opteron", PROCESSOR_K8
,
615 { "k8", PROCESSOR_K8
,
617 { "amdfam10", PROCESSOR_AMDFAM10
,
618 CPU_AMDFAM10_FLAGS
},
619 { ".mmx", PROCESSOR_UNKNOWN
,
621 { ".sse", PROCESSOR_UNKNOWN
,
623 { ".sse2", PROCESSOR_UNKNOWN
,
625 { ".sse3", PROCESSOR_UNKNOWN
,
627 { ".ssse3", PROCESSOR_UNKNOWN
,
629 { ".sse4.1", PROCESSOR_UNKNOWN
,
631 { ".sse4.2", PROCESSOR_UNKNOWN
,
633 { ".sse4", PROCESSOR_UNKNOWN
,
635 { ".avx", PROCESSOR_UNKNOWN
,
637 { ".vmx", PROCESSOR_UNKNOWN
,
639 { ".smx", PROCESSOR_UNKNOWN
,
641 { ".xsave", PROCESSOR_UNKNOWN
,
643 { ".aes", PROCESSOR_UNKNOWN
,
645 { ".pclmul", PROCESSOR_UNKNOWN
,
647 { ".clmul", PROCESSOR_UNKNOWN
,
649 { ".fma", PROCESSOR_UNKNOWN
,
651 { ".movbe", PROCESSOR_UNKNOWN
,
653 { ".ept", PROCESSOR_UNKNOWN
,
655 { ".clflush", PROCESSOR_UNKNOWN
,
657 { ".syscall", PROCESSOR_UNKNOWN
,
659 { ".rdtscp", PROCESSOR_UNKNOWN
,
661 { ".3dnow", PROCESSOR_UNKNOWN
,
663 { ".3dnowa", PROCESSOR_UNKNOWN
,
665 { ".padlock", PROCESSOR_UNKNOWN
,
667 { ".pacifica", PROCESSOR_UNKNOWN
,
669 { ".svme", PROCESSOR_UNKNOWN
,
671 { ".sse4a", PROCESSOR_UNKNOWN
,
673 { ".abm", PROCESSOR_UNKNOWN
,
675 { ".sse5", PROCESSOR_UNKNOWN
,
680 /* Like s_lcomm_internal in gas/read.c but the alignment string
681 is allowed to be optional. */
684 pe_lcomm_internal (int needs_align
, symbolS
*symbolP
, addressT size
)
691 && *input_line_pointer
== ',')
693 align
= parse_align (needs_align
- 1);
695 if (align
== (addressT
) -1)
710 bss_alloc (symbolP
, size
, align
);
715 pe_lcomm (int needs_align
)
717 s_comm_internal (needs_align
* 2, pe_lcomm_internal
);
721 const pseudo_typeS md_pseudo_table
[] =
723 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
724 {"align", s_align_bytes
, 0},
726 {"align", s_align_ptwo
, 0},
728 {"arch", set_cpu_arch
, 0},
732 {"lcomm", pe_lcomm
, 1},
734 {"ffloat", float_cons
, 'f'},
735 {"dfloat", float_cons
, 'd'},
736 {"tfloat", float_cons
, 'x'},
738 {"slong", signed_cons
, 4},
739 {"noopt", s_ignore
, 0},
740 {"optim", s_ignore
, 0},
741 {"code16gcc", set_16bit_gcc_code_flag
, CODE_16BIT
},
742 {"code16", set_code_flag
, CODE_16BIT
},
743 {"code32", set_code_flag
, CODE_32BIT
},
744 {"code64", set_code_flag
, CODE_64BIT
},
745 {"intel_syntax", set_intel_syntax
, 1},
746 {"att_syntax", set_intel_syntax
, 0},
747 {"intel_mnemonic", set_intel_mnemonic
, 1},
748 {"att_mnemonic", set_intel_mnemonic
, 0},
749 {"allow_index_reg", set_allow_index_reg
, 1},
750 {"disallow_index_reg", set_allow_index_reg
, 0},
751 {"sse_check", set_sse_check
, 0},
752 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
753 {"largecomm", handle_large_common
, 0},
755 {"file", (void (*) (int)) dwarf2_directive_file
, 0},
756 {"loc", dwarf2_directive_loc
, 0},
757 {"loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0},
760 {"secrel32", pe_directive_secrel
, 0},
765 /* For interface with expression (). */
766 extern char *input_line_pointer
;
768 /* Hash table for instruction mnemonic lookup. */
769 static struct hash_control
*op_hash
;
771 /* Hash table for register lookup. */
772 static struct hash_control
*reg_hash
;
775 i386_align_code (fragS
*fragP
, int count
)
777 /* Various efficient no-op patterns for aligning code labels.
778 Note: Don't try to assemble the instructions in the comments.
779 0L and 0w are not legal. */
780 static const char f32_1
[] =
782 static const char f32_2
[] =
783 {0x66,0x90}; /* xchg %ax,%ax */
784 static const char f32_3
[] =
785 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
786 static const char f32_4
[] =
787 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
788 static const char f32_5
[] =
790 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
791 static const char f32_6
[] =
792 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
793 static const char f32_7
[] =
794 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
795 static const char f32_8
[] =
797 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
798 static const char f32_9
[] =
799 {0x89,0xf6, /* movl %esi,%esi */
800 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
801 static const char f32_10
[] =
802 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
803 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
804 static const char f32_11
[] =
805 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
806 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
807 static const char f32_12
[] =
808 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
809 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
810 static const char f32_13
[] =
811 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
812 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
813 static const char f32_14
[] =
814 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
815 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
816 static const char f16_3
[] =
817 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
818 static const char f16_4
[] =
819 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
820 static const char f16_5
[] =
822 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
823 static const char f16_6
[] =
824 {0x89,0xf6, /* mov %si,%si */
825 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
826 static const char f16_7
[] =
827 {0x8d,0x74,0x00, /* lea 0(%si),%si */
828 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
829 static const char f16_8
[] =
830 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
831 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
832 static const char jump_31
[] =
833 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
834 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
835 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
836 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
837 static const char *const f32_patt
[] = {
838 f32_1
, f32_2
, f32_3
, f32_4
, f32_5
, f32_6
, f32_7
, f32_8
,
839 f32_9
, f32_10
, f32_11
, f32_12
, f32_13
, f32_14
841 static const char *const f16_patt
[] = {
842 f32_1
, f32_2
, f16_3
, f16_4
, f16_5
, f16_6
, f16_7
, f16_8
845 static const char alt_3
[] =
847 /* nopl 0(%[re]ax) */
848 static const char alt_4
[] =
849 {0x0f,0x1f,0x40,0x00};
850 /* nopl 0(%[re]ax,%[re]ax,1) */
851 static const char alt_5
[] =
852 {0x0f,0x1f,0x44,0x00,0x00};
853 /* nopw 0(%[re]ax,%[re]ax,1) */
854 static const char alt_6
[] =
855 {0x66,0x0f,0x1f,0x44,0x00,0x00};
856 /* nopl 0L(%[re]ax) */
857 static const char alt_7
[] =
858 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
859 /* nopl 0L(%[re]ax,%[re]ax,1) */
860 static const char alt_8
[] =
861 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
862 /* nopw 0L(%[re]ax,%[re]ax,1) */
863 static const char alt_9
[] =
864 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
865 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
866 static const char alt_10
[] =
867 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
869 nopw %cs:0L(%[re]ax,%[re]ax,1) */
870 static const char alt_long_11
[] =
872 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
875 nopw %cs:0L(%[re]ax,%[re]ax,1) */
876 static const char alt_long_12
[] =
879 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
883 nopw %cs:0L(%[re]ax,%[re]ax,1) */
884 static const char alt_long_13
[] =
888 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
893 nopw %cs:0L(%[re]ax,%[re]ax,1) */
894 static const char alt_long_14
[] =
899 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
905 nopw %cs:0L(%[re]ax,%[re]ax,1) */
906 static const char alt_long_15
[] =
912 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
913 /* nopl 0(%[re]ax,%[re]ax,1)
914 nopw 0(%[re]ax,%[re]ax,1) */
915 static const char alt_short_11
[] =
916 {0x0f,0x1f,0x44,0x00,0x00,
917 0x66,0x0f,0x1f,0x44,0x00,0x00};
918 /* nopw 0(%[re]ax,%[re]ax,1)
919 nopw 0(%[re]ax,%[re]ax,1) */
920 static const char alt_short_12
[] =
921 {0x66,0x0f,0x1f,0x44,0x00,0x00,
922 0x66,0x0f,0x1f,0x44,0x00,0x00};
923 /* nopw 0(%[re]ax,%[re]ax,1)
925 static const char alt_short_13
[] =
926 {0x66,0x0f,0x1f,0x44,0x00,0x00,
927 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
930 static const char alt_short_14
[] =
931 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
932 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
934 nopl 0L(%[re]ax,%[re]ax,1) */
935 static const char alt_short_15
[] =
936 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
937 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
938 static const char *const alt_short_patt
[] = {
939 f32_1
, f32_2
, alt_3
, alt_4
, alt_5
, alt_6
, alt_7
, alt_8
,
940 alt_9
, alt_10
, alt_short_11
, alt_short_12
, alt_short_13
,
941 alt_short_14
, alt_short_15
943 static const char *const alt_long_patt
[] = {
944 f32_1
, f32_2
, alt_3
, alt_4
, alt_5
, alt_6
, alt_7
, alt_8
,
945 alt_9
, alt_10
, alt_long_11
, alt_long_12
, alt_long_13
,
946 alt_long_14
, alt_long_15
949 /* Only align for at least a positive non-zero boundary. */
950 if (count
<= 0 || count
> MAX_MEM_FOR_RS_ALIGN_CODE
)
953 /* We need to decide which NOP sequence to use for 32bit and
954 64bit. When -mtune= is used:
956 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
957 PROCESSOR_GENERIC32, f32_patt will be used.
958 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
959 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
960 PROCESSOR_GENERIC64, alt_long_patt will be used.
961 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
962 PROCESSOR_AMDFAM10, alt_short_patt will be used.
964 When -mtune= isn't used, alt_long_patt will be used if
965 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
968 When -march= or .arch is used, we can't use anything beyond
969 cpu_arch_isa_flags. */
971 if (flag_code
== CODE_16BIT
)
975 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
977 /* Adjust jump offset. */
978 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
981 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
982 f16_patt
[count
- 1], count
);
986 const char *const *patt
= NULL
;
988 if (fragP
->tc_frag_data
.isa
== PROCESSOR_UNKNOWN
)
990 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
991 switch (cpu_arch_tune
)
993 case PROCESSOR_UNKNOWN
:
994 /* We use cpu_arch_isa_flags to check if we SHOULD
995 optimize for Cpu686. */
996 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpui686
)
997 patt
= alt_long_patt
;
1001 case PROCESSOR_PENTIUMPRO
:
1002 case PROCESSOR_PENTIUM4
:
1003 case PROCESSOR_NOCONA
:
1004 case PROCESSOR_CORE
:
1005 case PROCESSOR_CORE2
:
1006 case PROCESSOR_COREI7
:
1007 case PROCESSOR_GENERIC64
:
1008 patt
= alt_long_patt
;
1011 case PROCESSOR_ATHLON
:
1013 case PROCESSOR_AMDFAM10
:
1014 patt
= alt_short_patt
;
1016 case PROCESSOR_I386
:
1017 case PROCESSOR_I486
:
1018 case PROCESSOR_PENTIUM
:
1019 case PROCESSOR_GENERIC32
:
1026 switch (fragP
->tc_frag_data
.tune
)
1028 case PROCESSOR_UNKNOWN
:
1029 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1030 PROCESSOR_UNKNOWN. */
1034 case PROCESSOR_I386
:
1035 case PROCESSOR_I486
:
1036 case PROCESSOR_PENTIUM
:
1038 case PROCESSOR_ATHLON
:
1040 case PROCESSOR_AMDFAM10
:
1041 case PROCESSOR_GENERIC32
:
1042 /* We use cpu_arch_isa_flags to check if we CAN optimize
1044 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpui686
)
1045 patt
= alt_short_patt
;
1049 case PROCESSOR_PENTIUMPRO
:
1050 case PROCESSOR_PENTIUM4
:
1051 case PROCESSOR_NOCONA
:
1052 case PROCESSOR_CORE
:
1053 case PROCESSOR_CORE2
:
1054 case PROCESSOR_COREI7
:
1055 if (fragP
->tc_frag_data
.isa_flags
.bitfield
.cpui686
)
1056 patt
= alt_long_patt
;
1060 case PROCESSOR_GENERIC64
:
1061 patt
= alt_long_patt
;
1066 if (patt
== f32_patt
)
1068 /* If the padding is less than 15 bytes, we use the normal
1069 ones. Otherwise, we use a jump instruction and adjust
1072 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1073 patt
[count
- 1], count
);
1076 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1078 /* Adjust jump offset. */
1079 fragP
->fr_literal
[fragP
->fr_fix
+ 1] = count
- 2;
1084 /* Maximum length of an instruction is 15 byte. If the
1085 padding is greater than 15 bytes and we don't use jump,
1086 we have to break it into smaller pieces. */
1087 int padding
= count
;
1088 while (padding
> 15)
1091 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
+ padding
,
1096 memcpy (fragP
->fr_literal
+ fragP
->fr_fix
,
1097 patt
[padding
- 1], padding
);
1100 fragP
->fr_var
= count
;
1104 operand_type_all_zero (const union i386_operand_type
*x
)
1106 switch (ARRAY_SIZE(x
->array
))
1115 return !x
->array
[0];
1122 operand_type_set (union i386_operand_type
*x
, unsigned int v
)
1124 switch (ARRAY_SIZE(x
->array
))
1139 operand_type_equal (const union i386_operand_type
*x
,
1140 const union i386_operand_type
*y
)
1142 switch (ARRAY_SIZE(x
->array
))
1145 if (x
->array
[2] != y
->array
[2])
1148 if (x
->array
[1] != y
->array
[1])
1151 return x
->array
[0] == y
->array
[0];
1159 cpu_flags_all_zero (const union i386_cpu_flags
*x
)
1161 switch (ARRAY_SIZE(x
->array
))
1170 return !x
->array
[0];
1177 cpu_flags_set (union i386_cpu_flags
*x
, unsigned int v
)
1179 switch (ARRAY_SIZE(x
->array
))
1194 cpu_flags_equal (const union i386_cpu_flags
*x
,
1195 const union i386_cpu_flags
*y
)
1197 switch (ARRAY_SIZE(x
->array
))
1200 if (x
->array
[2] != y
->array
[2])
1203 if (x
->array
[1] != y
->array
[1])
1206 return x
->array
[0] == y
->array
[0];
1214 cpu_flags_check_cpu64 (i386_cpu_flags f
)
1216 return !((flag_code
== CODE_64BIT
&& f
.bitfield
.cpuno64
)
1217 || (flag_code
!= CODE_64BIT
&& f
.bitfield
.cpu64
));
1220 static INLINE i386_cpu_flags
1221 cpu_flags_and (i386_cpu_flags x
, i386_cpu_flags y
)
1223 switch (ARRAY_SIZE (x
.array
))
1226 x
.array
[2] &= y
.array
[2];
1228 x
.array
[1] &= y
.array
[1];
1230 x
.array
[0] &= y
.array
[0];
1238 static INLINE i386_cpu_flags
1239 cpu_flags_or (i386_cpu_flags x
, i386_cpu_flags y
)
1241 switch (ARRAY_SIZE (x
.array
))
1244 x
.array
[2] |= y
.array
[2];
1246 x
.array
[1] |= y
.array
[1];
1248 x
.array
[0] |= y
.array
[0];
1256 #define CPU_FLAGS_ARCH_MATCH 0x1
1257 #define CPU_FLAGS_64BIT_MATCH 0x2
1258 #define CPU_FLAGS_AES_MATCH 0x4
1259 #define CPU_FLAGS_AVX_MATCH 0x8
1261 #define CPU_FLAGS_32BIT_MATCH \
1262 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH | CPU_FLAGS_AVX_MATCH)
1263 #define CPU_FLAGS_PERFECT_MATCH \
1264 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1266 /* Return CPU flags match bits. */
1269 cpu_flags_match (const template *t
)
1271 i386_cpu_flags x
= t
->cpu_flags
;
1272 int match
= cpu_flags_check_cpu64 (x
) ? CPU_FLAGS_64BIT_MATCH
: 0;
1274 x
.bitfield
.cpu64
= 0;
1275 x
.bitfield
.cpuno64
= 0;
1277 if (cpu_flags_all_zero (&x
))
1279 /* This instruction is available on all archs. */
1280 match
|= CPU_FLAGS_32BIT_MATCH
;
1284 /* This instruction is available only on some archs. */
1285 i386_cpu_flags cpu
= cpu_arch_flags
;
1287 cpu
.bitfield
.cpu64
= 0;
1288 cpu
.bitfield
.cpuno64
= 0;
1289 cpu
= cpu_flags_and (x
, cpu
);
1290 if (!cpu_flags_all_zero (&cpu
))
1292 if (x
.bitfield
.cpuavx
)
1294 /* We only need to check AES/SSE2AVX with AVX. */
1295 if (cpu
.bitfield
.cpuavx
)
1297 /* Check SSE2AVX. */
1298 if (!t
->opcode_modifier
.sse2avx
|| sse2avx
)
1300 match
|= (CPU_FLAGS_ARCH_MATCH
1301 | CPU_FLAGS_AVX_MATCH
);
1303 if (!x
.bitfield
.cpuaes
|| cpu
.bitfield
.cpuaes
)
1304 match
|= CPU_FLAGS_AES_MATCH
;
1308 match
|= CPU_FLAGS_ARCH_MATCH
;
1311 match
|= CPU_FLAGS_32BIT_MATCH
;
1317 static INLINE i386_operand_type
1318 operand_type_and (i386_operand_type x
, i386_operand_type y
)
1320 switch (ARRAY_SIZE (x
.array
))
1323 x
.array
[2] &= y
.array
[2];
1325 x
.array
[1] &= y
.array
[1];
1327 x
.array
[0] &= y
.array
[0];
1335 static INLINE i386_operand_type
1336 operand_type_or (i386_operand_type x
, i386_operand_type y
)
1338 switch (ARRAY_SIZE (x
.array
))
1341 x
.array
[2] |= y
.array
[2];
1343 x
.array
[1] |= y
.array
[1];
1345 x
.array
[0] |= y
.array
[0];
1353 static INLINE i386_operand_type
1354 operand_type_xor (i386_operand_type x
, i386_operand_type y
)
1356 switch (ARRAY_SIZE (x
.array
))
1359 x
.array
[2] ^= y
.array
[2];
1361 x
.array
[1] ^= y
.array
[1];
1363 x
.array
[0] ^= y
.array
[0];
1371 static const i386_operand_type acc32
= OPERAND_TYPE_ACC32
;
1372 static const i386_operand_type acc64
= OPERAND_TYPE_ACC64
;
1373 static const i386_operand_type control
= OPERAND_TYPE_CONTROL
;
1374 static const i386_operand_type inoutportreg
1375 = OPERAND_TYPE_INOUTPORTREG
;
1376 static const i386_operand_type reg16_inoutportreg
1377 = OPERAND_TYPE_REG16_INOUTPORTREG
;
1378 static const i386_operand_type disp16
= OPERAND_TYPE_DISP16
;
1379 static const i386_operand_type disp32
= OPERAND_TYPE_DISP32
;
1380 static const i386_operand_type disp32s
= OPERAND_TYPE_DISP32S
;
1381 static const i386_operand_type disp16_32
= OPERAND_TYPE_DISP16_32
;
1382 static const i386_operand_type anydisp
1383 = OPERAND_TYPE_ANYDISP
;
1384 static const i386_operand_type regxmm
= OPERAND_TYPE_REGXMM
;
1385 static const i386_operand_type regymm
= OPERAND_TYPE_REGYMM
;
1386 static const i386_operand_type imm8
= OPERAND_TYPE_IMM8
;
1387 static const i386_operand_type imm8s
= OPERAND_TYPE_IMM8S
;
1388 static const i386_operand_type imm16
= OPERAND_TYPE_IMM16
;
1389 static const i386_operand_type imm32
= OPERAND_TYPE_IMM32
;
1390 static const i386_operand_type imm32s
= OPERAND_TYPE_IMM32S
;
1391 static const i386_operand_type imm64
= OPERAND_TYPE_IMM64
;
1392 static const i386_operand_type imm16_32
= OPERAND_TYPE_IMM16_32
;
1393 static const i386_operand_type imm16_32s
= OPERAND_TYPE_IMM16_32S
;
1394 static const i386_operand_type imm16_32_32s
= OPERAND_TYPE_IMM16_32_32S
;
1395 static const i386_operand_type vex_imm4
= OPERAND_TYPE_VEX_IMM4
;
1406 operand_type_check (i386_operand_type t
, enum operand_type c
)
1411 return (t
.bitfield
.reg8
1414 || t
.bitfield
.reg64
);
1417 return (t
.bitfield
.imm8
1421 || t
.bitfield
.imm32s
1422 || t
.bitfield
.imm64
);
1425 return (t
.bitfield
.disp8
1426 || t
.bitfield
.disp16
1427 || t
.bitfield
.disp32
1428 || t
.bitfield
.disp32s
1429 || t
.bitfield
.disp64
);
1432 return (t
.bitfield
.disp8
1433 || t
.bitfield
.disp16
1434 || t
.bitfield
.disp32
1435 || t
.bitfield
.disp32s
1436 || t
.bitfield
.disp64
1437 || t
.bitfield
.baseindex
);
1446 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1447 operand J for instruction template T. */
1450 match_reg_size (const template *t
, unsigned int j
)
1452 return !((i
.types
[j
].bitfield
.byte
1453 && !t
->operand_types
[j
].bitfield
.byte
)
1454 || (i
.types
[j
].bitfield
.word
1455 && !t
->operand_types
[j
].bitfield
.word
)
1456 || (i
.types
[j
].bitfield
.dword
1457 && !t
->operand_types
[j
].bitfield
.dword
)
1458 || (i
.types
[j
].bitfield
.qword
1459 && !t
->operand_types
[j
].bitfield
.qword
));
1462 /* Return 1 if there is no conflict in any size on operand J for
1463 instruction template T. */
1466 match_mem_size (const template *t
, unsigned int j
)
1468 return (match_reg_size (t
, j
)
1469 && !((i
.types
[j
].bitfield
.unspecified
1470 && !t
->operand_types
[j
].bitfield
.unspecified
)
1471 || (i
.types
[j
].bitfield
.fword
1472 && !t
->operand_types
[j
].bitfield
.fword
)
1473 || (i
.types
[j
].bitfield
.tbyte
1474 && !t
->operand_types
[j
].bitfield
.tbyte
)
1475 || (i
.types
[j
].bitfield
.xmmword
1476 && !t
->operand_types
[j
].bitfield
.xmmword
)
1477 || (i
.types
[j
].bitfield
.ymmword
1478 && !t
->operand_types
[j
].bitfield
.ymmword
)));
1481 /* Return 1 if there is no size conflict on any operands for
1482 instruction template T. */
1485 operand_size_match (const template *t
)
1490 /* Don't check jump instructions. */
1491 if (t
->opcode_modifier
.jump
1492 || t
->opcode_modifier
.jumpbyte
1493 || t
->opcode_modifier
.jumpdword
1494 || t
->opcode_modifier
.jumpintersegment
)
1497 /* Check memory and accumulator operand size. */
1498 for (j
= 0; j
< i
.operands
; j
++)
1500 if (t
->operand_types
[j
].bitfield
.anysize
)
1503 if (t
->operand_types
[j
].bitfield
.acc
&& !match_reg_size (t
, j
))
1509 if (i
.types
[j
].bitfield
.mem
&& !match_mem_size (t
, j
))
1517 || (!t
->opcode_modifier
.d
&& !t
->opcode_modifier
.floatd
))
1520 /* Check reverse. */
1521 assert (i
.operands
== 2);
1524 for (j
= 0; j
< 2; j
++)
1526 if (t
->operand_types
[j
].bitfield
.acc
1527 && !match_reg_size (t
, j
? 0 : 1))
1533 if (i
.types
[j
].bitfield
.mem
1534 && !match_mem_size (t
, j
? 0 : 1))
1545 operand_type_match (i386_operand_type overlap
,
1546 i386_operand_type given
)
1548 i386_operand_type temp
= overlap
;
1550 temp
.bitfield
.jumpabsolute
= 0;
1551 temp
.bitfield
.unspecified
= 0;
1552 temp
.bitfield
.byte
= 0;
1553 temp
.bitfield
.word
= 0;
1554 temp
.bitfield
.dword
= 0;
1555 temp
.bitfield
.fword
= 0;
1556 temp
.bitfield
.qword
= 0;
1557 temp
.bitfield
.tbyte
= 0;
1558 temp
.bitfield
.xmmword
= 0;
1559 temp
.bitfield
.ymmword
= 0;
1560 if (operand_type_all_zero (&temp
))
1563 return (given
.bitfield
.baseindex
== overlap
.bitfield
.baseindex
1564 && given
.bitfield
.jumpabsolute
== overlap
.bitfield
.jumpabsolute
);
1567 /* If given types g0 and g1 are registers they must be of the same type
1568 unless the expected operand type register overlap is null.
1569 Note that Acc in a template matches every size of reg. */
1572 operand_type_register_match (i386_operand_type m0
,
1573 i386_operand_type g0
,
1574 i386_operand_type t0
,
1575 i386_operand_type m1
,
1576 i386_operand_type g1
,
1577 i386_operand_type t1
)
1579 if (!operand_type_check (g0
, reg
))
1582 if (!operand_type_check (g1
, reg
))
1585 if (g0
.bitfield
.reg8
== g1
.bitfield
.reg8
1586 && g0
.bitfield
.reg16
== g1
.bitfield
.reg16
1587 && g0
.bitfield
.reg32
== g1
.bitfield
.reg32
1588 && g0
.bitfield
.reg64
== g1
.bitfield
.reg64
)
1591 if (m0
.bitfield
.acc
)
1593 t0
.bitfield
.reg8
= 1;
1594 t0
.bitfield
.reg16
= 1;
1595 t0
.bitfield
.reg32
= 1;
1596 t0
.bitfield
.reg64
= 1;
1599 if (m1
.bitfield
.acc
)
1601 t1
.bitfield
.reg8
= 1;
1602 t1
.bitfield
.reg16
= 1;
1603 t1
.bitfield
.reg32
= 1;
1604 t1
.bitfield
.reg64
= 1;
1607 return (!(t0
.bitfield
.reg8
& t1
.bitfield
.reg8
)
1608 && !(t0
.bitfield
.reg16
& t1
.bitfield
.reg16
)
1609 && !(t0
.bitfield
.reg32
& t1
.bitfield
.reg32
)
1610 && !(t0
.bitfield
.reg64
& t1
.bitfield
.reg64
));
1613 static INLINE
unsigned int
1614 mode_from_disp_size (i386_operand_type t
)
1616 if (t
.bitfield
.disp8
)
1618 else if (t
.bitfield
.disp16
1619 || t
.bitfield
.disp32
1620 || t
.bitfield
.disp32s
)
1627 fits_in_signed_byte (offsetT num
)
1629 return (num
>= -128) && (num
<= 127);
1633 fits_in_unsigned_byte (offsetT num
)
1635 return (num
& 0xff) == num
;
1639 fits_in_unsigned_word (offsetT num
)
1641 return (num
& 0xffff) == num
;
1645 fits_in_signed_word (offsetT num
)
1647 return (-32768 <= num
) && (num
<= 32767);
1651 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED
)
1656 return (!(((offsetT
) -1 << 31) & num
)
1657 || (((offsetT
) -1 << 31) & num
) == ((offsetT
) -1 << 31));
1659 } /* fits_in_signed_long() */
1662 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED
)
1667 return (num
& (((offsetT
) 2 << 31) - 1)) == num
;
1669 } /* fits_in_unsigned_long() */
1672 fits_in_imm4 (offsetT num
)
1674 return (num
& 0xf) == num
;
1677 static i386_operand_type
1678 smallest_imm_type (offsetT num
)
1680 i386_operand_type t
;
1682 operand_type_set (&t
, 0);
1683 t
.bitfield
.imm64
= 1;
1685 if (cpu_arch_tune
!= PROCESSOR_I486
&& num
== 1)
1687 /* This code is disabled on the 486 because all the Imm1 forms
1688 in the opcode table are slower on the i486. They're the
1689 versions with the implicitly specified single-position
1690 displacement, which has another syntax if you really want to
1692 t
.bitfield
.imm1
= 1;
1693 t
.bitfield
.imm8
= 1;
1694 t
.bitfield
.imm8s
= 1;
1695 t
.bitfield
.imm16
= 1;
1696 t
.bitfield
.imm32
= 1;
1697 t
.bitfield
.imm32s
= 1;
1699 else if (fits_in_signed_byte (num
))
1701 t
.bitfield
.imm8
= 1;
1702 t
.bitfield
.imm8s
= 1;
1703 t
.bitfield
.imm16
= 1;
1704 t
.bitfield
.imm32
= 1;
1705 t
.bitfield
.imm32s
= 1;
1707 else if (fits_in_unsigned_byte (num
))
1709 t
.bitfield
.imm8
= 1;
1710 t
.bitfield
.imm16
= 1;
1711 t
.bitfield
.imm32
= 1;
1712 t
.bitfield
.imm32s
= 1;
1714 else if (fits_in_signed_word (num
) || fits_in_unsigned_word (num
))
1716 t
.bitfield
.imm16
= 1;
1717 t
.bitfield
.imm32
= 1;
1718 t
.bitfield
.imm32s
= 1;
1720 else if (fits_in_signed_long (num
))
1722 t
.bitfield
.imm32
= 1;
1723 t
.bitfield
.imm32s
= 1;
1725 else if (fits_in_unsigned_long (num
))
1726 t
.bitfield
.imm32
= 1;
1732 offset_in_range (offsetT val
, int size
)
1738 case 1: mask
= ((addressT
) 1 << 8) - 1; break;
1739 case 2: mask
= ((addressT
) 1 << 16) - 1; break;
1740 case 4: mask
= ((addressT
) 2 << 31) - 1; break;
1742 case 8: mask
= ((addressT
) 2 << 63) - 1; break;
1747 /* If BFD64, sign extend val. */
1748 if (!use_rela_relocations
)
1749 if ((val
& ~(((addressT
) 2 << 31) - 1)) == 0)
1750 val
= (val
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
1752 if ((val
& ~mask
) != 0 && (val
& ~mask
) != ~mask
)
1754 char buf1
[40], buf2
[40];
1756 sprint_value (buf1
, val
);
1757 sprint_value (buf2
, val
& mask
);
1758 as_warn (_("%s shortened to %s"), buf1
, buf2
);
1763 /* Returns 0 if attempting to add a prefix where one from the same
1764 class already exists, 1 if non rep/repne added, 2 if rep/repne
1767 add_prefix (unsigned int prefix
)
1772 if (prefix
>= REX_OPCODE
&& prefix
< REX_OPCODE
+ 16
1773 && flag_code
== CODE_64BIT
)
1775 if ((i
.prefix
[REX_PREFIX
] & prefix
& REX_W
)
1776 || ((i
.prefix
[REX_PREFIX
] & (REX_R
| REX_X
| REX_B
))
1777 && (prefix
& (REX_R
| REX_X
| REX_B
))))
1788 case CS_PREFIX_OPCODE
:
1789 case DS_PREFIX_OPCODE
:
1790 case ES_PREFIX_OPCODE
:
1791 case FS_PREFIX_OPCODE
:
1792 case GS_PREFIX_OPCODE
:
1793 case SS_PREFIX_OPCODE
:
1797 case REPNE_PREFIX_OPCODE
:
1798 case REPE_PREFIX_OPCODE
:
1801 case LOCK_PREFIX_OPCODE
:
1809 case ADDR_PREFIX_OPCODE
:
1813 case DATA_PREFIX_OPCODE
:
1817 if (i
.prefix
[q
] != 0)
1825 i
.prefix
[q
] |= prefix
;
1828 as_bad (_("same type of prefix used twice"));
1834 set_code_flag (int value
)
1837 if (flag_code
== CODE_64BIT
)
1839 cpu_arch_flags
.bitfield
.cpu64
= 1;
1840 cpu_arch_flags
.bitfield
.cpuno64
= 0;
1844 cpu_arch_flags
.bitfield
.cpu64
= 0;
1845 cpu_arch_flags
.bitfield
.cpuno64
= 1;
1847 if (value
== CODE_64BIT
&& !cpu_arch_flags
.bitfield
.cpulm
)
1849 as_bad (_("64bit mode not supported on this CPU."));
1851 if (value
== CODE_32BIT
&& !cpu_arch_flags
.bitfield
.cpui386
)
1853 as_bad (_("32bit mode not supported on this CPU."));
1855 stackop_size
= '\0';
1859 set_16bit_gcc_code_flag (int new_code_flag
)
1861 flag_code
= new_code_flag
;
1862 if (flag_code
!= CODE_16BIT
)
1864 cpu_arch_flags
.bitfield
.cpu64
= 0;
1865 cpu_arch_flags
.bitfield
.cpuno64
= 1;
1866 stackop_size
= LONG_MNEM_SUFFIX
;
1870 set_intel_syntax (int syntax_flag
)
1872 /* Find out if register prefixing is specified. */
1873 int ask_naked_reg
= 0;
1876 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
1878 char *string
= input_line_pointer
;
1879 int e
= get_symbol_end ();
1881 if (strcmp (string
, "prefix") == 0)
1883 else if (strcmp (string
, "noprefix") == 0)
1886 as_bad (_("bad argument to syntax directive."));
1887 *input_line_pointer
= e
;
1889 demand_empty_rest_of_line ();
1891 intel_syntax
= syntax_flag
;
1893 if (ask_naked_reg
== 0)
1894 allow_naked_reg
= (intel_syntax
1895 && (bfd_get_symbol_leading_char (stdoutput
) != '\0'));
1897 allow_naked_reg
= (ask_naked_reg
< 0);
1899 identifier_chars
['%'] = intel_syntax
&& allow_naked_reg
? '%' : 0;
1900 identifier_chars
['$'] = intel_syntax
? '$' : 0;
1901 register_prefix
= allow_naked_reg
? "" : "%";
1905 set_intel_mnemonic (int mnemonic_flag
)
1907 intel_mnemonic
= mnemonic_flag
;
1911 set_allow_index_reg (int flag
)
1913 allow_index_reg
= flag
;
1917 set_sse_check (int dummy ATTRIBUTE_UNUSED
)
1921 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
1923 char *string
= input_line_pointer
;
1924 int e
= get_symbol_end ();
1926 if (strcmp (string
, "none") == 0)
1927 sse_check
= sse_check_none
;
1928 else if (strcmp (string
, "warning") == 0)
1929 sse_check
= sse_check_warning
;
1930 else if (strcmp (string
, "error") == 0)
1931 sse_check
= sse_check_error
;
1933 as_bad (_("bad argument to sse_check directive."));
1934 *input_line_pointer
= e
;
1937 as_bad (_("missing argument for sse_check directive"));
1939 demand_empty_rest_of_line ();
1943 set_cpu_arch (int dummy ATTRIBUTE_UNUSED
)
1947 if (!is_end_of_line
[(unsigned char) *input_line_pointer
])
1949 char *string
= input_line_pointer
;
1950 int e
= get_symbol_end ();
1952 i386_cpu_flags flags
;
1954 for (i
= 0; i
< ARRAY_SIZE (cpu_arch
); i
++)
1956 if (strcmp (string
, cpu_arch
[i
].name
) == 0)
1960 cpu_arch_name
= cpu_arch
[i
].name
;
1961 cpu_sub_arch_name
= NULL
;
1962 cpu_arch_flags
= cpu_arch
[i
].flags
;
1963 if (flag_code
== CODE_64BIT
)
1965 cpu_arch_flags
.bitfield
.cpu64
= 1;
1966 cpu_arch_flags
.bitfield
.cpuno64
= 0;
1970 cpu_arch_flags
.bitfield
.cpu64
= 0;
1971 cpu_arch_flags
.bitfield
.cpuno64
= 1;
1973 cpu_arch_isa
= cpu_arch
[i
].type
;
1974 cpu_arch_isa_flags
= cpu_arch
[i
].flags
;
1975 if (!cpu_arch_tune_set
)
1977 cpu_arch_tune
= cpu_arch_isa
;
1978 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
1983 flags
= cpu_flags_or (cpu_arch_flags
,
1985 if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
1987 if (cpu_sub_arch_name
)
1989 char *name
= cpu_sub_arch_name
;
1990 cpu_sub_arch_name
= concat (name
,
1992 (const char *) NULL
);
1996 cpu_sub_arch_name
= xstrdup (cpu_arch
[i
].name
);
1997 cpu_arch_flags
= flags
;
1999 *input_line_pointer
= e
;
2000 demand_empty_rest_of_line ();
2004 if (i
>= ARRAY_SIZE (cpu_arch
))
2005 as_bad (_("no such architecture: `%s'"), string
);
2007 *input_line_pointer
= e
;
2010 as_bad (_("missing cpu architecture"));
2012 no_cond_jump_promotion
= 0;
2013 if (*input_line_pointer
== ','
2014 && !is_end_of_line
[(unsigned char) input_line_pointer
[1]])
2016 char *string
= ++input_line_pointer
;
2017 int e
= get_symbol_end ();
2019 if (strcmp (string
, "nojumps") == 0)
2020 no_cond_jump_promotion
= 1;
2021 else if (strcmp (string
, "jumps") == 0)
2024 as_bad (_("no such architecture modifier: `%s'"), string
);
2026 *input_line_pointer
= e
;
2029 demand_empty_rest_of_line ();
2035 if (!strcmp (default_arch
, "x86_64"))
2036 return bfd_mach_x86_64
;
2037 else if (!strcmp (default_arch
, "i386"))
2038 return bfd_mach_i386_i386
;
2040 as_fatal (_("Unknown architecture"));
2046 const char *hash_err
;
2048 /* Initialize op_hash hash table. */
2049 op_hash
= hash_new ();
2052 const template *optab
;
2053 templates
*core_optab
;
2055 /* Setup for loop. */
2057 core_optab
= (templates
*) xmalloc (sizeof (templates
));
2058 core_optab
->start
= optab
;
2063 if (optab
->name
== NULL
2064 || strcmp (optab
->name
, (optab
- 1)->name
) != 0)
2066 /* different name --> ship out current template list;
2067 add to hash table; & begin anew. */
2068 core_optab
->end
= optab
;
2069 hash_err
= hash_insert (op_hash
,
2071 (void *) core_optab
);
2074 as_fatal (_("Internal Error: Can't hash %s: %s"),
2078 if (optab
->name
== NULL
)
2080 core_optab
= (templates
*) xmalloc (sizeof (templates
));
2081 core_optab
->start
= optab
;
2086 /* Initialize reg_hash hash table. */
2087 reg_hash
= hash_new ();
2089 const reg_entry
*regtab
;
2090 unsigned int regtab_size
= i386_regtab_size
;
2092 for (regtab
= i386_regtab
; regtab_size
--; regtab
++)
2094 hash_err
= hash_insert (reg_hash
, regtab
->reg_name
, (void *) regtab
);
2096 as_fatal (_("Internal Error: Can't hash %s: %s"),
2102 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2107 for (c
= 0; c
< 256; c
++)
2112 mnemonic_chars
[c
] = c
;
2113 register_chars
[c
] = c
;
2114 operand_chars
[c
] = c
;
2116 else if (ISLOWER (c
))
2118 mnemonic_chars
[c
] = c
;
2119 register_chars
[c
] = c
;
2120 operand_chars
[c
] = c
;
2122 else if (ISUPPER (c
))
2124 mnemonic_chars
[c
] = TOLOWER (c
);
2125 register_chars
[c
] = mnemonic_chars
[c
];
2126 operand_chars
[c
] = c
;
2129 if (ISALPHA (c
) || ISDIGIT (c
))
2130 identifier_chars
[c
] = c
;
2133 identifier_chars
[c
] = c
;
2134 operand_chars
[c
] = c
;
2139 identifier_chars
['@'] = '@';
2142 identifier_chars
['?'] = '?';
2143 operand_chars
['?'] = '?';
2145 digit_chars
['-'] = '-';
2146 mnemonic_chars
['_'] = '_';
2147 mnemonic_chars
['-'] = '-';
2148 mnemonic_chars
['.'] = '.';
2149 identifier_chars
['_'] = '_';
2150 identifier_chars
['.'] = '.';
2152 for (p
= operand_special_chars
; *p
!= '\0'; p
++)
2153 operand_chars
[(unsigned char) *p
] = *p
;
2156 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2159 record_alignment (text_section
, 2);
2160 record_alignment (data_section
, 2);
2161 record_alignment (bss_section
, 2);
2165 if (flag_code
== CODE_64BIT
)
2167 x86_dwarf2_return_column
= 16;
2168 x86_cie_data_alignment
= -8;
2172 x86_dwarf2_return_column
= 8;
2173 x86_cie_data_alignment
= -4;
2178 i386_print_statistics (FILE *file
)
2180 hash_print_statistics (file
, "i386 opcode", op_hash
);
2181 hash_print_statistics (file
, "i386 register", reg_hash
);
2186 /* Debugging routines for md_assemble. */
2187 static void pte (template *);
2188 static void pt (i386_operand_type
);
2189 static void pe (expressionS
*);
2190 static void ps (symbolS
*);
2193 pi (char *line
, i386_insn
*x
)
2197 fprintf (stdout
, "%s: template ", line
);
2199 fprintf (stdout
, " address: base %s index %s scale %x\n",
2200 x
->base_reg
? x
->base_reg
->reg_name
: "none",
2201 x
->index_reg
? x
->index_reg
->reg_name
: "none",
2202 x
->log2_scale_factor
);
2203 fprintf (stdout
, " modrm: mode %x reg %x reg/mem %x\n",
2204 x
->rm
.mode
, x
->rm
.reg
, x
->rm
.regmem
);
2205 fprintf (stdout
, " sib: base %x index %x scale %x\n",
2206 x
->sib
.base
, x
->sib
.index
, x
->sib
.scale
);
2207 fprintf (stdout
, " rex: 64bit %x extX %x extY %x extZ %x\n",
2208 (x
->rex
& REX_W
) != 0,
2209 (x
->rex
& REX_R
) != 0,
2210 (x
->rex
& REX_X
) != 0,
2211 (x
->rex
& REX_B
) != 0);
2212 fprintf (stdout
, " drex: reg %d rex 0x%x\n",
2213 x
->drex
.reg
, x
->drex
.rex
);
2214 for (i
= 0; i
< x
->operands
; i
++)
2216 fprintf (stdout
, " #%d: ", i
+ 1);
2218 fprintf (stdout
, "\n");
2219 if (x
->types
[i
].bitfield
.reg8
2220 || x
->types
[i
].bitfield
.reg16
2221 || x
->types
[i
].bitfield
.reg32
2222 || x
->types
[i
].bitfield
.reg64
2223 || x
->types
[i
].bitfield
.regmmx
2224 || x
->types
[i
].bitfield
.regxmm
2225 || x
->types
[i
].bitfield
.regymm
2226 || x
->types
[i
].bitfield
.sreg2
2227 || x
->types
[i
].bitfield
.sreg3
2228 || x
->types
[i
].bitfield
.control
2229 || x
->types
[i
].bitfield
.debug
2230 || x
->types
[i
].bitfield
.test
)
2231 fprintf (stdout
, "%s\n", x
->op
[i
].regs
->reg_name
);
2232 if (operand_type_check (x
->types
[i
], imm
))
2234 if (operand_type_check (x
->types
[i
], disp
))
2235 pe (x
->op
[i
].disps
);
2243 fprintf (stdout
, " %d operands ", t
->operands
);
2244 fprintf (stdout
, "opcode %x ", t
->base_opcode
);
2245 if (t
->extension_opcode
!= None
)
2246 fprintf (stdout
, "ext %x ", t
->extension_opcode
);
2247 if (t
->opcode_modifier
.d
)
2248 fprintf (stdout
, "D");
2249 if (t
->opcode_modifier
.w
)
2250 fprintf (stdout
, "W");
2251 fprintf (stdout
, "\n");
2252 for (i
= 0; i
< t
->operands
; i
++)
2254 fprintf (stdout
, " #%d type ", i
+ 1);
2255 pt (t
->operand_types
[i
]);
2256 fprintf (stdout
, "\n");
2263 fprintf (stdout
, " operation %d\n", e
->X_op
);
2264 fprintf (stdout
, " add_number %ld (%lx)\n",
2265 (long) e
->X_add_number
, (long) e
->X_add_number
);
2266 if (e
->X_add_symbol
)
2268 fprintf (stdout
, " add_symbol ");
2269 ps (e
->X_add_symbol
);
2270 fprintf (stdout
, "\n");
2274 fprintf (stdout
, " op_symbol ");
2275 ps (e
->X_op_symbol
);
2276 fprintf (stdout
, "\n");
2283 fprintf (stdout
, "%s type %s%s",
2285 S_IS_EXTERNAL (s
) ? "EXTERNAL " : "",
2286 segment_name (S_GET_SEGMENT (s
)));
2289 static struct type_name
2291 i386_operand_type mask
;
2294 const type_names
[] =
2296 { OPERAND_TYPE_REG8
, "r8" },
2297 { OPERAND_TYPE_REG16
, "r16" },
2298 { OPERAND_TYPE_REG32
, "r32" },
2299 { OPERAND_TYPE_REG64
, "r64" },
2300 { OPERAND_TYPE_IMM8
, "i8" },
2301 { OPERAND_TYPE_IMM8
, "i8s" },
2302 { OPERAND_TYPE_IMM16
, "i16" },
2303 { OPERAND_TYPE_IMM32
, "i32" },
2304 { OPERAND_TYPE_IMM32S
, "i32s" },
2305 { OPERAND_TYPE_IMM64
, "i64" },
2306 { OPERAND_TYPE_IMM1
, "i1" },
2307 { OPERAND_TYPE_BASEINDEX
, "BaseIndex" },
2308 { OPERAND_TYPE_DISP8
, "d8" },
2309 { OPERAND_TYPE_DISP16
, "d16" },
2310 { OPERAND_TYPE_DISP32
, "d32" },
2311 { OPERAND_TYPE_DISP32S
, "d32s" },
2312 { OPERAND_TYPE_DISP64
, "d64" },
2313 { OPERAND_TYPE_INOUTPORTREG
, "InOutPortReg" },
2314 { OPERAND_TYPE_SHIFTCOUNT
, "ShiftCount" },
2315 { OPERAND_TYPE_CONTROL
, "control reg" },
2316 { OPERAND_TYPE_TEST
, "test reg" },
2317 { OPERAND_TYPE_DEBUG
, "debug reg" },
2318 { OPERAND_TYPE_FLOATREG
, "FReg" },
2319 { OPERAND_TYPE_FLOATACC
, "FAcc" },
2320 { OPERAND_TYPE_SREG2
, "SReg2" },
2321 { OPERAND_TYPE_SREG3
, "SReg3" },
2322 { OPERAND_TYPE_ACC
, "Acc" },
2323 { OPERAND_TYPE_JUMPABSOLUTE
, "Jump Absolute" },
2324 { OPERAND_TYPE_REGMMX
, "rMMX" },
2325 { OPERAND_TYPE_REGXMM
, "rXMM" },
2326 { OPERAND_TYPE_ESSEG
, "es" },
2327 { OPERAND_TYPE_VEX_IMM4
, "VEX i4" },
2331 pt (i386_operand_type t
)
2334 i386_operand_type a
;
2336 for (j
= 0; j
< ARRAY_SIZE (type_names
); j
++)
2338 a
= operand_type_and (t
, type_names
[j
].mask
);
2339 if (!UINTS_ALL_ZERO (a
))
2340 fprintf (stdout
, "%s, ", type_names
[j
].name
);
2345 #endif /* DEBUG386 */
2347 static bfd_reloc_code_real_type
2348 reloc (unsigned int size
,
2351 bfd_reloc_code_real_type other
)
2353 if (other
!= NO_RELOC
)
2355 reloc_howto_type
*reloc
;
2360 case BFD_RELOC_X86_64_GOT32
:
2361 return BFD_RELOC_X86_64_GOT64
;
2363 case BFD_RELOC_X86_64_PLTOFF64
:
2364 return BFD_RELOC_X86_64_PLTOFF64
;
2366 case BFD_RELOC_X86_64_GOTPC32
:
2367 other
= BFD_RELOC_X86_64_GOTPC64
;
2369 case BFD_RELOC_X86_64_GOTPCREL
:
2370 other
= BFD_RELOC_X86_64_GOTPCREL64
;
2372 case BFD_RELOC_X86_64_TPOFF32
:
2373 other
= BFD_RELOC_X86_64_TPOFF64
;
2375 case BFD_RELOC_X86_64_DTPOFF32
:
2376 other
= BFD_RELOC_X86_64_DTPOFF64
;
2382 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2383 if (size
== 4 && flag_code
!= CODE_64BIT
)
2386 reloc
= bfd_reloc_type_lookup (stdoutput
, other
);
2388 as_bad (_("unknown relocation (%u)"), other
);
2389 else if (size
!= bfd_get_reloc_size (reloc
))
2390 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2391 bfd_get_reloc_size (reloc
),
2393 else if (pcrel
&& !reloc
->pc_relative
)
2394 as_bad (_("non-pc-relative relocation for pc-relative field"));
2395 else if ((reloc
->complain_on_overflow
== complain_overflow_signed
2397 || (reloc
->complain_on_overflow
== complain_overflow_unsigned
2399 as_bad (_("relocated field and relocation type differ in signedness"));
2408 as_bad (_("there are no unsigned pc-relative relocations"));
2411 case 1: return BFD_RELOC_8_PCREL
;
2412 case 2: return BFD_RELOC_16_PCREL
;
2413 case 4: return BFD_RELOC_32_PCREL
;
2414 case 8: return BFD_RELOC_64_PCREL
;
2416 as_bad (_("cannot do %u byte pc-relative relocation"), size
);
2423 case 4: return BFD_RELOC_X86_64_32S
;
2428 case 1: return BFD_RELOC_8
;
2429 case 2: return BFD_RELOC_16
;
2430 case 4: return BFD_RELOC_32
;
2431 case 8: return BFD_RELOC_64
;
2433 as_bad (_("cannot do %s %u byte relocation"),
2434 sign
> 0 ? "signed" : "unsigned", size
);
2438 return BFD_RELOC_NONE
;
2441 /* Here we decide which fixups can be adjusted to make them relative to
2442 the beginning of the section instead of the symbol. Basically we need
2443 to make sure that the dynamic relocations are done correctly, so in
2444 some cases we force the original symbol to be used. */
2447 tc_i386_fix_adjustable (fixS
*fixP ATTRIBUTE_UNUSED
)
2449 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2453 /* Don't adjust pc-relative references to merge sections in 64-bit
2455 if (use_rela_relocations
2456 && (S_GET_SEGMENT (fixP
->fx_addsy
)->flags
& SEC_MERGE
) != 0
2460 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2461 and changed later by validate_fix. */
2462 if (GOT_symbol
&& fixP
->fx_subsy
== GOT_symbol
2463 && fixP
->fx_r_type
== BFD_RELOC_32_PCREL
)
2466 /* adjust_reloc_syms doesn't know about the GOT. */
2467 if (fixP
->fx_r_type
== BFD_RELOC_386_GOTOFF
2468 || fixP
->fx_r_type
== BFD_RELOC_386_PLT32
2469 || fixP
->fx_r_type
== BFD_RELOC_386_GOT32
2470 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GD
2471 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDM
2472 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LDO_32
2473 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE_32
2474 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_IE
2475 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTIE
2476 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE_32
2477 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_LE
2478 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_GOTDESC
2479 || fixP
->fx_r_type
== BFD_RELOC_386_TLS_DESC_CALL
2480 || fixP
->fx_r_type
== BFD_RELOC_X86_64_PLT32
2481 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOT32
2482 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPCREL
2483 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSGD
2484 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSLD
2485 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF32
2486 || fixP
->fx_r_type
== BFD_RELOC_X86_64_DTPOFF64
2487 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTTPOFF
2488 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF32
2489 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TPOFF64
2490 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTOFF64
2491 || fixP
->fx_r_type
== BFD_RELOC_X86_64_GOTPC32_TLSDESC
2492 || fixP
->fx_r_type
== BFD_RELOC_X86_64_TLSDESC_CALL
2493 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
2494 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
2501 intel_float_operand (const char *mnemonic
)
2503 /* Note that the value returned is meaningful only for opcodes with (memory)
2504 operands, hence the code here is free to improperly handle opcodes that
2505 have no operands (for better performance and smaller code). */
2507 if (mnemonic
[0] != 'f')
2508 return 0; /* non-math */
2510 switch (mnemonic
[1])
2512 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2513 the fs segment override prefix not currently handled because no
2514 call path can make opcodes without operands get here */
2516 return 2 /* integer op */;
2518 if (mnemonic
[2] == 'd' && (mnemonic
[3] == 'c' || mnemonic
[3] == 'e'))
2519 return 3; /* fldcw/fldenv */
2522 if (mnemonic
[2] != 'o' /* fnop */)
2523 return 3; /* non-waiting control op */
2526 if (mnemonic
[2] == 's')
2527 return 3; /* frstor/frstpm */
2530 if (mnemonic
[2] == 'a')
2531 return 3; /* fsave */
2532 if (mnemonic
[2] == 't')
2534 switch (mnemonic
[3])
2536 case 'c': /* fstcw */
2537 case 'd': /* fstdw */
2538 case 'e': /* fstenv */
2539 case 's': /* fsts[gw] */
2545 if (mnemonic
[2] == 'r' || mnemonic
[2] == 's')
2546 return 0; /* fxsave/fxrstor are not really math ops */
2553 /* Build the VEX prefix. */
2556 build_vex_prefix (const template *t
)
2558 unsigned int register_specifier
;
2559 unsigned int implied_prefix
;
2560 unsigned int vector_length
;
2562 /* Check register specifier. */
2563 if (i
.vex
.register_specifier
)
2565 register_specifier
= i
.vex
.register_specifier
->reg_num
;
2566 if ((i
.vex
.register_specifier
->reg_flags
& RegRex
))
2567 register_specifier
+= 8;
2568 register_specifier
= ~register_specifier
& 0xf;
2571 register_specifier
= 0xf;
2573 /* Use 2-byte VEX prefix by swappping destination and source
2576 && i
.operands
== i
.reg_operands
2577 && i
.tm
.opcode_modifier
.vex0f
2578 && i
.tm
.opcode_modifier
.s
2581 unsigned int xchg
= i
.operands
- 1;
2582 union i386_op temp_op
;
2583 i386_operand_type temp_type
;
2585 temp_type
= i
.types
[xchg
];
2586 i
.types
[xchg
] = i
.types
[0];
2587 i
.types
[0] = temp_type
;
2588 temp_op
= i
.op
[xchg
];
2589 i
.op
[xchg
] = i
.op
[0];
2592 assert (i
.rm
.mode
== 3);
2596 i
.rm
.regmem
= i
.rm
.reg
;
2599 /* Use the next insn. */
2603 vector_length
= i
.tm
.opcode_modifier
.vex256
? 1 : 0;
2605 switch ((i
.tm
.base_opcode
>> 8) & 0xff)
2610 case DATA_PREFIX_OPCODE
:
2613 case REPE_PREFIX_OPCODE
:
2616 case REPNE_PREFIX_OPCODE
:
2623 /* Use 2-byte VEX prefix if possible. */
2624 if (i
.tm
.opcode_modifier
.vex0f
2625 && (i
.rex
& (REX_W
| REX_X
| REX_B
)) == 0)
2627 /* 2-byte VEX prefix. */
2631 i
.vex
.bytes
[0] = 0xc5;
2633 /* Check the REX.R bit. */
2634 r
= (i
.rex
& REX_R
) ? 0 : 1;
2635 i
.vex
.bytes
[1] = (r
<< 7
2636 | register_specifier
<< 3
2637 | vector_length
<< 2
2642 /* 3-byte VEX prefix. */
2645 if (i
.tm
.opcode_modifier
.vex0f
)
2647 else if (i
.tm
.opcode_modifier
.vex0f38
)
2649 else if (i
.tm
.opcode_modifier
.vex0f3a
)
2655 i
.vex
.bytes
[0] = 0xc4;
2657 /* The high 3 bits of the second VEX byte are 1's compliment
2658 of RXB bits from REX. */
2659 i
.vex
.bytes
[1] = (~i
.rex
& 0x7) << 5 | m
;
2661 /* Check the REX.W bit. */
2662 w
= (i
.rex
& REX_W
) ? 1 : 0;
2663 if (i
.tm
.opcode_modifier
.vexw0
|| i
.tm
.opcode_modifier
.vexw1
)
2668 if (i
.tm
.opcode_modifier
.vexw1
)
2672 i
.vex
.bytes
[2] = (w
<< 7
2673 | register_specifier
<< 3
2674 | vector_length
<< 2
2680 process_immext (void)
2684 if (i
.tm
.cpu_flags
.bitfield
.cpusse3
&& i
.operands
> 0)
2686 /* SSE3 Instructions have the fixed operands with an opcode
2687 suffix which is coded in the same place as an 8-bit immediate
2688 field would be. Here we check those operands and remove them
2692 for (x
= 0; x
< i
.operands
; x
++)
2693 if (i
.op
[x
].regs
->reg_num
!= x
)
2694 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2695 register_prefix
, i
.op
[x
].regs
->reg_name
, x
+ 1,
2701 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
2702 which is coded in the same place as an 8-bit immediate field
2703 would be. Here we fake an 8-bit immediate operand from the
2704 opcode suffix stored in tm.extension_opcode.
2706 SSE5 and AVX instructions also use this encoding, for some of
2707 3 argument instructions. */
2709 assert (i
.imm_operands
== 0
2711 || (i
.tm
.cpu_flags
.bitfield
.cpusse5
2713 || (i
.tm
.opcode_modifier
.vex
2714 && i
.operands
<= 4)));
2716 exp
= &im_expressions
[i
.imm_operands
++];
2717 i
.op
[i
.operands
].imms
= exp
;
2718 i
.types
[i
.operands
] = imm8
;
2720 exp
->X_op
= O_constant
;
2721 exp
->X_add_number
= i
.tm
.extension_opcode
;
2722 i
.tm
.extension_opcode
= None
;
2725 /* This is the guts of the machine-dependent assembler. LINE points to a
2726 machine dependent instruction. This function is supposed to emit
2727 the frags/bytes it assembles to. */
2730 md_assemble (char *line
)
2733 char mnemonic
[MAX_MNEM_SIZE
];
2736 /* Initialize globals. */
2737 memset (&i
, '\0', sizeof (i
));
2738 for (j
= 0; j
< MAX_OPERANDS
; j
++)
2739 i
.reloc
[j
] = NO_RELOC
;
2740 memset (disp_expressions
, '\0', sizeof (disp_expressions
));
2741 memset (im_expressions
, '\0', sizeof (im_expressions
));
2742 save_stack_p
= save_stack
;
2744 /* First parse an instruction mnemonic & call i386_operand for the operands.
2745 We assume that the scrubber has arranged it so that line[0] is the valid
2746 start of a (possibly prefixed) mnemonic. */
2748 line
= parse_insn (line
, mnemonic
);
2752 line
= parse_operands (line
, mnemonic
);
2756 /* Now we've parsed the mnemonic into a set of templates, and have the
2757 operands at hand. */
2759 /* All intel opcodes have reversed operands except for "bound" and
2760 "enter". We also don't reverse intersegment "jmp" and "call"
2761 instructions with 2 immediate operands so that the immediate segment
2762 precedes the offset, as it does when in AT&T mode. */
2765 && (strcmp (mnemonic
, "bound") != 0)
2766 && (strcmp (mnemonic
, "invlpga") != 0)
2767 && !(operand_type_check (i
.types
[0], imm
)
2768 && operand_type_check (i
.types
[1], imm
)))
2771 /* The order of the immediates should be reversed
2772 for 2 immediates extrq and insertq instructions */
2773 if (i
.imm_operands
== 2
2774 && (strcmp (mnemonic
, "extrq") == 0
2775 || strcmp (mnemonic
, "insertq") == 0))
2776 swap_2_operands (0, 1);
2781 /* Don't optimize displacement for movabs since it only takes 64bit
2784 && (flag_code
!= CODE_64BIT
2785 || strcmp (mnemonic
, "movabs") != 0))
2788 /* Next, we find a template that matches the given insn,
2789 making sure the overlap of the given operands types is consistent
2790 with the template operand types. */
2792 if (!(t
= match_template ()))
2795 if (sse_check
!= sse_check_none
2796 && !i
.tm
.opcode_modifier
.noavx
2797 && (i
.tm
.cpu_flags
.bitfield
.cpusse
2798 || i
.tm
.cpu_flags
.bitfield
.cpusse2
2799 || i
.tm
.cpu_flags
.bitfield
.cpusse3
2800 || i
.tm
.cpu_flags
.bitfield
.cpussse3
2801 || i
.tm
.cpu_flags
.bitfield
.cpusse4_1
2802 || i
.tm
.cpu_flags
.bitfield
.cpusse4_2
))
2804 (sse_check
== sse_check_warning
2806 : as_bad
) (_("SSE instruction `%s' is used"), i
.tm
.name
);
2809 /* Zap movzx and movsx suffix. The suffix has been set from
2810 "word ptr" or "byte ptr" on the source operand in Intel syntax
2811 or extracted from mnemonic in AT&T syntax. But we'll use
2812 the destination register to choose the suffix for encoding. */
2813 if ((i
.tm
.base_opcode
& ~9) == 0x0fb6)
2815 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
2816 there is no suffix, the default will be byte extension. */
2817 if (i
.reg_operands
!= 2
2820 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
2825 if (i
.tm
.opcode_modifier
.fwait
)
2826 if (!add_prefix (FWAIT_OPCODE
))
2829 /* Check string instruction segment overrides. */
2830 if (i
.tm
.opcode_modifier
.isstring
&& i
.mem_operands
!= 0)
2832 if (!check_string ())
2834 i
.disp_operands
= 0;
2837 if (!process_suffix ())
2840 /* Make still unresolved immediate matches conform to size of immediate
2841 given in i.suffix. */
2842 if (!finalize_imm ())
2845 if (i
.types
[0].bitfield
.imm1
)
2846 i
.imm_operands
= 0; /* kludge for shift insns. */
2848 for (j
= 0; j
< 3; j
++)
2849 if (i
.types
[j
].bitfield
.inoutportreg
2850 || i
.types
[j
].bitfield
.shiftcount
2851 || i
.types
[j
].bitfield
.acc
2852 || i
.types
[j
].bitfield
.floatacc
)
2855 /* ImmExt should be processed after SSE2AVX. */
2856 if (!i
.tm
.opcode_modifier
.sse2avx
2857 && i
.tm
.opcode_modifier
.immext
)
2860 /* For insns with operands there are more diddles to do to the opcode. */
2863 if (!process_operands ())
2866 else if (!quiet_warnings
&& i
.tm
.opcode_modifier
.ugh
)
2868 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2869 as_warn (_("translating to `%sp'"), i
.tm
.name
);
2872 if (i
.tm
.opcode_modifier
.vex
)
2873 build_vex_prefix (t
);
2875 /* Handle conversion of 'int $3' --> special int3 insn. */
2876 if (i
.tm
.base_opcode
== INT_OPCODE
&& i
.op
[0].imms
->X_add_number
== 3)
2878 i
.tm
.base_opcode
= INT3_OPCODE
;
2882 if ((i
.tm
.opcode_modifier
.jump
2883 || i
.tm
.opcode_modifier
.jumpbyte
2884 || i
.tm
.opcode_modifier
.jumpdword
)
2885 && i
.op
[0].disps
->X_op
== O_constant
)
2887 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2888 the absolute address given by the constant. Since ix86 jumps and
2889 calls are pc relative, we need to generate a reloc. */
2890 i
.op
[0].disps
->X_add_symbol
= &abs_symbol
;
2891 i
.op
[0].disps
->X_op
= O_symbol
;
2894 if (i
.tm
.opcode_modifier
.rex64
)
2897 /* For 8 bit registers we need an empty rex prefix. Also if the
2898 instruction already has a prefix, we need to convert old
2899 registers to new ones. */
2901 if ((i
.types
[0].bitfield
.reg8
2902 && (i
.op
[0].regs
->reg_flags
& RegRex64
) != 0)
2903 || (i
.types
[1].bitfield
.reg8
2904 && (i
.op
[1].regs
->reg_flags
& RegRex64
) != 0)
2905 || ((i
.types
[0].bitfield
.reg8
2906 || i
.types
[1].bitfield
.reg8
)
2911 i
.rex
|= REX_OPCODE
;
2912 for (x
= 0; x
< 2; x
++)
2914 /* Look for 8 bit operand that uses old registers. */
2915 if (i
.types
[x
].bitfield
.reg8
2916 && (i
.op
[x
].regs
->reg_flags
& RegRex64
) == 0)
2918 /* In case it is "hi" register, give up. */
2919 if (i
.op
[x
].regs
->reg_num
> 3)
2920 as_bad (_("can't encode register '%s%s' in an "
2921 "instruction requiring REX prefix."),
2922 register_prefix
, i
.op
[x
].regs
->reg_name
);
2924 /* Otherwise it is equivalent to the extended register.
2925 Since the encoding doesn't change this is merely
2926 cosmetic cleanup for debug output. */
2928 i
.op
[x
].regs
= i
.op
[x
].regs
+ 8;
2933 /* If the instruction has the DREX attribute (aka SSE5), don't emit a
2935 if (i
.tm
.opcode_modifier
.drex
|| i
.tm
.opcode_modifier
.drexc
)
2940 else if (i
.rex
!= 0)
2941 add_prefix (REX_OPCODE
| i
.rex
);
2943 /* We are ready to output the insn. */
2948 parse_insn (char *line
, char *mnemonic
)
2951 char *token_start
= l
;
2957 /* Non-zero if we found a prefix only acceptable with string insns. */
2958 const char *expecting_string_instruction
= NULL
;
2963 while ((*mnem_p
= mnemonic_chars
[(unsigned char) *l
]) != 0)
2968 if (mnem_p
>= mnemonic
+ MAX_MNEM_SIZE
)
2970 as_bad (_("no such instruction: `%s'"), token_start
);
2975 if (!is_space_char (*l
)
2976 && *l
!= END_OF_INSN
2978 || (*l
!= PREFIX_SEPARATOR
2981 as_bad (_("invalid character %s in mnemonic"),
2982 output_invalid (*l
));
2985 if (token_start
== l
)
2987 if (!intel_syntax
&& *l
== PREFIX_SEPARATOR
)
2988 as_bad (_("expecting prefix; got nothing"));
2990 as_bad (_("expecting mnemonic; got nothing"));
2994 /* Look up instruction (or prefix) via hash table. */
2995 current_templates
= hash_find (op_hash
, mnemonic
);
2997 if (*l
!= END_OF_INSN
2998 && (!is_space_char (*l
) || l
[1] != END_OF_INSN
)
2999 && current_templates
3000 && current_templates
->start
->opcode_modifier
.isprefix
)
3002 if (!cpu_flags_check_cpu64 (current_templates
->start
->cpu_flags
))
3004 as_bad ((flag_code
!= CODE_64BIT
3005 ? _("`%s' is only supported in 64-bit mode")
3006 : _("`%s' is not supported in 64-bit mode")),
3007 current_templates
->start
->name
);
3010 /* If we are in 16-bit mode, do not allow addr16 or data16.
3011 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3012 if ((current_templates
->start
->opcode_modifier
.size16
3013 || current_templates
->start
->opcode_modifier
.size32
)
3014 && flag_code
!= CODE_64BIT
3015 && (current_templates
->start
->opcode_modifier
.size32
3016 ^ (flag_code
== CODE_16BIT
)))
3018 as_bad (_("redundant %s prefix"),
3019 current_templates
->start
->name
);
3022 /* Add prefix, checking for repeated prefixes. */
3023 switch (add_prefix (current_templates
->start
->base_opcode
))
3028 expecting_string_instruction
= current_templates
->start
->name
;
3031 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3038 if (!current_templates
)
3040 /* Check if we should swap operand in encoding. */
3041 if (mnem_p
- 2 == dot_p
&& dot_p
[1] == 's')
3047 current_templates
= hash_find (op_hash
, mnemonic
);
3050 if (!current_templates
)
3053 /* See if we can get a match by trimming off a suffix. */
3056 case WORD_MNEM_SUFFIX
:
3057 if (intel_syntax
&& (intel_float_operand (mnemonic
) & 2))
3058 i
.suffix
= SHORT_MNEM_SUFFIX
;
3060 case BYTE_MNEM_SUFFIX
:
3061 case QWORD_MNEM_SUFFIX
:
3062 i
.suffix
= mnem_p
[-1];
3064 current_templates
= hash_find (op_hash
, mnemonic
);
3066 case SHORT_MNEM_SUFFIX
:
3067 case LONG_MNEM_SUFFIX
:
3070 i
.suffix
= mnem_p
[-1];
3072 current_templates
= hash_find (op_hash
, mnemonic
);
3080 if (intel_float_operand (mnemonic
) == 1)
3081 i
.suffix
= SHORT_MNEM_SUFFIX
;
3083 i
.suffix
= LONG_MNEM_SUFFIX
;
3085 current_templates
= hash_find (op_hash
, mnemonic
);
3089 if (!current_templates
)
3091 as_bad (_("no such instruction: `%s'"), token_start
);
3096 if (current_templates
->start
->opcode_modifier
.jump
3097 || current_templates
->start
->opcode_modifier
.jumpbyte
)
3099 /* Check for a branch hint. We allow ",pt" and ",pn" for
3100 predict taken and predict not taken respectively.
3101 I'm not sure that branch hints actually do anything on loop
3102 and jcxz insns (JumpByte) for current Pentium4 chips. They
3103 may work in the future and it doesn't hurt to accept them
3105 if (l
[0] == ',' && l
[1] == 'p')
3109 if (!add_prefix (DS_PREFIX_OPCODE
))
3113 else if (l
[2] == 'n')
3115 if (!add_prefix (CS_PREFIX_OPCODE
))
3121 /* Any other comma loses. */
3124 as_bad (_("invalid character %s in mnemonic"),
3125 output_invalid (*l
));
3129 /* Check if instruction is supported on specified architecture. */
3131 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
3133 supported
|= cpu_flags_match (t
);
3134 if (supported
== CPU_FLAGS_PERFECT_MATCH
)
3138 if (!(supported
& CPU_FLAGS_64BIT_MATCH
))
3140 as_bad (flag_code
== CODE_64BIT
3141 ? _("`%s' is not supported in 64-bit mode")
3142 : _("`%s' is only supported in 64-bit mode"),
3143 current_templates
->start
->name
);
3146 if (supported
!= CPU_FLAGS_PERFECT_MATCH
)
3148 as_bad (_("`%s' is not supported on `%s%s'"),
3149 current_templates
->start
->name
, cpu_arch_name
,
3150 cpu_sub_arch_name
? cpu_sub_arch_name
: "");
3155 if (!cpu_arch_flags
.bitfield
.cpui386
3156 && (flag_code
!= CODE_16BIT
))
3158 as_warn (_("use .code16 to ensure correct addressing mode"));
3161 /* Check for rep/repne without a string instruction. */
3162 if (expecting_string_instruction
)
3164 static templates override
;
3166 for (t
= current_templates
->start
; t
< current_templates
->end
; ++t
)
3167 if (t
->opcode_modifier
.isstring
)
3169 if (t
>= current_templates
->end
)
3171 as_bad (_("expecting string instruction after `%s'"),
3172 expecting_string_instruction
);
3175 for (override
.start
= t
; t
< current_templates
->end
; ++t
)
3176 if (!t
->opcode_modifier
.isstring
)
3179 current_templates
= &override
;
3186 parse_operands (char *l
, const char *mnemonic
)
3190 /* 1 if operand is pending after ','. */
3191 unsigned int expecting_operand
= 0;
3193 /* Non-zero if operand parens not balanced. */
3194 unsigned int paren_not_balanced
;
3196 while (*l
!= END_OF_INSN
)
3198 /* Skip optional white space before operand. */
3199 if (is_space_char (*l
))
3201 if (!is_operand_char (*l
) && *l
!= END_OF_INSN
)
3203 as_bad (_("invalid character %s before operand %d"),
3204 output_invalid (*l
),
3208 token_start
= l
; /* after white space */
3209 paren_not_balanced
= 0;
3210 while (paren_not_balanced
|| *l
!= ',')
3212 if (*l
== END_OF_INSN
)
3214 if (paren_not_balanced
)
3217 as_bad (_("unbalanced parenthesis in operand %d."),
3220 as_bad (_("unbalanced brackets in operand %d."),
3225 break; /* we are done */
3227 else if (!is_operand_char (*l
) && !is_space_char (*l
))
3229 as_bad (_("invalid character %s in operand %d"),
3230 output_invalid (*l
),
3237 ++paren_not_balanced
;
3239 --paren_not_balanced
;
3244 ++paren_not_balanced
;
3246 --paren_not_balanced
;
3250 if (l
!= token_start
)
3251 { /* Yes, we've read in another operand. */
3252 unsigned int operand_ok
;
3253 this_operand
= i
.operands
++;
3254 i
.types
[this_operand
].bitfield
.unspecified
= 1;
3255 if (i
.operands
> MAX_OPERANDS
)
3257 as_bad (_("spurious operands; (%d operands/instruction max)"),
3261 /* Now parse operand adding info to 'i' as we go along. */
3262 END_STRING_AND_SAVE (l
);
3266 i386_intel_operand (token_start
,
3267 intel_float_operand (mnemonic
));
3269 operand_ok
= i386_att_operand (token_start
);
3271 RESTORE_END_STRING (l
);
3277 if (expecting_operand
)
3279 expecting_operand_after_comma
:
3280 as_bad (_("expecting operand after ','; got nothing"));
3285 as_bad (_("expecting operand before ','; got nothing"));
3290 /* Now *l must be either ',' or END_OF_INSN. */
3293 if (*++l
== END_OF_INSN
)
3295 /* Just skip it, if it's \n complain. */
3296 goto expecting_operand_after_comma
;
3298 expecting_operand
= 1;
3305 swap_2_operands (int xchg1
, int xchg2
)
3307 union i386_op temp_op
;
3308 i386_operand_type temp_type
;
3309 enum bfd_reloc_code_real temp_reloc
;
3311 temp_type
= i
.types
[xchg2
];
3312 i
.types
[xchg2
] = i
.types
[xchg1
];
3313 i
.types
[xchg1
] = temp_type
;
3314 temp_op
= i
.op
[xchg2
];
3315 i
.op
[xchg2
] = i
.op
[xchg1
];
3316 i
.op
[xchg1
] = temp_op
;
3317 temp_reloc
= i
.reloc
[xchg2
];
3318 i
.reloc
[xchg2
] = i
.reloc
[xchg1
];
3319 i
.reloc
[xchg1
] = temp_reloc
;
3323 swap_operands (void)
3329 swap_2_operands (1, i
.operands
- 2);
3332 swap_2_operands (0, i
.operands
- 1);
3338 if (i
.mem_operands
== 2)
3340 const seg_entry
*temp_seg
;
3341 temp_seg
= i
.seg
[0];
3342 i
.seg
[0] = i
.seg
[1];
3343 i
.seg
[1] = temp_seg
;
3347 /* Try to ensure constant immediates are represented in the smallest
3352 char guess_suffix
= 0;
3356 guess_suffix
= i
.suffix
;
3357 else if (i
.reg_operands
)
3359 /* Figure out a suffix from the last register operand specified.
3360 We can't do this properly yet, ie. excluding InOutPortReg,
3361 but the following works for instructions with immediates.
3362 In any case, we can't set i.suffix yet. */
3363 for (op
= i
.operands
; --op
>= 0;)
3364 if (i
.types
[op
].bitfield
.reg8
)
3366 guess_suffix
= BYTE_MNEM_SUFFIX
;
3369 else if (i
.types
[op
].bitfield
.reg16
)
3371 guess_suffix
= WORD_MNEM_SUFFIX
;
3374 else if (i
.types
[op
].bitfield
.reg32
)
3376 guess_suffix
= LONG_MNEM_SUFFIX
;
3379 else if (i
.types
[op
].bitfield
.reg64
)
3381 guess_suffix
= QWORD_MNEM_SUFFIX
;
3385 else if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
3386 guess_suffix
= WORD_MNEM_SUFFIX
;
3388 for (op
= i
.operands
; --op
>= 0;)
3389 if (operand_type_check (i
.types
[op
], imm
))
3391 switch (i
.op
[op
].imms
->X_op
)
3394 /* If a suffix is given, this operand may be shortened. */
3395 switch (guess_suffix
)
3397 case LONG_MNEM_SUFFIX
:
3398 i
.types
[op
].bitfield
.imm32
= 1;
3399 i
.types
[op
].bitfield
.imm64
= 1;
3401 case WORD_MNEM_SUFFIX
:
3402 i
.types
[op
].bitfield
.imm16
= 1;
3403 i
.types
[op
].bitfield
.imm32
= 1;
3404 i
.types
[op
].bitfield
.imm32s
= 1;
3405 i
.types
[op
].bitfield
.imm64
= 1;
3407 case BYTE_MNEM_SUFFIX
:
3408 i
.types
[op
].bitfield
.imm8
= 1;
3409 i
.types
[op
].bitfield
.imm8s
= 1;
3410 i
.types
[op
].bitfield
.imm16
= 1;
3411 i
.types
[op
].bitfield
.imm32
= 1;
3412 i
.types
[op
].bitfield
.imm32s
= 1;
3413 i
.types
[op
].bitfield
.imm64
= 1;
3417 /* If this operand is at most 16 bits, convert it
3418 to a signed 16 bit number before trying to see
3419 whether it will fit in an even smaller size.
3420 This allows a 16-bit operand such as $0xffe0 to
3421 be recognised as within Imm8S range. */
3422 if ((i
.types
[op
].bitfield
.imm16
)
3423 && (i
.op
[op
].imms
->X_add_number
& ~(offsetT
) 0xffff) == 0)
3425 i
.op
[op
].imms
->X_add_number
=
3426 (((i
.op
[op
].imms
->X_add_number
& 0xffff) ^ 0x8000) - 0x8000);
3428 if ((i
.types
[op
].bitfield
.imm32
)
3429 && ((i
.op
[op
].imms
->X_add_number
& ~(((offsetT
) 2 << 31) - 1))
3432 i
.op
[op
].imms
->X_add_number
= ((i
.op
[op
].imms
->X_add_number
3433 ^ ((offsetT
) 1 << 31))
3434 - ((offsetT
) 1 << 31));
3437 = operand_type_or (i
.types
[op
],
3438 smallest_imm_type (i
.op
[op
].imms
->X_add_number
));
3440 /* We must avoid matching of Imm32 templates when 64bit
3441 only immediate is available. */
3442 if (guess_suffix
== QWORD_MNEM_SUFFIX
)
3443 i
.types
[op
].bitfield
.imm32
= 0;
3450 /* Symbols and expressions. */
3452 /* Convert symbolic operand to proper sizes for matching, but don't
3453 prevent matching a set of insns that only supports sizes other
3454 than those matching the insn suffix. */
3456 i386_operand_type mask
, allowed
;
3459 operand_type_set (&mask
, 0);
3460 operand_type_set (&allowed
, 0);
3462 for (t
= current_templates
->start
;
3463 t
< current_templates
->end
;
3465 allowed
= operand_type_or (allowed
,
3466 t
->operand_types
[op
]);
3467 switch (guess_suffix
)
3469 case QWORD_MNEM_SUFFIX
:
3470 mask
.bitfield
.imm64
= 1;
3471 mask
.bitfield
.imm32s
= 1;
3473 case LONG_MNEM_SUFFIX
:
3474 mask
.bitfield
.imm32
= 1;
3476 case WORD_MNEM_SUFFIX
:
3477 mask
.bitfield
.imm16
= 1;
3479 case BYTE_MNEM_SUFFIX
:
3480 mask
.bitfield
.imm8
= 1;
3485 allowed
= operand_type_and (mask
, allowed
);
3486 if (!operand_type_all_zero (&allowed
))
3487 i
.types
[op
] = operand_type_and (i
.types
[op
], mask
);
3494 /* Try to use the smallest displacement type too. */
3496 optimize_disp (void)
3500 for (op
= i
.operands
; --op
>= 0;)
3501 if (operand_type_check (i
.types
[op
], disp
))
3503 if (i
.op
[op
].disps
->X_op
== O_constant
)
3505 offsetT disp
= i
.op
[op
].disps
->X_add_number
;
3507 if (i
.types
[op
].bitfield
.disp16
3508 && (disp
& ~(offsetT
) 0xffff) == 0)
3510 /* If this operand is at most 16 bits, convert
3511 to a signed 16 bit number and don't use 64bit
3513 disp
= (((disp
& 0xffff) ^ 0x8000) - 0x8000);
3514 i
.types
[op
].bitfield
.disp64
= 0;
3516 if (i
.types
[op
].bitfield
.disp32
3517 && (disp
& ~(((offsetT
) 2 << 31) - 1)) == 0)
3519 /* If this operand is at most 32 bits, convert
3520 to a signed 32 bit number and don't use 64bit
3522 disp
&= (((offsetT
) 2 << 31) - 1);
3523 disp
= (disp
^ ((offsetT
) 1 << 31)) - ((addressT
) 1 << 31);
3524 i
.types
[op
].bitfield
.disp64
= 0;
3526 if (!disp
&& i
.types
[op
].bitfield
.baseindex
)
3528 i
.types
[op
].bitfield
.disp8
= 0;
3529 i
.types
[op
].bitfield
.disp16
= 0;
3530 i
.types
[op
].bitfield
.disp32
= 0;
3531 i
.types
[op
].bitfield
.disp32s
= 0;
3532 i
.types
[op
].bitfield
.disp64
= 0;
3536 else if (flag_code
== CODE_64BIT
)
3538 if (fits_in_signed_long (disp
))
3540 i
.types
[op
].bitfield
.disp64
= 0;
3541 i
.types
[op
].bitfield
.disp32s
= 1;
3543 if (fits_in_unsigned_long (disp
))
3544 i
.types
[op
].bitfield
.disp32
= 1;
3546 if ((i
.types
[op
].bitfield
.disp32
3547 || i
.types
[op
].bitfield
.disp32s
3548 || i
.types
[op
].bitfield
.disp16
)
3549 && fits_in_signed_byte (disp
))
3550 i
.types
[op
].bitfield
.disp8
= 1;
3552 else if (i
.reloc
[op
] == BFD_RELOC_386_TLS_DESC_CALL
3553 || i
.reloc
[op
] == BFD_RELOC_X86_64_TLSDESC_CALL
)
3555 fix_new_exp (frag_now
, frag_more (0) - frag_now
->fr_literal
, 0,
3556 i
.op
[op
].disps
, 0, i
.reloc
[op
]);
3557 i
.types
[op
].bitfield
.disp8
= 0;
3558 i
.types
[op
].bitfield
.disp16
= 0;
3559 i
.types
[op
].bitfield
.disp32
= 0;
3560 i
.types
[op
].bitfield
.disp32s
= 0;
3561 i
.types
[op
].bitfield
.disp64
= 0;
3564 /* We only support 64bit displacement on constants. */
3565 i
.types
[op
].bitfield
.disp64
= 0;
3569 /* Check if operands are valid for the instrucrtion. Update VEX
3573 VEX_check_operands (const template *t
)
3575 if (!t
->opcode_modifier
.vex
)
3578 /* Only check VEX_Imm4, which must be the first operand. */
3579 if (t
->operand_types
[0].bitfield
.vex_imm4
)
3581 if (i
.op
[0].imms
->X_op
!= O_constant
3582 || !fits_in_imm4 (i
.op
[0].imms
->X_add_number
))
3585 /* Turn off Imm8 so that update_imm won't complain. */
3586 i
.types
[0] = vex_imm4
;
3592 static const template *
3593 match_template (void)
3595 /* Points to template once we've found it. */
3597 i386_operand_type overlap0
, overlap1
, overlap2
, overlap3
;
3598 i386_operand_type overlap4
;
3599 unsigned int found_reverse_match
;
3600 i386_opcode_modifier suffix_check
;
3601 i386_operand_type operand_types
[MAX_OPERANDS
];
3602 int addr_prefix_disp
;
3604 unsigned int found_cpu_match
;
3605 unsigned int check_register
;
3607 #if MAX_OPERANDS != 5
3608 # error "MAX_OPERANDS must be 5."
3611 found_reverse_match
= 0;
3612 addr_prefix_disp
= -1;
3614 memset (&suffix_check
, 0, sizeof (suffix_check
));
3615 if (i
.suffix
== BYTE_MNEM_SUFFIX
)
3616 suffix_check
.no_bsuf
= 1;
3617 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
3618 suffix_check
.no_wsuf
= 1;
3619 else if (i
.suffix
== SHORT_MNEM_SUFFIX
)
3620 suffix_check
.no_ssuf
= 1;
3621 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
3622 suffix_check
.no_lsuf
= 1;
3623 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
3624 suffix_check
.no_qsuf
= 1;
3625 else if (i
.suffix
== LONG_DOUBLE_MNEM_SUFFIX
)
3626 suffix_check
.no_ldsuf
= 1;
3628 for (t
= current_templates
->start
; t
< current_templates
->end
; t
++)
3630 addr_prefix_disp
= -1;
3632 /* Must have right number of operands. */
3633 if (i
.operands
!= t
->operands
)
3636 /* Check processor support. */
3637 found_cpu_match
= (cpu_flags_match (t
)
3638 == CPU_FLAGS_PERFECT_MATCH
);
3639 if (!found_cpu_match
)
3642 /* Check old gcc support. */
3643 if (!old_gcc
&& t
->opcode_modifier
.oldgcc
)
3646 /* Check AT&T mnemonic. */
3647 if (intel_mnemonic
&& t
->opcode_modifier
.attmnemonic
)
3650 /* Check AT&T syntax Intel syntax. */
3651 if ((intel_syntax
&& t
->opcode_modifier
.attsyntax
)
3652 || (!intel_syntax
&& t
->opcode_modifier
.intelsyntax
))
3655 /* Check the suffix, except for some instructions in intel mode. */
3656 if ((!intel_syntax
|| !t
->opcode_modifier
.ignoresize
)
3657 && ((t
->opcode_modifier
.no_bsuf
&& suffix_check
.no_bsuf
)
3658 || (t
->opcode_modifier
.no_wsuf
&& suffix_check
.no_wsuf
)
3659 || (t
->opcode_modifier
.no_lsuf
&& suffix_check
.no_lsuf
)
3660 || (t
->opcode_modifier
.no_ssuf
&& suffix_check
.no_ssuf
)
3661 || (t
->opcode_modifier
.no_qsuf
&& suffix_check
.no_qsuf
)
3662 || (t
->opcode_modifier
.no_ldsuf
&& suffix_check
.no_ldsuf
)))
3665 if (!operand_size_match (t
))
3668 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3669 operand_types
[j
] = t
->operand_types
[j
];
3671 /* In general, don't allow 64-bit operands in 32-bit mode. */
3672 if (i
.suffix
== QWORD_MNEM_SUFFIX
3673 && flag_code
!= CODE_64BIT
3675 ? (!t
->opcode_modifier
.ignoresize
3676 && !intel_float_operand (t
->name
))
3677 : intel_float_operand (t
->name
) != 2)
3678 && ((!operand_types
[0].bitfield
.regmmx
3679 && !operand_types
[0].bitfield
.regxmm
3680 && !operand_types
[0].bitfield
.regymm
)
3681 || (!operand_types
[t
->operands
> 1].bitfield
.regmmx
3682 && !!operand_types
[t
->operands
> 1].bitfield
.regxmm
3683 && !!operand_types
[t
->operands
> 1].bitfield
.regymm
))
3684 && (t
->base_opcode
!= 0x0fc7
3685 || t
->extension_opcode
!= 1 /* cmpxchg8b */))
3688 /* In general, don't allow 32-bit operands on pre-386. */
3689 else if (i
.suffix
== LONG_MNEM_SUFFIX
3690 && !cpu_arch_flags
.bitfield
.cpui386
3692 ? (!t
->opcode_modifier
.ignoresize
3693 && !intel_float_operand (t
->name
))
3694 : intel_float_operand (t
->name
) != 2)
3695 && ((!operand_types
[0].bitfield
.regmmx
3696 && !operand_types
[0].bitfield
.regxmm
)
3697 || (!operand_types
[t
->operands
> 1].bitfield
.regmmx
3698 && !!operand_types
[t
->operands
> 1].bitfield
.regxmm
)))
3701 /* Do not verify operands when there are none. */
3705 /* We've found a match; break out of loop. */
3709 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3710 into Disp32/Disp16/Disp32 operand. */
3711 if (i
.prefix
[ADDR_PREFIX
] != 0)
3713 /* There should be only one Disp operand. */
3717 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3719 if (operand_types
[j
].bitfield
.disp16
)
3721 addr_prefix_disp
= j
;
3722 operand_types
[j
].bitfield
.disp32
= 1;
3723 operand_types
[j
].bitfield
.disp16
= 0;
3729 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3731 if (operand_types
[j
].bitfield
.disp32
)
3733 addr_prefix_disp
= j
;
3734 operand_types
[j
].bitfield
.disp32
= 0;
3735 operand_types
[j
].bitfield
.disp16
= 1;
3741 for (j
= 0; j
< MAX_OPERANDS
; j
++)
3743 if (operand_types
[j
].bitfield
.disp64
)
3745 addr_prefix_disp
= j
;
3746 operand_types
[j
].bitfield
.disp64
= 0;
3747 operand_types
[j
].bitfield
.disp32
= 1;
3755 /* We check register size only if size of operands can be
3756 encoded the canonical way. */
3757 check_register
= t
->opcode_modifier
.w
;
3758 overlap0
= operand_type_and (i
.types
[0], operand_types
[0]);
3759 switch (t
->operands
)
3762 if (!operand_type_match (overlap0
, i
.types
[0]))
3766 /* xchg %eax, %eax is a special case. It is an aliase for nop
3767 only in 32bit mode and we can use opcode 0x90. In 64bit
3768 mode, we can't use 0x90 for xchg %eax, %eax since it should
3769 zero-extend %eax to %rax. */
3770 if (flag_code
== CODE_64BIT
3771 && t
->base_opcode
== 0x90
3772 && operand_type_equal (&i
.types
[0], &acc32
)
3773 && operand_type_equal (&i
.types
[1], &acc32
))
3777 /* If we swap operand in encoding, we either match
3778 the next one or reverse direction of operands. */
3779 if (t
->opcode_modifier
.s
)
3781 else if (t
->opcode_modifier
.d
)
3786 /* If we swap operand in encoding, we match the next one. */
3787 if (i
.swap_operand
&& t
->opcode_modifier
.s
)
3791 overlap1
= operand_type_and (i
.types
[1], operand_types
[1]);
3792 if (!operand_type_match (overlap0
, i
.types
[0])
3793 || !operand_type_match (overlap1
, i
.types
[1])
3795 && !operand_type_register_match (overlap0
, i
.types
[0],
3797 overlap1
, i
.types
[1],
3800 /* Check if other direction is valid ... */
3801 if (!t
->opcode_modifier
.d
&& !t
->opcode_modifier
.floatd
)
3805 /* Try reversing direction of operands. */
3806 overlap0
= operand_type_and (i
.types
[0], operand_types
[1]);
3807 overlap1
= operand_type_and (i
.types
[1], operand_types
[0]);
3808 if (!operand_type_match (overlap0
, i
.types
[0])
3809 || !operand_type_match (overlap1
, i
.types
[1])
3811 && !operand_type_register_match (overlap0
,
3818 /* Does not match either direction. */
3821 /* found_reverse_match holds which of D or FloatDR
3823 if (t
->opcode_modifier
.d
)
3824 found_reverse_match
= Opcode_D
;
3825 else if (t
->opcode_modifier
.floatd
)
3826 found_reverse_match
= Opcode_FloatD
;
3828 found_reverse_match
= 0;
3829 if (t
->opcode_modifier
.floatr
)
3830 found_reverse_match
|= Opcode_FloatR
;
3834 /* Found a forward 2 operand match here. */
3835 switch (t
->operands
)
3838 overlap4
= operand_type_and (i
.types
[4],
3841 overlap3
= operand_type_and (i
.types
[3],
3844 overlap2
= operand_type_and (i
.types
[2],
3849 switch (t
->operands
)
3852 if (!operand_type_match (overlap4
, i
.types
[4])
3853 || !operand_type_register_match (overlap3
,
3861 if (!operand_type_match (overlap3
, i
.types
[3])
3863 && !operand_type_register_match (overlap2
,
3871 /* Here we make use of the fact that there are no
3872 reverse match 3 operand instructions, and all 3
3873 operand instructions only need to be checked for
3874 register consistency between operands 2 and 3. */
3875 if (!operand_type_match (overlap2
, i
.types
[2])
3877 && !operand_type_register_match (overlap1
,
3887 /* Found either forward/reverse 2, 3 or 4 operand match here:
3888 slip through to break. */
3890 if (!found_cpu_match
)
3892 found_reverse_match
= 0;
3896 /* Check if VEX operands are valid. */
3897 if (VEX_check_operands (t
))
3900 /* We've found a match; break out of loop. */
3904 if (t
== current_templates
->end
)
3906 /* We found no match. */
3908 as_bad (_("ambiguous operand size or operands invalid for `%s'"),
3909 current_templates
->start
->name
);
3911 as_bad (_("suffix or operands invalid for `%s'"),
3912 current_templates
->start
->name
);
3916 if (!quiet_warnings
)
3919 && (i
.types
[0].bitfield
.jumpabsolute
3920 != operand_types
[0].bitfield
.jumpabsolute
))
3922 as_warn (_("indirect %s without `*'"), t
->name
);
3925 if (t
->opcode_modifier
.isprefix
3926 && t
->opcode_modifier
.ignoresize
)
3928 /* Warn them that a data or address size prefix doesn't
3929 affect assembly of the next line of code. */
3930 as_warn (_("stand-alone `%s' prefix"), t
->name
);
3934 /* Copy the template we found. */
3937 if (addr_prefix_disp
!= -1)
3938 i
.tm
.operand_types
[addr_prefix_disp
]
3939 = operand_types
[addr_prefix_disp
];
3941 if (found_reverse_match
)
3943 /* If we found a reverse match we must alter the opcode
3944 direction bit. found_reverse_match holds bits to change
3945 (different for int & float insns). */
3947 i
.tm
.base_opcode
^= found_reverse_match
;
3949 i
.tm
.operand_types
[0] = operand_types
[1];
3950 i
.tm
.operand_types
[1] = operand_types
[0];
3959 int mem_op
= operand_type_check (i
.types
[0], anymem
) ? 0 : 1;
3960 if (i
.tm
.operand_types
[mem_op
].bitfield
.esseg
)
3962 if (i
.seg
[0] != NULL
&& i
.seg
[0] != &es
)
3964 as_bad (_("`%s' operand %d must use `%ses' segment"),
3970 /* There's only ever one segment override allowed per instruction.
3971 This instruction possibly has a legal segment override on the
3972 second operand, so copy the segment to where non-string
3973 instructions store it, allowing common code. */
3974 i
.seg
[0] = i
.seg
[1];
3976 else if (i
.tm
.operand_types
[mem_op
+ 1].bitfield
.esseg
)
3978 if (i
.seg
[1] != NULL
&& i
.seg
[1] != &es
)
3980 as_bad (_("`%s' operand %d must use `%ses' segment"),
3991 process_suffix (void)
3993 /* If matched instruction specifies an explicit instruction mnemonic
3995 if (i
.tm
.opcode_modifier
.size16
)
3996 i
.suffix
= WORD_MNEM_SUFFIX
;
3997 else if (i
.tm
.opcode_modifier
.size32
)
3998 i
.suffix
= LONG_MNEM_SUFFIX
;
3999 else if (i
.tm
.opcode_modifier
.size64
)
4000 i
.suffix
= QWORD_MNEM_SUFFIX
;
4001 else if (i
.reg_operands
)
4003 /* If there's no instruction mnemonic suffix we try to invent one
4004 based on register operands. */
4007 /* We take i.suffix from the last register operand specified,
4008 Destination register type is more significant than source
4009 register type. crc32 in SSE4.2 prefers source register
4011 if (i
.tm
.base_opcode
== 0xf20f38f1)
4013 if (i
.types
[0].bitfield
.reg16
)
4014 i
.suffix
= WORD_MNEM_SUFFIX
;
4015 else if (i
.types
[0].bitfield
.reg32
)
4016 i
.suffix
= LONG_MNEM_SUFFIX
;
4017 else if (i
.types
[0].bitfield
.reg64
)
4018 i
.suffix
= QWORD_MNEM_SUFFIX
;
4020 else if (i
.tm
.base_opcode
== 0xf20f38f0)
4022 if (i
.types
[0].bitfield
.reg8
)
4023 i
.suffix
= BYTE_MNEM_SUFFIX
;
4030 if (i
.tm
.base_opcode
== 0xf20f38f1
4031 || i
.tm
.base_opcode
== 0xf20f38f0)
4033 /* We have to know the operand size for crc32. */
4034 as_bad (_("ambiguous memory operand size for `%s`"),
4039 for (op
= i
.operands
; --op
>= 0;)
4040 if (!i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
4042 if (i
.types
[op
].bitfield
.reg8
)
4044 i
.suffix
= BYTE_MNEM_SUFFIX
;
4047 else if (i
.types
[op
].bitfield
.reg16
)
4049 i
.suffix
= WORD_MNEM_SUFFIX
;
4052 else if (i
.types
[op
].bitfield
.reg32
)
4054 i
.suffix
= LONG_MNEM_SUFFIX
;
4057 else if (i
.types
[op
].bitfield
.reg64
)
4059 i
.suffix
= QWORD_MNEM_SUFFIX
;
4065 else if (i
.suffix
== BYTE_MNEM_SUFFIX
)
4067 if (!check_byte_reg ())
4070 else if (i
.suffix
== LONG_MNEM_SUFFIX
)
4072 if (!check_long_reg ())
4075 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
4078 && i
.tm
.opcode_modifier
.ignoresize
4079 && i
.tm
.opcode_modifier
.no_qsuf
)
4081 else if (!check_qword_reg ())
4084 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
4086 if (!check_word_reg ())
4089 else if (i
.suffix
== XMMWORD_MNEM_SUFFIX
4090 || i
.suffix
== YMMWORD_MNEM_SUFFIX
)
4092 /* Skip if the instruction has x/y suffix. match_template
4093 should check if it is a valid suffix. */
4095 else if (intel_syntax
&& i
.tm
.opcode_modifier
.ignoresize
)
4096 /* Do nothing if the instruction is going to ignore the prefix. */
4101 else if (i
.tm
.opcode_modifier
.defaultsize
4103 /* exclude fldenv/frstor/fsave/fstenv */
4104 && i
.tm
.opcode_modifier
.no_ssuf
)
4106 i
.suffix
= stackop_size
;
4108 else if (intel_syntax
4110 && (i
.tm
.operand_types
[0].bitfield
.jumpabsolute
4111 || i
.tm
.opcode_modifier
.jumpbyte
4112 || i
.tm
.opcode_modifier
.jumpintersegment
4113 || (i
.tm
.base_opcode
== 0x0f01 /* [ls][gi]dt */
4114 && i
.tm
.extension_opcode
<= 3)))
4119 if (!i
.tm
.opcode_modifier
.no_qsuf
)
4121 i
.suffix
= QWORD_MNEM_SUFFIX
;
4125 if (!i
.tm
.opcode_modifier
.no_lsuf
)
4126 i
.suffix
= LONG_MNEM_SUFFIX
;
4129 if (!i
.tm
.opcode_modifier
.no_wsuf
)
4130 i
.suffix
= WORD_MNEM_SUFFIX
;
4139 if (i
.tm
.opcode_modifier
.w
)
4141 as_bad (_("no instruction mnemonic suffix given and "
4142 "no register operands; can't size instruction"));
4148 unsigned int suffixes
;
4150 suffixes
= !i
.tm
.opcode_modifier
.no_bsuf
;
4151 if (!i
.tm
.opcode_modifier
.no_wsuf
)
4153 if (!i
.tm
.opcode_modifier
.no_lsuf
)
4155 if (!i
.tm
.opcode_modifier
.no_ldsuf
)
4157 if (!i
.tm
.opcode_modifier
.no_ssuf
)
4159 if (!i
.tm
.opcode_modifier
.no_qsuf
)
4162 /* There are more than suffix matches. */
4163 if (i
.tm
.opcode_modifier
.w
4164 || ((suffixes
& (suffixes
- 1))
4165 && !i
.tm
.opcode_modifier
.defaultsize
4166 && !i
.tm
.opcode_modifier
.ignoresize
))
4168 as_bad (_("ambiguous operand size for `%s'"), i
.tm
.name
);
4174 /* Change the opcode based on the operand size given by i.suffix;
4175 We don't need to change things for byte insns. */
4178 && i
.suffix
!= BYTE_MNEM_SUFFIX
4179 && i
.suffix
!= XMMWORD_MNEM_SUFFIX
4180 && i
.suffix
!= YMMWORD_MNEM_SUFFIX
)
4182 /* It's not a byte, select word/dword operation. */
4183 if (i
.tm
.opcode_modifier
.w
)
4185 if (i
.tm
.opcode_modifier
.shortform
)
4186 i
.tm
.base_opcode
|= 8;
4188 i
.tm
.base_opcode
|= 1;
4191 /* Now select between word & dword operations via the operand
4192 size prefix, except for instructions that will ignore this
4194 if (i
.tm
.opcode_modifier
.addrprefixop0
)
4196 /* The address size override prefix changes the size of the
4198 if ((flag_code
== CODE_32BIT
4199 && i
.op
->regs
[0].reg_type
.bitfield
.reg16
)
4200 || (flag_code
!= CODE_32BIT
4201 && i
.op
->regs
[0].reg_type
.bitfield
.reg32
))
4202 if (!add_prefix (ADDR_PREFIX_OPCODE
))
4205 else if (i
.suffix
!= QWORD_MNEM_SUFFIX
4206 && i
.suffix
!= LONG_DOUBLE_MNEM_SUFFIX
4207 && !i
.tm
.opcode_modifier
.ignoresize
4208 && !i
.tm
.opcode_modifier
.floatmf
4209 && ((i
.suffix
== LONG_MNEM_SUFFIX
) == (flag_code
== CODE_16BIT
)
4210 || (flag_code
== CODE_64BIT
4211 && i
.tm
.opcode_modifier
.jumpbyte
)))
4213 unsigned int prefix
= DATA_PREFIX_OPCODE
;
4215 if (i
.tm
.opcode_modifier
.jumpbyte
) /* jcxz, loop */
4216 prefix
= ADDR_PREFIX_OPCODE
;
4218 if (!add_prefix (prefix
))
4222 /* Set mode64 for an operand. */
4223 if (i
.suffix
== QWORD_MNEM_SUFFIX
4224 && flag_code
== CODE_64BIT
4225 && !i
.tm
.opcode_modifier
.norex64
)
4227 /* Special case for xchg %rax,%rax. It is NOP and doesn't
4228 need rex64. cmpxchg8b is also a special case. */
4229 if (! (i
.operands
== 2
4230 && i
.tm
.base_opcode
== 0x90
4231 && i
.tm
.extension_opcode
== None
4232 && operand_type_equal (&i
.types
[0], &acc64
)
4233 && operand_type_equal (&i
.types
[1], &acc64
))
4234 && ! (i
.operands
== 1
4235 && i
.tm
.base_opcode
== 0xfc7
4236 && i
.tm
.extension_opcode
== 1
4237 && !operand_type_check (i
.types
[0], reg
)
4238 && operand_type_check (i
.types
[0], anymem
)))
4242 /* Size floating point instruction. */
4243 if (i
.suffix
== LONG_MNEM_SUFFIX
)
4244 if (i
.tm
.opcode_modifier
.floatmf
)
4245 i
.tm
.base_opcode
^= 4;
4252 check_byte_reg (void)
4256 for (op
= i
.operands
; --op
>= 0;)
4258 /* If this is an eight bit register, it's OK. If it's the 16 or
4259 32 bit version of an eight bit register, we will just use the
4260 low portion, and that's OK too. */
4261 if (i
.types
[op
].bitfield
.reg8
)
4264 /* Don't generate this warning if not needed. */
4265 if (intel_syntax
&& i
.tm
.opcode_modifier
.byteokintel
)
4268 /* crc32 doesn't generate this warning. */
4269 if (i
.tm
.base_opcode
== 0xf20f38f0)
4272 if ((i
.types
[op
].bitfield
.reg16
4273 || i
.types
[op
].bitfield
.reg32
4274 || i
.types
[op
].bitfield
.reg64
)
4275 && i
.op
[op
].regs
->reg_num
< 4)
4277 /* Prohibit these changes in the 64bit mode, since the
4278 lowering is more complicated. */
4279 if (flag_code
== CODE_64BIT
4280 && !i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
4282 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4283 register_prefix
, i
.op
[op
].regs
->reg_name
,
4287 #if REGISTER_WARNINGS
4289 && !i
.tm
.operand_types
[op
].bitfield
.inoutportreg
)
4290 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4292 (i
.op
[op
].regs
+ (i
.types
[op
].bitfield
.reg16
4293 ? REGNAM_AL
- REGNAM_AX
4294 : REGNAM_AL
- REGNAM_EAX
))->reg_name
,
4296 i
.op
[op
].regs
->reg_name
,
4301 /* Any other register is bad. */
4302 if (i
.types
[op
].bitfield
.reg16
4303 || i
.types
[op
].bitfield
.reg32
4304 || i
.types
[op
].bitfield
.reg64
4305 || i
.types
[op
].bitfield
.regmmx
4306 || i
.types
[op
].bitfield
.regxmm
4307 || i
.types
[op
].bitfield
.regymm
4308 || i
.types
[op
].bitfield
.sreg2
4309 || i
.types
[op
].bitfield
.sreg3
4310 || i
.types
[op
].bitfield
.control
4311 || i
.types
[op
].bitfield
.debug
4312 || i
.types
[op
].bitfield
.test
4313 || i
.types
[op
].bitfield
.floatreg
4314 || i
.types
[op
].bitfield
.floatacc
)
4316 as_bad (_("`%s%s' not allowed with `%s%c'"),
4318 i
.op
[op
].regs
->reg_name
,
4328 check_long_reg (void)
4332 for (op
= i
.operands
; --op
>= 0;)
4333 /* Reject eight bit registers, except where the template requires
4334 them. (eg. movzb) */
4335 if (i
.types
[op
].bitfield
.reg8
4336 && (i
.tm
.operand_types
[op
].bitfield
.reg16
4337 || i
.tm
.operand_types
[op
].bitfield
.reg32
4338 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4340 as_bad (_("`%s%s' not allowed with `%s%c'"),
4342 i
.op
[op
].regs
->reg_name
,
4347 /* Warn if the e prefix on a general reg is missing. */
4348 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
4349 && i
.types
[op
].bitfield
.reg16
4350 && (i
.tm
.operand_types
[op
].bitfield
.reg32
4351 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4353 /* Prohibit these changes in the 64bit mode, since the
4354 lowering is more complicated. */
4355 if (flag_code
== CODE_64BIT
)
4357 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4358 register_prefix
, i
.op
[op
].regs
->reg_name
,
4362 #if REGISTER_WARNINGS
4364 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4366 (i
.op
[op
].regs
+ REGNAM_EAX
- REGNAM_AX
)->reg_name
,
4368 i
.op
[op
].regs
->reg_name
,
4372 /* Warn if the r prefix on a general reg is missing. */
4373 else if (i
.types
[op
].bitfield
.reg64
4374 && (i
.tm
.operand_types
[op
].bitfield
.reg32
4375 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4378 && i
.tm
.opcode_modifier
.toqword
4379 && !i
.types
[0].bitfield
.regxmm
)
4381 /* Convert to QWORD. We want REX byte. */
4382 i
.suffix
= QWORD_MNEM_SUFFIX
;
4386 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4387 register_prefix
, i
.op
[op
].regs
->reg_name
,
4396 check_qword_reg (void)
4400 for (op
= i
.operands
; --op
>= 0; )
4401 /* Reject eight bit registers, except where the template requires
4402 them. (eg. movzb) */
4403 if (i
.types
[op
].bitfield
.reg8
4404 && (i
.tm
.operand_types
[op
].bitfield
.reg16
4405 || i
.tm
.operand_types
[op
].bitfield
.reg32
4406 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4408 as_bad (_("`%s%s' not allowed with `%s%c'"),
4410 i
.op
[op
].regs
->reg_name
,
4415 /* Warn if the e prefix on a general reg is missing. */
4416 else if ((i
.types
[op
].bitfield
.reg16
4417 || i
.types
[op
].bitfield
.reg32
)
4418 && (i
.tm
.operand_types
[op
].bitfield
.reg32
4419 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4421 /* Prohibit these changes in the 64bit mode, since the
4422 lowering is more complicated. */
4424 && i
.tm
.opcode_modifier
.todword
4425 && !i
.types
[0].bitfield
.regxmm
)
4427 /* Convert to DWORD. We don't want REX byte. */
4428 i
.suffix
= LONG_MNEM_SUFFIX
;
4432 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4433 register_prefix
, i
.op
[op
].regs
->reg_name
,
4442 check_word_reg (void)
4445 for (op
= i
.operands
; --op
>= 0;)
4446 /* Reject eight bit registers, except where the template requires
4447 them. (eg. movzb) */
4448 if (i
.types
[op
].bitfield
.reg8
4449 && (i
.tm
.operand_types
[op
].bitfield
.reg16
4450 || i
.tm
.operand_types
[op
].bitfield
.reg32
4451 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4453 as_bad (_("`%s%s' not allowed with `%s%c'"),
4455 i
.op
[op
].regs
->reg_name
,
4460 /* Warn if the e prefix on a general reg is present. */
4461 else if ((!quiet_warnings
|| flag_code
== CODE_64BIT
)
4462 && i
.types
[op
].bitfield
.reg32
4463 && (i
.tm
.operand_types
[op
].bitfield
.reg16
4464 || i
.tm
.operand_types
[op
].bitfield
.acc
))
4466 /* Prohibit these changes in the 64bit mode, since the
4467 lowering is more complicated. */
4468 if (flag_code
== CODE_64BIT
)
4470 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
4471 register_prefix
, i
.op
[op
].regs
->reg_name
,
4476 #if REGISTER_WARNINGS
4477 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
4479 (i
.op
[op
].regs
+ REGNAM_AX
- REGNAM_EAX
)->reg_name
,
4481 i
.op
[op
].regs
->reg_name
,
4489 update_imm (unsigned int j
)
4491 i386_operand_type overlap
;
4493 overlap
= operand_type_and (i
.types
[j
], i
.tm
.operand_types
[j
]);
4494 if ((overlap
.bitfield
.imm8
4495 || overlap
.bitfield
.imm8s
4496 || overlap
.bitfield
.imm16
4497 || overlap
.bitfield
.imm32
4498 || overlap
.bitfield
.imm32s
4499 || overlap
.bitfield
.imm64
)
4500 && !operand_type_equal (&overlap
, &imm8
)
4501 && !operand_type_equal (&overlap
, &imm8s
)
4502 && !operand_type_equal (&overlap
, &imm16
)
4503 && !operand_type_equal (&overlap
, &imm32
)
4504 && !operand_type_equal (&overlap
, &imm32s
)
4505 && !operand_type_equal (&overlap
, &imm64
))
4509 i386_operand_type temp
;
4511 operand_type_set (&temp
, 0);
4512 if (i
.suffix
== BYTE_MNEM_SUFFIX
)
4514 temp
.bitfield
.imm8
= overlap
.bitfield
.imm8
;
4515 temp
.bitfield
.imm8s
= overlap
.bitfield
.imm8s
;
4517 else if (i
.suffix
== WORD_MNEM_SUFFIX
)
4518 temp
.bitfield
.imm16
= overlap
.bitfield
.imm16
;
4519 else if (i
.suffix
== QWORD_MNEM_SUFFIX
)
4521 temp
.bitfield
.imm64
= overlap
.bitfield
.imm64
;
4522 temp
.bitfield
.imm32s
= overlap
.bitfield
.imm32s
;
4525 temp
.bitfield
.imm32
= overlap
.bitfield
.imm32
;
4528 else if (operand_type_equal (&overlap
, &imm16_32_32s
)
4529 || operand_type_equal (&overlap
, &imm16_32
)
4530 || operand_type_equal (&overlap
, &imm16_32s
))
4532 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[DATA_PREFIX
] != 0))
4537 if (!operand_type_equal (&overlap
, &imm8
)
4538 && !operand_type_equal (&overlap
, &imm8s
)
4539 && !operand_type_equal (&overlap
, &imm16
)
4540 && !operand_type_equal (&overlap
, &imm32
)
4541 && !operand_type_equal (&overlap
, &imm32s
)
4542 && !operand_type_equal (&overlap
, &imm64
))
4544 as_bad (_("no instruction mnemonic suffix given; "
4545 "can't determine immediate size"));
4549 i
.types
[j
] = overlap
;
4559 for (j
= 0; j
< 2; j
++)
4560 if (update_imm (j
) == 0)
4563 i
.types
[2] = operand_type_and (i
.types
[2], i
.tm
.operand_types
[2]);
4564 assert (operand_type_check (i
.types
[2], imm
) == 0);
4572 i
.drex
.modrm_reg
= 0;
4573 i
.drex
.modrm_regmem
= 0;
4575 /* SSE5 4 operand instructions must have the destination the same as
4576 one of the inputs. Figure out the destination register and cache
4577 it away in the drex field, and remember which fields to use for
4579 if (i
.tm
.opcode_modifier
.drex
4580 && i
.tm
.opcode_modifier
.drexv
4583 i
.tm
.extension_opcode
= None
;
4585 /* Case 1: 4 operand insn, dest = src1, src3 = register. */
4586 if (i
.types
[0].bitfield
.regxmm
!= 0
4587 && i
.types
[1].bitfield
.regxmm
!= 0
4588 && i
.types
[2].bitfield
.regxmm
!= 0
4589 && i
.types
[3].bitfield
.regxmm
!= 0
4590 && i
.op
[0].regs
->reg_num
== i
.op
[3].regs
->reg_num
4591 && i
.op
[0].regs
->reg_flags
== i
.op
[3].regs
->reg_flags
)
4593 /* Clear the arguments that are stored in drex. */
4594 operand_type_set (&i
.types
[0], 0);
4595 operand_type_set (&i
.types
[3], 0);
4596 i
.reg_operands
-= 2;
4598 /* There are two different ways to encode a 4 operand
4599 instruction with all registers that uses OC1 set to
4600 0 or 1. Favor setting OC1 to 0 since this mimics the
4601 actions of other SSE5 assemblers. Use modrm encoding 2
4602 for register/register. Include the high order bit that
4603 is normally stored in the REX byte in the register
4605 i
.tm
.extension_opcode
= DREX_X1_XMEM_X2_X1
;
4606 i
.drex
.modrm_reg
= 2;
4607 i
.drex
.modrm_regmem
= 1;
4608 i
.drex
.reg
= (i
.op
[3].regs
->reg_num
4609 + ((i
.op
[3].regs
->reg_flags
& RegRex
) ? 8 : 0));
4612 /* Case 2: 4 operand insn, dest = src1, src3 = memory. */
4613 else if (i
.types
[0].bitfield
.regxmm
!= 0
4614 && i
.types
[1].bitfield
.regxmm
!= 0
4615 && (i
.types
[2].bitfield
.regxmm
4616 || operand_type_check (i
.types
[2], anymem
))
4617 && i
.types
[3].bitfield
.regxmm
!= 0
4618 && i
.op
[0].regs
->reg_num
== i
.op
[3].regs
->reg_num
4619 && i
.op
[0].regs
->reg_flags
== i
.op
[3].regs
->reg_flags
)
4621 /* clear the arguments that are stored in drex */
4622 operand_type_set (&i
.types
[0], 0);
4623 operand_type_set (&i
.types
[3], 0);
4624 i
.reg_operands
-= 2;
4626 /* Specify the modrm encoding for memory addressing. Include
4627 the high order bit that is normally stored in the REX byte
4628 in the register field. */
4629 i
.tm
.extension_opcode
= DREX_X1_X2_XMEM_X1
;
4630 i
.drex
.modrm_reg
= 1;
4631 i
.drex
.modrm_regmem
= 2;
4632 i
.drex
.reg
= (i
.op
[3].regs
->reg_num
4633 + ((i
.op
[3].regs
->reg_flags
& RegRex
) ? 8 : 0));
4636 /* Case 3: 4 operand insn, dest = src1, src2 = memory. */
4637 else if (i
.types
[0].bitfield
.regxmm
!= 0
4638 && operand_type_check (i
.types
[1], anymem
) != 0
4639 && i
.types
[2].bitfield
.regxmm
!= 0
4640 && i
.types
[3].bitfield
.regxmm
!= 0
4641 && i
.op
[0].regs
->reg_num
== i
.op
[3].regs
->reg_num
4642 && i
.op
[0].regs
->reg_flags
== i
.op
[3].regs
->reg_flags
)
4644 /* Clear the arguments that are stored in drex. */
4645 operand_type_set (&i
.types
[0], 0);
4646 operand_type_set (&i
.types
[3], 0);
4647 i
.reg_operands
-= 2;
4649 /* Specify the modrm encoding for memory addressing. Include
4650 the high order bit that is normally stored in the REX byte
4651 in the register field. */
4652 i
.tm
.extension_opcode
= DREX_X1_XMEM_X2_X1
;
4653 i
.drex
.modrm_reg
= 2;
4654 i
.drex
.modrm_regmem
= 1;
4655 i
.drex
.reg
= (i
.op
[3].regs
->reg_num
4656 + ((i
.op
[3].regs
->reg_flags
& RegRex
) ? 8 : 0));
4659 /* Case 4: 4 operand insn, dest = src3, src2 = register. */
4660 else if (i
.types
[0].bitfield
.regxmm
!= 0
4661 && i
.types
[1].bitfield
.regxmm
!= 0
4662 && i
.types
[2].bitfield
.regxmm
!= 0
4663 && i
.types
[3].bitfield
.regxmm
!= 0
4664 && i
.op
[2].regs
->reg_num
== i
.op
[3].regs
->reg_num
4665 && i
.op
[2].regs
->reg_flags
== i
.op
[3].regs
->reg_flags
)
4667 /* clear the arguments that are stored in drex */
4668 operand_type_set (&i
.types
[2], 0);
4669 operand_type_set (&i
.types
[3], 0);
4670 i
.reg_operands
-= 2;
4672 /* There are two different ways to encode a 4 operand
4673 instruction with all registers that uses OC1 set to
4674 0 or 1. Favor setting OC1 to 0 since this mimics the
4675 actions of other SSE5 assemblers. Use modrm encoding
4676 2 for register/register. Include the high order bit that
4677 is normally stored in the REX byte in the register
4679 i
.tm
.extension_opcode
= DREX_XMEM_X1_X2_X2
;
4680 i
.drex
.modrm_reg
= 1;
4681 i
.drex
.modrm_regmem
= 0;
4683 /* Remember the register, including the upper bits */
4684 i
.drex
.reg
= (i
.op
[3].regs
->reg_num
4685 + ((i
.op
[3].regs
->reg_flags
& RegRex
) ? 8 : 0));
4688 /* Case 5: 4 operand insn, dest = src3, src2 = memory. */
4689 else if (i
.types
[0].bitfield
.regxmm
!= 0
4690 && (i
.types
[1].bitfield
.regxmm
4691 || operand_type_check (i
.types
[1], anymem
))
4692 && i
.types
[2].bitfield
.regxmm
!= 0
4693 && i
.types
[3].bitfield
.regxmm
!= 0
4694 && i
.op
[2].regs
->reg_num
== i
.op
[3].regs
->reg_num
4695 && i
.op
[2].regs
->reg_flags
== i
.op
[3].regs
->reg_flags
)
4697 /* Clear the arguments that are stored in drex. */
4698 operand_type_set (&i
.types
[2], 0);
4699 operand_type_set (&i
.types
[3], 0);
4700 i
.reg_operands
-= 2;
4702 /* Specify the modrm encoding and remember the register
4703 including the bits normally stored in the REX byte. */
4704 i
.tm
.extension_opcode
= DREX_X1_XMEM_X2_X2
;
4705 i
.drex
.modrm_reg
= 0;
4706 i
.drex
.modrm_regmem
= 1;
4707 i
.drex
.reg
= (i
.op
[3].regs
->reg_num
4708 + ((i
.op
[3].regs
->reg_flags
& RegRex
) ? 8 : 0));
4711 /* Case 6: 4 operand insn, dest = src3, src1 = memory. */
4712 else if (operand_type_check (i
.types
[0], anymem
) != 0
4713 && i
.types
[1].bitfield
.regxmm
!= 0
4714 && i
.types
[2].bitfield
.regxmm
!= 0
4715 && i
.types
[3].bitfield
.regxmm
!= 0
4716 && i
.op
[2].regs
->reg_num
== i
.op
[3].regs
->reg_num
4717 && i
.op
[2].regs
->reg_flags
== i
.op
[3].regs
->reg_flags
)
4719 /* clear the arguments that are stored in drex */
4720 operand_type_set (&i
.types
[2], 0);
4721 operand_type_set (&i
.types
[3], 0);
4722 i
.reg_operands
-= 2;
4724 /* Specify the modrm encoding and remember the register
4725 including the bits normally stored in the REX byte. */
4726 i
.tm
.extension_opcode
= DREX_XMEM_X1_X2_X2
;
4727 i
.drex
.modrm_reg
= 1;
4728 i
.drex
.modrm_regmem
= 0;
4729 i
.drex
.reg
= (i
.op
[3].regs
->reg_num
4730 + ((i
.op
[3].regs
->reg_flags
& RegRex
) ? 8 : 0));
4734 as_bad (_("Incorrect operands for the '%s' instruction"),
4738 /* SSE5 instructions with the DREX byte where the only memory operand
4739 is in the 2nd argument, and the first and last xmm register must
4740 match, and is encoded in the DREX byte. */
4741 else if (i
.tm
.opcode_modifier
.drex
4742 && !i
.tm
.opcode_modifier
.drexv
4745 /* Case 1: 4 operand insn, dest = src1, src3 = reg/mem. */
4746 if (i
.types
[0].bitfield
.regxmm
!= 0
4747 && (i
.types
[1].bitfield
.regxmm
4748 || operand_type_check(i
.types
[1], anymem
))
4749 && i
.types
[2].bitfield
.regxmm
!= 0
4750 && i
.types
[3].bitfield
.regxmm
!= 0
4751 && i
.op
[0].regs
->reg_num
== i
.op
[3].regs
->reg_num
4752 && i
.op
[0].regs
->reg_flags
== i
.op
[3].regs
->reg_flags
)
4754 /* clear the arguments that are stored in drex */
4755 operand_type_set (&i
.types
[0], 0);
4756 operand_type_set (&i
.types
[3], 0);
4757 i
.reg_operands
-= 2;
4759 /* Specify the modrm encoding and remember the register
4760 including the high bit normally stored in the REX
4762 i
.drex
.modrm_reg
= 2;
4763 i
.drex
.modrm_regmem
= 1;
4764 i
.drex
.reg
= (i
.op
[3].regs
->reg_num
4765 + ((i
.op
[3].regs
->reg_flags
& RegRex
) ? 8 : 0));
4769 as_bad (_("Incorrect operands for the '%s' instruction"),
4773 /* SSE5 3 operand instructions that the result is a register, being
4774 either operand can be a memory operand, using OC0 to note which
4775 one is the memory. */
4776 else if (i
.tm
.opcode_modifier
.drex
4777 && i
.tm
.opcode_modifier
.drexv
4780 i
.tm
.extension_opcode
= None
;
4782 /* Case 1: 3 operand insn, src1 = register. */
4783 if (i
.types
[0].bitfield
.regxmm
!= 0
4784 && i
.types
[1].bitfield
.regxmm
!= 0
4785 && i
.types
[2].bitfield
.regxmm
!= 0)
4787 /* Clear the arguments that are stored in drex. */
4788 operand_type_set (&i
.types
[2], 0);
4791 /* Specify the modrm encoding and remember the register
4792 including the high bit normally stored in the REX byte. */
4793 i
.tm
.extension_opcode
= DREX_XMEM_X1_X2
;
4794 i
.drex
.modrm_reg
= 1;
4795 i
.drex
.modrm_regmem
= 0;
4796 i
.drex
.reg
= (i
.op
[2].regs
->reg_num
4797 + ((i
.op
[2].regs
->reg_flags
& RegRex
) ? 8 : 0));
4800 /* Case 2: 3 operand insn, src1 = memory. */
4801 else if (operand_type_check (i
.types
[0], anymem
) != 0
4802 && i
.types
[1].bitfield
.regxmm
!= 0
4803 && i
.types
[2].bitfield
.regxmm
!= 0)
4805 /* Clear the arguments that are stored in drex. */
4806 operand_type_set (&i
.types
[2], 0);
4809 /* Specify the modrm encoding and remember the register
4810 including the high bit normally stored in the REX
4812 i
.tm
.extension_opcode
= DREX_XMEM_X1_X2
;
4813 i
.drex
.modrm_reg
= 1;
4814 i
.drex
.modrm_regmem
= 0;
4815 i
.drex
.reg
= (i
.op
[2].regs
->reg_num
4816 + ((i
.op
[2].regs
->reg_flags
& RegRex
) ? 8 : 0));
4819 /* Case 3: 3 operand insn, src2 = memory. */
4820 else if (i
.types
[0].bitfield
.regxmm
!= 0
4821 && operand_type_check (i
.types
[1], anymem
) != 0
4822 && i
.types
[2].bitfield
.regxmm
!= 0)
4824 /* Clear the arguments that are stored in drex. */
4825 operand_type_set (&i
.types
[2], 0);
4828 /* Specify the modrm encoding and remember the register
4829 including the high bit normally stored in the REX byte. */
4830 i
.tm
.extension_opcode
= DREX_X1_XMEM_X2
;
4831 i
.drex
.modrm_reg
= 0;
4832 i
.drex
.modrm_regmem
= 1;
4833 i
.drex
.reg
= (i
.op
[2].regs
->reg_num
4834 + ((i
.op
[2].regs
->reg_flags
& RegRex
) ? 8 : 0));
4838 as_bad (_("Incorrect operands for the '%s' instruction"),
4842 /* SSE5 4 operand instructions that are the comparison instructions
4843 where the first operand is the immediate value of the comparison
4845 else if (i
.tm
.opcode_modifier
.drexc
!= 0 && i
.operands
== 4)
4847 /* Case 1: 4 operand insn, src1 = reg/memory. */
4848 if (operand_type_check (i
.types
[0], imm
) != 0
4849 && (i
.types
[1].bitfield
.regxmm
4850 || operand_type_check (i
.types
[1], anymem
))
4851 && i
.types
[2].bitfield
.regxmm
!= 0
4852 && i
.types
[3].bitfield
.regxmm
!= 0)
4854 /* clear the arguments that are stored in drex */
4855 operand_type_set (&i
.types
[3], 0);
4858 /* Specify the modrm encoding and remember the register
4859 including the high bit normally stored in the REX byte. */
4860 i
.drex
.modrm_reg
= 2;
4861 i
.drex
.modrm_regmem
= 1;
4862 i
.drex
.reg
= (i
.op
[3].regs
->reg_num
4863 + ((i
.op
[3].regs
->reg_flags
& RegRex
) ? 8 : 0));
4866 /* Case 2: 3 operand insn with ImmExt that places the
4867 opcode_extension as an immediate argument. This is used for
4868 all of the varients of comparison that supplies the appropriate
4869 value as part of the instruction. */
4870 else if ((i
.types
[0].bitfield
.regxmm
4871 || operand_type_check (i
.types
[0], anymem
))
4872 && i
.types
[1].bitfield
.regxmm
!= 0
4873 && i
.types
[2].bitfield
.regxmm
!= 0
4874 && operand_type_check (i
.types
[3], imm
) != 0)
4876 /* clear the arguments that are stored in drex */
4877 operand_type_set (&i
.types
[2], 0);
4880 /* Specify the modrm encoding and remember the register
4881 including the high bit normally stored in the REX byte. */
4882 i
.drex
.modrm_reg
= 1;
4883 i
.drex
.modrm_regmem
= 0;
4884 i
.drex
.reg
= (i
.op
[2].regs
->reg_num
4885 + ((i
.op
[2].regs
->reg_flags
& RegRex
) ? 8 : 0));
4889 as_bad (_("Incorrect operands for the '%s' instruction"),
4893 else if (i
.tm
.opcode_modifier
.drex
4894 || i
.tm
.opcode_modifier
.drexv
4895 || i
.tm
.opcode_modifier
.drexc
)
4896 as_bad (_("Internal error for the '%s' instruction"), i
.tm
.name
);
4900 bad_implicit_operand (int xmm
)
4902 const char *reg
= xmm
? "xmm0" : "ymm0";
4904 as_bad (_("the last operand of `%s' must be `%s%s'"),
4905 i
.tm
.name
, register_prefix
, reg
);
4907 as_bad (_("the first operand of `%s' must be `%s%s'"),
4908 i
.tm
.name
, register_prefix
, reg
);
4913 process_operands (void)
4915 /* Default segment register this instruction will use for memory
4916 accesses. 0 means unknown. This is only for optimizing out
4917 unnecessary segment overrides. */
4918 const seg_entry
*default_seg
= 0;
4920 /* Handle all of the DREX munging that SSE5 needs. */
4921 if (i
.tm
.opcode_modifier
.drex
4922 || i
.tm
.opcode_modifier
.drexv
4923 || i
.tm
.opcode_modifier
.drexc
)
4926 if (i
.tm
.opcode_modifier
.sse2avx
4927 && (i
.tm
.opcode_modifier
.vexnds
4928 || i
.tm
.opcode_modifier
.vexndd
))
4930 unsigned int dup
= i
.operands
;
4931 unsigned int dest
= dup
- 1;
4934 /* The destination must be an xmm register. */
4935 assert (i
.reg_operands
4936 && MAX_OPERANDS
> dup
4937 && operand_type_equal (&i
.types
[dest
], ®xmm
));
4939 if (i
.tm
.opcode_modifier
.firstxmm0
)
4941 /* The first operand is implicit and must be xmm0. */
4942 assert (operand_type_equal (&i
.types
[0], ®xmm
));
4943 if (i
.op
[0].regs
->reg_num
!= 0)
4944 return bad_implicit_operand (1);
4946 if (i
.tm
.opcode_modifier
.vex3sources
)
4948 /* Keep xmm0 for instructions with VEX prefix and 3
4954 /* We remove the first xmm0 and keep the number of
4955 operands unchanged, which in fact duplicates the
4957 for (j
= 1; j
< i
.operands
; j
++)
4959 i
.op
[j
- 1] = i
.op
[j
];
4960 i
.types
[j
- 1] = i
.types
[j
];
4961 i
.tm
.operand_types
[j
- 1] = i
.tm
.operand_types
[j
];
4965 else if (i
.tm
.opcode_modifier
.implicit1stxmm0
)
4967 assert ((MAX_OPERANDS
- 1) > dup
4968 && i
.tm
.opcode_modifier
.vex3sources
);
4970 /* Add the implicit xmm0 for instructions with VEX prefix
4972 for (j
= i
.operands
; j
> 0; j
--)
4974 i
.op
[j
] = i
.op
[j
- 1];
4975 i
.types
[j
] = i
.types
[j
- 1];
4976 i
.tm
.operand_types
[j
] = i
.tm
.operand_types
[j
- 1];
4979 = (const reg_entry
*) hash_find (reg_hash
, "xmm0");
4980 i
.types
[0] = regxmm
;
4981 i
.tm
.operand_types
[0] = regxmm
;
4984 i
.reg_operands
+= 2;
4989 i
.op
[dup
] = i
.op
[dest
];
4990 i
.types
[dup
] = i
.types
[dest
];
4991 i
.tm
.operand_types
[dup
] = i
.tm
.operand_types
[dest
];
5000 i
.op
[dup
] = i
.op
[dest
];
5001 i
.types
[dup
] = i
.types
[dest
];
5002 i
.tm
.operand_types
[dup
] = i
.tm
.operand_types
[dest
];
5005 if (i
.tm
.opcode_modifier
.immext
)
5008 else if (i
.tm
.opcode_modifier
.firstxmm0
)
5012 /* The first operand is implicit and must be xmm0/ymm0. */
5013 assert (i
.reg_operands
5014 && (operand_type_equal (&i
.types
[0], ®xmm
)
5015 || operand_type_equal (&i
.types
[0], ®ymm
)));
5016 if (i
.op
[0].regs
->reg_num
!= 0)
5017 return bad_implicit_operand (i
.types
[0].bitfield
.regxmm
);
5019 for (j
= 1; j
< i
.operands
; j
++)
5021 i
.op
[j
- 1] = i
.op
[j
];
5022 i
.types
[j
- 1] = i
.types
[j
];
5024 /* We need to adjust fields in i.tm since they are used by
5025 build_modrm_byte. */
5026 i
.tm
.operand_types
[j
- 1] = i
.tm
.operand_types
[j
];
5033 else if (i
.tm
.opcode_modifier
.regkludge
)
5035 /* The imul $imm, %reg instruction is converted into
5036 imul $imm, %reg, %reg, and the clr %reg instruction
5037 is converted into xor %reg, %reg. */
5039 unsigned int first_reg_op
;
5041 if (operand_type_check (i
.types
[0], reg
))
5045 /* Pretend we saw the extra register operand. */
5046 assert (i
.reg_operands
== 1
5047 && i
.op
[first_reg_op
+ 1].regs
== 0);
5048 i
.op
[first_reg_op
+ 1].regs
= i
.op
[first_reg_op
].regs
;
5049 i
.types
[first_reg_op
+ 1] = i
.types
[first_reg_op
];
5054 if (i
.tm
.opcode_modifier
.shortform
)
5056 if (i
.types
[0].bitfield
.sreg2
5057 || i
.types
[0].bitfield
.sreg3
)
5059 if (i
.tm
.base_opcode
== POP_SEG_SHORT
5060 && i
.op
[0].regs
->reg_num
== 1)
5062 as_bad (_("you can't `pop %scs'"), register_prefix
);
5065 i
.tm
.base_opcode
|= (i
.op
[0].regs
->reg_num
<< 3);
5066 if ((i
.op
[0].regs
->reg_flags
& RegRex
) != 0)
5071 /* The register or float register operand is in operand
5075 if (i
.types
[0].bitfield
.floatreg
5076 || operand_type_check (i
.types
[0], reg
))
5080 /* Register goes in low 3 bits of opcode. */
5081 i
.tm
.base_opcode
|= i
.op
[op
].regs
->reg_num
;
5082 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
5084 if (!quiet_warnings
&& i
.tm
.opcode_modifier
.ugh
)
5086 /* Warn about some common errors, but press on regardless.
5087 The first case can be generated by gcc (<= 2.8.1). */
5088 if (i
.operands
== 2)
5090 /* Reversed arguments on faddp, fsubp, etc. */
5091 as_warn (_("translating to `%s %s%s,%s%s'"), i
.tm
.name
,
5092 register_prefix
, i
.op
[1].regs
->reg_name
,
5093 register_prefix
, i
.op
[0].regs
->reg_name
);
5097 /* Extraneous `l' suffix on fp insn. */
5098 as_warn (_("translating to `%s %s%s'"), i
.tm
.name
,
5099 register_prefix
, i
.op
[0].regs
->reg_name
);
5104 else if (i
.tm
.opcode_modifier
.modrm
)
5106 /* The opcode is completed (modulo i.tm.extension_opcode which
5107 must be put into the modrm byte). Now, we make the modrm and
5108 index base bytes based on all the info we've collected. */
5110 default_seg
= build_modrm_byte ();
5112 else if ((i
.tm
.base_opcode
& ~0x3) == MOV_AX_DISP32
)
5116 else if (i
.tm
.opcode_modifier
.isstring
)
5118 /* For the string instructions that allow a segment override
5119 on one of their operands, the default segment is ds. */
5123 if (i
.tm
.base_opcode
== 0x8d /* lea */
5126 as_warn (_("segment override on `%s' is ineffectual"), i
.tm
.name
);
5128 /* If a segment was explicitly specified, and the specified segment
5129 is not the default, use an opcode prefix to select it. If we
5130 never figured out what the default segment is, then default_seg
5131 will be zero at this point, and the specified segment prefix will
5133 if ((i
.seg
[0]) && (i
.seg
[0] != default_seg
))
5135 if (!add_prefix (i
.seg
[0]->seg_prefix
))
5141 static const seg_entry
*
5142 build_modrm_byte (void)
5144 const seg_entry
*default_seg
= 0;
5145 unsigned int source
, dest
;
5148 /* The first operand of instructions with VEX prefix and 3 sources
5149 must be VEX_Imm4. */
5150 vex_3_sources
= i
.tm
.opcode_modifier
.vex3sources
;
5153 unsigned int nds
, reg
;
5155 dest
= i
.operands
- 1;
5160 /* This instruction must have 4 operands: 4 register operands
5161 or 3 register operands plus 1 memory operand. It must have
5162 VexNDS and VexImmExt. */
5163 assert (i
.operands
== 4
5164 && (i
.reg_operands
== 4
5165 || (i
.reg_operands
== 3 && i
.mem_operands
== 1))
5166 && i
.tm
.opcode_modifier
.vexnds
5167 && i
.tm
.opcode_modifier
.veximmext
5168 && (operand_type_equal (&i
.tm
.operand_types
[dest
],
5170 || operand_type_equal (&i
.tm
.operand_types
[dest
],
5172 && (operand_type_equal (&i
.tm
.operand_types
[nds
],
5174 || operand_type_equal (&i
.tm
.operand_types
[nds
],
5176 && (operand_type_equal (&i
.tm
.operand_types
[reg
],
5178 || operand_type_equal (&i
.tm
.operand_types
[reg
],
5181 /* Generate an 8bit immediate operand to encode the register
5183 expressionS
*exp
= &im_expressions
[i
.imm_operands
++];
5184 i
.op
[i
.operands
].imms
= exp
;
5185 i
.types
[i
.operands
] = imm8
;
5187 exp
->X_op
= O_constant
;
5189 = ((i
.op
[0].regs
->reg_num
5190 + ((i
.op
[0].regs
->reg_flags
& RegRex
) ? 8 : 0)) << 4);
5192 i
.vex
.register_specifier
= i
.op
[nds
].regs
;
5197 /* SSE5 4 operand instructions are encoded in such a way that one of
5198 the inputs must match the destination register. Process_drex hides
5199 the 3rd argument in the drex field, so that by the time we get
5200 here, it looks to GAS as if this is a 2 operand instruction. */
5201 if ((i
.tm
.opcode_modifier
.drex
5202 || i
.tm
.opcode_modifier
.drexv
5203 || i
.tm
.opcode_modifier
.drexc
)
5204 && i
.reg_operands
== 2)
5206 const reg_entry
*reg
= i
.op
[i
.drex
.modrm_reg
].regs
;
5207 const reg_entry
*regmem
= i
.op
[i
.drex
.modrm_regmem
].regs
;
5209 i
.rm
.reg
= reg
->reg_num
;
5210 i
.rm
.regmem
= regmem
->reg_num
;
5212 if ((reg
->reg_flags
& RegRex
) != 0)
5214 if ((regmem
->reg_flags
& RegRex
) != 0)
5218 /* i.reg_operands MUST be the number of real register operands;
5219 implicit registers do not count. If there are 3 register
5220 operands, it must be a instruction with VexNDS. For a
5221 instruction with VexNDD, the destination register is encoded
5222 in VEX prefix. If there are 4 register operands, it must be
5223 a instruction with VEX prefix and 3 sources. */
5224 else if (i
.mem_operands
== 0
5225 && ((i
.reg_operands
== 2
5226 && !i
.tm
.opcode_modifier
.vexndd
)
5227 || (i
.reg_operands
== 3
5228 && i
.tm
.opcode_modifier
.vexnds
)
5229 || (i
.reg_operands
== 4 && vex_3_sources
)))
5237 /* When there are 3 operands, one of them may be immediate,
5238 which may be the first or the last operand. Otherwise,
5239 the first operand must be shift count register (cl) or it
5240 is an instruction with VexNDS. */
5241 assert (i
.imm_operands
== 1
5242 || (i
.imm_operands
== 0
5243 && (i
.tm
.opcode_modifier
.vexnds
5244 || i
.types
[0].bitfield
.shiftcount
)));
5245 if (operand_type_check (i
.types
[0], imm
)
5246 || i
.types
[0].bitfield
.shiftcount
)
5252 /* When there are 4 operands, the first two must be 8bit
5253 immediate operands. The source operand will be the 3rd
5256 For instructions with VexNDS, if the first operand
5257 an imm8, the source operand is the 2nd one. If the last
5258 operand is imm8, the source operand is the first one. */
5259 assert ((i
.imm_operands
== 2
5260 && i
.types
[0].bitfield
.imm8
5261 && i
.types
[1].bitfield
.imm8
)
5262 || (i
.tm
.opcode_modifier
.vexnds
5263 && i
.imm_operands
== 1
5264 && (i
.types
[0].bitfield
.imm8
5265 || i
.types
[i
.operands
- 1].bitfield
.imm8
)));
5266 if (i
.tm
.opcode_modifier
.vexnds
)
5268 if (i
.types
[0].bitfield
.imm8
)
5286 if (i
.tm
.opcode_modifier
.vexnds
)
5288 /* For instructions with VexNDS, the register-only
5289 source operand must be XMM or YMM register. It is
5290 encoded in VEX prefix. We need to clear RegMem bit
5291 before calling operand_type_equal. */
5292 i386_operand_type op
= i
.tm
.operand_types
[dest
];
5293 op
.bitfield
.regmem
= 0;
5294 if ((dest
+ 1) >= i
.operands
5295 || (!operand_type_equal (&op
, ®xmm
)
5296 && !operand_type_equal (&op
, ®ymm
)))
5298 i
.vex
.register_specifier
= i
.op
[dest
].regs
;
5304 /* One of the register operands will be encoded in the i.tm.reg
5305 field, the other in the combined i.tm.mode and i.tm.regmem
5306 fields. If no form of this instruction supports a memory
5307 destination operand, then we assume the source operand may
5308 sometimes be a memory operand and so we need to store the
5309 destination in the i.rm.reg field. */
5310 if (!i
.tm
.operand_types
[dest
].bitfield
.regmem
5311 && operand_type_check (i
.tm
.operand_types
[dest
], anymem
) == 0)
5313 i
.rm
.reg
= i
.op
[dest
].regs
->reg_num
;
5314 i
.rm
.regmem
= i
.op
[source
].regs
->reg_num
;
5315 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
5317 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
5322 i
.rm
.reg
= i
.op
[source
].regs
->reg_num
;
5323 i
.rm
.regmem
= i
.op
[dest
].regs
->reg_num
;
5324 if ((i
.op
[dest
].regs
->reg_flags
& RegRex
) != 0)
5326 if ((i
.op
[source
].regs
->reg_flags
& RegRex
) != 0)
5329 if (flag_code
!= CODE_64BIT
&& (i
.rex
& (REX_R
| REX_B
)))
5331 if (!i
.types
[0].bitfield
.control
5332 && !i
.types
[1].bitfield
.control
)
5334 i
.rex
&= ~(REX_R
| REX_B
);
5335 add_prefix (LOCK_PREFIX_OPCODE
);
5339 { /* If it's not 2 reg operands... */
5344 unsigned int fake_zero_displacement
= 0;
5347 /* This has been precalculated for SSE5 instructions
5348 that have a DREX field earlier in process_drex. */
5349 if (i
.tm
.opcode_modifier
.drex
5350 || i
.tm
.opcode_modifier
.drexv
5351 || i
.tm
.opcode_modifier
.drexc
)
5352 op
= i
.drex
.modrm_regmem
;
5355 for (op
= 0; op
< i
.operands
; op
++)
5356 if (operand_type_check (i
.types
[op
], anymem
))
5358 assert (op
< i
.operands
);
5363 if (i
.base_reg
== 0)
5366 if (!i
.disp_operands
)
5367 fake_zero_displacement
= 1;
5368 if (i
.index_reg
== 0)
5370 /* Operand is just <disp> */
5371 if (flag_code
== CODE_64BIT
)
5373 /* 64bit mode overwrites the 32bit absolute
5374 addressing by RIP relative addressing and
5375 absolute addressing is encoded by one of the
5376 redundant SIB forms. */
5377 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
5378 i
.sib
.base
= NO_BASE_REGISTER
;
5379 i
.sib
.index
= NO_INDEX_REGISTER
;
5380 i
.types
[op
] = ((i
.prefix
[ADDR_PREFIX
] == 0)
5381 ? disp32s
: disp32
);
5383 else if ((flag_code
== CODE_16BIT
)
5384 ^ (i
.prefix
[ADDR_PREFIX
] != 0))
5386 i
.rm
.regmem
= NO_BASE_REGISTER_16
;
5387 i
.types
[op
] = disp16
;
5391 i
.rm
.regmem
= NO_BASE_REGISTER
;
5392 i
.types
[op
] = disp32
;
5395 else /* !i.base_reg && i.index_reg */
5397 if (i
.index_reg
->reg_num
== RegEiz
5398 || i
.index_reg
->reg_num
== RegRiz
)
5399 i
.sib
.index
= NO_INDEX_REGISTER
;
5401 i
.sib
.index
= i
.index_reg
->reg_num
;
5402 i
.sib
.base
= NO_BASE_REGISTER
;
5403 i
.sib
.scale
= i
.log2_scale_factor
;
5404 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
5405 i
.types
[op
].bitfield
.disp8
= 0;
5406 i
.types
[op
].bitfield
.disp16
= 0;
5407 i
.types
[op
].bitfield
.disp64
= 0;
5408 if (flag_code
!= CODE_64BIT
)
5410 /* Must be 32 bit */
5411 i
.types
[op
].bitfield
.disp32
= 1;
5412 i
.types
[op
].bitfield
.disp32s
= 0;
5416 i
.types
[op
].bitfield
.disp32
= 0;
5417 i
.types
[op
].bitfield
.disp32s
= 1;
5419 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
5423 /* RIP addressing for 64bit mode. */
5424 else if (i
.base_reg
->reg_num
== RegRip
||
5425 i
.base_reg
->reg_num
== RegEip
)
5427 i
.rm
.regmem
= NO_BASE_REGISTER
;
5428 i
.types
[op
].bitfield
.disp8
= 0;
5429 i
.types
[op
].bitfield
.disp16
= 0;
5430 i
.types
[op
].bitfield
.disp32
= 0;
5431 i
.types
[op
].bitfield
.disp32s
= 1;
5432 i
.types
[op
].bitfield
.disp64
= 0;
5433 i
.flags
[op
] |= Operand_PCrel
;
5434 if (! i
.disp_operands
)
5435 fake_zero_displacement
= 1;
5437 else if (i
.base_reg
->reg_type
.bitfield
.reg16
)
5439 switch (i
.base_reg
->reg_num
)
5442 if (i
.index_reg
== 0)
5444 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
5445 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6;
5449 if (i
.index_reg
== 0)
5452 if (operand_type_check (i
.types
[op
], disp
) == 0)
5454 /* fake (%bp) into 0(%bp) */
5455 i
.types
[op
].bitfield
.disp8
= 1;
5456 fake_zero_displacement
= 1;
5459 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
5460 i
.rm
.regmem
= i
.index_reg
->reg_num
- 6 + 2;
5462 default: /* (%si) -> 4 or (%di) -> 5 */
5463 i
.rm
.regmem
= i
.base_reg
->reg_num
- 6 + 4;
5465 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
5467 else /* i.base_reg and 32/64 bit mode */
5469 if (flag_code
== CODE_64BIT
5470 && operand_type_check (i
.types
[op
], disp
))
5472 i386_operand_type temp
;
5473 operand_type_set (&temp
, 0);
5474 temp
.bitfield
.disp8
= i
.types
[op
].bitfield
.disp8
;
5476 if (i
.prefix
[ADDR_PREFIX
] == 0)
5477 i
.types
[op
].bitfield
.disp32s
= 1;
5479 i
.types
[op
].bitfield
.disp32
= 1;
5482 i
.rm
.regmem
= i
.base_reg
->reg_num
;
5483 if ((i
.base_reg
->reg_flags
& RegRex
) != 0)
5485 i
.sib
.base
= i
.base_reg
->reg_num
;
5486 /* x86-64 ignores REX prefix bit here to avoid decoder
5488 if ((i
.base_reg
->reg_num
& 7) == EBP_REG_NUM
)
5491 if (i
.disp_operands
== 0)
5493 fake_zero_displacement
= 1;
5494 i
.types
[op
].bitfield
.disp8
= 1;
5497 else if (i
.base_reg
->reg_num
== ESP_REG_NUM
)
5501 i
.sib
.scale
= i
.log2_scale_factor
;
5502 if (i
.index_reg
== 0)
5504 /* <disp>(%esp) becomes two byte modrm with no index
5505 register. We've already stored the code for esp
5506 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
5507 Any base register besides %esp will not use the
5508 extra modrm byte. */
5509 i
.sib
.index
= NO_INDEX_REGISTER
;
5513 if (i
.index_reg
->reg_num
== RegEiz
5514 || i
.index_reg
->reg_num
== RegRiz
)
5515 i
.sib
.index
= NO_INDEX_REGISTER
;
5517 i
.sib
.index
= i
.index_reg
->reg_num
;
5518 i
.rm
.regmem
= ESCAPE_TO_TWO_BYTE_ADDRESSING
;
5519 if ((i
.index_reg
->reg_flags
& RegRex
) != 0)
5524 && (i
.reloc
[op
] == BFD_RELOC_386_TLS_DESC_CALL
5525 || i
.reloc
[op
] == BFD_RELOC_X86_64_TLSDESC_CALL
))
5528 i
.rm
.mode
= mode_from_disp_size (i
.types
[op
]);
5531 if (fake_zero_displacement
)
5533 /* Fakes a zero displacement assuming that i.types[op]
5534 holds the correct displacement size. */
5537 assert (i
.op
[op
].disps
== 0);
5538 exp
= &disp_expressions
[i
.disp_operands
++];
5539 i
.op
[op
].disps
= exp
;
5540 exp
->X_op
= O_constant
;
5541 exp
->X_add_number
= 0;
5542 exp
->X_add_symbol
= (symbolS
*) 0;
5543 exp
->X_op_symbol
= (symbolS
*) 0;
5551 /* Fill in i.rm.reg or i.rm.regmem field with register operand
5552 (if any) based on i.tm.extension_opcode. Again, we must be
5553 careful to make sure that segment/control/debug/test/MMX
5554 registers are coded into the i.rm.reg field. */
5559 /* This has been precalculated for SSE5 instructions
5560 that have a DREX field earlier in process_drex. */
5561 if (i
.tm
.opcode_modifier
.drex
5562 || i
.tm
.opcode_modifier
.drexv
5563 || i
.tm
.opcode_modifier
.drexc
)
5565 op
= i
.drex
.modrm_reg
;
5566 i
.rm
.reg
= i
.op
[op
].regs
->reg_num
;
5567 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
5572 unsigned int vex_reg
= ~0;
5574 for (op
= 0; op
< i
.operands
; op
++)
5575 if (i
.types
[op
].bitfield
.reg8
5576 || i
.types
[op
].bitfield
.reg16
5577 || i
.types
[op
].bitfield
.reg32
5578 || i
.types
[op
].bitfield
.reg64
5579 || i
.types
[op
].bitfield
.regmmx
5580 || i
.types
[op
].bitfield
.regxmm
5581 || i
.types
[op
].bitfield
.regymm
5582 || i
.types
[op
].bitfield
.sreg2
5583 || i
.types
[op
].bitfield
.sreg3
5584 || i
.types
[op
].bitfield
.control
5585 || i
.types
[op
].bitfield
.debug
5586 || i
.types
[op
].bitfield
.test
)
5591 else if (i
.tm
.opcode_modifier
.vexnds
)
5593 /* For instructions with VexNDS, the register-only
5594 source operand is encoded in VEX prefix. */
5595 assert (mem
!= (unsigned int) ~0);
5600 assert (op
< i
.operands
);
5605 assert (vex_reg
< i
.operands
);
5608 else if (i
.tm
.opcode_modifier
.vexndd
)
5610 /* For instructions with VexNDD, there should be
5611 no memory operand and the register destination
5612 is encoded in VEX prefix. */
5613 assert (i
.mem_operands
== 0
5614 && (op
+ 2) == i
.operands
);
5618 assert (op
< i
.operands
);
5620 if (vex_reg
!= (unsigned int) ~0)
5622 assert (i
.reg_operands
== 2);
5624 if (!operand_type_equal (&i
.tm
.operand_types
[vex_reg
],
5626 && !operand_type_equal (&i
.tm
.operand_types
[vex_reg
],
5629 i
.vex
.register_specifier
= i
.op
[vex_reg
].regs
;
5632 /* If there is an extension opcode to put here, the
5633 register number must be put into the regmem field. */
5634 if (i
.tm
.extension_opcode
!= None
)
5636 i
.rm
.regmem
= i
.op
[op
].regs
->reg_num
;
5637 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
5642 i
.rm
.reg
= i
.op
[op
].regs
->reg_num
;
5643 if ((i
.op
[op
].regs
->reg_flags
& RegRex
) != 0)
5648 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
5649 must set it to 3 to indicate this is a register operand
5650 in the regmem field. */
5651 if (!i
.mem_operands
)
5655 /* Fill in i.rm.reg field with extension opcode (if any). */
5656 if (i
.tm
.extension_opcode
!= None
5657 && !(i
.tm
.opcode_modifier
.drex
5658 || i
.tm
.opcode_modifier
.drexv
5659 || i
.tm
.opcode_modifier
.drexc
))
5660 i
.rm
.reg
= i
.tm
.extension_opcode
;
5666 output_branch (void)
5671 relax_substateT subtype
;
5676 if (flag_code
== CODE_16BIT
)
5680 if (i
.prefix
[DATA_PREFIX
] != 0)
5686 /* Pentium4 branch hints. */
5687 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
5688 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
5693 if (i
.prefix
[REX_PREFIX
] != 0)
5699 if (i
.prefixes
!= 0 && !intel_syntax
)
5700 as_warn (_("skipping prefixes on this instruction"));
5702 /* It's always a symbol; End frag & setup for relax.
5703 Make sure there is enough room in this frag for the largest
5704 instruction we may generate in md_convert_frag. This is 2
5705 bytes for the opcode and room for the prefix and largest
5707 frag_grow (prefix
+ 2 + 4);
5708 /* Prefix and 1 opcode byte go in fr_fix. */
5709 p
= frag_more (prefix
+ 1);
5710 if (i
.prefix
[DATA_PREFIX
] != 0)
5711 *p
++ = DATA_PREFIX_OPCODE
;
5712 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
5713 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
)
5714 *p
++ = i
.prefix
[SEG_PREFIX
];
5715 if (i
.prefix
[REX_PREFIX
] != 0)
5716 *p
++ = i
.prefix
[REX_PREFIX
];
5717 *p
= i
.tm
.base_opcode
;
5719 if ((unsigned char) *p
== JUMP_PC_RELATIVE
)
5720 subtype
= ENCODE_RELAX_STATE (UNCOND_JUMP
, SMALL
);
5721 else if (cpu_arch_flags
.bitfield
.cpui386
)
5722 subtype
= ENCODE_RELAX_STATE (COND_JUMP
, SMALL
);
5724 subtype
= ENCODE_RELAX_STATE (COND_JUMP86
, SMALL
);
5727 sym
= i
.op
[0].disps
->X_add_symbol
;
5728 off
= i
.op
[0].disps
->X_add_number
;
5730 if (i
.op
[0].disps
->X_op
!= O_constant
5731 && i
.op
[0].disps
->X_op
!= O_symbol
)
5733 /* Handle complex expressions. */
5734 sym
= make_expr_symbol (i
.op
[0].disps
);
5738 /* 1 possible extra opcode + 4 byte displacement go in var part.
5739 Pass reloc in fr_var. */
5740 frag_var (rs_machine_dependent
, 5, i
.reloc
[0], subtype
, sym
, off
, p
);
5750 if (i
.tm
.opcode_modifier
.jumpbyte
)
5752 /* This is a loop or jecxz type instruction. */
5754 if (i
.prefix
[ADDR_PREFIX
] != 0)
5756 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE
);
5759 /* Pentium4 branch hints. */
5760 if (i
.prefix
[SEG_PREFIX
] == CS_PREFIX_OPCODE
/* not taken */
5761 || i
.prefix
[SEG_PREFIX
] == DS_PREFIX_OPCODE
/* taken */)
5763 FRAG_APPEND_1_CHAR (i
.prefix
[SEG_PREFIX
]);
5772 if (flag_code
== CODE_16BIT
)
5775 if (i
.prefix
[DATA_PREFIX
] != 0)
5777 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE
);
5787 if (i
.prefix
[REX_PREFIX
] != 0)
5789 FRAG_APPEND_1_CHAR (i
.prefix
[REX_PREFIX
]);
5793 if (i
.prefixes
!= 0 && !intel_syntax
)
5794 as_warn (_("skipping prefixes on this instruction"));
5796 p
= frag_more (1 + size
);
5797 *p
++ = i
.tm
.base_opcode
;
5799 fixP
= fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
5800 i
.op
[0].disps
, 1, reloc (size
, 1, 1, i
.reloc
[0]));
5802 /* All jumps handled here are signed, but don't use a signed limit
5803 check for 32 and 16 bit jumps as we want to allow wrap around at
5804 4G and 64k respectively. */
5806 fixP
->fx_signed
= 1;
5810 output_interseg_jump (void)
5818 if (flag_code
== CODE_16BIT
)
5822 if (i
.prefix
[DATA_PREFIX
] != 0)
5828 if (i
.prefix
[REX_PREFIX
] != 0)
5838 if (i
.prefixes
!= 0 && !intel_syntax
)
5839 as_warn (_("skipping prefixes on this instruction"));
5841 /* 1 opcode; 2 segment; offset */
5842 p
= frag_more (prefix
+ 1 + 2 + size
);
5844 if (i
.prefix
[DATA_PREFIX
] != 0)
5845 *p
++ = DATA_PREFIX_OPCODE
;
5847 if (i
.prefix
[REX_PREFIX
] != 0)
5848 *p
++ = i
.prefix
[REX_PREFIX
];
5850 *p
++ = i
.tm
.base_opcode
;
5851 if (i
.op
[1].imms
->X_op
== O_constant
)
5853 offsetT n
= i
.op
[1].imms
->X_add_number
;
5856 && !fits_in_unsigned_word (n
)
5857 && !fits_in_signed_word (n
))
5859 as_bad (_("16-bit jump out of range"));
5862 md_number_to_chars (p
, n
, size
);
5865 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
5866 i
.op
[1].imms
, 0, reloc (size
, 0, 0, i
.reloc
[1]));
5867 if (i
.op
[0].imms
->X_op
!= O_constant
)
5868 as_bad (_("can't handle non absolute segment in `%s'"),
5870 md_number_to_chars (p
+ size
, (valueT
) i
.op
[0].imms
->X_add_number
, 2);
5876 fragS
*insn_start_frag
;
5877 offsetT insn_start_off
;
5879 /* Tie dwarf2 debug info to the address at the start of the insn.
5880 We can't do this after the insn has been output as the current
5881 frag may have been closed off. eg. by frag_var. */
5882 dwarf2_emit_insn (0);
5884 insn_start_frag
= frag_now
;
5885 insn_start_off
= frag_now_fix ();
5888 if (i
.tm
.opcode_modifier
.jump
)
5890 else if (i
.tm
.opcode_modifier
.jumpbyte
5891 || i
.tm
.opcode_modifier
.jumpdword
)
5893 else if (i
.tm
.opcode_modifier
.jumpintersegment
)
5894 output_interseg_jump ();
5897 /* Output normal instructions here. */
5901 unsigned int prefix
;
5903 /* Since the VEX prefix contains the implicit prefix, we don't
5904 need the explicit prefix. */
5905 if (!i
.tm
.opcode_modifier
.vex
)
5907 switch (i
.tm
.opcode_length
)
5910 if (i
.tm
.base_opcode
& 0xff000000)
5912 prefix
= (i
.tm
.base_opcode
>> 24) & 0xff;
5917 if ((i
.tm
.base_opcode
& 0xff0000) != 0)
5919 prefix
= (i
.tm
.base_opcode
>> 16) & 0xff;
5920 if (i
.tm
.cpu_flags
.bitfield
.cpupadlock
)
5923 if (prefix
!= REPE_PREFIX_OPCODE
5924 || (i
.prefix
[LOCKREP_PREFIX
]
5925 != REPE_PREFIX_OPCODE
))
5926 add_prefix (prefix
);
5929 add_prefix (prefix
);
5938 /* The prefix bytes. */
5939 for (j
= ARRAY_SIZE (i
.prefix
), q
= i
.prefix
; j
> 0; j
--, q
++)
5941 FRAG_APPEND_1_CHAR (*q
);
5944 if (i
.tm
.opcode_modifier
.vex
)
5946 for (j
= 0, q
= i
.prefix
; j
< ARRAY_SIZE (i
.prefix
); j
++, q
++)
5951 /* REX byte is encoded in VEX prefix. */
5955 FRAG_APPEND_1_CHAR (*q
);
5958 /* There should be no other prefixes for instructions
5963 /* Now the VEX prefix. */
5964 p
= frag_more (i
.vex
.length
);
5965 for (j
= 0; j
< i
.vex
.length
; j
++)
5966 p
[j
] = i
.vex
.bytes
[j
];
5969 /* Now the opcode; be careful about word order here! */
5970 if (i
.tm
.opcode_length
== 1)
5972 FRAG_APPEND_1_CHAR (i
.tm
.base_opcode
);
5976 switch (i
.tm
.opcode_length
)
5980 *p
++ = (i
.tm
.base_opcode
>> 16) & 0xff;
5990 /* Put out high byte first: can't use md_number_to_chars! */
5991 *p
++ = (i
.tm
.base_opcode
>> 8) & 0xff;
5992 *p
= i
.tm
.base_opcode
& 0xff;
5994 /* On SSE5, encode the OC1 bit in the DREX field if this
5995 encoding has multiple formats. */
5996 if (i
.tm
.opcode_modifier
.drex
5997 && i
.tm
.opcode_modifier
.drexv
5998 && DREX_OC1 (i
.tm
.extension_opcode
))
5999 *p
|= DREX_OC1_MASK
;
6002 /* Now the modrm byte and sib byte (if present). */
6003 if (i
.tm
.opcode_modifier
.modrm
)
6005 FRAG_APPEND_1_CHAR ((i
.rm
.regmem
<< 0
6008 /* If i.rm.regmem == ESP (4)
6009 && i.rm.mode != (Register mode)
6011 ==> need second modrm byte. */
6012 if (i
.rm
.regmem
== ESCAPE_TO_TWO_BYTE_ADDRESSING
6014 && !(i
.base_reg
&& i
.base_reg
->reg_type
.bitfield
.reg16
))
6015 FRAG_APPEND_1_CHAR ((i
.sib
.base
<< 0
6017 | i
.sib
.scale
<< 6));
6020 /* Write the DREX byte if needed. */
6021 if (i
.tm
.opcode_modifier
.drex
|| i
.tm
.opcode_modifier
.drexc
)
6024 *p
= (((i
.drex
.reg
& 0xf) << 4) | (i
.drex
.rex
& 0x7));
6026 /* Encode the OC0 bit if this encoding has multiple
6028 if ((i
.tm
.opcode_modifier
.drex
6029 || i
.tm
.opcode_modifier
.drexv
)
6030 && DREX_OC0 (i
.tm
.extension_opcode
))
6031 *p
|= DREX_OC0_MASK
;
6034 if (i
.disp_operands
)
6035 output_disp (insn_start_frag
, insn_start_off
);
6038 output_imm (insn_start_frag
, insn_start_off
);
6044 pi ("" /*line*/, &i
);
6046 #endif /* DEBUG386 */
6049 /* Return the size of the displacement operand N. */
6052 disp_size (unsigned int n
)
6055 if (i
.types
[n
].bitfield
.disp64
)
6057 else if (i
.types
[n
].bitfield
.disp8
)
6059 else if (i
.types
[n
].bitfield
.disp16
)
6064 /* Return the size of the immediate operand N. */
6067 imm_size (unsigned int n
)
6070 if (i
.types
[n
].bitfield
.imm64
)
6072 else if (i
.types
[n
].bitfield
.imm8
|| i
.types
[n
].bitfield
.imm8s
)
6074 else if (i
.types
[n
].bitfield
.imm16
)
6080 output_disp (fragS
*insn_start_frag
, offsetT insn_start_off
)
6085 for (n
= 0; n
< i
.operands
; n
++)
6087 if (operand_type_check (i
.types
[n
], disp
))
6089 if (i
.op
[n
].disps
->X_op
== O_constant
)
6091 int size
= disp_size (n
);
6094 val
= offset_in_range (i
.op
[n
].disps
->X_add_number
,
6096 p
= frag_more (size
);
6097 md_number_to_chars (p
, val
, size
);
6101 enum bfd_reloc_code_real reloc_type
;
6102 int size
= disp_size (n
);
6103 int sign
= i
.types
[n
].bitfield
.disp32s
;
6104 int pcrel
= (i
.flags
[n
] & Operand_PCrel
) != 0;
6106 /* We can't have 8 bit displacement here. */
6107 assert (!i
.types
[n
].bitfield
.disp8
);
6109 /* The PC relative address is computed relative
6110 to the instruction boundary, so in case immediate
6111 fields follows, we need to adjust the value. */
6112 if (pcrel
&& i
.imm_operands
)
6117 for (n1
= 0; n1
< i
.operands
; n1
++)
6118 if (operand_type_check (i
.types
[n1
], imm
))
6120 /* Only one immediate is allowed for PC
6121 relative address. */
6124 i
.op
[n
].disps
->X_add_number
-= sz
;
6126 /* We should find the immediate. */
6130 p
= frag_more (size
);
6131 reloc_type
= reloc (size
, pcrel
, sign
, i
.reloc
[n
]);
6133 && GOT_symbol
== i
.op
[n
].disps
->X_add_symbol
6134 && (((reloc_type
== BFD_RELOC_32
6135 || reloc_type
== BFD_RELOC_X86_64_32S
6136 || (reloc_type
== BFD_RELOC_64
6138 && (i
.op
[n
].disps
->X_op
== O_symbol
6139 || (i
.op
[n
].disps
->X_op
== O_add
6140 && ((symbol_get_value_expression
6141 (i
.op
[n
].disps
->X_op_symbol
)->X_op
)
6143 || reloc_type
== BFD_RELOC_32_PCREL
))
6147 if (insn_start_frag
== frag_now
)
6148 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
6153 add
= insn_start_frag
->fr_fix
- insn_start_off
;
6154 for (fr
= insn_start_frag
->fr_next
;
6155 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
6157 add
+= p
- frag_now
->fr_literal
;
6162 reloc_type
= BFD_RELOC_386_GOTPC
;
6163 i
.op
[n
].imms
->X_add_number
+= add
;
6165 else if (reloc_type
== BFD_RELOC_64
)
6166 reloc_type
= BFD_RELOC_X86_64_GOTPC64
;
6168 /* Don't do the adjustment for x86-64, as there
6169 the pcrel addressing is relative to the _next_
6170 insn, and that is taken care of in other code. */
6171 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
6173 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
6174 i
.op
[n
].disps
, pcrel
, reloc_type
);
6181 output_imm (fragS
*insn_start_frag
, offsetT insn_start_off
)
6186 for (n
= 0; n
< i
.operands
; n
++)
6188 if (operand_type_check (i
.types
[n
], imm
))
6190 if (i
.op
[n
].imms
->X_op
== O_constant
)
6192 int size
= imm_size (n
);
6195 val
= offset_in_range (i
.op
[n
].imms
->X_add_number
,
6197 p
= frag_more (size
);
6198 md_number_to_chars (p
, val
, size
);
6202 /* Not absolute_section.
6203 Need a 32-bit fixup (don't support 8bit
6204 non-absolute imms). Try to support other
6206 enum bfd_reloc_code_real reloc_type
;
6207 int size
= imm_size (n
);
6210 if (i
.types
[n
].bitfield
.imm32s
6211 && (i
.suffix
== QWORD_MNEM_SUFFIX
6212 || (!i
.suffix
&& i
.tm
.opcode_modifier
.no_lsuf
)))
6217 p
= frag_more (size
);
6218 reloc_type
= reloc (size
, 0, sign
, i
.reloc
[n
]);
6220 /* This is tough to explain. We end up with this one if we
6221 * have operands that look like
6222 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
6223 * obtain the absolute address of the GOT, and it is strongly
6224 * preferable from a performance point of view to avoid using
6225 * a runtime relocation for this. The actual sequence of
6226 * instructions often look something like:
6231 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
6233 * The call and pop essentially return the absolute address
6234 * of the label .L66 and store it in %ebx. The linker itself
6235 * will ultimately change the first operand of the addl so
6236 * that %ebx points to the GOT, but to keep things simple, the
6237 * .o file must have this operand set so that it generates not
6238 * the absolute address of .L66, but the absolute address of
6239 * itself. This allows the linker itself simply treat a GOTPC
6240 * relocation as asking for a pcrel offset to the GOT to be
6241 * added in, and the addend of the relocation is stored in the
6242 * operand field for the instruction itself.
6244 * Our job here is to fix the operand so that it would add
6245 * the correct offset so that %ebx would point to itself. The
6246 * thing that is tricky is that .-.L66 will point to the
6247 * beginning of the instruction, so we need to further modify
6248 * the operand so that it will point to itself. There are
6249 * other cases where you have something like:
6251 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
6253 * and here no correction would be required. Internally in
6254 * the assembler we treat operands of this form as not being
6255 * pcrel since the '.' is explicitly mentioned, and I wonder
6256 * whether it would simplify matters to do it this way. Who
6257 * knows. In earlier versions of the PIC patches, the
6258 * pcrel_adjust field was used to store the correction, but
6259 * since the expression is not pcrel, I felt it would be
6260 * confusing to do it this way. */
6262 if ((reloc_type
== BFD_RELOC_32
6263 || reloc_type
== BFD_RELOC_X86_64_32S
6264 || reloc_type
== BFD_RELOC_64
)
6266 && GOT_symbol
== i
.op
[n
].imms
->X_add_symbol
6267 && (i
.op
[n
].imms
->X_op
== O_symbol
6268 || (i
.op
[n
].imms
->X_op
== O_add
6269 && ((symbol_get_value_expression
6270 (i
.op
[n
].imms
->X_op_symbol
)->X_op
)
6275 if (insn_start_frag
== frag_now
)
6276 add
= (p
- frag_now
->fr_literal
) - insn_start_off
;
6281 add
= insn_start_frag
->fr_fix
- insn_start_off
;
6282 for (fr
= insn_start_frag
->fr_next
;
6283 fr
&& fr
!= frag_now
; fr
= fr
->fr_next
)
6285 add
+= p
- frag_now
->fr_literal
;
6289 reloc_type
= BFD_RELOC_386_GOTPC
;
6291 reloc_type
= BFD_RELOC_X86_64_GOTPC32
;
6293 reloc_type
= BFD_RELOC_X86_64_GOTPC64
;
6294 i
.op
[n
].imms
->X_add_number
+= add
;
6296 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
, size
,
6297 i
.op
[n
].imms
, 0, reloc_type
);
6303 /* x86_cons_fix_new is called via the expression parsing code when a
6304 reloc is needed. We use this hook to get the correct .got reloc. */
6305 static enum bfd_reloc_code_real got_reloc
= NO_RELOC
;
6306 static int cons_sign
= -1;
6309 x86_cons_fix_new (fragS
*frag
, unsigned int off
, unsigned int len
,
6312 enum bfd_reloc_code_real r
= reloc (len
, 0, cons_sign
, got_reloc
);
6314 got_reloc
= NO_RELOC
;
6317 if (exp
->X_op
== O_secrel
)
6319 exp
->X_op
= O_symbol
;
6320 r
= BFD_RELOC_32_SECREL
;
6324 fix_new_exp (frag
, off
, len
, exp
, 0, r
);
6327 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
6328 # define lex_got(reloc, adjust, types) NULL
6330 /* Parse operands of the form
6331 <symbol>@GOTOFF+<nnn>
6332 and similar .plt or .got references.
6334 If we find one, set up the correct relocation in RELOC and copy the
6335 input string, minus the `@GOTOFF' into a malloc'd buffer for
6336 parsing by the calling routine. Return this buffer, and if ADJUST
6337 is non-null set it to the length of the string we removed from the
6338 input line. Otherwise return NULL. */
6340 lex_got (enum bfd_reloc_code_real
*reloc
,
6342 i386_operand_type
*types
)
6344 /* Some of the relocations depend on the size of what field is to
6345 be relocated. But in our callers i386_immediate and i386_displacement
6346 we don't yet know the operand size (this will be set by insn
6347 matching). Hence we record the word32 relocation here,
6348 and adjust the reloc according to the real size in reloc(). */
6349 static const struct {
6351 const enum bfd_reloc_code_real rel
[2];
6352 const i386_operand_type types64
;
6355 BFD_RELOC_X86_64_PLTOFF64
},
6356 OPERAND_TYPE_IMM64
},
6357 { "PLT", { BFD_RELOC_386_PLT32
,
6358 BFD_RELOC_X86_64_PLT32
},
6359 OPERAND_TYPE_IMM32_32S_DISP32
},
6361 BFD_RELOC_X86_64_GOTPLT64
},
6362 OPERAND_TYPE_IMM64_DISP64
},
6363 { "GOTOFF", { BFD_RELOC_386_GOTOFF
,
6364 BFD_RELOC_X86_64_GOTOFF64
},
6365 OPERAND_TYPE_IMM64_DISP64
},
6367 BFD_RELOC_X86_64_GOTPCREL
},
6368 OPERAND_TYPE_IMM32_32S_DISP32
},
6369 { "TLSGD", { BFD_RELOC_386_TLS_GD
,
6370 BFD_RELOC_X86_64_TLSGD
},
6371 OPERAND_TYPE_IMM32_32S_DISP32
},
6372 { "TLSLDM", { BFD_RELOC_386_TLS_LDM
,
6374 OPERAND_TYPE_NONE
},
6376 BFD_RELOC_X86_64_TLSLD
},
6377 OPERAND_TYPE_IMM32_32S_DISP32
},
6378 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32
,
6379 BFD_RELOC_X86_64_GOTTPOFF
},
6380 OPERAND_TYPE_IMM32_32S_DISP32
},
6381 { "TPOFF", { BFD_RELOC_386_TLS_LE_32
,
6382 BFD_RELOC_X86_64_TPOFF32
},
6383 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
6384 { "NTPOFF", { BFD_RELOC_386_TLS_LE
,
6386 OPERAND_TYPE_NONE
},
6387 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32
,
6388 BFD_RELOC_X86_64_DTPOFF32
},
6390 OPERAND_TYPE_IMM32_32S_64_DISP32_64
},
6391 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE
,
6393 OPERAND_TYPE_NONE
},
6394 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE
,
6396 OPERAND_TYPE_NONE
},
6397 { "GOT", { BFD_RELOC_386_GOT32
,
6398 BFD_RELOC_X86_64_GOT32
},
6399 OPERAND_TYPE_IMM32_32S_64_DISP32
},
6400 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC
,
6401 BFD_RELOC_X86_64_GOTPC32_TLSDESC
},
6402 OPERAND_TYPE_IMM32_32S_DISP32
},
6403 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL
,
6404 BFD_RELOC_X86_64_TLSDESC_CALL
},
6405 OPERAND_TYPE_IMM32_32S_DISP32
},
6413 for (cp
= input_line_pointer
; *cp
!= '@'; cp
++)
6414 if (is_end_of_line
[(unsigned char) *cp
] || *cp
== ',')
6417 for (j
= 0; j
< ARRAY_SIZE (gotrel
); j
++)
6421 len
= strlen (gotrel
[j
].str
);
6422 if (strncasecmp (cp
+ 1, gotrel
[j
].str
, len
) == 0)
6424 if (gotrel
[j
].rel
[object_64bit
] != 0)
6427 char *tmpbuf
, *past_reloc
;
6429 *reloc
= gotrel
[j
].rel
[object_64bit
];
6435 if (flag_code
!= CODE_64BIT
)
6437 types
->bitfield
.imm32
= 1;
6438 types
->bitfield
.disp32
= 1;
6441 *types
= gotrel
[j
].types64
;
6444 if (GOT_symbol
== NULL
)
6445 GOT_symbol
= symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME
);
6447 /* The length of the first part of our input line. */
6448 first
= cp
- input_line_pointer
;
6450 /* The second part goes from after the reloc token until
6451 (and including) an end_of_line char or comma. */
6452 past_reloc
= cp
+ 1 + len
;
6454 while (!is_end_of_line
[(unsigned char) *cp
] && *cp
!= ',')
6456 second
= cp
+ 1 - past_reloc
;
6458 /* Allocate and copy string. The trailing NUL shouldn't
6459 be necessary, but be safe. */
6460 tmpbuf
= xmalloc (first
+ second
+ 2);
6461 memcpy (tmpbuf
, input_line_pointer
, first
);
6462 if (second
!= 0 && *past_reloc
!= ' ')
6463 /* Replace the relocation token with ' ', so that
6464 errors like foo@GOTOFF1 will be detected. */
6465 tmpbuf
[first
++] = ' ';
6466 memcpy (tmpbuf
+ first
, past_reloc
, second
);
6467 tmpbuf
[first
+ second
] = '\0';
6471 as_bad (_("@%s reloc is not supported with %d-bit output format"),
6472 gotrel
[j
].str
, 1 << (5 + object_64bit
));
6477 /* Might be a symbol version string. Don't as_bad here. */
6482 x86_cons (expressionS
*exp
, int size
)
6484 if (size
== 4 || (object_64bit
&& size
== 8))
6486 /* Handle @GOTOFF and the like in an expression. */
6488 char *gotfree_input_line
;
6491 save
= input_line_pointer
;
6492 gotfree_input_line
= lex_got (&got_reloc
, &adjust
, NULL
);
6493 if (gotfree_input_line
)
6494 input_line_pointer
= gotfree_input_line
;
6498 if (gotfree_input_line
)
6500 /* expression () has merrily parsed up to the end of line,
6501 or a comma - in the wrong buffer. Transfer how far
6502 input_line_pointer has moved to the right buffer. */
6503 input_line_pointer
= (save
6504 + (input_line_pointer
- gotfree_input_line
)
6506 free (gotfree_input_line
);
6507 if (exp
->X_op
== O_constant
6508 || exp
->X_op
== O_absent
6509 || exp
->X_op
== O_illegal
6510 || exp
->X_op
== O_register
6511 || exp
->X_op
== O_big
)
6513 char c
= *input_line_pointer
;
6514 *input_line_pointer
= 0;
6515 as_bad (_("missing or invalid expression `%s'"), save
);
6516 *input_line_pointer
= c
;
6525 static void signed_cons (int size
)
6527 if (flag_code
== CODE_64BIT
)
6535 pe_directive_secrel (dummy
)
6536 int dummy ATTRIBUTE_UNUSED
;
6543 if (exp
.X_op
== O_symbol
)
6544 exp
.X_op
= O_secrel
;
6546 emit_expr (&exp
, 4);
6548 while (*input_line_pointer
++ == ',');
6550 input_line_pointer
--;
6551 demand_empty_rest_of_line ();
6556 i386_immediate (char *imm_start
)
6558 char *save_input_line_pointer
;
6559 char *gotfree_input_line
;
6562 i386_operand_type types
;
6564 operand_type_set (&types
, ~0);
6566 if (i
.imm_operands
== MAX_IMMEDIATE_OPERANDS
)
6568 as_bad (_("at most %d immediate operands are allowed"),
6569 MAX_IMMEDIATE_OPERANDS
);
6573 exp
= &im_expressions
[i
.imm_operands
++];
6574 i
.op
[this_operand
].imms
= exp
;
6576 if (is_space_char (*imm_start
))
6579 save_input_line_pointer
= input_line_pointer
;
6580 input_line_pointer
= imm_start
;
6582 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
6583 if (gotfree_input_line
)
6584 input_line_pointer
= gotfree_input_line
;
6586 exp_seg
= expression (exp
);
6589 if (*input_line_pointer
)
6590 as_bad (_("junk `%s' after expression"), input_line_pointer
);
6592 input_line_pointer
= save_input_line_pointer
;
6593 if (gotfree_input_line
)
6594 free (gotfree_input_line
);
6596 if (exp
->X_op
== O_absent
6597 || exp
->X_op
== O_illegal
6598 || exp
->X_op
== O_big
6599 || (gotfree_input_line
6600 && (exp
->X_op
== O_constant
6601 || exp
->X_op
== O_register
)))
6603 as_bad (_("missing or invalid immediate expression `%s'"),
6607 else if (exp
->X_op
== O_constant
)
6609 /* Size it properly later. */
6610 i
.types
[this_operand
].bitfield
.imm64
= 1;
6611 /* If BFD64, sign extend val. */
6612 if (!use_rela_relocations
6613 && (exp
->X_add_number
& ~(((addressT
) 2 << 31) - 1)) == 0)
6615 = (exp
->X_add_number
^ ((addressT
) 1 << 31)) - ((addressT
) 1 << 31);
6617 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6618 else if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
6619 && exp_seg
!= absolute_section
6620 && exp_seg
!= text_section
6621 && exp_seg
!= data_section
6622 && exp_seg
!= bss_section
6623 && exp_seg
!= undefined_section
6624 && !bfd_is_com_section (exp_seg
))
6626 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
6630 else if (!intel_syntax
&& exp
->X_op
== O_register
)
6632 as_bad (_("illegal immediate register operand %s"), imm_start
);
6637 /* This is an address. The size of the address will be
6638 determined later, depending on destination register,
6639 suffix, or the default for the section. */
6640 i
.types
[this_operand
].bitfield
.imm8
= 1;
6641 i
.types
[this_operand
].bitfield
.imm16
= 1;
6642 i
.types
[this_operand
].bitfield
.imm32
= 1;
6643 i
.types
[this_operand
].bitfield
.imm32s
= 1;
6644 i
.types
[this_operand
].bitfield
.imm64
= 1;
6645 i
.types
[this_operand
] = operand_type_and (i
.types
[this_operand
],
6653 i386_scale (char *scale
)
6656 char *save
= input_line_pointer
;
6658 input_line_pointer
= scale
;
6659 val
= get_absolute_expression ();
6664 i
.log2_scale_factor
= 0;
6667 i
.log2_scale_factor
= 1;
6670 i
.log2_scale_factor
= 2;
6673 i
.log2_scale_factor
= 3;
6677 char sep
= *input_line_pointer
;
6679 *input_line_pointer
= '\0';
6680 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
6682 *input_line_pointer
= sep
;
6683 input_line_pointer
= save
;
6687 if (i
.log2_scale_factor
!= 0 && i
.index_reg
== 0)
6689 as_warn (_("scale factor of %d without an index register"),
6690 1 << i
.log2_scale_factor
);
6691 i
.log2_scale_factor
= 0;
6693 scale
= input_line_pointer
;
6694 input_line_pointer
= save
;
6699 i386_displacement (char *disp_start
, char *disp_end
)
6703 char *save_input_line_pointer
;
6704 char *gotfree_input_line
;
6706 i386_operand_type bigdisp
, types
= anydisp
;
6709 if (i
.disp_operands
== MAX_MEMORY_OPERANDS
)
6711 as_bad (_("at most %d displacement operands are allowed"),
6712 MAX_MEMORY_OPERANDS
);
6716 operand_type_set (&bigdisp
, 0);
6717 if ((i
.types
[this_operand
].bitfield
.jumpabsolute
)
6718 || (!current_templates
->start
->opcode_modifier
.jump
6719 && !current_templates
->start
->opcode_modifier
.jumpdword
))
6721 bigdisp
.bitfield
.disp32
= 1;
6722 override
= (i
.prefix
[ADDR_PREFIX
] != 0);
6723 if (flag_code
== CODE_64BIT
)
6727 bigdisp
.bitfield
.disp32s
= 1;
6728 bigdisp
.bitfield
.disp64
= 1;
6731 else if ((flag_code
== CODE_16BIT
) ^ override
)
6733 bigdisp
.bitfield
.disp32
= 0;
6734 bigdisp
.bitfield
.disp16
= 1;
6739 /* For PC-relative branches, the width of the displacement
6740 is dependent upon data size, not address size. */
6741 override
= (i
.prefix
[DATA_PREFIX
] != 0);
6742 if (flag_code
== CODE_64BIT
)
6744 if (override
|| i
.suffix
== WORD_MNEM_SUFFIX
)
6745 bigdisp
.bitfield
.disp16
= 1;
6748 bigdisp
.bitfield
.disp32
= 1;
6749 bigdisp
.bitfield
.disp32s
= 1;
6755 override
= (i
.suffix
== (flag_code
!= CODE_16BIT
6757 : LONG_MNEM_SUFFIX
));
6758 bigdisp
.bitfield
.disp32
= 1;
6759 if ((flag_code
== CODE_16BIT
) ^ override
)
6761 bigdisp
.bitfield
.disp32
= 0;
6762 bigdisp
.bitfield
.disp16
= 1;
6766 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
6769 exp
= &disp_expressions
[i
.disp_operands
];
6770 i
.op
[this_operand
].disps
= exp
;
6772 save_input_line_pointer
= input_line_pointer
;
6773 input_line_pointer
= disp_start
;
6774 END_STRING_AND_SAVE (disp_end
);
6776 #ifndef GCC_ASM_O_HACK
6777 #define GCC_ASM_O_HACK 0
6780 END_STRING_AND_SAVE (disp_end
+ 1);
6781 if (i
.types
[this_operand
].bitfield
.baseIndex
6782 && displacement_string_end
[-1] == '+')
6784 /* This hack is to avoid a warning when using the "o"
6785 constraint within gcc asm statements.
6788 #define _set_tssldt_desc(n,addr,limit,type) \
6789 __asm__ __volatile__ ( \
6791 "movw %w1,2+%0\n\t" \
6793 "movb %b1,4+%0\n\t" \
6794 "movb %4,5+%0\n\t" \
6795 "movb $0,6+%0\n\t" \
6796 "movb %h1,7+%0\n\t" \
6798 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
6800 This works great except that the output assembler ends
6801 up looking a bit weird if it turns out that there is
6802 no offset. You end up producing code that looks like:
6815 So here we provide the missing zero. */
6817 *displacement_string_end
= '0';
6820 gotfree_input_line
= lex_got (&i
.reloc
[this_operand
], NULL
, &types
);
6821 if (gotfree_input_line
)
6822 input_line_pointer
= gotfree_input_line
;
6824 exp_seg
= expression (exp
);
6827 if (*input_line_pointer
)
6828 as_bad (_("junk `%s' after expression"), input_line_pointer
);
6830 RESTORE_END_STRING (disp_end
+ 1);
6832 input_line_pointer
= save_input_line_pointer
;
6833 if (gotfree_input_line
)
6834 free (gotfree_input_line
);
6837 /* We do this to make sure that the section symbol is in
6838 the symbol table. We will ultimately change the relocation
6839 to be relative to the beginning of the section. */
6840 if (i
.reloc
[this_operand
] == BFD_RELOC_386_GOTOFF
6841 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
6842 || i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
6844 if (exp
->X_op
!= O_symbol
)
6847 if (S_IS_LOCAL (exp
->X_add_symbol
)
6848 && S_GET_SEGMENT (exp
->X_add_symbol
) != undefined_section
)
6849 section_symbol (S_GET_SEGMENT (exp
->X_add_symbol
));
6850 exp
->X_op
= O_subtract
;
6851 exp
->X_op_symbol
= GOT_symbol
;
6852 if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTPCREL
)
6853 i
.reloc
[this_operand
] = BFD_RELOC_32_PCREL
;
6854 else if (i
.reloc
[this_operand
] == BFD_RELOC_X86_64_GOTOFF64
)
6855 i
.reloc
[this_operand
] = BFD_RELOC_64
;
6857 i
.reloc
[this_operand
] = BFD_RELOC_32
;
6860 else if (exp
->X_op
== O_absent
6861 || exp
->X_op
== O_illegal
6862 || exp
->X_op
== O_big
6863 || (gotfree_input_line
6864 && (exp
->X_op
== O_constant
6865 || exp
->X_op
== O_register
)))
6868 as_bad (_("missing or invalid displacement expression `%s'"),
6873 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6874 else if (exp
->X_op
!= O_constant
6875 && OUTPUT_FLAVOR
== bfd_target_aout_flavour
6876 && exp_seg
!= absolute_section
6877 && exp_seg
!= text_section
6878 && exp_seg
!= data_section
6879 && exp_seg
!= bss_section
6880 && exp_seg
!= undefined_section
6881 && !bfd_is_com_section (exp_seg
))
6883 as_bad (_("unimplemented segment %s in operand"), exp_seg
->name
);
6888 RESTORE_END_STRING (disp_end
);
6890 /* Check if this is a displacement only operand. */
6891 bigdisp
= i
.types
[this_operand
];
6892 bigdisp
.bitfield
.disp8
= 0;
6893 bigdisp
.bitfield
.disp16
= 0;
6894 bigdisp
.bitfield
.disp32
= 0;
6895 bigdisp
.bitfield
.disp32s
= 0;
6896 bigdisp
.bitfield
.disp64
= 0;
6897 if (operand_type_all_zero (&bigdisp
))
6898 i
.types
[this_operand
] = operand_type_and (i
.types
[this_operand
],
6904 /* Make sure the memory operand we've been dealt is valid.
6905 Return 1 on success, 0 on a failure. */
6908 i386_index_check (const char *operand_string
)
6911 const char *kind
= "base/index";
6912 #if INFER_ADDR_PREFIX
6918 if (current_templates
->start
->opcode_modifier
.isstring
6919 && !current_templates
->start
->opcode_modifier
.immext
6920 && (current_templates
->end
[-1].opcode_modifier
.isstring
6923 /* Memory operands of string insns are special in that they only allow
6924 a single register (rDI, rSI, or rBX) as their memory address. */
6925 unsigned int expected
;
6927 kind
= "string address";
6929 if (current_templates
->start
->opcode_modifier
.w
)
6931 i386_operand_type type
= current_templates
->end
[-1].operand_types
[0];
6933 if (!type
.bitfield
.baseindex
6934 || ((!i
.mem_operands
!= !intel_syntax
)
6935 && current_templates
->end
[-1].operand_types
[1]
6936 .bitfield
.baseindex
))
6937 type
= current_templates
->end
[-1].operand_types
[1];
6938 expected
= type
.bitfield
.esseg
? 7 /* rDI */ : 6 /* rSI */;
6941 expected
= 3 /* rBX */;
6943 if (!i
.base_reg
|| i
.index_reg
6944 || operand_type_check (i
.types
[this_operand
], disp
))
6946 else if (!(flag_code
== CODE_64BIT
6947 ? i
.prefix
[ADDR_PREFIX
]
6948 ? i
.base_reg
->reg_type
.bitfield
.reg32
6949 : i
.base_reg
->reg_type
.bitfield
.reg64
6950 : (flag_code
== CODE_16BIT
) ^ !i
.prefix
[ADDR_PREFIX
]
6951 ? i
.base_reg
->reg_type
.bitfield
.reg32
6952 : i
.base_reg
->reg_type
.bitfield
.reg16
))
6954 else if (i
.base_reg
->reg_num
!= expected
)
6961 for (j
= 0; j
< i386_regtab_size
; ++j
)
6962 if ((flag_code
== CODE_64BIT
6963 ? i
.prefix
[ADDR_PREFIX
]
6964 ? i386_regtab
[j
].reg_type
.bitfield
.reg32
6965 : i386_regtab
[j
].reg_type
.bitfield
.reg64
6966 : (flag_code
== CODE_16BIT
) ^ !i
.prefix
[ADDR_PREFIX
]
6967 ? i386_regtab
[j
].reg_type
.bitfield
.reg32
6968 : i386_regtab
[j
].reg_type
.bitfield
.reg16
)
6969 && i386_regtab
[j
].reg_num
== expected
)
6971 assert (j
< i386_regtab_size
);
6972 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
6974 intel_syntax
? '[' : '(',
6976 i386_regtab
[j
].reg_name
,
6977 intel_syntax
? ']' : ')');
6981 else if (flag_code
== CODE_64BIT
)
6984 && ((i
.prefix
[ADDR_PREFIX
] == 0
6985 && !i
.base_reg
->reg_type
.bitfield
.reg64
)
6986 || (i
.prefix
[ADDR_PREFIX
]
6987 && !i
.base_reg
->reg_type
.bitfield
.reg32
))
6989 || i
.base_reg
->reg_num
!=
6990 (i
.prefix
[ADDR_PREFIX
] == 0 ? RegRip
: RegEip
)))
6992 && (!i
.index_reg
->reg_type
.bitfield
.baseindex
6993 || (i
.prefix
[ADDR_PREFIX
] == 0
6994 && i
.index_reg
->reg_num
!= RegRiz
6995 && !i
.index_reg
->reg_type
.bitfield
.reg64
6997 || (i
.prefix
[ADDR_PREFIX
]
6998 && i
.index_reg
->reg_num
!= RegEiz
6999 && !i
.index_reg
->reg_type
.bitfield
.reg32
))))
7004 if ((flag_code
== CODE_16BIT
) ^ (i
.prefix
[ADDR_PREFIX
] != 0))
7008 && (!i
.base_reg
->reg_type
.bitfield
.reg16
7009 || !i
.base_reg
->reg_type
.bitfield
.baseindex
))
7011 && (!i
.index_reg
->reg_type
.bitfield
.reg16
7012 || !i
.index_reg
->reg_type
.bitfield
.baseindex
7014 && i
.base_reg
->reg_num
< 6
7015 && i
.index_reg
->reg_num
>= 6
7016 && i
.log2_scale_factor
== 0))))
7023 && !i
.base_reg
->reg_type
.bitfield
.reg32
)
7025 && ((!i
.index_reg
->reg_type
.bitfield
.reg32
7026 && i
.index_reg
->reg_num
!= RegEiz
)
7027 || !i
.index_reg
->reg_type
.bitfield
.baseindex
)))
7033 #if INFER_ADDR_PREFIX
7034 if (!i
.mem_operands
&& !i
.prefix
[ADDR_PREFIX
])
7036 i
.prefix
[ADDR_PREFIX
] = ADDR_PREFIX_OPCODE
;
7038 /* Change the size of any displacement too. At most one of
7039 Disp16 or Disp32 is set.
7040 FIXME. There doesn't seem to be any real need for separate
7041 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
7042 Removing them would probably clean up the code quite a lot. */
7043 if (flag_code
!= CODE_64BIT
7044 && (i
.types
[this_operand
].bitfield
.disp16
7045 || i
.types
[this_operand
].bitfield
.disp32
))
7046 i
.types
[this_operand
]
7047 = operand_type_xor (i
.types
[this_operand
], disp16_32
);
7052 as_bad (_("`%s' is not a valid %s expression"),
7057 as_bad (_("`%s' is not a valid %s-bit %s expression"),
7059 flag_code_names
[i
.prefix
[ADDR_PREFIX
]
7060 ? flag_code
== CODE_32BIT
7069 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
7073 i386_att_operand (char *operand_string
)
7077 char *op_string
= operand_string
;
7079 if (is_space_char (*op_string
))
7082 /* We check for an absolute prefix (differentiating,
7083 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
7084 if (*op_string
== ABSOLUTE_PREFIX
)
7087 if (is_space_char (*op_string
))
7089 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
7092 /* Check if operand is a register. */
7093 if ((r
= parse_register (op_string
, &end_op
)) != NULL
)
7095 i386_operand_type temp
;
7097 /* Check for a segment override by searching for ':' after a
7098 segment register. */
7100 if (is_space_char (*op_string
))
7102 if (*op_string
== ':'
7103 && (r
->reg_type
.bitfield
.sreg2
7104 || r
->reg_type
.bitfield
.sreg3
))
7109 i
.seg
[i
.mem_operands
] = &es
;
7112 i
.seg
[i
.mem_operands
] = &cs
;
7115 i
.seg
[i
.mem_operands
] = &ss
;
7118 i
.seg
[i
.mem_operands
] = &ds
;
7121 i
.seg
[i
.mem_operands
] = &fs
;
7124 i
.seg
[i
.mem_operands
] = &gs
;
7128 /* Skip the ':' and whitespace. */
7130 if (is_space_char (*op_string
))
7133 if (!is_digit_char (*op_string
)
7134 && !is_identifier_char (*op_string
)
7135 && *op_string
!= '('
7136 && *op_string
!= ABSOLUTE_PREFIX
)
7138 as_bad (_("bad memory operand `%s'"), op_string
);
7141 /* Handle case of %es:*foo. */
7142 if (*op_string
== ABSOLUTE_PREFIX
)
7145 if (is_space_char (*op_string
))
7147 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
7149 goto do_memory_reference
;
7153 as_bad (_("junk `%s' after register"), op_string
);
7157 temp
.bitfield
.baseindex
= 0;
7158 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
7160 i
.types
[this_operand
].bitfield
.unspecified
= 0;
7161 i
.op
[this_operand
].regs
= r
;
7164 else if (*op_string
== REGISTER_PREFIX
)
7166 as_bad (_("bad register name `%s'"), op_string
);
7169 else if (*op_string
== IMMEDIATE_PREFIX
)
7172 if (i
.types
[this_operand
].bitfield
.jumpabsolute
)
7174 as_bad (_("immediate operand illegal with absolute jump"));
7177 if (!i386_immediate (op_string
))
7180 else if (is_digit_char (*op_string
)
7181 || is_identifier_char (*op_string
)
7182 || *op_string
== '(')
7184 /* This is a memory reference of some sort. */
7187 /* Start and end of displacement string expression (if found). */
7188 char *displacement_string_start
;
7189 char *displacement_string_end
;
7191 do_memory_reference
:
7192 if ((i
.mem_operands
== 1
7193 && !current_templates
->start
->opcode_modifier
.isstring
)
7194 || i
.mem_operands
== 2)
7196 as_bad (_("too many memory references for `%s'"),
7197 current_templates
->start
->name
);
7201 /* Check for base index form. We detect the base index form by
7202 looking for an ')' at the end of the operand, searching
7203 for the '(' matching it, and finding a REGISTER_PREFIX or ','
7205 base_string
= op_string
+ strlen (op_string
);
7208 if (is_space_char (*base_string
))
7211 /* If we only have a displacement, set-up for it to be parsed later. */
7212 displacement_string_start
= op_string
;
7213 displacement_string_end
= base_string
+ 1;
7215 if (*base_string
== ')')
7218 unsigned int parens_balanced
= 1;
7219 /* We've already checked that the number of left & right ()'s are
7220 equal, so this loop will not be infinite. */
7224 if (*base_string
== ')')
7226 if (*base_string
== '(')
7229 while (parens_balanced
);
7231 temp_string
= base_string
;
7233 /* Skip past '(' and whitespace. */
7235 if (is_space_char (*base_string
))
7238 if (*base_string
== ','
7239 || ((i
.base_reg
= parse_register (base_string
, &end_op
))
7242 displacement_string_end
= temp_string
;
7244 i
.types
[this_operand
].bitfield
.baseindex
= 1;
7248 base_string
= end_op
;
7249 if (is_space_char (*base_string
))
7253 /* There may be an index reg or scale factor here. */
7254 if (*base_string
== ',')
7257 if (is_space_char (*base_string
))
7260 if ((i
.index_reg
= parse_register (base_string
, &end_op
))
7263 base_string
= end_op
;
7264 if (is_space_char (*base_string
))
7266 if (*base_string
== ',')
7269 if (is_space_char (*base_string
))
7272 else if (*base_string
!= ')')
7274 as_bad (_("expecting `,' or `)' "
7275 "after index register in `%s'"),
7280 else if (*base_string
== REGISTER_PREFIX
)
7282 as_bad (_("bad register name `%s'"), base_string
);
7286 /* Check for scale factor. */
7287 if (*base_string
!= ')')
7289 char *end_scale
= i386_scale (base_string
);
7294 base_string
= end_scale
;
7295 if (is_space_char (*base_string
))
7297 if (*base_string
!= ')')
7299 as_bad (_("expecting `)' "
7300 "after scale factor in `%s'"),
7305 else if (!i
.index_reg
)
7307 as_bad (_("expecting index register or scale factor "
7308 "after `,'; got '%c'"),
7313 else if (*base_string
!= ')')
7315 as_bad (_("expecting `,' or `)' "
7316 "after base register in `%s'"),
7321 else if (*base_string
== REGISTER_PREFIX
)
7323 as_bad (_("bad register name `%s'"), base_string
);
7328 /* If there's an expression beginning the operand, parse it,
7329 assuming displacement_string_start and
7330 displacement_string_end are meaningful. */
7331 if (displacement_string_start
!= displacement_string_end
)
7333 if (!i386_displacement (displacement_string_start
,
7334 displacement_string_end
))
7338 /* Special case for (%dx) while doing input/output op. */
7340 && operand_type_equal (&i
.base_reg
->reg_type
,
7341 ®16_inoutportreg
)
7343 && i
.log2_scale_factor
== 0
7344 && i
.seg
[i
.mem_operands
] == 0
7345 && !operand_type_check (i
.types
[this_operand
], disp
))
7347 i
.types
[this_operand
] = inoutportreg
;
7351 if (i386_index_check (operand_string
) == 0)
7353 i
.types
[this_operand
].bitfield
.mem
= 1;
7358 /* It's not a memory operand; argh! */
7359 as_bad (_("invalid char %s beginning operand %d `%s'"),
7360 output_invalid (*op_string
),
7365 return 1; /* Normal return. */
7368 /* md_estimate_size_before_relax()
7370 Called just before relax() for rs_machine_dependent frags. The x86
7371 assembler uses these frags to handle variable size jump
7374 Any symbol that is now undefined will not become defined.
7375 Return the correct fr_subtype in the frag.
7376 Return the initial "guess for variable size of frag" to caller.
7377 The guess is actually the growth beyond the fixed part. Whatever
7378 we do to grow the fixed or variable part contributes to our
7382 md_estimate_size_before_relax (fragP
, segment
)
7386 /* We've already got fragP->fr_subtype right; all we have to do is
7387 check for un-relaxable symbols. On an ELF system, we can't relax
7388 an externally visible symbol, because it may be overridden by a
7390 if (S_GET_SEGMENT (fragP
->fr_symbol
) != segment
7391 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7393 && (S_IS_EXTERNAL (fragP
->fr_symbol
)
7394 || S_IS_WEAK (fragP
->fr_symbol
)))
7398 /* Symbol is undefined in this segment, or we need to keep a
7399 reloc so that weak symbols can be overridden. */
7400 int size
= (fragP
->fr_subtype
& CODE16
) ? 2 : 4;
7401 enum bfd_reloc_code_real reloc_type
;
7402 unsigned char *opcode
;
7405 if (fragP
->fr_var
!= NO_RELOC
)
7406 reloc_type
= fragP
->fr_var
;
7408 reloc_type
= BFD_RELOC_16_PCREL
;
7410 reloc_type
= BFD_RELOC_32_PCREL
;
7412 old_fr_fix
= fragP
->fr_fix
;
7413 opcode
= (unsigned char *) fragP
->fr_opcode
;
7415 switch (TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
))
7418 /* Make jmp (0xeb) a (d)word displacement jump. */
7420 fragP
->fr_fix
+= size
;
7421 fix_new (fragP
, old_fr_fix
, size
,
7423 fragP
->fr_offset
, 1,
7429 && (!no_cond_jump_promotion
|| fragP
->fr_var
!= NO_RELOC
))
7431 /* Negate the condition, and branch past an
7432 unconditional jump. */
7435 /* Insert an unconditional jump. */
7437 /* We added two extra opcode bytes, and have a two byte
7439 fragP
->fr_fix
+= 2 + 2;
7440 fix_new (fragP
, old_fr_fix
+ 2, 2,
7442 fragP
->fr_offset
, 1,
7449 if (no_cond_jump_promotion
&& fragP
->fr_var
== NO_RELOC
)
7454 fixP
= fix_new (fragP
, old_fr_fix
, 1,
7456 fragP
->fr_offset
, 1,
7458 fixP
->fx_signed
= 1;
7462 /* This changes the byte-displacement jump 0x7N
7463 to the (d)word-displacement jump 0x0f,0x8N. */
7464 opcode
[1] = opcode
[0] + 0x10;
7465 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
7466 /* We've added an opcode byte. */
7467 fragP
->fr_fix
+= 1 + size
;
7468 fix_new (fragP
, old_fr_fix
+ 1, size
,
7470 fragP
->fr_offset
, 1,
7475 BAD_CASE (fragP
->fr_subtype
);
7479 return fragP
->fr_fix
- old_fr_fix
;
7482 /* Guess size depending on current relax state. Initially the relax
7483 state will correspond to a short jump and we return 1, because
7484 the variable part of the frag (the branch offset) is one byte
7485 long. However, we can relax a section more than once and in that
7486 case we must either set fr_subtype back to the unrelaxed state,
7487 or return the value for the appropriate branch. */
7488 return md_relax_table
[fragP
->fr_subtype
].rlx_length
;
7491 /* Called after relax() is finished.
7493 In: Address of frag.
7494 fr_type == rs_machine_dependent.
7495 fr_subtype is what the address relaxed to.
7497 Out: Any fixSs and constants are set up.
7498 Caller will turn frag into a ".space 0". */
7501 md_convert_frag (abfd
, sec
, fragP
)
7502 bfd
*abfd ATTRIBUTE_UNUSED
;
7503 segT sec ATTRIBUTE_UNUSED
;
7506 unsigned char *opcode
;
7507 unsigned char *where_to_put_displacement
= NULL
;
7508 offsetT target_address
;
7509 offsetT opcode_address
;
7510 unsigned int extension
= 0;
7511 offsetT displacement_from_opcode_start
;
7513 opcode
= (unsigned char *) fragP
->fr_opcode
;
7515 /* Address we want to reach in file space. */
7516 target_address
= S_GET_VALUE (fragP
->fr_symbol
) + fragP
->fr_offset
;
7518 /* Address opcode resides at in file space. */
7519 opcode_address
= fragP
->fr_address
+ fragP
->fr_fix
;
7521 /* Displacement from opcode start to fill into instruction. */
7522 displacement_from_opcode_start
= target_address
- opcode_address
;
7524 if ((fragP
->fr_subtype
& BIG
) == 0)
7526 /* Don't have to change opcode. */
7527 extension
= 1; /* 1 opcode + 1 displacement */
7528 where_to_put_displacement
= &opcode
[1];
7532 if (no_cond_jump_promotion
7533 && TYPE_FROM_RELAX_STATE (fragP
->fr_subtype
) != UNCOND_JUMP
)
7534 as_warn_where (fragP
->fr_file
, fragP
->fr_line
,
7535 _("long jump required"));
7537 switch (fragP
->fr_subtype
)
7539 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG
):
7540 extension
= 4; /* 1 opcode + 4 displacement */
7542 where_to_put_displacement
= &opcode
[1];
7545 case ENCODE_RELAX_STATE (UNCOND_JUMP
, BIG16
):
7546 extension
= 2; /* 1 opcode + 2 displacement */
7548 where_to_put_displacement
= &opcode
[1];
7551 case ENCODE_RELAX_STATE (COND_JUMP
, BIG
):
7552 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG
):
7553 extension
= 5; /* 2 opcode + 4 displacement */
7554 opcode
[1] = opcode
[0] + 0x10;
7555 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
7556 where_to_put_displacement
= &opcode
[2];
7559 case ENCODE_RELAX_STATE (COND_JUMP
, BIG16
):
7560 extension
= 3; /* 2 opcode + 2 displacement */
7561 opcode
[1] = opcode
[0] + 0x10;
7562 opcode
[0] = TWO_BYTE_OPCODE_ESCAPE
;
7563 where_to_put_displacement
= &opcode
[2];
7566 case ENCODE_RELAX_STATE (COND_JUMP86
, BIG16
):
7571 where_to_put_displacement
= &opcode
[3];
7575 BAD_CASE (fragP
->fr_subtype
);
7580 /* If size if less then four we are sure that the operand fits,
7581 but if it's 4, then it could be that the displacement is larger
7583 if (DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
) == 4
7585 && ((addressT
) (displacement_from_opcode_start
- extension
7586 + ((addressT
) 1 << 31))
7587 > (((addressT
) 2 << 31) - 1)))
7589 as_bad_where (fragP
->fr_file
, fragP
->fr_line
,
7590 _("jump target out of range"));
7591 /* Make us emit 0. */
7592 displacement_from_opcode_start
= extension
;
7594 /* Now put displacement after opcode. */
7595 md_number_to_chars ((char *) where_to_put_displacement
,
7596 (valueT
) (displacement_from_opcode_start
- extension
),
7597 DISP_SIZE_FROM_RELAX_STATE (fragP
->fr_subtype
));
7598 fragP
->fr_fix
+= extension
;
7601 /* Apply a fixup (fixS) to segment data, once it has been determined
7602 by our caller that we have all the info we need to fix it up.
7604 On the 386, immediates, displacements, and data pointers are all in
7605 the same (little-endian) format, so we don't need to care about which
7609 md_apply_fix (fixP
, valP
, seg
)
7610 /* The fix we're to put in. */
7612 /* Pointer to the value of the bits. */
7614 /* Segment fix is from. */
7615 segT seg ATTRIBUTE_UNUSED
;
7617 char *p
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
7618 valueT value
= *valP
;
7620 #if !defined (TE_Mach)
7623 switch (fixP
->fx_r_type
)
7629 fixP
->fx_r_type
= BFD_RELOC_64_PCREL
;
7632 case BFD_RELOC_X86_64_32S
:
7633 fixP
->fx_r_type
= BFD_RELOC_32_PCREL
;
7636 fixP
->fx_r_type
= BFD_RELOC_16_PCREL
;
7639 fixP
->fx_r_type
= BFD_RELOC_8_PCREL
;
7644 if (fixP
->fx_addsy
!= NULL
7645 && (fixP
->fx_r_type
== BFD_RELOC_32_PCREL
7646 || fixP
->fx_r_type
== BFD_RELOC_64_PCREL
7647 || fixP
->fx_r_type
== BFD_RELOC_16_PCREL
7648 || fixP
->fx_r_type
== BFD_RELOC_8_PCREL
)
7649 && !use_rela_relocations
)
7651 /* This is a hack. There should be a better way to handle this.
7652 This covers for the fact that bfd_install_relocation will
7653 subtract the current location (for partial_inplace, PC relative
7654 relocations); see more below. */
7658 || OUTPUT_FLAVOR
== bfd_target_coff_flavour
7661 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
7663 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7666 segT sym_seg
= S_GET_SEGMENT (fixP
->fx_addsy
);
7669 || (symbol_section_p (fixP
->fx_addsy
)
7670 && sym_seg
!= absolute_section
))
7671 && !generic_force_reloc (fixP
))
7673 /* Yes, we add the values in twice. This is because
7674 bfd_install_relocation subtracts them out again. I think
7675 bfd_install_relocation is broken, but I don't dare change
7677 value
+= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
7681 #if defined (OBJ_COFF) && defined (TE_PE)
7682 /* For some reason, the PE format does not store a
7683 section address offset for a PC relative symbol. */
7684 if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
7685 || S_IS_WEAK (fixP
->fx_addsy
))
7686 value
+= md_pcrel_from (fixP
);
7690 /* Fix a few things - the dynamic linker expects certain values here,
7691 and we must not disappoint it. */
7692 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7693 if (IS_ELF
&& fixP
->fx_addsy
)
7694 switch (fixP
->fx_r_type
)
7696 case BFD_RELOC_386_PLT32
:
7697 case BFD_RELOC_X86_64_PLT32
:
7698 /* Make the jump instruction point to the address of the operand. At
7699 runtime we merely add the offset to the actual PLT entry. */
7703 case BFD_RELOC_386_TLS_GD
:
7704 case BFD_RELOC_386_TLS_LDM
:
7705 case BFD_RELOC_386_TLS_IE_32
:
7706 case BFD_RELOC_386_TLS_IE
:
7707 case BFD_RELOC_386_TLS_GOTIE
:
7708 case BFD_RELOC_386_TLS_GOTDESC
:
7709 case BFD_RELOC_X86_64_TLSGD
:
7710 case BFD_RELOC_X86_64_TLSLD
:
7711 case BFD_RELOC_X86_64_GOTTPOFF
:
7712 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
7713 value
= 0; /* Fully resolved at runtime. No addend. */
7715 case BFD_RELOC_386_TLS_LE
:
7716 case BFD_RELOC_386_TLS_LDO_32
:
7717 case BFD_RELOC_386_TLS_LE_32
:
7718 case BFD_RELOC_X86_64_DTPOFF32
:
7719 case BFD_RELOC_X86_64_DTPOFF64
:
7720 case BFD_RELOC_X86_64_TPOFF32
:
7721 case BFD_RELOC_X86_64_TPOFF64
:
7722 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
7725 case BFD_RELOC_386_TLS_DESC_CALL
:
7726 case BFD_RELOC_X86_64_TLSDESC_CALL
:
7727 value
= 0; /* Fully resolved at runtime. No addend. */
7728 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
7732 case BFD_RELOC_386_GOT32
:
7733 case BFD_RELOC_X86_64_GOT32
:
7734 value
= 0; /* Fully resolved at runtime. No addend. */
7737 case BFD_RELOC_VTABLE_INHERIT
:
7738 case BFD_RELOC_VTABLE_ENTRY
:
7745 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
7747 #endif /* !defined (TE_Mach) */
7749 /* Are we finished with this relocation now? */
7750 if (fixP
->fx_addsy
== NULL
)
7752 else if (use_rela_relocations
)
7754 fixP
->fx_no_overflow
= 1;
7755 /* Remember value for tc_gen_reloc. */
7756 fixP
->fx_addnumber
= value
;
7760 md_number_to_chars (p
, value
, fixP
->fx_size
);
7764 md_atof (int type
, char *litP
, int *sizeP
)
7766 /* This outputs the LITTLENUMs in REVERSE order;
7767 in accord with the bigendian 386. */
7768 return ieee_md_atof (type
, litP
, sizeP
, FALSE
);
7771 static char output_invalid_buf
[sizeof (unsigned char) * 2 + 6];
7774 output_invalid (int c
)
7777 snprintf (output_invalid_buf
, sizeof (output_invalid_buf
),
7780 snprintf (output_invalid_buf
, sizeof (output_invalid_buf
),
7781 "(0x%x)", (unsigned char) c
);
7782 return output_invalid_buf
;
7785 /* REG_STRING starts *before* REGISTER_PREFIX. */
7787 static const reg_entry
*
7788 parse_real_register (char *reg_string
, char **end_op
)
7790 char *s
= reg_string
;
7792 char reg_name_given
[MAX_REG_NAME_SIZE
+ 1];
7795 /* Skip possible REGISTER_PREFIX and possible whitespace. */
7796 if (*s
== REGISTER_PREFIX
)
7799 if (is_space_char (*s
))
7803 while ((*p
++ = register_chars
[(unsigned char) *s
]) != '\0')
7805 if (p
>= reg_name_given
+ MAX_REG_NAME_SIZE
)
7806 return (const reg_entry
*) NULL
;
7810 /* For naked regs, make sure that we are not dealing with an identifier.
7811 This prevents confusing an identifier like `eax_var' with register
7813 if (allow_naked_reg
&& identifier_chars
[(unsigned char) *s
])
7814 return (const reg_entry
*) NULL
;
7818 r
= (const reg_entry
*) hash_find (reg_hash
, reg_name_given
);
7820 /* Handle floating point regs, allowing spaces in the (i) part. */
7821 if (r
== i386_regtab
/* %st is first entry of table */)
7823 if (is_space_char (*s
))
7828 if (is_space_char (*s
))
7830 if (*s
>= '0' && *s
<= '7')
7834 if (is_space_char (*s
))
7839 r
= hash_find (reg_hash
, "st(0)");
7844 /* We have "%st(" then garbage. */
7845 return (const reg_entry
*) NULL
;
7849 if (r
== NULL
|| allow_pseudo_reg
)
7852 if (operand_type_all_zero (&r
->reg_type
))
7853 return (const reg_entry
*) NULL
;
7855 if ((r
->reg_type
.bitfield
.reg32
7856 || r
->reg_type
.bitfield
.sreg3
7857 || r
->reg_type
.bitfield
.control
7858 || r
->reg_type
.bitfield
.debug
7859 || r
->reg_type
.bitfield
.test
)
7860 && !cpu_arch_flags
.bitfield
.cpui386
)
7861 return (const reg_entry
*) NULL
;
7863 if (r
->reg_type
.bitfield
.regmmx
&& !cpu_arch_flags
.bitfield
.cpummx
)
7864 return (const reg_entry
*) NULL
;
7866 if (r
->reg_type
.bitfield
.regxmm
&& !cpu_arch_flags
.bitfield
.cpusse
)
7867 return (const reg_entry
*) NULL
;
7869 if (r
->reg_type
.bitfield
.regymm
&& !cpu_arch_flags
.bitfield
.cpuavx
)
7870 return (const reg_entry
*) NULL
;
7872 /* Don't allow fake index register unless allow_index_reg isn't 0. */
7873 if (!allow_index_reg
7874 && (r
->reg_num
== RegEiz
|| r
->reg_num
== RegRiz
))
7875 return (const reg_entry
*) NULL
;
7877 if (((r
->reg_flags
& (RegRex64
| RegRex
))
7878 || r
->reg_type
.bitfield
.reg64
)
7879 && (!cpu_arch_flags
.bitfield
.cpulm
7880 || !operand_type_equal (&r
->reg_type
, &control
))
7881 && flag_code
!= CODE_64BIT
)
7882 return (const reg_entry
*) NULL
;
7884 if (r
->reg_type
.bitfield
.sreg3
&& r
->reg_num
== RegFlat
&& !intel_syntax
)
7885 return (const reg_entry
*) NULL
;
7890 /* REG_STRING starts *before* REGISTER_PREFIX. */
7892 static const reg_entry
*
7893 parse_register (char *reg_string
, char **end_op
)
7897 if (*reg_string
== REGISTER_PREFIX
|| allow_naked_reg
)
7898 r
= parse_real_register (reg_string
, end_op
);
7903 char *save
= input_line_pointer
;
7907 input_line_pointer
= reg_string
;
7908 c
= get_symbol_end ();
7909 symbolP
= symbol_find (reg_string
);
7910 if (symbolP
&& S_GET_SEGMENT (symbolP
) == reg_section
)
7912 const expressionS
*e
= symbol_get_value_expression (symbolP
);
7914 know (e
->X_op
== O_register
);
7915 know (e
->X_add_number
>= 0
7916 && (valueT
) e
->X_add_number
< i386_regtab_size
);
7917 r
= i386_regtab
+ e
->X_add_number
;
7918 *end_op
= input_line_pointer
;
7920 *input_line_pointer
= c
;
7921 input_line_pointer
= save
;
7927 i386_parse_name (char *name
, expressionS
*e
, char *nextcharP
)
7930 char *end
= input_line_pointer
;
7933 r
= parse_register (name
, &input_line_pointer
);
7934 if (r
&& end
<= input_line_pointer
)
7936 *nextcharP
= *input_line_pointer
;
7937 *input_line_pointer
= 0;
7938 e
->X_op
= O_register
;
7939 e
->X_add_number
= r
- i386_regtab
;
7942 input_line_pointer
= end
;
7948 md_operand (expressionS
*e
)
7950 if (*input_line_pointer
== REGISTER_PREFIX
)
7953 const reg_entry
*r
= parse_real_register (input_line_pointer
, &end
);
7957 e
->X_op
= O_register
;
7958 e
->X_add_number
= r
- i386_regtab
;
7959 input_line_pointer
= end
;
7965 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7966 const char *md_shortopts
= "kVQ:sqn";
7968 const char *md_shortopts
= "qn";
7971 #define OPTION_32 (OPTION_MD_BASE + 0)
7972 #define OPTION_64 (OPTION_MD_BASE + 1)
7973 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
7974 #define OPTION_MARCH (OPTION_MD_BASE + 3)
7975 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
7976 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7977 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7978 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7979 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7980 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
7981 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
7982 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7984 struct option md_longopts
[] =
7986 {"32", no_argument
, NULL
, OPTION_32
},
7987 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7988 {"64", no_argument
, NULL
, OPTION_64
},
7990 {"divide", no_argument
, NULL
, OPTION_DIVIDE
},
7991 {"march", required_argument
, NULL
, OPTION_MARCH
},
7992 {"mtune", required_argument
, NULL
, OPTION_MTUNE
},
7993 {"mmnemonic", required_argument
, NULL
, OPTION_MMNEMONIC
},
7994 {"msyntax", required_argument
, NULL
, OPTION_MSYNTAX
},
7995 {"mindex-reg", no_argument
, NULL
, OPTION_MINDEX_REG
},
7996 {"mnaked-reg", no_argument
, NULL
, OPTION_MNAKED_REG
},
7997 {"mold-gcc", no_argument
, NULL
, OPTION_MOLD_GCC
},
7998 {"msse2avx", no_argument
, NULL
, OPTION_MSSE2AVX
},
7999 {"msse-check", required_argument
, NULL
, OPTION_MSSE_CHECK
},
8000 {NULL
, no_argument
, NULL
, 0}
8002 size_t md_longopts_size
= sizeof (md_longopts
);
8005 md_parse_option (int c
, char *arg
)
8013 optimize_align_code
= 0;
8020 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8021 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
8022 should be emitted or not. FIXME: Not implemented. */
8026 /* -V: SVR4 argument to print version ID. */
8028 print_version_id ();
8031 /* -k: Ignore for FreeBSD compatibility. */
8036 /* -s: On i386 Solaris, this tells the native assembler to use
8037 .stab instead of .stab.excl. We always use .stab anyhow. */
8040 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
8043 const char **list
, **l
;
8045 list
= bfd_target_list ();
8046 for (l
= list
; *l
!= NULL
; l
++)
8047 if (CONST_STRNEQ (*l
, "elf64-x86-64")
8048 || strcmp (*l
, "coff-x86-64") == 0
8049 || strcmp (*l
, "pe-x86-64") == 0
8050 || strcmp (*l
, "pei-x86-64") == 0)
8052 default_arch
= "x86_64";
8056 as_fatal (_("No compiled in support for x86_64"));
8063 default_arch
= "i386";
8067 #ifdef SVR4_COMMENT_CHARS
8072 n
= (char *) xmalloc (strlen (i386_comment_chars
) + 1);
8074 for (s
= i386_comment_chars
; *s
!= '\0'; s
++)
8078 i386_comment_chars
= n
;
8084 arch
= xstrdup (arg
);
8088 as_fatal (_("Invalid -march= option: `%s'"), arg
);
8089 next
= strchr (arch
, '+');
8092 for (i
= 0; i
< ARRAY_SIZE (cpu_arch
); i
++)
8094 if (strcmp (arch
, cpu_arch
[i
].name
) == 0)
8097 cpu_arch_name
= cpu_arch
[i
].name
;
8098 cpu_sub_arch_name
= NULL
;
8099 cpu_arch_flags
= cpu_arch
[i
].flags
;
8100 cpu_arch_isa
= cpu_arch
[i
].type
;
8101 cpu_arch_isa_flags
= cpu_arch
[i
].flags
;
8102 if (!cpu_arch_tune_set
)
8104 cpu_arch_tune
= cpu_arch_isa
;
8105 cpu_arch_tune_flags
= cpu_arch_isa_flags
;
8109 else if (*cpu_arch
[i
].name
== '.'
8110 && strcmp (arch
, cpu_arch
[i
].name
+ 1) == 0)
8112 /* ISA entension. */
8113 i386_cpu_flags flags
;
8114 flags
= cpu_flags_or (cpu_arch_flags
,
8116 if (!cpu_flags_equal (&flags
, &cpu_arch_flags
))
8118 if (cpu_sub_arch_name
)
8120 char *name
= cpu_sub_arch_name
;
8121 cpu_sub_arch_name
= concat (name
,
8123 (const char *) NULL
);
8127 cpu_sub_arch_name
= xstrdup (cpu_arch
[i
].name
);
8128 cpu_arch_flags
= flags
;
8134 if (i
>= ARRAY_SIZE (cpu_arch
))
8135 as_fatal (_("Invalid -march= option: `%s'"), arg
);
8139 while (next
!= NULL
);
8144 as_fatal (_("Invalid -mtune= option: `%s'"), arg
);
8145 for (i
= 0; i
< ARRAY_SIZE (cpu_arch
); i
++)
8147 if (strcmp (arg
, cpu_arch
[i
].name
) == 0)
8149 cpu_arch_tune_set
= 1;
8150 cpu_arch_tune
= cpu_arch
[i
].type
;
8151 cpu_arch_tune_flags
= cpu_arch
[i
].flags
;
8155 if (i
>= ARRAY_SIZE (cpu_arch
))
8156 as_fatal (_("Invalid -mtune= option: `%s'"), arg
);
8159 case OPTION_MMNEMONIC
:
8160 if (strcasecmp (arg
, "att") == 0)
8162 else if (strcasecmp (arg
, "intel") == 0)
8165 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg
);
8168 case OPTION_MSYNTAX
:
8169 if (strcasecmp (arg
, "att") == 0)
8171 else if (strcasecmp (arg
, "intel") == 0)
8174 as_fatal (_("Invalid -msyntax= option: `%s'"), arg
);
8177 case OPTION_MINDEX_REG
:
8178 allow_index_reg
= 1;
8181 case OPTION_MNAKED_REG
:
8182 allow_naked_reg
= 1;
8185 case OPTION_MOLD_GCC
:
8189 case OPTION_MSSE2AVX
:
8193 case OPTION_MSSE_CHECK
:
8194 if (strcasecmp (arg
, "error") == 0)
8195 sse_check
= sse_check_error
;
8196 else if (strcasecmp (arg
, "warning") == 0)
8197 sse_check
= sse_check_warning
;
8198 else if (strcasecmp (arg
, "none") == 0)
8199 sse_check
= sse_check_none
;
8201 as_fatal (_("Invalid -msse-check= option: `%s'"), arg
);
8211 md_show_usage (stream
)
8214 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8215 fprintf (stream
, _("\
8217 -V print assembler version number\n\
8220 fprintf (stream
, _("\
8221 -n Do not optimize code alignment\n\
8222 -q quieten some warnings\n"));
8223 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8224 fprintf (stream
, _("\
8227 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
8228 fprintf (stream
, _("\
8229 --32/--64 generate 32bit/64bit code\n"));
8231 #ifdef SVR4_COMMENT_CHARS
8232 fprintf (stream
, _("\
8233 --divide do not treat `/' as a comment character\n"));
8235 fprintf (stream
, _("\
8236 --divide ignored\n"));
8238 fprintf (stream
, _("\
8239 -march=CPU[,+EXTENSION...]\n\
8240 generate code for CPU and EXTENSION, CPU is one of:\n\
8241 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
8242 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
8243 core, core2, corei7, k6, k6_2, athlon, k8, amdfam10,\n\
8244 generic32, generic64\n\
8245 EXTENSION is combination of:\n\
8246 mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, sse4,\n\
8247 avx, vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
8248 clflush, syscall, rdtscp, 3dnow, 3dnowa, sse4a,\n\
8249 sse5, svme, abm, padlock\n"));
8250 fprintf (stream
, _("\
8251 -mtune=CPU optimize for CPU, CPU is one of:\n\
8252 i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
8253 pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
8254 core, core2, corei7, k6, k6_2, athlon, k8, amdfam10,\n\
8255 generic32, generic64\n"));
8256 fprintf (stream
, _("\
8257 -msse2avx encode SSE instructions with VEX prefix\n"));
8258 fprintf (stream
, _("\
8259 -msse-check=[none|error|warning]\n\
8260 check SSE instructions\n"));
8261 fprintf (stream
, _("\
8262 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
8263 fprintf (stream
, _("\
8264 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
8265 fprintf (stream
, _("\
8266 -mindex-reg support pseudo index registers\n"));
8267 fprintf (stream
, _("\
8268 -mnaked-reg don't require `%%' prefix for registers\n"));
8269 fprintf (stream
, _("\
8270 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
8273 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
8274 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
8276 /* Pick the target format to use. */
8279 i386_target_format (void)
8281 if (!strcmp (default_arch
, "x86_64"))
8283 set_code_flag (CODE_64BIT
);
8284 if (cpu_flags_all_zero (&cpu_arch_isa_flags
))
8286 cpu_arch_isa_flags
.bitfield
.cpui186
= 1;
8287 cpu_arch_isa_flags
.bitfield
.cpui286
= 1;
8288 cpu_arch_isa_flags
.bitfield
.cpui386
= 1;
8289 cpu_arch_isa_flags
.bitfield
.cpui486
= 1;
8290 cpu_arch_isa_flags
.bitfield
.cpui586
= 1;
8291 cpu_arch_isa_flags
.bitfield
.cpui686
= 1;
8292 cpu_arch_isa_flags
.bitfield
.cpuclflush
= 1;
8293 cpu_arch_isa_flags
.bitfield
.cpummx
= 1;
8294 cpu_arch_isa_flags
.bitfield
.cpusse
= 1;
8295 cpu_arch_isa_flags
.bitfield
.cpusse2
= 1;
8297 if (cpu_flags_all_zero (&cpu_arch_tune_flags
))
8299 cpu_arch_tune_flags
.bitfield
.cpui186
= 1;
8300 cpu_arch_tune_flags
.bitfield
.cpui286
= 1;
8301 cpu_arch_tune_flags
.bitfield
.cpui386
= 1;
8302 cpu_arch_tune_flags
.bitfield
.cpui486
= 1;
8303 cpu_arch_tune_flags
.bitfield
.cpui586
= 1;
8304 cpu_arch_tune_flags
.bitfield
.cpui686
= 1;
8305 cpu_arch_tune_flags
.bitfield
.cpuclflush
= 1;
8306 cpu_arch_tune_flags
.bitfield
.cpummx
= 1;
8307 cpu_arch_tune_flags
.bitfield
.cpusse
= 1;
8308 cpu_arch_tune_flags
.bitfield
.cpusse2
= 1;
8311 else if (!strcmp (default_arch
, "i386"))
8313 set_code_flag (CODE_32BIT
);
8314 if (cpu_flags_all_zero (&cpu_arch_isa_flags
))
8316 cpu_arch_isa_flags
.bitfield
.cpui186
= 1;
8317 cpu_arch_isa_flags
.bitfield
.cpui286
= 1;
8318 cpu_arch_isa_flags
.bitfield
.cpui386
= 1;
8320 if (cpu_flags_all_zero (&cpu_arch_tune_flags
))
8322 cpu_arch_tune_flags
.bitfield
.cpui186
= 1;
8323 cpu_arch_tune_flags
.bitfield
.cpui286
= 1;
8324 cpu_arch_tune_flags
.bitfield
.cpui386
= 1;
8328 as_fatal (_("Unknown architecture"));
8329 switch (OUTPUT_FLAVOR
)
8332 case bfd_target_coff_flavour
:
8333 return flag_code
== CODE_64BIT
? COFF_TARGET_FORMAT
: "pe-i386";
8336 #ifdef OBJ_MAYBE_AOUT
8337 case bfd_target_aout_flavour
:
8338 return AOUT_TARGET_FORMAT
;
8340 #ifdef OBJ_MAYBE_COFF
8341 case bfd_target_coff_flavour
:
8344 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8345 case bfd_target_elf_flavour
:
8347 if (flag_code
== CODE_64BIT
)
8350 use_rela_relocations
= 1;
8352 return flag_code
== CODE_64BIT
? ELF_TARGET_FORMAT64
: ELF_TARGET_FORMAT
;
8361 #endif /* OBJ_MAYBE_ more than one */
8363 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
8365 i386_elf_emit_arch_note (void)
8367 if (IS_ELF
&& cpu_arch_name
!= NULL
)
8370 asection
*seg
= now_seg
;
8371 subsegT subseg
= now_subseg
;
8372 Elf_Internal_Note i_note
;
8373 Elf_External_Note e_note
;
8374 asection
*note_secp
;
8377 /* Create the .note section. */
8378 note_secp
= subseg_new (".note", 0);
8379 bfd_set_section_flags (stdoutput
,
8381 SEC_HAS_CONTENTS
| SEC_READONLY
);
8383 /* Process the arch string. */
8384 len
= strlen (cpu_arch_name
);
8386 i_note
.namesz
= len
+ 1;
8388 i_note
.type
= NT_ARCH
;
8389 p
= frag_more (sizeof (e_note
.namesz
));
8390 md_number_to_chars (p
, (valueT
) i_note
.namesz
, sizeof (e_note
.namesz
));
8391 p
= frag_more (sizeof (e_note
.descsz
));
8392 md_number_to_chars (p
, (valueT
) i_note
.descsz
, sizeof (e_note
.descsz
));
8393 p
= frag_more (sizeof (e_note
.type
));
8394 md_number_to_chars (p
, (valueT
) i_note
.type
, sizeof (e_note
.type
));
8395 p
= frag_more (len
+ 1);
8396 strcpy (p
, cpu_arch_name
);
8398 frag_align (2, 0, 0);
8400 subseg_set (seg
, subseg
);
8406 md_undefined_symbol (name
)
8409 if (name
[0] == GLOBAL_OFFSET_TABLE_NAME
[0]
8410 && name
[1] == GLOBAL_OFFSET_TABLE_NAME
[1]
8411 && name
[2] == GLOBAL_OFFSET_TABLE_NAME
[2]
8412 && strcmp (name
, GLOBAL_OFFSET_TABLE_NAME
) == 0)
8416 if (symbol_find (name
))
8417 as_bad (_("GOT already in symbol table"));
8418 GOT_symbol
= symbol_new (name
, undefined_section
,
8419 (valueT
) 0, &zero_address_frag
);
8426 /* Round up a section size to the appropriate boundary. */
8429 md_section_align (segment
, size
)
8430 segT segment ATTRIBUTE_UNUSED
;
8433 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8434 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
8436 /* For a.out, force the section size to be aligned. If we don't do
8437 this, BFD will align it for us, but it will not write out the
8438 final bytes of the section. This may be a bug in BFD, but it is
8439 easier to fix it here since that is how the other a.out targets
8443 align
= bfd_get_section_alignment (stdoutput
, segment
);
8444 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
8451 /* On the i386, PC-relative offsets are relative to the start of the
8452 next instruction. That is, the address of the offset, plus its
8453 size, since the offset is always the last part of the insn. */
8456 md_pcrel_from (fixS
*fixP
)
8458 return fixP
->fx_size
+ fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
8464 s_bss (int ignore ATTRIBUTE_UNUSED
)
8468 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8470 obj_elf_section_change_hook ();
8472 temp
= get_absolute_expression ();
8473 subseg_set (bss_section
, (subsegT
) temp
);
8474 demand_empty_rest_of_line ();
8480 i386_validate_fix (fixS
*fixp
)
8482 if (fixp
->fx_subsy
&& fixp
->fx_subsy
== GOT_symbol
)
8484 if (fixp
->fx_r_type
== BFD_RELOC_32_PCREL
)
8488 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTPCREL
;
8493 fixp
->fx_r_type
= BFD_RELOC_386_GOTOFF
;
8495 fixp
->fx_r_type
= BFD_RELOC_X86_64_GOTOFF64
;
8502 tc_gen_reloc (section
, fixp
)
8503 asection
*section ATTRIBUTE_UNUSED
;
8507 bfd_reloc_code_real_type code
;
8509 switch (fixp
->fx_r_type
)
8511 case BFD_RELOC_X86_64_PLT32
:
8512 case BFD_RELOC_X86_64_GOT32
:
8513 case BFD_RELOC_X86_64_GOTPCREL
:
8514 case BFD_RELOC_386_PLT32
:
8515 case BFD_RELOC_386_GOT32
:
8516 case BFD_RELOC_386_GOTOFF
:
8517 case BFD_RELOC_386_GOTPC
:
8518 case BFD_RELOC_386_TLS_GD
:
8519 case BFD_RELOC_386_TLS_LDM
:
8520 case BFD_RELOC_386_TLS_LDO_32
:
8521 case BFD_RELOC_386_TLS_IE_32
:
8522 case BFD_RELOC_386_TLS_IE
:
8523 case BFD_RELOC_386_TLS_GOTIE
:
8524 case BFD_RELOC_386_TLS_LE_32
:
8525 case BFD_RELOC_386_TLS_LE
:
8526 case BFD_RELOC_386_TLS_GOTDESC
:
8527 case BFD_RELOC_386_TLS_DESC_CALL
:
8528 case BFD_RELOC_X86_64_TLSGD
:
8529 case BFD_RELOC_X86_64_TLSLD
:
8530 case BFD_RELOC_X86_64_DTPOFF32
:
8531 case BFD_RELOC_X86_64_DTPOFF64
:
8532 case BFD_RELOC_X86_64_GOTTPOFF
:
8533 case BFD_RELOC_X86_64_TPOFF32
:
8534 case BFD_RELOC_X86_64_TPOFF64
:
8535 case BFD_RELOC_X86_64_GOTOFF64
:
8536 case BFD_RELOC_X86_64_GOTPC32
:
8537 case BFD_RELOC_X86_64_GOT64
:
8538 case BFD_RELOC_X86_64_GOTPCREL64
:
8539 case BFD_RELOC_X86_64_GOTPC64
:
8540 case BFD_RELOC_X86_64_GOTPLT64
:
8541 case BFD_RELOC_X86_64_PLTOFF64
:
8542 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
8543 case BFD_RELOC_X86_64_TLSDESC_CALL
:
8545 case BFD_RELOC_VTABLE_ENTRY
:
8546 case BFD_RELOC_VTABLE_INHERIT
:
8548 case BFD_RELOC_32_SECREL
:
8550 code
= fixp
->fx_r_type
;
8552 case BFD_RELOC_X86_64_32S
:
8553 if (!fixp
->fx_pcrel
)
8555 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
8556 code
= fixp
->fx_r_type
;
8562 switch (fixp
->fx_size
)
8565 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
8566 _("can not do %d byte pc-relative relocation"),
8568 code
= BFD_RELOC_32_PCREL
;
8570 case 1: code
= BFD_RELOC_8_PCREL
; break;
8571 case 2: code
= BFD_RELOC_16_PCREL
; break;
8572 case 4: code
= BFD_RELOC_32_PCREL
; break;
8574 case 8: code
= BFD_RELOC_64_PCREL
; break;
8580 switch (fixp
->fx_size
)
8583 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
8584 _("can not do %d byte relocation"),
8586 code
= BFD_RELOC_32
;
8588 case 1: code
= BFD_RELOC_8
; break;
8589 case 2: code
= BFD_RELOC_16
; break;
8590 case 4: code
= BFD_RELOC_32
; break;
8592 case 8: code
= BFD_RELOC_64
; break;
8599 if ((code
== BFD_RELOC_32
8600 || code
== BFD_RELOC_32_PCREL
8601 || code
== BFD_RELOC_X86_64_32S
)
8603 && fixp
->fx_addsy
== GOT_symbol
)
8606 code
= BFD_RELOC_386_GOTPC
;
8608 code
= BFD_RELOC_X86_64_GOTPC32
;
8610 if ((code
== BFD_RELOC_64
|| code
== BFD_RELOC_64_PCREL
)
8612 && fixp
->fx_addsy
== GOT_symbol
)
8614 code
= BFD_RELOC_X86_64_GOTPC64
;
8617 rel
= (arelent
*) xmalloc (sizeof (arelent
));
8618 rel
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
8619 *rel
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
8621 rel
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
8623 if (!use_rela_relocations
)
8625 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
8626 vtable entry to be used in the relocation's section offset. */
8627 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
8628 rel
->address
= fixp
->fx_offset
;
8632 /* Use the rela in 64bit mode. */
8635 if (!fixp
->fx_pcrel
)
8636 rel
->addend
= fixp
->fx_offset
;
8640 case BFD_RELOC_X86_64_PLT32
:
8641 case BFD_RELOC_X86_64_GOT32
:
8642 case BFD_RELOC_X86_64_GOTPCREL
:
8643 case BFD_RELOC_X86_64_TLSGD
:
8644 case BFD_RELOC_X86_64_TLSLD
:
8645 case BFD_RELOC_X86_64_GOTTPOFF
:
8646 case BFD_RELOC_X86_64_GOTPC32_TLSDESC
:
8647 case BFD_RELOC_X86_64_TLSDESC_CALL
:
8648 rel
->addend
= fixp
->fx_offset
- fixp
->fx_size
;
8651 rel
->addend
= (section
->vma
8653 + fixp
->fx_addnumber
8654 + md_pcrel_from (fixp
));
8659 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
8660 if (rel
->howto
== NULL
)
8662 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
8663 _("cannot represent relocation type %s"),
8664 bfd_get_reloc_code_name (code
));
8665 /* Set howto to a garbage value so that we can keep going. */
8666 rel
->howto
= bfd_reloc_type_lookup (stdoutput
, BFD_RELOC_32
);
8667 assert (rel
->howto
!= NULL
);
8674 /* Parse operands using Intel syntax. This implements a recursive descent
8675 parser based on the BNF grammar published in Appendix B of the MASM 6.1
8678 FIXME: We do not recognize the full operand grammar defined in the MASM
8679 documentation. In particular, all the structure/union and
8680 high-level macro operands are missing.
8682 Uppercase words are terminals, lower case words are non-terminals.
8683 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
8684 bars '|' denote choices. Most grammar productions are implemented in
8685 functions called 'intel_<production>'.
8687 Initial production is 'expr'.
8693 binOp & | AND | \| | OR | ^ | XOR
8695 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
8697 constant digits [[ radixOverride ]]
8699 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD | YMMWORD
8737 => expr expr cmpOp e04
8740 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
8741 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
8743 hexdigit a | b | c | d | e | f
8744 | A | B | C | D | E | F
8750 mulOp * | / | % | MOD | << | SHL | >> | SHR
8754 register specialRegister
8758 segmentRegister CS | DS | ES | FS | GS | SS
8760 specialRegister CR0 | CR2 | CR3 | CR4
8761 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
8762 | TR3 | TR4 | TR5 | TR6 | TR7
8764 We simplify the grammar in obvious places (e.g., register parsing is
8765 done by calling parse_register) and eliminate immediate left recursion
8766 to implement a recursive-descent parser.
8770 expr' cmpOp e04 expr'
8822 /* Parsing structure for the intel syntax parser. Used to implement the
8823 semantic actions for the operand grammar. */
8824 struct intel_parser_s
8826 char *op_string
; /* The string being parsed. */
8827 int got_a_float
; /* Whether the operand is a float. */
8828 int op_modifier
; /* Operand modifier. */
8829 int is_mem
; /* 1 if operand is memory reference. */
8830 int in_offset
; /* >=1 if parsing operand of offset. */
8831 int in_bracket
; /* >=1 if parsing operand in brackets. */
8832 const reg_entry
*reg
; /* Last register reference found. */
8833 char *disp
; /* Displacement string being built. */
8834 char *next_operand
; /* Resume point when splitting operands. */
8837 static struct intel_parser_s intel_parser
;
8839 /* Token structure for parsing intel syntax. */
8842 int code
; /* Token code. */
8843 const reg_entry
*reg
; /* Register entry for register tokens. */
8844 char *str
; /* String representation. */
8847 static struct intel_token cur_token
, prev_token
;
8849 /* Token codes for the intel parser. Since T_SHORT is already used
8850 by COFF, undefine it first to prevent a warning. */
8868 #define T_YMMWORD 16
8870 /* Prototypes for intel parser functions. */
8871 static int intel_match_token (int);
8872 static void intel_putback_token (void);
8873 static void intel_get_token (void);
8874 static int intel_expr (void);
8875 static int intel_e04 (void);
8876 static int intel_e05 (void);
8877 static int intel_e06 (void);
8878 static int intel_e09 (void);
8879 static int intel_e10 (void);
8880 static int intel_e11 (void);
8883 i386_intel_operand (char *operand_string
, int got_a_float
)
8887 const reg_entry
*final_base
= i
.base_reg
;
8888 const reg_entry
*final_index
= i
.index_reg
;
8890 p
= intel_parser
.op_string
= xstrdup (operand_string
);
8891 intel_parser
.disp
= (char *) xmalloc (strlen (operand_string
) + 1);
8895 /* Initialize token holders. */
8896 cur_token
.code
= prev_token
.code
= T_NIL
;
8897 cur_token
.reg
= prev_token
.reg
= NULL
;
8898 cur_token
.str
= prev_token
.str
= NULL
;
8900 /* Initialize parser structure. */
8901 intel_parser
.got_a_float
= got_a_float
;
8902 intel_parser
.op_modifier
= 0;
8903 intel_parser
.is_mem
= 0;
8904 intel_parser
.in_offset
= 0;
8905 intel_parser
.in_bracket
= 0;
8906 intel_parser
.reg
= NULL
;
8907 intel_parser
.disp
[0] = '\0';
8908 intel_parser
.next_operand
= NULL
;
8913 /* Read the first token and start the parser. */
8915 ret
= intel_expr ();
8920 if (cur_token
.code
!= T_NIL
)
8922 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
8923 current_templates
->start
->name
, cur_token
.str
);
8926 /* If we found a memory reference, hand it over to i386_displacement
8927 to fill in the rest of the operand fields. */
8928 else if (intel_parser
.is_mem
)
8930 if ((i
.mem_operands
== 1
8931 && !current_templates
->start
->opcode_modifier
.isstring
)
8932 || i
.mem_operands
== 2)
8934 as_bad (_("too many memory references for '%s'"),
8935 current_templates
->start
->name
);
8940 char *s
= intel_parser
.disp
;
8942 if (!quiet_warnings
&& intel_parser
.is_mem
< 0)
8943 /* See the comments in intel_bracket_expr. */
8944 as_warn (_("Treating `%s' as memory reference"), operand_string
);
8946 /* Add the displacement expression. */
8948 ret
= i386_displacement (s
, s
+ strlen (s
));
8951 /* Swap base and index in 16-bit memory operands like
8952 [si+bx]. Since i386_index_check is also used in AT&T
8953 mode we have to do that here. */
8956 && i
.base_reg
->reg_type
.bitfield
.reg16
8957 && i
.index_reg
->reg_type
.bitfield
.reg16
8958 && i
.base_reg
->reg_num
>= 6
8959 && i
.index_reg
->reg_num
< 6)
8961 const reg_entry
*base
= i
.index_reg
;
8963 i
.index_reg
= i
.base_reg
;
8966 ret
= i386_index_check (operand_string
);
8970 i
.types
[this_operand
].bitfield
.mem
= 1;
8976 /* Constant and OFFSET expressions are handled by i386_immediate. */
8977 else if ((intel_parser
.op_modifier
& (1 << T_OFFSET
))
8978 || intel_parser
.reg
== NULL
)
8980 if (i
.mem_operands
< 2 && i
.seg
[i
.mem_operands
])
8982 if (!(intel_parser
.op_modifier
& (1 << T_OFFSET
)))
8983 as_warn (_("Segment override ignored"));
8984 i
.seg
[i
.mem_operands
] = NULL
;
8986 ret
= i386_immediate (intel_parser
.disp
);
8989 if (!final_base
&& !final_index
)
8991 final_base
= i
.base_reg
;
8992 final_index
= i
.index_reg
;
8995 if (intel_parser
.next_operand
&& this_operand
>= MAX_OPERANDS
- 1)
8997 if (!ret
|| !intel_parser
.next_operand
)
8999 intel_parser
.op_string
= intel_parser
.next_operand
;
9000 this_operand
= i
.operands
++;
9001 i
.types
[this_operand
].bitfield
.unspecified
= 1;
9005 free (intel_parser
.disp
);
9007 if (final_base
|| final_index
)
9009 i
.base_reg
= final_base
;
9010 i
.index_reg
= final_index
;
9016 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
9020 expr' cmpOp e04 expr'
9025 /* XXX Implement the comparison operators. */
9026 return intel_e04 ();
9043 if (nregs
>= 0 && NUM_ADDRESS_REGS
> nregs
)
9044 i
.base_reg
= i386_regtab
+ REGNAM_AL
; /* al is invalid as base */
9046 if (cur_token
.code
== '+')
9048 else if (cur_token
.code
== '-')
9049 nregs
= NUM_ADDRESS_REGS
;
9053 strcat (intel_parser
.disp
, cur_token
.str
);
9054 intel_match_token (cur_token
.code
);
9065 int nregs
= ~NUM_ADDRESS_REGS
;
9072 if (cur_token
.code
== '&'
9073 || cur_token
.code
== '|'
9074 || cur_token
.code
== '^')
9078 str
[0] = cur_token
.code
;
9080 strcat (intel_parser
.disp
, str
);
9085 intel_match_token (cur_token
.code
);
9090 if (nregs
>= 0 && NUM_ADDRESS_REGS
> nregs
)
9091 i
.base_reg
= i386_regtab
+ REGNAM_AL
+ 1; /* cl is invalid as base */
9102 int nregs
= ~NUM_ADDRESS_REGS
;
9109 if (cur_token
.code
== '*'
9110 || cur_token
.code
== '/'
9111 || cur_token
.code
== '%')
9115 str
[0] = cur_token
.code
;
9117 strcat (intel_parser
.disp
, str
);
9119 else if (cur_token
.code
== T_SHL
)
9120 strcat (intel_parser
.disp
, "<<");
9121 else if (cur_token
.code
== T_SHR
)
9122 strcat (intel_parser
.disp
, ">>");
9126 intel_match_token (cur_token
.code
);
9131 if (nregs
>= 0 && NUM_ADDRESS_REGS
> nregs
)
9132 i
.base_reg
= i386_regtab
+ REGNAM_AL
+ 2; /* dl is invalid as base */
9150 int nregs
= ~NUM_ADDRESS_REGS
;
9155 /* Don't consume constants here. */
9156 if (cur_token
.code
== '+' || cur_token
.code
== '-')
9158 /* Need to look one token ahead - if the next token
9159 is a constant, the current token is its sign. */
9162 intel_match_token (cur_token
.code
);
9163 next_code
= cur_token
.code
;
9164 intel_putback_token ();
9165 if (next_code
== T_CONST
)
9169 /* e09 OFFSET e09 */
9170 if (cur_token
.code
== T_OFFSET
)
9173 ++intel_parser
.in_offset
;
9177 else if (cur_token
.code
== T_SHORT
)
9178 intel_parser
.op_modifier
|= 1 << T_SHORT
;
9181 else if (cur_token
.code
== '+')
9182 strcat (intel_parser
.disp
, "+");
9187 else if (cur_token
.code
== '-' || cur_token
.code
== '~')
9193 str
[0] = cur_token
.code
;
9195 strcat (intel_parser
.disp
, str
);
9202 intel_match_token (cur_token
.code
);
9210 /* e09' PTR e10 e09' */
9211 if (cur_token
.code
== T_PTR
)
9215 if (prev_token
.code
== T_BYTE
)
9217 suffix
= BYTE_MNEM_SUFFIX
;
9218 i
.types
[this_operand
].bitfield
.byte
= 1;
9221 else if (prev_token
.code
== T_WORD
)
9223 if ((current_templates
->start
->name
[0] == 'l'
9224 && current_templates
->start
->name
[2] == 's'
9225 && current_templates
->start
->name
[3] == 0)
9226 || current_templates
->start
->base_opcode
== 0x62 /* bound */)
9227 suffix
= BYTE_MNEM_SUFFIX
; /* so it will cause an error */
9228 else if (intel_parser
.got_a_float
== 2) /* "fi..." */
9229 suffix
= SHORT_MNEM_SUFFIX
;
9231 suffix
= WORD_MNEM_SUFFIX
;
9232 i
.types
[this_operand
].bitfield
.word
= 1;
9235 else if (prev_token
.code
== T_DWORD
)
9237 if ((current_templates
->start
->name
[0] == 'l'
9238 && current_templates
->start
->name
[2] == 's'
9239 && current_templates
->start
->name
[3] == 0)
9240 || current_templates
->start
->base_opcode
== 0x62 /* bound */)
9241 suffix
= WORD_MNEM_SUFFIX
;
9242 else if (flag_code
== CODE_16BIT
9243 && (current_templates
->start
->opcode_modifier
.jump
9244 || current_templates
->start
->opcode_modifier
.jumpdword
))
9245 suffix
= LONG_DOUBLE_MNEM_SUFFIX
;
9246 else if (intel_parser
.got_a_float
== 1) /* "f..." */
9247 suffix
= SHORT_MNEM_SUFFIX
;
9249 suffix
= LONG_MNEM_SUFFIX
;
9250 i
.types
[this_operand
].bitfield
.dword
= 1;
9253 else if (prev_token
.code
== T_FWORD
)
9255 if (current_templates
->start
->name
[0] == 'l'
9256 && current_templates
->start
->name
[2] == 's'
9257 && current_templates
->start
->name
[3] == 0)
9258 suffix
= LONG_MNEM_SUFFIX
;
9259 else if (!intel_parser
.got_a_float
)
9261 if (flag_code
== CODE_16BIT
)
9262 add_prefix (DATA_PREFIX_OPCODE
);
9263 suffix
= LONG_DOUBLE_MNEM_SUFFIX
;
9266 suffix
= BYTE_MNEM_SUFFIX
; /* so it will cause an error */
9267 i
.types
[this_operand
].bitfield
.fword
= 1;
9270 else if (prev_token
.code
== T_QWORD
)
9272 if (current_templates
->start
->base_opcode
== 0x62 /* bound */
9273 || intel_parser
.got_a_float
== 1) /* "f..." */
9274 suffix
= LONG_MNEM_SUFFIX
;
9276 suffix
= QWORD_MNEM_SUFFIX
;
9277 i
.types
[this_operand
].bitfield
.qword
= 1;
9280 else if (prev_token
.code
== T_TBYTE
)
9282 if (intel_parser
.got_a_float
== 1)
9283 suffix
= LONG_DOUBLE_MNEM_SUFFIX
;
9285 suffix
= BYTE_MNEM_SUFFIX
; /* so it will cause an error */
9288 else if (prev_token
.code
== T_XMMWORD
)
9290 suffix
= XMMWORD_MNEM_SUFFIX
;
9291 i
.types
[this_operand
].bitfield
.xmmword
= 1;
9294 else if (prev_token
.code
== T_YMMWORD
)
9296 suffix
= YMMWORD_MNEM_SUFFIX
;
9297 i
.types
[this_operand
].bitfield
.ymmword
= 1;
9302 as_bad (_("Unknown operand modifier `%s'"), prev_token
.str
);
9306 i
.types
[this_operand
].bitfield
.unspecified
= 0;
9308 /* Operands for jump/call using 'ptr' notation denote absolute
9310 if (current_templates
->start
->opcode_modifier
.jump
9311 || current_templates
->start
->opcode_modifier
.jumpdword
)
9312 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
9314 if (current_templates
->start
->base_opcode
== 0x8d /* lea */)
9318 else if (i
.suffix
!= suffix
)
9320 as_bad (_("Conflicting operand modifiers"));
9326 /* e09' : e10 e09' */
9327 else if (cur_token
.code
== ':')
9329 if (prev_token
.code
!= T_REG
)
9331 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
9332 segment/group identifier (which we don't have), using comma
9333 as the operand separator there is even less consistent, since
9334 there all branches only have a single operand. */
9335 if (this_operand
!= 0
9336 || intel_parser
.in_offset
9337 || intel_parser
.in_bracket
9338 || (!current_templates
->start
->opcode_modifier
.jump
9339 && !current_templates
->start
->opcode_modifier
.jumpdword
9340 && !current_templates
->start
->opcode_modifier
.jumpintersegment
9341 && !current_templates
->start
->operand_types
[0].bitfield
.jumpabsolute
))
9342 return intel_match_token (T_NIL
);
9343 /* Remember the start of the 2nd operand and terminate 1st
9345 XXX This isn't right, yet (when SSSS:OOOO is right operand of
9346 another expression), but it gets at least the simplest case
9347 (a plain number or symbol on the left side) right. */
9348 intel_parser
.next_operand
= intel_parser
.op_string
;
9349 *--intel_parser
.op_string
= '\0';
9350 return intel_match_token (':');
9358 intel_match_token (cur_token
.code
);
9364 --intel_parser
.in_offset
;
9367 if (NUM_ADDRESS_REGS
> nregs
)
9369 as_bad (_("Invalid operand to `OFFSET'"));
9372 intel_parser
.op_modifier
|= 1 << T_OFFSET
;
9375 if (nregs
>= 0 && NUM_ADDRESS_REGS
> nregs
)
9376 i
.base_reg
= i386_regtab
+ REGNAM_AL
+ 3; /* bl is invalid as base */
9381 intel_bracket_expr (void)
9383 int was_offset
= intel_parser
.op_modifier
& (1 << T_OFFSET
);
9384 const char *start
= intel_parser
.op_string
;
9387 if (i
.op
[this_operand
].regs
)
9388 return intel_match_token (T_NIL
);
9390 intel_match_token ('[');
9392 /* Mark as a memory operand only if it's not already known to be an
9393 offset expression. If it's an offset expression, we need to keep
9395 if (!intel_parser
.in_offset
)
9397 ++intel_parser
.in_bracket
;
9399 /* Operands for jump/call inside brackets denote absolute addresses. */
9400 if (current_templates
->start
->opcode_modifier
.jump
9401 || current_templates
->start
->opcode_modifier
.jumpdword
)
9402 i
.types
[this_operand
].bitfield
.jumpabsolute
= 1;
9404 /* Unfortunately gas always diverged from MASM in a respect that can't
9405 be easily fixed without risking to break code sequences likely to be
9406 encountered (the testsuite even check for this): MASM doesn't consider
9407 an expression inside brackets unconditionally as a memory reference.
9408 When that is e.g. a constant, an offset expression, or the sum of the
9409 two, this is still taken as a constant load. gas, however, always
9410 treated these as memory references. As a compromise, we'll try to make
9411 offset expressions inside brackets work the MASM way (since that's
9412 less likely to be found in real world code), but make constants alone
9413 continue to work the traditional gas way. In either case, issue a
9415 intel_parser
.op_modifier
&= ~was_offset
;
9418 strcat (intel_parser
.disp
, "[");
9420 /* Add a '+' to the displacement string if necessary. */
9421 if (*intel_parser
.disp
!= '\0'
9422 && *(intel_parser
.disp
+ strlen (intel_parser
.disp
) - 1) != '+')
9423 strcat (intel_parser
.disp
, "+");
9426 && (len
= intel_parser
.op_string
- start
- 1,
9427 intel_match_token (']')))
9429 /* Preserve brackets when the operand is an offset expression. */
9430 if (intel_parser
.in_offset
)
9431 strcat (intel_parser
.disp
, "]");
9434 --intel_parser
.in_bracket
;
9435 if (i
.base_reg
|| i
.index_reg
)
9436 intel_parser
.is_mem
= 1;
9437 if (!intel_parser
.is_mem
)
9439 if (!(intel_parser
.op_modifier
& (1 << T_OFFSET
)))
9440 /* Defer the warning until all of the operand was parsed. */
9441 intel_parser
.is_mem
= -1;
9442 else if (!quiet_warnings
)
9443 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
9444 len
, start
, len
, start
);
9447 intel_parser
.op_modifier
|= was_offset
;
9464 while (cur_token
.code
== '[')
9466 if (!intel_bracket_expr ())
9492 switch (cur_token
.code
)
9496 intel_match_token ('(');
9497 strcat (intel_parser
.disp
, "(");
9499 if (intel_expr () && intel_match_token (')'))
9501 strcat (intel_parser
.disp
, ")");
9508 return intel_bracket_expr ();
9513 strcat (intel_parser
.disp
, cur_token
.str
);
9514 intel_match_token (cur_token
.code
);
9516 /* Mark as a memory operand only if it's not already known to be an
9517 offset expression. */
9518 if (!intel_parser
.in_offset
)
9519 intel_parser
.is_mem
= 1;
9526 const reg_entry
*reg
= intel_parser
.reg
= cur_token
.reg
;
9528 intel_match_token (T_REG
);
9530 /* Check for segment change. */
9531 if (cur_token
.code
== ':')
9533 if (!reg
->reg_type
.bitfield
.sreg2
9534 && !reg
->reg_type
.bitfield
.sreg3
)
9536 as_bad (_("`%s' is not a valid segment register"),
9540 else if (i
.mem_operands
>= 2)
9541 as_warn (_("Segment override ignored"));
9542 else if (i
.seg
[i
.mem_operands
])
9543 as_warn (_("Extra segment override ignored"));
9546 if (!intel_parser
.in_offset
)
9547 intel_parser
.is_mem
= 1;
9548 switch (reg
->reg_num
)
9551 i
.seg
[i
.mem_operands
] = &es
;
9554 i
.seg
[i
.mem_operands
] = &cs
;
9557 i
.seg
[i
.mem_operands
] = &ss
;
9560 i
.seg
[i
.mem_operands
] = &ds
;
9563 i
.seg
[i
.mem_operands
] = &fs
;
9566 i
.seg
[i
.mem_operands
] = &gs
;
9572 else if (reg
->reg_type
.bitfield
.sreg3
&& reg
->reg_num
== RegFlat
)
9574 as_bad (_("cannot use `FLAT' here"));
9578 /* Not a segment register. Check for register scaling. */
9579 else if (cur_token
.code
== '*')
9581 if (!intel_parser
.in_bracket
)
9583 as_bad (_("Register scaling only allowed in memory operands"));
9587 if (reg
->reg_type
.bitfield
.reg16
) /* Disallow things like [si*1]. */
9588 reg
= i386_regtab
+ REGNAM_AX
+ 4; /* sp is invalid as index */
9589 else if (i
.index_reg
)
9590 reg
= i386_regtab
+ REGNAM_EAX
+ 4; /* esp is invalid as index */
9592 /* What follows must be a valid scale. */
9593 intel_match_token ('*');
9595 i
.types
[this_operand
].bitfield
.baseindex
= 1;
9597 /* Set the scale after setting the register (otherwise,
9598 i386_scale will complain) */
9599 if (cur_token
.code
== '+' || cur_token
.code
== '-')
9601 char *str
, sign
= cur_token
.code
;
9602 intel_match_token (cur_token
.code
);
9603 if (cur_token
.code
!= T_CONST
)
9605 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
9609 str
= (char *) xmalloc (strlen (cur_token
.str
) + 2);
9610 strcpy (str
+ 1, cur_token
.str
);
9612 if (!i386_scale (str
))
9616 else if (!i386_scale (cur_token
.str
))
9618 intel_match_token (cur_token
.code
);
9621 /* No scaling. If this is a memory operand, the register is either a
9622 base register (first occurrence) or an index register (second
9624 else if (intel_parser
.in_bracket
)
9629 else if (!i
.index_reg
)
9633 as_bad (_("Too many register references in memory operand"));
9637 i
.types
[this_operand
].bitfield
.baseindex
= 1;
9640 /* It's neither base nor index. */
9641 else if (!intel_parser
.in_offset
&& !intel_parser
.is_mem
)
9643 i386_operand_type temp
= reg
->reg_type
;
9644 temp
.bitfield
.baseindex
= 0;
9645 i
.types
[this_operand
] = operand_type_or (i
.types
[this_operand
],
9647 i
.types
[this_operand
].bitfield
.unspecified
= 0;
9648 i
.op
[this_operand
].regs
= reg
;
9653 as_bad (_("Invalid use of register"));
9657 /* Since registers are not part of the displacement string (except
9658 when we're parsing offset operands), we may need to remove any
9659 preceding '+' from the displacement string. */
9660 if (*intel_parser
.disp
!= '\0'
9661 && !intel_parser
.in_offset
)
9663 char *s
= intel_parser
.disp
;
9664 s
+= strlen (s
) - 1;
9689 intel_match_token (cur_token
.code
);
9691 if (cur_token
.code
== T_PTR
)
9694 /* It must have been an identifier. */
9695 intel_putback_token ();
9696 cur_token
.code
= T_ID
;
9702 if (!intel_parser
.in_offset
&& intel_parser
.is_mem
<= 0)
9706 /* The identifier represents a memory reference only if it's not
9707 preceded by an offset modifier and if it's not an equate. */
9708 symbolP
= symbol_find(cur_token
.str
);
9709 if (!symbolP
|| S_GET_SEGMENT(symbolP
) != absolute_section
)
9710 intel_parser
.is_mem
= 1;
9718 char *save_str
, sign
= 0;
9720 /* Allow constants that start with `+' or `-'. */
9721 if (cur_token
.code
== '-' || cur_token
.code
== '+')
9723 sign
= cur_token
.code
;
9724 intel_match_token (cur_token
.code
);
9725 if (cur_token
.code
!= T_CONST
)
9727 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
9733 save_str
= (char *) xmalloc (strlen (cur_token
.str
) + 2);
9734 strcpy (save_str
+ !!sign
, cur_token
.str
);
9738 /* Get the next token to check for register scaling. */
9739 intel_match_token (cur_token
.code
);
9741 /* Check if this constant is a scaling factor for an
9743 if (cur_token
.code
== '*')
9745 if (intel_match_token ('*') && cur_token
.code
== T_REG
)
9747 const reg_entry
*reg
= cur_token
.reg
;
9749 if (!intel_parser
.in_bracket
)
9751 as_bad (_("Register scaling only allowed "
9752 "in memory operands"));
9756 /* Disallow things like [1*si].
9757 sp and esp are invalid as index. */
9758 if (reg
->reg_type
.bitfield
.reg16
)
9759 reg
= i386_regtab
+ REGNAM_AX
+ 4;
9760 else if (i
.index_reg
)
9761 reg
= i386_regtab
+ REGNAM_EAX
+ 4;
9763 /* The constant is followed by `* reg', so it must be
9766 i
.types
[this_operand
].bitfield
.baseindex
= 1;
9768 /* Set the scale after setting the register (otherwise,
9769 i386_scale will complain) */
9770 if (!i386_scale (save_str
))
9772 intel_match_token (T_REG
);
9774 /* Since registers are not part of the displacement
9775 string, we may need to remove any preceding '+' from
9776 the displacement string. */
9777 if (*intel_parser
.disp
!= '\0')
9779 char *s
= intel_parser
.disp
;
9780 s
+= strlen (s
) - 1;
9790 /* The constant was not used for register scaling. Since we have
9791 already consumed the token following `*' we now need to put it
9792 back in the stream. */
9793 intel_putback_token ();
9796 /* Add the constant to the displacement string. */
9797 strcat (intel_parser
.disp
, save_str
);
9804 as_bad (_("Unrecognized token '%s'"), cur_token
.str
);
9808 /* Match the given token against cur_token. If they match, read the next
9809 token from the operand string. */
9811 intel_match_token (int code
)
9813 if (cur_token
.code
== code
)
9820 as_bad (_("Unexpected token `%s'"), cur_token
.str
);
9825 /* Read a new token from intel_parser.op_string and store it in cur_token. */
9827 intel_get_token (void)
9830 const reg_entry
*reg
;
9831 struct intel_token new_token
;
9833 new_token
.code
= T_NIL
;
9834 new_token
.reg
= NULL
;
9835 new_token
.str
= NULL
;
9837 /* Free the memory allocated to the previous token and move
9838 cur_token to prev_token. */
9840 free (prev_token
.str
);
9842 prev_token
= cur_token
;
9844 /* Skip whitespace. */
9845 while (is_space_char (*intel_parser
.op_string
))
9846 intel_parser
.op_string
++;
9848 /* Return an empty token if we find nothing else on the line. */
9849 if (*intel_parser
.op_string
== '\0')
9851 cur_token
= new_token
;
9855 /* The new token cannot be larger than the remainder of the operand
9857 new_token
.str
= (char *) xmalloc (strlen (intel_parser
.op_string
) + 1);
9858 new_token
.str
[0] = '\0';
9860 if (strchr ("0123456789", *intel_parser
.op_string
))
9862 char *p
= new_token
.str
;
9863 char *q
= intel_parser
.op_string
;
9864 new_token
.code
= T_CONST
;
9866 /* Allow any kind of identifier char to encompass floating point and
9867 hexadecimal numbers. */
9868 while (is_identifier_char (*q
))
9872 /* Recognize special symbol names [0-9][bf]. */
9873 if (strlen (intel_parser
.op_string
) == 2
9874 && (intel_parser
.op_string
[1] == 'b'
9875 || intel_parser
.op_string
[1] == 'f'))
9876 new_token
.code
= T_ID
;
9879 else if ((reg
= parse_register (intel_parser
.op_string
, &end_op
)) != NULL
)
9881 size_t len
= end_op
- intel_parser
.op_string
;
9883 new_token
.code
= T_REG
;
9884 new_token
.reg
= reg
;
9886 memcpy (new_token
.str
, intel_parser
.op_string
, len
);
9887 new_token
.str
[len
] = '\0';
9890 else if (is_identifier_char (*intel_parser
.op_string
))
9892 char *p
= new_token
.str
;
9893 char *q
= intel_parser
.op_string
;
9895 /* A '.' or '$' followed by an identifier char is an identifier.
9896 Otherwise, it's operator '.' followed by an expression. */
9897 if ((*q
== '.' || *q
== '$') && !is_identifier_char (*(q
+ 1)))
9899 new_token
.code
= '.';
9900 new_token
.str
[0] = '.';
9901 new_token
.str
[1] = '\0';
9905 while (is_identifier_char (*q
) || *q
== '@')
9909 if (strcasecmp (new_token
.str
, "NOT") == 0)
9910 new_token
.code
= '~';
9912 else if (strcasecmp (new_token
.str
, "MOD") == 0)
9913 new_token
.code
= '%';
9915 else if (strcasecmp (new_token
.str
, "AND") == 0)
9916 new_token
.code
= '&';
9918 else if (strcasecmp (new_token
.str
, "OR") == 0)
9919 new_token
.code
= '|';
9921 else if (strcasecmp (new_token
.str
, "XOR") == 0)
9922 new_token
.code
= '^';
9924 else if (strcasecmp (new_token
.str
, "SHL") == 0)
9925 new_token
.code
= T_SHL
;
9927 else if (strcasecmp (new_token
.str
, "SHR") == 0)
9928 new_token
.code
= T_SHR
;
9930 else if (strcasecmp (new_token
.str
, "BYTE") == 0)
9931 new_token
.code
= T_BYTE
;
9933 else if (strcasecmp (new_token
.str
, "WORD") == 0)
9934 new_token
.code
= T_WORD
;
9936 else if (strcasecmp (new_token
.str
, "DWORD") == 0)
9937 new_token
.code
= T_DWORD
;
9939 else if (strcasecmp (new_token
.str
, "FWORD") == 0)
9940 new_token
.code
= T_FWORD
;
9942 else if (strcasecmp (new_token
.str
, "QWORD") == 0)
9943 new_token
.code
= T_QWORD
;
9945 else if (strcasecmp (new_token
.str
, "TBYTE") == 0
9946 /* XXX remove (gcc still uses it) */
9947 || strcasecmp (new_token
.str
, "XWORD") == 0)
9948 new_token
.code
= T_TBYTE
;
9950 else if (strcasecmp (new_token
.str
, "XMMWORD") == 0
9951 || strcasecmp (new_token
.str
, "OWORD") == 0)
9952 new_token
.code
= T_XMMWORD
;
9954 else if (strcasecmp (new_token
.str
, "YMMWORD") == 0)
9955 new_token
.code
= T_YMMWORD
;
9957 else if (strcasecmp (new_token
.str
, "PTR") == 0)
9958 new_token
.code
= T_PTR
;
9960 else if (strcasecmp (new_token
.str
, "SHORT") == 0)
9961 new_token
.code
= T_SHORT
;
9963 else if (strcasecmp (new_token
.str
, "OFFSET") == 0)
9965 new_token
.code
= T_OFFSET
;
9967 /* ??? This is not mentioned in the MASM grammar but gcc
9968 makes use of it with -mintel-syntax. OFFSET may be
9969 followed by FLAT: */
9970 if (strncasecmp (q
, " FLAT:", 6) == 0)
9971 strcat (new_token
.str
, " FLAT:");
9975 new_token
.code
= T_ID
;
9979 else if (strchr ("+-/*%|&^:[]()~", *intel_parser
.op_string
))
9981 new_token
.code
= *intel_parser
.op_string
;
9982 new_token
.str
[0] = *intel_parser
.op_string
;
9983 new_token
.str
[1] = '\0';
9986 else if (strchr ("<>", *intel_parser
.op_string
)
9987 && *intel_parser
.op_string
== *(intel_parser
.op_string
+ 1))
9989 new_token
.code
= *intel_parser
.op_string
== '<' ? T_SHL
: T_SHR
;
9990 new_token
.str
[0] = *intel_parser
.op_string
;
9991 new_token
.str
[1] = *intel_parser
.op_string
;
9992 new_token
.str
[2] = '\0';
9996 as_bad (_("Unrecognized token `%s'"), intel_parser
.op_string
);
9998 intel_parser
.op_string
+= strlen (new_token
.str
);
9999 cur_token
= new_token
;
10002 /* Put cur_token back into the token stream and make cur_token point to
10005 intel_putback_token (void)
10007 if (cur_token
.code
!= T_NIL
)
10009 intel_parser
.op_string
-= strlen (cur_token
.str
);
10010 free (cur_token
.str
);
10012 cur_token
= prev_token
;
10014 /* Forget prev_token. */
10015 prev_token
.code
= T_NIL
;
10016 prev_token
.reg
= NULL
;
10017 prev_token
.str
= NULL
;
10021 tc_x86_parse_to_dw2regnum (expressionS
*exp
)
10023 int saved_naked_reg
;
10024 char saved_register_dot
;
10026 saved_naked_reg
= allow_naked_reg
;
10027 allow_naked_reg
= 1;
10028 saved_register_dot
= register_chars
['.'];
10029 register_chars
['.'] = '.';
10030 allow_pseudo_reg
= 1;
10031 expression_and_evaluate (exp
);
10032 allow_pseudo_reg
= 0;
10033 register_chars
['.'] = saved_register_dot
;
10034 allow_naked_reg
= saved_naked_reg
;
10036 if (exp
->X_op
== O_register
&& exp
->X_add_number
>= 0)
10038 if ((addressT
) exp
->X_add_number
< i386_regtab_size
)
10040 exp
->X_op
= O_constant
;
10041 exp
->X_add_number
= i386_regtab
[exp
->X_add_number
]
10042 .dw2_regnum
[flag_code
>> 1];
10045 exp
->X_op
= O_illegal
;
10050 tc_x86_frame_initial_instructions (void)
10052 static unsigned int sp_regno
[2];
10054 if (!sp_regno
[flag_code
>> 1])
10056 char *saved_input
= input_line_pointer
;
10057 char sp
[][4] = {"esp", "rsp"};
10060 input_line_pointer
= sp
[flag_code
>> 1];
10061 tc_x86_parse_to_dw2regnum (&exp
);
10062 assert (exp
.X_op
== O_constant
);
10063 sp_regno
[flag_code
>> 1] = exp
.X_add_number
;
10064 input_line_pointer
= saved_input
;
10067 cfi_add_CFA_def_cfa (sp_regno
[flag_code
>> 1], -x86_cie_data_alignment
);
10068 cfi_add_CFA_offset (x86_dwarf2_return_column
, x86_cie_data_alignment
);
10072 i386_elf_section_type (const char *str
, size_t len
)
10074 if (flag_code
== CODE_64BIT
10075 && len
== sizeof ("unwind") - 1
10076 && strncmp (str
, "unwind", 6) == 0)
10077 return SHT_X86_64_UNWIND
;
10084 i386_solaris_fix_up_eh_frame (segT sec
)
10086 if (flag_code
== CODE_64BIT
)
10087 elf_section_type (sec
) = SHT_X86_64_UNWIND
;
10093 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
10097 expr
.X_op
= O_secrel
;
10098 expr
.X_add_symbol
= symbol
;
10099 expr
.X_add_number
= 0;
10100 emit_expr (&expr
, size
);
10104 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10105 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10108 x86_64_section_letter (int letter
, char **ptr_msg
)
10110 if (flag_code
== CODE_64BIT
)
10113 return SHF_X86_64_LARGE
;
10115 *ptr_msg
= _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
10118 *ptr_msg
= _("Bad .section directive: want a,w,x,M,S,G,T in string");
10123 x86_64_section_word (char *str
, size_t len
)
10125 if (len
== 5 && flag_code
== CODE_64BIT
&& CONST_STRNEQ (str
, "large"))
10126 return SHF_X86_64_LARGE
;
10132 handle_large_common (int small ATTRIBUTE_UNUSED
)
10134 if (flag_code
!= CODE_64BIT
)
10136 s_comm_internal (0, elf_common_parse
);
10137 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10141 static segT lbss_section
;
10142 asection
*saved_com_section_ptr
= elf_com_section_ptr
;
10143 asection
*saved_bss_section
= bss_section
;
10145 if (lbss_section
== NULL
)
10147 flagword applicable
;
10148 segT seg
= now_seg
;
10149 subsegT subseg
= now_subseg
;
10151 /* The .lbss section is for local .largecomm symbols. */
10152 lbss_section
= subseg_new (".lbss", 0);
10153 applicable
= bfd_applicable_section_flags (stdoutput
);
10154 bfd_set_section_flags (stdoutput
, lbss_section
,
10155 applicable
& SEC_ALLOC
);
10156 seg_info (lbss_section
)->bss
= 1;
10158 subseg_set (seg
, subseg
);
10161 elf_com_section_ptr
= &_bfd_elf_large_com_section
;
10162 bss_section
= lbss_section
;
10164 s_comm_internal (0, elf_common_parse
);
10166 elf_com_section_ptr
= saved_com_section_ptr
;
10167 bss_section
= saved_bss_section
;
10170 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */