opcodes/
[binutils.git] / bfd / elfxx-mips.c
blobd2c41c01a41a0bffda138f57b683ab7332a77c66
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
45 #include "hashtab.h"
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
113 /* This structure is used to hold .got information when linking. */
115 struct mips_got_info
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
146 /* Map an input bfd to a got in a multi-got link. */
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
156 struct mips_elf_got_per_bfd_arg
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
185 /* Another structure used to pass arguments for got entries traversal. */
187 struct mips_elf_set_global_got_offset_arg
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
198 struct mips_elf_count_tls_arg
200 struct bfd_link_info *info;
201 unsigned int needed;
204 struct _mips_elf_section_data
206 struct bfd_elf_section_data elf;
207 union
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
220 struct mips_elf_hash_sort_data
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
240 struct mips_elf_link_hash_entry
242 struct elf_link_hash_entry root;
244 /* External symbol information. */
245 EXTR esym;
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
303 /* MIPS ELF linker hash table. */
305 struct mips_elf_link_hash_table
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
357 /* Structure used to pass information to mips_elf_output_extsym. */
359 struct extsym_info
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
368 /* The names of the runtime procedure table symbols used on IRIX5. */
370 static const char * const mips_elf_dynsym_rtproc_names[] =
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
381 typedef struct
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
391 typedef struct
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
401 typedef struct
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
411 typedef struct
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
420 typedef struct
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
427 typedef struct
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
433 /* These are the constants used to swap the bitfields in a crinfo. */
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips_elf_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
707 We record any stubs that we find in the symbol table. */
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
713 /* The format of the first PLT entry in a VxWorks executable. */
714 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
723 /* The format of subsequent PLT entries. */
724 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
732 0x00000000 /* nop */
735 /* The format of the first PLT entry in a VxWorks shared object. */
736 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
742 0x00000000 /* nop */
745 /* The format of subsequent PLT entries. */
746 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
751 /* Look up an entry in a MIPS ELF linker hash table. */
753 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
756 (copy), (follow)))
758 /* Traverse a MIPS ELF linker hash table. */
760 #define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
762 (&(table)->root, \
763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
764 (info)))
766 /* Get the MIPS ELF linker hash table from a link_info structure. */
768 #define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
771 /* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
774 #define TP_OFFSET 0x7000
775 #define DTP_OFFSET 0x8000
777 static bfd_vma
778 dtprel_base (struct bfd_link_info *info)
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
782 return 0;
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
786 static bfd_vma
787 tprel_base (struct bfd_link_info *info)
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
791 return 0;
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
795 /* Create an entry in a MIPS ELF linker hash table. */
797 static struct bfd_hash_entry *
798 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
804 /* Allocate the structure if it has not already been allocated by a
805 subclass. */
806 if (ret == NULL)
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
808 if (ret == NULL)
809 return (struct bfd_hash_entry *) ret;
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
814 table, string));
815 if (ret != NULL)
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
821 ret->esym.ifd = -2;
822 ret->possibly_dynamic_relocs = 0;
823 ret->readonly_reloc = FALSE;
824 ret->no_fn_stub = FALSE;
825 ret->fn_stub = NULL;
826 ret->need_fn_stub = FALSE;
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
829 ret->forced_local = FALSE;
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
832 ret->tls_type = GOT_NORMAL;
835 return (struct bfd_hash_entry *) ret;
838 bfd_boolean
839 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
841 struct _mips_elf_section_data *sdata;
842 bfd_size_type amt = sizeof (*sdata);
844 sdata = bfd_zalloc (abfd, amt);
845 if (sdata == NULL)
846 return FALSE;
847 sec->used_by_bfd = sdata;
849 return _bfd_elf_new_section_hook (abfd, sec);
852 /* Read ECOFF debugging information from a .mdebug section into a
853 ecoff_debug_info structure. */
855 bfd_boolean
856 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
857 struct ecoff_debug_info *debug)
859 HDRR *symhdr;
860 const struct ecoff_debug_swap *swap;
861 char *ext_hdr;
863 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
864 memset (debug, 0, sizeof (*debug));
866 ext_hdr = bfd_malloc (swap->external_hdr_size);
867 if (ext_hdr == NULL && swap->external_hdr_size != 0)
868 goto error_return;
870 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
871 swap->external_hdr_size))
872 goto error_return;
874 symhdr = &debug->symbolic_header;
875 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
877 /* The symbolic header contains absolute file offsets and sizes to
878 read. */
879 #define READ(ptr, offset, count, size, type) \
880 if (symhdr->count == 0) \
881 debug->ptr = NULL; \
882 else \
884 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
885 debug->ptr = bfd_malloc (amt); \
886 if (debug->ptr == NULL) \
887 goto error_return; \
888 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
889 || bfd_bread (debug->ptr, amt, abfd) != amt) \
890 goto error_return; \
893 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
894 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
895 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
896 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
897 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
898 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
899 union aux_ext *);
900 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
901 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
902 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
903 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
904 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
905 #undef READ
907 debug->fdr = NULL;
909 return TRUE;
911 error_return:
912 if (ext_hdr != NULL)
913 free (ext_hdr);
914 if (debug->line != NULL)
915 free (debug->line);
916 if (debug->external_dnr != NULL)
917 free (debug->external_dnr);
918 if (debug->external_pdr != NULL)
919 free (debug->external_pdr);
920 if (debug->external_sym != NULL)
921 free (debug->external_sym);
922 if (debug->external_opt != NULL)
923 free (debug->external_opt);
924 if (debug->external_aux != NULL)
925 free (debug->external_aux);
926 if (debug->ss != NULL)
927 free (debug->ss);
928 if (debug->ssext != NULL)
929 free (debug->ssext);
930 if (debug->external_fdr != NULL)
931 free (debug->external_fdr);
932 if (debug->external_rfd != NULL)
933 free (debug->external_rfd);
934 if (debug->external_ext != NULL)
935 free (debug->external_ext);
936 return FALSE;
939 /* Swap RPDR (runtime procedure table entry) for output. */
941 static void
942 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
944 H_PUT_S32 (abfd, in->adr, ex->p_adr);
945 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
946 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
947 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
948 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
949 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
951 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
952 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
954 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
957 /* Create a runtime procedure table from the .mdebug section. */
959 static bfd_boolean
960 mips_elf_create_procedure_table (void *handle, bfd *abfd,
961 struct bfd_link_info *info, asection *s,
962 struct ecoff_debug_info *debug)
964 const struct ecoff_debug_swap *swap;
965 HDRR *hdr = &debug->symbolic_header;
966 RPDR *rpdr, *rp;
967 struct rpdr_ext *erp;
968 void *rtproc;
969 struct pdr_ext *epdr;
970 struct sym_ext *esym;
971 char *ss, **sv;
972 char *str;
973 bfd_size_type size;
974 bfd_size_type count;
975 unsigned long sindex;
976 unsigned long i;
977 PDR pdr;
978 SYMR sym;
979 const char *no_name_func = _("static procedure (no name)");
981 epdr = NULL;
982 rpdr = NULL;
983 esym = NULL;
984 ss = NULL;
985 sv = NULL;
987 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
989 sindex = strlen (no_name_func) + 1;
990 count = hdr->ipdMax;
991 if (count > 0)
993 size = swap->external_pdr_size;
995 epdr = bfd_malloc (size * count);
996 if (epdr == NULL)
997 goto error_return;
999 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1000 goto error_return;
1002 size = sizeof (RPDR);
1003 rp = rpdr = bfd_malloc (size * count);
1004 if (rpdr == NULL)
1005 goto error_return;
1007 size = sizeof (char *);
1008 sv = bfd_malloc (size * count);
1009 if (sv == NULL)
1010 goto error_return;
1012 count = hdr->isymMax;
1013 size = swap->external_sym_size;
1014 esym = bfd_malloc (size * count);
1015 if (esym == NULL)
1016 goto error_return;
1018 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1019 goto error_return;
1021 count = hdr->issMax;
1022 ss = bfd_malloc (count);
1023 if (ss == NULL)
1024 goto error_return;
1025 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1026 goto error_return;
1028 count = hdr->ipdMax;
1029 for (i = 0; i < (unsigned long) count; i++, rp++)
1031 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1032 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1033 rp->adr = sym.value;
1034 rp->regmask = pdr.regmask;
1035 rp->regoffset = pdr.regoffset;
1036 rp->fregmask = pdr.fregmask;
1037 rp->fregoffset = pdr.fregoffset;
1038 rp->frameoffset = pdr.frameoffset;
1039 rp->framereg = pdr.framereg;
1040 rp->pcreg = pdr.pcreg;
1041 rp->irpss = sindex;
1042 sv[i] = ss + sym.iss;
1043 sindex += strlen (sv[i]) + 1;
1047 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1048 size = BFD_ALIGN (size, 16);
1049 rtproc = bfd_alloc (abfd, size);
1050 if (rtproc == NULL)
1052 mips_elf_hash_table (info)->procedure_count = 0;
1053 goto error_return;
1056 mips_elf_hash_table (info)->procedure_count = count + 2;
1058 erp = rtproc;
1059 memset (erp, 0, sizeof (struct rpdr_ext));
1060 erp++;
1061 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1062 strcpy (str, no_name_func);
1063 str += strlen (no_name_func) + 1;
1064 for (i = 0; i < count; i++)
1066 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1067 strcpy (str, sv[i]);
1068 str += strlen (sv[i]) + 1;
1070 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1072 /* Set the size and contents of .rtproc section. */
1073 s->size = size;
1074 s->contents = rtproc;
1076 /* Skip this section later on (I don't think this currently
1077 matters, but someday it might). */
1078 s->map_head.link_order = NULL;
1080 if (epdr != NULL)
1081 free (epdr);
1082 if (rpdr != NULL)
1083 free (rpdr);
1084 if (esym != NULL)
1085 free (esym);
1086 if (ss != NULL)
1087 free (ss);
1088 if (sv != NULL)
1089 free (sv);
1091 return TRUE;
1093 error_return:
1094 if (epdr != NULL)
1095 free (epdr);
1096 if (rpdr != NULL)
1097 free (rpdr);
1098 if (esym != NULL)
1099 free (esym);
1100 if (ss != NULL)
1101 free (ss);
1102 if (sv != NULL)
1103 free (sv);
1104 return FALSE;
1107 /* Check the mips16 stubs for a particular symbol, and see if we can
1108 discard them. */
1110 static bfd_boolean
1111 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1112 void *data ATTRIBUTE_UNUSED)
1114 if (h->root.root.type == bfd_link_hash_warning)
1115 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1117 if (h->fn_stub != NULL
1118 && ! h->need_fn_stub)
1120 /* We don't need the fn_stub; the only references to this symbol
1121 are 16 bit calls. Clobber the size to 0 to prevent it from
1122 being included in the link. */
1123 h->fn_stub->size = 0;
1124 h->fn_stub->flags &= ~SEC_RELOC;
1125 h->fn_stub->reloc_count = 0;
1126 h->fn_stub->flags |= SEC_EXCLUDE;
1129 if (h->call_stub != NULL
1130 && h->root.other == STO_MIPS16)
1132 /* We don't need the call_stub; this is a 16 bit function, so
1133 calls from other 16 bit functions are OK. Clobber the size
1134 to 0 to prevent it from being included in the link. */
1135 h->call_stub->size = 0;
1136 h->call_stub->flags &= ~SEC_RELOC;
1137 h->call_stub->reloc_count = 0;
1138 h->call_stub->flags |= SEC_EXCLUDE;
1141 if (h->call_fp_stub != NULL
1142 && h->root.other == STO_MIPS16)
1144 /* We don't need the call_stub; this is a 16 bit function, so
1145 calls from other 16 bit functions are OK. Clobber the size
1146 to 0 to prevent it from being included in the link. */
1147 h->call_fp_stub->size = 0;
1148 h->call_fp_stub->flags &= ~SEC_RELOC;
1149 h->call_fp_stub->reloc_count = 0;
1150 h->call_fp_stub->flags |= SEC_EXCLUDE;
1153 return TRUE;
1156 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1157 Most mips16 instructions are 16 bits, but these instructions
1158 are 32 bits.
1160 The format of these instructions is:
1162 +--------------+--------------------------------+
1163 | JALX | X| Imm 20:16 | Imm 25:21 |
1164 +--------------+--------------------------------+
1165 | Immediate 15:0 |
1166 +-----------------------------------------------+
1168 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1169 Note that the immediate value in the first word is swapped.
1171 When producing a relocatable object file, R_MIPS16_26 is
1172 handled mostly like R_MIPS_26. In particular, the addend is
1173 stored as a straight 26-bit value in a 32-bit instruction.
1174 (gas makes life simpler for itself by never adjusting a
1175 R_MIPS16_26 reloc to be against a section, so the addend is
1176 always zero). However, the 32 bit instruction is stored as 2
1177 16-bit values, rather than a single 32-bit value. In a
1178 big-endian file, the result is the same; in a little-endian
1179 file, the two 16-bit halves of the 32 bit value are swapped.
1180 This is so that a disassembler can recognize the jal
1181 instruction.
1183 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1184 instruction stored as two 16-bit values. The addend A is the
1185 contents of the targ26 field. The calculation is the same as
1186 R_MIPS_26. When storing the calculated value, reorder the
1187 immediate value as shown above, and don't forget to store the
1188 value as two 16-bit values.
1190 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1191 defined as
1193 big-endian:
1194 +--------+----------------------+
1195 | | |
1196 | | targ26-16 |
1197 |31 26|25 0|
1198 +--------+----------------------+
1200 little-endian:
1201 +----------+------+-------------+
1202 | | | |
1203 | sub1 | | sub2 |
1204 |0 9|10 15|16 31|
1205 +----------+--------------------+
1206 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1207 ((sub1 << 16) | sub2)).
1209 When producing a relocatable object file, the calculation is
1210 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1211 When producing a fully linked file, the calculation is
1212 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1213 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1215 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1216 mode. A typical instruction will have a format like this:
1218 +--------------+--------------------------------+
1219 | EXTEND | Imm 10:5 | Imm 15:11 |
1220 +--------------+--------------------------------+
1221 | Major | rx | ry | Imm 4:0 |
1222 +--------------+--------------------------------+
1224 EXTEND is the five bit value 11110. Major is the instruction
1225 opcode.
1227 This is handled exactly like R_MIPS_GPREL16, except that the
1228 addend is retrieved and stored as shown in this diagram; that
1229 is, the Imm fields above replace the V-rel16 field.
1231 All we need to do here is shuffle the bits appropriately. As
1232 above, the two 16-bit halves must be swapped on a
1233 little-endian system.
1235 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1236 access data when neither GP-relative nor PC-relative addressing
1237 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1238 except that the addend is retrieved and stored as shown above
1239 for R_MIPS16_GPREL.
1241 void
1242 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1243 bfd_boolean jal_shuffle, bfd_byte *data)
1245 bfd_vma extend, insn, val;
1247 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1248 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1249 return;
1251 /* Pick up the mips16 extend instruction and the real instruction. */
1252 extend = bfd_get_16 (abfd, data);
1253 insn = bfd_get_16 (abfd, data + 2);
1254 if (r_type == R_MIPS16_26)
1256 if (jal_shuffle)
1257 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1258 | ((extend & 0x1f) << 21) | insn;
1259 else
1260 val = extend << 16 | insn;
1262 else
1263 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1264 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1265 bfd_put_32 (abfd, val, data);
1268 void
1269 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1270 bfd_boolean jal_shuffle, bfd_byte *data)
1272 bfd_vma extend, insn, val;
1274 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1275 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1276 return;
1278 val = bfd_get_32 (abfd, data);
1279 if (r_type == R_MIPS16_26)
1281 if (jal_shuffle)
1283 insn = val & 0xffff;
1284 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1285 | ((val >> 21) & 0x1f);
1287 else
1289 insn = val & 0xffff;
1290 extend = val >> 16;
1293 else
1295 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1296 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1298 bfd_put_16 (abfd, insn, data + 2);
1299 bfd_put_16 (abfd, extend, data);
1302 bfd_reloc_status_type
1303 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1304 arelent *reloc_entry, asection *input_section,
1305 bfd_boolean relocatable, void *data, bfd_vma gp)
1307 bfd_vma relocation;
1308 bfd_signed_vma val;
1309 bfd_reloc_status_type status;
1311 if (bfd_is_com_section (symbol->section))
1312 relocation = 0;
1313 else
1314 relocation = symbol->value;
1316 relocation += symbol->section->output_section->vma;
1317 relocation += symbol->section->output_offset;
1319 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1320 return bfd_reloc_outofrange;
1322 /* Set val to the offset into the section or symbol. */
1323 val = reloc_entry->addend;
1325 _bfd_mips_elf_sign_extend (val, 16);
1327 /* Adjust val for the final section location and GP value. If we
1328 are producing relocatable output, we don't want to do this for
1329 an external symbol. */
1330 if (! relocatable
1331 || (symbol->flags & BSF_SECTION_SYM) != 0)
1332 val += relocation - gp;
1334 if (reloc_entry->howto->partial_inplace)
1336 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1337 (bfd_byte *) data
1338 + reloc_entry->address);
1339 if (status != bfd_reloc_ok)
1340 return status;
1342 else
1343 reloc_entry->addend = val;
1345 if (relocatable)
1346 reloc_entry->address += input_section->output_offset;
1348 return bfd_reloc_ok;
1351 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1352 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1353 that contains the relocation field and DATA points to the start of
1354 INPUT_SECTION. */
1356 struct mips_hi16
1358 struct mips_hi16 *next;
1359 bfd_byte *data;
1360 asection *input_section;
1361 arelent rel;
1364 /* FIXME: This should not be a static variable. */
1366 static struct mips_hi16 *mips_hi16_list;
1368 /* A howto special_function for REL *HI16 relocations. We can only
1369 calculate the correct value once we've seen the partnering
1370 *LO16 relocation, so just save the information for later.
1372 The ABI requires that the *LO16 immediately follow the *HI16.
1373 However, as a GNU extension, we permit an arbitrary number of
1374 *HI16s to be associated with a single *LO16. This significantly
1375 simplies the relocation handling in gcc. */
1377 bfd_reloc_status_type
1378 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1379 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1380 asection *input_section, bfd *output_bfd,
1381 char **error_message ATTRIBUTE_UNUSED)
1383 struct mips_hi16 *n;
1385 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1386 return bfd_reloc_outofrange;
1388 n = bfd_malloc (sizeof *n);
1389 if (n == NULL)
1390 return bfd_reloc_outofrange;
1392 n->next = mips_hi16_list;
1393 n->data = data;
1394 n->input_section = input_section;
1395 n->rel = *reloc_entry;
1396 mips_hi16_list = n;
1398 if (output_bfd != NULL)
1399 reloc_entry->address += input_section->output_offset;
1401 return bfd_reloc_ok;
1404 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1405 like any other 16-bit relocation when applied to global symbols, but is
1406 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1408 bfd_reloc_status_type
1409 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1410 void *data, asection *input_section,
1411 bfd *output_bfd, char **error_message)
1413 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1414 || bfd_is_und_section (bfd_get_section (symbol))
1415 || bfd_is_com_section (bfd_get_section (symbol)))
1416 /* The relocation is against a global symbol. */
1417 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1418 input_section, output_bfd,
1419 error_message);
1421 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1422 input_section, output_bfd, error_message);
1425 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1426 is a straightforward 16 bit inplace relocation, but we must deal with
1427 any partnering high-part relocations as well. */
1429 bfd_reloc_status_type
1430 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1431 void *data, asection *input_section,
1432 bfd *output_bfd, char **error_message)
1434 bfd_vma vallo;
1435 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1437 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1438 return bfd_reloc_outofrange;
1440 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1441 location);
1442 vallo = bfd_get_32 (abfd, location);
1443 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1444 location);
1446 while (mips_hi16_list != NULL)
1448 bfd_reloc_status_type ret;
1449 struct mips_hi16 *hi;
1451 hi = mips_hi16_list;
1453 /* R_MIPS_GOT16 relocations are something of a special case. We
1454 want to install the addend in the same way as for a R_MIPS_HI16
1455 relocation (with a rightshift of 16). However, since GOT16
1456 relocations can also be used with global symbols, their howto
1457 has a rightshift of 0. */
1458 if (hi->rel.howto->type == R_MIPS_GOT16)
1459 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1461 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1462 carry or borrow will induce a change of +1 or -1 in the high part. */
1463 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1465 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1466 hi->input_section, output_bfd,
1467 error_message);
1468 if (ret != bfd_reloc_ok)
1469 return ret;
1471 mips_hi16_list = hi->next;
1472 free (hi);
1475 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1476 input_section, output_bfd,
1477 error_message);
1480 /* A generic howto special_function. This calculates and installs the
1481 relocation itself, thus avoiding the oft-discussed problems in
1482 bfd_perform_relocation and bfd_install_relocation. */
1484 bfd_reloc_status_type
1485 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1486 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1487 asection *input_section, bfd *output_bfd,
1488 char **error_message ATTRIBUTE_UNUSED)
1490 bfd_signed_vma val;
1491 bfd_reloc_status_type status;
1492 bfd_boolean relocatable;
1494 relocatable = (output_bfd != NULL);
1496 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1497 return bfd_reloc_outofrange;
1499 /* Build up the field adjustment in VAL. */
1500 val = 0;
1501 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1503 /* Either we're calculating the final field value or we have a
1504 relocation against a section symbol. Add in the section's
1505 offset or address. */
1506 val += symbol->section->output_section->vma;
1507 val += symbol->section->output_offset;
1510 if (!relocatable)
1512 /* We're calculating the final field value. Add in the symbol's value
1513 and, if pc-relative, subtract the address of the field itself. */
1514 val += symbol->value;
1515 if (reloc_entry->howto->pc_relative)
1517 val -= input_section->output_section->vma;
1518 val -= input_section->output_offset;
1519 val -= reloc_entry->address;
1523 /* VAL is now the final adjustment. If we're keeping this relocation
1524 in the output file, and if the relocation uses a separate addend,
1525 we just need to add VAL to that addend. Otherwise we need to add
1526 VAL to the relocation field itself. */
1527 if (relocatable && !reloc_entry->howto->partial_inplace)
1528 reloc_entry->addend += val;
1529 else
1531 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1533 /* Add in the separate addend, if any. */
1534 val += reloc_entry->addend;
1536 /* Add VAL to the relocation field. */
1537 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1538 location);
1539 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1540 location);
1541 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1542 location);
1544 if (status != bfd_reloc_ok)
1545 return status;
1548 if (relocatable)
1549 reloc_entry->address += input_section->output_offset;
1551 return bfd_reloc_ok;
1554 /* Swap an entry in a .gptab section. Note that these routines rely
1555 on the equivalence of the two elements of the union. */
1557 static void
1558 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1559 Elf32_gptab *in)
1561 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1562 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1565 static void
1566 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1567 Elf32_External_gptab *ex)
1569 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1570 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1573 static void
1574 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1575 Elf32_External_compact_rel *ex)
1577 H_PUT_32 (abfd, in->id1, ex->id1);
1578 H_PUT_32 (abfd, in->num, ex->num);
1579 H_PUT_32 (abfd, in->id2, ex->id2);
1580 H_PUT_32 (abfd, in->offset, ex->offset);
1581 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1582 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1585 static void
1586 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1587 Elf32_External_crinfo *ex)
1589 unsigned long l;
1591 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1592 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1593 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1594 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1595 H_PUT_32 (abfd, l, ex->info);
1596 H_PUT_32 (abfd, in->konst, ex->konst);
1597 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1600 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1601 routines swap this structure in and out. They are used outside of
1602 BFD, so they are globally visible. */
1604 void
1605 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1606 Elf32_RegInfo *in)
1608 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1609 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1610 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1611 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1612 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1613 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1616 void
1617 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1618 Elf32_External_RegInfo *ex)
1620 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1621 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1622 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1623 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1624 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1625 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1628 /* In the 64 bit ABI, the .MIPS.options section holds register
1629 information in an Elf64_Reginfo structure. These routines swap
1630 them in and out. They are globally visible because they are used
1631 outside of BFD. These routines are here so that gas can call them
1632 without worrying about whether the 64 bit ABI has been included. */
1634 void
1635 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1636 Elf64_Internal_RegInfo *in)
1638 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1639 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1640 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1641 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1642 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1643 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1644 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1647 void
1648 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1649 Elf64_External_RegInfo *ex)
1651 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1652 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1653 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1654 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1655 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1656 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1657 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1660 /* Swap in an options header. */
1662 void
1663 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1664 Elf_Internal_Options *in)
1666 in->kind = H_GET_8 (abfd, ex->kind);
1667 in->size = H_GET_8 (abfd, ex->size);
1668 in->section = H_GET_16 (abfd, ex->section);
1669 in->info = H_GET_32 (abfd, ex->info);
1672 /* Swap out an options header. */
1674 void
1675 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1676 Elf_External_Options *ex)
1678 H_PUT_8 (abfd, in->kind, ex->kind);
1679 H_PUT_8 (abfd, in->size, ex->size);
1680 H_PUT_16 (abfd, in->section, ex->section);
1681 H_PUT_32 (abfd, in->info, ex->info);
1684 /* This function is called via qsort() to sort the dynamic relocation
1685 entries by increasing r_symndx value. */
1687 static int
1688 sort_dynamic_relocs (const void *arg1, const void *arg2)
1690 Elf_Internal_Rela int_reloc1;
1691 Elf_Internal_Rela int_reloc2;
1693 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1694 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1696 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1699 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1701 static int
1702 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1703 const void *arg2 ATTRIBUTE_UNUSED)
1705 #ifdef BFD64
1706 Elf_Internal_Rela int_reloc1[3];
1707 Elf_Internal_Rela int_reloc2[3];
1709 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1710 (reldyn_sorting_bfd, arg1, int_reloc1);
1711 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1712 (reldyn_sorting_bfd, arg2, int_reloc2);
1714 return (ELF64_R_SYM (int_reloc1[0].r_info)
1715 - ELF64_R_SYM (int_reloc2[0].r_info));
1716 #else
1717 abort ();
1718 #endif
1722 /* This routine is used to write out ECOFF debugging external symbol
1723 information. It is called via mips_elf_link_hash_traverse. The
1724 ECOFF external symbol information must match the ELF external
1725 symbol information. Unfortunately, at this point we don't know
1726 whether a symbol is required by reloc information, so the two
1727 tables may wind up being different. We must sort out the external
1728 symbol information before we can set the final size of the .mdebug
1729 section, and we must set the size of the .mdebug section before we
1730 can relocate any sections, and we can't know which symbols are
1731 required by relocation until we relocate the sections.
1732 Fortunately, it is relatively unlikely that any symbol will be
1733 stripped but required by a reloc. In particular, it can not happen
1734 when generating a final executable. */
1736 static bfd_boolean
1737 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1739 struct extsym_info *einfo = data;
1740 bfd_boolean strip;
1741 asection *sec, *output_section;
1743 if (h->root.root.type == bfd_link_hash_warning)
1744 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1746 if (h->root.indx == -2)
1747 strip = FALSE;
1748 else if ((h->root.def_dynamic
1749 || h->root.ref_dynamic
1750 || h->root.type == bfd_link_hash_new)
1751 && !h->root.def_regular
1752 && !h->root.ref_regular)
1753 strip = TRUE;
1754 else if (einfo->info->strip == strip_all
1755 || (einfo->info->strip == strip_some
1756 && bfd_hash_lookup (einfo->info->keep_hash,
1757 h->root.root.root.string,
1758 FALSE, FALSE) == NULL))
1759 strip = TRUE;
1760 else
1761 strip = FALSE;
1763 if (strip)
1764 return TRUE;
1766 if (h->esym.ifd == -2)
1768 h->esym.jmptbl = 0;
1769 h->esym.cobol_main = 0;
1770 h->esym.weakext = 0;
1771 h->esym.reserved = 0;
1772 h->esym.ifd = ifdNil;
1773 h->esym.asym.value = 0;
1774 h->esym.asym.st = stGlobal;
1776 if (h->root.root.type == bfd_link_hash_undefined
1777 || h->root.root.type == bfd_link_hash_undefweak)
1779 const char *name;
1781 /* Use undefined class. Also, set class and type for some
1782 special symbols. */
1783 name = h->root.root.root.string;
1784 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1785 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1787 h->esym.asym.sc = scData;
1788 h->esym.asym.st = stLabel;
1789 h->esym.asym.value = 0;
1791 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1793 h->esym.asym.sc = scAbs;
1794 h->esym.asym.st = stLabel;
1795 h->esym.asym.value =
1796 mips_elf_hash_table (einfo->info)->procedure_count;
1798 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1800 h->esym.asym.sc = scAbs;
1801 h->esym.asym.st = stLabel;
1802 h->esym.asym.value = elf_gp (einfo->abfd);
1804 else
1805 h->esym.asym.sc = scUndefined;
1807 else if (h->root.root.type != bfd_link_hash_defined
1808 && h->root.root.type != bfd_link_hash_defweak)
1809 h->esym.asym.sc = scAbs;
1810 else
1812 const char *name;
1814 sec = h->root.root.u.def.section;
1815 output_section = sec->output_section;
1817 /* When making a shared library and symbol h is the one from
1818 the another shared library, OUTPUT_SECTION may be null. */
1819 if (output_section == NULL)
1820 h->esym.asym.sc = scUndefined;
1821 else
1823 name = bfd_section_name (output_section->owner, output_section);
1825 if (strcmp (name, ".text") == 0)
1826 h->esym.asym.sc = scText;
1827 else if (strcmp (name, ".data") == 0)
1828 h->esym.asym.sc = scData;
1829 else if (strcmp (name, ".sdata") == 0)
1830 h->esym.asym.sc = scSData;
1831 else if (strcmp (name, ".rodata") == 0
1832 || strcmp (name, ".rdata") == 0)
1833 h->esym.asym.sc = scRData;
1834 else if (strcmp (name, ".bss") == 0)
1835 h->esym.asym.sc = scBss;
1836 else if (strcmp (name, ".sbss") == 0)
1837 h->esym.asym.sc = scSBss;
1838 else if (strcmp (name, ".init") == 0)
1839 h->esym.asym.sc = scInit;
1840 else if (strcmp (name, ".fini") == 0)
1841 h->esym.asym.sc = scFini;
1842 else
1843 h->esym.asym.sc = scAbs;
1847 h->esym.asym.reserved = 0;
1848 h->esym.asym.index = indexNil;
1851 if (h->root.root.type == bfd_link_hash_common)
1852 h->esym.asym.value = h->root.root.u.c.size;
1853 else if (h->root.root.type == bfd_link_hash_defined
1854 || h->root.root.type == bfd_link_hash_defweak)
1856 if (h->esym.asym.sc == scCommon)
1857 h->esym.asym.sc = scBss;
1858 else if (h->esym.asym.sc == scSCommon)
1859 h->esym.asym.sc = scSBss;
1861 sec = h->root.root.u.def.section;
1862 output_section = sec->output_section;
1863 if (output_section != NULL)
1864 h->esym.asym.value = (h->root.root.u.def.value
1865 + sec->output_offset
1866 + output_section->vma);
1867 else
1868 h->esym.asym.value = 0;
1870 else if (h->root.needs_plt)
1872 struct mips_elf_link_hash_entry *hd = h;
1873 bfd_boolean no_fn_stub = h->no_fn_stub;
1875 while (hd->root.root.type == bfd_link_hash_indirect)
1877 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1878 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1881 if (!no_fn_stub)
1883 /* Set type and value for a symbol with a function stub. */
1884 h->esym.asym.st = stProc;
1885 sec = hd->root.root.u.def.section;
1886 if (sec == NULL)
1887 h->esym.asym.value = 0;
1888 else
1890 output_section = sec->output_section;
1891 if (output_section != NULL)
1892 h->esym.asym.value = (hd->root.plt.offset
1893 + sec->output_offset
1894 + output_section->vma);
1895 else
1896 h->esym.asym.value = 0;
1901 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1902 h->root.root.root.string,
1903 &h->esym))
1905 einfo->failed = TRUE;
1906 return FALSE;
1909 return TRUE;
1912 /* A comparison routine used to sort .gptab entries. */
1914 static int
1915 gptab_compare (const void *p1, const void *p2)
1917 const Elf32_gptab *a1 = p1;
1918 const Elf32_gptab *a2 = p2;
1920 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1923 /* Functions to manage the got entry hash table. */
1925 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1926 hash number. */
1928 static INLINE hashval_t
1929 mips_elf_hash_bfd_vma (bfd_vma addr)
1931 #ifdef BFD64
1932 return addr + (addr >> 32);
1933 #else
1934 return addr;
1935 #endif
1938 /* got_entries only match if they're identical, except for gotidx, so
1939 use all fields to compute the hash, and compare the appropriate
1940 union members. */
1942 static hashval_t
1943 mips_elf_got_entry_hash (const void *entry_)
1945 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1947 return entry->symndx
1948 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1949 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1950 : entry->abfd->id
1951 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1952 : entry->d.h->root.root.root.hash));
1955 static int
1956 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1958 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1959 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1961 /* An LDM entry can only match another LDM entry. */
1962 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1963 return 0;
1965 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1966 && (! e1->abfd ? e1->d.address == e2->d.address
1967 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1968 : e1->d.h == e2->d.h);
1971 /* multi_got_entries are still a match in the case of global objects,
1972 even if the input bfd in which they're referenced differs, so the
1973 hash computation and compare functions are adjusted
1974 accordingly. */
1976 static hashval_t
1977 mips_elf_multi_got_entry_hash (const void *entry_)
1979 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1981 return entry->symndx
1982 + (! entry->abfd
1983 ? mips_elf_hash_bfd_vma (entry->d.address)
1984 : entry->symndx >= 0
1985 ? ((entry->tls_type & GOT_TLS_LDM)
1986 ? (GOT_TLS_LDM << 17)
1987 : (entry->abfd->id
1988 + mips_elf_hash_bfd_vma (entry->d.addend)))
1989 : entry->d.h->root.root.root.hash);
1992 static int
1993 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1995 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1996 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1998 /* Any two LDM entries match. */
1999 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2000 return 1;
2002 /* Nothing else matches an LDM entry. */
2003 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2004 return 0;
2006 return e1->symndx == e2->symndx
2007 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2008 : e1->abfd == NULL || e2->abfd == NULL
2009 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2010 : e1->d.h == e2->d.h);
2013 /* Return the dynamic relocation section. If it doesn't exist, try to
2014 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2015 if creation fails. */
2017 static asection *
2018 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2020 const char *dname;
2021 asection *sreloc;
2022 bfd *dynobj;
2024 dname = MIPS_ELF_REL_DYN_NAME (info);
2025 dynobj = elf_hash_table (info)->dynobj;
2026 sreloc = bfd_get_section_by_name (dynobj, dname);
2027 if (sreloc == NULL && create_p)
2029 sreloc = bfd_make_section_with_flags (dynobj, dname,
2030 (SEC_ALLOC
2031 | SEC_LOAD
2032 | SEC_HAS_CONTENTS
2033 | SEC_IN_MEMORY
2034 | SEC_LINKER_CREATED
2035 | SEC_READONLY));
2036 if (sreloc == NULL
2037 || ! bfd_set_section_alignment (dynobj, sreloc,
2038 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2039 return NULL;
2041 return sreloc;
2044 /* Returns the GOT section for ABFD. */
2046 static asection *
2047 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2049 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2050 if (sgot == NULL
2051 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2052 return NULL;
2053 return sgot;
2056 /* Returns the GOT information associated with the link indicated by
2057 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2058 section. */
2060 static struct mips_got_info *
2061 mips_elf_got_info (bfd *abfd, asection **sgotp)
2063 asection *sgot;
2064 struct mips_got_info *g;
2066 sgot = mips_elf_got_section (abfd, TRUE);
2067 BFD_ASSERT (sgot != NULL);
2068 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2069 g = mips_elf_section_data (sgot)->u.got_info;
2070 BFD_ASSERT (g != NULL);
2072 if (sgotp)
2073 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2075 return g;
2078 /* Count the number of relocations needed for a TLS GOT entry, with
2079 access types from TLS_TYPE, and symbol H (or a local symbol if H
2080 is NULL). */
2082 static int
2083 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2084 struct elf_link_hash_entry *h)
2086 int indx = 0;
2087 int ret = 0;
2088 bfd_boolean need_relocs = FALSE;
2089 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2091 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2092 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2093 indx = h->dynindx;
2095 if ((info->shared || indx != 0)
2096 && (h == NULL
2097 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2098 || h->root.type != bfd_link_hash_undefweak))
2099 need_relocs = TRUE;
2101 if (!need_relocs)
2102 return FALSE;
2104 if (tls_type & GOT_TLS_GD)
2106 ret++;
2107 if (indx != 0)
2108 ret++;
2111 if (tls_type & GOT_TLS_IE)
2112 ret++;
2114 if ((tls_type & GOT_TLS_LDM) && info->shared)
2115 ret++;
2117 return ret;
2120 /* Count the number of TLS relocations required for the GOT entry in
2121 ARG1, if it describes a local symbol. */
2123 static int
2124 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2126 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2127 struct mips_elf_count_tls_arg *arg = arg2;
2129 if (entry->abfd != NULL && entry->symndx != -1)
2130 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2132 return 1;
2135 /* Count the number of TLS GOT entries required for the global (or
2136 forced-local) symbol in ARG1. */
2138 static int
2139 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2141 struct mips_elf_link_hash_entry *hm
2142 = (struct mips_elf_link_hash_entry *) arg1;
2143 struct mips_elf_count_tls_arg *arg = arg2;
2145 if (hm->tls_type & GOT_TLS_GD)
2146 arg->needed += 2;
2147 if (hm->tls_type & GOT_TLS_IE)
2148 arg->needed += 1;
2150 return 1;
2153 /* Count the number of TLS relocations required for the global (or
2154 forced-local) symbol in ARG1. */
2156 static int
2157 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2159 struct mips_elf_link_hash_entry *hm
2160 = (struct mips_elf_link_hash_entry *) arg1;
2161 struct mips_elf_count_tls_arg *arg = arg2;
2163 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2165 return 1;
2168 /* Output a simple dynamic relocation into SRELOC. */
2170 static void
2171 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2172 asection *sreloc,
2173 unsigned long indx,
2174 int r_type,
2175 bfd_vma offset)
2177 Elf_Internal_Rela rel[3];
2179 memset (rel, 0, sizeof (rel));
2181 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2182 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2184 if (ABI_64_P (output_bfd))
2186 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2187 (output_bfd, &rel[0],
2188 (sreloc->contents
2189 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2191 else
2192 bfd_elf32_swap_reloc_out
2193 (output_bfd, &rel[0],
2194 (sreloc->contents
2195 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2196 ++sreloc->reloc_count;
2199 /* Initialize a set of TLS GOT entries for one symbol. */
2201 static void
2202 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2203 unsigned char *tls_type_p,
2204 struct bfd_link_info *info,
2205 struct mips_elf_link_hash_entry *h,
2206 bfd_vma value)
2208 int indx;
2209 asection *sreloc, *sgot;
2210 bfd_vma offset, offset2;
2211 bfd *dynobj;
2212 bfd_boolean need_relocs = FALSE;
2214 dynobj = elf_hash_table (info)->dynobj;
2215 sgot = mips_elf_got_section (dynobj, FALSE);
2217 indx = 0;
2218 if (h != NULL)
2220 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2222 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2223 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2224 indx = h->root.dynindx;
2227 if (*tls_type_p & GOT_TLS_DONE)
2228 return;
2230 if ((info->shared || indx != 0)
2231 && (h == NULL
2232 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2233 || h->root.type != bfd_link_hash_undefweak))
2234 need_relocs = TRUE;
2236 /* MINUS_ONE means the symbol is not defined in this object. It may not
2237 be defined at all; assume that the value doesn't matter in that
2238 case. Otherwise complain if we would use the value. */
2239 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2240 || h->root.root.type == bfd_link_hash_undefweak);
2242 /* Emit necessary relocations. */
2243 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2245 /* General Dynamic. */
2246 if (*tls_type_p & GOT_TLS_GD)
2248 offset = got_offset;
2249 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2251 if (need_relocs)
2253 mips_elf_output_dynamic_relocation
2254 (abfd, sreloc, indx,
2255 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2256 sgot->output_offset + sgot->output_section->vma + offset);
2258 if (indx)
2259 mips_elf_output_dynamic_relocation
2260 (abfd, sreloc, indx,
2261 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2262 sgot->output_offset + sgot->output_section->vma + offset2);
2263 else
2264 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2265 sgot->contents + offset2);
2267 else
2269 MIPS_ELF_PUT_WORD (abfd, 1,
2270 sgot->contents + offset);
2271 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2272 sgot->contents + offset2);
2275 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2278 /* Initial Exec model. */
2279 if (*tls_type_p & GOT_TLS_IE)
2281 offset = got_offset;
2283 if (need_relocs)
2285 if (indx == 0)
2286 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2287 sgot->contents + offset);
2288 else
2289 MIPS_ELF_PUT_WORD (abfd, 0,
2290 sgot->contents + offset);
2292 mips_elf_output_dynamic_relocation
2293 (abfd, sreloc, indx,
2294 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2295 sgot->output_offset + sgot->output_section->vma + offset);
2297 else
2298 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2299 sgot->contents + offset);
2302 if (*tls_type_p & GOT_TLS_LDM)
2304 /* The initial offset is zero, and the LD offsets will include the
2305 bias by DTP_OFFSET. */
2306 MIPS_ELF_PUT_WORD (abfd, 0,
2307 sgot->contents + got_offset
2308 + MIPS_ELF_GOT_SIZE (abfd));
2310 if (!info->shared)
2311 MIPS_ELF_PUT_WORD (abfd, 1,
2312 sgot->contents + got_offset);
2313 else
2314 mips_elf_output_dynamic_relocation
2315 (abfd, sreloc, indx,
2316 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2317 sgot->output_offset + sgot->output_section->vma + got_offset);
2320 *tls_type_p |= GOT_TLS_DONE;
2323 /* Return the GOT index to use for a relocation of type R_TYPE against
2324 a symbol accessed using TLS_TYPE models. The GOT entries for this
2325 symbol in this GOT start at GOT_INDEX. This function initializes the
2326 GOT entries and corresponding relocations. */
2328 static bfd_vma
2329 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2330 int r_type, struct bfd_link_info *info,
2331 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2333 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2334 || r_type == R_MIPS_TLS_LDM);
2336 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2338 if (r_type == R_MIPS_TLS_GOTTPREL)
2340 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2341 if (*tls_type & GOT_TLS_GD)
2342 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2343 else
2344 return got_index;
2347 if (r_type == R_MIPS_TLS_GD)
2349 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2350 return got_index;
2353 if (r_type == R_MIPS_TLS_LDM)
2355 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2356 return got_index;
2359 return got_index;
2362 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2363 for global symbol H. .got.plt comes before the GOT, so the offset
2364 will be negative. */
2366 static bfd_vma
2367 mips_elf_gotplt_index (struct bfd_link_info *info,
2368 struct elf_link_hash_entry *h)
2370 bfd_vma plt_index, got_address, got_value;
2371 struct mips_elf_link_hash_table *htab;
2373 htab = mips_elf_hash_table (info);
2374 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2376 /* Calculate the index of the symbol's PLT entry. */
2377 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2379 /* Calculate the address of the associated .got.plt entry. */
2380 got_address = (htab->sgotplt->output_section->vma
2381 + htab->sgotplt->output_offset
2382 + plt_index * 4);
2384 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2385 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2386 + htab->root.hgot->root.u.def.section->output_offset
2387 + htab->root.hgot->root.u.def.value);
2389 return got_address - got_value;
2392 /* Return the GOT offset for address VALUE, which was derived from
2393 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2394 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2395 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2396 offset can be found. */
2398 static bfd_vma
2399 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2400 asection *input_section, bfd_vma value,
2401 unsigned long r_symndx,
2402 struct mips_elf_link_hash_entry *h, int r_type)
2404 asection *sgot;
2405 struct mips_got_info *g;
2406 struct mips_got_entry *entry;
2408 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2410 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2411 input_section, value,
2412 r_symndx, h, r_type);
2413 if (!entry)
2414 return MINUS_ONE;
2416 if (TLS_RELOC_P (r_type))
2418 if (entry->symndx == -1 && g->next == NULL)
2419 /* A type (3) entry in the single-GOT case. We use the symbol's
2420 hash table entry to track the index. */
2421 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2422 r_type, info, h, value);
2423 else
2424 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2425 r_type, info, h, value);
2427 else
2428 return entry->gotidx;
2431 /* Returns the GOT index for the global symbol indicated by H. */
2433 static bfd_vma
2434 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2435 int r_type, struct bfd_link_info *info)
2437 bfd_vma index;
2438 asection *sgot;
2439 struct mips_got_info *g, *gg;
2440 long global_got_dynindx = 0;
2442 gg = g = mips_elf_got_info (abfd, &sgot);
2443 if (g->bfd2got && ibfd)
2445 struct mips_got_entry e, *p;
2447 BFD_ASSERT (h->dynindx >= 0);
2449 g = mips_elf_got_for_ibfd (g, ibfd);
2450 if (g->next != gg || TLS_RELOC_P (r_type))
2452 e.abfd = ibfd;
2453 e.symndx = -1;
2454 e.d.h = (struct mips_elf_link_hash_entry *)h;
2455 e.tls_type = 0;
2457 p = htab_find (g->got_entries, &e);
2459 BFD_ASSERT (p->gotidx > 0);
2461 if (TLS_RELOC_P (r_type))
2463 bfd_vma value = MINUS_ONE;
2464 if ((h->root.type == bfd_link_hash_defined
2465 || h->root.type == bfd_link_hash_defweak)
2466 && h->root.u.def.section->output_section)
2467 value = (h->root.u.def.value
2468 + h->root.u.def.section->output_offset
2469 + h->root.u.def.section->output_section->vma);
2471 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2472 info, e.d.h, value);
2474 else
2475 return p->gotidx;
2479 if (gg->global_gotsym != NULL)
2480 global_got_dynindx = gg->global_gotsym->dynindx;
2482 if (TLS_RELOC_P (r_type))
2484 struct mips_elf_link_hash_entry *hm
2485 = (struct mips_elf_link_hash_entry *) h;
2486 bfd_vma value = MINUS_ONE;
2488 if ((h->root.type == bfd_link_hash_defined
2489 || h->root.type == bfd_link_hash_defweak)
2490 && h->root.u.def.section->output_section)
2491 value = (h->root.u.def.value
2492 + h->root.u.def.section->output_offset
2493 + h->root.u.def.section->output_section->vma);
2495 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2496 r_type, info, hm, value);
2498 else
2500 /* Once we determine the global GOT entry with the lowest dynamic
2501 symbol table index, we must put all dynamic symbols with greater
2502 indices into the GOT. That makes it easy to calculate the GOT
2503 offset. */
2504 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2505 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2506 * MIPS_ELF_GOT_SIZE (abfd));
2508 BFD_ASSERT (index < sgot->size);
2510 return index;
2513 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2514 calculated from a symbol belonging to INPUT_SECTION. These entries
2515 are supposed to be placed at small offsets in the GOT, i.e., within
2516 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2517 could be created. If OFFSETP is nonnull, use it to return the
2518 offset of the GOT entry from VALUE. */
2520 static bfd_vma
2521 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2522 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2524 asection *sgot;
2525 struct mips_got_info *g;
2526 bfd_vma page, index;
2527 struct mips_got_entry *entry;
2529 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2531 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2532 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2533 input_section, page, 0,
2534 NULL, R_MIPS_GOT_PAGE);
2536 if (!entry)
2537 return MINUS_ONE;
2539 index = entry->gotidx;
2541 if (offsetp)
2542 *offsetp = value - entry->d.address;
2544 return index;
2547 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2548 which was calculated from a symbol belonging to INPUT_SECTION.
2549 EXTERNAL is true if the relocation was against a global symbol
2550 that has been forced local. */
2552 static bfd_vma
2553 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2554 asection *input_section, bfd_vma value,
2555 bfd_boolean external)
2557 asection *sgot;
2558 struct mips_got_info *g;
2559 struct mips_got_entry *entry;
2561 /* GOT16 relocations against local symbols are followed by a LO16
2562 relocation; those against global symbols are not. Thus if the
2563 symbol was originally local, the GOT16 relocation should load the
2564 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2565 if (! external)
2566 value = mips_elf_high (value) << 16;
2568 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2570 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2571 input_section, value, 0,
2572 NULL, R_MIPS_GOT16);
2573 if (entry)
2574 return entry->gotidx;
2575 else
2576 return MINUS_ONE;
2579 /* Returns the offset for the entry at the INDEXth position
2580 in the GOT. */
2582 static bfd_vma
2583 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2584 bfd *input_bfd, bfd_vma index)
2586 asection *sgot;
2587 bfd_vma gp;
2588 struct mips_got_info *g;
2590 g = mips_elf_got_info (dynobj, &sgot);
2591 gp = _bfd_get_gp_value (output_bfd)
2592 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2594 return sgot->output_section->vma + sgot->output_offset + index - gp;
2597 /* Create and return a local GOT entry for VALUE, which was calculated
2598 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2599 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2600 instead. */
2602 static struct mips_got_entry *
2603 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2604 bfd *ibfd, struct mips_got_info *gg,
2605 asection *sgot, asection *input_section,
2606 bfd_vma value, unsigned long r_symndx,
2607 struct mips_elf_link_hash_entry *h,
2608 int r_type)
2610 struct mips_got_entry entry, **loc;
2611 struct mips_got_info *g;
2612 struct mips_elf_link_hash_table *htab;
2614 htab = mips_elf_hash_table (info);
2616 entry.abfd = NULL;
2617 entry.symndx = -1;
2618 entry.d.address = value;
2619 entry.tls_type = 0;
2621 g = mips_elf_got_for_ibfd (gg, ibfd);
2622 if (g == NULL)
2624 g = mips_elf_got_for_ibfd (gg, abfd);
2625 BFD_ASSERT (g != NULL);
2628 /* We might have a symbol, H, if it has been forced local. Use the
2629 global entry then. It doesn't matter whether an entry is local
2630 or global for TLS, since the dynamic linker does not
2631 automatically relocate TLS GOT entries. */
2632 BFD_ASSERT (h == NULL || h->root.forced_local);
2633 if (TLS_RELOC_P (r_type))
2635 struct mips_got_entry *p;
2637 entry.abfd = ibfd;
2638 if (r_type == R_MIPS_TLS_LDM)
2640 entry.tls_type = GOT_TLS_LDM;
2641 entry.symndx = 0;
2642 entry.d.addend = 0;
2644 else if (h == NULL)
2646 entry.symndx = r_symndx;
2647 entry.d.addend = 0;
2649 else
2650 entry.d.h = h;
2652 p = (struct mips_got_entry *)
2653 htab_find (g->got_entries, &entry);
2655 BFD_ASSERT (p);
2656 return p;
2659 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2660 INSERT);
2661 if (*loc)
2662 return *loc;
2664 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2665 entry.tls_type = 0;
2667 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2669 if (! *loc)
2670 return NULL;
2672 memcpy (*loc, &entry, sizeof entry);
2674 if (g->assigned_gotno >= g->local_gotno)
2676 (*loc)->gotidx = -1;
2677 /* We didn't allocate enough space in the GOT. */
2678 (*_bfd_error_handler)
2679 (_("not enough GOT space for local GOT entries"));
2680 bfd_set_error (bfd_error_bad_value);
2681 return NULL;
2684 MIPS_ELF_PUT_WORD (abfd, value,
2685 (sgot->contents + entry.gotidx));
2687 /* These GOT entries need a dynamic relocation on VxWorks. Because
2688 the offset between segments is not fixed, the relocation must be
2689 against a symbol in the same segment as the original symbol.
2690 The easiest way to do this is to take INPUT_SECTION's output
2691 section and emit a relocation against its section symbol. */
2692 if (htab->is_vxworks)
2694 Elf_Internal_Rela outrel;
2695 asection *s, *output_section;
2696 bfd_byte *loc;
2697 bfd_vma got_address;
2698 int dynindx;
2700 s = mips_elf_rel_dyn_section (info, FALSE);
2701 output_section = input_section->output_section;
2702 dynindx = elf_section_data (output_section)->dynindx;
2703 got_address = (sgot->output_section->vma
2704 + sgot->output_offset
2705 + entry.gotidx);
2707 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2708 outrel.r_offset = got_address;
2709 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2710 outrel.r_addend = value - output_section->vma;
2711 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2714 return *loc;
2717 /* Sort the dynamic symbol table so that symbols that need GOT entries
2718 appear towards the end. This reduces the amount of GOT space
2719 required. MAX_LOCAL is used to set the number of local symbols
2720 known to be in the dynamic symbol table. During
2721 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2722 section symbols are added and the count is higher. */
2724 static bfd_boolean
2725 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2727 struct mips_elf_hash_sort_data hsd;
2728 struct mips_got_info *g;
2729 bfd *dynobj;
2731 dynobj = elf_hash_table (info)->dynobj;
2733 g = mips_elf_got_info (dynobj, NULL);
2735 hsd.low = NULL;
2736 hsd.max_unref_got_dynindx =
2737 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2738 /* In the multi-got case, assigned_gotno of the master got_info
2739 indicate the number of entries that aren't referenced in the
2740 primary GOT, but that must have entries because there are
2741 dynamic relocations that reference it. Since they aren't
2742 referenced, we move them to the end of the GOT, so that they
2743 don't prevent other entries that are referenced from getting
2744 too large offsets. */
2745 - (g->next ? g->assigned_gotno : 0);
2746 hsd.max_non_got_dynindx = max_local;
2747 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2748 elf_hash_table (info)),
2749 mips_elf_sort_hash_table_f,
2750 &hsd);
2752 /* There should have been enough room in the symbol table to
2753 accommodate both the GOT and non-GOT symbols. */
2754 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2755 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2756 <= elf_hash_table (info)->dynsymcount);
2758 /* Now we know which dynamic symbol has the lowest dynamic symbol
2759 table index in the GOT. */
2760 g->global_gotsym = hsd.low;
2762 return TRUE;
2765 /* If H needs a GOT entry, assign it the highest available dynamic
2766 index. Otherwise, assign it the lowest available dynamic
2767 index. */
2769 static bfd_boolean
2770 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2772 struct mips_elf_hash_sort_data *hsd = data;
2774 if (h->root.root.type == bfd_link_hash_warning)
2775 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2777 /* Symbols without dynamic symbol table entries aren't interesting
2778 at all. */
2779 if (h->root.dynindx == -1)
2780 return TRUE;
2782 /* Global symbols that need GOT entries that are not explicitly
2783 referenced are marked with got offset 2. Those that are
2784 referenced get a 1, and those that don't need GOT entries get
2785 -1. */
2786 if (h->root.got.offset == 2)
2788 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2790 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2791 hsd->low = (struct elf_link_hash_entry *) h;
2792 h->root.dynindx = hsd->max_unref_got_dynindx++;
2794 else if (h->root.got.offset != 1)
2795 h->root.dynindx = hsd->max_non_got_dynindx++;
2796 else
2798 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2800 h->root.dynindx = --hsd->min_got_dynindx;
2801 hsd->low = (struct elf_link_hash_entry *) h;
2804 return TRUE;
2807 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2808 symbol table index lower than any we've seen to date, record it for
2809 posterity. */
2811 static bfd_boolean
2812 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2813 bfd *abfd, struct bfd_link_info *info,
2814 struct mips_got_info *g,
2815 unsigned char tls_flag)
2817 struct mips_got_entry entry, **loc;
2819 /* A global symbol in the GOT must also be in the dynamic symbol
2820 table. */
2821 if (h->dynindx == -1)
2823 switch (ELF_ST_VISIBILITY (h->other))
2825 case STV_INTERNAL:
2826 case STV_HIDDEN:
2827 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2828 break;
2830 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2831 return FALSE;
2834 /* Make sure we have a GOT to put this entry into. */
2835 BFD_ASSERT (g != NULL);
2837 entry.abfd = abfd;
2838 entry.symndx = -1;
2839 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2840 entry.tls_type = 0;
2842 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2843 INSERT);
2845 /* If we've already marked this entry as needing GOT space, we don't
2846 need to do it again. */
2847 if (*loc)
2849 (*loc)->tls_type |= tls_flag;
2850 return TRUE;
2853 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2855 if (! *loc)
2856 return FALSE;
2858 entry.gotidx = -1;
2859 entry.tls_type = tls_flag;
2861 memcpy (*loc, &entry, sizeof entry);
2863 if (h->got.offset != MINUS_ONE)
2864 return TRUE;
2866 /* By setting this to a value other than -1, we are indicating that
2867 there needs to be a GOT entry for H. Avoid using zero, as the
2868 generic ELF copy_indirect_symbol tests for <= 0. */
2869 if (tls_flag == 0)
2870 h->got.offset = 1;
2872 return TRUE;
2875 /* Reserve space in G for a GOT entry containing the value of symbol
2876 SYMNDX in input bfd ABDF, plus ADDEND. */
2878 static bfd_boolean
2879 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2880 struct mips_got_info *g,
2881 unsigned char tls_flag)
2883 struct mips_got_entry entry, **loc;
2885 entry.abfd = abfd;
2886 entry.symndx = symndx;
2887 entry.d.addend = addend;
2888 entry.tls_type = tls_flag;
2889 loc = (struct mips_got_entry **)
2890 htab_find_slot (g->got_entries, &entry, INSERT);
2892 if (*loc)
2894 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2896 g->tls_gotno += 2;
2897 (*loc)->tls_type |= tls_flag;
2899 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2901 g->tls_gotno += 1;
2902 (*loc)->tls_type |= tls_flag;
2904 return TRUE;
2907 if (tls_flag != 0)
2909 entry.gotidx = -1;
2910 entry.tls_type = tls_flag;
2911 if (tls_flag == GOT_TLS_IE)
2912 g->tls_gotno += 1;
2913 else if (tls_flag == GOT_TLS_GD)
2914 g->tls_gotno += 2;
2915 else if (g->tls_ldm_offset == MINUS_ONE)
2917 g->tls_ldm_offset = MINUS_TWO;
2918 g->tls_gotno += 2;
2921 else
2923 entry.gotidx = g->local_gotno++;
2924 entry.tls_type = 0;
2927 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2929 if (! *loc)
2930 return FALSE;
2932 memcpy (*loc, &entry, sizeof entry);
2934 return TRUE;
2937 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2939 static hashval_t
2940 mips_elf_bfd2got_entry_hash (const void *entry_)
2942 const struct mips_elf_bfd2got_hash *entry
2943 = (struct mips_elf_bfd2got_hash *)entry_;
2945 return entry->bfd->id;
2948 /* Check whether two hash entries have the same bfd. */
2950 static int
2951 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2953 const struct mips_elf_bfd2got_hash *e1
2954 = (const struct mips_elf_bfd2got_hash *)entry1;
2955 const struct mips_elf_bfd2got_hash *e2
2956 = (const struct mips_elf_bfd2got_hash *)entry2;
2958 return e1->bfd == e2->bfd;
2961 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2962 be the master GOT data. */
2964 static struct mips_got_info *
2965 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2967 struct mips_elf_bfd2got_hash e, *p;
2969 if (! g->bfd2got)
2970 return g;
2972 e.bfd = ibfd;
2973 p = htab_find (g->bfd2got, &e);
2974 return p ? p->g : NULL;
2977 /* Create one separate got for each bfd that has entries in the global
2978 got, such that we can tell how many local and global entries each
2979 bfd requires. */
2981 static int
2982 mips_elf_make_got_per_bfd (void **entryp, void *p)
2984 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2985 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2986 htab_t bfd2got = arg->bfd2got;
2987 struct mips_got_info *g;
2988 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2989 void **bfdgotp;
2991 /* Find the got_info for this GOT entry's input bfd. Create one if
2992 none exists. */
2993 bfdgot_entry.bfd = entry->abfd;
2994 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2995 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2997 if (bfdgot != NULL)
2998 g = bfdgot->g;
2999 else
3001 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3002 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3004 if (bfdgot == NULL)
3006 arg->obfd = 0;
3007 return 0;
3010 *bfdgotp = bfdgot;
3012 bfdgot->bfd = entry->abfd;
3013 bfdgot->g = g = (struct mips_got_info *)
3014 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3015 if (g == NULL)
3017 arg->obfd = 0;
3018 return 0;
3021 g->global_gotsym = NULL;
3022 g->global_gotno = 0;
3023 g->local_gotno = 0;
3024 g->assigned_gotno = -1;
3025 g->tls_gotno = 0;
3026 g->tls_assigned_gotno = 0;
3027 g->tls_ldm_offset = MINUS_ONE;
3028 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3029 mips_elf_multi_got_entry_eq, NULL);
3030 if (g->got_entries == NULL)
3032 arg->obfd = 0;
3033 return 0;
3036 g->bfd2got = NULL;
3037 g->next = NULL;
3040 /* Insert the GOT entry in the bfd's got entry hash table. */
3041 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3042 if (*entryp != NULL)
3043 return 1;
3045 *entryp = entry;
3047 if (entry->tls_type)
3049 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3050 g->tls_gotno += 2;
3051 if (entry->tls_type & GOT_TLS_IE)
3052 g->tls_gotno += 1;
3054 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3055 ++g->local_gotno;
3056 else
3057 ++g->global_gotno;
3059 return 1;
3062 /* Attempt to merge gots of different input bfds. Try to use as much
3063 as possible of the primary got, since it doesn't require explicit
3064 dynamic relocations, but don't use bfds that would reference global
3065 symbols out of the addressable range. Failing the primary got,
3066 attempt to merge with the current got, or finish the current got
3067 and then make make the new got current. */
3069 static int
3070 mips_elf_merge_gots (void **bfd2got_, void *p)
3072 struct mips_elf_bfd2got_hash *bfd2got
3073 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3074 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3075 unsigned int lcount = bfd2got->g->local_gotno;
3076 unsigned int gcount = bfd2got->g->global_gotno;
3077 unsigned int tcount = bfd2got->g->tls_gotno;
3078 unsigned int maxcnt = arg->max_count;
3079 bfd_boolean too_many_for_tls = FALSE;
3081 /* We place TLS GOT entries after both locals and globals. The globals
3082 for the primary GOT may overflow the normal GOT size limit, so be
3083 sure not to merge a GOT which requires TLS with the primary GOT in that
3084 case. This doesn't affect non-primary GOTs. */
3085 if (tcount > 0)
3087 unsigned int primary_total = lcount + tcount + arg->global_count;
3088 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3089 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3090 too_many_for_tls = TRUE;
3093 /* If we don't have a primary GOT and this is not too big, use it as
3094 a starting point for the primary GOT. */
3095 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3096 && ! too_many_for_tls)
3098 arg->primary = bfd2got->g;
3099 arg->primary_count = lcount + gcount;
3101 /* If it looks like we can merge this bfd's entries with those of
3102 the primary, merge them. The heuristics is conservative, but we
3103 don't have to squeeze it too hard. */
3104 else if (arg->primary && ! too_many_for_tls
3105 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3107 struct mips_got_info *g = bfd2got->g;
3108 int old_lcount = arg->primary->local_gotno;
3109 int old_gcount = arg->primary->global_gotno;
3110 int old_tcount = arg->primary->tls_gotno;
3112 bfd2got->g = arg->primary;
3114 htab_traverse (g->got_entries,
3115 mips_elf_make_got_per_bfd,
3116 arg);
3117 if (arg->obfd == NULL)
3118 return 0;
3120 htab_delete (g->got_entries);
3121 /* We don't have to worry about releasing memory of the actual
3122 got entries, since they're all in the master got_entries hash
3123 table anyway. */
3125 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3126 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3127 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3129 arg->primary_count = arg->primary->local_gotno
3130 + arg->primary->global_gotno + arg->primary->tls_gotno;
3132 /* If we can merge with the last-created got, do it. */
3133 else if (arg->current
3134 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3136 struct mips_got_info *g = bfd2got->g;
3137 int old_lcount = arg->current->local_gotno;
3138 int old_gcount = arg->current->global_gotno;
3139 int old_tcount = arg->current->tls_gotno;
3141 bfd2got->g = arg->current;
3143 htab_traverse (g->got_entries,
3144 mips_elf_make_got_per_bfd,
3145 arg);
3146 if (arg->obfd == NULL)
3147 return 0;
3149 htab_delete (g->got_entries);
3151 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3152 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3153 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3155 arg->current_count = arg->current->local_gotno
3156 + arg->current->global_gotno + arg->current->tls_gotno;
3158 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3159 fits; if it turns out that it doesn't, we'll get relocation
3160 overflows anyway. */
3161 else
3163 bfd2got->g->next = arg->current;
3164 arg->current = bfd2got->g;
3166 arg->current_count = lcount + gcount + 2 * tcount;
3169 return 1;
3172 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3173 is null iff there is just a single GOT. */
3175 static int
3176 mips_elf_initialize_tls_index (void **entryp, void *p)
3178 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3179 struct mips_got_info *g = p;
3180 bfd_vma next_index;
3182 /* We're only interested in TLS symbols. */
3183 if (entry->tls_type == 0)
3184 return 1;
3186 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3188 if (entry->symndx == -1 && g->next == NULL)
3190 /* A type (3) got entry in the single-GOT case. We use the symbol's
3191 hash table entry to track its index. */
3192 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3193 return 1;
3194 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3195 entry->d.h->tls_got_offset = next_index;
3197 else
3199 if (entry->tls_type & GOT_TLS_LDM)
3201 /* There are separate mips_got_entry objects for each input bfd
3202 that requires an LDM entry. Make sure that all LDM entries in
3203 a GOT resolve to the same index. */
3204 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3206 entry->gotidx = g->tls_ldm_offset;
3207 return 1;
3209 g->tls_ldm_offset = next_index;
3211 entry->gotidx = next_index;
3214 /* Account for the entries we've just allocated. */
3215 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3216 g->tls_assigned_gotno += 2;
3217 if (entry->tls_type & GOT_TLS_IE)
3218 g->tls_assigned_gotno += 1;
3220 return 1;
3223 /* If passed a NULL mips_got_info in the argument, set the marker used
3224 to tell whether a global symbol needs a got entry (in the primary
3225 got) to the given VALUE.
3227 If passed a pointer G to a mips_got_info in the argument (it must
3228 not be the primary GOT), compute the offset from the beginning of
3229 the (primary) GOT section to the entry in G corresponding to the
3230 global symbol. G's assigned_gotno must contain the index of the
3231 first available global GOT entry in G. VALUE must contain the size
3232 of a GOT entry in bytes. For each global GOT entry that requires a
3233 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3234 marked as not eligible for lazy resolution through a function
3235 stub. */
3236 static int
3237 mips_elf_set_global_got_offset (void **entryp, void *p)
3239 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3240 struct mips_elf_set_global_got_offset_arg *arg
3241 = (struct mips_elf_set_global_got_offset_arg *)p;
3242 struct mips_got_info *g = arg->g;
3244 if (g && entry->tls_type != GOT_NORMAL)
3245 arg->needed_relocs +=
3246 mips_tls_got_relocs (arg->info, entry->tls_type,
3247 entry->symndx == -1 ? &entry->d.h->root : NULL);
3249 if (entry->abfd != NULL && entry->symndx == -1
3250 && entry->d.h->root.dynindx != -1
3251 && entry->d.h->tls_type == GOT_NORMAL)
3253 if (g)
3255 BFD_ASSERT (g->global_gotsym == NULL);
3257 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3258 if (arg->info->shared
3259 || (elf_hash_table (arg->info)->dynamic_sections_created
3260 && entry->d.h->root.def_dynamic
3261 && !entry->d.h->root.def_regular))
3262 ++arg->needed_relocs;
3264 else
3265 entry->d.h->root.got.offset = arg->value;
3268 return 1;
3271 /* Mark any global symbols referenced in the GOT we are iterating over
3272 as inelligible for lazy resolution stubs. */
3273 static int
3274 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3276 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3278 if (entry->abfd != NULL
3279 && entry->symndx == -1
3280 && entry->d.h->root.dynindx != -1)
3281 entry->d.h->no_fn_stub = TRUE;
3283 return 1;
3286 /* Follow indirect and warning hash entries so that each got entry
3287 points to the final symbol definition. P must point to a pointer
3288 to the hash table we're traversing. Since this traversal may
3289 modify the hash table, we set this pointer to NULL to indicate
3290 we've made a potentially-destructive change to the hash table, so
3291 the traversal must be restarted. */
3292 static int
3293 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3295 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3296 htab_t got_entries = *(htab_t *)p;
3298 if (entry->abfd != NULL && entry->symndx == -1)
3300 struct mips_elf_link_hash_entry *h = entry->d.h;
3302 while (h->root.root.type == bfd_link_hash_indirect
3303 || h->root.root.type == bfd_link_hash_warning)
3304 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3306 if (entry->d.h == h)
3307 return 1;
3309 entry->d.h = h;
3311 /* If we can't find this entry with the new bfd hash, re-insert
3312 it, and get the traversal restarted. */
3313 if (! htab_find (got_entries, entry))
3315 htab_clear_slot (got_entries, entryp);
3316 entryp = htab_find_slot (got_entries, entry, INSERT);
3317 if (! *entryp)
3318 *entryp = entry;
3319 /* Abort the traversal, since the whole table may have
3320 moved, and leave it up to the parent to restart the
3321 process. */
3322 *(htab_t *)p = NULL;
3323 return 0;
3325 /* We might want to decrement the global_gotno count, but it's
3326 either too early or too late for that at this point. */
3329 return 1;
3332 /* Turn indirect got entries in a got_entries table into their final
3333 locations. */
3334 static void
3335 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3337 htab_t got_entries;
3341 got_entries = g->got_entries;
3343 htab_traverse (got_entries,
3344 mips_elf_resolve_final_got_entry,
3345 &got_entries);
3347 while (got_entries == NULL);
3350 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3351 the primary GOT. */
3352 static bfd_vma
3353 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3355 if (g->bfd2got == NULL)
3356 return 0;
3358 g = mips_elf_got_for_ibfd (g, ibfd);
3359 if (! g)
3360 return 0;
3362 BFD_ASSERT (g->next);
3364 g = g->next;
3366 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3367 * MIPS_ELF_GOT_SIZE (abfd);
3370 /* Turn a single GOT that is too big for 16-bit addressing into
3371 a sequence of GOTs, each one 16-bit addressable. */
3373 static bfd_boolean
3374 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3375 struct mips_got_info *g, asection *got,
3376 bfd_size_type pages)
3378 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3379 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3380 struct mips_got_info *gg;
3381 unsigned int assign;
3383 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3384 mips_elf_bfd2got_entry_eq, NULL);
3385 if (g->bfd2got == NULL)
3386 return FALSE;
3388 got_per_bfd_arg.bfd2got = g->bfd2got;
3389 got_per_bfd_arg.obfd = abfd;
3390 got_per_bfd_arg.info = info;
3392 /* Count how many GOT entries each input bfd requires, creating a
3393 map from bfd to got info while at that. */
3394 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3395 if (got_per_bfd_arg.obfd == NULL)
3396 return FALSE;
3398 got_per_bfd_arg.current = NULL;
3399 got_per_bfd_arg.primary = NULL;
3400 /* Taking out PAGES entries is a worst-case estimate. We could
3401 compute the maximum number of pages that each separate input bfd
3402 uses, but it's probably not worth it. */
3403 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3404 / MIPS_ELF_GOT_SIZE (abfd))
3405 - MIPS_RESERVED_GOTNO (info) - pages);
3406 /* The number of globals that will be included in the primary GOT.
3407 See the calls to mips_elf_set_global_got_offset below for more
3408 information. */
3409 got_per_bfd_arg.global_count = g->global_gotno;
3411 /* Try to merge the GOTs of input bfds together, as long as they
3412 don't seem to exceed the maximum GOT size, choosing one of them
3413 to be the primary GOT. */
3414 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3415 if (got_per_bfd_arg.obfd == NULL)
3416 return FALSE;
3418 /* If we do not find any suitable primary GOT, create an empty one. */
3419 if (got_per_bfd_arg.primary == NULL)
3421 g->next = (struct mips_got_info *)
3422 bfd_alloc (abfd, sizeof (struct mips_got_info));
3423 if (g->next == NULL)
3424 return FALSE;
3426 g->next->global_gotsym = NULL;
3427 g->next->global_gotno = 0;
3428 g->next->local_gotno = 0;
3429 g->next->tls_gotno = 0;
3430 g->next->assigned_gotno = 0;
3431 g->next->tls_assigned_gotno = 0;
3432 g->next->tls_ldm_offset = MINUS_ONE;
3433 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3434 mips_elf_multi_got_entry_eq,
3435 NULL);
3436 if (g->next->got_entries == NULL)
3437 return FALSE;
3438 g->next->bfd2got = NULL;
3440 else
3441 g->next = got_per_bfd_arg.primary;
3442 g->next->next = got_per_bfd_arg.current;
3444 /* GG is now the master GOT, and G is the primary GOT. */
3445 gg = g;
3446 g = g->next;
3448 /* Map the output bfd to the primary got. That's what we're going
3449 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3450 didn't mark in check_relocs, and we want a quick way to find it.
3451 We can't just use gg->next because we're going to reverse the
3452 list. */
3454 struct mips_elf_bfd2got_hash *bfdgot;
3455 void **bfdgotp;
3457 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3458 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3460 if (bfdgot == NULL)
3461 return FALSE;
3463 bfdgot->bfd = abfd;
3464 bfdgot->g = g;
3465 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3467 BFD_ASSERT (*bfdgotp == NULL);
3468 *bfdgotp = bfdgot;
3471 /* The IRIX dynamic linker requires every symbol that is referenced
3472 in a dynamic relocation to be present in the primary GOT, so
3473 arrange for them to appear after those that are actually
3474 referenced.
3476 GNU/Linux could very well do without it, but it would slow down
3477 the dynamic linker, since it would have to resolve every dynamic
3478 symbol referenced in other GOTs more than once, without help from
3479 the cache. Also, knowing that every external symbol has a GOT
3480 helps speed up the resolution of local symbols too, so GNU/Linux
3481 follows IRIX's practice.
3483 The number 2 is used by mips_elf_sort_hash_table_f to count
3484 global GOT symbols that are unreferenced in the primary GOT, with
3485 an initial dynamic index computed from gg->assigned_gotno, where
3486 the number of unreferenced global entries in the primary GOT is
3487 preserved. */
3488 if (1)
3490 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3491 g->global_gotno = gg->global_gotno;
3492 set_got_offset_arg.value = 2;
3494 else
3496 /* This could be used for dynamic linkers that don't optimize
3497 symbol resolution while applying relocations so as to use
3498 primary GOT entries or assuming the symbol is locally-defined.
3499 With this code, we assign lower dynamic indices to global
3500 symbols that are not referenced in the primary GOT, so that
3501 their entries can be omitted. */
3502 gg->assigned_gotno = 0;
3503 set_got_offset_arg.value = -1;
3506 /* Reorder dynamic symbols as described above (which behavior
3507 depends on the setting of VALUE). */
3508 set_got_offset_arg.g = NULL;
3509 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3510 &set_got_offset_arg);
3511 set_got_offset_arg.value = 1;
3512 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 if (! mips_elf_sort_hash_table (info, 1))
3515 return FALSE;
3517 /* Now go through the GOTs assigning them offset ranges.
3518 [assigned_gotno, local_gotno[ will be set to the range of local
3519 entries in each GOT. We can then compute the end of a GOT by
3520 adding local_gotno to global_gotno. We reverse the list and make
3521 it circular since then we'll be able to quickly compute the
3522 beginning of a GOT, by computing the end of its predecessor. To
3523 avoid special cases for the primary GOT, while still preserving
3524 assertions that are valid for both single- and multi-got links,
3525 we arrange for the main got struct to have the right number of
3526 global entries, but set its local_gotno such that the initial
3527 offset of the primary GOT is zero. Remember that the primary GOT
3528 will become the last item in the circular linked list, so it
3529 points back to the master GOT. */
3530 gg->local_gotno = -g->global_gotno;
3531 gg->global_gotno = g->global_gotno;
3532 gg->tls_gotno = 0;
3533 assign = 0;
3534 gg->next = gg;
3538 struct mips_got_info *gn;
3540 assign += MIPS_RESERVED_GOTNO (info);
3541 g->assigned_gotno = assign;
3542 g->local_gotno += assign + pages;
3543 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3545 /* Take g out of the direct list, and push it onto the reversed
3546 list that gg points to. g->next is guaranteed to be nonnull after
3547 this operation, as required by mips_elf_initialize_tls_index. */
3548 gn = g->next;
3549 g->next = gg->next;
3550 gg->next = g;
3552 /* Set up any TLS entries. We always place the TLS entries after
3553 all non-TLS entries. */
3554 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3555 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3557 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3558 g = gn;
3560 /* Mark global symbols in every non-primary GOT as ineligible for
3561 stubs. */
3562 if (g)
3563 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3565 while (g);
3567 got->size = (gg->next->local_gotno
3568 + gg->next->global_gotno
3569 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3571 return TRUE;
3575 /* Returns the first relocation of type r_type found, beginning with
3576 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3578 static const Elf_Internal_Rela *
3579 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3580 const Elf_Internal_Rela *relocation,
3581 const Elf_Internal_Rela *relend)
3583 while (relocation < relend)
3585 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3586 return relocation;
3588 ++relocation;
3591 /* We didn't find it. */
3592 bfd_set_error (bfd_error_bad_value);
3593 return NULL;
3596 /* Return whether a relocation is against a local symbol. */
3598 static bfd_boolean
3599 mips_elf_local_relocation_p (bfd *input_bfd,
3600 const Elf_Internal_Rela *relocation,
3601 asection **local_sections,
3602 bfd_boolean check_forced)
3604 unsigned long r_symndx;
3605 Elf_Internal_Shdr *symtab_hdr;
3606 struct mips_elf_link_hash_entry *h;
3607 size_t extsymoff;
3609 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3610 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3611 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3613 if (r_symndx < extsymoff)
3614 return TRUE;
3615 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3616 return TRUE;
3618 if (check_forced)
3620 /* Look up the hash table to check whether the symbol
3621 was forced local. */
3622 h = (struct mips_elf_link_hash_entry *)
3623 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3624 /* Find the real hash-table entry for this symbol. */
3625 while (h->root.root.type == bfd_link_hash_indirect
3626 || h->root.root.type == bfd_link_hash_warning)
3627 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3628 if (h->root.forced_local)
3629 return TRUE;
3632 return FALSE;
3635 /* Sign-extend VALUE, which has the indicated number of BITS. */
3637 bfd_vma
3638 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3640 if (value & ((bfd_vma) 1 << (bits - 1)))
3641 /* VALUE is negative. */
3642 value |= ((bfd_vma) - 1) << bits;
3644 return value;
3647 /* Return non-zero if the indicated VALUE has overflowed the maximum
3648 range expressible by a signed number with the indicated number of
3649 BITS. */
3651 static bfd_boolean
3652 mips_elf_overflow_p (bfd_vma value, int bits)
3654 bfd_signed_vma svalue = (bfd_signed_vma) value;
3656 if (svalue > (1 << (bits - 1)) - 1)
3657 /* The value is too big. */
3658 return TRUE;
3659 else if (svalue < -(1 << (bits - 1)))
3660 /* The value is too small. */
3661 return TRUE;
3663 /* All is well. */
3664 return FALSE;
3667 /* Calculate the %high function. */
3669 static bfd_vma
3670 mips_elf_high (bfd_vma value)
3672 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3675 /* Calculate the %higher function. */
3677 static bfd_vma
3678 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3680 #ifdef BFD64
3681 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3682 #else
3683 abort ();
3684 return MINUS_ONE;
3685 #endif
3688 /* Calculate the %highest function. */
3690 static bfd_vma
3691 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3693 #ifdef BFD64
3694 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3695 #else
3696 abort ();
3697 return MINUS_ONE;
3698 #endif
3701 /* Create the .compact_rel section. */
3703 static bfd_boolean
3704 mips_elf_create_compact_rel_section
3705 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3707 flagword flags;
3708 register asection *s;
3710 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3712 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3713 | SEC_READONLY);
3715 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3716 if (s == NULL
3717 || ! bfd_set_section_alignment (abfd, s,
3718 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3719 return FALSE;
3721 s->size = sizeof (Elf32_External_compact_rel);
3724 return TRUE;
3727 /* Create the .got section to hold the global offset table. */
3729 static bfd_boolean
3730 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3731 bfd_boolean maybe_exclude)
3733 flagword flags;
3734 register asection *s;
3735 struct elf_link_hash_entry *h;
3736 struct bfd_link_hash_entry *bh;
3737 struct mips_got_info *g;
3738 bfd_size_type amt;
3739 struct mips_elf_link_hash_table *htab;
3741 htab = mips_elf_hash_table (info);
3743 /* This function may be called more than once. */
3744 s = mips_elf_got_section (abfd, TRUE);
3745 if (s)
3747 if (! maybe_exclude)
3748 s->flags &= ~SEC_EXCLUDE;
3749 return TRUE;
3752 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3753 | SEC_LINKER_CREATED);
3755 if (maybe_exclude)
3756 flags |= SEC_EXCLUDE;
3758 /* We have to use an alignment of 2**4 here because this is hardcoded
3759 in the function stub generation and in the linker script. */
3760 s = bfd_make_section_with_flags (abfd, ".got", flags);
3761 if (s == NULL
3762 || ! bfd_set_section_alignment (abfd, s, 4))
3763 return FALSE;
3765 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3766 linker script because we don't want to define the symbol if we
3767 are not creating a global offset table. */
3768 bh = NULL;
3769 if (! (_bfd_generic_link_add_one_symbol
3770 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3771 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3772 return FALSE;
3774 h = (struct elf_link_hash_entry *) bh;
3775 h->non_elf = 0;
3776 h->def_regular = 1;
3777 h->type = STT_OBJECT;
3778 elf_hash_table (info)->hgot = h;
3780 if (info->shared
3781 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3782 return FALSE;
3784 amt = sizeof (struct mips_got_info);
3785 g = bfd_alloc (abfd, amt);
3786 if (g == NULL)
3787 return FALSE;
3788 g->global_gotsym = NULL;
3789 g->global_gotno = 0;
3790 g->tls_gotno = 0;
3791 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3792 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3793 g->bfd2got = NULL;
3794 g->next = NULL;
3795 g->tls_ldm_offset = MINUS_ONE;
3796 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3797 mips_elf_got_entry_eq, NULL);
3798 if (g->got_entries == NULL)
3799 return FALSE;
3800 mips_elf_section_data (s)->u.got_info = g;
3801 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3802 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3804 /* VxWorks also needs a .got.plt section. */
3805 if (htab->is_vxworks)
3807 s = bfd_make_section_with_flags (abfd, ".got.plt",
3808 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3809 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3810 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3811 return FALSE;
3813 htab->sgotplt = s;
3815 return TRUE;
3818 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3819 __GOTT_INDEX__ symbols. These symbols are only special for
3820 shared objects; they are not used in executables. */
3822 static bfd_boolean
3823 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3825 return (mips_elf_hash_table (info)->is_vxworks
3826 && info->shared
3827 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3828 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3831 /* Calculate the value produced by the RELOCATION (which comes from
3832 the INPUT_BFD). The ADDEND is the addend to use for this
3833 RELOCATION; RELOCATION->R_ADDEND is ignored.
3835 The result of the relocation calculation is stored in VALUEP.
3836 REQUIRE_JALXP indicates whether or not the opcode used with this
3837 relocation must be JALX.
3839 This function returns bfd_reloc_continue if the caller need take no
3840 further action regarding this relocation, bfd_reloc_notsupported if
3841 something goes dramatically wrong, bfd_reloc_overflow if an
3842 overflow occurs, and bfd_reloc_ok to indicate success. */
3844 static bfd_reloc_status_type
3845 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3846 asection *input_section,
3847 struct bfd_link_info *info,
3848 const Elf_Internal_Rela *relocation,
3849 bfd_vma addend, reloc_howto_type *howto,
3850 Elf_Internal_Sym *local_syms,
3851 asection **local_sections, bfd_vma *valuep,
3852 const char **namep, bfd_boolean *require_jalxp,
3853 bfd_boolean save_addend)
3855 /* The eventual value we will return. */
3856 bfd_vma value;
3857 /* The address of the symbol against which the relocation is
3858 occurring. */
3859 bfd_vma symbol = 0;
3860 /* The final GP value to be used for the relocatable, executable, or
3861 shared object file being produced. */
3862 bfd_vma gp = MINUS_ONE;
3863 /* The place (section offset or address) of the storage unit being
3864 relocated. */
3865 bfd_vma p;
3866 /* The value of GP used to create the relocatable object. */
3867 bfd_vma gp0 = MINUS_ONE;
3868 /* The offset into the global offset table at which the address of
3869 the relocation entry symbol, adjusted by the addend, resides
3870 during execution. */
3871 bfd_vma g = MINUS_ONE;
3872 /* The section in which the symbol referenced by the relocation is
3873 located. */
3874 asection *sec = NULL;
3875 struct mips_elf_link_hash_entry *h = NULL;
3876 /* TRUE if the symbol referred to by this relocation is a local
3877 symbol. */
3878 bfd_boolean local_p, was_local_p;
3879 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3880 bfd_boolean gp_disp_p = FALSE;
3881 /* TRUE if the symbol referred to by this relocation is
3882 "__gnu_local_gp". */
3883 bfd_boolean gnu_local_gp_p = FALSE;
3884 Elf_Internal_Shdr *symtab_hdr;
3885 size_t extsymoff;
3886 unsigned long r_symndx;
3887 int r_type;
3888 /* TRUE if overflow occurred during the calculation of the
3889 relocation value. */
3890 bfd_boolean overflowed_p;
3891 /* TRUE if this relocation refers to a MIPS16 function. */
3892 bfd_boolean target_is_16_bit_code_p = FALSE;
3893 struct mips_elf_link_hash_table *htab;
3894 bfd *dynobj;
3896 dynobj = elf_hash_table (info)->dynobj;
3897 htab = mips_elf_hash_table (info);
3899 /* Parse the relocation. */
3900 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3901 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3902 p = (input_section->output_section->vma
3903 + input_section->output_offset
3904 + relocation->r_offset);
3906 /* Assume that there will be no overflow. */
3907 overflowed_p = FALSE;
3909 /* Figure out whether or not the symbol is local, and get the offset
3910 used in the array of hash table entries. */
3911 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3912 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3913 local_sections, FALSE);
3914 was_local_p = local_p;
3915 if (! elf_bad_symtab (input_bfd))
3916 extsymoff = symtab_hdr->sh_info;
3917 else
3919 /* The symbol table does not follow the rule that local symbols
3920 must come before globals. */
3921 extsymoff = 0;
3924 /* Figure out the value of the symbol. */
3925 if (local_p)
3927 Elf_Internal_Sym *sym;
3929 sym = local_syms + r_symndx;
3930 sec = local_sections[r_symndx];
3932 symbol = sec->output_section->vma + sec->output_offset;
3933 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3934 || (sec->flags & SEC_MERGE))
3935 symbol += sym->st_value;
3936 if ((sec->flags & SEC_MERGE)
3937 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3939 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3940 addend -= symbol;
3941 addend += sec->output_section->vma + sec->output_offset;
3944 /* MIPS16 text labels should be treated as odd. */
3945 if (sym->st_other == STO_MIPS16)
3946 ++symbol;
3948 /* Record the name of this symbol, for our caller. */
3949 *namep = bfd_elf_string_from_elf_section (input_bfd,
3950 symtab_hdr->sh_link,
3951 sym->st_name);
3952 if (*namep == '\0')
3953 *namep = bfd_section_name (input_bfd, sec);
3955 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3957 else
3959 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3961 /* For global symbols we look up the symbol in the hash-table. */
3962 h = ((struct mips_elf_link_hash_entry *)
3963 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3964 /* Find the real hash-table entry for this symbol. */
3965 while (h->root.root.type == bfd_link_hash_indirect
3966 || h->root.root.type == bfd_link_hash_warning)
3967 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3969 /* Record the name of this symbol, for our caller. */
3970 *namep = h->root.root.root.string;
3972 /* See if this is the special _gp_disp symbol. Note that such a
3973 symbol must always be a global symbol. */
3974 if (strcmp (*namep, "_gp_disp") == 0
3975 && ! NEWABI_P (input_bfd))
3977 /* Relocations against _gp_disp are permitted only with
3978 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3979 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3980 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3981 return bfd_reloc_notsupported;
3983 gp_disp_p = TRUE;
3985 /* See if this is the special _gp symbol. Note that such a
3986 symbol must always be a global symbol. */
3987 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3988 gnu_local_gp_p = TRUE;
3991 /* If this symbol is defined, calculate its address. Note that
3992 _gp_disp is a magic symbol, always implicitly defined by the
3993 linker, so it's inappropriate to check to see whether or not
3994 its defined. */
3995 else if ((h->root.root.type == bfd_link_hash_defined
3996 || h->root.root.type == bfd_link_hash_defweak)
3997 && h->root.root.u.def.section)
3999 sec = h->root.root.u.def.section;
4000 if (sec->output_section)
4001 symbol = (h->root.root.u.def.value
4002 + sec->output_section->vma
4003 + sec->output_offset);
4004 else
4005 symbol = h->root.root.u.def.value;
4007 else if (h->root.root.type == bfd_link_hash_undefweak)
4008 /* We allow relocations against undefined weak symbols, giving
4009 it the value zero, so that you can undefined weak functions
4010 and check to see if they exist by looking at their
4011 addresses. */
4012 symbol = 0;
4013 else if (info->unresolved_syms_in_objects == RM_IGNORE
4014 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4015 symbol = 0;
4016 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4017 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4019 /* If this is a dynamic link, we should have created a
4020 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4021 in in _bfd_mips_elf_create_dynamic_sections.
4022 Otherwise, we should define the symbol with a value of 0.
4023 FIXME: It should probably get into the symbol table
4024 somehow as well. */
4025 BFD_ASSERT (! info->shared);
4026 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4027 symbol = 0;
4029 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4031 /* This is an optional symbol - an Irix specific extension to the
4032 ELF spec. Ignore it for now.
4033 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4034 than simply ignoring them, but we do not handle this for now.
4035 For information see the "64-bit ELF Object File Specification"
4036 which is available from here:
4037 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4038 symbol = 0;
4040 else
4042 if (! ((*info->callbacks->undefined_symbol)
4043 (info, h->root.root.root.string, input_bfd,
4044 input_section, relocation->r_offset,
4045 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4046 || ELF_ST_VISIBILITY (h->root.other))))
4047 return bfd_reloc_undefined;
4048 symbol = 0;
4051 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4054 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4055 need to redirect the call to the stub, unless we're already *in*
4056 a stub. */
4057 if (r_type != R_MIPS16_26 && !info->relocatable
4058 && ((h != NULL && h->fn_stub != NULL)
4059 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4060 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4061 && !mips_elf_stub_section_p (input_bfd, input_section))
4063 /* This is a 32- or 64-bit call to a 16-bit function. We should
4064 have already noticed that we were going to need the
4065 stub. */
4066 if (local_p)
4067 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4068 else
4070 BFD_ASSERT (h->need_fn_stub);
4071 sec = h->fn_stub;
4074 symbol = sec->output_section->vma + sec->output_offset;
4076 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4077 need to redirect the call to the stub. */
4078 else if (r_type == R_MIPS16_26 && !info->relocatable
4079 && h != NULL
4080 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4081 && !target_is_16_bit_code_p)
4083 /* If both call_stub and call_fp_stub are defined, we can figure
4084 out which one to use by seeing which one appears in the input
4085 file. */
4086 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4088 asection *o;
4090 sec = NULL;
4091 for (o = input_bfd->sections; o != NULL; o = o->next)
4093 if (strncmp (bfd_get_section_name (input_bfd, o),
4094 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4096 sec = h->call_fp_stub;
4097 break;
4100 if (sec == NULL)
4101 sec = h->call_stub;
4103 else if (h->call_stub != NULL)
4104 sec = h->call_stub;
4105 else
4106 sec = h->call_fp_stub;
4108 BFD_ASSERT (sec->size > 0);
4109 symbol = sec->output_section->vma + sec->output_offset;
4112 /* Calls from 16-bit code to 32-bit code and vice versa require the
4113 special jalx instruction. */
4114 *require_jalxp = (!info->relocatable
4115 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4116 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4118 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4119 local_sections, TRUE);
4121 /* If we haven't already determined the GOT offset, or the GP value,
4122 and we're going to need it, get it now. */
4123 switch (r_type)
4125 case R_MIPS_GOT_PAGE:
4126 case R_MIPS_GOT_OFST:
4127 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4128 bind locally. */
4129 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4130 if (local_p || r_type == R_MIPS_GOT_OFST)
4131 break;
4132 /* Fall through. */
4134 case R_MIPS_CALL16:
4135 case R_MIPS_GOT16:
4136 case R_MIPS_GOT_DISP:
4137 case R_MIPS_GOT_HI16:
4138 case R_MIPS_CALL_HI16:
4139 case R_MIPS_GOT_LO16:
4140 case R_MIPS_CALL_LO16:
4141 case R_MIPS_TLS_GD:
4142 case R_MIPS_TLS_GOTTPREL:
4143 case R_MIPS_TLS_LDM:
4144 /* Find the index into the GOT where this value is located. */
4145 if (r_type == R_MIPS_TLS_LDM)
4147 g = mips_elf_local_got_index (abfd, input_bfd, info,
4148 sec, 0, 0, NULL, r_type);
4149 if (g == MINUS_ONE)
4150 return bfd_reloc_outofrange;
4152 else if (!local_p)
4154 /* On VxWorks, CALL relocations should refer to the .got.plt
4155 entry, which is initialized to point at the PLT stub. */
4156 if (htab->is_vxworks
4157 && (r_type == R_MIPS_CALL_HI16
4158 || r_type == R_MIPS_CALL_LO16
4159 || r_type == R_MIPS_CALL16))
4161 BFD_ASSERT (addend == 0);
4162 BFD_ASSERT (h->root.needs_plt);
4163 g = mips_elf_gotplt_index (info, &h->root);
4165 else
4167 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4168 GOT_PAGE relocation that decays to GOT_DISP because the
4169 symbol turns out to be global. The addend is then added
4170 as GOT_OFST. */
4171 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4172 g = mips_elf_global_got_index (dynobj, input_bfd,
4173 &h->root, r_type, info);
4174 if (h->tls_type == GOT_NORMAL
4175 && (! elf_hash_table(info)->dynamic_sections_created
4176 || (info->shared
4177 && (info->symbolic || h->root.forced_local)
4178 && h->root.def_regular)))
4180 /* This is a static link or a -Bsymbolic link. The
4181 symbol is defined locally, or was forced to be local.
4182 We must initialize this entry in the GOT. */
4183 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4184 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4188 else if (!htab->is_vxworks
4189 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4190 /* The calculation below does not involve "g". */
4191 break;
4192 else
4194 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4195 symbol + addend, r_symndx, h, r_type);
4196 if (g == MINUS_ONE)
4197 return bfd_reloc_outofrange;
4200 /* Convert GOT indices to actual offsets. */
4201 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4202 break;
4204 case R_MIPS_HI16:
4205 case R_MIPS_LO16:
4206 case R_MIPS_GPREL16:
4207 case R_MIPS_GPREL32:
4208 case R_MIPS_LITERAL:
4209 case R_MIPS16_HI16:
4210 case R_MIPS16_LO16:
4211 case R_MIPS16_GPREL:
4212 gp0 = _bfd_get_gp_value (input_bfd);
4213 gp = _bfd_get_gp_value (abfd);
4214 if (dynobj)
4215 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4216 input_bfd);
4217 break;
4219 default:
4220 break;
4223 if (gnu_local_gp_p)
4224 symbol = gp;
4226 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4227 symbols are resolved by the loader. Add them to .rela.dyn. */
4228 if (h != NULL && is_gott_symbol (info, &h->root))
4230 Elf_Internal_Rela outrel;
4231 bfd_byte *loc;
4232 asection *s;
4234 s = mips_elf_rel_dyn_section (info, FALSE);
4235 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4237 outrel.r_offset = (input_section->output_section->vma
4238 + input_section->output_offset
4239 + relocation->r_offset);
4240 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4241 outrel.r_addend = addend;
4242 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4243 *valuep = 0;
4244 return bfd_reloc_ok;
4247 /* Figure out what kind of relocation is being performed. */
4248 switch (r_type)
4250 case R_MIPS_NONE:
4251 return bfd_reloc_continue;
4253 case R_MIPS_16:
4254 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4255 overflowed_p = mips_elf_overflow_p (value, 16);
4256 break;
4258 case R_MIPS_32:
4259 case R_MIPS_REL32:
4260 case R_MIPS_64:
4261 if ((info->shared
4262 || (!htab->is_vxworks
4263 && htab->root.dynamic_sections_created
4264 && h != NULL
4265 && h->root.def_dynamic
4266 && !h->root.def_regular))
4267 && r_symndx != 0
4268 && (input_section->flags & SEC_ALLOC) != 0)
4270 /* If we're creating a shared library, or this relocation is
4271 against a symbol in a shared library, then we can't know
4272 where the symbol will end up. So, we create a relocation
4273 record in the output, and leave the job up to the dynamic
4274 linker.
4276 In VxWorks executables, references to external symbols
4277 are handled using copy relocs or PLT stubs, so there's
4278 no need to add a dynamic relocation here. */
4279 value = addend;
4280 if (!mips_elf_create_dynamic_relocation (abfd,
4281 info,
4282 relocation,
4284 sec,
4285 symbol,
4286 &value,
4287 input_section))
4288 return bfd_reloc_undefined;
4290 else
4292 if (r_type != R_MIPS_REL32)
4293 value = symbol + addend;
4294 else
4295 value = addend;
4297 value &= howto->dst_mask;
4298 break;
4300 case R_MIPS_PC32:
4301 value = symbol + addend - p;
4302 value &= howto->dst_mask;
4303 break;
4305 case R_MIPS16_26:
4306 /* The calculation for R_MIPS16_26 is just the same as for an
4307 R_MIPS_26. It's only the storage of the relocated field into
4308 the output file that's different. That's handled in
4309 mips_elf_perform_relocation. So, we just fall through to the
4310 R_MIPS_26 case here. */
4311 case R_MIPS_26:
4312 if (local_p)
4313 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4314 else
4316 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4317 if (h->root.root.type != bfd_link_hash_undefweak)
4318 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4320 value &= howto->dst_mask;
4321 break;
4323 case R_MIPS_TLS_DTPREL_HI16:
4324 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4325 & howto->dst_mask);
4326 break;
4328 case R_MIPS_TLS_DTPREL_LO16:
4329 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4330 break;
4332 case R_MIPS_TLS_TPREL_HI16:
4333 value = (mips_elf_high (addend + symbol - tprel_base (info))
4334 & howto->dst_mask);
4335 break;
4337 case R_MIPS_TLS_TPREL_LO16:
4338 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4339 break;
4341 case R_MIPS_HI16:
4342 case R_MIPS16_HI16:
4343 if (!gp_disp_p)
4345 value = mips_elf_high (addend + symbol);
4346 value &= howto->dst_mask;
4348 else
4350 /* For MIPS16 ABI code we generate this sequence
4351 0: li $v0,%hi(_gp_disp)
4352 4: addiupc $v1,%lo(_gp_disp)
4353 8: sll $v0,16
4354 12: addu $v0,$v1
4355 14: move $gp,$v0
4356 So the offsets of hi and lo relocs are the same, but the
4357 $pc is four higher than $t9 would be, so reduce
4358 both reloc addends by 4. */
4359 if (r_type == R_MIPS16_HI16)
4360 value = mips_elf_high (addend + gp - p - 4);
4361 else
4362 value = mips_elf_high (addend + gp - p);
4363 overflowed_p = mips_elf_overflow_p (value, 16);
4365 break;
4367 case R_MIPS_LO16:
4368 case R_MIPS16_LO16:
4369 if (!gp_disp_p)
4370 value = (symbol + addend) & howto->dst_mask;
4371 else
4373 /* See the comment for R_MIPS16_HI16 above for the reason
4374 for this conditional. */
4375 if (r_type == R_MIPS16_LO16)
4376 value = addend + gp - p;
4377 else
4378 value = addend + gp - p + 4;
4379 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4380 for overflow. But, on, say, IRIX5, relocations against
4381 _gp_disp are normally generated from the .cpload
4382 pseudo-op. It generates code that normally looks like
4383 this:
4385 lui $gp,%hi(_gp_disp)
4386 addiu $gp,$gp,%lo(_gp_disp)
4387 addu $gp,$gp,$t9
4389 Here $t9 holds the address of the function being called,
4390 as required by the MIPS ELF ABI. The R_MIPS_LO16
4391 relocation can easily overflow in this situation, but the
4392 R_MIPS_HI16 relocation will handle the overflow.
4393 Therefore, we consider this a bug in the MIPS ABI, and do
4394 not check for overflow here. */
4396 break;
4398 case R_MIPS_LITERAL:
4399 /* Because we don't merge literal sections, we can handle this
4400 just like R_MIPS_GPREL16. In the long run, we should merge
4401 shared literals, and then we will need to additional work
4402 here. */
4404 /* Fall through. */
4406 case R_MIPS16_GPREL:
4407 /* The R_MIPS16_GPREL performs the same calculation as
4408 R_MIPS_GPREL16, but stores the relocated bits in a different
4409 order. We don't need to do anything special here; the
4410 differences are handled in mips_elf_perform_relocation. */
4411 case R_MIPS_GPREL16:
4412 /* Only sign-extend the addend if it was extracted from the
4413 instruction. If the addend was separate, leave it alone,
4414 otherwise we may lose significant bits. */
4415 if (howto->partial_inplace)
4416 addend = _bfd_mips_elf_sign_extend (addend, 16);
4417 value = symbol + addend - gp;
4418 /* If the symbol was local, any earlier relocatable links will
4419 have adjusted its addend with the gp offset, so compensate
4420 for that now. Don't do it for symbols forced local in this
4421 link, though, since they won't have had the gp offset applied
4422 to them before. */
4423 if (was_local_p)
4424 value += gp0;
4425 overflowed_p = mips_elf_overflow_p (value, 16);
4426 break;
4428 case R_MIPS_GOT16:
4429 case R_MIPS_CALL16:
4430 /* VxWorks does not have separate local and global semantics for
4431 R_MIPS_GOT16; every relocation evaluates to "G". */
4432 if (!htab->is_vxworks && local_p)
4434 bfd_boolean forced;
4436 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4437 local_sections, FALSE);
4438 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4439 symbol + addend, forced);
4440 if (value == MINUS_ONE)
4441 return bfd_reloc_outofrange;
4442 value
4443 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4444 overflowed_p = mips_elf_overflow_p (value, 16);
4445 break;
4448 /* Fall through. */
4450 case R_MIPS_TLS_GD:
4451 case R_MIPS_TLS_GOTTPREL:
4452 case R_MIPS_TLS_LDM:
4453 case R_MIPS_GOT_DISP:
4454 got_disp:
4455 value = g;
4456 overflowed_p = mips_elf_overflow_p (value, 16);
4457 break;
4459 case R_MIPS_GPREL32:
4460 value = (addend + symbol + gp0 - gp);
4461 if (!save_addend)
4462 value &= howto->dst_mask;
4463 break;
4465 case R_MIPS_PC16:
4466 case R_MIPS_GNU_REL16_S2:
4467 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4468 overflowed_p = mips_elf_overflow_p (value, 18);
4469 value = (value >> 2) & howto->dst_mask;
4470 break;
4472 case R_MIPS_GOT_HI16:
4473 case R_MIPS_CALL_HI16:
4474 /* We're allowed to handle these two relocations identically.
4475 The dynamic linker is allowed to handle the CALL relocations
4476 differently by creating a lazy evaluation stub. */
4477 value = g;
4478 value = mips_elf_high (value);
4479 value &= howto->dst_mask;
4480 break;
4482 case R_MIPS_GOT_LO16:
4483 case R_MIPS_CALL_LO16:
4484 value = g & howto->dst_mask;
4485 break;
4487 case R_MIPS_GOT_PAGE:
4488 /* GOT_PAGE relocations that reference non-local symbols decay
4489 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4490 0. */
4491 if (! local_p)
4492 goto got_disp;
4493 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4494 symbol + addend, NULL);
4495 if (value == MINUS_ONE)
4496 return bfd_reloc_outofrange;
4497 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4498 overflowed_p = mips_elf_overflow_p (value, 16);
4499 break;
4501 case R_MIPS_GOT_OFST:
4502 if (local_p)
4503 mips_elf_got_page (abfd, input_bfd, info, sec,
4504 symbol + addend, &value);
4505 else
4506 value = addend;
4507 overflowed_p = mips_elf_overflow_p (value, 16);
4508 break;
4510 case R_MIPS_SUB:
4511 value = symbol - addend;
4512 value &= howto->dst_mask;
4513 break;
4515 case R_MIPS_HIGHER:
4516 value = mips_elf_higher (addend + symbol);
4517 value &= howto->dst_mask;
4518 break;
4520 case R_MIPS_HIGHEST:
4521 value = mips_elf_highest (addend + symbol);
4522 value &= howto->dst_mask;
4523 break;
4525 case R_MIPS_SCN_DISP:
4526 value = symbol + addend - sec->output_offset;
4527 value &= howto->dst_mask;
4528 break;
4530 case R_MIPS_JALR:
4531 /* This relocation is only a hint. In some cases, we optimize
4532 it into a bal instruction. But we don't try to optimize
4533 branches to the PLT; that will wind up wasting time. */
4534 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4535 return bfd_reloc_continue;
4536 value = symbol + addend;
4537 break;
4539 case R_MIPS_PJUMP:
4540 case R_MIPS_GNU_VTINHERIT:
4541 case R_MIPS_GNU_VTENTRY:
4542 /* We don't do anything with these at present. */
4543 return bfd_reloc_continue;
4545 default:
4546 /* An unrecognized relocation type. */
4547 return bfd_reloc_notsupported;
4550 /* Store the VALUE for our caller. */
4551 *valuep = value;
4552 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4555 /* Obtain the field relocated by RELOCATION. */
4557 static bfd_vma
4558 mips_elf_obtain_contents (reloc_howto_type *howto,
4559 const Elf_Internal_Rela *relocation,
4560 bfd *input_bfd, bfd_byte *contents)
4562 bfd_vma x;
4563 bfd_byte *location = contents + relocation->r_offset;
4565 /* Obtain the bytes. */
4566 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4568 return x;
4571 /* It has been determined that the result of the RELOCATION is the
4572 VALUE. Use HOWTO to place VALUE into the output file at the
4573 appropriate position. The SECTION is the section to which the
4574 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4575 for the relocation must be either JAL or JALX, and it is
4576 unconditionally converted to JALX.
4578 Returns FALSE if anything goes wrong. */
4580 static bfd_boolean
4581 mips_elf_perform_relocation (struct bfd_link_info *info,
4582 reloc_howto_type *howto,
4583 const Elf_Internal_Rela *relocation,
4584 bfd_vma value, bfd *input_bfd,
4585 asection *input_section, bfd_byte *contents,
4586 bfd_boolean require_jalx)
4588 bfd_vma x;
4589 bfd_byte *location;
4590 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4592 /* Figure out where the relocation is occurring. */
4593 location = contents + relocation->r_offset;
4595 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4597 /* Obtain the current value. */
4598 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4600 /* Clear the field we are setting. */
4601 x &= ~howto->dst_mask;
4603 /* Set the field. */
4604 x |= (value & howto->dst_mask);
4606 /* If required, turn JAL into JALX. */
4607 if (require_jalx)
4609 bfd_boolean ok;
4610 bfd_vma opcode = x >> 26;
4611 bfd_vma jalx_opcode;
4613 /* Check to see if the opcode is already JAL or JALX. */
4614 if (r_type == R_MIPS16_26)
4616 ok = ((opcode == 0x6) || (opcode == 0x7));
4617 jalx_opcode = 0x7;
4619 else
4621 ok = ((opcode == 0x3) || (opcode == 0x1d));
4622 jalx_opcode = 0x1d;
4625 /* If the opcode is not JAL or JALX, there's a problem. */
4626 if (!ok)
4628 (*_bfd_error_handler)
4629 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4630 input_bfd,
4631 input_section,
4632 (unsigned long) relocation->r_offset);
4633 bfd_set_error (bfd_error_bad_value);
4634 return FALSE;
4637 /* Make this the JALX opcode. */
4638 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4641 /* On the RM9000, bal is faster than jal, because bal uses branch
4642 prediction hardware. If we are linking for the RM9000, and we
4643 see jal, and bal fits, use it instead. Note that this
4644 transformation should be safe for all architectures. */
4645 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4646 && !info->relocatable
4647 && !require_jalx
4648 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4649 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4651 bfd_vma addr;
4652 bfd_vma dest;
4653 bfd_signed_vma off;
4655 addr = (input_section->output_section->vma
4656 + input_section->output_offset
4657 + relocation->r_offset
4658 + 4);
4659 if (r_type == R_MIPS_26)
4660 dest = (value << 2) | ((addr >> 28) << 28);
4661 else
4662 dest = value;
4663 off = dest - addr;
4664 if (off <= 0x1ffff && off >= -0x20000)
4665 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4668 /* Put the value into the output. */
4669 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4671 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4672 location);
4674 return TRUE;
4677 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4679 static bfd_boolean
4680 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4682 const char *name = bfd_get_section_name (abfd, section);
4684 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4685 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4686 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4689 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4691 static void
4692 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4693 unsigned int n)
4695 asection *s;
4696 struct mips_elf_link_hash_table *htab;
4698 htab = mips_elf_hash_table (info);
4699 s = mips_elf_rel_dyn_section (info, FALSE);
4700 BFD_ASSERT (s != NULL);
4702 if (htab->is_vxworks)
4703 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4704 else
4706 if (s->size == 0)
4708 /* Make room for a null element. */
4709 s->size += MIPS_ELF_REL_SIZE (abfd);
4710 ++s->reloc_count;
4712 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4716 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4717 is the original relocation, which is now being transformed into a
4718 dynamic relocation. The ADDENDP is adjusted if necessary; the
4719 caller should store the result in place of the original addend. */
4721 static bfd_boolean
4722 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4723 struct bfd_link_info *info,
4724 const Elf_Internal_Rela *rel,
4725 struct mips_elf_link_hash_entry *h,
4726 asection *sec, bfd_vma symbol,
4727 bfd_vma *addendp, asection *input_section)
4729 Elf_Internal_Rela outrel[3];
4730 asection *sreloc;
4731 bfd *dynobj;
4732 int r_type;
4733 long indx;
4734 bfd_boolean defined_p;
4735 struct mips_elf_link_hash_table *htab;
4737 htab = mips_elf_hash_table (info);
4738 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4739 dynobj = elf_hash_table (info)->dynobj;
4740 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4741 BFD_ASSERT (sreloc != NULL);
4742 BFD_ASSERT (sreloc->contents != NULL);
4743 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4744 < sreloc->size);
4746 outrel[0].r_offset =
4747 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4748 outrel[1].r_offset =
4749 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4750 outrel[2].r_offset =
4751 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4753 if (outrel[0].r_offset == MINUS_ONE)
4754 /* The relocation field has been deleted. */
4755 return TRUE;
4757 if (outrel[0].r_offset == MINUS_TWO)
4759 /* The relocation field has been converted into a relative value of
4760 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4761 the field to be fully relocated, so add in the symbol's value. */
4762 *addendp += symbol;
4763 return TRUE;
4766 /* We must now calculate the dynamic symbol table index to use
4767 in the relocation. */
4768 if (h != NULL
4769 && (!h->root.def_regular
4770 || (info->shared && !info->symbolic && !h->root.forced_local)))
4772 indx = h->root.dynindx;
4773 if (SGI_COMPAT (output_bfd))
4774 defined_p = h->root.def_regular;
4775 else
4776 /* ??? glibc's ld.so just adds the final GOT entry to the
4777 relocation field. It therefore treats relocs against
4778 defined symbols in the same way as relocs against
4779 undefined symbols. */
4780 defined_p = FALSE;
4782 else
4784 if (sec != NULL && bfd_is_abs_section (sec))
4785 indx = 0;
4786 else if (sec == NULL || sec->owner == NULL)
4788 bfd_set_error (bfd_error_bad_value);
4789 return FALSE;
4791 else
4793 indx = elf_section_data (sec->output_section)->dynindx;
4794 if (indx == 0)
4795 abort ();
4798 /* Instead of generating a relocation using the section
4799 symbol, we may as well make it a fully relative
4800 relocation. We want to avoid generating relocations to
4801 local symbols because we used to generate them
4802 incorrectly, without adding the original symbol value,
4803 which is mandated by the ABI for section symbols. In
4804 order to give dynamic loaders and applications time to
4805 phase out the incorrect use, we refrain from emitting
4806 section-relative relocations. It's not like they're
4807 useful, after all. This should be a bit more efficient
4808 as well. */
4809 /* ??? Although this behavior is compatible with glibc's ld.so,
4810 the ABI says that relocations against STN_UNDEF should have
4811 a symbol value of 0. Irix rld honors this, so relocations
4812 against STN_UNDEF have no effect. */
4813 if (!SGI_COMPAT (output_bfd))
4814 indx = 0;
4815 defined_p = TRUE;
4818 /* If the relocation was previously an absolute relocation and
4819 this symbol will not be referred to by the relocation, we must
4820 adjust it by the value we give it in the dynamic symbol table.
4821 Otherwise leave the job up to the dynamic linker. */
4822 if (defined_p && r_type != R_MIPS_REL32)
4823 *addendp += symbol;
4825 if (htab->is_vxworks)
4826 /* VxWorks uses non-relative relocations for this. */
4827 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4828 else
4829 /* The relocation is always an REL32 relocation because we don't
4830 know where the shared library will wind up at load-time. */
4831 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4832 R_MIPS_REL32);
4834 /* For strict adherence to the ABI specification, we should
4835 generate a R_MIPS_64 relocation record by itself before the
4836 _REL32/_64 record as well, such that the addend is read in as
4837 a 64-bit value (REL32 is a 32-bit relocation, after all).
4838 However, since none of the existing ELF64 MIPS dynamic
4839 loaders seems to care, we don't waste space with these
4840 artificial relocations. If this turns out to not be true,
4841 mips_elf_allocate_dynamic_relocation() should be tweaked so
4842 as to make room for a pair of dynamic relocations per
4843 invocation if ABI_64_P, and here we should generate an
4844 additional relocation record with R_MIPS_64 by itself for a
4845 NULL symbol before this relocation record. */
4846 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4847 ABI_64_P (output_bfd)
4848 ? R_MIPS_64
4849 : R_MIPS_NONE);
4850 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4852 /* Adjust the output offset of the relocation to reference the
4853 correct location in the output file. */
4854 outrel[0].r_offset += (input_section->output_section->vma
4855 + input_section->output_offset);
4856 outrel[1].r_offset += (input_section->output_section->vma
4857 + input_section->output_offset);
4858 outrel[2].r_offset += (input_section->output_section->vma
4859 + input_section->output_offset);
4861 /* Put the relocation back out. We have to use the special
4862 relocation outputter in the 64-bit case since the 64-bit
4863 relocation format is non-standard. */
4864 if (ABI_64_P (output_bfd))
4866 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4867 (output_bfd, &outrel[0],
4868 (sreloc->contents
4869 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4871 else if (htab->is_vxworks)
4873 /* VxWorks uses RELA rather than REL dynamic relocations. */
4874 outrel[0].r_addend = *addendp;
4875 bfd_elf32_swap_reloca_out
4876 (output_bfd, &outrel[0],
4877 (sreloc->contents
4878 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4880 else
4881 bfd_elf32_swap_reloc_out
4882 (output_bfd, &outrel[0],
4883 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4885 /* We've now added another relocation. */
4886 ++sreloc->reloc_count;
4888 /* Make sure the output section is writable. The dynamic linker
4889 will be writing to it. */
4890 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4891 |= SHF_WRITE;
4893 /* On IRIX5, make an entry of compact relocation info. */
4894 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4896 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4897 bfd_byte *cr;
4899 if (scpt)
4901 Elf32_crinfo cptrel;
4903 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4904 cptrel.vaddr = (rel->r_offset
4905 + input_section->output_section->vma
4906 + input_section->output_offset);
4907 if (r_type == R_MIPS_REL32)
4908 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4909 else
4910 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4911 mips_elf_set_cr_dist2to (cptrel, 0);
4912 cptrel.konst = *addendp;
4914 cr = (scpt->contents
4915 + sizeof (Elf32_External_compact_rel));
4916 mips_elf_set_cr_relvaddr (cptrel, 0);
4917 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4918 ((Elf32_External_crinfo *) cr
4919 + scpt->reloc_count));
4920 ++scpt->reloc_count;
4924 /* If we've written this relocation for a readonly section,
4925 we need to set DF_TEXTREL again, so that we do not delete the
4926 DT_TEXTREL tag. */
4927 if (MIPS_ELF_READONLY_SECTION (input_section))
4928 info->flags |= DF_TEXTREL;
4930 return TRUE;
4933 /* Return the MACH for a MIPS e_flags value. */
4935 unsigned long
4936 _bfd_elf_mips_mach (flagword flags)
4938 switch (flags & EF_MIPS_MACH)
4940 case E_MIPS_MACH_3900:
4941 return bfd_mach_mips3900;
4943 case E_MIPS_MACH_4010:
4944 return bfd_mach_mips4010;
4946 case E_MIPS_MACH_4100:
4947 return bfd_mach_mips4100;
4949 case E_MIPS_MACH_4111:
4950 return bfd_mach_mips4111;
4952 case E_MIPS_MACH_4120:
4953 return bfd_mach_mips4120;
4955 case E_MIPS_MACH_4650:
4956 return bfd_mach_mips4650;
4958 case E_MIPS_MACH_5400:
4959 return bfd_mach_mips5400;
4961 case E_MIPS_MACH_5500:
4962 return bfd_mach_mips5500;
4964 case E_MIPS_MACH_9000:
4965 return bfd_mach_mips9000;
4967 case E_MIPS_MACH_SB1:
4968 return bfd_mach_mips_sb1;
4970 default:
4971 switch (flags & EF_MIPS_ARCH)
4973 default:
4974 case E_MIPS_ARCH_1:
4975 return bfd_mach_mips3000;
4976 break;
4978 case E_MIPS_ARCH_2:
4979 return bfd_mach_mips6000;
4980 break;
4982 case E_MIPS_ARCH_3:
4983 return bfd_mach_mips4000;
4984 break;
4986 case E_MIPS_ARCH_4:
4987 return bfd_mach_mips8000;
4988 break;
4990 case E_MIPS_ARCH_5:
4991 return bfd_mach_mips5;
4992 break;
4994 case E_MIPS_ARCH_32:
4995 return bfd_mach_mipsisa32;
4996 break;
4998 case E_MIPS_ARCH_64:
4999 return bfd_mach_mipsisa64;
5000 break;
5002 case E_MIPS_ARCH_32R2:
5003 return bfd_mach_mipsisa32r2;
5004 break;
5006 case E_MIPS_ARCH_64R2:
5007 return bfd_mach_mipsisa64r2;
5008 break;
5012 return 0;
5015 /* Return printable name for ABI. */
5017 static INLINE char *
5018 elf_mips_abi_name (bfd *abfd)
5020 flagword flags;
5022 flags = elf_elfheader (abfd)->e_flags;
5023 switch (flags & EF_MIPS_ABI)
5025 case 0:
5026 if (ABI_N32_P (abfd))
5027 return "N32";
5028 else if (ABI_64_P (abfd))
5029 return "64";
5030 else
5031 return "none";
5032 case E_MIPS_ABI_O32:
5033 return "O32";
5034 case E_MIPS_ABI_O64:
5035 return "O64";
5036 case E_MIPS_ABI_EABI32:
5037 return "EABI32";
5038 case E_MIPS_ABI_EABI64:
5039 return "EABI64";
5040 default:
5041 return "unknown abi";
5045 /* MIPS ELF uses two common sections. One is the usual one, and the
5046 other is for small objects. All the small objects are kept
5047 together, and then referenced via the gp pointer, which yields
5048 faster assembler code. This is what we use for the small common
5049 section. This approach is copied from ecoff.c. */
5050 static asection mips_elf_scom_section;
5051 static asymbol mips_elf_scom_symbol;
5052 static asymbol *mips_elf_scom_symbol_ptr;
5054 /* MIPS ELF also uses an acommon section, which represents an
5055 allocated common symbol which may be overridden by a
5056 definition in a shared library. */
5057 static asection mips_elf_acom_section;
5058 static asymbol mips_elf_acom_symbol;
5059 static asymbol *mips_elf_acom_symbol_ptr;
5061 /* Handle the special MIPS section numbers that a symbol may use.
5062 This is used for both the 32-bit and the 64-bit ABI. */
5064 void
5065 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5067 elf_symbol_type *elfsym;
5069 elfsym = (elf_symbol_type *) asym;
5070 switch (elfsym->internal_elf_sym.st_shndx)
5072 case SHN_MIPS_ACOMMON:
5073 /* This section is used in a dynamically linked executable file.
5074 It is an allocated common section. The dynamic linker can
5075 either resolve these symbols to something in a shared
5076 library, or it can just leave them here. For our purposes,
5077 we can consider these symbols to be in a new section. */
5078 if (mips_elf_acom_section.name == NULL)
5080 /* Initialize the acommon section. */
5081 mips_elf_acom_section.name = ".acommon";
5082 mips_elf_acom_section.flags = SEC_ALLOC;
5083 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5084 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5085 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5086 mips_elf_acom_symbol.name = ".acommon";
5087 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5088 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5089 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5091 asym->section = &mips_elf_acom_section;
5092 break;
5094 case SHN_COMMON:
5095 /* Common symbols less than the GP size are automatically
5096 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5097 if (asym->value > elf_gp_size (abfd)
5098 || IRIX_COMPAT (abfd) == ict_irix6)
5099 break;
5100 /* Fall through. */
5101 case SHN_MIPS_SCOMMON:
5102 if (mips_elf_scom_section.name == NULL)
5104 /* Initialize the small common section. */
5105 mips_elf_scom_section.name = ".scommon";
5106 mips_elf_scom_section.flags = SEC_IS_COMMON;
5107 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5108 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5109 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5110 mips_elf_scom_symbol.name = ".scommon";
5111 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5112 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5113 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5115 asym->section = &mips_elf_scom_section;
5116 asym->value = elfsym->internal_elf_sym.st_size;
5117 break;
5119 case SHN_MIPS_SUNDEFINED:
5120 asym->section = bfd_und_section_ptr;
5121 break;
5123 case SHN_MIPS_TEXT:
5125 asection *section = bfd_get_section_by_name (abfd, ".text");
5127 BFD_ASSERT (SGI_COMPAT (abfd));
5128 if (section != NULL)
5130 asym->section = section;
5131 /* MIPS_TEXT is a bit special, the address is not an offset
5132 to the base of the .text section. So substract the section
5133 base address to make it an offset. */
5134 asym->value -= section->vma;
5137 break;
5139 case SHN_MIPS_DATA:
5141 asection *section = bfd_get_section_by_name (abfd, ".data");
5143 BFD_ASSERT (SGI_COMPAT (abfd));
5144 if (section != NULL)
5146 asym->section = section;
5147 /* MIPS_DATA is a bit special, the address is not an offset
5148 to the base of the .data section. So substract the section
5149 base address to make it an offset. */
5150 asym->value -= section->vma;
5153 break;
5157 /* Implement elf_backend_eh_frame_address_size. This differs from
5158 the default in the way it handles EABI64.
5160 EABI64 was originally specified as an LP64 ABI, and that is what
5161 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5162 historically accepted the combination of -mabi=eabi and -mlong32,
5163 and this ILP32 variation has become semi-official over time.
5164 Both forms use elf32 and have pointer-sized FDE addresses.
5166 If an EABI object was generated by GCC 4.0 or above, it will have
5167 an empty .gcc_compiled_longXX section, where XX is the size of longs
5168 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5169 have no special marking to distinguish them from LP64 objects.
5171 We don't want users of the official LP64 ABI to be punished for the
5172 existence of the ILP32 variant, but at the same time, we don't want
5173 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5174 We therefore take the following approach:
5176 - If ABFD contains a .gcc_compiled_longXX section, use it to
5177 determine the pointer size.
5179 - Otherwise check the type of the first relocation. Assume that
5180 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5182 - Otherwise punt.
5184 The second check is enough to detect LP64 objects generated by pre-4.0
5185 compilers because, in the kind of output generated by those compilers,
5186 the first relocation will be associated with either a CIE personality
5187 routine or an FDE start address. Furthermore, the compilers never
5188 used a special (non-pointer) encoding for this ABI.
5190 Checking the relocation type should also be safe because there is no
5191 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5192 did so. */
5194 unsigned int
5195 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5197 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5198 return 8;
5199 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5201 bfd_boolean long32_p, long64_p;
5203 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5204 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5205 if (long32_p && long64_p)
5206 return 0;
5207 if (long32_p)
5208 return 4;
5209 if (long64_p)
5210 return 8;
5212 if (sec->reloc_count > 0
5213 && elf_section_data (sec)->relocs != NULL
5214 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5215 == R_MIPS_64))
5216 return 8;
5218 return 0;
5220 return 4;
5223 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5224 relocations against two unnamed section symbols to resolve to the
5225 same address. For example, if we have code like:
5227 lw $4,%got_disp(.data)($gp)
5228 lw $25,%got_disp(.text)($gp)
5229 jalr $25
5231 then the linker will resolve both relocations to .data and the program
5232 will jump there rather than to .text.
5234 We can work around this problem by giving names to local section symbols.
5235 This is also what the MIPSpro tools do. */
5237 bfd_boolean
5238 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5240 return SGI_COMPAT (abfd);
5243 /* Work over a section just before writing it out. This routine is
5244 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5245 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5246 a better way. */
5248 bfd_boolean
5249 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5251 if (hdr->sh_type == SHT_MIPS_REGINFO
5252 && hdr->sh_size > 0)
5254 bfd_byte buf[4];
5256 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5257 BFD_ASSERT (hdr->contents == NULL);
5259 if (bfd_seek (abfd,
5260 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5261 SEEK_SET) != 0)
5262 return FALSE;
5263 H_PUT_32 (abfd, elf_gp (abfd), buf);
5264 if (bfd_bwrite (buf, 4, abfd) != 4)
5265 return FALSE;
5268 if (hdr->sh_type == SHT_MIPS_OPTIONS
5269 && hdr->bfd_section != NULL
5270 && mips_elf_section_data (hdr->bfd_section) != NULL
5271 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5273 bfd_byte *contents, *l, *lend;
5275 /* We stored the section contents in the tdata field in the
5276 set_section_contents routine. We save the section contents
5277 so that we don't have to read them again.
5278 At this point we know that elf_gp is set, so we can look
5279 through the section contents to see if there is an
5280 ODK_REGINFO structure. */
5282 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5283 l = contents;
5284 lend = contents + hdr->sh_size;
5285 while (l + sizeof (Elf_External_Options) <= lend)
5287 Elf_Internal_Options intopt;
5289 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5290 &intopt);
5291 if (intopt.size < sizeof (Elf_External_Options))
5293 (*_bfd_error_handler)
5294 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5295 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5296 break;
5298 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5300 bfd_byte buf[8];
5302 if (bfd_seek (abfd,
5303 (hdr->sh_offset
5304 + (l - contents)
5305 + sizeof (Elf_External_Options)
5306 + (sizeof (Elf64_External_RegInfo) - 8)),
5307 SEEK_SET) != 0)
5308 return FALSE;
5309 H_PUT_64 (abfd, elf_gp (abfd), buf);
5310 if (bfd_bwrite (buf, 8, abfd) != 8)
5311 return FALSE;
5313 else if (intopt.kind == ODK_REGINFO)
5315 bfd_byte buf[4];
5317 if (bfd_seek (abfd,
5318 (hdr->sh_offset
5319 + (l - contents)
5320 + sizeof (Elf_External_Options)
5321 + (sizeof (Elf32_External_RegInfo) - 4)),
5322 SEEK_SET) != 0)
5323 return FALSE;
5324 H_PUT_32 (abfd, elf_gp (abfd), buf);
5325 if (bfd_bwrite (buf, 4, abfd) != 4)
5326 return FALSE;
5328 l += intopt.size;
5332 if (hdr->bfd_section != NULL)
5334 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5336 if (strcmp (name, ".sdata") == 0
5337 || strcmp (name, ".lit8") == 0
5338 || strcmp (name, ".lit4") == 0)
5340 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5341 hdr->sh_type = SHT_PROGBITS;
5343 else if (strcmp (name, ".sbss") == 0)
5345 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5346 hdr->sh_type = SHT_NOBITS;
5348 else if (strcmp (name, ".srdata") == 0)
5350 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5351 hdr->sh_type = SHT_PROGBITS;
5353 else if (strcmp (name, ".compact_rel") == 0)
5355 hdr->sh_flags = 0;
5356 hdr->sh_type = SHT_PROGBITS;
5358 else if (strcmp (name, ".rtproc") == 0)
5360 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5362 unsigned int adjust;
5364 adjust = hdr->sh_size % hdr->sh_addralign;
5365 if (adjust != 0)
5366 hdr->sh_size += hdr->sh_addralign - adjust;
5371 return TRUE;
5374 /* Handle a MIPS specific section when reading an object file. This
5375 is called when elfcode.h finds a section with an unknown type.
5376 This routine supports both the 32-bit and 64-bit ELF ABI.
5378 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5379 how to. */
5381 bfd_boolean
5382 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5383 Elf_Internal_Shdr *hdr,
5384 const char *name,
5385 int shindex)
5387 flagword flags = 0;
5389 /* There ought to be a place to keep ELF backend specific flags, but
5390 at the moment there isn't one. We just keep track of the
5391 sections by their name, instead. Fortunately, the ABI gives
5392 suggested names for all the MIPS specific sections, so we will
5393 probably get away with this. */
5394 switch (hdr->sh_type)
5396 case SHT_MIPS_LIBLIST:
5397 if (strcmp (name, ".liblist") != 0)
5398 return FALSE;
5399 break;
5400 case SHT_MIPS_MSYM:
5401 if (strcmp (name, ".msym") != 0)
5402 return FALSE;
5403 break;
5404 case SHT_MIPS_CONFLICT:
5405 if (strcmp (name, ".conflict") != 0)
5406 return FALSE;
5407 break;
5408 case SHT_MIPS_GPTAB:
5409 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5410 return FALSE;
5411 break;
5412 case SHT_MIPS_UCODE:
5413 if (strcmp (name, ".ucode") != 0)
5414 return FALSE;
5415 break;
5416 case SHT_MIPS_DEBUG:
5417 if (strcmp (name, ".mdebug") != 0)
5418 return FALSE;
5419 flags = SEC_DEBUGGING;
5420 break;
5421 case SHT_MIPS_REGINFO:
5422 if (strcmp (name, ".reginfo") != 0
5423 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5424 return FALSE;
5425 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5426 break;
5427 case SHT_MIPS_IFACE:
5428 if (strcmp (name, ".MIPS.interfaces") != 0)
5429 return FALSE;
5430 break;
5431 case SHT_MIPS_CONTENT:
5432 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5433 return FALSE;
5434 break;
5435 case SHT_MIPS_OPTIONS:
5436 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5437 return FALSE;
5438 break;
5439 case SHT_MIPS_DWARF:
5440 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5441 return FALSE;
5442 break;
5443 case SHT_MIPS_SYMBOL_LIB:
5444 if (strcmp (name, ".MIPS.symlib") != 0)
5445 return FALSE;
5446 break;
5447 case SHT_MIPS_EVENTS:
5448 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5449 && strncmp (name, ".MIPS.post_rel",
5450 sizeof ".MIPS.post_rel" - 1) != 0)
5451 return FALSE;
5452 break;
5453 default:
5454 break;
5457 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5458 return FALSE;
5460 if (flags)
5462 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5463 (bfd_get_section_flags (abfd,
5464 hdr->bfd_section)
5465 | flags)))
5466 return FALSE;
5469 /* FIXME: We should record sh_info for a .gptab section. */
5471 /* For a .reginfo section, set the gp value in the tdata information
5472 from the contents of this section. We need the gp value while
5473 processing relocs, so we just get it now. The .reginfo section
5474 is not used in the 64-bit MIPS ELF ABI. */
5475 if (hdr->sh_type == SHT_MIPS_REGINFO)
5477 Elf32_External_RegInfo ext;
5478 Elf32_RegInfo s;
5480 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5481 &ext, 0, sizeof ext))
5482 return FALSE;
5483 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5484 elf_gp (abfd) = s.ri_gp_value;
5487 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5488 set the gp value based on what we find. We may see both
5489 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5490 they should agree. */
5491 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5493 bfd_byte *contents, *l, *lend;
5495 contents = bfd_malloc (hdr->sh_size);
5496 if (contents == NULL)
5497 return FALSE;
5498 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5499 0, hdr->sh_size))
5501 free (contents);
5502 return FALSE;
5504 l = contents;
5505 lend = contents + hdr->sh_size;
5506 while (l + sizeof (Elf_External_Options) <= lend)
5508 Elf_Internal_Options intopt;
5510 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5511 &intopt);
5512 if (intopt.size < sizeof (Elf_External_Options))
5514 (*_bfd_error_handler)
5515 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5516 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5517 break;
5519 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5521 Elf64_Internal_RegInfo intreg;
5523 bfd_mips_elf64_swap_reginfo_in
5524 (abfd,
5525 ((Elf64_External_RegInfo *)
5526 (l + sizeof (Elf_External_Options))),
5527 &intreg);
5528 elf_gp (abfd) = intreg.ri_gp_value;
5530 else if (intopt.kind == ODK_REGINFO)
5532 Elf32_RegInfo intreg;
5534 bfd_mips_elf32_swap_reginfo_in
5535 (abfd,
5536 ((Elf32_External_RegInfo *)
5537 (l + sizeof (Elf_External_Options))),
5538 &intreg);
5539 elf_gp (abfd) = intreg.ri_gp_value;
5541 l += intopt.size;
5543 free (contents);
5546 return TRUE;
5549 /* Set the correct type for a MIPS ELF section. We do this by the
5550 section name, which is a hack, but ought to work. This routine is
5551 used by both the 32-bit and the 64-bit ABI. */
5553 bfd_boolean
5554 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5556 register const char *name;
5557 unsigned int sh_type;
5559 name = bfd_get_section_name (abfd, sec);
5560 sh_type = hdr->sh_type;
5562 if (strcmp (name, ".liblist") == 0)
5564 hdr->sh_type = SHT_MIPS_LIBLIST;
5565 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5566 /* The sh_link field is set in final_write_processing. */
5568 else if (strcmp (name, ".conflict") == 0)
5569 hdr->sh_type = SHT_MIPS_CONFLICT;
5570 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5572 hdr->sh_type = SHT_MIPS_GPTAB;
5573 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5574 /* The sh_info field is set in final_write_processing. */
5576 else if (strcmp (name, ".ucode") == 0)
5577 hdr->sh_type = SHT_MIPS_UCODE;
5578 else if (strcmp (name, ".mdebug") == 0)
5580 hdr->sh_type = SHT_MIPS_DEBUG;
5581 /* In a shared object on IRIX 5.3, the .mdebug section has an
5582 entsize of 0. FIXME: Does this matter? */
5583 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5584 hdr->sh_entsize = 0;
5585 else
5586 hdr->sh_entsize = 1;
5588 else if (strcmp (name, ".reginfo") == 0)
5590 hdr->sh_type = SHT_MIPS_REGINFO;
5591 /* In a shared object on IRIX 5.3, the .reginfo section has an
5592 entsize of 0x18. FIXME: Does this matter? */
5593 if (SGI_COMPAT (abfd))
5595 if ((abfd->flags & DYNAMIC) != 0)
5596 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5597 else
5598 hdr->sh_entsize = 1;
5600 else
5601 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5603 else if (SGI_COMPAT (abfd)
5604 && (strcmp (name, ".hash") == 0
5605 || strcmp (name, ".dynamic") == 0
5606 || strcmp (name, ".dynstr") == 0))
5608 if (SGI_COMPAT (abfd))
5609 hdr->sh_entsize = 0;
5610 #if 0
5611 /* This isn't how the IRIX6 linker behaves. */
5612 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5613 #endif
5615 else if (strcmp (name, ".got") == 0
5616 || strcmp (name, ".srdata") == 0
5617 || strcmp (name, ".sdata") == 0
5618 || strcmp (name, ".sbss") == 0
5619 || strcmp (name, ".lit4") == 0
5620 || strcmp (name, ".lit8") == 0)
5621 hdr->sh_flags |= SHF_MIPS_GPREL;
5622 else if (strcmp (name, ".MIPS.interfaces") == 0)
5624 hdr->sh_type = SHT_MIPS_IFACE;
5625 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5627 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5629 hdr->sh_type = SHT_MIPS_CONTENT;
5630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5631 /* The sh_info field is set in final_write_processing. */
5633 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5635 hdr->sh_type = SHT_MIPS_OPTIONS;
5636 hdr->sh_entsize = 1;
5637 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5639 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5640 hdr->sh_type = SHT_MIPS_DWARF;
5641 else if (strcmp (name, ".MIPS.symlib") == 0)
5643 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5644 /* The sh_link and sh_info fields are set in
5645 final_write_processing. */
5647 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5648 || strncmp (name, ".MIPS.post_rel",
5649 sizeof ".MIPS.post_rel" - 1) == 0)
5651 hdr->sh_type = SHT_MIPS_EVENTS;
5652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5653 /* The sh_link field is set in final_write_processing. */
5655 else if (strcmp (name, ".msym") == 0)
5657 hdr->sh_type = SHT_MIPS_MSYM;
5658 hdr->sh_flags |= SHF_ALLOC;
5659 hdr->sh_entsize = 8;
5662 /* In the unlikely event a special section is empty it has to lose its
5663 special meaning. This may happen e.g. when using `strip' with the
5664 "--only-keep-debug" option. */
5665 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5666 hdr->sh_type = sh_type;
5668 /* The generic elf_fake_sections will set up REL_HDR using the default
5669 kind of relocations. We used to set up a second header for the
5670 non-default kind of relocations here, but only NewABI would use
5671 these, and the IRIX ld doesn't like resulting empty RELA sections.
5672 Thus we create those header only on demand now. */
5674 return TRUE;
5677 /* Given a BFD section, try to locate the corresponding ELF section
5678 index. This is used by both the 32-bit and the 64-bit ABI.
5679 Actually, it's not clear to me that the 64-bit ABI supports these,
5680 but for non-PIC objects we will certainly want support for at least
5681 the .scommon section. */
5683 bfd_boolean
5684 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5685 asection *sec, int *retval)
5687 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5689 *retval = SHN_MIPS_SCOMMON;
5690 return TRUE;
5692 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5694 *retval = SHN_MIPS_ACOMMON;
5695 return TRUE;
5697 return FALSE;
5700 /* Hook called by the linker routine which adds symbols from an object
5701 file. We must handle the special MIPS section numbers here. */
5703 bfd_boolean
5704 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5705 Elf_Internal_Sym *sym, const char **namep,
5706 flagword *flagsp ATTRIBUTE_UNUSED,
5707 asection **secp, bfd_vma *valp)
5709 if (SGI_COMPAT (abfd)
5710 && (abfd->flags & DYNAMIC) != 0
5711 && strcmp (*namep, "_rld_new_interface") == 0)
5713 /* Skip IRIX5 rld entry name. */
5714 *namep = NULL;
5715 return TRUE;
5718 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5719 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5720 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5721 a magic symbol resolved by the linker, we ignore this bogus definition
5722 of _gp_disp. New ABI objects do not suffer from this problem so this
5723 is not done for them. */
5724 if (!NEWABI_P(abfd)
5725 && (sym->st_shndx == SHN_ABS)
5726 && (strcmp (*namep, "_gp_disp") == 0))
5728 *namep = NULL;
5729 return TRUE;
5732 switch (sym->st_shndx)
5734 case SHN_COMMON:
5735 /* Common symbols less than the GP size are automatically
5736 treated as SHN_MIPS_SCOMMON symbols. */
5737 if (sym->st_size > elf_gp_size (abfd)
5738 || IRIX_COMPAT (abfd) == ict_irix6)
5739 break;
5740 /* Fall through. */
5741 case SHN_MIPS_SCOMMON:
5742 *secp = bfd_make_section_old_way (abfd, ".scommon");
5743 (*secp)->flags |= SEC_IS_COMMON;
5744 *valp = sym->st_size;
5745 break;
5747 case SHN_MIPS_TEXT:
5748 /* This section is used in a shared object. */
5749 if (elf_tdata (abfd)->elf_text_section == NULL)
5751 asymbol *elf_text_symbol;
5752 asection *elf_text_section;
5753 bfd_size_type amt = sizeof (asection);
5755 elf_text_section = bfd_zalloc (abfd, amt);
5756 if (elf_text_section == NULL)
5757 return FALSE;
5759 amt = sizeof (asymbol);
5760 elf_text_symbol = bfd_zalloc (abfd, amt);
5761 if (elf_text_symbol == NULL)
5762 return FALSE;
5764 /* Initialize the section. */
5766 elf_tdata (abfd)->elf_text_section = elf_text_section;
5767 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5769 elf_text_section->symbol = elf_text_symbol;
5770 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5772 elf_text_section->name = ".text";
5773 elf_text_section->flags = SEC_NO_FLAGS;
5774 elf_text_section->output_section = NULL;
5775 elf_text_section->owner = abfd;
5776 elf_text_symbol->name = ".text";
5777 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5778 elf_text_symbol->section = elf_text_section;
5780 /* This code used to do *secp = bfd_und_section_ptr if
5781 info->shared. I don't know why, and that doesn't make sense,
5782 so I took it out. */
5783 *secp = elf_tdata (abfd)->elf_text_section;
5784 break;
5786 case SHN_MIPS_ACOMMON:
5787 /* Fall through. XXX Can we treat this as allocated data? */
5788 case SHN_MIPS_DATA:
5789 /* This section is used in a shared object. */
5790 if (elf_tdata (abfd)->elf_data_section == NULL)
5792 asymbol *elf_data_symbol;
5793 asection *elf_data_section;
5794 bfd_size_type amt = sizeof (asection);
5796 elf_data_section = bfd_zalloc (abfd, amt);
5797 if (elf_data_section == NULL)
5798 return FALSE;
5800 amt = sizeof (asymbol);
5801 elf_data_symbol = bfd_zalloc (abfd, amt);
5802 if (elf_data_symbol == NULL)
5803 return FALSE;
5805 /* Initialize the section. */
5807 elf_tdata (abfd)->elf_data_section = elf_data_section;
5808 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5810 elf_data_section->symbol = elf_data_symbol;
5811 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5813 elf_data_section->name = ".data";
5814 elf_data_section->flags = SEC_NO_FLAGS;
5815 elf_data_section->output_section = NULL;
5816 elf_data_section->owner = abfd;
5817 elf_data_symbol->name = ".data";
5818 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5819 elf_data_symbol->section = elf_data_section;
5821 /* This code used to do *secp = bfd_und_section_ptr if
5822 info->shared. I don't know why, and that doesn't make sense,
5823 so I took it out. */
5824 *secp = elf_tdata (abfd)->elf_data_section;
5825 break;
5827 case SHN_MIPS_SUNDEFINED:
5828 *secp = bfd_und_section_ptr;
5829 break;
5832 if (SGI_COMPAT (abfd)
5833 && ! info->shared
5834 && info->hash->creator == abfd->xvec
5835 && strcmp (*namep, "__rld_obj_head") == 0)
5837 struct elf_link_hash_entry *h;
5838 struct bfd_link_hash_entry *bh;
5840 /* Mark __rld_obj_head as dynamic. */
5841 bh = NULL;
5842 if (! (_bfd_generic_link_add_one_symbol
5843 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5844 get_elf_backend_data (abfd)->collect, &bh)))
5845 return FALSE;
5847 h = (struct elf_link_hash_entry *) bh;
5848 h->non_elf = 0;
5849 h->def_regular = 1;
5850 h->type = STT_OBJECT;
5852 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5853 return FALSE;
5855 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5858 /* If this is a mips16 text symbol, add 1 to the value to make it
5859 odd. This will cause something like .word SYM to come up with
5860 the right value when it is loaded into the PC. */
5861 if (sym->st_other == STO_MIPS16)
5862 ++*valp;
5864 return TRUE;
5867 /* This hook function is called before the linker writes out a global
5868 symbol. We mark symbols as small common if appropriate. This is
5869 also where we undo the increment of the value for a mips16 symbol. */
5871 bfd_boolean
5872 _bfd_mips_elf_link_output_symbol_hook
5873 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5874 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5875 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5877 /* If we see a common symbol, which implies a relocatable link, then
5878 if a symbol was small common in an input file, mark it as small
5879 common in the output file. */
5880 if (sym->st_shndx == SHN_COMMON
5881 && strcmp (input_sec->name, ".scommon") == 0)
5882 sym->st_shndx = SHN_MIPS_SCOMMON;
5884 if (sym->st_other == STO_MIPS16)
5885 sym->st_value &= ~1;
5887 return TRUE;
5890 /* Functions for the dynamic linker. */
5892 /* Create dynamic sections when linking against a dynamic object. */
5894 bfd_boolean
5895 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5897 struct elf_link_hash_entry *h;
5898 struct bfd_link_hash_entry *bh;
5899 flagword flags;
5900 register asection *s;
5901 const char * const *namep;
5902 struct mips_elf_link_hash_table *htab;
5904 htab = mips_elf_hash_table (info);
5905 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5906 | SEC_LINKER_CREATED | SEC_READONLY);
5908 /* The psABI requires a read-only .dynamic section, but the VxWorks
5909 EABI doesn't. */
5910 if (!htab->is_vxworks)
5912 s = bfd_get_section_by_name (abfd, ".dynamic");
5913 if (s != NULL)
5915 if (! bfd_set_section_flags (abfd, s, flags))
5916 return FALSE;
5920 /* We need to create .got section. */
5921 if (! mips_elf_create_got_section (abfd, info, FALSE))
5922 return FALSE;
5924 if (! mips_elf_rel_dyn_section (info, TRUE))
5925 return FALSE;
5927 /* Create .stub section. */
5928 if (bfd_get_section_by_name (abfd,
5929 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5931 s = bfd_make_section_with_flags (abfd,
5932 MIPS_ELF_STUB_SECTION_NAME (abfd),
5933 flags | SEC_CODE);
5934 if (s == NULL
5935 || ! bfd_set_section_alignment (abfd, s,
5936 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5937 return FALSE;
5940 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5941 && !info->shared
5942 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5944 s = bfd_make_section_with_flags (abfd, ".rld_map",
5945 flags &~ (flagword) SEC_READONLY);
5946 if (s == NULL
5947 || ! bfd_set_section_alignment (abfd, s,
5948 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5949 return FALSE;
5952 /* On IRIX5, we adjust add some additional symbols and change the
5953 alignments of several sections. There is no ABI documentation
5954 indicating that this is necessary on IRIX6, nor any evidence that
5955 the linker takes such action. */
5956 if (IRIX_COMPAT (abfd) == ict_irix5)
5958 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5960 bh = NULL;
5961 if (! (_bfd_generic_link_add_one_symbol
5962 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5963 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5964 return FALSE;
5966 h = (struct elf_link_hash_entry *) bh;
5967 h->non_elf = 0;
5968 h->def_regular = 1;
5969 h->type = STT_SECTION;
5971 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5972 return FALSE;
5975 /* We need to create a .compact_rel section. */
5976 if (SGI_COMPAT (abfd))
5978 if (!mips_elf_create_compact_rel_section (abfd, info))
5979 return FALSE;
5982 /* Change alignments of some sections. */
5983 s = bfd_get_section_by_name (abfd, ".hash");
5984 if (s != NULL)
5985 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5986 s = bfd_get_section_by_name (abfd, ".dynsym");
5987 if (s != NULL)
5988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5989 s = bfd_get_section_by_name (abfd, ".dynstr");
5990 if (s != NULL)
5991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5992 s = bfd_get_section_by_name (abfd, ".reginfo");
5993 if (s != NULL)
5994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5995 s = bfd_get_section_by_name (abfd, ".dynamic");
5996 if (s != NULL)
5997 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6000 if (!info->shared)
6002 const char *name;
6004 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6005 bh = NULL;
6006 if (!(_bfd_generic_link_add_one_symbol
6007 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6008 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6009 return FALSE;
6011 h = (struct elf_link_hash_entry *) bh;
6012 h->non_elf = 0;
6013 h->def_regular = 1;
6014 h->type = STT_SECTION;
6016 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6017 return FALSE;
6019 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6021 /* __rld_map is a four byte word located in the .data section
6022 and is filled in by the rtld to contain a pointer to
6023 the _r_debug structure. Its symbol value will be set in
6024 _bfd_mips_elf_finish_dynamic_symbol. */
6025 s = bfd_get_section_by_name (abfd, ".rld_map");
6026 BFD_ASSERT (s != NULL);
6028 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6029 bh = NULL;
6030 if (!(_bfd_generic_link_add_one_symbol
6031 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6032 get_elf_backend_data (abfd)->collect, &bh)))
6033 return FALSE;
6035 h = (struct elf_link_hash_entry *) bh;
6036 h->non_elf = 0;
6037 h->def_regular = 1;
6038 h->type = STT_OBJECT;
6040 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6041 return FALSE;
6045 if (htab->is_vxworks)
6047 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6048 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6049 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6050 return FALSE;
6052 /* Cache the sections created above. */
6053 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6054 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6055 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6056 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6057 if (!htab->sdynbss
6058 || (!htab->srelbss && !info->shared)
6059 || !htab->srelplt
6060 || !htab->splt)
6061 abort ();
6063 /* Do the usual VxWorks handling. */
6064 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6065 return FALSE;
6067 /* Work out the PLT sizes. */
6068 if (info->shared)
6070 htab->plt_header_size
6071 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6072 htab->plt_entry_size
6073 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6075 else
6077 htab->plt_header_size
6078 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6079 htab->plt_entry_size
6080 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6084 return TRUE;
6087 /* Look through the relocs for a section during the first phase, and
6088 allocate space in the global offset table. */
6090 bfd_boolean
6091 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6092 asection *sec, const Elf_Internal_Rela *relocs)
6094 const char *name;
6095 bfd *dynobj;
6096 Elf_Internal_Shdr *symtab_hdr;
6097 struct elf_link_hash_entry **sym_hashes;
6098 struct mips_got_info *g;
6099 size_t extsymoff;
6100 const Elf_Internal_Rela *rel;
6101 const Elf_Internal_Rela *rel_end;
6102 asection *sgot;
6103 asection *sreloc;
6104 const struct elf_backend_data *bed;
6105 struct mips_elf_link_hash_table *htab;
6107 if (info->relocatable)
6108 return TRUE;
6110 htab = mips_elf_hash_table (info);
6111 dynobj = elf_hash_table (info)->dynobj;
6112 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6113 sym_hashes = elf_sym_hashes (abfd);
6114 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6116 /* Check for the mips16 stub sections. */
6118 name = bfd_get_section_name (abfd, sec);
6119 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6121 unsigned long r_symndx;
6123 /* Look at the relocation information to figure out which symbol
6124 this is for. */
6126 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6128 if (r_symndx < extsymoff
6129 || sym_hashes[r_symndx - extsymoff] == NULL)
6131 asection *o;
6133 /* This stub is for a local symbol. This stub will only be
6134 needed if there is some relocation in this BFD, other
6135 than a 16 bit function call, which refers to this symbol. */
6136 for (o = abfd->sections; o != NULL; o = o->next)
6138 Elf_Internal_Rela *sec_relocs;
6139 const Elf_Internal_Rela *r, *rend;
6141 /* We can ignore stub sections when looking for relocs. */
6142 if ((o->flags & SEC_RELOC) == 0
6143 || o->reloc_count == 0
6144 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6145 sizeof FN_STUB - 1) == 0
6146 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6147 sizeof CALL_STUB - 1) == 0
6148 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6149 sizeof CALL_FP_STUB - 1) == 0)
6150 continue;
6152 sec_relocs
6153 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6154 info->keep_memory);
6155 if (sec_relocs == NULL)
6156 return FALSE;
6158 rend = sec_relocs + o->reloc_count;
6159 for (r = sec_relocs; r < rend; r++)
6160 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6161 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6162 break;
6164 if (elf_section_data (o)->relocs != sec_relocs)
6165 free (sec_relocs);
6167 if (r < rend)
6168 break;
6171 if (o == NULL)
6173 /* There is no non-call reloc for this stub, so we do
6174 not need it. Since this function is called before
6175 the linker maps input sections to output sections, we
6176 can easily discard it by setting the SEC_EXCLUDE
6177 flag. */
6178 sec->flags |= SEC_EXCLUDE;
6179 return TRUE;
6182 /* Record this stub in an array of local symbol stubs for
6183 this BFD. */
6184 if (elf_tdata (abfd)->local_stubs == NULL)
6186 unsigned long symcount;
6187 asection **n;
6188 bfd_size_type amt;
6190 if (elf_bad_symtab (abfd))
6191 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6192 else
6193 symcount = symtab_hdr->sh_info;
6194 amt = symcount * sizeof (asection *);
6195 n = bfd_zalloc (abfd, amt);
6196 if (n == NULL)
6197 return FALSE;
6198 elf_tdata (abfd)->local_stubs = n;
6201 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6203 /* We don't need to set mips16_stubs_seen in this case.
6204 That flag is used to see whether we need to look through
6205 the global symbol table for stubs. We don't need to set
6206 it here, because we just have a local stub. */
6208 else
6210 struct mips_elf_link_hash_entry *h;
6212 h = ((struct mips_elf_link_hash_entry *)
6213 sym_hashes[r_symndx - extsymoff]);
6215 while (h->root.root.type == bfd_link_hash_indirect
6216 || h->root.root.type == bfd_link_hash_warning)
6217 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6219 /* H is the symbol this stub is for. */
6221 h->fn_stub = sec;
6222 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6225 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6226 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6228 unsigned long r_symndx;
6229 struct mips_elf_link_hash_entry *h;
6230 asection **loc;
6232 /* Look at the relocation information to figure out which symbol
6233 this is for. */
6235 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6237 if (r_symndx < extsymoff
6238 || sym_hashes[r_symndx - extsymoff] == NULL)
6240 /* This stub was actually built for a static symbol defined
6241 in the same file. We assume that all static symbols in
6242 mips16 code are themselves mips16, so we can simply
6243 discard this stub. Since this function is called before
6244 the linker maps input sections to output sections, we can
6245 easily discard it by setting the SEC_EXCLUDE flag. */
6246 sec->flags |= SEC_EXCLUDE;
6247 return TRUE;
6250 h = ((struct mips_elf_link_hash_entry *)
6251 sym_hashes[r_symndx - extsymoff]);
6253 /* H is the symbol this stub is for. */
6255 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6256 loc = &h->call_fp_stub;
6257 else
6258 loc = &h->call_stub;
6260 /* If we already have an appropriate stub for this function, we
6261 don't need another one, so we can discard this one. Since
6262 this function is called before the linker maps input sections
6263 to output sections, we can easily discard it by setting the
6264 SEC_EXCLUDE flag. We can also discard this section if we
6265 happen to already know that this is a mips16 function; it is
6266 not necessary to check this here, as it is checked later, but
6267 it is slightly faster to check now. */
6268 if (*loc != NULL || h->root.other == STO_MIPS16)
6270 sec->flags |= SEC_EXCLUDE;
6271 return TRUE;
6274 *loc = sec;
6275 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6278 if (dynobj == NULL)
6280 sgot = NULL;
6281 g = NULL;
6283 else
6285 sgot = mips_elf_got_section (dynobj, FALSE);
6286 if (sgot == NULL)
6287 g = NULL;
6288 else
6290 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6291 g = mips_elf_section_data (sgot)->u.got_info;
6292 BFD_ASSERT (g != NULL);
6296 sreloc = NULL;
6297 bed = get_elf_backend_data (abfd);
6298 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6299 for (rel = relocs; rel < rel_end; ++rel)
6301 unsigned long r_symndx;
6302 unsigned int r_type;
6303 struct elf_link_hash_entry *h;
6305 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6306 r_type = ELF_R_TYPE (abfd, rel->r_info);
6308 if (r_symndx < extsymoff)
6309 h = NULL;
6310 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6312 (*_bfd_error_handler)
6313 (_("%B: Malformed reloc detected for section %s"),
6314 abfd, name);
6315 bfd_set_error (bfd_error_bad_value);
6316 return FALSE;
6318 else
6320 h = sym_hashes[r_symndx - extsymoff];
6322 /* This may be an indirect symbol created because of a version. */
6323 if (h != NULL)
6325 while (h->root.type == bfd_link_hash_indirect)
6326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6330 /* Some relocs require a global offset table. */
6331 if (dynobj == NULL || sgot == NULL)
6333 switch (r_type)
6335 case R_MIPS_GOT16:
6336 case R_MIPS_CALL16:
6337 case R_MIPS_CALL_HI16:
6338 case R_MIPS_CALL_LO16:
6339 case R_MIPS_GOT_HI16:
6340 case R_MIPS_GOT_LO16:
6341 case R_MIPS_GOT_PAGE:
6342 case R_MIPS_GOT_OFST:
6343 case R_MIPS_GOT_DISP:
6344 case R_MIPS_TLS_GOTTPREL:
6345 case R_MIPS_TLS_GD:
6346 case R_MIPS_TLS_LDM:
6347 if (dynobj == NULL)
6348 elf_hash_table (info)->dynobj = dynobj = abfd;
6349 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6350 return FALSE;
6351 g = mips_elf_got_info (dynobj, &sgot);
6352 if (htab->is_vxworks && !info->shared)
6354 (*_bfd_error_handler)
6355 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6356 abfd, (unsigned long) rel->r_offset);
6357 bfd_set_error (bfd_error_bad_value);
6358 return FALSE;
6360 break;
6362 case R_MIPS_32:
6363 case R_MIPS_REL32:
6364 case R_MIPS_64:
6365 /* In VxWorks executables, references to external symbols
6366 are handled using copy relocs or PLT stubs, so there's
6367 no need to add a dynamic relocation here. */
6368 if (dynobj == NULL
6369 && (info->shared || (h != NULL && !htab->is_vxworks))
6370 && (sec->flags & SEC_ALLOC) != 0)
6371 elf_hash_table (info)->dynobj = dynobj = abfd;
6372 break;
6374 default:
6375 break;
6379 if (h)
6381 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6383 /* Relocations against the special VxWorks __GOTT_BASE__ and
6384 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6385 room for them in .rela.dyn. */
6386 if (is_gott_symbol (info, h))
6388 if (sreloc == NULL)
6390 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6391 if (sreloc == NULL)
6392 return FALSE;
6394 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6397 else if (r_type == R_MIPS_CALL_LO16
6398 || r_type == R_MIPS_GOT_LO16
6399 || r_type == R_MIPS_GOT_DISP
6400 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6402 /* We may need a local GOT entry for this relocation. We
6403 don't count R_MIPS_GOT_PAGE because we can estimate the
6404 maximum number of pages needed by looking at the size of
6405 the segment. Similar comments apply to R_MIPS_GOT16 and
6406 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6407 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6408 R_MIPS_CALL_HI16 because these are always followed by an
6409 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6410 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6411 rel->r_addend, g, 0))
6412 return FALSE;
6415 switch (r_type)
6417 case R_MIPS_CALL16:
6418 if (h == NULL)
6420 (*_bfd_error_handler)
6421 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6422 abfd, (unsigned long) rel->r_offset);
6423 bfd_set_error (bfd_error_bad_value);
6424 return FALSE;
6426 /* Fall through. */
6428 case R_MIPS_CALL_HI16:
6429 case R_MIPS_CALL_LO16:
6430 if (h != NULL)
6432 /* VxWorks call relocations point the function's .got.plt
6433 entry, which will be allocated by adjust_dynamic_symbol.
6434 Otherwise, this symbol requires a global GOT entry. */
6435 if (!htab->is_vxworks
6436 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6437 return FALSE;
6439 /* We need a stub, not a plt entry for the undefined
6440 function. But we record it as if it needs plt. See
6441 _bfd_elf_adjust_dynamic_symbol. */
6442 h->needs_plt = 1;
6443 h->type = STT_FUNC;
6445 break;
6447 case R_MIPS_GOT_PAGE:
6448 /* If this is a global, overridable symbol, GOT_PAGE will
6449 decay to GOT_DISP, so we'll need a GOT entry for it. */
6450 if (h == NULL)
6451 break;
6452 else
6454 struct mips_elf_link_hash_entry *hmips =
6455 (struct mips_elf_link_hash_entry *) h;
6457 while (hmips->root.root.type == bfd_link_hash_indirect
6458 || hmips->root.root.type == bfd_link_hash_warning)
6459 hmips = (struct mips_elf_link_hash_entry *)
6460 hmips->root.root.u.i.link;
6462 if (hmips->root.def_regular
6463 && ! (info->shared && ! info->symbolic
6464 && ! hmips->root.forced_local))
6465 break;
6467 /* Fall through. */
6469 case R_MIPS_GOT16:
6470 case R_MIPS_GOT_HI16:
6471 case R_MIPS_GOT_LO16:
6472 case R_MIPS_GOT_DISP:
6473 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6474 return FALSE;
6475 break;
6477 case R_MIPS_TLS_GOTTPREL:
6478 if (info->shared)
6479 info->flags |= DF_STATIC_TLS;
6480 /* Fall through */
6482 case R_MIPS_TLS_LDM:
6483 if (r_type == R_MIPS_TLS_LDM)
6485 r_symndx = 0;
6486 h = NULL;
6488 /* Fall through */
6490 case R_MIPS_TLS_GD:
6491 /* This symbol requires a global offset table entry, or two
6492 for TLS GD relocations. */
6494 unsigned char flag = (r_type == R_MIPS_TLS_GD
6495 ? GOT_TLS_GD
6496 : r_type == R_MIPS_TLS_LDM
6497 ? GOT_TLS_LDM
6498 : GOT_TLS_IE);
6499 if (h != NULL)
6501 struct mips_elf_link_hash_entry *hmips =
6502 (struct mips_elf_link_hash_entry *) h;
6503 hmips->tls_type |= flag;
6505 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6506 return FALSE;
6508 else
6510 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6512 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6513 rel->r_addend, g, flag))
6514 return FALSE;
6517 break;
6519 case R_MIPS_32:
6520 case R_MIPS_REL32:
6521 case R_MIPS_64:
6522 /* In VxWorks executables, references to external symbols
6523 are handled using copy relocs or PLT stubs, so there's
6524 no need to add a .rela.dyn entry for this relocation. */
6525 if ((info->shared || (h != NULL && !htab->is_vxworks))
6526 && (sec->flags & SEC_ALLOC) != 0)
6528 if (sreloc == NULL)
6530 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6531 if (sreloc == NULL)
6532 return FALSE;
6534 if (info->shared)
6536 /* When creating a shared object, we must copy these
6537 reloc types into the output file as R_MIPS_REL32
6538 relocs. Make room for this reloc in .rel(a).dyn. */
6539 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6540 if (MIPS_ELF_READONLY_SECTION (sec))
6541 /* We tell the dynamic linker that there are
6542 relocations against the text segment. */
6543 info->flags |= DF_TEXTREL;
6545 else
6547 struct mips_elf_link_hash_entry *hmips;
6549 /* We only need to copy this reloc if the symbol is
6550 defined in a dynamic object. */
6551 hmips = (struct mips_elf_link_hash_entry *) h;
6552 ++hmips->possibly_dynamic_relocs;
6553 if (MIPS_ELF_READONLY_SECTION (sec))
6554 /* We need it to tell the dynamic linker if there
6555 are relocations against the text segment. */
6556 hmips->readonly_reloc = TRUE;
6559 /* Even though we don't directly need a GOT entry for
6560 this symbol, a symbol must have a dynamic symbol
6561 table index greater that DT_MIPS_GOTSYM if there are
6562 dynamic relocations against it. This does not apply
6563 to VxWorks, which does not have the usual coupling
6564 between global GOT entries and .dynsym entries. */
6565 if (h != NULL && !htab->is_vxworks)
6567 if (dynobj == NULL)
6568 elf_hash_table (info)->dynobj = dynobj = abfd;
6569 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6570 return FALSE;
6571 g = mips_elf_got_info (dynobj, &sgot);
6572 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6573 return FALSE;
6577 if (SGI_COMPAT (abfd))
6578 mips_elf_hash_table (info)->compact_rel_size +=
6579 sizeof (Elf32_External_crinfo);
6580 break;
6582 case R_MIPS_PC16:
6583 if (h)
6584 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6585 break;
6587 case R_MIPS_26:
6588 if (h)
6589 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6590 /* Fall through. */
6592 case R_MIPS_GPREL16:
6593 case R_MIPS_LITERAL:
6594 case R_MIPS_GPREL32:
6595 if (SGI_COMPAT (abfd))
6596 mips_elf_hash_table (info)->compact_rel_size +=
6597 sizeof (Elf32_External_crinfo);
6598 break;
6600 /* This relocation describes the C++ object vtable hierarchy.
6601 Reconstruct it for later use during GC. */
6602 case R_MIPS_GNU_VTINHERIT:
6603 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6604 return FALSE;
6605 break;
6607 /* This relocation describes which C++ vtable entries are actually
6608 used. Record for later use during GC. */
6609 case R_MIPS_GNU_VTENTRY:
6610 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6611 return FALSE;
6612 break;
6614 default:
6615 break;
6618 /* We must not create a stub for a symbol that has relocations
6619 related to taking the function's address. This doesn't apply to
6620 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6621 a normal .got entry. */
6622 if (!htab->is_vxworks && h != NULL)
6623 switch (r_type)
6625 default:
6626 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6627 break;
6628 case R_MIPS_CALL16:
6629 case R_MIPS_CALL_HI16:
6630 case R_MIPS_CALL_LO16:
6631 case R_MIPS_JALR:
6632 break;
6635 /* If this reloc is not a 16 bit call, and it has a global
6636 symbol, then we will need the fn_stub if there is one.
6637 References from a stub section do not count. */
6638 if (h != NULL
6639 && r_type != R_MIPS16_26
6640 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6641 sizeof FN_STUB - 1) != 0
6642 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6643 sizeof CALL_STUB - 1) != 0
6644 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6645 sizeof CALL_FP_STUB - 1) != 0)
6647 struct mips_elf_link_hash_entry *mh;
6649 mh = (struct mips_elf_link_hash_entry *) h;
6650 mh->need_fn_stub = TRUE;
6654 return TRUE;
6657 bfd_boolean
6658 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6659 struct bfd_link_info *link_info,
6660 bfd_boolean *again)
6662 Elf_Internal_Rela *internal_relocs;
6663 Elf_Internal_Rela *irel, *irelend;
6664 Elf_Internal_Shdr *symtab_hdr;
6665 bfd_byte *contents = NULL;
6666 size_t extsymoff;
6667 bfd_boolean changed_contents = FALSE;
6668 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6669 Elf_Internal_Sym *isymbuf = NULL;
6671 /* We are not currently changing any sizes, so only one pass. */
6672 *again = FALSE;
6674 if (link_info->relocatable)
6675 return TRUE;
6677 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6678 link_info->keep_memory);
6679 if (internal_relocs == NULL)
6680 return TRUE;
6682 irelend = internal_relocs + sec->reloc_count
6683 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6684 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6685 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6687 for (irel = internal_relocs; irel < irelend; irel++)
6689 bfd_vma symval;
6690 bfd_signed_vma sym_offset;
6691 unsigned int r_type;
6692 unsigned long r_symndx;
6693 asection *sym_sec;
6694 unsigned long instruction;
6696 /* Turn jalr into bgezal, and jr into beq, if they're marked
6697 with a JALR relocation, that indicate where they jump to.
6698 This saves some pipeline bubbles. */
6699 r_type = ELF_R_TYPE (abfd, irel->r_info);
6700 if (r_type != R_MIPS_JALR)
6701 continue;
6703 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6704 /* Compute the address of the jump target. */
6705 if (r_symndx >= extsymoff)
6707 struct mips_elf_link_hash_entry *h
6708 = ((struct mips_elf_link_hash_entry *)
6709 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6711 while (h->root.root.type == bfd_link_hash_indirect
6712 || h->root.root.type == bfd_link_hash_warning)
6713 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6715 /* If a symbol is undefined, or if it may be overridden,
6716 skip it. */
6717 if (! ((h->root.root.type == bfd_link_hash_defined
6718 || h->root.root.type == bfd_link_hash_defweak)
6719 && h->root.root.u.def.section)
6720 || (link_info->shared && ! link_info->symbolic
6721 && !h->root.forced_local))
6722 continue;
6724 sym_sec = h->root.root.u.def.section;
6725 if (sym_sec->output_section)
6726 symval = (h->root.root.u.def.value
6727 + sym_sec->output_section->vma
6728 + sym_sec->output_offset);
6729 else
6730 symval = h->root.root.u.def.value;
6732 else
6734 Elf_Internal_Sym *isym;
6736 /* Read this BFD's symbols if we haven't done so already. */
6737 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6739 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6740 if (isymbuf == NULL)
6741 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6742 symtab_hdr->sh_info, 0,
6743 NULL, NULL, NULL);
6744 if (isymbuf == NULL)
6745 goto relax_return;
6748 isym = isymbuf + r_symndx;
6749 if (isym->st_shndx == SHN_UNDEF)
6750 continue;
6751 else if (isym->st_shndx == SHN_ABS)
6752 sym_sec = bfd_abs_section_ptr;
6753 else if (isym->st_shndx == SHN_COMMON)
6754 sym_sec = bfd_com_section_ptr;
6755 else
6756 sym_sec
6757 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6758 symval = isym->st_value
6759 + sym_sec->output_section->vma
6760 + sym_sec->output_offset;
6763 /* Compute branch offset, from delay slot of the jump to the
6764 branch target. */
6765 sym_offset = (symval + irel->r_addend)
6766 - (sec_start + irel->r_offset + 4);
6768 /* Branch offset must be properly aligned. */
6769 if ((sym_offset & 3) != 0)
6770 continue;
6772 sym_offset >>= 2;
6774 /* Check that it's in range. */
6775 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6776 continue;
6778 /* Get the section contents if we haven't done so already. */
6779 if (contents == NULL)
6781 /* Get cached copy if it exists. */
6782 if (elf_section_data (sec)->this_hdr.contents != NULL)
6783 contents = elf_section_data (sec)->this_hdr.contents;
6784 else
6786 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6787 goto relax_return;
6791 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6793 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6794 if ((instruction & 0xfc1fffff) == 0x0000f809)
6795 instruction = 0x04110000;
6796 /* If it was jr <reg>, turn it into b <target>. */
6797 else if ((instruction & 0xfc1fffff) == 0x00000008)
6798 instruction = 0x10000000;
6799 else
6800 continue;
6802 instruction |= (sym_offset & 0xffff);
6803 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6804 changed_contents = TRUE;
6807 if (contents != NULL
6808 && elf_section_data (sec)->this_hdr.contents != contents)
6810 if (!changed_contents && !link_info->keep_memory)
6811 free (contents);
6812 else
6814 /* Cache the section contents for elf_link_input_bfd. */
6815 elf_section_data (sec)->this_hdr.contents = contents;
6818 return TRUE;
6820 relax_return:
6821 if (contents != NULL
6822 && elf_section_data (sec)->this_hdr.contents != contents)
6823 free (contents);
6824 return FALSE;
6827 /* Adjust a symbol defined by a dynamic object and referenced by a
6828 regular object. The current definition is in some section of the
6829 dynamic object, but we're not including those sections. We have to
6830 change the definition to something the rest of the link can
6831 understand. */
6833 bfd_boolean
6834 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6835 struct elf_link_hash_entry *h)
6837 bfd *dynobj;
6838 struct mips_elf_link_hash_entry *hmips;
6839 asection *s;
6840 struct mips_elf_link_hash_table *htab;
6842 htab = mips_elf_hash_table (info);
6843 dynobj = elf_hash_table (info)->dynobj;
6845 /* Make sure we know what is going on here. */
6846 BFD_ASSERT (dynobj != NULL
6847 && (h->needs_plt
6848 || h->u.weakdef != NULL
6849 || (h->def_dynamic
6850 && h->ref_regular
6851 && !h->def_regular)));
6853 /* If this symbol is defined in a dynamic object, we need to copy
6854 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6855 file. */
6856 hmips = (struct mips_elf_link_hash_entry *) h;
6857 if (! info->relocatable
6858 && hmips->possibly_dynamic_relocs != 0
6859 && (h->root.type == bfd_link_hash_defweak
6860 || !h->def_regular))
6862 mips_elf_allocate_dynamic_relocations
6863 (dynobj, info, hmips->possibly_dynamic_relocs);
6864 if (hmips->readonly_reloc)
6865 /* We tell the dynamic linker that there are relocations
6866 against the text segment. */
6867 info->flags |= DF_TEXTREL;
6870 /* For a function, create a stub, if allowed. */
6871 if (! hmips->no_fn_stub
6872 && h->needs_plt)
6874 if (! elf_hash_table (info)->dynamic_sections_created)
6875 return TRUE;
6877 /* If this symbol is not defined in a regular file, then set
6878 the symbol to the stub location. This is required to make
6879 function pointers compare as equal between the normal
6880 executable and the shared library. */
6881 if (!h->def_regular)
6883 /* We need .stub section. */
6884 s = bfd_get_section_by_name (dynobj,
6885 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6886 BFD_ASSERT (s != NULL);
6888 h->root.u.def.section = s;
6889 h->root.u.def.value = s->size;
6891 /* XXX Write this stub address somewhere. */
6892 h->plt.offset = s->size;
6894 /* Make room for this stub code. */
6895 s->size += htab->function_stub_size;
6897 /* The last half word of the stub will be filled with the index
6898 of this symbol in .dynsym section. */
6899 return TRUE;
6902 else if ((h->type == STT_FUNC)
6903 && !h->needs_plt)
6905 /* This will set the entry for this symbol in the GOT to 0, and
6906 the dynamic linker will take care of this. */
6907 h->root.u.def.value = 0;
6908 return TRUE;
6911 /* If this is a weak symbol, and there is a real definition, the
6912 processor independent code will have arranged for us to see the
6913 real definition first, and we can just use the same value. */
6914 if (h->u.weakdef != NULL)
6916 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6917 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6918 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6919 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6920 return TRUE;
6923 /* This is a reference to a symbol defined by a dynamic object which
6924 is not a function. */
6926 return TRUE;
6929 /* Likewise, for VxWorks. */
6931 bfd_boolean
6932 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6933 struct elf_link_hash_entry *h)
6935 bfd *dynobj;
6936 struct mips_elf_link_hash_entry *hmips;
6937 struct mips_elf_link_hash_table *htab;
6938 unsigned int power_of_two;
6940 htab = mips_elf_hash_table (info);
6941 dynobj = elf_hash_table (info)->dynobj;
6942 hmips = (struct mips_elf_link_hash_entry *) h;
6944 /* Make sure we know what is going on here. */
6945 BFD_ASSERT (dynobj != NULL
6946 && (h->needs_plt
6947 || h->needs_copy
6948 || h->u.weakdef != NULL
6949 || (h->def_dynamic
6950 && h->ref_regular
6951 && !h->def_regular)));
6953 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6954 either (a) we want to branch to the symbol or (b) we're linking an
6955 executable that needs a canonical function address. In the latter
6956 case, the canonical address will be the address of the executable's
6957 load stub. */
6958 if ((hmips->is_branch_target
6959 || (!info->shared
6960 && h->type == STT_FUNC
6961 && hmips->is_relocation_target))
6962 && h->def_dynamic
6963 && h->ref_regular
6964 && !h->def_regular
6965 && !h->forced_local)
6966 h->needs_plt = 1;
6968 /* Locally-binding symbols do not need a PLT stub; we can refer to
6969 the functions directly. */
6970 else if (h->needs_plt
6971 && (SYMBOL_CALLS_LOCAL (info, h)
6972 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6973 && h->root.type == bfd_link_hash_undefweak)))
6975 h->needs_plt = 0;
6976 return TRUE;
6979 if (h->needs_plt)
6981 /* If this is the first symbol to need a PLT entry, allocate room
6982 for the header, and for the header's .rela.plt.unloaded entries. */
6983 if (htab->splt->size == 0)
6985 htab->splt->size += htab->plt_header_size;
6986 if (!info->shared)
6987 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6990 /* Assign the next .plt entry to this symbol. */
6991 h->plt.offset = htab->splt->size;
6992 htab->splt->size += htab->plt_entry_size;
6994 /* If the output file has no definition of the symbol, set the
6995 symbol's value to the address of the stub. For executables,
6996 point at the PLT load stub rather than the lazy resolution stub;
6997 this stub will become the canonical function address. */
6998 if (!h->def_regular)
7000 h->root.u.def.section = htab->splt;
7001 h->root.u.def.value = h->plt.offset;
7002 if (!info->shared)
7003 h->root.u.def.value += 8;
7006 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7007 htab->sgotplt->size += 4;
7008 htab->srelplt->size += sizeof (Elf32_External_Rela);
7010 /* Make room for the .rela.plt.unloaded relocations. */
7011 if (!info->shared)
7012 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7014 return TRUE;
7017 /* If a function symbol is defined by a dynamic object, and we do not
7018 need a PLT stub for it, the symbol's value should be zero. */
7019 if (h->type == STT_FUNC
7020 && h->def_dynamic
7021 && h->ref_regular
7022 && !h->def_regular)
7024 h->root.u.def.value = 0;
7025 return TRUE;
7028 /* If this is a weak symbol, and there is a real definition, the
7029 processor independent code will have arranged for us to see the
7030 real definition first, and we can just use the same value. */
7031 if (h->u.weakdef != NULL)
7033 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7034 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7035 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7036 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7037 return TRUE;
7040 /* This is a reference to a symbol defined by a dynamic object which
7041 is not a function. */
7042 if (info->shared)
7043 return TRUE;
7045 /* We must allocate the symbol in our .dynbss section, which will
7046 become part of the .bss section of the executable. There will be
7047 an entry for this symbol in the .dynsym section. The dynamic
7048 object will contain position independent code, so all references
7049 from the dynamic object to this symbol will go through the global
7050 offset table. The dynamic linker will use the .dynsym entry to
7051 determine the address it must put in the global offset table, so
7052 both the dynamic object and the regular object will refer to the
7053 same memory location for the variable. */
7055 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7057 htab->srelbss->size += sizeof (Elf32_External_Rela);
7058 h->needs_copy = 1;
7061 /* We need to figure out the alignment required for this symbol. */
7062 power_of_two = bfd_log2 (h->size);
7063 if (power_of_two > 4)
7064 power_of_two = 4;
7066 /* Apply the required alignment. */
7067 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7068 (bfd_size_type) 1 << power_of_two);
7069 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7070 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7071 return FALSE;
7073 /* Define the symbol as being at this point in the section. */
7074 h->root.u.def.section = htab->sdynbss;
7075 h->root.u.def.value = htab->sdynbss->size;
7077 /* Increment the section size to make room for the symbol. */
7078 htab->sdynbss->size += h->size;
7080 return TRUE;
7083 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7084 The number might be exact or a worst-case estimate, depending on how
7085 much information is available to elf_backend_omit_section_dynsym at
7086 the current linking stage. */
7088 static bfd_size_type
7089 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7091 bfd_size_type count;
7093 count = 0;
7094 if (info->shared)
7096 asection *p;
7097 const struct elf_backend_data *bed;
7099 bed = get_elf_backend_data (output_bfd);
7100 for (p = output_bfd->sections; p ; p = p->next)
7101 if ((p->flags & SEC_EXCLUDE) == 0
7102 && (p->flags & SEC_ALLOC) != 0
7103 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7104 ++count;
7106 return count;
7109 /* This function is called after all the input files have been read,
7110 and the input sections have been assigned to output sections. We
7111 check for any mips16 stub sections that we can discard. */
7113 bfd_boolean
7114 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7115 struct bfd_link_info *info)
7117 asection *ri;
7119 bfd *dynobj;
7120 asection *s;
7121 struct mips_got_info *g;
7122 int i;
7123 bfd_size_type loadable_size = 0;
7124 bfd_size_type local_gotno;
7125 bfd_size_type dynsymcount;
7126 bfd *sub;
7127 struct mips_elf_count_tls_arg count_tls_arg;
7128 struct mips_elf_link_hash_table *htab;
7130 htab = mips_elf_hash_table (info);
7132 /* The .reginfo section has a fixed size. */
7133 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7134 if (ri != NULL)
7135 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7137 if (! (info->relocatable
7138 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7139 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7140 mips_elf_check_mips16_stubs, NULL);
7142 dynobj = elf_hash_table (info)->dynobj;
7143 if (dynobj == NULL)
7144 /* Relocatable links don't have it. */
7145 return TRUE;
7147 g = mips_elf_got_info (dynobj, &s);
7148 if (s == NULL)
7149 return TRUE;
7151 /* Calculate the total loadable size of the output. That
7152 will give us the maximum number of GOT_PAGE entries
7153 required. */
7154 for (sub = info->input_bfds; sub; sub = sub->link_next)
7156 asection *subsection;
7158 for (subsection = sub->sections;
7159 subsection;
7160 subsection = subsection->next)
7162 if ((subsection->flags & SEC_ALLOC) == 0)
7163 continue;
7164 loadable_size += ((subsection->size + 0xf)
7165 &~ (bfd_size_type) 0xf);
7169 /* There has to be a global GOT entry for every symbol with
7170 a dynamic symbol table index of DT_MIPS_GOTSYM or
7171 higher. Therefore, it make sense to put those symbols
7172 that need GOT entries at the end of the symbol table. We
7173 do that here. */
7174 if (! mips_elf_sort_hash_table (info, 1))
7175 return FALSE;
7177 if (g->global_gotsym != NULL)
7178 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7179 else
7180 /* If there are no global symbols, or none requiring
7181 relocations, then GLOBAL_GOTSYM will be NULL. */
7182 i = 0;
7184 /* Get a worst-case estimate of the number of dynamic symbols needed.
7185 At this point, dynsymcount does not account for section symbols
7186 and count_section_dynsyms may overestimate the number that will
7187 be needed. */
7188 dynsymcount = (elf_hash_table (info)->dynsymcount
7189 + count_section_dynsyms (output_bfd, info));
7191 /* Determine the size of one stub entry. */
7192 htab->function_stub_size = (dynsymcount > 0x10000
7193 ? MIPS_FUNCTION_STUB_BIG_SIZE
7194 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7196 /* In the worst case, we'll get one stub per dynamic symbol, plus
7197 one to account for the dummy entry at the end required by IRIX
7198 rld. */
7199 loadable_size += htab->function_stub_size * (i + 1);
7201 if (htab->is_vxworks)
7202 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7203 relocations against local symbols evaluate to "G", and the EABI does
7204 not include R_MIPS_GOT_PAGE. */
7205 local_gotno = 0;
7206 else
7207 /* Assume there are two loadable segments consisting of contiguous
7208 sections. Is 5 enough? */
7209 local_gotno = (loadable_size >> 16) + 5;
7211 g->local_gotno += local_gotno;
7212 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7214 g->global_gotno = i;
7215 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7217 /* We need to calculate tls_gotno for global symbols at this point
7218 instead of building it up earlier, to avoid doublecounting
7219 entries for one global symbol from multiple input files. */
7220 count_tls_arg.info = info;
7221 count_tls_arg.needed = 0;
7222 elf_link_hash_traverse (elf_hash_table (info),
7223 mips_elf_count_global_tls_entries,
7224 &count_tls_arg);
7225 g->tls_gotno += count_tls_arg.needed;
7226 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7228 mips_elf_resolve_final_got_entries (g);
7230 /* VxWorks does not support multiple GOTs. It initializes $gp to
7231 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7232 dynamic loader. */
7233 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7235 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7236 return FALSE;
7238 else
7240 /* Set up TLS entries for the first GOT. */
7241 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7242 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7245 return TRUE;
7248 /* Set the sizes of the dynamic sections. */
7250 bfd_boolean
7251 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7252 struct bfd_link_info *info)
7254 bfd *dynobj;
7255 asection *s, *sreldyn;
7256 bfd_boolean reltext;
7257 struct mips_elf_link_hash_table *htab;
7259 htab = mips_elf_hash_table (info);
7260 dynobj = elf_hash_table (info)->dynobj;
7261 BFD_ASSERT (dynobj != NULL);
7263 if (elf_hash_table (info)->dynamic_sections_created)
7265 /* Set the contents of the .interp section to the interpreter. */
7266 if (info->executable)
7268 s = bfd_get_section_by_name (dynobj, ".interp");
7269 BFD_ASSERT (s != NULL);
7270 s->size
7271 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7272 s->contents
7273 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7277 /* The check_relocs and adjust_dynamic_symbol entry points have
7278 determined the sizes of the various dynamic sections. Allocate
7279 memory for them. */
7280 reltext = FALSE;
7281 sreldyn = NULL;
7282 for (s = dynobj->sections; s != NULL; s = s->next)
7284 const char *name;
7286 /* It's OK to base decisions on the section name, because none
7287 of the dynobj section names depend upon the input files. */
7288 name = bfd_get_section_name (dynobj, s);
7290 if ((s->flags & SEC_LINKER_CREATED) == 0)
7291 continue;
7293 if (strncmp (name, ".rel", 4) == 0)
7295 if (s->size != 0)
7297 const char *outname;
7298 asection *target;
7300 /* If this relocation section applies to a read only
7301 section, then we probably need a DT_TEXTREL entry.
7302 If the relocation section is .rel(a).dyn, we always
7303 assert a DT_TEXTREL entry rather than testing whether
7304 there exists a relocation to a read only section or
7305 not. */
7306 outname = bfd_get_section_name (output_bfd,
7307 s->output_section);
7308 target = bfd_get_section_by_name (output_bfd, outname + 4);
7309 if ((target != NULL
7310 && (target->flags & SEC_READONLY) != 0
7311 && (target->flags & SEC_ALLOC) != 0)
7312 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7313 reltext = TRUE;
7315 /* We use the reloc_count field as a counter if we need
7316 to copy relocs into the output file. */
7317 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7318 s->reloc_count = 0;
7320 /* If combreloc is enabled, elf_link_sort_relocs() will
7321 sort relocations, but in a different way than we do,
7322 and before we're done creating relocations. Also, it
7323 will move them around between input sections'
7324 relocation's contents, so our sorting would be
7325 broken, so don't let it run. */
7326 info->combreloc = 0;
7329 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7331 /* Executables do not need a GOT. */
7332 if (info->shared)
7334 /* Allocate relocations for all but the reserved entries. */
7335 struct mips_got_info *g;
7336 unsigned int count;
7338 g = mips_elf_got_info (dynobj, NULL);
7339 count = (g->global_gotno
7340 + g->local_gotno
7341 - MIPS_RESERVED_GOTNO (info));
7342 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7345 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
7347 /* _bfd_mips_elf_always_size_sections() has already done
7348 most of the work, but some symbols may have been mapped
7349 to versions that we must now resolve in the got_entries
7350 hash tables. */
7351 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7352 struct mips_got_info *g = gg;
7353 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7354 unsigned int needed_relocs = 0;
7356 if (gg->next)
7358 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7359 set_got_offset_arg.info = info;
7361 /* NOTE 2005-02-03: How can this call, or the next, ever
7362 find any indirect entries to resolve? They were all
7363 resolved in mips_elf_multi_got. */
7364 mips_elf_resolve_final_got_entries (gg);
7365 for (g = gg->next; g && g->next != gg; g = g->next)
7367 unsigned int save_assign;
7369 mips_elf_resolve_final_got_entries (g);
7371 /* Assign offsets to global GOT entries. */
7372 save_assign = g->assigned_gotno;
7373 g->assigned_gotno = g->local_gotno;
7374 set_got_offset_arg.g = g;
7375 set_got_offset_arg.needed_relocs = 0;
7376 htab_traverse (g->got_entries,
7377 mips_elf_set_global_got_offset,
7378 &set_got_offset_arg);
7379 needed_relocs += set_got_offset_arg.needed_relocs;
7380 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7381 <= g->global_gotno);
7383 g->assigned_gotno = save_assign;
7384 if (info->shared)
7386 needed_relocs += g->local_gotno - g->assigned_gotno;
7387 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7388 + g->next->global_gotno
7389 + g->next->tls_gotno
7390 + MIPS_RESERVED_GOTNO (info));
7394 else
7396 struct mips_elf_count_tls_arg arg;
7397 arg.info = info;
7398 arg.needed = 0;
7400 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7401 &arg);
7402 elf_link_hash_traverse (elf_hash_table (info),
7403 mips_elf_count_global_tls_relocs,
7404 &arg);
7406 needed_relocs += arg.needed;
7409 if (needed_relocs)
7410 mips_elf_allocate_dynamic_relocations (dynobj, info,
7411 needed_relocs);
7413 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7415 /* IRIX rld assumes that the function stub isn't at the end
7416 of .text section. So put a dummy. XXX */
7417 s->size += htab->function_stub_size;
7419 else if (! info->shared
7420 && ! mips_elf_hash_table (info)->use_rld_obj_head
7421 && strncmp (name, ".rld_map", 8) == 0)
7423 /* We add a room for __rld_map. It will be filled in by the
7424 rtld to contain a pointer to the _r_debug structure. */
7425 s->size += 4;
7427 else if (SGI_COMPAT (output_bfd)
7428 && strncmp (name, ".compact_rel", 12) == 0)
7429 s->size += mips_elf_hash_table (info)->compact_rel_size;
7430 else if (strncmp (name, ".init", 5) != 0
7431 && s != htab->sgotplt
7432 && s != htab->splt)
7434 /* It's not one of our sections, so don't allocate space. */
7435 continue;
7438 if (s->size == 0)
7440 s->flags |= SEC_EXCLUDE;
7441 continue;
7444 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7445 continue;
7447 /* Allocate memory for this section last, since we may increase its
7448 size above. */
7449 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7451 sreldyn = s;
7452 continue;
7455 /* Allocate memory for the section contents. */
7456 s->contents = bfd_zalloc (dynobj, s->size);
7457 if (s->contents == NULL)
7459 bfd_set_error (bfd_error_no_memory);
7460 return FALSE;
7464 /* Allocate memory for the .rel(a).dyn section. */
7465 if (sreldyn != NULL)
7467 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7468 if (sreldyn->contents == NULL)
7470 bfd_set_error (bfd_error_no_memory);
7471 return FALSE;
7475 if (elf_hash_table (info)->dynamic_sections_created)
7477 /* Add some entries to the .dynamic section. We fill in the
7478 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7479 must add the entries now so that we get the correct size for
7480 the .dynamic section. The DT_DEBUG entry is filled in by the
7481 dynamic linker and used by the debugger. */
7482 if (! info->shared)
7484 /* SGI object has the equivalence of DT_DEBUG in the
7485 DT_MIPS_RLD_MAP entry. */
7486 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7487 return FALSE;
7488 if (!SGI_COMPAT (output_bfd))
7490 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7491 return FALSE;
7494 else
7496 /* Shared libraries on traditional mips have DT_DEBUG. */
7497 if (!SGI_COMPAT (output_bfd))
7499 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7500 return FALSE;
7504 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7505 info->flags |= DF_TEXTREL;
7507 if ((info->flags & DF_TEXTREL) != 0)
7509 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7510 return FALSE;
7512 /* Clear the DF_TEXTREL flag. It will be set again if we
7513 write out an actual text relocation; we may not, because
7514 at this point we do not know whether e.g. any .eh_frame
7515 absolute relocations have been converted to PC-relative. */
7516 info->flags &= ~DF_TEXTREL;
7519 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7520 return FALSE;
7522 if (htab->is_vxworks)
7524 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7525 use any of the DT_MIPS_* tags. */
7526 if (mips_elf_rel_dyn_section (info, FALSE))
7528 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7529 return FALSE;
7531 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7532 return FALSE;
7534 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7535 return FALSE;
7537 if (htab->splt->size > 0)
7539 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7540 return FALSE;
7542 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7543 return FALSE;
7545 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7546 return FALSE;
7549 else
7551 if (mips_elf_rel_dyn_section (info, FALSE))
7553 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7554 return FALSE;
7556 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7557 return FALSE;
7559 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7560 return FALSE;
7563 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7564 return FALSE;
7566 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7567 return FALSE;
7569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7570 return FALSE;
7572 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7573 return FALSE;
7575 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7576 return FALSE;
7578 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7579 return FALSE;
7581 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7582 return FALSE;
7584 if (IRIX_COMPAT (dynobj) == ict_irix5
7585 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7586 return FALSE;
7588 if (IRIX_COMPAT (dynobj) == ict_irix6
7589 && (bfd_get_section_by_name
7590 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7591 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7592 return FALSE;
7596 return TRUE;
7599 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7600 Adjust its R_ADDEND field so that it is correct for the output file.
7601 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7602 and sections respectively; both use symbol indexes. */
7604 static void
7605 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7606 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7607 asection **local_sections, Elf_Internal_Rela *rel)
7609 unsigned int r_type, r_symndx;
7610 Elf_Internal_Sym *sym;
7611 asection *sec;
7613 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7615 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7616 if (r_type == R_MIPS16_GPREL
7617 || r_type == R_MIPS_GPREL16
7618 || r_type == R_MIPS_GPREL32
7619 || r_type == R_MIPS_LITERAL)
7621 rel->r_addend += _bfd_get_gp_value (input_bfd);
7622 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7625 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7626 sym = local_syms + r_symndx;
7628 /* Adjust REL's addend to account for section merging. */
7629 if (!info->relocatable)
7631 sec = local_sections[r_symndx];
7632 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7635 /* This would normally be done by the rela_normal code in elflink.c. */
7636 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7637 rel->r_addend += local_sections[r_symndx]->output_offset;
7641 /* Relocate a MIPS ELF section. */
7643 bfd_boolean
7644 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7645 bfd *input_bfd, asection *input_section,
7646 bfd_byte *contents, Elf_Internal_Rela *relocs,
7647 Elf_Internal_Sym *local_syms,
7648 asection **local_sections)
7650 Elf_Internal_Rela *rel;
7651 const Elf_Internal_Rela *relend;
7652 bfd_vma addend = 0;
7653 bfd_boolean use_saved_addend_p = FALSE;
7654 const struct elf_backend_data *bed;
7656 bed = get_elf_backend_data (output_bfd);
7657 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7658 for (rel = relocs; rel < relend; ++rel)
7660 const char *name;
7661 bfd_vma value = 0;
7662 reloc_howto_type *howto;
7663 bfd_boolean require_jalx;
7664 /* TRUE if the relocation is a RELA relocation, rather than a
7665 REL relocation. */
7666 bfd_boolean rela_relocation_p = TRUE;
7667 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7668 const char *msg;
7670 /* Find the relocation howto for this relocation. */
7671 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7673 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7674 64-bit code, but make sure all their addresses are in the
7675 lowermost or uppermost 32-bit section of the 64-bit address
7676 space. Thus, when they use an R_MIPS_64 they mean what is
7677 usually meant by R_MIPS_32, with the exception that the
7678 stored value is sign-extended to 64 bits. */
7679 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7681 /* On big-endian systems, we need to lie about the position
7682 of the reloc. */
7683 if (bfd_big_endian (input_bfd))
7684 rel->r_offset += 4;
7686 else
7687 /* NewABI defaults to RELA relocations. */
7688 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7689 NEWABI_P (input_bfd)
7690 && (MIPS_RELOC_RELA_P
7691 (input_bfd, input_section,
7692 rel - relocs)));
7694 if (!use_saved_addend_p)
7696 Elf_Internal_Shdr *rel_hdr;
7698 /* If these relocations were originally of the REL variety,
7699 we must pull the addend out of the field that will be
7700 relocated. Otherwise, we simply use the contents of the
7701 RELA relocation. To determine which flavor or relocation
7702 this is, we depend on the fact that the INPUT_SECTION's
7703 REL_HDR is read before its REL_HDR2. */
7704 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7705 if ((size_t) (rel - relocs)
7706 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7707 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7708 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7710 bfd_byte *location = contents + rel->r_offset;
7712 /* Note that this is a REL relocation. */
7713 rela_relocation_p = FALSE;
7715 /* Get the addend, which is stored in the input file. */
7716 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7717 location);
7718 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7719 contents);
7720 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7721 location);
7723 addend &= howto->src_mask;
7725 /* For some kinds of relocations, the ADDEND is a
7726 combination of the addend stored in two different
7727 relocations. */
7728 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7729 || (r_type == R_MIPS_GOT16
7730 && mips_elf_local_relocation_p (input_bfd, rel,
7731 local_sections, FALSE)))
7733 bfd_vma l;
7734 const Elf_Internal_Rela *lo16_relocation;
7735 reloc_howto_type *lo16_howto;
7736 bfd_byte *lo16_location;
7737 int lo16_type;
7739 if (r_type == R_MIPS16_HI16)
7740 lo16_type = R_MIPS16_LO16;
7741 else
7742 lo16_type = R_MIPS_LO16;
7744 /* The combined value is the sum of the HI16 addend,
7745 left-shifted by sixteen bits, and the LO16
7746 addend, sign extended. (Usually, the code does
7747 a `lui' of the HI16 value, and then an `addiu' of
7748 the LO16 value.)
7750 Scan ahead to find a matching LO16 relocation.
7752 According to the MIPS ELF ABI, the R_MIPS_LO16
7753 relocation must be immediately following.
7754 However, for the IRIX6 ABI, the next relocation
7755 may be a composed relocation consisting of
7756 several relocations for the same address. In
7757 that case, the R_MIPS_LO16 relocation may occur
7758 as one of these. We permit a similar extension
7759 in general, as that is useful for GCC. */
7760 lo16_relocation = mips_elf_next_relocation (input_bfd,
7761 lo16_type,
7762 rel, relend);
7763 if (lo16_relocation == NULL)
7764 return FALSE;
7766 lo16_location = contents + lo16_relocation->r_offset;
7768 /* Obtain the addend kept there. */
7769 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7770 lo16_type, FALSE);
7771 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7772 lo16_location);
7773 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7774 input_bfd, contents);
7775 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7776 lo16_location);
7777 l &= lo16_howto->src_mask;
7778 l <<= lo16_howto->rightshift;
7779 l = _bfd_mips_elf_sign_extend (l, 16);
7781 addend <<= 16;
7783 /* Compute the combined addend. */
7784 addend += l;
7786 else
7787 addend <<= howto->rightshift;
7789 else
7790 addend = rel->r_addend;
7791 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7792 local_syms, local_sections, rel);
7795 if (info->relocatable)
7797 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7798 && bfd_big_endian (input_bfd))
7799 rel->r_offset -= 4;
7801 if (!rela_relocation_p && rel->r_addend)
7803 addend += rel->r_addend;
7804 if (r_type == R_MIPS_HI16
7805 || r_type == R_MIPS_GOT16)
7806 addend = mips_elf_high (addend);
7807 else if (r_type == R_MIPS_HIGHER)
7808 addend = mips_elf_higher (addend);
7809 else if (r_type == R_MIPS_HIGHEST)
7810 addend = mips_elf_highest (addend);
7811 else
7812 addend >>= howto->rightshift;
7814 /* We use the source mask, rather than the destination
7815 mask because the place to which we are writing will be
7816 source of the addend in the final link. */
7817 addend &= howto->src_mask;
7819 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7820 /* See the comment above about using R_MIPS_64 in the 32-bit
7821 ABI. Here, we need to update the addend. It would be
7822 possible to get away with just using the R_MIPS_32 reloc
7823 but for endianness. */
7825 bfd_vma sign_bits;
7826 bfd_vma low_bits;
7827 bfd_vma high_bits;
7829 if (addend & ((bfd_vma) 1 << 31))
7830 #ifdef BFD64
7831 sign_bits = ((bfd_vma) 1 << 32) - 1;
7832 #else
7833 sign_bits = -1;
7834 #endif
7835 else
7836 sign_bits = 0;
7838 /* If we don't know that we have a 64-bit type,
7839 do two separate stores. */
7840 if (bfd_big_endian (input_bfd))
7842 /* Store the sign-bits (which are most significant)
7843 first. */
7844 low_bits = sign_bits;
7845 high_bits = addend;
7847 else
7849 low_bits = addend;
7850 high_bits = sign_bits;
7852 bfd_put_32 (input_bfd, low_bits,
7853 contents + rel->r_offset);
7854 bfd_put_32 (input_bfd, high_bits,
7855 contents + rel->r_offset + 4);
7856 continue;
7859 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7860 input_bfd, input_section,
7861 contents, FALSE))
7862 return FALSE;
7865 /* Go on to the next relocation. */
7866 continue;
7869 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7870 relocations for the same offset. In that case we are
7871 supposed to treat the output of each relocation as the addend
7872 for the next. */
7873 if (rel + 1 < relend
7874 && rel->r_offset == rel[1].r_offset
7875 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7876 use_saved_addend_p = TRUE;
7877 else
7878 use_saved_addend_p = FALSE;
7880 /* Figure out what value we are supposed to relocate. */
7881 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7882 input_section, info, rel,
7883 addend, howto, local_syms,
7884 local_sections, &value,
7885 &name, &require_jalx,
7886 use_saved_addend_p))
7888 case bfd_reloc_continue:
7889 /* There's nothing to do. */
7890 continue;
7892 case bfd_reloc_undefined:
7893 /* mips_elf_calculate_relocation already called the
7894 undefined_symbol callback. There's no real point in
7895 trying to perform the relocation at this point, so we
7896 just skip ahead to the next relocation. */
7897 continue;
7899 case bfd_reloc_notsupported:
7900 msg = _("internal error: unsupported relocation error");
7901 info->callbacks->warning
7902 (info, msg, name, input_bfd, input_section, rel->r_offset);
7903 return FALSE;
7905 case bfd_reloc_overflow:
7906 if (use_saved_addend_p)
7907 /* Ignore overflow until we reach the last relocation for
7908 a given location. */
7910 else
7912 BFD_ASSERT (name != NULL);
7913 if (! ((*info->callbacks->reloc_overflow)
7914 (info, NULL, name, howto->name, (bfd_vma) 0,
7915 input_bfd, input_section, rel->r_offset)))
7916 return FALSE;
7918 break;
7920 case bfd_reloc_ok:
7921 break;
7923 default:
7924 abort ();
7925 break;
7928 /* If we've got another relocation for the address, keep going
7929 until we reach the last one. */
7930 if (use_saved_addend_p)
7932 addend = value;
7933 continue;
7936 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7937 /* See the comment above about using R_MIPS_64 in the 32-bit
7938 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7939 that calculated the right value. Now, however, we
7940 sign-extend the 32-bit result to 64-bits, and store it as a
7941 64-bit value. We are especially generous here in that we
7942 go to extreme lengths to support this usage on systems with
7943 only a 32-bit VMA. */
7945 bfd_vma sign_bits;
7946 bfd_vma low_bits;
7947 bfd_vma high_bits;
7949 if (value & ((bfd_vma) 1 << 31))
7950 #ifdef BFD64
7951 sign_bits = ((bfd_vma) 1 << 32) - 1;
7952 #else
7953 sign_bits = -1;
7954 #endif
7955 else
7956 sign_bits = 0;
7958 /* If we don't know that we have a 64-bit type,
7959 do two separate stores. */
7960 if (bfd_big_endian (input_bfd))
7962 /* Undo what we did above. */
7963 rel->r_offset -= 4;
7964 /* Store the sign-bits (which are most significant)
7965 first. */
7966 low_bits = sign_bits;
7967 high_bits = value;
7969 else
7971 low_bits = value;
7972 high_bits = sign_bits;
7974 bfd_put_32 (input_bfd, low_bits,
7975 contents + rel->r_offset);
7976 bfd_put_32 (input_bfd, high_bits,
7977 contents + rel->r_offset + 4);
7978 continue;
7981 /* Actually perform the relocation. */
7982 if (! mips_elf_perform_relocation (info, howto, rel, value,
7983 input_bfd, input_section,
7984 contents, require_jalx))
7985 return FALSE;
7988 return TRUE;
7991 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7992 adjust it appropriately now. */
7994 static void
7995 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7996 const char *name, Elf_Internal_Sym *sym)
7998 /* The linker script takes care of providing names and values for
7999 these, but we must place them into the right sections. */
8000 static const char* const text_section_symbols[] = {
8001 "_ftext",
8002 "_etext",
8003 "__dso_displacement",
8004 "__elf_header",
8005 "__program_header_table",
8006 NULL
8009 static const char* const data_section_symbols[] = {
8010 "_fdata",
8011 "_edata",
8012 "_end",
8013 "_fbss",
8014 NULL
8017 const char* const *p;
8018 int i;
8020 for (i = 0; i < 2; ++i)
8021 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8023 ++p)
8024 if (strcmp (*p, name) == 0)
8026 /* All of these symbols are given type STT_SECTION by the
8027 IRIX6 linker. */
8028 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8029 sym->st_other = STO_PROTECTED;
8031 /* The IRIX linker puts these symbols in special sections. */
8032 if (i == 0)
8033 sym->st_shndx = SHN_MIPS_TEXT;
8034 else
8035 sym->st_shndx = SHN_MIPS_DATA;
8037 break;
8041 /* Finish up dynamic symbol handling. We set the contents of various
8042 dynamic sections here. */
8044 bfd_boolean
8045 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8046 struct bfd_link_info *info,
8047 struct elf_link_hash_entry *h,
8048 Elf_Internal_Sym *sym)
8050 bfd *dynobj;
8051 asection *sgot;
8052 struct mips_got_info *g, *gg;
8053 const char *name;
8054 int idx;
8055 struct mips_elf_link_hash_table *htab;
8057 htab = mips_elf_hash_table (info);
8058 dynobj = elf_hash_table (info)->dynobj;
8060 if (h->plt.offset != MINUS_ONE)
8062 asection *s;
8063 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8065 /* This symbol has a stub. Set it up. */
8067 BFD_ASSERT (h->dynindx != -1);
8069 s = bfd_get_section_by_name (dynobj,
8070 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8071 BFD_ASSERT (s != NULL);
8073 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8074 || (h->dynindx <= 0xffff));
8076 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8077 sign extension at runtime in the stub, resulting in a negative
8078 index value. */
8079 if (h->dynindx & ~0x7fffffff)
8080 return FALSE;
8082 /* Fill the stub. */
8083 idx = 0;
8084 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8085 idx += 4;
8086 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8087 idx += 4;
8088 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8090 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8091 stub + idx);
8092 idx += 4;
8094 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8095 idx += 4;
8097 /* If a large stub is not required and sign extension is not a
8098 problem, then use legacy code in the stub. */
8099 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8100 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8101 else if (h->dynindx & ~0x7fff)
8102 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8103 else
8104 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8105 stub + idx);
8107 BFD_ASSERT (h->plt.offset <= s->size);
8108 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8110 /* Mark the symbol as undefined. plt.offset != -1 occurs
8111 only for the referenced symbol. */
8112 sym->st_shndx = SHN_UNDEF;
8114 /* The run-time linker uses the st_value field of the symbol
8115 to reset the global offset table entry for this external
8116 to its stub address when unlinking a shared object. */
8117 sym->st_value = (s->output_section->vma + s->output_offset
8118 + h->plt.offset);
8121 BFD_ASSERT (h->dynindx != -1
8122 || h->forced_local);
8124 sgot = mips_elf_got_section (dynobj, FALSE);
8125 BFD_ASSERT (sgot != NULL);
8126 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8127 g = mips_elf_section_data (sgot)->u.got_info;
8128 BFD_ASSERT (g != NULL);
8130 /* Run through the global symbol table, creating GOT entries for all
8131 the symbols that need them. */
8132 if (g->global_gotsym != NULL
8133 && h->dynindx >= g->global_gotsym->dynindx)
8135 bfd_vma offset;
8136 bfd_vma value;
8138 value = sym->st_value;
8139 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8140 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8143 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8145 struct mips_got_entry e, *p;
8146 bfd_vma entry;
8147 bfd_vma offset;
8149 gg = g;
8151 e.abfd = output_bfd;
8152 e.symndx = -1;
8153 e.d.h = (struct mips_elf_link_hash_entry *)h;
8154 e.tls_type = 0;
8156 for (g = g->next; g->next != gg; g = g->next)
8158 if (g->got_entries
8159 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8160 &e)))
8162 offset = p->gotidx;
8163 if (info->shared
8164 || (elf_hash_table (info)->dynamic_sections_created
8165 && p->d.h != NULL
8166 && p->d.h->root.def_dynamic
8167 && !p->d.h->root.def_regular))
8169 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8170 the various compatibility problems, it's easier to mock
8171 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8172 mips_elf_create_dynamic_relocation to calculate the
8173 appropriate addend. */
8174 Elf_Internal_Rela rel[3];
8176 memset (rel, 0, sizeof (rel));
8177 if (ABI_64_P (output_bfd))
8178 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8179 else
8180 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8181 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8183 entry = 0;
8184 if (! (mips_elf_create_dynamic_relocation
8185 (output_bfd, info, rel,
8186 e.d.h, NULL, sym->st_value, &entry, sgot)))
8187 return FALSE;
8189 else
8190 entry = sym->st_value;
8191 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8196 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8197 name = h->root.root.string;
8198 if (strcmp (name, "_DYNAMIC") == 0
8199 || h == elf_hash_table (info)->hgot)
8200 sym->st_shndx = SHN_ABS;
8201 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8202 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8204 sym->st_shndx = SHN_ABS;
8205 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8206 sym->st_value = 1;
8208 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8210 sym->st_shndx = SHN_ABS;
8211 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8212 sym->st_value = elf_gp (output_bfd);
8214 else if (SGI_COMPAT (output_bfd))
8216 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8217 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8219 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8220 sym->st_other = STO_PROTECTED;
8221 sym->st_value = 0;
8222 sym->st_shndx = SHN_MIPS_DATA;
8224 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8226 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8227 sym->st_other = STO_PROTECTED;
8228 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8229 sym->st_shndx = SHN_ABS;
8231 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8233 if (h->type == STT_FUNC)
8234 sym->st_shndx = SHN_MIPS_TEXT;
8235 else if (h->type == STT_OBJECT)
8236 sym->st_shndx = SHN_MIPS_DATA;
8240 /* Handle the IRIX6-specific symbols. */
8241 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8242 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8244 if (! info->shared)
8246 if (! mips_elf_hash_table (info)->use_rld_obj_head
8247 && (strcmp (name, "__rld_map") == 0
8248 || strcmp (name, "__RLD_MAP") == 0))
8250 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8251 BFD_ASSERT (s != NULL);
8252 sym->st_value = s->output_section->vma + s->output_offset;
8253 bfd_put_32 (output_bfd, 0, s->contents);
8254 if (mips_elf_hash_table (info)->rld_value == 0)
8255 mips_elf_hash_table (info)->rld_value = sym->st_value;
8257 else if (mips_elf_hash_table (info)->use_rld_obj_head
8258 && strcmp (name, "__rld_obj_head") == 0)
8260 /* IRIX6 does not use a .rld_map section. */
8261 if (IRIX_COMPAT (output_bfd) == ict_irix5
8262 || IRIX_COMPAT (output_bfd) == ict_none)
8263 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8264 != NULL);
8265 mips_elf_hash_table (info)->rld_value = sym->st_value;
8269 /* If this is a mips16 symbol, force the value to be even. */
8270 if (sym->st_other == STO_MIPS16)
8271 sym->st_value &= ~1;
8273 return TRUE;
8276 /* Likewise, for VxWorks. */
8278 bfd_boolean
8279 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8280 struct bfd_link_info *info,
8281 struct elf_link_hash_entry *h,
8282 Elf_Internal_Sym *sym)
8284 bfd *dynobj;
8285 asection *sgot;
8286 struct mips_got_info *g;
8287 struct mips_elf_link_hash_table *htab;
8289 htab = mips_elf_hash_table (info);
8290 dynobj = elf_hash_table (info)->dynobj;
8292 if (h->plt.offset != (bfd_vma) -1)
8294 bfd_byte *loc;
8295 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8296 Elf_Internal_Rela rel;
8297 static const bfd_vma *plt_entry;
8299 BFD_ASSERT (h->dynindx != -1);
8300 BFD_ASSERT (htab->splt != NULL);
8301 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8303 /* Calculate the address of the .plt entry. */
8304 plt_address = (htab->splt->output_section->vma
8305 + htab->splt->output_offset
8306 + h->plt.offset);
8308 /* Calculate the index of the entry. */
8309 plt_index = ((h->plt.offset - htab->plt_header_size)
8310 / htab->plt_entry_size);
8312 /* Calculate the address of the .got.plt entry. */
8313 got_address = (htab->sgotplt->output_section->vma
8314 + htab->sgotplt->output_offset
8315 + plt_index * 4);
8317 /* Calculate the offset of the .got.plt entry from
8318 _GLOBAL_OFFSET_TABLE_. */
8319 got_offset = mips_elf_gotplt_index (info, h);
8321 /* Calculate the offset for the branch at the start of the PLT
8322 entry. The branch jumps to the beginning of .plt. */
8323 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8325 /* Fill in the initial value of the .got.plt entry. */
8326 bfd_put_32 (output_bfd, plt_address,
8327 htab->sgotplt->contents + plt_index * 4);
8329 /* Find out where the .plt entry should go. */
8330 loc = htab->splt->contents + h->plt.offset;
8332 if (info->shared)
8334 plt_entry = mips_vxworks_shared_plt_entry;
8335 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8336 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8338 else
8340 bfd_vma got_address_high, got_address_low;
8342 plt_entry = mips_vxworks_exec_plt_entry;
8343 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8344 got_address_low = got_address & 0xffff;
8346 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8347 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8348 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8349 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8350 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8351 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8352 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8353 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8355 loc = (htab->srelplt2->contents
8356 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8358 /* Emit a relocation for the .got.plt entry. */
8359 rel.r_offset = got_address;
8360 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8361 rel.r_addend = h->plt.offset;
8362 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8364 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8365 loc += sizeof (Elf32_External_Rela);
8366 rel.r_offset = plt_address + 8;
8367 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8368 rel.r_addend = got_offset;
8369 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8371 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8372 loc += sizeof (Elf32_External_Rela);
8373 rel.r_offset += 4;
8374 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8375 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8378 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8379 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8380 rel.r_offset = got_address;
8381 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8382 rel.r_addend = 0;
8383 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8385 if (!h->def_regular)
8386 sym->st_shndx = SHN_UNDEF;
8389 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8391 sgot = mips_elf_got_section (dynobj, FALSE);
8392 BFD_ASSERT (sgot != NULL);
8393 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8394 g = mips_elf_section_data (sgot)->u.got_info;
8395 BFD_ASSERT (g != NULL);
8397 /* See if this symbol has an entry in the GOT. */
8398 if (g->global_gotsym != NULL
8399 && h->dynindx >= g->global_gotsym->dynindx)
8401 bfd_vma offset;
8402 Elf_Internal_Rela outrel;
8403 bfd_byte *loc;
8404 asection *s;
8406 /* Install the symbol value in the GOT. */
8407 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8408 R_MIPS_GOT16, info);
8409 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8411 /* Add a dynamic relocation for it. */
8412 s = mips_elf_rel_dyn_section (info, FALSE);
8413 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8414 outrel.r_offset = (sgot->output_section->vma
8415 + sgot->output_offset
8416 + offset);
8417 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8418 outrel.r_addend = 0;
8419 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8422 /* Emit a copy reloc, if needed. */
8423 if (h->needs_copy)
8425 Elf_Internal_Rela rel;
8427 BFD_ASSERT (h->dynindx != -1);
8429 rel.r_offset = (h->root.u.def.section->output_section->vma
8430 + h->root.u.def.section->output_offset
8431 + h->root.u.def.value);
8432 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8433 rel.r_addend = 0;
8434 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8435 htab->srelbss->contents
8436 + (htab->srelbss->reloc_count
8437 * sizeof (Elf32_External_Rela)));
8438 ++htab->srelbss->reloc_count;
8441 /* If this is a mips16 symbol, force the value to be even. */
8442 if (sym->st_other == STO_MIPS16)
8443 sym->st_value &= ~1;
8445 return TRUE;
8448 /* Install the PLT header for a VxWorks executable and finalize the
8449 contents of .rela.plt.unloaded. */
8451 static void
8452 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8454 Elf_Internal_Rela rela;
8455 bfd_byte *loc;
8456 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8457 static const bfd_vma *plt_entry;
8458 struct mips_elf_link_hash_table *htab;
8460 htab = mips_elf_hash_table (info);
8461 plt_entry = mips_vxworks_exec_plt0_entry;
8463 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8464 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8465 + htab->root.hgot->root.u.def.section->output_offset
8466 + htab->root.hgot->root.u.def.value);
8468 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8469 got_value_low = got_value & 0xffff;
8471 /* Calculate the address of the PLT header. */
8472 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8474 /* Install the PLT header. */
8475 loc = htab->splt->contents;
8476 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8477 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8478 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8479 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8480 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8481 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8483 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8484 loc = htab->srelplt2->contents;
8485 rela.r_offset = plt_address;
8486 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8487 rela.r_addend = 0;
8488 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8489 loc += sizeof (Elf32_External_Rela);
8491 /* Output the relocation for the following addiu of
8492 %lo(_GLOBAL_OFFSET_TABLE_). */
8493 rela.r_offset += 4;
8494 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8495 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8496 loc += sizeof (Elf32_External_Rela);
8498 /* Fix up the remaining relocations. They may have the wrong
8499 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8500 in which symbols were output. */
8501 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8503 Elf_Internal_Rela rel;
8505 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8506 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8507 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8508 loc += sizeof (Elf32_External_Rela);
8510 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8511 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8512 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8513 loc += sizeof (Elf32_External_Rela);
8515 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8516 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8517 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8518 loc += sizeof (Elf32_External_Rela);
8522 /* Install the PLT header for a VxWorks shared library. */
8524 static void
8525 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8527 unsigned int i;
8528 struct mips_elf_link_hash_table *htab;
8530 htab = mips_elf_hash_table (info);
8532 /* We just need to copy the entry byte-by-byte. */
8533 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8534 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8535 htab->splt->contents + i * 4);
8538 /* Finish up the dynamic sections. */
8540 bfd_boolean
8541 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8542 struct bfd_link_info *info)
8544 bfd *dynobj;
8545 asection *sdyn;
8546 asection *sgot;
8547 struct mips_got_info *gg, *g;
8548 struct mips_elf_link_hash_table *htab;
8550 htab = mips_elf_hash_table (info);
8551 dynobj = elf_hash_table (info)->dynobj;
8553 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8555 sgot = mips_elf_got_section (dynobj, FALSE);
8556 if (sgot == NULL)
8557 gg = g = NULL;
8558 else
8560 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8561 gg = mips_elf_section_data (sgot)->u.got_info;
8562 BFD_ASSERT (gg != NULL);
8563 g = mips_elf_got_for_ibfd (gg, output_bfd);
8564 BFD_ASSERT (g != NULL);
8567 if (elf_hash_table (info)->dynamic_sections_created)
8569 bfd_byte *b;
8570 int dyn_to_skip = 0, dyn_skipped = 0;
8572 BFD_ASSERT (sdyn != NULL);
8573 BFD_ASSERT (g != NULL);
8575 for (b = sdyn->contents;
8576 b < sdyn->contents + sdyn->size;
8577 b += MIPS_ELF_DYN_SIZE (dynobj))
8579 Elf_Internal_Dyn dyn;
8580 const char *name;
8581 size_t elemsize;
8582 asection *s;
8583 bfd_boolean swap_out_p;
8585 /* Read in the current dynamic entry. */
8586 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8588 /* Assume that we're going to modify it and write it out. */
8589 swap_out_p = TRUE;
8591 switch (dyn.d_tag)
8593 case DT_RELENT:
8594 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8595 break;
8597 case DT_RELAENT:
8598 BFD_ASSERT (htab->is_vxworks);
8599 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8600 break;
8602 case DT_STRSZ:
8603 /* Rewrite DT_STRSZ. */
8604 dyn.d_un.d_val =
8605 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8606 break;
8608 case DT_PLTGOT:
8609 name = ".got";
8610 if (htab->is_vxworks)
8612 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8613 of the ".got" section in DYNOBJ. */
8614 s = bfd_get_section_by_name (dynobj, name);
8615 BFD_ASSERT (s != NULL);
8616 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8618 else
8620 s = bfd_get_section_by_name (output_bfd, name);
8621 BFD_ASSERT (s != NULL);
8622 dyn.d_un.d_ptr = s->vma;
8624 break;
8626 case DT_MIPS_RLD_VERSION:
8627 dyn.d_un.d_val = 1; /* XXX */
8628 break;
8630 case DT_MIPS_FLAGS:
8631 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8632 break;
8634 case DT_MIPS_TIME_STAMP:
8636 time_t t;
8637 time (&t);
8638 dyn.d_un.d_val = t;
8640 break;
8642 case DT_MIPS_ICHECKSUM:
8643 /* XXX FIXME: */
8644 swap_out_p = FALSE;
8645 break;
8647 case DT_MIPS_IVERSION:
8648 /* XXX FIXME: */
8649 swap_out_p = FALSE;
8650 break;
8652 case DT_MIPS_BASE_ADDRESS:
8653 s = output_bfd->sections;
8654 BFD_ASSERT (s != NULL);
8655 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8656 break;
8658 case DT_MIPS_LOCAL_GOTNO:
8659 dyn.d_un.d_val = g->local_gotno;
8660 break;
8662 case DT_MIPS_UNREFEXTNO:
8663 /* The index into the dynamic symbol table which is the
8664 entry of the first external symbol that is not
8665 referenced within the same object. */
8666 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8667 break;
8669 case DT_MIPS_GOTSYM:
8670 if (gg->global_gotsym)
8672 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8673 break;
8675 /* In case if we don't have global got symbols we default
8676 to setting DT_MIPS_GOTSYM to the same value as
8677 DT_MIPS_SYMTABNO, so we just fall through. */
8679 case DT_MIPS_SYMTABNO:
8680 name = ".dynsym";
8681 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8682 s = bfd_get_section_by_name (output_bfd, name);
8683 BFD_ASSERT (s != NULL);
8685 dyn.d_un.d_val = s->size / elemsize;
8686 break;
8688 case DT_MIPS_HIPAGENO:
8689 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8690 break;
8692 case DT_MIPS_RLD_MAP:
8693 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8694 break;
8696 case DT_MIPS_OPTIONS:
8697 s = (bfd_get_section_by_name
8698 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8699 dyn.d_un.d_ptr = s->vma;
8700 break;
8702 case DT_RELASZ:
8703 BFD_ASSERT (htab->is_vxworks);
8704 /* The count does not include the JUMP_SLOT relocations. */
8705 if (htab->srelplt)
8706 dyn.d_un.d_val -= htab->srelplt->size;
8707 break;
8709 case DT_PLTREL:
8710 BFD_ASSERT (htab->is_vxworks);
8711 dyn.d_un.d_val = DT_RELA;
8712 break;
8714 case DT_PLTRELSZ:
8715 BFD_ASSERT (htab->is_vxworks);
8716 dyn.d_un.d_val = htab->srelplt->size;
8717 break;
8719 case DT_JMPREL:
8720 BFD_ASSERT (htab->is_vxworks);
8721 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8722 + htab->srelplt->output_offset);
8723 break;
8725 case DT_TEXTREL:
8726 /* If we didn't need any text relocations after all, delete
8727 the dynamic tag. */
8728 if (!(info->flags & DF_TEXTREL))
8730 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8731 swap_out_p = FALSE;
8733 break;
8735 case DT_FLAGS:
8736 /* If we didn't need any text relocations after all, clear
8737 DF_TEXTREL from DT_FLAGS. */
8738 if (!(info->flags & DF_TEXTREL))
8739 dyn.d_un.d_val &= ~DF_TEXTREL;
8740 else
8741 swap_out_p = FALSE;
8742 break;
8744 default:
8745 swap_out_p = FALSE;
8746 break;
8749 if (swap_out_p || dyn_skipped)
8750 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8751 (dynobj, &dyn, b - dyn_skipped);
8753 if (dyn_to_skip)
8755 dyn_skipped += dyn_to_skip;
8756 dyn_to_skip = 0;
8760 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8761 if (dyn_skipped > 0)
8762 memset (b - dyn_skipped, 0, dyn_skipped);
8765 if (sgot != NULL && sgot->size > 0)
8767 if (htab->is_vxworks)
8769 /* The first entry of the global offset table points to the
8770 ".dynamic" section. The second is initialized by the
8771 loader and contains the shared library identifier.
8772 The third is also initialized by the loader and points
8773 to the lazy resolution stub. */
8774 MIPS_ELF_PUT_WORD (output_bfd,
8775 sdyn->output_offset + sdyn->output_section->vma,
8776 sgot->contents);
8777 MIPS_ELF_PUT_WORD (output_bfd, 0,
8778 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8779 MIPS_ELF_PUT_WORD (output_bfd, 0,
8780 sgot->contents
8781 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8783 else
8785 /* The first entry of the global offset table will be filled at
8786 runtime. The second entry will be used by some runtime loaders.
8787 This isn't the case of IRIX rld. */
8788 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8789 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8790 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8794 if (sgot != NULL)
8795 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8796 = MIPS_ELF_GOT_SIZE (output_bfd);
8798 /* Generate dynamic relocations for the non-primary gots. */
8799 if (gg != NULL && gg->next)
8801 Elf_Internal_Rela rel[3];
8802 bfd_vma addend = 0;
8804 memset (rel, 0, sizeof (rel));
8805 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8807 for (g = gg->next; g->next != gg; g = g->next)
8809 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8810 + g->next->tls_gotno;
8812 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8813 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8814 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8815 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8817 if (! info->shared)
8818 continue;
8820 while (index < g->assigned_gotno)
8822 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8823 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8824 if (!(mips_elf_create_dynamic_relocation
8825 (output_bfd, info, rel, NULL,
8826 bfd_abs_section_ptr,
8827 0, &addend, sgot)))
8828 return FALSE;
8829 BFD_ASSERT (addend == 0);
8834 /* The generation of dynamic relocations for the non-primary gots
8835 adds more dynamic relocations. We cannot count them until
8836 here. */
8838 if (elf_hash_table (info)->dynamic_sections_created)
8840 bfd_byte *b;
8841 bfd_boolean swap_out_p;
8843 BFD_ASSERT (sdyn != NULL);
8845 for (b = sdyn->contents;
8846 b < sdyn->contents + sdyn->size;
8847 b += MIPS_ELF_DYN_SIZE (dynobj))
8849 Elf_Internal_Dyn dyn;
8850 asection *s;
8852 /* Read in the current dynamic entry. */
8853 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8855 /* Assume that we're going to modify it and write it out. */
8856 swap_out_p = TRUE;
8858 switch (dyn.d_tag)
8860 case DT_RELSZ:
8861 /* Reduce DT_RELSZ to account for any relocations we
8862 decided not to make. This is for the n64 irix rld,
8863 which doesn't seem to apply any relocations if there
8864 are trailing null entries. */
8865 s = mips_elf_rel_dyn_section (info, FALSE);
8866 dyn.d_un.d_val = (s->reloc_count
8867 * (ABI_64_P (output_bfd)
8868 ? sizeof (Elf64_Mips_External_Rel)
8869 : sizeof (Elf32_External_Rel)));
8870 break;
8872 default:
8873 swap_out_p = FALSE;
8874 break;
8877 if (swap_out_p)
8878 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8879 (dynobj, &dyn, b);
8884 asection *s;
8885 Elf32_compact_rel cpt;
8887 if (SGI_COMPAT (output_bfd))
8889 /* Write .compact_rel section out. */
8890 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8891 if (s != NULL)
8893 cpt.id1 = 1;
8894 cpt.num = s->reloc_count;
8895 cpt.id2 = 2;
8896 cpt.offset = (s->output_section->filepos
8897 + sizeof (Elf32_External_compact_rel));
8898 cpt.reserved0 = 0;
8899 cpt.reserved1 = 0;
8900 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8901 ((Elf32_External_compact_rel *)
8902 s->contents));
8904 /* Clean up a dummy stub function entry in .text. */
8905 s = bfd_get_section_by_name (dynobj,
8906 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8907 if (s != NULL)
8909 file_ptr dummy_offset;
8911 BFD_ASSERT (s->size >= htab->function_stub_size);
8912 dummy_offset = s->size - htab->function_stub_size;
8913 memset (s->contents + dummy_offset, 0,
8914 htab->function_stub_size);
8919 /* The psABI says that the dynamic relocations must be sorted in
8920 increasing order of r_symndx. The VxWorks EABI doesn't require
8921 this, and because the code below handles REL rather than RELA
8922 relocations, using it for VxWorks would be outright harmful. */
8923 if (!htab->is_vxworks)
8925 s = mips_elf_rel_dyn_section (info, FALSE);
8926 if (s != NULL
8927 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8929 reldyn_sorting_bfd = output_bfd;
8931 if (ABI_64_P (output_bfd))
8932 qsort ((Elf64_External_Rel *) s->contents + 1,
8933 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8934 sort_dynamic_relocs_64);
8935 else
8936 qsort ((Elf32_External_Rel *) s->contents + 1,
8937 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8938 sort_dynamic_relocs);
8943 if (htab->is_vxworks && htab->splt->size > 0)
8945 if (info->shared)
8946 mips_vxworks_finish_shared_plt (output_bfd, info);
8947 else
8948 mips_vxworks_finish_exec_plt (output_bfd, info);
8950 return TRUE;
8954 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8956 static void
8957 mips_set_isa_flags (bfd *abfd)
8959 flagword val;
8961 switch (bfd_get_mach (abfd))
8963 default:
8964 case bfd_mach_mips3000:
8965 val = E_MIPS_ARCH_1;
8966 break;
8968 case bfd_mach_mips3900:
8969 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8970 break;
8972 case bfd_mach_mips6000:
8973 val = E_MIPS_ARCH_2;
8974 break;
8976 case bfd_mach_mips4000:
8977 case bfd_mach_mips4300:
8978 case bfd_mach_mips4400:
8979 case bfd_mach_mips4600:
8980 val = E_MIPS_ARCH_3;
8981 break;
8983 case bfd_mach_mips4010:
8984 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8985 break;
8987 case bfd_mach_mips4100:
8988 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8989 break;
8991 case bfd_mach_mips4111:
8992 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8993 break;
8995 case bfd_mach_mips4120:
8996 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8997 break;
8999 case bfd_mach_mips4650:
9000 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9001 break;
9003 case bfd_mach_mips5400:
9004 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9005 break;
9007 case bfd_mach_mips5500:
9008 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9009 break;
9011 case bfd_mach_mips9000:
9012 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9013 break;
9015 case bfd_mach_mips5000:
9016 case bfd_mach_mips7000:
9017 case bfd_mach_mips8000:
9018 case bfd_mach_mips10000:
9019 case bfd_mach_mips12000:
9020 val = E_MIPS_ARCH_4;
9021 break;
9023 case bfd_mach_mips5:
9024 val = E_MIPS_ARCH_5;
9025 break;
9027 case bfd_mach_mips_sb1:
9028 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9029 break;
9031 case bfd_mach_mipsisa32:
9032 val = E_MIPS_ARCH_32;
9033 break;
9035 case bfd_mach_mipsisa64:
9036 val = E_MIPS_ARCH_64;
9037 break;
9039 case bfd_mach_mipsisa32r2:
9040 val = E_MIPS_ARCH_32R2;
9041 break;
9043 case bfd_mach_mipsisa64r2:
9044 val = E_MIPS_ARCH_64R2;
9045 break;
9047 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9048 elf_elfheader (abfd)->e_flags |= val;
9053 /* The final processing done just before writing out a MIPS ELF object
9054 file. This gets the MIPS architecture right based on the machine
9055 number. This is used by both the 32-bit and the 64-bit ABI. */
9057 void
9058 _bfd_mips_elf_final_write_processing (bfd *abfd,
9059 bfd_boolean linker ATTRIBUTE_UNUSED)
9061 unsigned int i;
9062 Elf_Internal_Shdr **hdrpp;
9063 const char *name;
9064 asection *sec;
9066 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9067 is nonzero. This is for compatibility with old objects, which used
9068 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9069 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9070 mips_set_isa_flags (abfd);
9072 /* Set the sh_info field for .gptab sections and other appropriate
9073 info for each special section. */
9074 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9075 i < elf_numsections (abfd);
9076 i++, hdrpp++)
9078 switch ((*hdrpp)->sh_type)
9080 case SHT_MIPS_MSYM:
9081 case SHT_MIPS_LIBLIST:
9082 sec = bfd_get_section_by_name (abfd, ".dynstr");
9083 if (sec != NULL)
9084 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9085 break;
9087 case SHT_MIPS_GPTAB:
9088 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9089 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9090 BFD_ASSERT (name != NULL
9091 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
9092 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9093 BFD_ASSERT (sec != NULL);
9094 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9095 break;
9097 case SHT_MIPS_CONTENT:
9098 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9099 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9100 BFD_ASSERT (name != NULL
9101 && strncmp (name, ".MIPS.content",
9102 sizeof ".MIPS.content" - 1) == 0);
9103 sec = bfd_get_section_by_name (abfd,
9104 name + sizeof ".MIPS.content" - 1);
9105 BFD_ASSERT (sec != NULL);
9106 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9107 break;
9109 case SHT_MIPS_SYMBOL_LIB:
9110 sec = bfd_get_section_by_name (abfd, ".dynsym");
9111 if (sec != NULL)
9112 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9113 sec = bfd_get_section_by_name (abfd, ".liblist");
9114 if (sec != NULL)
9115 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9116 break;
9118 case SHT_MIPS_EVENTS:
9119 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9120 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9121 BFD_ASSERT (name != NULL);
9122 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9123 sec = bfd_get_section_by_name (abfd,
9124 name + sizeof ".MIPS.events" - 1);
9125 else
9127 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9128 sizeof ".MIPS.post_rel" - 1) == 0);
9129 sec = bfd_get_section_by_name (abfd,
9130 (name
9131 + sizeof ".MIPS.post_rel" - 1));
9133 BFD_ASSERT (sec != NULL);
9134 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9135 break;
9141 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9142 segments. */
9145 _bfd_mips_elf_additional_program_headers (bfd *abfd)
9147 asection *s;
9148 int ret = 0;
9150 /* See if we need a PT_MIPS_REGINFO segment. */
9151 s = bfd_get_section_by_name (abfd, ".reginfo");
9152 if (s && (s->flags & SEC_LOAD))
9153 ++ret;
9155 /* See if we need a PT_MIPS_OPTIONS segment. */
9156 if (IRIX_COMPAT (abfd) == ict_irix6
9157 && bfd_get_section_by_name (abfd,
9158 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9159 ++ret;
9161 /* See if we need a PT_MIPS_RTPROC segment. */
9162 if (IRIX_COMPAT (abfd) == ict_irix5
9163 && bfd_get_section_by_name (abfd, ".dynamic")
9164 && bfd_get_section_by_name (abfd, ".mdebug"))
9165 ++ret;
9167 return ret;
9170 /* Modify the segment map for an IRIX5 executable. */
9172 bfd_boolean
9173 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9174 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9176 asection *s;
9177 struct elf_segment_map *m, **pm;
9178 bfd_size_type amt;
9180 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9181 segment. */
9182 s = bfd_get_section_by_name (abfd, ".reginfo");
9183 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9185 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9186 if (m->p_type == PT_MIPS_REGINFO)
9187 break;
9188 if (m == NULL)
9190 amt = sizeof *m;
9191 m = bfd_zalloc (abfd, amt);
9192 if (m == NULL)
9193 return FALSE;
9195 m->p_type = PT_MIPS_REGINFO;
9196 m->count = 1;
9197 m->sections[0] = s;
9199 /* We want to put it after the PHDR and INTERP segments. */
9200 pm = &elf_tdata (abfd)->segment_map;
9201 while (*pm != NULL
9202 && ((*pm)->p_type == PT_PHDR
9203 || (*pm)->p_type == PT_INTERP))
9204 pm = &(*pm)->next;
9206 m->next = *pm;
9207 *pm = m;
9211 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9212 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9213 PT_MIPS_OPTIONS segment immediately following the program header
9214 table. */
9215 if (NEWABI_P (abfd)
9216 /* On non-IRIX6 new abi, we'll have already created a segment
9217 for this section, so don't create another. I'm not sure this
9218 is not also the case for IRIX 6, but I can't test it right
9219 now. */
9220 && IRIX_COMPAT (abfd) == ict_irix6)
9222 for (s = abfd->sections; s; s = s->next)
9223 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9224 break;
9226 if (s)
9228 struct elf_segment_map *options_segment;
9230 pm = &elf_tdata (abfd)->segment_map;
9231 while (*pm != NULL
9232 && ((*pm)->p_type == PT_PHDR
9233 || (*pm)->p_type == PT_INTERP))
9234 pm = &(*pm)->next;
9236 amt = sizeof (struct elf_segment_map);
9237 options_segment = bfd_zalloc (abfd, amt);
9238 options_segment->next = *pm;
9239 options_segment->p_type = PT_MIPS_OPTIONS;
9240 options_segment->p_flags = PF_R;
9241 options_segment->p_flags_valid = TRUE;
9242 options_segment->count = 1;
9243 options_segment->sections[0] = s;
9244 *pm = options_segment;
9247 else
9249 if (IRIX_COMPAT (abfd) == ict_irix5)
9251 /* If there are .dynamic and .mdebug sections, we make a room
9252 for the RTPROC header. FIXME: Rewrite without section names. */
9253 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9254 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9255 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9257 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9258 if (m->p_type == PT_MIPS_RTPROC)
9259 break;
9260 if (m == NULL)
9262 amt = sizeof *m;
9263 m = bfd_zalloc (abfd, amt);
9264 if (m == NULL)
9265 return FALSE;
9267 m->p_type = PT_MIPS_RTPROC;
9269 s = bfd_get_section_by_name (abfd, ".rtproc");
9270 if (s == NULL)
9272 m->count = 0;
9273 m->p_flags = 0;
9274 m->p_flags_valid = 1;
9276 else
9278 m->count = 1;
9279 m->sections[0] = s;
9282 /* We want to put it after the DYNAMIC segment. */
9283 pm = &elf_tdata (abfd)->segment_map;
9284 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9285 pm = &(*pm)->next;
9286 if (*pm != NULL)
9287 pm = &(*pm)->next;
9289 m->next = *pm;
9290 *pm = m;
9294 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9295 .dynstr, .dynsym, and .hash sections, and everything in
9296 between. */
9297 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9298 pm = &(*pm)->next)
9299 if ((*pm)->p_type == PT_DYNAMIC)
9300 break;
9301 m = *pm;
9302 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9304 /* For a normal mips executable the permissions for the PT_DYNAMIC
9305 segment are read, write and execute. We do that here since
9306 the code in elf.c sets only the read permission. This matters
9307 sometimes for the dynamic linker. */
9308 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9310 m->p_flags = PF_R | PF_W | PF_X;
9311 m->p_flags_valid = 1;
9314 if (m != NULL
9315 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9317 static const char *sec_names[] =
9319 ".dynamic", ".dynstr", ".dynsym", ".hash"
9321 bfd_vma low, high;
9322 unsigned int i, c;
9323 struct elf_segment_map *n;
9325 low = ~(bfd_vma) 0;
9326 high = 0;
9327 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9329 s = bfd_get_section_by_name (abfd, sec_names[i]);
9330 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9332 bfd_size_type sz;
9334 if (low > s->vma)
9335 low = s->vma;
9336 sz = s->size;
9337 if (high < s->vma + sz)
9338 high = s->vma + sz;
9342 c = 0;
9343 for (s = abfd->sections; s != NULL; s = s->next)
9344 if ((s->flags & SEC_LOAD) != 0
9345 && s->vma >= low
9346 && s->vma + s->size <= high)
9347 ++c;
9349 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9350 n = bfd_zalloc (abfd, amt);
9351 if (n == NULL)
9352 return FALSE;
9353 *n = *m;
9354 n->count = c;
9356 i = 0;
9357 for (s = abfd->sections; s != NULL; s = s->next)
9359 if ((s->flags & SEC_LOAD) != 0
9360 && s->vma >= low
9361 && s->vma + s->size <= high)
9363 n->sections[i] = s;
9364 ++i;
9368 *pm = n;
9372 return TRUE;
9375 /* Return the section that should be marked against GC for a given
9376 relocation. */
9378 asection *
9379 _bfd_mips_elf_gc_mark_hook (asection *sec,
9380 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9381 Elf_Internal_Rela *rel,
9382 struct elf_link_hash_entry *h,
9383 Elf_Internal_Sym *sym)
9385 /* ??? Do mips16 stub sections need to be handled special? */
9387 if (h != NULL)
9389 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9391 case R_MIPS_GNU_VTINHERIT:
9392 case R_MIPS_GNU_VTENTRY:
9393 break;
9395 default:
9396 switch (h->root.type)
9398 case bfd_link_hash_defined:
9399 case bfd_link_hash_defweak:
9400 return h->root.u.def.section;
9402 case bfd_link_hash_common:
9403 return h->root.u.c.p->section;
9405 default:
9406 break;
9410 else
9411 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9413 return NULL;
9416 /* Update the got entry reference counts for the section being removed. */
9418 bfd_boolean
9419 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9420 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9421 asection *sec ATTRIBUTE_UNUSED,
9422 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9424 #if 0
9425 Elf_Internal_Shdr *symtab_hdr;
9426 struct elf_link_hash_entry **sym_hashes;
9427 bfd_signed_vma *local_got_refcounts;
9428 const Elf_Internal_Rela *rel, *relend;
9429 unsigned long r_symndx;
9430 struct elf_link_hash_entry *h;
9432 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9433 sym_hashes = elf_sym_hashes (abfd);
9434 local_got_refcounts = elf_local_got_refcounts (abfd);
9436 relend = relocs + sec->reloc_count;
9437 for (rel = relocs; rel < relend; rel++)
9438 switch (ELF_R_TYPE (abfd, rel->r_info))
9440 case R_MIPS_GOT16:
9441 case R_MIPS_CALL16:
9442 case R_MIPS_CALL_HI16:
9443 case R_MIPS_CALL_LO16:
9444 case R_MIPS_GOT_HI16:
9445 case R_MIPS_GOT_LO16:
9446 case R_MIPS_GOT_DISP:
9447 case R_MIPS_GOT_PAGE:
9448 case R_MIPS_GOT_OFST:
9449 /* ??? It would seem that the existing MIPS code does no sort
9450 of reference counting or whatnot on its GOT and PLT entries,
9451 so it is not possible to garbage collect them at this time. */
9452 break;
9454 default:
9455 break;
9457 #endif
9459 return TRUE;
9462 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9463 hiding the old indirect symbol. Process additional relocation
9464 information. Also called for weakdefs, in which case we just let
9465 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9467 void
9468 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9469 struct elf_link_hash_entry *dir,
9470 struct elf_link_hash_entry *ind)
9472 struct mips_elf_link_hash_entry *dirmips, *indmips;
9474 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9476 if (ind->root.type != bfd_link_hash_indirect)
9477 return;
9479 dirmips = (struct mips_elf_link_hash_entry *) dir;
9480 indmips = (struct mips_elf_link_hash_entry *) ind;
9481 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9482 if (indmips->readonly_reloc)
9483 dirmips->readonly_reloc = TRUE;
9484 if (indmips->no_fn_stub)
9485 dirmips->no_fn_stub = TRUE;
9487 if (dirmips->tls_type == 0)
9488 dirmips->tls_type = indmips->tls_type;
9491 void
9492 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9493 struct elf_link_hash_entry *entry,
9494 bfd_boolean force_local)
9496 bfd *dynobj;
9497 asection *got;
9498 struct mips_got_info *g;
9499 struct mips_elf_link_hash_entry *h;
9501 h = (struct mips_elf_link_hash_entry *) entry;
9502 if (h->forced_local)
9503 return;
9504 h->forced_local = force_local;
9506 dynobj = elf_hash_table (info)->dynobj;
9507 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9508 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
9509 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9511 if (g->next)
9513 struct mips_got_entry e;
9514 struct mips_got_info *gg = g;
9516 /* Since we're turning what used to be a global symbol into a
9517 local one, bump up the number of local entries of each GOT
9518 that had an entry for it. This will automatically decrease
9519 the number of global entries, since global_gotno is actually
9520 the upper limit of global entries. */
9521 e.abfd = dynobj;
9522 e.symndx = -1;
9523 e.d.h = h;
9524 e.tls_type = 0;
9526 for (g = g->next; g != gg; g = g->next)
9527 if (htab_find (g->got_entries, &e))
9529 BFD_ASSERT (g->global_gotno > 0);
9530 g->local_gotno++;
9531 g->global_gotno--;
9534 /* If this was a global symbol forced into the primary GOT, we
9535 no longer need an entry for it. We can't release the entry
9536 at this point, but we must at least stop counting it as one
9537 of the symbols that required a forced got entry. */
9538 if (h->root.got.offset == 2)
9540 BFD_ASSERT (gg->assigned_gotno > 0);
9541 gg->assigned_gotno--;
9544 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9545 /* If we haven't got through GOT allocation yet, just bump up the
9546 number of local entries, as this symbol won't be counted as
9547 global. */
9548 g->local_gotno++;
9549 else if (h->root.got.offset == 1)
9551 /* If we're past non-multi-GOT allocation and this symbol had
9552 been marked for a global got entry, give it a local entry
9553 instead. */
9554 BFD_ASSERT (g->global_gotno > 0);
9555 g->local_gotno++;
9556 g->global_gotno--;
9560 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9563 #define PDR_SIZE 32
9565 bfd_boolean
9566 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9567 struct bfd_link_info *info)
9569 asection *o;
9570 bfd_boolean ret = FALSE;
9571 unsigned char *tdata;
9572 size_t i, skip;
9574 o = bfd_get_section_by_name (abfd, ".pdr");
9575 if (! o)
9576 return FALSE;
9577 if (o->size == 0)
9578 return FALSE;
9579 if (o->size % PDR_SIZE != 0)
9580 return FALSE;
9581 if (o->output_section != NULL
9582 && bfd_is_abs_section (o->output_section))
9583 return FALSE;
9585 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9586 if (! tdata)
9587 return FALSE;
9589 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9590 info->keep_memory);
9591 if (!cookie->rels)
9593 free (tdata);
9594 return FALSE;
9597 cookie->rel = cookie->rels;
9598 cookie->relend = cookie->rels + o->reloc_count;
9600 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9602 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9604 tdata[i] = 1;
9605 skip ++;
9609 if (skip != 0)
9611 mips_elf_section_data (o)->u.tdata = tdata;
9612 o->size -= skip * PDR_SIZE;
9613 ret = TRUE;
9615 else
9616 free (tdata);
9618 if (! info->keep_memory)
9619 free (cookie->rels);
9621 return ret;
9624 bfd_boolean
9625 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9627 if (strcmp (sec->name, ".pdr") == 0)
9628 return TRUE;
9629 return FALSE;
9632 bfd_boolean
9633 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9634 bfd_byte *contents)
9636 bfd_byte *to, *from, *end;
9637 int i;
9639 if (strcmp (sec->name, ".pdr") != 0)
9640 return FALSE;
9642 if (mips_elf_section_data (sec)->u.tdata == NULL)
9643 return FALSE;
9645 to = contents;
9646 end = contents + sec->size;
9647 for (from = contents, i = 0;
9648 from < end;
9649 from += PDR_SIZE, i++)
9651 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9652 continue;
9653 if (to != from)
9654 memcpy (to, from, PDR_SIZE);
9655 to += PDR_SIZE;
9657 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9658 sec->output_offset, sec->size);
9659 return TRUE;
9662 /* MIPS ELF uses a special find_nearest_line routine in order the
9663 handle the ECOFF debugging information. */
9665 struct mips_elf_find_line
9667 struct ecoff_debug_info d;
9668 struct ecoff_find_line i;
9671 bfd_boolean
9672 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9673 asymbol **symbols, bfd_vma offset,
9674 const char **filename_ptr,
9675 const char **functionname_ptr,
9676 unsigned int *line_ptr)
9678 asection *msec;
9680 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9681 filename_ptr, functionname_ptr,
9682 line_ptr))
9683 return TRUE;
9685 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9686 filename_ptr, functionname_ptr,
9687 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9688 &elf_tdata (abfd)->dwarf2_find_line_info))
9689 return TRUE;
9691 msec = bfd_get_section_by_name (abfd, ".mdebug");
9692 if (msec != NULL)
9694 flagword origflags;
9695 struct mips_elf_find_line *fi;
9696 const struct ecoff_debug_swap * const swap =
9697 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9699 /* If we are called during a link, mips_elf_final_link may have
9700 cleared the SEC_HAS_CONTENTS field. We force it back on here
9701 if appropriate (which it normally will be). */
9702 origflags = msec->flags;
9703 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9704 msec->flags |= SEC_HAS_CONTENTS;
9706 fi = elf_tdata (abfd)->find_line_info;
9707 if (fi == NULL)
9709 bfd_size_type external_fdr_size;
9710 char *fraw_src;
9711 char *fraw_end;
9712 struct fdr *fdr_ptr;
9713 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9715 fi = bfd_zalloc (abfd, amt);
9716 if (fi == NULL)
9718 msec->flags = origflags;
9719 return FALSE;
9722 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9724 msec->flags = origflags;
9725 return FALSE;
9728 /* Swap in the FDR information. */
9729 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9730 fi->d.fdr = bfd_alloc (abfd, amt);
9731 if (fi->d.fdr == NULL)
9733 msec->flags = origflags;
9734 return FALSE;
9736 external_fdr_size = swap->external_fdr_size;
9737 fdr_ptr = fi->d.fdr;
9738 fraw_src = (char *) fi->d.external_fdr;
9739 fraw_end = (fraw_src
9740 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9741 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9742 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9744 elf_tdata (abfd)->find_line_info = fi;
9746 /* Note that we don't bother to ever free this information.
9747 find_nearest_line is either called all the time, as in
9748 objdump -l, so the information should be saved, or it is
9749 rarely called, as in ld error messages, so the memory
9750 wasted is unimportant. Still, it would probably be a
9751 good idea for free_cached_info to throw it away. */
9754 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9755 &fi->i, filename_ptr, functionname_ptr,
9756 line_ptr))
9758 msec->flags = origflags;
9759 return TRUE;
9762 msec->flags = origflags;
9765 /* Fall back on the generic ELF find_nearest_line routine. */
9767 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9768 filename_ptr, functionname_ptr,
9769 line_ptr);
9772 bfd_boolean
9773 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9774 const char **filename_ptr,
9775 const char **functionname_ptr,
9776 unsigned int *line_ptr)
9778 bfd_boolean found;
9779 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9780 functionname_ptr, line_ptr,
9781 & elf_tdata (abfd)->dwarf2_find_line_info);
9782 return found;
9786 /* When are writing out the .options or .MIPS.options section,
9787 remember the bytes we are writing out, so that we can install the
9788 GP value in the section_processing routine. */
9790 bfd_boolean
9791 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9792 const void *location,
9793 file_ptr offset, bfd_size_type count)
9795 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9797 bfd_byte *c;
9799 if (elf_section_data (section) == NULL)
9801 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9802 section->used_by_bfd = bfd_zalloc (abfd, amt);
9803 if (elf_section_data (section) == NULL)
9804 return FALSE;
9806 c = mips_elf_section_data (section)->u.tdata;
9807 if (c == NULL)
9809 c = bfd_zalloc (abfd, section->size);
9810 if (c == NULL)
9811 return FALSE;
9812 mips_elf_section_data (section)->u.tdata = c;
9815 memcpy (c + offset, location, count);
9818 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9819 count);
9822 /* This is almost identical to bfd_generic_get_... except that some
9823 MIPS relocations need to be handled specially. Sigh. */
9825 bfd_byte *
9826 _bfd_elf_mips_get_relocated_section_contents
9827 (bfd *abfd,
9828 struct bfd_link_info *link_info,
9829 struct bfd_link_order *link_order,
9830 bfd_byte *data,
9831 bfd_boolean relocatable,
9832 asymbol **symbols)
9834 /* Get enough memory to hold the stuff */
9835 bfd *input_bfd = link_order->u.indirect.section->owner;
9836 asection *input_section = link_order->u.indirect.section;
9837 bfd_size_type sz;
9839 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9840 arelent **reloc_vector = NULL;
9841 long reloc_count;
9843 if (reloc_size < 0)
9844 goto error_return;
9846 reloc_vector = bfd_malloc (reloc_size);
9847 if (reloc_vector == NULL && reloc_size != 0)
9848 goto error_return;
9850 /* read in the section */
9851 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9852 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9853 goto error_return;
9855 reloc_count = bfd_canonicalize_reloc (input_bfd,
9856 input_section,
9857 reloc_vector,
9858 symbols);
9859 if (reloc_count < 0)
9860 goto error_return;
9862 if (reloc_count > 0)
9864 arelent **parent;
9865 /* for mips */
9866 int gp_found;
9867 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9870 struct bfd_hash_entry *h;
9871 struct bfd_link_hash_entry *lh;
9872 /* Skip all this stuff if we aren't mixing formats. */
9873 if (abfd && input_bfd
9874 && abfd->xvec == input_bfd->xvec)
9875 lh = 0;
9876 else
9878 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9879 lh = (struct bfd_link_hash_entry *) h;
9881 lookup:
9882 if (lh)
9884 switch (lh->type)
9886 case bfd_link_hash_undefined:
9887 case bfd_link_hash_undefweak:
9888 case bfd_link_hash_common:
9889 gp_found = 0;
9890 break;
9891 case bfd_link_hash_defined:
9892 case bfd_link_hash_defweak:
9893 gp_found = 1;
9894 gp = lh->u.def.value;
9895 break;
9896 case bfd_link_hash_indirect:
9897 case bfd_link_hash_warning:
9898 lh = lh->u.i.link;
9899 /* @@FIXME ignoring warning for now */
9900 goto lookup;
9901 case bfd_link_hash_new:
9902 default:
9903 abort ();
9906 else
9907 gp_found = 0;
9909 /* end mips */
9910 for (parent = reloc_vector; *parent != NULL; parent++)
9912 char *error_message = NULL;
9913 bfd_reloc_status_type r;
9915 /* Specific to MIPS: Deal with relocation types that require
9916 knowing the gp of the output bfd. */
9917 asymbol *sym = *(*parent)->sym_ptr_ptr;
9919 /* If we've managed to find the gp and have a special
9920 function for the relocation then go ahead, else default
9921 to the generic handling. */
9922 if (gp_found
9923 && (*parent)->howto->special_function
9924 == _bfd_mips_elf32_gprel16_reloc)
9925 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9926 input_section, relocatable,
9927 data, gp);
9928 else
9929 r = bfd_perform_relocation (input_bfd, *parent, data,
9930 input_section,
9931 relocatable ? abfd : NULL,
9932 &error_message);
9934 if (relocatable)
9936 asection *os = input_section->output_section;
9938 /* A partial link, so keep the relocs */
9939 os->orelocation[os->reloc_count] = *parent;
9940 os->reloc_count++;
9943 if (r != bfd_reloc_ok)
9945 switch (r)
9947 case bfd_reloc_undefined:
9948 if (!((*link_info->callbacks->undefined_symbol)
9949 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9950 input_bfd, input_section, (*parent)->address, TRUE)))
9951 goto error_return;
9952 break;
9953 case bfd_reloc_dangerous:
9954 BFD_ASSERT (error_message != NULL);
9955 if (!((*link_info->callbacks->reloc_dangerous)
9956 (link_info, error_message, input_bfd, input_section,
9957 (*parent)->address)))
9958 goto error_return;
9959 break;
9960 case bfd_reloc_overflow:
9961 if (!((*link_info->callbacks->reloc_overflow)
9962 (link_info, NULL,
9963 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9964 (*parent)->howto->name, (*parent)->addend,
9965 input_bfd, input_section, (*parent)->address)))
9966 goto error_return;
9967 break;
9968 case bfd_reloc_outofrange:
9969 default:
9970 abort ();
9971 break;
9977 if (reloc_vector != NULL)
9978 free (reloc_vector);
9979 return data;
9981 error_return:
9982 if (reloc_vector != NULL)
9983 free (reloc_vector);
9984 return NULL;
9987 /* Create a MIPS ELF linker hash table. */
9989 struct bfd_link_hash_table *
9990 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9992 struct mips_elf_link_hash_table *ret;
9993 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9995 ret = bfd_malloc (amt);
9996 if (ret == NULL)
9997 return NULL;
9999 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10000 mips_elf_link_hash_newfunc,
10001 sizeof (struct mips_elf_link_hash_entry)))
10003 free (ret);
10004 return NULL;
10007 #if 0
10008 /* We no longer use this. */
10009 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10010 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10011 #endif
10012 ret->procedure_count = 0;
10013 ret->compact_rel_size = 0;
10014 ret->use_rld_obj_head = FALSE;
10015 ret->rld_value = 0;
10016 ret->mips16_stubs_seen = FALSE;
10017 ret->is_vxworks = FALSE;
10018 ret->srelbss = NULL;
10019 ret->sdynbss = NULL;
10020 ret->srelplt = NULL;
10021 ret->srelplt2 = NULL;
10022 ret->sgotplt = NULL;
10023 ret->splt = NULL;
10024 ret->plt_header_size = 0;
10025 ret->plt_entry_size = 0;
10026 ret->function_stub_size = 0;
10028 return &ret->root.root;
10031 /* Likewise, but indicate that the target is VxWorks. */
10033 struct bfd_link_hash_table *
10034 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10036 struct bfd_link_hash_table *ret;
10038 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10039 if (ret)
10041 struct mips_elf_link_hash_table *htab;
10043 htab = (struct mips_elf_link_hash_table *) ret;
10044 htab->is_vxworks = 1;
10046 return ret;
10049 /* We need to use a special link routine to handle the .reginfo and
10050 the .mdebug sections. We need to merge all instances of these
10051 sections together, not write them all out sequentially. */
10053 bfd_boolean
10054 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10056 asection *o;
10057 struct bfd_link_order *p;
10058 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10059 asection *rtproc_sec;
10060 Elf32_RegInfo reginfo;
10061 struct ecoff_debug_info debug;
10062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10063 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10064 HDRR *symhdr = &debug.symbolic_header;
10065 void *mdebug_handle = NULL;
10066 asection *s;
10067 EXTR esym;
10068 unsigned int i;
10069 bfd_size_type amt;
10070 struct mips_elf_link_hash_table *htab;
10072 static const char * const secname[] =
10074 ".text", ".init", ".fini", ".data",
10075 ".rodata", ".sdata", ".sbss", ".bss"
10077 static const int sc[] =
10079 scText, scInit, scFini, scData,
10080 scRData, scSData, scSBss, scBss
10083 /* We'd carefully arranged the dynamic symbol indices, and then the
10084 generic size_dynamic_sections renumbered them out from under us.
10085 Rather than trying somehow to prevent the renumbering, just do
10086 the sort again. */
10087 htab = mips_elf_hash_table (info);
10088 if (elf_hash_table (info)->dynamic_sections_created)
10090 bfd *dynobj;
10091 asection *got;
10092 struct mips_got_info *g;
10093 bfd_size_type dynsecsymcount;
10095 /* When we resort, we must tell mips_elf_sort_hash_table what
10096 the lowest index it may use is. That's the number of section
10097 symbols we're going to add. The generic ELF linker only
10098 adds these symbols when building a shared object. Note that
10099 we count the sections after (possibly) removing the .options
10100 section above. */
10102 dynsecsymcount = count_section_dynsyms (abfd, info);
10103 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10104 return FALSE;
10106 /* Make sure we didn't grow the global .got region. */
10107 dynobj = elf_hash_table (info)->dynobj;
10108 got = mips_elf_got_section (dynobj, FALSE);
10109 g = mips_elf_section_data (got)->u.got_info;
10111 if (g->global_gotsym != NULL)
10112 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10113 - g->global_gotsym->dynindx)
10114 <= g->global_gotno);
10117 /* Get a value for the GP register. */
10118 if (elf_gp (abfd) == 0)
10120 struct bfd_link_hash_entry *h;
10122 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10123 if (h != NULL && h->type == bfd_link_hash_defined)
10124 elf_gp (abfd) = (h->u.def.value
10125 + h->u.def.section->output_section->vma
10126 + h->u.def.section->output_offset);
10127 else if (htab->is_vxworks
10128 && (h = bfd_link_hash_lookup (info->hash,
10129 "_GLOBAL_OFFSET_TABLE_",
10130 FALSE, FALSE, TRUE))
10131 && h->type == bfd_link_hash_defined)
10132 elf_gp (abfd) = (h->u.def.section->output_section->vma
10133 + h->u.def.section->output_offset
10134 + h->u.def.value);
10135 else if (info->relocatable)
10137 bfd_vma lo = MINUS_ONE;
10139 /* Find the GP-relative section with the lowest offset. */
10140 for (o = abfd->sections; o != NULL; o = o->next)
10141 if (o->vma < lo
10142 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10143 lo = o->vma;
10145 /* And calculate GP relative to that. */
10146 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10148 else
10150 /* If the relocate_section function needs to do a reloc
10151 involving the GP value, it should make a reloc_dangerous
10152 callback to warn that GP is not defined. */
10156 /* Go through the sections and collect the .reginfo and .mdebug
10157 information. */
10158 reginfo_sec = NULL;
10159 mdebug_sec = NULL;
10160 gptab_data_sec = NULL;
10161 gptab_bss_sec = NULL;
10162 for (o = abfd->sections; o != NULL; o = o->next)
10164 if (strcmp (o->name, ".reginfo") == 0)
10166 memset (&reginfo, 0, sizeof reginfo);
10168 /* We have found the .reginfo section in the output file.
10169 Look through all the link_orders comprising it and merge
10170 the information together. */
10171 for (p = o->map_head.link_order; p != NULL; p = p->next)
10173 asection *input_section;
10174 bfd *input_bfd;
10175 Elf32_External_RegInfo ext;
10176 Elf32_RegInfo sub;
10178 if (p->type != bfd_indirect_link_order)
10180 if (p->type == bfd_data_link_order)
10181 continue;
10182 abort ();
10185 input_section = p->u.indirect.section;
10186 input_bfd = input_section->owner;
10188 if (! bfd_get_section_contents (input_bfd, input_section,
10189 &ext, 0, sizeof ext))
10190 return FALSE;
10192 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10194 reginfo.ri_gprmask |= sub.ri_gprmask;
10195 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10196 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10197 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10198 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10200 /* ri_gp_value is set by the function
10201 mips_elf32_section_processing when the section is
10202 finally written out. */
10204 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10205 elf_link_input_bfd ignores this section. */
10206 input_section->flags &= ~SEC_HAS_CONTENTS;
10209 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10210 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10212 /* Skip this section later on (I don't think this currently
10213 matters, but someday it might). */
10214 o->map_head.link_order = NULL;
10216 reginfo_sec = o;
10219 if (strcmp (o->name, ".mdebug") == 0)
10221 struct extsym_info einfo;
10222 bfd_vma last;
10224 /* We have found the .mdebug section in the output file.
10225 Look through all the link_orders comprising it and merge
10226 the information together. */
10227 symhdr->magic = swap->sym_magic;
10228 /* FIXME: What should the version stamp be? */
10229 symhdr->vstamp = 0;
10230 symhdr->ilineMax = 0;
10231 symhdr->cbLine = 0;
10232 symhdr->idnMax = 0;
10233 symhdr->ipdMax = 0;
10234 symhdr->isymMax = 0;
10235 symhdr->ioptMax = 0;
10236 symhdr->iauxMax = 0;
10237 symhdr->issMax = 0;
10238 symhdr->issExtMax = 0;
10239 symhdr->ifdMax = 0;
10240 symhdr->crfd = 0;
10241 symhdr->iextMax = 0;
10243 /* We accumulate the debugging information itself in the
10244 debug_info structure. */
10245 debug.line = NULL;
10246 debug.external_dnr = NULL;
10247 debug.external_pdr = NULL;
10248 debug.external_sym = NULL;
10249 debug.external_opt = NULL;
10250 debug.external_aux = NULL;
10251 debug.ss = NULL;
10252 debug.ssext = debug.ssext_end = NULL;
10253 debug.external_fdr = NULL;
10254 debug.external_rfd = NULL;
10255 debug.external_ext = debug.external_ext_end = NULL;
10257 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10258 if (mdebug_handle == NULL)
10259 return FALSE;
10261 esym.jmptbl = 0;
10262 esym.cobol_main = 0;
10263 esym.weakext = 0;
10264 esym.reserved = 0;
10265 esym.ifd = ifdNil;
10266 esym.asym.iss = issNil;
10267 esym.asym.st = stLocal;
10268 esym.asym.reserved = 0;
10269 esym.asym.index = indexNil;
10270 last = 0;
10271 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10273 esym.asym.sc = sc[i];
10274 s = bfd_get_section_by_name (abfd, secname[i]);
10275 if (s != NULL)
10277 esym.asym.value = s->vma;
10278 last = s->vma + s->size;
10280 else
10281 esym.asym.value = last;
10282 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10283 secname[i], &esym))
10284 return FALSE;
10287 for (p = o->map_head.link_order; p != NULL; p = p->next)
10289 asection *input_section;
10290 bfd *input_bfd;
10291 const struct ecoff_debug_swap *input_swap;
10292 struct ecoff_debug_info input_debug;
10293 char *eraw_src;
10294 char *eraw_end;
10296 if (p->type != bfd_indirect_link_order)
10298 if (p->type == bfd_data_link_order)
10299 continue;
10300 abort ();
10303 input_section = p->u.indirect.section;
10304 input_bfd = input_section->owner;
10306 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10307 || (get_elf_backend_data (input_bfd)
10308 ->elf_backend_ecoff_debug_swap) == NULL)
10310 /* I don't know what a non MIPS ELF bfd would be
10311 doing with a .mdebug section, but I don't really
10312 want to deal with it. */
10313 continue;
10316 input_swap = (get_elf_backend_data (input_bfd)
10317 ->elf_backend_ecoff_debug_swap);
10319 BFD_ASSERT (p->size == input_section->size);
10321 /* The ECOFF linking code expects that we have already
10322 read in the debugging information and set up an
10323 ecoff_debug_info structure, so we do that now. */
10324 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10325 &input_debug))
10326 return FALSE;
10328 if (! (bfd_ecoff_debug_accumulate
10329 (mdebug_handle, abfd, &debug, swap, input_bfd,
10330 &input_debug, input_swap, info)))
10331 return FALSE;
10333 /* Loop through the external symbols. For each one with
10334 interesting information, try to find the symbol in
10335 the linker global hash table and save the information
10336 for the output external symbols. */
10337 eraw_src = input_debug.external_ext;
10338 eraw_end = (eraw_src
10339 + (input_debug.symbolic_header.iextMax
10340 * input_swap->external_ext_size));
10341 for (;
10342 eraw_src < eraw_end;
10343 eraw_src += input_swap->external_ext_size)
10345 EXTR ext;
10346 const char *name;
10347 struct mips_elf_link_hash_entry *h;
10349 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10350 if (ext.asym.sc == scNil
10351 || ext.asym.sc == scUndefined
10352 || ext.asym.sc == scSUndefined)
10353 continue;
10355 name = input_debug.ssext + ext.asym.iss;
10356 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10357 name, FALSE, FALSE, TRUE);
10358 if (h == NULL || h->esym.ifd != -2)
10359 continue;
10361 if (ext.ifd != -1)
10363 BFD_ASSERT (ext.ifd
10364 < input_debug.symbolic_header.ifdMax);
10365 ext.ifd = input_debug.ifdmap[ext.ifd];
10368 h->esym = ext;
10371 /* Free up the information we just read. */
10372 free (input_debug.line);
10373 free (input_debug.external_dnr);
10374 free (input_debug.external_pdr);
10375 free (input_debug.external_sym);
10376 free (input_debug.external_opt);
10377 free (input_debug.external_aux);
10378 free (input_debug.ss);
10379 free (input_debug.ssext);
10380 free (input_debug.external_fdr);
10381 free (input_debug.external_rfd);
10382 free (input_debug.external_ext);
10384 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10385 elf_link_input_bfd ignores this section. */
10386 input_section->flags &= ~SEC_HAS_CONTENTS;
10389 if (SGI_COMPAT (abfd) && info->shared)
10391 /* Create .rtproc section. */
10392 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10393 if (rtproc_sec == NULL)
10395 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10396 | SEC_LINKER_CREATED | SEC_READONLY);
10398 rtproc_sec = bfd_make_section_with_flags (abfd,
10399 ".rtproc",
10400 flags);
10401 if (rtproc_sec == NULL
10402 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10403 return FALSE;
10406 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10407 info, rtproc_sec,
10408 &debug))
10409 return FALSE;
10412 /* Build the external symbol information. */
10413 einfo.abfd = abfd;
10414 einfo.info = info;
10415 einfo.debug = &debug;
10416 einfo.swap = swap;
10417 einfo.failed = FALSE;
10418 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10419 mips_elf_output_extsym, &einfo);
10420 if (einfo.failed)
10421 return FALSE;
10423 /* Set the size of the .mdebug section. */
10424 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10426 /* Skip this section later on (I don't think this currently
10427 matters, but someday it might). */
10428 o->map_head.link_order = NULL;
10430 mdebug_sec = o;
10433 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10435 const char *subname;
10436 unsigned int c;
10437 Elf32_gptab *tab;
10438 Elf32_External_gptab *ext_tab;
10439 unsigned int j;
10441 /* The .gptab.sdata and .gptab.sbss sections hold
10442 information describing how the small data area would
10443 change depending upon the -G switch. These sections
10444 not used in executables files. */
10445 if (! info->relocatable)
10447 for (p = o->map_head.link_order; p != NULL; p = p->next)
10449 asection *input_section;
10451 if (p->type != bfd_indirect_link_order)
10453 if (p->type == bfd_data_link_order)
10454 continue;
10455 abort ();
10458 input_section = p->u.indirect.section;
10460 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10461 elf_link_input_bfd ignores this section. */
10462 input_section->flags &= ~SEC_HAS_CONTENTS;
10465 /* Skip this section later on (I don't think this
10466 currently matters, but someday it might). */
10467 o->map_head.link_order = NULL;
10469 /* Really remove the section. */
10470 bfd_section_list_remove (abfd, o);
10471 --abfd->section_count;
10473 continue;
10476 /* There is one gptab for initialized data, and one for
10477 uninitialized data. */
10478 if (strcmp (o->name, ".gptab.sdata") == 0)
10479 gptab_data_sec = o;
10480 else if (strcmp (o->name, ".gptab.sbss") == 0)
10481 gptab_bss_sec = o;
10482 else
10484 (*_bfd_error_handler)
10485 (_("%s: illegal section name `%s'"),
10486 bfd_get_filename (abfd), o->name);
10487 bfd_set_error (bfd_error_nonrepresentable_section);
10488 return FALSE;
10491 /* The linker script always combines .gptab.data and
10492 .gptab.sdata into .gptab.sdata, and likewise for
10493 .gptab.bss and .gptab.sbss. It is possible that there is
10494 no .sdata or .sbss section in the output file, in which
10495 case we must change the name of the output section. */
10496 subname = o->name + sizeof ".gptab" - 1;
10497 if (bfd_get_section_by_name (abfd, subname) == NULL)
10499 if (o == gptab_data_sec)
10500 o->name = ".gptab.data";
10501 else
10502 o->name = ".gptab.bss";
10503 subname = o->name + sizeof ".gptab" - 1;
10504 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10507 /* Set up the first entry. */
10508 c = 1;
10509 amt = c * sizeof (Elf32_gptab);
10510 tab = bfd_malloc (amt);
10511 if (tab == NULL)
10512 return FALSE;
10513 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10514 tab[0].gt_header.gt_unused = 0;
10516 /* Combine the input sections. */
10517 for (p = o->map_head.link_order; p != NULL; p = p->next)
10519 asection *input_section;
10520 bfd *input_bfd;
10521 bfd_size_type size;
10522 unsigned long last;
10523 bfd_size_type gpentry;
10525 if (p->type != bfd_indirect_link_order)
10527 if (p->type == bfd_data_link_order)
10528 continue;
10529 abort ();
10532 input_section = p->u.indirect.section;
10533 input_bfd = input_section->owner;
10535 /* Combine the gptab entries for this input section one
10536 by one. We know that the input gptab entries are
10537 sorted by ascending -G value. */
10538 size = input_section->size;
10539 last = 0;
10540 for (gpentry = sizeof (Elf32_External_gptab);
10541 gpentry < size;
10542 gpentry += sizeof (Elf32_External_gptab))
10544 Elf32_External_gptab ext_gptab;
10545 Elf32_gptab int_gptab;
10546 unsigned long val;
10547 unsigned long add;
10548 bfd_boolean exact;
10549 unsigned int look;
10551 if (! (bfd_get_section_contents
10552 (input_bfd, input_section, &ext_gptab, gpentry,
10553 sizeof (Elf32_External_gptab))))
10555 free (tab);
10556 return FALSE;
10559 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10560 &int_gptab);
10561 val = int_gptab.gt_entry.gt_g_value;
10562 add = int_gptab.gt_entry.gt_bytes - last;
10564 exact = FALSE;
10565 for (look = 1; look < c; look++)
10567 if (tab[look].gt_entry.gt_g_value >= val)
10568 tab[look].gt_entry.gt_bytes += add;
10570 if (tab[look].gt_entry.gt_g_value == val)
10571 exact = TRUE;
10574 if (! exact)
10576 Elf32_gptab *new_tab;
10577 unsigned int max;
10579 /* We need a new table entry. */
10580 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10581 new_tab = bfd_realloc (tab, amt);
10582 if (new_tab == NULL)
10584 free (tab);
10585 return FALSE;
10587 tab = new_tab;
10588 tab[c].gt_entry.gt_g_value = val;
10589 tab[c].gt_entry.gt_bytes = add;
10591 /* Merge in the size for the next smallest -G
10592 value, since that will be implied by this new
10593 value. */
10594 max = 0;
10595 for (look = 1; look < c; look++)
10597 if (tab[look].gt_entry.gt_g_value < val
10598 && (max == 0
10599 || (tab[look].gt_entry.gt_g_value
10600 > tab[max].gt_entry.gt_g_value)))
10601 max = look;
10603 if (max != 0)
10604 tab[c].gt_entry.gt_bytes +=
10605 tab[max].gt_entry.gt_bytes;
10607 ++c;
10610 last = int_gptab.gt_entry.gt_bytes;
10613 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10614 elf_link_input_bfd ignores this section. */
10615 input_section->flags &= ~SEC_HAS_CONTENTS;
10618 /* The table must be sorted by -G value. */
10619 if (c > 2)
10620 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10622 /* Swap out the table. */
10623 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10624 ext_tab = bfd_alloc (abfd, amt);
10625 if (ext_tab == NULL)
10627 free (tab);
10628 return FALSE;
10631 for (j = 0; j < c; j++)
10632 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10633 free (tab);
10635 o->size = c * sizeof (Elf32_External_gptab);
10636 o->contents = (bfd_byte *) ext_tab;
10638 /* Skip this section later on (I don't think this currently
10639 matters, but someday it might). */
10640 o->map_head.link_order = NULL;
10644 /* Invoke the regular ELF backend linker to do all the work. */
10645 if (!bfd_elf_final_link (abfd, info))
10646 return FALSE;
10648 /* Now write out the computed sections. */
10650 if (reginfo_sec != NULL)
10652 Elf32_External_RegInfo ext;
10654 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10655 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10656 return FALSE;
10659 if (mdebug_sec != NULL)
10661 BFD_ASSERT (abfd->output_has_begun);
10662 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10663 swap, info,
10664 mdebug_sec->filepos))
10665 return FALSE;
10667 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10670 if (gptab_data_sec != NULL)
10672 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10673 gptab_data_sec->contents,
10674 0, gptab_data_sec->size))
10675 return FALSE;
10678 if (gptab_bss_sec != NULL)
10680 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10681 gptab_bss_sec->contents,
10682 0, gptab_bss_sec->size))
10683 return FALSE;
10686 if (SGI_COMPAT (abfd))
10688 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10689 if (rtproc_sec != NULL)
10691 if (! bfd_set_section_contents (abfd, rtproc_sec,
10692 rtproc_sec->contents,
10693 0, rtproc_sec->size))
10694 return FALSE;
10698 return TRUE;
10701 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10703 struct mips_mach_extension {
10704 unsigned long extension, base;
10708 /* An array describing how BFD machines relate to one another. The entries
10709 are ordered topologically with MIPS I extensions listed last. */
10711 static const struct mips_mach_extension mips_mach_extensions[] = {
10712 /* MIPS64 extensions. */
10713 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10714 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10716 /* MIPS V extensions. */
10717 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10719 /* R10000 extensions. */
10720 { bfd_mach_mips12000, bfd_mach_mips10000 },
10722 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10723 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10724 better to allow vr5400 and vr5500 code to be merged anyway, since
10725 many libraries will just use the core ISA. Perhaps we could add
10726 some sort of ASE flag if this ever proves a problem. */
10727 { bfd_mach_mips5500, bfd_mach_mips5400 },
10728 { bfd_mach_mips5400, bfd_mach_mips5000 },
10730 /* MIPS IV extensions. */
10731 { bfd_mach_mips5, bfd_mach_mips8000 },
10732 { bfd_mach_mips10000, bfd_mach_mips8000 },
10733 { bfd_mach_mips5000, bfd_mach_mips8000 },
10734 { bfd_mach_mips7000, bfd_mach_mips8000 },
10735 { bfd_mach_mips9000, bfd_mach_mips8000 },
10737 /* VR4100 extensions. */
10738 { bfd_mach_mips4120, bfd_mach_mips4100 },
10739 { bfd_mach_mips4111, bfd_mach_mips4100 },
10741 /* MIPS III extensions. */
10742 { bfd_mach_mips8000, bfd_mach_mips4000 },
10743 { bfd_mach_mips4650, bfd_mach_mips4000 },
10744 { bfd_mach_mips4600, bfd_mach_mips4000 },
10745 { bfd_mach_mips4400, bfd_mach_mips4000 },
10746 { bfd_mach_mips4300, bfd_mach_mips4000 },
10747 { bfd_mach_mips4100, bfd_mach_mips4000 },
10748 { bfd_mach_mips4010, bfd_mach_mips4000 },
10750 /* MIPS32 extensions. */
10751 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10753 /* MIPS II extensions. */
10754 { bfd_mach_mips4000, bfd_mach_mips6000 },
10755 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10757 /* MIPS I extensions. */
10758 { bfd_mach_mips6000, bfd_mach_mips3000 },
10759 { bfd_mach_mips3900, bfd_mach_mips3000 }
10763 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10765 static bfd_boolean
10766 mips_mach_extends_p (unsigned long base, unsigned long extension)
10768 size_t i;
10770 if (extension == base)
10771 return TRUE;
10773 if (base == bfd_mach_mipsisa32
10774 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10775 return TRUE;
10777 if (base == bfd_mach_mipsisa32r2
10778 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10779 return TRUE;
10781 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10782 if (extension == mips_mach_extensions[i].extension)
10784 extension = mips_mach_extensions[i].base;
10785 if (extension == base)
10786 return TRUE;
10789 return FALSE;
10793 /* Return true if the given ELF header flags describe a 32-bit binary. */
10795 static bfd_boolean
10796 mips_32bit_flags_p (flagword flags)
10798 return ((flags & EF_MIPS_32BITMODE) != 0
10799 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10800 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10801 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10802 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10803 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10804 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10808 /* Merge backend specific data from an object file to the output
10809 object file when linking. */
10811 bfd_boolean
10812 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10814 flagword old_flags;
10815 flagword new_flags;
10816 bfd_boolean ok;
10817 bfd_boolean null_input_bfd = TRUE;
10818 asection *sec;
10820 /* Check if we have the same endianess */
10821 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10823 (*_bfd_error_handler)
10824 (_("%B: endianness incompatible with that of the selected emulation"),
10825 ibfd);
10826 return FALSE;
10829 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10830 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10831 return TRUE;
10833 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10835 (*_bfd_error_handler)
10836 (_("%B: ABI is incompatible with that of the selected emulation"),
10837 ibfd);
10838 return FALSE;
10841 new_flags = elf_elfheader (ibfd)->e_flags;
10842 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10843 old_flags = elf_elfheader (obfd)->e_flags;
10845 if (! elf_flags_init (obfd))
10847 elf_flags_init (obfd) = TRUE;
10848 elf_elfheader (obfd)->e_flags = new_flags;
10849 elf_elfheader (obfd)->e_ident[EI_CLASS]
10850 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10852 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10853 && bfd_get_arch_info (obfd)->the_default)
10855 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10856 bfd_get_mach (ibfd)))
10857 return FALSE;
10860 return TRUE;
10863 /* Check flag compatibility. */
10865 new_flags &= ~EF_MIPS_NOREORDER;
10866 old_flags &= ~EF_MIPS_NOREORDER;
10868 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10869 doesn't seem to matter. */
10870 new_flags &= ~EF_MIPS_XGOT;
10871 old_flags &= ~EF_MIPS_XGOT;
10873 /* MIPSpro generates ucode info in n64 objects. Again, we should
10874 just be able to ignore this. */
10875 new_flags &= ~EF_MIPS_UCODE;
10876 old_flags &= ~EF_MIPS_UCODE;
10878 /* Don't care about the PIC flags from dynamic objects; they are
10879 PIC by design. */
10880 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10881 && (ibfd->flags & DYNAMIC) != 0)
10882 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10884 if (new_flags == old_flags)
10885 return TRUE;
10887 /* Check to see if the input BFD actually contains any sections.
10888 If not, its flags may not have been initialised either, but it cannot
10889 actually cause any incompatibility. */
10890 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10892 /* Ignore synthetic sections and empty .text, .data and .bss sections
10893 which are automatically generated by gas. */
10894 if (strcmp (sec->name, ".reginfo")
10895 && strcmp (sec->name, ".mdebug")
10896 && (sec->size != 0
10897 || (strcmp (sec->name, ".text")
10898 && strcmp (sec->name, ".data")
10899 && strcmp (sec->name, ".bss"))))
10901 null_input_bfd = FALSE;
10902 break;
10905 if (null_input_bfd)
10906 return TRUE;
10908 ok = TRUE;
10910 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10911 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10913 (*_bfd_error_handler)
10914 (_("%B: warning: linking PIC files with non-PIC files"),
10915 ibfd);
10916 ok = TRUE;
10919 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10920 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10921 if (! (new_flags & EF_MIPS_PIC))
10922 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10924 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10925 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10927 /* Compare the ISAs. */
10928 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10930 (*_bfd_error_handler)
10931 (_("%B: linking 32-bit code with 64-bit code"),
10932 ibfd);
10933 ok = FALSE;
10935 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10937 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10938 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10940 /* Copy the architecture info from IBFD to OBFD. Also copy
10941 the 32-bit flag (if set) so that we continue to recognise
10942 OBFD as a 32-bit binary. */
10943 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10944 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10945 elf_elfheader (obfd)->e_flags
10946 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10948 /* Copy across the ABI flags if OBFD doesn't use them
10949 and if that was what caused us to treat IBFD as 32-bit. */
10950 if ((old_flags & EF_MIPS_ABI) == 0
10951 && mips_32bit_flags_p (new_flags)
10952 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10953 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10955 else
10957 /* The ISAs aren't compatible. */
10958 (*_bfd_error_handler)
10959 (_("%B: linking %s module with previous %s modules"),
10960 ibfd,
10961 bfd_printable_name (ibfd),
10962 bfd_printable_name (obfd));
10963 ok = FALSE;
10967 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10968 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10970 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10971 does set EI_CLASS differently from any 32-bit ABI. */
10972 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10973 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10974 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10976 /* Only error if both are set (to different values). */
10977 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10978 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10979 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10981 (*_bfd_error_handler)
10982 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10983 ibfd,
10984 elf_mips_abi_name (ibfd),
10985 elf_mips_abi_name (obfd));
10986 ok = FALSE;
10988 new_flags &= ~EF_MIPS_ABI;
10989 old_flags &= ~EF_MIPS_ABI;
10992 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10993 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10995 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10997 new_flags &= ~ EF_MIPS_ARCH_ASE;
10998 old_flags &= ~ EF_MIPS_ARCH_ASE;
11001 /* Warn about any other mismatches */
11002 if (new_flags != old_flags)
11004 (*_bfd_error_handler)
11005 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11006 ibfd, (unsigned long) new_flags,
11007 (unsigned long) old_flags);
11008 ok = FALSE;
11011 if (! ok)
11013 bfd_set_error (bfd_error_bad_value);
11014 return FALSE;
11017 return TRUE;
11020 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11022 bfd_boolean
11023 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11025 BFD_ASSERT (!elf_flags_init (abfd)
11026 || elf_elfheader (abfd)->e_flags == flags);
11028 elf_elfheader (abfd)->e_flags = flags;
11029 elf_flags_init (abfd) = TRUE;
11030 return TRUE;
11033 bfd_boolean
11034 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11036 FILE *file = ptr;
11038 BFD_ASSERT (abfd != NULL && ptr != NULL);
11040 /* Print normal ELF private data. */
11041 _bfd_elf_print_private_bfd_data (abfd, ptr);
11043 /* xgettext:c-format */
11044 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11046 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11047 fprintf (file, _(" [abi=O32]"));
11048 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11049 fprintf (file, _(" [abi=O64]"));
11050 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11051 fprintf (file, _(" [abi=EABI32]"));
11052 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11053 fprintf (file, _(" [abi=EABI64]"));
11054 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11055 fprintf (file, _(" [abi unknown]"));
11056 else if (ABI_N32_P (abfd))
11057 fprintf (file, _(" [abi=N32]"));
11058 else if (ABI_64_P (abfd))
11059 fprintf (file, _(" [abi=64]"));
11060 else
11061 fprintf (file, _(" [no abi set]"));
11063 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11064 fprintf (file, _(" [mips1]"));
11065 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11066 fprintf (file, _(" [mips2]"));
11067 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11068 fprintf (file, _(" [mips3]"));
11069 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11070 fprintf (file, _(" [mips4]"));
11071 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11072 fprintf (file, _(" [mips5]"));
11073 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11074 fprintf (file, _(" [mips32]"));
11075 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11076 fprintf (file, _(" [mips64]"));
11077 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11078 fprintf (file, _(" [mips32r2]"));
11079 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11080 fprintf (file, _(" [mips64r2]"));
11081 else
11082 fprintf (file, _(" [unknown ISA]"));
11084 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11085 fprintf (file, _(" [mdmx]"));
11087 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11088 fprintf (file, _(" [mips16]"));
11090 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11091 fprintf (file, _(" [32bitmode]"));
11092 else
11093 fprintf (file, _(" [not 32bitmode]"));
11095 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11096 fprintf (file, _(" [.noreorder]"));
11098 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11099 fprintf (file, _(" [PIC]"));
11101 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11102 fprintf (file, _(" [CPIC]"));
11104 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11105 fprintf (file, _(" [XGOT]"));
11107 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11108 fprintf (file, _(" [UCODE]"));
11110 fputc ('\n', file);
11112 return TRUE;
11115 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11117 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11118 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11119 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
11120 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11121 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11122 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
11123 { NULL, 0, 0, 0, 0 }
11126 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
11127 even if this is not a defintion of the symbol. */
11128 void
11129 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11130 const Elf_Internal_Sym *isym,
11131 bfd_boolean definition,
11132 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11134 if (! definition
11135 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11136 h->other |= STO_OPTIONAL;
11139 /* Decide whether an undefined symbol is special and can be ignored.
11140 This is the case for OPTIONAL symbols on IRIX. */
11141 bfd_boolean
11142 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11144 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;