* objdump.c (slurp_file): Close file if fstat fails.
[binutils.git] / gold / resolve.cc
blob780038aee5ed383912072bf9cdc1b241223013da
1 // resolve.cc -- symbol resolution for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
31 namespace gold
34 // Symbol methods used in this file.
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
39 inline void
40 Symbol::override_version(const char* version)
42 if (version == NULL)
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
54 else
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
86 // Override the fields in Symbol.
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
109 // Override the fields in Sized_symbol.
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* object, const char* version)
118 this->override_base(sym, st_shndx, is_ordinary, object, version);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* object, const char* version)
133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134 if (tosym->has_alias())
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
146 while (ssym != tosym);
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
176 unsigned int bits;
178 switch (binding)
180 case elfcpp::STB_GLOBAL:
181 case elfcpp::STB_GNU_UNIQUE:
182 bits = global_flag;
183 break;
185 case elfcpp::STB_WEAK:
186 bits = weak_flag;
187 break;
189 case elfcpp::STB_LOCAL:
190 // We should only see externally visible symbols in the symbol
191 // table.
192 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
193 bits = global_flag;
195 default:
196 // Any target which wants to handle STB_LOOS, etc., needs to
197 // define a resolve method.
198 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
199 bits = global_flag;
202 if (is_dynamic)
203 bits |= dynamic_flag;
204 else
205 bits |= regular_flag;
207 switch (shndx)
209 case elfcpp::SHN_UNDEF:
210 bits |= undef_flag;
211 break;
213 case elfcpp::SHN_COMMON:
214 if (!is_ordinary)
215 bits |= common_flag;
216 break;
218 default:
219 if (type == elfcpp::STT_COMMON)
220 bits |= common_flag;
221 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
223 else
224 bits |= def_flag;
225 break;
228 return bits;
231 // Resolve a symbol. This is called the second and subsequent times
232 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233 // section index for SYM, possibly adjusted for many sections.
234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235 // than a special code. ORIG_ST_SHNDX is the original section index,
236 // before any munging because of discarded sections, except that all
237 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
238 // the version of SYM.
240 template<int size, bool big_endian>
241 void
242 Symbol_table::resolve(Sized_symbol<size>* to,
243 const elfcpp::Sym<size, big_endian>& sym,
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
246 Object* object, const char* version)
248 // It's possible for a symbol to be defined in an object file
249 // using .symver to give it a version, and for there to also be
250 // a linker script giving that symbol the same version. We
251 // don't want to give a multiple-definition error for this
252 // harmless redefinition.
253 bool to_is_ordinary;
254 if (to->source() == Symbol::FROM_OBJECT
255 && to->object() == object
256 && is_ordinary
257 && to->is_defined()
258 && to->shndx(&to_is_ordinary) == st_shndx
259 && to_is_ordinary
260 && to->value() == sym.get_st_value())
261 return;
263 if (parameters->target().has_resolve())
265 Sized_target<size, big_endian>* sized_target;
266 sized_target = parameters->sized_target<size, big_endian>();
267 sized_target->resolve(to, sym, object, version);
268 return;
271 if (!object->is_dynamic())
273 // Record that we've seen this symbol in a regular object.
274 to->set_in_reg();
276 else if (st_shndx == elfcpp::SHN_UNDEF
277 && (to->visibility() == elfcpp::STV_HIDDEN
278 || to->visibility() == elfcpp::STV_INTERNAL))
280 // A dynamic object cannot reference a hidden or internal symbol
281 // defined in another object.
282 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
283 (to->visibility() == elfcpp::STV_HIDDEN
284 ? "hidden"
285 : "internal"),
286 to->demangled_name().c_str(),
287 to->object()->name().c_str(),
288 object->name().c_str());
289 return;
291 else
293 // Record that we've seen this symbol in a dynamic object.
294 to->set_in_dyn();
297 // Record if we've seen this symbol in a real ELF object (i.e., the
298 // symbol is referenced from outside the world known to the plugin).
299 if (object->pluginobj() == NULL && !object->is_dynamic())
300 to->set_in_real_elf();
302 // If we're processing replacement files, allow new symbols to override
303 // the placeholders from the plugin objects.
304 if (to->source() == Symbol::FROM_OBJECT)
306 Pluginobj* obj = to->object()->pluginobj();
307 if (obj != NULL
308 && parameters->options().plugins()->in_replacement_phase())
310 this->override(to, sym, st_shndx, is_ordinary, object, version);
311 return;
315 // A new weak undefined reference, merging with an old weak
316 // reference, could be a One Definition Rule (ODR) violation --
317 // especially if the types or sizes of the references differ. We'll
318 // store such pairs and look them up later to make sure they
319 // actually refer to the same lines of code. We also check
320 // combinations of weak and strong, which might occur if one case is
321 // inline and the other is not. (Note: not all ODR violations can
322 // be found this way, and not everything this finds is an ODR
323 // violation. But it's helpful to warn about.)
324 if (parameters->options().detect_odr_violations()
325 && (sym.get_st_bind() == elfcpp::STB_WEAK
326 || to->binding() == elfcpp::STB_WEAK)
327 && orig_st_shndx != elfcpp::SHN_UNDEF
328 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
329 && to_is_ordinary
330 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
331 && to->symsize() != 0
332 && (sym.get_st_type() != to->type()
333 || sym.get_st_size() != to->symsize())
334 // C does not have a concept of ODR, so we only need to do this
335 // on C++ symbols. These have (mangled) names starting with _Z.
336 && to->name()[0] == '_' && to->name()[1] == 'Z')
338 Symbol_location fromloc
339 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
340 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
341 static_cast<off_t>(to->value()) };
342 this->candidate_odr_violations_[to->name()].insert(fromloc);
343 this->candidate_odr_violations_[to->name()].insert(toloc);
346 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
347 object->is_dynamic(),
348 st_shndx, is_ordinary,
349 sym.get_st_type());
351 bool adjust_common_sizes;
352 bool adjust_dyndef;
353 typename Sized_symbol<size>::Size_type tosize = to->symsize();
354 if (Symbol_table::should_override(to, frombits, sym.get_st_type(), OBJECT,
355 object, &adjust_common_sizes,
356 &adjust_dyndef))
358 elfcpp::STB tobinding = to->binding();
359 this->override(to, sym, st_shndx, is_ordinary, object, version);
360 if (adjust_common_sizes && tosize > to->symsize())
361 to->set_symsize(tosize);
362 if (adjust_dyndef)
364 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
365 // Remember which kind of UNDEF it was for future reference.
366 to->set_undef_binding(tobinding);
369 else
371 if (adjust_common_sizes && sym.get_st_size() > tosize)
372 to->set_symsize(sym.get_st_size());
373 if (adjust_dyndef)
375 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
376 // Remember which kind of UNDEF it was.
377 to->set_undef_binding(sym.get_st_bind());
379 // The ELF ABI says that even for a reference to a symbol we
380 // merge the visibility.
381 to->override_visibility(sym.get_st_visibility());
384 if (adjust_common_sizes && parameters->options().warn_common())
386 if (tosize > sym.get_st_size())
387 Symbol_table::report_resolve_problem(false,
388 _("common of '%s' overriding "
389 "smaller common"),
390 to, OBJECT, object);
391 else if (tosize < sym.get_st_size())
392 Symbol_table::report_resolve_problem(false,
393 _("common of '%s' overidden by "
394 "larger common"),
395 to, OBJECT, object);
396 else
397 Symbol_table::report_resolve_problem(false,
398 _("multiple common of '%s'"),
399 to, OBJECT, object);
403 // Handle the core of symbol resolution. This is called with the
404 // existing symbol, TO, and a bitflag describing the new symbol. This
405 // returns true if we should override the existing symbol with the new
406 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
407 // true if we should set the symbol size to the maximum of the TO and
408 // FROM sizes. It handles error conditions.
410 bool
411 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
412 elfcpp::STT fromtype, Defined defined,
413 Object* object, bool* adjust_common_sizes,
414 bool* adjust_dyndef)
416 *adjust_common_sizes = false;
417 *adjust_dyndef = false;
419 unsigned int tobits;
420 if (to->source() == Symbol::IS_UNDEFINED)
421 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
422 to->type());
423 else if (to->source() != Symbol::FROM_OBJECT)
424 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
425 to->type());
426 else
428 bool is_ordinary;
429 unsigned int shndx = to->shndx(&is_ordinary);
430 tobits = symbol_to_bits(to->binding(),
431 to->object()->is_dynamic(),
432 shndx,
433 is_ordinary,
434 to->type());
437 if (to->type() == elfcpp::STT_TLS
438 ? fromtype != elfcpp::STT_TLS
439 : fromtype == elfcpp::STT_TLS)
440 Symbol_table::report_resolve_problem(true,
441 _("symbol '%s' used as both __thread "
442 "and non-__thread"),
443 to, defined, object);
445 // We use a giant switch table for symbol resolution. This code is
446 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
447 // cases; 3) it is easy to change the handling of a particular case.
448 // The alternative would be a series of conditionals, but it is easy
449 // to get the ordering wrong. This could also be done as a table,
450 // but that is no easier to understand than this large switch
451 // statement.
453 // These are the values generated by the bit codes.
454 enum
456 DEF = global_flag | regular_flag | def_flag,
457 WEAK_DEF = weak_flag | regular_flag | def_flag,
458 DYN_DEF = global_flag | dynamic_flag | def_flag,
459 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
460 UNDEF = global_flag | regular_flag | undef_flag,
461 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
462 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
463 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
464 COMMON = global_flag | regular_flag | common_flag,
465 WEAK_COMMON = weak_flag | regular_flag | common_flag,
466 DYN_COMMON = global_flag | dynamic_flag | common_flag,
467 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
470 switch (tobits * 16 + frombits)
472 case DEF * 16 + DEF:
473 // Two definitions of the same symbol.
475 // If either symbol is defined by an object included using
476 // --just-symbols, then don't warn. This is for compatibility
477 // with the GNU linker. FIXME: This is a hack.
478 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
479 || (object != NULL && object->just_symbols()))
480 return false;
482 if (!parameters->options().muldefs())
483 Symbol_table::report_resolve_problem(true,
484 _("multiple definition of '%s'"),
485 to, defined, object);
486 return false;
488 case WEAK_DEF * 16 + DEF:
489 // We've seen a weak definition, and now we see a strong
490 // definition. In the original SVR4 linker, this was treated as
491 // a multiple definition error. In the Solaris linker and the
492 // GNU linker, a weak definition followed by a regular
493 // definition causes the weak definition to be overridden. We
494 // are currently compatible with the GNU linker. In the future
495 // we should add a target specific option to change this.
496 // FIXME.
497 return true;
499 case DYN_DEF * 16 + DEF:
500 case DYN_WEAK_DEF * 16 + DEF:
501 // We've seen a definition in a dynamic object, and now we see a
502 // definition in a regular object. The definition in the
503 // regular object overrides the definition in the dynamic
504 // object.
505 return true;
507 case UNDEF * 16 + DEF:
508 case WEAK_UNDEF * 16 + DEF:
509 case DYN_UNDEF * 16 + DEF:
510 case DYN_WEAK_UNDEF * 16 + DEF:
511 // We've seen an undefined reference, and now we see a
512 // definition. We use the definition.
513 return true;
515 case COMMON * 16 + DEF:
516 case WEAK_COMMON * 16 + DEF:
517 case DYN_COMMON * 16 + DEF:
518 case DYN_WEAK_COMMON * 16 + DEF:
519 // We've seen a common symbol and now we see a definition. The
520 // definition overrides.
521 if (parameters->options().warn_common())
522 Symbol_table::report_resolve_problem(false,
523 _("definition of '%s' overriding "
524 "common"),
525 to, defined, object);
526 return true;
528 case DEF * 16 + WEAK_DEF:
529 case WEAK_DEF * 16 + WEAK_DEF:
530 // We've seen a definition and now we see a weak definition. We
531 // ignore the new weak definition.
532 return false;
534 case DYN_DEF * 16 + WEAK_DEF:
535 case DYN_WEAK_DEF * 16 + WEAK_DEF:
536 // We've seen a dynamic definition and now we see a regular weak
537 // definition. The regular weak definition overrides.
538 return true;
540 case UNDEF * 16 + WEAK_DEF:
541 case WEAK_UNDEF * 16 + WEAK_DEF:
542 case DYN_UNDEF * 16 + WEAK_DEF:
543 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
544 // A weak definition of a currently undefined symbol.
545 return true;
547 case COMMON * 16 + WEAK_DEF:
548 case WEAK_COMMON * 16 + WEAK_DEF:
549 // A weak definition does not override a common definition.
550 return false;
552 case DYN_COMMON * 16 + WEAK_DEF:
553 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
554 // A weak definition does override a definition in a dynamic
555 // object.
556 if (parameters->options().warn_common())
557 Symbol_table::report_resolve_problem(false,
558 _("definition of '%s' overriding "
559 "dynamic common definition"),
560 to, defined, object);
561 return true;
563 case DEF * 16 + DYN_DEF:
564 case WEAK_DEF * 16 + DYN_DEF:
565 case DYN_DEF * 16 + DYN_DEF:
566 case DYN_WEAK_DEF * 16 + DYN_DEF:
567 // Ignore a dynamic definition if we already have a definition.
568 return false;
570 case UNDEF * 16 + DYN_DEF:
571 case DYN_UNDEF * 16 + DYN_DEF:
572 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
573 // Use a dynamic definition if we have a reference.
574 return true;
576 case WEAK_UNDEF * 16 + DYN_DEF:
577 // When overriding a weak undef by a dynamic definition,
578 // we need to remember that the original undef was weak.
579 *adjust_dyndef = true;
580 return true;
582 case COMMON * 16 + DYN_DEF:
583 case WEAK_COMMON * 16 + DYN_DEF:
584 case DYN_COMMON * 16 + DYN_DEF:
585 case DYN_WEAK_COMMON * 16 + DYN_DEF:
586 // Ignore a dynamic definition if we already have a common
587 // definition.
588 return false;
590 case DEF * 16 + DYN_WEAK_DEF:
591 case WEAK_DEF * 16 + DYN_WEAK_DEF:
592 case DYN_DEF * 16 + DYN_WEAK_DEF:
593 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
594 // Ignore a weak dynamic definition if we already have a
595 // definition.
596 return false;
598 case UNDEF * 16 + DYN_WEAK_DEF:
599 // When overriding an undef by a dynamic weak definition,
600 // we need to remember that the original undef was not weak.
601 *adjust_dyndef = true;
602 return true;
604 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
605 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
606 // Use a weak dynamic definition if we have a reference.
607 return true;
609 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
610 // When overriding a weak undef by a dynamic definition,
611 // we need to remember that the original undef was weak.
612 *adjust_dyndef = true;
613 return true;
615 case COMMON * 16 + DYN_WEAK_DEF:
616 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
617 case DYN_COMMON * 16 + DYN_WEAK_DEF:
618 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
619 // Ignore a weak dynamic definition if we already have a common
620 // definition.
621 return false;
623 case DEF * 16 + UNDEF:
624 case WEAK_DEF * 16 + UNDEF:
625 case UNDEF * 16 + UNDEF:
626 // A new undefined reference tells us nothing.
627 return false;
629 case DYN_DEF * 16 + UNDEF:
630 case DYN_WEAK_DEF * 16 + UNDEF:
631 // For a dynamic def, we need to remember which kind of undef we see.
632 *adjust_dyndef = true;
633 return false;
635 case WEAK_UNDEF * 16 + UNDEF:
636 case DYN_UNDEF * 16 + UNDEF:
637 case DYN_WEAK_UNDEF * 16 + UNDEF:
638 // A strong undef overrides a dynamic or weak undef.
639 return true;
641 case COMMON * 16 + UNDEF:
642 case WEAK_COMMON * 16 + UNDEF:
643 case DYN_COMMON * 16 + UNDEF:
644 case DYN_WEAK_COMMON * 16 + UNDEF:
645 // A new undefined reference tells us nothing.
646 return false;
648 case DEF * 16 + WEAK_UNDEF:
649 case WEAK_DEF * 16 + WEAK_UNDEF:
650 case UNDEF * 16 + WEAK_UNDEF:
651 case WEAK_UNDEF * 16 + WEAK_UNDEF:
652 case DYN_UNDEF * 16 + WEAK_UNDEF:
653 case COMMON * 16 + WEAK_UNDEF:
654 case WEAK_COMMON * 16 + WEAK_UNDEF:
655 case DYN_COMMON * 16 + WEAK_UNDEF:
656 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
657 // A new weak undefined reference tells us nothing unless the
658 // exisiting symbol is a dynamic weak reference.
659 return false;
661 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
662 // A new weak reference overrides an existing dynamic weak reference.
663 // This is necessary because a dynamic weak reference remembers
664 // the old binding, which may not be weak. If we keeps the existing
665 // dynamic weak reference, the weakness may be dropped in the output.
666 return true;
668 case DYN_DEF * 16 + WEAK_UNDEF:
669 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
670 // For a dynamic def, we need to remember which kind of undef we see.
671 *adjust_dyndef = true;
672 return false;
674 case DEF * 16 + DYN_UNDEF:
675 case WEAK_DEF * 16 + DYN_UNDEF:
676 case DYN_DEF * 16 + DYN_UNDEF:
677 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
678 case UNDEF * 16 + DYN_UNDEF:
679 case WEAK_UNDEF * 16 + DYN_UNDEF:
680 case DYN_UNDEF * 16 + DYN_UNDEF:
681 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
682 case COMMON * 16 + DYN_UNDEF:
683 case WEAK_COMMON * 16 + DYN_UNDEF:
684 case DYN_COMMON * 16 + DYN_UNDEF:
685 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
686 // A new dynamic undefined reference tells us nothing.
687 return false;
689 case DEF * 16 + DYN_WEAK_UNDEF:
690 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
691 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
692 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
693 case UNDEF * 16 + DYN_WEAK_UNDEF:
694 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
695 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
696 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
697 case COMMON * 16 + DYN_WEAK_UNDEF:
698 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
699 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
700 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
701 // A new weak dynamic undefined reference tells us nothing.
702 return false;
704 case DEF * 16 + COMMON:
705 // A common symbol does not override a definition.
706 if (parameters->options().warn_common())
707 Symbol_table::report_resolve_problem(false,
708 _("common '%s' overridden by "
709 "previous definition"),
710 to, defined, object);
711 return false;
713 case WEAK_DEF * 16 + COMMON:
714 case DYN_DEF * 16 + COMMON:
715 case DYN_WEAK_DEF * 16 + COMMON:
716 // A common symbol does override a weak definition or a dynamic
717 // definition.
718 return true;
720 case UNDEF * 16 + COMMON:
721 case WEAK_UNDEF * 16 + COMMON:
722 case DYN_UNDEF * 16 + COMMON:
723 case DYN_WEAK_UNDEF * 16 + COMMON:
724 // A common symbol is a definition for a reference.
725 return true;
727 case COMMON * 16 + COMMON:
728 // Set the size to the maximum.
729 *adjust_common_sizes = true;
730 return false;
732 case WEAK_COMMON * 16 + COMMON:
733 // I'm not sure just what a weak common symbol means, but
734 // presumably it can be overridden by a regular common symbol.
735 return true;
737 case DYN_COMMON * 16 + COMMON:
738 case DYN_WEAK_COMMON * 16 + COMMON:
739 // Use the real common symbol, but adjust the size if necessary.
740 *adjust_common_sizes = true;
741 return true;
743 case DEF * 16 + WEAK_COMMON:
744 case WEAK_DEF * 16 + WEAK_COMMON:
745 case DYN_DEF * 16 + WEAK_COMMON:
746 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
747 // Whatever a weak common symbol is, it won't override a
748 // definition.
749 return false;
751 case UNDEF * 16 + WEAK_COMMON:
752 case WEAK_UNDEF * 16 + WEAK_COMMON:
753 case DYN_UNDEF * 16 + WEAK_COMMON:
754 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
755 // A weak common symbol is better than an undefined symbol.
756 return true;
758 case COMMON * 16 + WEAK_COMMON:
759 case WEAK_COMMON * 16 + WEAK_COMMON:
760 case DYN_COMMON * 16 + WEAK_COMMON:
761 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
762 // Ignore a weak common symbol in the presence of a real common
763 // symbol.
764 return false;
766 case DEF * 16 + DYN_COMMON:
767 case WEAK_DEF * 16 + DYN_COMMON:
768 case DYN_DEF * 16 + DYN_COMMON:
769 case DYN_WEAK_DEF * 16 + DYN_COMMON:
770 // Ignore a dynamic common symbol in the presence of a
771 // definition.
772 return false;
774 case UNDEF * 16 + DYN_COMMON:
775 case WEAK_UNDEF * 16 + DYN_COMMON:
776 case DYN_UNDEF * 16 + DYN_COMMON:
777 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
778 // A dynamic common symbol is a definition of sorts.
779 return true;
781 case COMMON * 16 + DYN_COMMON:
782 case WEAK_COMMON * 16 + DYN_COMMON:
783 case DYN_COMMON * 16 + DYN_COMMON:
784 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
785 // Set the size to the maximum.
786 *adjust_common_sizes = true;
787 return false;
789 case DEF * 16 + DYN_WEAK_COMMON:
790 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
791 case DYN_DEF * 16 + DYN_WEAK_COMMON:
792 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
793 // A common symbol is ignored in the face of a definition.
794 return false;
796 case UNDEF * 16 + DYN_WEAK_COMMON:
797 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
798 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
799 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
800 // I guess a weak common symbol is better than a definition.
801 return true;
803 case COMMON * 16 + DYN_WEAK_COMMON:
804 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
805 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
806 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
807 // Set the size to the maximum.
808 *adjust_common_sizes = true;
809 return false;
811 default:
812 gold_unreachable();
816 // Issue an error or warning due to symbol resolution. IS_ERROR
817 // indicates an error rather than a warning. MSG is the error
818 // message; it is expected to have a %s for the symbol name. TO is
819 // the existing symbol. DEFINED/OBJECT is where the new symbol was
820 // found.
822 // FIXME: We should have better location information here. When the
823 // symbol is defined, we should be able to pull the location from the
824 // debug info if there is any.
826 void
827 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
828 const Symbol* to, Defined defined,
829 Object* object)
831 std::string demangled(to->demangled_name());
832 size_t len = strlen(msg) + demangled.length() + 10;
833 char* buf = new char[len];
834 snprintf(buf, len, msg, demangled.c_str());
836 const char* objname;
837 switch (defined)
839 case OBJECT:
840 objname = object->name().c_str();
841 break;
842 case COPY:
843 objname = _("COPY reloc");
844 break;
845 case DEFSYM:
846 case UNDEFINED:
847 objname = _("command line");
848 break;
849 case SCRIPT:
850 objname = _("linker script");
851 break;
852 case PREDEFINED:
853 case INCREMENTAL_BASE:
854 objname = _("linker defined");
855 break;
856 default:
857 gold_unreachable();
860 if (is_error)
861 gold_error("%s: %s", objname, buf);
862 else
863 gold_warning("%s: %s", objname, buf);
865 delete[] buf;
867 if (to->source() == Symbol::FROM_OBJECT)
868 objname = to->object()->name().c_str();
869 else
870 objname = _("command line");
871 gold_info("%s: %s: previous definition here", program_name, objname);
874 // A special case of should_override which is only called for a strong
875 // defined symbol from a regular object file. This is used when
876 // defining special symbols.
878 bool
879 Symbol_table::should_override_with_special(const Symbol* to,
880 elfcpp::STT fromtype,
881 Defined defined)
883 bool adjust_common_sizes;
884 bool adjust_dyn_def;
885 unsigned int frombits = global_flag | regular_flag | def_flag;
886 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
887 NULL, &adjust_common_sizes,
888 &adjust_dyn_def);
889 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
890 return ret;
893 // Override symbol base with a special symbol.
895 void
896 Symbol::override_base_with_special(const Symbol* from)
898 bool same_name = this->name_ == from->name_;
899 gold_assert(same_name || this->has_alias());
901 this->source_ = from->source_;
902 switch (from->source_)
904 case FROM_OBJECT:
905 this->u_.from_object = from->u_.from_object;
906 break;
907 case IN_OUTPUT_DATA:
908 this->u_.in_output_data = from->u_.in_output_data;
909 break;
910 case IN_OUTPUT_SEGMENT:
911 this->u_.in_output_segment = from->u_.in_output_segment;
912 break;
913 case IS_CONSTANT:
914 case IS_UNDEFINED:
915 break;
916 default:
917 gold_unreachable();
918 break;
921 if (same_name)
923 // When overriding a versioned symbol with a special symbol, we
924 // may be changing the version. This will happen if we see a
925 // special symbol such as "_end" defined in a shared object with
926 // one version (from a version script), but we want to define it
927 // here with a different version (from a different version
928 // script).
929 this->version_ = from->version_;
931 this->type_ = from->type_;
932 this->binding_ = from->binding_;
933 this->override_visibility(from->visibility_);
934 this->nonvis_ = from->nonvis_;
936 // Special symbols are always considered to be regular symbols.
937 this->in_reg_ = true;
939 if (from->needs_dynsym_entry_)
940 this->needs_dynsym_entry_ = true;
941 if (from->needs_dynsym_value_)
942 this->needs_dynsym_value_ = true;
944 this->is_predefined_ = from->is_predefined_;
946 // We shouldn't see these flags. If we do, we need to handle them
947 // somehow.
948 gold_assert(!from->is_forwarder_);
949 gold_assert(!from->has_plt_offset());
950 gold_assert(!from->has_warning_);
951 gold_assert(!from->is_copied_from_dynobj_);
952 gold_assert(!from->is_forced_local_);
955 // Override a symbol with a special symbol.
957 template<int size>
958 void
959 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
961 this->override_base_with_special(from);
962 this->value_ = from->value_;
963 this->symsize_ = from->symsize_;
966 // Override TOSYM with the special symbol FROMSYM. This handles all
967 // aliases of TOSYM.
969 template<int size>
970 void
971 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
972 const Sized_symbol<size>* fromsym)
974 tosym->override_with_special(fromsym);
975 if (tosym->has_alias())
977 Symbol* sym = this->weak_aliases_[tosym];
978 gold_assert(sym != NULL);
979 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
982 ssym->override_with_special(fromsym);
983 sym = this->weak_aliases_[ssym];
984 gold_assert(sym != NULL);
985 ssym = this->get_sized_symbol<size>(sym);
987 while (ssym != tosym);
989 if (tosym->binding() == elfcpp::STB_LOCAL
990 || ((tosym->visibility() == elfcpp::STV_HIDDEN
991 || tosym->visibility() == elfcpp::STV_INTERNAL)
992 && (tosym->binding() == elfcpp::STB_GLOBAL
993 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
994 || tosym->binding() == elfcpp::STB_WEAK)
995 && !parameters->options().relocatable()))
996 this->force_local(tosym);
999 // Instantiate the templates we need. We could use the configure
1000 // script to restrict this to only the ones needed for implemented
1001 // targets.
1003 // We have to instantiate both big and little endian versions because
1004 // these are used by other templates that depends on size only.
1006 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1007 template
1008 void
1009 Symbol_table::resolve<32, false>(
1010 Sized_symbol<32>* to,
1011 const elfcpp::Sym<32, false>& sym,
1012 unsigned int st_shndx,
1013 bool is_ordinary,
1014 unsigned int orig_st_shndx,
1015 Object* object,
1016 const char* version);
1018 template
1019 void
1020 Symbol_table::resolve<32, true>(
1021 Sized_symbol<32>* to,
1022 const elfcpp::Sym<32, true>& sym,
1023 unsigned int st_shndx,
1024 bool is_ordinary,
1025 unsigned int orig_st_shndx,
1026 Object* object,
1027 const char* version);
1028 #endif
1030 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1031 template
1032 void
1033 Symbol_table::resolve<64, false>(
1034 Sized_symbol<64>* to,
1035 const elfcpp::Sym<64, false>& sym,
1036 unsigned int st_shndx,
1037 bool is_ordinary,
1038 unsigned int orig_st_shndx,
1039 Object* object,
1040 const char* version);
1042 template
1043 void
1044 Symbol_table::resolve<64, true>(
1045 Sized_symbol<64>* to,
1046 const elfcpp::Sym<64, true>& sym,
1047 unsigned int st_shndx,
1048 bool is_ordinary,
1049 unsigned int orig_st_shndx,
1050 Object* object,
1051 const char* version);
1052 #endif
1054 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1055 template
1056 void
1057 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1058 const Sized_symbol<32>*);
1059 #endif
1061 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1062 template
1063 void
1064 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1065 const Sized_symbol<64>*);
1066 #endif
1068 } // End namespace gold.