* objdump.c (slurp_file): Close file if fstat fails.
[binutils.git] / gold / symtab.h
blobfeed2458103420322b5a0b76e176494b00056451
1 // symtab.h -- the gold symbol table -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // Symbol_table
24 // The symbol table.
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
29 #include <string>
30 #include <utility>
31 #include <vector>
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
38 namespace gold
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class to big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
69 class Symbol
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
124 // Return whether this version is the default for this symbol name
125 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
126 // meaningful for versioned symbols.
127 bool
128 is_default() const
130 gold_assert(this->version_ != NULL);
131 return this->is_def_;
134 // Set that this version is the default for this symbol name.
135 void
136 set_is_default()
137 { this->is_def_ = true; }
139 // Return the symbol's name as name@version (or name@@version).
140 std::string
141 versioned_name() const;
143 // Return the symbol source.
144 Source
145 source() const
146 { return this->source_; }
148 // Return the object with which this symbol is associated.
149 Object*
150 object() const
152 gold_assert(this->source_ == FROM_OBJECT);
153 return this->u_.from_object.object;
156 // Return the index of the section in the input relocatable or
157 // dynamic object file.
158 unsigned int
159 shndx(bool* is_ordinary) const
161 gold_assert(this->source_ == FROM_OBJECT);
162 *is_ordinary = this->is_ordinary_shndx_;
163 return this->u_.from_object.shndx;
166 // Return the output data section with which this symbol is
167 // associated, if the symbol was specially defined with respect to
168 // an output data section.
169 Output_data*
170 output_data() const
172 gold_assert(this->source_ == IN_OUTPUT_DATA);
173 return this->u_.in_output_data.output_data;
176 // If this symbol was defined with respect to an output data
177 // section, return whether the value is an offset from end.
178 bool
179 offset_is_from_end() const
181 gold_assert(this->source_ == IN_OUTPUT_DATA);
182 return this->u_.in_output_data.offset_is_from_end;
185 // Return the output segment with which this symbol is associated,
186 // if the symbol was specially defined with respect to an output
187 // segment.
188 Output_segment*
189 output_segment() const
191 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
192 return this->u_.in_output_segment.output_segment;
195 // If this symbol was defined with respect to an output segment,
196 // return the offset base.
197 Segment_offset_base
198 offset_base() const
200 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201 return this->u_.in_output_segment.offset_base;
204 // Return the symbol binding.
205 elfcpp::STB
206 binding() const
207 { return this->binding_; }
209 // Return the symbol type.
210 elfcpp::STT
211 type() const
212 { return this->type_; }
214 // Return true for function symbol.
215 bool
216 is_func() const
218 return (this->type_ == elfcpp::STT_FUNC
219 || this->type_ == elfcpp::STT_GNU_IFUNC);
222 // Return the symbol visibility.
223 elfcpp::STV
224 visibility() const
225 { return this->visibility_; }
227 // Set the visibility.
228 void
229 set_visibility(elfcpp::STV visibility)
230 { this->visibility_ = visibility; }
232 // Override symbol visibility.
233 void
234 override_visibility(elfcpp::STV);
236 // Set whether the symbol was originally a weak undef or a regular undef
237 // when resolved by a dynamic def.
238 inline void
239 set_undef_binding(elfcpp::STB bind)
241 if (!this->undef_binding_set_ || this->undef_binding_weak_)
243 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
244 this->undef_binding_set_ = true;
248 // Return TRUE if a weak undef was resolved by a dynamic def.
249 inline bool
250 is_undef_binding_weak() const
251 { return this->undef_binding_weak_; }
253 // Return the non-visibility part of the st_other field.
254 unsigned char
255 nonvis() const
256 { return this->nonvis_; }
258 // Return whether this symbol is a forwarder. This will never be
259 // true of a symbol found in the hash table, but may be true of
260 // symbol pointers attached to object files.
261 bool
262 is_forwarder() const
263 { return this->is_forwarder_; }
265 // Mark this symbol as a forwarder.
266 void
267 set_forwarder()
268 { this->is_forwarder_ = true; }
270 // Return whether this symbol has an alias in the weak aliases table
271 // in Symbol_table.
272 bool
273 has_alias() const
274 { return this->has_alias_; }
276 // Mark this symbol as having an alias.
277 void
278 set_has_alias()
279 { this->has_alias_ = true; }
281 // Return whether this symbol needs an entry in the dynamic symbol
282 // table.
283 bool
284 needs_dynsym_entry() const
286 return (this->needs_dynsym_entry_
287 || (this->in_reg()
288 && this->in_dyn()
289 && this->is_externally_visible()));
292 // Mark this symbol as needing an entry in the dynamic symbol table.
293 void
294 set_needs_dynsym_entry()
295 { this->needs_dynsym_entry_ = true; }
297 // Return whether this symbol should be added to the dynamic symbol
298 // table.
299 bool
300 should_add_dynsym_entry(Symbol_table*) const;
302 // Return whether this symbol has been seen in a regular object.
303 bool
304 in_reg() const
305 { return this->in_reg_; }
307 // Mark this symbol as having been seen in a regular object.
308 void
309 set_in_reg()
310 { this->in_reg_ = true; }
312 // Return whether this symbol has been seen in a dynamic object.
313 bool
314 in_dyn() const
315 { return this->in_dyn_; }
317 // Mark this symbol as having been seen in a dynamic object.
318 void
319 set_in_dyn()
320 { this->in_dyn_ = true; }
322 // Return whether this symbol has been seen in a real ELF object.
323 // (IN_REG will return TRUE if the symbol has been seen in either
324 // a real ELF object or an object claimed by a plugin.)
325 bool
326 in_real_elf() const
327 { return this->in_real_elf_; }
329 // Mark this symbol as having been seen in a real ELF object.
330 void
331 set_in_real_elf()
332 { this->in_real_elf_ = true; }
334 // Return whether this symbol was defined in a section that was
335 // discarded from the link. This is used to control some error
336 // reporting.
337 bool
338 is_defined_in_discarded_section() const
339 { return this->is_defined_in_discarded_section_; }
341 // Mark this symbol as having been defined in a discarded section.
342 void
343 set_is_defined_in_discarded_section()
344 { this->is_defined_in_discarded_section_ = true; }
346 // Return the index of this symbol in the output file symbol table.
347 // A value of -1U means that this symbol is not going into the
348 // output file. This starts out as zero, and is set to a non-zero
349 // value by Symbol_table::finalize. It is an error to ask for the
350 // symbol table index before it has been set.
351 unsigned int
352 symtab_index() const
354 gold_assert(this->symtab_index_ != 0);
355 return this->symtab_index_;
358 // Set the index of the symbol in the output file symbol table.
359 void
360 set_symtab_index(unsigned int index)
362 gold_assert(index != 0);
363 this->symtab_index_ = index;
366 // Return whether this symbol already has an index in the output
367 // file symbol table.
368 bool
369 has_symtab_index() const
370 { return this->symtab_index_ != 0; }
372 // Return the index of this symbol in the dynamic symbol table. A
373 // value of -1U means that this symbol is not going into the dynamic
374 // symbol table. This starts out as zero, and is set to a non-zero
375 // during Layout::finalize. It is an error to ask for the dynamic
376 // symbol table index before it has been set.
377 unsigned int
378 dynsym_index() const
380 gold_assert(this->dynsym_index_ != 0);
381 return this->dynsym_index_;
384 // Set the index of the symbol in the dynamic symbol table.
385 void
386 set_dynsym_index(unsigned int index)
388 gold_assert(index != 0);
389 this->dynsym_index_ = index;
392 // Return whether this symbol already has an index in the dynamic
393 // symbol table.
394 bool
395 has_dynsym_index() const
396 { return this->dynsym_index_ != 0; }
398 // Return whether this symbol has an entry in the GOT section.
399 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
400 bool
401 has_got_offset(unsigned int got_type) const
402 { return this->got_offsets_.get_offset(got_type) != -1U; }
404 // Return the offset into the GOT section of this symbol.
405 unsigned int
406 got_offset(unsigned int got_type) const
408 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
409 gold_assert(got_offset != -1U);
410 return got_offset;
413 // Set the GOT offset of this symbol.
414 void
415 set_got_offset(unsigned int got_type, unsigned int got_offset)
416 { this->got_offsets_.set_offset(got_type, got_offset); }
418 // Return the GOT offset list.
419 const Got_offset_list*
420 got_offset_list() const
421 { return this->got_offsets_.get_list(); }
423 // Return whether this symbol has an entry in the PLT section.
424 bool
425 has_plt_offset() const
426 { return this->plt_offset_ != -1U; }
428 // Return the offset into the PLT section of this symbol.
429 unsigned int
430 plt_offset() const
432 gold_assert(this->has_plt_offset());
433 return this->plt_offset_;
436 // Set the PLT offset of this symbol.
437 void
438 set_plt_offset(unsigned int plt_offset)
440 gold_assert(plt_offset != -1U);
441 this->plt_offset_ = plt_offset;
444 // Return whether this dynamic symbol needs a special value in the
445 // dynamic symbol table.
446 bool
447 needs_dynsym_value() const
448 { return this->needs_dynsym_value_; }
450 // Set that this dynamic symbol needs a special value in the dynamic
451 // symbol table.
452 void
453 set_needs_dynsym_value()
455 gold_assert(this->object()->is_dynamic());
456 this->needs_dynsym_value_ = true;
459 // Return true if the final value of this symbol is known at link
460 // time.
461 bool
462 final_value_is_known() const;
464 // Return true if SHNDX represents a common symbol. This depends on
465 // the target.
466 static bool
467 is_common_shndx(unsigned int shndx);
469 // Return whether this is a defined symbol (not undefined or
470 // common).
471 bool
472 is_defined() const
474 bool is_ordinary;
475 if (this->source_ != FROM_OBJECT)
476 return this->source_ != IS_UNDEFINED;
477 unsigned int shndx = this->shndx(&is_ordinary);
478 return (is_ordinary
479 ? shndx != elfcpp::SHN_UNDEF
480 : !Symbol::is_common_shndx(shndx));
483 // Return true if this symbol is from a dynamic object.
484 bool
485 is_from_dynobj() const
487 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
490 // Return whether this is a placeholder symbol from a plugin object.
491 bool
492 is_placeholder() const
494 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
497 // Return whether this is an undefined symbol.
498 bool
499 is_undefined() const
501 bool is_ordinary;
502 return ((this->source_ == FROM_OBJECT
503 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
504 && is_ordinary)
505 || this->source_ == IS_UNDEFINED);
508 // Return whether this is a weak undefined symbol.
509 bool
510 is_weak_undefined() const
511 { return this->is_undefined() && this->binding() == elfcpp::STB_WEAK; }
513 // Return whether this is an absolute symbol.
514 bool
515 is_absolute() const
517 bool is_ordinary;
518 return ((this->source_ == FROM_OBJECT
519 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
520 && !is_ordinary)
521 || this->source_ == IS_CONSTANT);
524 // Return whether this is a common symbol.
525 bool
526 is_common() const
528 if (this->source_ != FROM_OBJECT)
529 return false;
530 if (this->type_ == elfcpp::STT_COMMON)
531 return true;
532 bool is_ordinary;
533 unsigned int shndx = this->shndx(&is_ordinary);
534 return !is_ordinary && Symbol::is_common_shndx(shndx);
537 // Return whether this symbol can be seen outside this object.
538 bool
539 is_externally_visible() const
541 return ((this->visibility_ == elfcpp::STV_DEFAULT
542 || this->visibility_ == elfcpp::STV_PROTECTED)
543 && !this->is_forced_local_);
546 // Return true if this symbol can be preempted by a definition in
547 // another link unit.
548 bool
549 is_preemptible() const
551 // It doesn't make sense to ask whether a symbol defined in
552 // another object is preemptible.
553 gold_assert(!this->is_from_dynobj());
555 // It doesn't make sense to ask whether an undefined symbol
556 // is preemptible.
557 gold_assert(!this->is_undefined());
559 // If a symbol does not have default visibility, it can not be
560 // seen outside this link unit and therefore is not preemptible.
561 if (this->visibility_ != elfcpp::STV_DEFAULT)
562 return false;
564 // If this symbol has been forced to be a local symbol by a
565 // version script, then it is not visible outside this link unit
566 // and is not preemptible.
567 if (this->is_forced_local_)
568 return false;
570 // If we are not producing a shared library, then nothing is
571 // preemptible.
572 if (!parameters->options().shared())
573 return false;
575 // If the user used -Bsymbolic, then nothing is preemptible.
576 if (parameters->options().Bsymbolic())
577 return false;
579 // If the user used -Bsymbolic-functions, then functions are not
580 // preemptible. We explicitly check for not being STT_OBJECT,
581 // rather than for being STT_FUNC, because that is what the GNU
582 // linker does.
583 if (this->type() != elfcpp::STT_OBJECT
584 && parameters->options().Bsymbolic_functions())
585 return false;
587 // Otherwise the symbol is preemptible.
588 return true;
591 // Return true if this symbol is a function that needs a PLT entry.
592 bool
593 needs_plt_entry() const
595 // An undefined symbol from an executable does not need a PLT entry.
596 if (this->is_undefined() && !parameters->options().shared())
597 return false;
599 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
600 // doing a static link.
601 if (this->type() == elfcpp::STT_GNU_IFUNC)
602 return true;
604 // We only need a PLT entry for a function.
605 if (!this->is_func())
606 return false;
608 // If we're doing a static link or a -pie link, we don't create
609 // PLT entries.
610 if (parameters->doing_static_link()
611 || parameters->options().pie())
612 return false;
614 // We need a PLT entry if the function is defined in a dynamic
615 // object, or is undefined when building a shared object, or if it
616 // is subject to pre-emption.
617 return (this->is_from_dynobj()
618 || this->is_undefined()
619 || this->is_preemptible());
622 // When determining whether a reference to a symbol needs a dynamic
623 // relocation, we need to know several things about the reference.
624 // These flags may be or'ed together. 0 means that the symbol
625 // isn't referenced at all.
626 enum Reference_flags
628 // A reference to the symbol's absolute address. This includes
629 // references that cause an absolute address to be stored in the GOT.
630 ABSOLUTE_REF = 1,
631 // A reference that calculates the offset of the symbol from some
632 // anchor point, such as the PC or GOT.
633 RELATIVE_REF = 2,
634 // A TLS-related reference.
635 TLS_REF = 4,
636 // A reference that can always be treated as a function call.
637 FUNCTION_CALL = 8
640 // Given a direct absolute or pc-relative static relocation against
641 // the global symbol, this function returns whether a dynamic relocation
642 // is needed.
644 bool
645 needs_dynamic_reloc(int flags) const
647 // No dynamic relocations in a static link!
648 if (parameters->doing_static_link())
649 return false;
651 // A reference to an undefined symbol from an executable should be
652 // statically resolved to 0, and does not need a dynamic relocation.
653 // This matches gnu ld behavior.
654 if (this->is_undefined() && !parameters->options().shared())
655 return false;
657 // A reference to an absolute symbol does not need a dynamic relocation.
658 if (this->is_absolute())
659 return false;
661 // An absolute reference within a position-independent output file
662 // will need a dynamic relocation.
663 if ((flags & ABSOLUTE_REF)
664 && parameters->options().output_is_position_independent())
665 return true;
667 // A function call that can branch to a local PLT entry does not need
668 // a dynamic relocation.
669 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
670 return false;
672 // A reference to any PLT entry in a non-position-independent executable
673 // does not need a dynamic relocation.
674 if (!parameters->options().output_is_position_independent()
675 && this->has_plt_offset())
676 return false;
678 // A reference to a symbol defined in a dynamic object or to a
679 // symbol that is preemptible will need a dynamic relocation.
680 if (this->is_from_dynobj()
681 || this->is_undefined()
682 || this->is_preemptible())
683 return true;
685 // For all other cases, return FALSE.
686 return false;
689 // Whether we should use the PLT offset associated with a symbol for
690 // a relocation. FLAGS is a set of Reference_flags.
692 bool
693 use_plt_offset(int flags) const
695 // If the symbol doesn't have a PLT offset, then naturally we
696 // don't want to use it.
697 if (!this->has_plt_offset())
698 return false;
700 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
701 if (this->type() == elfcpp::STT_GNU_IFUNC)
702 return true;
704 // If we are going to generate a dynamic relocation, then we will
705 // wind up using that, so no need to use the PLT entry.
706 if (this->needs_dynamic_reloc(flags))
707 return false;
709 // If the symbol is from a dynamic object, we need to use the PLT
710 // entry.
711 if (this->is_from_dynobj())
712 return true;
714 // If we are generating a shared object, and this symbol is
715 // undefined or preemptible, we need to use the PLT entry.
716 if (parameters->options().shared()
717 && (this->is_undefined() || this->is_preemptible()))
718 return true;
720 // If this is a call to a weak undefined symbol, we need to use
721 // the PLT entry; the symbol may be defined by a library loaded
722 // at runtime.
723 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
724 return true;
726 // Otherwise we can use the regular definition.
727 return false;
730 // Given a direct absolute static relocation against
731 // the global symbol, where a dynamic relocation is needed, this
732 // function returns whether a relative dynamic relocation can be used.
733 // The caller must determine separately whether the static relocation
734 // is compatible with a relative relocation.
736 bool
737 can_use_relative_reloc(bool is_function_call) const
739 // A function call that can branch to a local PLT entry can
740 // use a RELATIVE relocation.
741 if (is_function_call && this->has_plt_offset())
742 return true;
744 // A reference to a symbol defined in a dynamic object or to a
745 // symbol that is preemptible can not use a RELATIVE relocation.
746 if (this->is_from_dynobj()
747 || this->is_undefined()
748 || this->is_preemptible())
749 return false;
751 // For all other cases, return TRUE.
752 return true;
755 // Return the output section where this symbol is defined. Return
756 // NULL if the symbol has an absolute value.
757 Output_section*
758 output_section() const;
760 // Set the symbol's output section. This is used for symbols
761 // defined in scripts. This should only be called after the symbol
762 // table has been finalized.
763 void
764 set_output_section(Output_section*);
766 // Return whether there should be a warning for references to this
767 // symbol.
768 bool
769 has_warning() const
770 { return this->has_warning_; }
772 // Mark this symbol as having a warning.
773 void
774 set_has_warning()
775 { this->has_warning_ = true; }
777 // Return whether this symbol is defined by a COPY reloc from a
778 // dynamic object.
779 bool
780 is_copied_from_dynobj() const
781 { return this->is_copied_from_dynobj_; }
783 // Mark this symbol as defined by a COPY reloc.
784 void
785 set_is_copied_from_dynobj()
786 { this->is_copied_from_dynobj_ = true; }
788 // Return whether this symbol is forced to visibility STB_LOCAL
789 // by a "local:" entry in a version script.
790 bool
791 is_forced_local() const
792 { return this->is_forced_local_; }
794 // Mark this symbol as forced to STB_LOCAL visibility.
795 void
796 set_is_forced_local()
797 { this->is_forced_local_ = true; }
799 // Return true if this may need a COPY relocation.
800 // References from an executable object to non-function symbols
801 // defined in a dynamic object may need a COPY relocation.
802 bool
803 may_need_copy_reloc() const
805 return (!parameters->options().output_is_position_independent()
806 && parameters->options().copyreloc()
807 && this->is_from_dynobj()
808 && !this->is_func());
811 // Return true if this symbol was predefined by the linker.
812 bool
813 is_predefined() const
814 { return this->is_predefined_; }
816 protected:
817 // Instances of this class should always be created at a specific
818 // size.
819 Symbol()
820 { memset(this, 0, sizeof *this); }
822 // Initialize the general fields.
823 void
824 init_fields(const char* name, const char* version,
825 elfcpp::STT type, elfcpp::STB binding,
826 elfcpp::STV visibility, unsigned char nonvis);
828 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
829 // section index, IS_ORDINARY is whether it is a normal section
830 // index rather than a special code.
831 template<int size, bool big_endian>
832 void
833 init_base_object(const char* name, const char* version, Object* object,
834 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
835 bool is_ordinary);
837 // Initialize fields for an Output_data.
838 void
839 init_base_output_data(const char* name, const char* version, Output_data*,
840 elfcpp::STT, elfcpp::STB, elfcpp::STV,
841 unsigned char nonvis, bool offset_is_from_end,
842 bool is_predefined);
844 // Initialize fields for an Output_segment.
845 void
846 init_base_output_segment(const char* name, const char* version,
847 Output_segment* os, elfcpp::STT type,
848 elfcpp::STB binding, elfcpp::STV visibility,
849 unsigned char nonvis,
850 Segment_offset_base offset_base,
851 bool is_predefined);
853 // Initialize fields for a constant.
854 void
855 init_base_constant(const char* name, const char* version, elfcpp::STT type,
856 elfcpp::STB binding, elfcpp::STV visibility,
857 unsigned char nonvis, bool is_predefined);
859 // Initialize fields for an undefined symbol.
860 void
861 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
862 elfcpp::STB binding, elfcpp::STV visibility,
863 unsigned char nonvis);
865 // Override existing symbol.
866 template<int size, bool big_endian>
867 void
868 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
869 bool is_ordinary, Object* object, const char* version);
871 // Override existing symbol with a special symbol.
872 void
873 override_base_with_special(const Symbol* from);
875 // Override symbol version.
876 void
877 override_version(const char* version);
879 // Allocate a common symbol by giving it a location in the output
880 // file.
881 void
882 allocate_base_common(Output_data*);
884 private:
885 Symbol(const Symbol&);
886 Symbol& operator=(const Symbol&);
888 // Symbol name (expected to point into a Stringpool).
889 const char* name_;
890 // Symbol version (expected to point into a Stringpool). This may
891 // be NULL.
892 const char* version_;
894 union
896 // This struct is used if SOURCE_ == FROM_OBJECT.
897 struct
899 // Object in which symbol is defined, or in which it was first
900 // seen.
901 Object* object;
902 // Section number in object_ in which symbol is defined.
903 unsigned int shndx;
904 } from_object;
906 // This struct is used if SOURCE_ == IN_OUTPUT_DATA.
907 struct
909 // Output_data in which symbol is defined. Before
910 // Layout::finalize the symbol's value is an offset within the
911 // Output_data.
912 Output_data* output_data;
913 // True if the offset is from the end, false if the offset is
914 // from the beginning.
915 bool offset_is_from_end;
916 } in_output_data;
918 // This struct is used if SOURCE_ == IN_OUTPUT_SEGMENT.
919 struct
921 // Output_segment in which the symbol is defined. Before
922 // Layout::finalize the symbol's value is an offset.
923 Output_segment* output_segment;
924 // The base to use for the offset before Layout::finalize.
925 Segment_offset_base offset_base;
926 } in_output_segment;
927 } u_;
929 // The index of this symbol in the output file. If the symbol is
930 // not going into the output file, this value is -1U. This field
931 // starts as always holding zero. It is set to a non-zero value by
932 // Symbol_table::finalize.
933 unsigned int symtab_index_;
935 // The index of this symbol in the dynamic symbol table. If the
936 // symbol is not going into the dynamic symbol table, this value is
937 // -1U. This field starts as always holding zero. It is set to a
938 // non-zero value during Layout::finalize.
939 unsigned int dynsym_index_;
941 // The GOT section entries for this symbol. A symbol may have more
942 // than one GOT offset (e.g., when mixing modules compiled with two
943 // different TLS models), but will usually have at most one.
944 Got_offset_list got_offsets_;
946 // If this symbol has an entry in the PLT section, then this is the
947 // offset from the start of the PLT section. This is -1U if there
948 // is no PLT entry.
949 unsigned int plt_offset_;
951 // Symbol type (bits 0 to 3).
952 elfcpp::STT type_ : 4;
953 // Symbol binding (bits 4 to 7).
954 elfcpp::STB binding_ : 4;
955 // Symbol visibility (bits 8 to 9).
956 elfcpp::STV visibility_ : 2;
957 // Rest of symbol st_other field (bits 10 to 15).
958 unsigned int nonvis_ : 6;
959 // The type of symbol (bits 16 to 18).
960 Source source_ : 3;
961 // True if this is the default version of the symbol (bit 19).
962 bool is_def_ : 1;
963 // True if this symbol really forwards to another symbol. This is
964 // used when we discover after the fact that two different entries
965 // in the hash table really refer to the same symbol. This will
966 // never be set for a symbol found in the hash table, but may be set
967 // for a symbol found in the list of symbols attached to an Object.
968 // It forwards to the symbol found in the forwarders_ map of
969 // Symbol_table (bit 20).
970 bool is_forwarder_ : 1;
971 // True if the symbol has an alias in the weak_aliases table in
972 // Symbol_table (bit 21).
973 bool has_alias_ : 1;
974 // True if this symbol needs to be in the dynamic symbol table (bit
975 // 22).
976 bool needs_dynsym_entry_ : 1;
977 // True if we've seen this symbol in a regular object (bit 23).
978 bool in_reg_ : 1;
979 // True if we've seen this symbol in a dynamic object (bit 24).
980 bool in_dyn_ : 1;
981 // True if this is a dynamic symbol which needs a special value in
982 // the dynamic symbol table (bit 25).
983 bool needs_dynsym_value_ : 1;
984 // True if there is a warning for this symbol (bit 26).
985 bool has_warning_ : 1;
986 // True if we are using a COPY reloc for this symbol, so that the
987 // real definition lives in a dynamic object (bit 27).
988 bool is_copied_from_dynobj_ : 1;
989 // True if this symbol was forced to local visibility by a version
990 // script (bit 28).
991 bool is_forced_local_ : 1;
992 // True if the field u_.from_object.shndx is an ordinary section
993 // index, not one of the special codes from SHN_LORESERVE to
994 // SHN_HIRESERVE (bit 29).
995 bool is_ordinary_shndx_ : 1;
996 // True if we've seen this symbol in a "real" ELF object (bit 30).
997 // If the symbol has been seen in a relocatable, non-IR, object file,
998 // it's known to be referenced from outside the IR. A reference from
999 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1000 // mark the symbol as "visible" from outside the IR. The compiler
1001 // can use this distinction to guide its handling of COMDAT symbols.
1002 bool in_real_elf_ : 1;
1003 // True if this symbol is defined in a section which was discarded
1004 // (bit 31).
1005 bool is_defined_in_discarded_section_ : 1;
1006 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1007 bool undef_binding_set_ : 1;
1008 // True if this symbol was a weak undef resolved by a dynamic def
1009 // (bit 33).
1010 bool undef_binding_weak_ : 1;
1011 // True if this symbol is a predefined linker symbol (bit 34).
1012 bool is_predefined_ : 1;
1015 // The parts of a symbol which are size specific. Using a template
1016 // derived class like this helps us use less space on a 32-bit system.
1018 template<int size>
1019 class Sized_symbol : public Symbol
1021 public:
1022 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1023 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1025 Sized_symbol()
1028 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1029 // section index, IS_ORDINARY is whether it is a normal section
1030 // index rather than a special code.
1031 template<bool big_endian>
1032 void
1033 init_object(const char* name, const char* version, Object* object,
1034 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1035 bool is_ordinary);
1037 // Initialize fields for an Output_data.
1038 void
1039 init_output_data(const char* name, const char* version, Output_data*,
1040 Value_type value, Size_type symsize, elfcpp::STT,
1041 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1042 bool offset_is_from_end, bool is_predefined);
1044 // Initialize fields for an Output_segment.
1045 void
1046 init_output_segment(const char* name, const char* version, Output_segment*,
1047 Value_type value, Size_type symsize, elfcpp::STT,
1048 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1049 Segment_offset_base offset_base, bool is_predefined);
1051 // Initialize fields for a constant.
1052 void
1053 init_constant(const char* name, const char* version, Value_type value,
1054 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1055 unsigned char nonvis, bool is_predefined);
1057 // Initialize fields for an undefined symbol.
1058 void
1059 init_undefined(const char* name, const char* version, elfcpp::STT,
1060 elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1062 // Override existing symbol.
1063 template<bool big_endian>
1064 void
1065 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1066 bool is_ordinary, Object* object, const char* version);
1068 // Override existing symbol with a special symbol.
1069 void
1070 override_with_special(const Sized_symbol<size>*);
1072 // Return the symbol's value.
1073 Value_type
1074 value() const
1075 { return this->value_; }
1077 // Return the symbol's size (we can't call this 'size' because that
1078 // is a template parameter).
1079 Size_type
1080 symsize() const
1081 { return this->symsize_; }
1083 // Set the symbol size. This is used when resolving common symbols.
1084 void
1085 set_symsize(Size_type symsize)
1086 { this->symsize_ = symsize; }
1088 // Set the symbol value. This is called when we store the final
1089 // values of the symbols into the symbol table.
1090 void
1091 set_value(Value_type value)
1092 { this->value_ = value; }
1094 // Allocate a common symbol by giving it a location in the output
1095 // file.
1096 void
1097 allocate_common(Output_data*, Value_type value);
1099 private:
1100 Sized_symbol(const Sized_symbol&);
1101 Sized_symbol& operator=(const Sized_symbol&);
1103 // Symbol value. Before Layout::finalize this is the offset in the
1104 // input section. This is set to the final value during
1105 // Layout::finalize.
1106 Value_type value_;
1107 // Symbol size.
1108 Size_type symsize_;
1111 // A struct describing a symbol defined by the linker, where the value
1112 // of the symbol is defined based on an output section. This is used
1113 // for symbols defined by the linker, like "_init_array_start".
1115 struct Define_symbol_in_section
1117 // The symbol name.
1118 const char* name;
1119 // The name of the output section with which this symbol should be
1120 // associated. If there is no output section with that name, the
1121 // symbol will be defined as zero.
1122 const char* output_section;
1123 // The offset of the symbol within the output section. This is an
1124 // offset from the start of the output section, unless start_at_end
1125 // is true, in which case this is an offset from the end of the
1126 // output section.
1127 uint64_t value;
1128 // The size of the symbol.
1129 uint64_t size;
1130 // The symbol type.
1131 elfcpp::STT type;
1132 // The symbol binding.
1133 elfcpp::STB binding;
1134 // The symbol visibility.
1135 elfcpp::STV visibility;
1136 // The rest of the st_other field.
1137 unsigned char nonvis;
1138 // If true, the value field is an offset from the end of the output
1139 // section.
1140 bool offset_is_from_end;
1141 // If true, this symbol is defined only if we see a reference to it.
1142 bool only_if_ref;
1145 // A struct describing a symbol defined by the linker, where the value
1146 // of the symbol is defined based on a segment. This is used for
1147 // symbols defined by the linker, like "_end". We describe the
1148 // segment with which the symbol should be associated by its
1149 // characteristics. If no segment meets these characteristics, the
1150 // symbol will be defined as zero. If there is more than one segment
1151 // which meets these characteristics, we will use the first one.
1153 struct Define_symbol_in_segment
1155 // The symbol name.
1156 const char* name;
1157 // The segment type where the symbol should be defined, typically
1158 // PT_LOAD.
1159 elfcpp::PT segment_type;
1160 // Bitmask of segment flags which must be set.
1161 elfcpp::PF segment_flags_set;
1162 // Bitmask of segment flags which must be clear.
1163 elfcpp::PF segment_flags_clear;
1164 // The offset of the symbol within the segment. The offset is
1165 // calculated from the position set by offset_base.
1166 uint64_t value;
1167 // The size of the symbol.
1168 uint64_t size;
1169 // The symbol type.
1170 elfcpp::STT type;
1171 // The symbol binding.
1172 elfcpp::STB binding;
1173 // The symbol visibility.
1174 elfcpp::STV visibility;
1175 // The rest of the st_other field.
1176 unsigned char nonvis;
1177 // The base from which we compute the offset.
1178 Symbol::Segment_offset_base offset_base;
1179 // If true, this symbol is defined only if we see a reference to it.
1180 bool only_if_ref;
1183 // This class manages warnings. Warnings are a GNU extension. When
1184 // we see a section named .gnu.warning.SYM in an object file, and if
1185 // we wind using the definition of SYM from that object file, then we
1186 // will issue a warning for any relocation against SYM from a
1187 // different object file. The text of the warning is the contents of
1188 // the section. This is not precisely the definition used by the old
1189 // GNU linker; the old GNU linker treated an occurrence of
1190 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1191 // would trigger a warning on any reference. However, it was
1192 // inconsistent in that a warning in a dynamic object only triggered
1193 // if there was no definition in a regular object. This linker is
1194 // different in that we only issue a warning if we use the symbol
1195 // definition from the same object file as the warning section.
1197 class Warnings
1199 public:
1200 Warnings()
1201 : warnings_()
1204 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1205 // of the warning.
1206 void
1207 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1208 const std::string& warning);
1210 // For each symbol for which we should give a warning, make a note
1211 // on the symbol.
1212 void
1213 note_warnings(Symbol_table* symtab);
1215 // Issue a warning for a reference to SYM at RELINFO's location.
1216 template<int size, bool big_endian>
1217 void
1218 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1219 size_t relnum, off_t reloffset) const;
1221 private:
1222 Warnings(const Warnings&);
1223 Warnings& operator=(const Warnings&);
1225 // What we need to know to get the warning text.
1226 struct Warning_location
1228 // The object the warning is in.
1229 Object* object;
1230 // The warning text.
1231 std::string text;
1233 Warning_location()
1234 : object(NULL), text()
1237 void
1238 set(Object* o, const std::string& t)
1240 this->object = o;
1241 this->text = t;
1245 // A mapping from warning symbol names (canonicalized in
1246 // Symbol_table's namepool_ field) to warning information.
1247 typedef Unordered_map<const char*, Warning_location> Warning_table;
1249 Warning_table warnings_;
1252 // The main linker symbol table.
1254 class Symbol_table
1256 public:
1257 // The different places where a symbol definition can come from.
1258 enum Defined
1260 // Defined in an object file--the normal case.
1261 OBJECT,
1262 // Defined for a COPY reloc.
1263 COPY,
1264 // Defined on the command line using --defsym.
1265 DEFSYM,
1266 // Defined (so to speak) on the command line using -u.
1267 UNDEFINED,
1268 // Defined in a linker script.
1269 SCRIPT,
1270 // Predefined by the linker.
1271 PREDEFINED,
1272 // Defined by the linker during an incremental base link, but not
1273 // a predefined symbol (e.g., common, defined in script).
1274 INCREMENTAL_BASE,
1277 // The order in which we sort common symbols.
1278 enum Sort_commons_order
1280 SORT_COMMONS_BY_SIZE_DESCENDING,
1281 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1282 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1285 // COUNT is an estimate of how many symbols will be inserted in the
1286 // symbol table. It's ok to put 0 if you don't know; a correct
1287 // guess will just save some CPU by reducing hashtable resizes.
1288 Symbol_table(unsigned int count, const Version_script_info& version_script);
1290 ~Symbol_table();
1292 void
1293 set_icf(Icf* icf)
1294 { this->icf_ = icf;}
1296 Icf*
1297 icf() const
1298 { return this->icf_; }
1300 // Returns true if ICF determined that this is a duplicate section.
1301 bool
1302 is_section_folded(Object* obj, unsigned int shndx) const;
1304 void
1305 set_gc(Garbage_collection* gc)
1306 { this->gc_ = gc; }
1308 Garbage_collection*
1309 gc() const
1310 { return this->gc_; }
1312 // During garbage collection, this keeps undefined symbols.
1313 void
1314 gc_mark_undef_symbols(Layout*);
1316 // This tells garbage collection that this symbol is referenced.
1317 void
1318 gc_mark_symbol(Symbol* sym);
1320 // During garbage collection, this keeps sections that correspond to
1321 // symbols seen in dynamic objects.
1322 inline void
1323 gc_mark_dyn_syms(Symbol* sym);
1325 // Add COUNT external symbols from the relocatable object RELOBJ to
1326 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1327 // offset in the symbol table of the first symbol, SYM_NAMES is
1328 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1329 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1330 // *DEFINED to the number of defined symbols.
1331 template<int size, bool big_endian>
1332 void
1333 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1334 const unsigned char* syms, size_t count,
1335 size_t symndx_offset, const char* sym_names,
1336 size_t sym_name_size,
1337 typename Sized_relobj_file<size, big_endian>::Symbols*,
1338 size_t* defined);
1340 // Add one external symbol from the plugin object OBJ to the symbol table.
1341 // Returns a pointer to the resolved symbol in the symbol table.
1342 template<int size, bool big_endian>
1343 Symbol*
1344 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1345 const char* name, const char* ver,
1346 elfcpp::Sym<size, big_endian>* sym);
1348 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1349 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1350 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1351 // symbol version data.
1352 template<int size, bool big_endian>
1353 void
1354 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1355 const unsigned char* syms, size_t count,
1356 const char* sym_names, size_t sym_name_size,
1357 const unsigned char* versym, size_t versym_size,
1358 const std::vector<const char*>*,
1359 typename Sized_relobj_file<size, big_endian>::Symbols*,
1360 size_t* defined);
1362 // Add one external symbol from the incremental object OBJ to the symbol
1363 // table. Returns a pointer to the resolved symbol in the symbol table.
1364 template<int size, bool big_endian>
1365 Sized_symbol<size>*
1366 add_from_incrobj(Object* obj, const char* name,
1367 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1369 // Define a special symbol based on an Output_data. It is a
1370 // multiple definition error if this symbol is already defined.
1371 Symbol*
1372 define_in_output_data(const char* name, const char* version, Defined,
1373 Output_data*, uint64_t value, uint64_t symsize,
1374 elfcpp::STT type, elfcpp::STB binding,
1375 elfcpp::STV visibility, unsigned char nonvis,
1376 bool offset_is_from_end, bool only_if_ref);
1378 // Define a special symbol based on an Output_segment. It is a
1379 // multiple definition error if this symbol is already defined.
1380 Symbol*
1381 define_in_output_segment(const char* name, const char* version, Defined,
1382 Output_segment*, uint64_t value, uint64_t symsize,
1383 elfcpp::STT type, elfcpp::STB binding,
1384 elfcpp::STV visibility, unsigned char nonvis,
1385 Symbol::Segment_offset_base, bool only_if_ref);
1387 // Define a special symbol with a constant value. It is a multiple
1388 // definition error if this symbol is already defined.
1389 Symbol*
1390 define_as_constant(const char* name, const char* version, Defined,
1391 uint64_t value, uint64_t symsize, elfcpp::STT type,
1392 elfcpp::STB binding, elfcpp::STV visibility,
1393 unsigned char nonvis, bool only_if_ref,
1394 bool force_override);
1396 // Define a set of symbols in output sections. If ONLY_IF_REF is
1397 // true, only define them if they are referenced.
1398 void
1399 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1400 bool only_if_ref);
1402 // Define a set of symbols in output segments. If ONLY_IF_REF is
1403 // true, only defined them if they are referenced.
1404 void
1405 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1406 bool only_if_ref);
1408 // Define SYM using a COPY reloc. POSD is the Output_data where the
1409 // symbol should be defined--typically a .dyn.bss section. VALUE is
1410 // the offset within POSD.
1411 template<int size>
1412 void
1413 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1414 typename elfcpp::Elf_types<size>::Elf_Addr);
1416 // Look up a symbol.
1417 Symbol*
1418 lookup(const char*, const char* version = NULL) const;
1420 // Return the real symbol associated with the forwarder symbol FROM.
1421 Symbol*
1422 resolve_forwards(const Symbol* from) const;
1424 // Return the sized version of a symbol in this table.
1425 template<int size>
1426 Sized_symbol<size>*
1427 get_sized_symbol(Symbol*) const;
1429 template<int size>
1430 const Sized_symbol<size>*
1431 get_sized_symbol(const Symbol*) const;
1433 // Return the count of undefined symbols seen.
1434 size_t
1435 saw_undefined() const
1436 { return this->saw_undefined_; }
1438 // Allocate the common symbols
1439 void
1440 allocate_commons(Layout*, Mapfile*);
1442 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1443 // of the warning.
1444 void
1445 add_warning(const char* name, Object* obj, const std::string& warning)
1446 { this->warnings_.add_warning(this, name, obj, warning); }
1448 // Canonicalize a symbol name for use in the hash table.
1449 const char*
1450 canonicalize_name(const char* name)
1451 { return this->namepool_.add(name, true, NULL); }
1453 // Possibly issue a warning for a reference to SYM at LOCATION which
1454 // is in OBJ.
1455 template<int size, bool big_endian>
1456 void
1457 issue_warning(const Symbol* sym,
1458 const Relocate_info<size, big_endian>* relinfo,
1459 size_t relnum, off_t reloffset) const
1460 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1462 // Check candidate_odr_violations_ to find symbols with the same name
1463 // but apparently different definitions (different source-file/line-no).
1464 void
1465 detect_odr_violations(const Task*, const char* output_file_name) const;
1467 // Add any undefined symbols named on the command line to the symbol
1468 // table.
1469 void
1470 add_undefined_symbols_from_command_line(Layout*);
1472 // SYM is defined using a COPY reloc. Return the dynamic object
1473 // where the original definition was found.
1474 Dynobj*
1475 get_copy_source(const Symbol* sym) const;
1477 // Set the dynamic symbol indexes. INDEX is the index of the first
1478 // global dynamic symbol. Pointers to the symbols are stored into
1479 // the vector. The names are stored into the Stringpool. This
1480 // returns an updated dynamic symbol index.
1481 unsigned int
1482 set_dynsym_indexes(unsigned int index, std::vector<Symbol*>*,
1483 Stringpool*, Versions*);
1485 // Finalize the symbol table after we have set the final addresses
1486 // of all the input sections. This sets the final symbol indexes,
1487 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1488 // index of the first global symbol. OFF is the file offset of the
1489 // global symbol table, DYNOFF is the offset of the globals in the
1490 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1491 // global dynamic symbol, and DYNCOUNT is the number of global
1492 // dynamic symbols. This records the parameters, and returns the
1493 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1494 // local symbols.
1495 off_t
1496 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1497 Stringpool* pool, unsigned int* plocal_symcount);
1499 // Set the final file offset of the symbol table.
1500 void
1501 set_file_offset(off_t off)
1502 { this->offset_ = off; }
1504 // Status code of Symbol_table::compute_final_value.
1505 enum Compute_final_value_status
1507 // No error.
1508 CFVS_OK,
1509 // Unsupported symbol section.
1510 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1511 // No output section.
1512 CFVS_NO_OUTPUT_SECTION
1515 // Compute the final value of SYM and store status in location PSTATUS.
1516 // During relaxation, this may be called multiple times for a symbol to
1517 // compute its would-be final value in each relaxation pass.
1519 template<int size>
1520 typename Sized_symbol<size>::Value_type
1521 compute_final_value(const Sized_symbol<size>* sym,
1522 Compute_final_value_status* pstatus) const;
1524 // Return the index of the first global symbol.
1525 unsigned int
1526 first_global_index() const
1527 { return this->first_global_index_; }
1529 // Return the total number of symbols in the symbol table.
1530 unsigned int
1531 output_count() const
1532 { return this->output_count_; }
1534 // Write out the global symbols.
1535 void
1536 write_globals(const Stringpool*, const Stringpool*,
1537 Output_symtab_xindex*, Output_symtab_xindex*,
1538 Output_file*) const;
1540 // Write out a section symbol. Return the updated offset.
1541 void
1542 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1543 Output_file*, off_t) const;
1545 // Loop over all symbols, applying the function F to each.
1546 template<int size, typename F>
1547 void
1548 for_all_symbols(F f) const
1550 for (Symbol_table_type::const_iterator p = this->table_.begin();
1551 p != this->table_.end();
1552 ++p)
1554 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1555 f(sym);
1559 // Dump statistical information to stderr.
1560 void
1561 print_stats() const;
1563 // Return the version script information.
1564 const Version_script_info&
1565 version_script() const
1566 { return version_script_; }
1568 private:
1569 Symbol_table(const Symbol_table&);
1570 Symbol_table& operator=(const Symbol_table&);
1572 // The type of the list of common symbols.
1573 typedef std::vector<Symbol*> Commons_type;
1575 // The type of the symbol hash table.
1577 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1579 // The hash function. The key values are Stringpool keys.
1580 struct Symbol_table_hash
1582 inline size_t
1583 operator()(const Symbol_table_key& key) const
1585 return key.first ^ key.second;
1589 struct Symbol_table_eq
1591 bool
1592 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1595 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1596 Symbol_table_eq> Symbol_table_type;
1598 // A map from symbol name (as a pointer into the namepool) to all
1599 // the locations the symbols is (weakly) defined (and certain other
1600 // conditions are met). This map will be used later to detect
1601 // possible One Definition Rule (ODR) violations.
1602 struct Symbol_location
1604 Object* object; // Object where the symbol is defined.
1605 unsigned int shndx; // Section-in-object where the symbol is defined.
1606 off_t offset; // Offset-in-section where the symbol is defined.
1607 bool operator==(const Symbol_location& that) const
1609 return (this->object == that.object
1610 && this->shndx == that.shndx
1611 && this->offset == that.offset);
1615 struct Symbol_location_hash
1617 size_t operator()(const Symbol_location& loc) const
1618 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1621 typedef Unordered_map<const char*,
1622 Unordered_set<Symbol_location, Symbol_location_hash> >
1623 Odr_map;
1625 // Make FROM a forwarder symbol to TO.
1626 void
1627 make_forwarder(Symbol* from, Symbol* to);
1629 // Add a symbol.
1630 template<int size, bool big_endian>
1631 Sized_symbol<size>*
1632 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1633 const char* version, Stringpool::Key version_key,
1634 bool def, const elfcpp::Sym<size, big_endian>& sym,
1635 unsigned int st_shndx, bool is_ordinary,
1636 unsigned int orig_st_shndx);
1638 // Define a default symbol.
1639 template<int size, bool big_endian>
1640 void
1641 define_default_version(Sized_symbol<size>*, bool,
1642 Symbol_table_type::iterator);
1644 // Resolve symbols.
1645 template<int size, bool big_endian>
1646 void
1647 resolve(Sized_symbol<size>* to,
1648 const elfcpp::Sym<size, big_endian>& sym,
1649 unsigned int st_shndx, bool is_ordinary,
1650 unsigned int orig_st_shndx,
1651 Object*, const char* version);
1653 template<int size, bool big_endian>
1654 void
1655 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1657 // Record that a symbol is forced to be local by a version script or
1658 // by visibility.
1659 void
1660 force_local(Symbol*);
1662 // Adjust NAME and *NAME_KEY for wrapping.
1663 const char*
1664 wrap_symbol(const char* name, Stringpool::Key* name_key);
1666 // Whether we should override a symbol, based on flags in
1667 // resolve.cc.
1668 static bool
1669 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1670 Object*, bool*, bool*);
1672 // Report a problem in symbol resolution.
1673 static void
1674 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1675 Defined, Object* object);
1677 // Override a symbol.
1678 template<int size, bool big_endian>
1679 void
1680 override(Sized_symbol<size>* tosym,
1681 const elfcpp::Sym<size, big_endian>& fromsym,
1682 unsigned int st_shndx, bool is_ordinary,
1683 Object* object, const char* version);
1685 // Whether we should override a symbol with a special symbol which
1686 // is automatically defined by the linker.
1687 static bool
1688 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1690 // Override a symbol with a special symbol.
1691 template<int size>
1692 void
1693 override_with_special(Sized_symbol<size>* tosym,
1694 const Sized_symbol<size>* fromsym);
1696 // Record all weak alias sets for a dynamic object.
1697 template<int size>
1698 void
1699 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1701 // Define a special symbol.
1702 template<int size, bool big_endian>
1703 Sized_symbol<size>*
1704 define_special_symbol(const char** pname, const char** pversion,
1705 bool only_if_ref, Sized_symbol<size>** poldsym,
1706 bool* resolve_oldsym);
1708 // Define a symbol in an Output_data, sized version.
1709 template<int size>
1710 Sized_symbol<size>*
1711 do_define_in_output_data(const char* name, const char* version, Defined,
1712 Output_data*,
1713 typename elfcpp::Elf_types<size>::Elf_Addr value,
1714 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1715 elfcpp::STT type, elfcpp::STB binding,
1716 elfcpp::STV visibility, unsigned char nonvis,
1717 bool offset_is_from_end, bool only_if_ref);
1719 // Define a symbol in an Output_segment, sized version.
1720 template<int size>
1721 Sized_symbol<size>*
1722 do_define_in_output_segment(
1723 const char* name, const char* version, Defined, Output_segment* os,
1724 typename elfcpp::Elf_types<size>::Elf_Addr value,
1725 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1726 elfcpp::STT type, elfcpp::STB binding,
1727 elfcpp::STV visibility, unsigned char nonvis,
1728 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1730 // Define a symbol as a constant, sized version.
1731 template<int size>
1732 Sized_symbol<size>*
1733 do_define_as_constant(
1734 const char* name, const char* version, Defined,
1735 typename elfcpp::Elf_types<size>::Elf_Addr value,
1736 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1737 elfcpp::STT type, elfcpp::STB binding,
1738 elfcpp::STV visibility, unsigned char nonvis,
1739 bool only_if_ref, bool force_override);
1741 // Add any undefined symbols named on the command line to the symbol
1742 // table, sized version.
1743 template<int size>
1744 void
1745 do_add_undefined_symbols_from_command_line(Layout*);
1747 // Add one undefined symbol.
1748 template<int size>
1749 void
1750 add_undefined_symbol_from_command_line(const char* name);
1752 // Types of common symbols.
1754 enum Commons_section_type
1756 COMMONS_NORMAL,
1757 COMMONS_TLS,
1758 COMMONS_SMALL,
1759 COMMONS_LARGE
1762 // Allocate the common symbols, sized version.
1763 template<int size>
1764 void
1765 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1767 // Allocate the common symbols from one list.
1768 template<int size>
1769 void
1770 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1771 Mapfile*, Sort_commons_order);
1773 // Returns all of the lines attached to LOC, not just the one the
1774 // instruction actually came from. This helps the ODR checker avoid
1775 // false positives.
1776 static std::vector<std::string>
1777 linenos_from_loc(const Task* task, const Symbol_location& loc);
1779 // Implement detect_odr_violations.
1780 template<int size, bool big_endian>
1781 void
1782 sized_detect_odr_violations() const;
1784 // Finalize symbols specialized for size.
1785 template<int size>
1786 off_t
1787 sized_finalize(off_t, Stringpool*, unsigned int*);
1789 // Finalize a symbol. Return whether it should be added to the
1790 // symbol table.
1791 template<int size>
1792 bool
1793 sized_finalize_symbol(Symbol*);
1795 // Add a symbol the final symtab by setting its index.
1796 template<int size>
1797 void
1798 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1800 // Write globals specialized for size and endianness.
1801 template<int size, bool big_endian>
1802 void
1803 sized_write_globals(const Stringpool*, const Stringpool*,
1804 Output_symtab_xindex*, Output_symtab_xindex*,
1805 Output_file*) const;
1807 // Write out a symbol to P.
1808 template<int size, bool big_endian>
1809 void
1810 sized_write_symbol(Sized_symbol<size>*,
1811 typename elfcpp::Elf_types<size>::Elf_Addr value,
1812 unsigned int shndx, elfcpp::STB,
1813 const Stringpool*, unsigned char* p) const;
1815 // Possibly warn about an undefined symbol from a dynamic object.
1816 void
1817 warn_about_undefined_dynobj_symbol(Symbol*) const;
1819 // Write out a section symbol, specialized for size and endianness.
1820 template<int size, bool big_endian>
1821 void
1822 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1823 Output_file*, off_t) const;
1825 // The type of the list of symbols which have been forced local.
1826 typedef std::vector<Symbol*> Forced_locals;
1828 // A map from symbols with COPY relocs to the dynamic objects where
1829 // they are defined.
1830 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1832 // We increment this every time we see a new undefined symbol, for
1833 // use in archive groups.
1834 size_t saw_undefined_;
1835 // The index of the first global symbol in the output file.
1836 unsigned int first_global_index_;
1837 // The file offset within the output symtab section where we should
1838 // write the table.
1839 off_t offset_;
1840 // The number of global symbols we want to write out.
1841 unsigned int output_count_;
1842 // The file offset of the global dynamic symbols, or 0 if none.
1843 off_t dynamic_offset_;
1844 // The index of the first global dynamic symbol.
1845 unsigned int first_dynamic_global_index_;
1846 // The number of global dynamic symbols, or 0 if none.
1847 unsigned int dynamic_count_;
1848 // The symbol hash table.
1849 Symbol_table_type table_;
1850 // A pool of symbol names. This is used for all global symbols.
1851 // Entries in the hash table point into this pool.
1852 Stringpool namepool_;
1853 // Forwarding symbols.
1854 Unordered_map<const Symbol*, Symbol*> forwarders_;
1855 // Weak aliases. A symbol in this list points to the next alias.
1856 // The aliases point to each other in a circular list.
1857 Unordered_map<Symbol*, Symbol*> weak_aliases_;
1858 // We don't expect there to be very many common symbols, so we keep
1859 // a list of them. When we find a common symbol we add it to this
1860 // list. It is possible that by the time we process the list the
1861 // symbol is no longer a common symbol. It may also have become a
1862 // forwarder.
1863 Commons_type commons_;
1864 // This is like the commons_ field, except that it holds TLS common
1865 // symbols.
1866 Commons_type tls_commons_;
1867 // This is for small common symbols.
1868 Commons_type small_commons_;
1869 // This is for large common symbols.
1870 Commons_type large_commons_;
1871 // A list of symbols which have been forced to be local. We don't
1872 // expect there to be very many of them, so we keep a list of them
1873 // rather than walking the whole table to find them.
1874 Forced_locals forced_locals_;
1875 // Manage symbol warnings.
1876 Warnings warnings_;
1877 // Manage potential One Definition Rule (ODR) violations.
1878 Odr_map candidate_odr_violations_;
1880 // When we emit a COPY reloc for a symbol, we define it in an
1881 // Output_data. When it's time to emit version information for it,
1882 // we need to know the dynamic object in which we found the original
1883 // definition. This maps symbols with COPY relocs to the dynamic
1884 // object where they were defined.
1885 Copied_symbol_dynobjs copied_symbol_dynobjs_;
1886 // Information parsed from the version script, if any.
1887 const Version_script_info& version_script_;
1888 Garbage_collection* gc_;
1889 Icf* icf_;
1892 // We inline get_sized_symbol for efficiency.
1894 template<int size>
1895 Sized_symbol<size>*
1896 Symbol_table::get_sized_symbol(Symbol* sym) const
1898 gold_assert(size == parameters->target().get_size());
1899 return static_cast<Sized_symbol<size>*>(sym);
1902 template<int size>
1903 const Sized_symbol<size>*
1904 Symbol_table::get_sized_symbol(const Symbol* sym) const
1906 gold_assert(size == parameters->target().get_size());
1907 return static_cast<const Sized_symbol<size>*>(sym);
1910 } // End namespace gold.
1912 #endif // !defined(GOLD_SYMTAB_H)