1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
44 static void sparc64_elf_build_plt
45 PARAMS((bfd
*, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
48 static bfd_vma sparc64_elf_plt_ptr_offset
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd
*, struct bfd_link_info
*, asection
*sec
,
53 const Elf_Internal_Rela
*));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info
*, struct elf_link_hash_entry
*));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd
*, struct bfd_link_info
*));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym
*, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
62 const char **, flagword
*, asection
**, bfd_vma
*));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd
*, asymbol
*));
66 static boolean sparc64_elf_merge_private_bfd_data
67 PARAMS ((bfd
*, bfd
*));
69 static boolean sparc64_elf_relax_section
70 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, boolean
*));
71 static boolean sparc64_elf_relocate_section
72 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
73 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
74 static boolean sparc64_elf_object_p
PARAMS ((bfd
*));
75 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
76 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
77 static boolean sparc64_elf_slurp_one_reloc_table
78 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, boolean
));
79 static boolean sparc64_elf_slurp_reloc_table
80 PARAMS ((bfd
*, asection
*, asymbol
**, boolean
));
81 static long sparc64_elf_canonicalize_dynamic_reloc
82 PARAMS ((bfd
*, arelent
**, asymbol
**));
83 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
85 /* The relocation "howto" table. */
87 static bfd_reloc_status_type sparc_elf_notsup_reloc
88 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
89 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
90 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
91 static bfd_reloc_status_type sparc_elf_hix22_reloc
92 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
93 static bfd_reloc_status_type sparc_elf_lox10_reloc
94 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
96 static reloc_howto_type sparc64_elf_howto_table
[] =
98 HOWTO(R_SPARC_NONE
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", false,0,0x00000000,true),
99 HOWTO(R_SPARC_8
, 0,0, 8,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_32
, 0,2,32,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", false,0,0xffffffff,true),
102 HOWTO(R_SPARC_DISP8
, 0,0, 8,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", false,0,0x000000ff,true),
103 HOWTO(R_SPARC_DISP16
, 0,1,16,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", false,0,0x0000ffff,true),
104 HOWTO(R_SPARC_DISP32
, 0,2,32,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", false,0,0x00ffffff,true),
105 HOWTO(R_SPARC_WDISP30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
106 HOWTO(R_SPARC_WDISP22
, 2,2,22,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_HI22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", false,0,0x003fffff,true),
108 HOWTO(R_SPARC_22
, 0,2,22,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_13
, 0,2,13,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_LO10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_GOT10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_GOT13
, 0,2,13,false,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", false,0,0x00001fff,true),
113 HOWTO(R_SPARC_GOT22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC10
, 0,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", false,0,0x000003ff,true),
115 HOWTO(R_SPARC_PC22
, 10,2,22,true, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_WPLT30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
117 HOWTO(R_SPARC_COPY
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", false,0,0x00000000,true),
118 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
119 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
120 HOWTO(R_SPARC_RELATIVE
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",false,0,0x00000000,true),
121 HOWTO(R_SPARC_UA32
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UA32", false,0,0x00000000,true),
122 #ifndef SPARC64_OLD_RELOCS
123 /* These aren't implemented yet. */
124 HOWTO(R_SPARC_PLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_HIPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_LOPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_PCPLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", false,0,0x00000000,true),
128 HOWTO(R_SPARC_PCPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", false,0,0x00000000,true),
131 HOWTO(R_SPARC_10
, 0,2,10,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_11
, 0,2,11,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", false,0,0x000007ff,true),
133 HOWTO(R_SPARC_64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", false,0,MINUS_ONE
, true),
134 HOWTO(R_SPARC_OLO10
, 0,2,13,false,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", false,0,0x00001fff,true),
135 HOWTO(R_SPARC_HH22
, 42,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_HM10
, 32,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_LM22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_PC_HH22
, 42,2,22,true, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
139 HOWTO(R_SPARC_PC_HM10
, 32,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
140 HOWTO(R_SPARC_PC_LM22
, 10,2,22,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_WDISP16
, 2,2,16,true, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", false,0,0x00000000,true),
142 HOWTO(R_SPARC_WDISP19
, 2,2,19,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
143 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
144 HOWTO(R_SPARC_7
, 0,2, 7,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", false,0,0x0000007f,true),
145 HOWTO(R_SPARC_5
, 0,2, 5,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", false,0,0x0000001f,true),
146 HOWTO(R_SPARC_6
, 0,2, 6,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", false,0,0x0000003f,true),
147 HOWTO(R_SPARC_DISP64
, 0,4,64,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", false,0,MINUS_ONE
, true),
148 HOWTO(R_SPARC_PLT64
, 0,4,64,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_PLT64", false,0,MINUS_ONE
, false),
149 HOWTO(R_SPARC_HIX22
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", false,0,MINUS_ONE
, false),
150 HOWTO(R_SPARC_LOX10
, 0,4, 0,false,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", false,0,MINUS_ONE
, false),
151 HOWTO(R_SPARC_H44
, 22,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", false,0,0x003fffff,false),
152 HOWTO(R_SPARC_M44
, 12,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", false,0,0x000003ff,false),
153 HOWTO(R_SPARC_L44
, 0,2,13,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", false,0,0x00000fff,false),
154 HOWTO(R_SPARC_REGISTER
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",false,0,MINUS_ONE
, false),
155 HOWTO(R_SPARC_UA64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", false,0,MINUS_ONE
, true),
156 HOWTO(R_SPARC_UA16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", false,0,0x0000ffff,true)
159 struct elf_reloc_map
{
160 bfd_reloc_code_real_type bfd_reloc_val
;
161 unsigned char elf_reloc_val
;
164 static CONST
struct elf_reloc_map sparc_reloc_map
[] =
166 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
167 { BFD_RELOC_16
, R_SPARC_16
, },
168 { BFD_RELOC_8
, R_SPARC_8
},
169 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
170 { BFD_RELOC_CTOR
, R_SPARC_64
},
171 { BFD_RELOC_32
, R_SPARC_32
},
172 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
173 { BFD_RELOC_HI22
, R_SPARC_HI22
},
174 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
175 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
176 { BFD_RELOC_SPARC22
, R_SPARC_22
},
177 { BFD_RELOC_SPARC13
, R_SPARC_13
},
178 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
179 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
180 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
181 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
182 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
183 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
184 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
185 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
186 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
187 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
188 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
189 /* ??? Doesn't dwarf use this? */
190 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
191 {BFD_RELOC_SPARC_10
, R_SPARC_10
},
192 {BFD_RELOC_SPARC_11
, R_SPARC_11
},
193 {BFD_RELOC_SPARC_64
, R_SPARC_64
},
194 {BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
195 {BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
196 {BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
197 {BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
198 {BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
199 {BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
200 {BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
201 {BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
202 {BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
203 {BFD_RELOC_SPARC_7
, R_SPARC_7
},
204 {BFD_RELOC_SPARC_5
, R_SPARC_5
},
205 {BFD_RELOC_SPARC_6
, R_SPARC_6
},
206 {BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
207 {BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
208 {BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
209 {BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
210 {BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
211 {BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
212 {BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
213 {BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
216 static reloc_howto_type
*
217 sparc64_elf_reloc_type_lookup (abfd
, code
)
218 bfd
*abfd ATTRIBUTE_UNUSED
;
219 bfd_reloc_code_real_type code
;
222 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
224 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
225 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
231 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
232 bfd
*abfd ATTRIBUTE_UNUSED
;
234 Elf64_Internal_Rela
*dst
;
236 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
237 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
240 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
241 section can represent up to two relocs, we must tell the user to allocate
245 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
246 bfd
*abfd ATTRIBUTE_UNUSED
;
249 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
253 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
256 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
259 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
260 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
261 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
262 for the same location, R_SPARC_LO10 and R_SPARC_13. */
265 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
268 Elf_Internal_Shdr
*rel_hdr
;
272 PTR allocated
= NULL
;
273 bfd_byte
*native_relocs
;
280 allocated
= (PTR
) bfd_malloc ((size_t) rel_hdr
->sh_size
);
281 if (allocated
== NULL
)
284 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
285 || (bfd_read (allocated
, 1, rel_hdr
->sh_size
, abfd
)
286 != rel_hdr
->sh_size
))
289 native_relocs
= (bfd_byte
*) allocated
;
291 relents
= asect
->relocation
+ asect
->reloc_count
;
293 entsize
= rel_hdr
->sh_entsize
;
294 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
296 count
= rel_hdr
->sh_size
/ entsize
;
298 for (i
= 0, relent
= relents
; i
< count
;
299 i
++, relent
++, native_relocs
+= entsize
)
301 Elf_Internal_Rela rela
;
303 bfd_elf64_swap_reloca_in (abfd
, (Elf64_External_Rela
*) native_relocs
, &rela
);
305 /* The address of an ELF reloc is section relative for an object
306 file, and absolute for an executable file or shared library.
307 The address of a normal BFD reloc is always section relative,
308 and the address of a dynamic reloc is absolute.. */
309 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
310 relent
->address
= rela
.r_offset
;
312 relent
->address
= rela
.r_offset
- asect
->vma
;
314 if (ELF64_R_SYM (rela
.r_info
) == 0)
315 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
320 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
323 /* Canonicalize ELF section symbols. FIXME: Why? */
324 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
325 relent
->sym_ptr_ptr
= ps
;
327 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
330 relent
->addend
= rela
.r_addend
;
332 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
333 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
335 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
336 relent
[1].address
= relent
->address
;
338 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
339 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
340 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
343 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
346 asect
->reloc_count
+= relent
- relents
;
348 if (allocated
!= NULL
)
354 if (allocated
!= NULL
)
359 /* Read in and swap the external relocs. */
362 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
368 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
369 Elf_Internal_Shdr
*rel_hdr
;
370 Elf_Internal_Shdr
*rel_hdr2
;
372 if (asect
->relocation
!= NULL
)
377 if ((asect
->flags
& SEC_RELOC
) == 0
378 || asect
->reloc_count
== 0)
381 rel_hdr
= &d
->rel_hdr
;
382 rel_hdr2
= d
->rel_hdr2
;
384 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
385 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
389 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
390 case because relocations against this section may use the
391 dynamic symbol table, and in that case bfd_section_from_shdr
392 in elf.c does not update the RELOC_COUNT. */
393 if (asect
->_raw_size
== 0)
396 rel_hdr
= &d
->this_hdr
;
397 asect
->reloc_count
= rel_hdr
->sh_size
/ rel_hdr
->sh_entsize
;
401 asect
->relocation
= ((arelent
*)
403 asect
->reloc_count
* 2 * sizeof (arelent
)));
404 if (asect
->relocation
== NULL
)
407 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
408 asect
->reloc_count
= 0;
410 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
415 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
422 /* Canonicalize the dynamic relocation entries. Note that we return
423 the dynamic relocations as a single block, although they are
424 actually associated with particular sections; the interface, which
425 was designed for SunOS style shared libraries, expects that there
426 is only one set of dynamic relocs. Any section that was actually
427 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
428 the dynamic symbol table, is considered to be a dynamic reloc
432 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
440 if (elf_dynsymtab (abfd
) == 0)
442 bfd_set_error (bfd_error_invalid_operation
);
447 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
449 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
450 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
455 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, true))
457 count
= s
->reloc_count
;
459 for (i
= 0; i
< count
; i
++)
470 /* Write out the relocs. */
473 sparc64_elf_write_relocs (abfd
, sec
, data
)
478 boolean
*failedp
= (boolean
*) data
;
479 Elf_Internal_Shdr
*rela_hdr
;
480 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
481 unsigned int idx
, count
;
482 asymbol
*last_sym
= 0;
483 int last_sym_idx
= 0;
485 /* If we have already failed, don't do anything. */
489 if ((sec
->flags
& SEC_RELOC
) == 0)
492 /* The linker backend writes the relocs out itself, and sets the
493 reloc_count field to zero to inhibit writing them here. Also,
494 sometimes the SEC_RELOC flag gets set even when there aren't any
496 if (sec
->reloc_count
== 0)
499 /* We can combine two relocs that refer to the same address
500 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
501 latter is R_SPARC_13 with no associated symbol. */
503 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
509 addr
= sec
->orelocation
[idx
]->address
;
510 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
511 && idx
< sec
->reloc_count
- 1)
513 arelent
*r
= sec
->orelocation
[idx
+ 1];
515 if (r
->howto
->type
== R_SPARC_13
516 && r
->address
== addr
517 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
518 && (*r
->sym_ptr_ptr
)->value
== 0)
523 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
525 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
526 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
527 if (rela_hdr
->contents
== NULL
)
533 /* Figure out whether the relocations are RELA or REL relocations. */
534 if (rela_hdr
->sh_type
!= SHT_RELA
)
537 /* orelocation has the data, reloc_count has the count... */
538 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
539 src_rela
= outbound_relocas
;
541 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
543 Elf_Internal_Rela dst_rela
;
548 ptr
= sec
->orelocation
[idx
];
550 /* The address of an ELF reloc is section relative for an object
551 file, and absolute for an executable file or shared library.
552 The address of a BFD reloc is always section relative. */
553 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
554 dst_rela
.r_offset
= ptr
->address
;
556 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
558 sym
= *ptr
->sym_ptr_ptr
;
561 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
566 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
575 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
576 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
577 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
583 if (ptr
->howto
->type
== R_SPARC_LO10
584 && idx
< sec
->reloc_count
- 1)
586 arelent
*r
= sec
->orelocation
[idx
+ 1];
588 if (r
->howto
->type
== R_SPARC_13
589 && r
->address
== ptr
->address
590 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
591 && (*r
->sym_ptr_ptr
)->value
== 0)
595 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
599 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
602 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
604 dst_rela
.r_addend
= ptr
->addend
;
605 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, src_rela
);
610 /* Sparc64 ELF linker hash table. */
612 struct sparc64_elf_app_reg
615 unsigned short shndx
;
620 struct sparc64_elf_link_hash_table
622 struct elf_link_hash_table root
;
624 struct sparc64_elf_app_reg app_regs
[4];
627 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
629 #define sparc64_elf_hash_table(p) \
630 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
632 /* Create a Sparc64 ELF linker hash table. */
634 static struct bfd_link_hash_table
*
635 sparc64_elf_bfd_link_hash_table_create (abfd
)
638 struct sparc64_elf_link_hash_table
*ret
;
640 ret
= ((struct sparc64_elf_link_hash_table
*)
641 bfd_zalloc (abfd
, sizeof (struct sparc64_elf_link_hash_table
)));
642 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
645 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
646 _bfd_elf_link_hash_newfunc
))
648 bfd_release (abfd
, ret
);
652 return &ret
->root
.root
;
655 /* Utility for performing the standard initial work of an instruction
657 *PRELOCATION will contain the relocated item.
658 *PINSN will contain the instruction from the input stream.
659 If the result is `bfd_reloc_other' the caller can continue with
660 performing the relocation. Otherwise it must stop and return the
661 value to its caller. */
663 static bfd_reloc_status_type
664 init_insn_reloc (abfd
,
673 arelent
*reloc_entry
;
676 asection
*input_section
;
678 bfd_vma
*prelocation
;
682 reloc_howto_type
*howto
= reloc_entry
->howto
;
684 if (output_bfd
!= (bfd
*) NULL
685 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
686 && (! howto
->partial_inplace
687 || reloc_entry
->addend
== 0))
689 reloc_entry
->address
+= input_section
->output_offset
;
693 /* This works because partial_inplace == false. */
694 if (output_bfd
!= NULL
)
695 return bfd_reloc_continue
;
697 if (reloc_entry
->address
> input_section
->_cooked_size
)
698 return bfd_reloc_outofrange
;
700 relocation
= (symbol
->value
701 + symbol
->section
->output_section
->vma
702 + symbol
->section
->output_offset
);
703 relocation
+= reloc_entry
->addend
;
704 if (howto
->pc_relative
)
706 relocation
-= (input_section
->output_section
->vma
707 + input_section
->output_offset
);
708 relocation
-= reloc_entry
->address
;
711 *prelocation
= relocation
;
712 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
713 return bfd_reloc_other
;
716 /* For unsupported relocs. */
718 static bfd_reloc_status_type
719 sparc_elf_notsup_reloc (abfd
,
726 bfd
*abfd ATTRIBUTE_UNUSED
;
727 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
728 asymbol
*symbol ATTRIBUTE_UNUSED
;
729 PTR data ATTRIBUTE_UNUSED
;
730 asection
*input_section ATTRIBUTE_UNUSED
;
731 bfd
*output_bfd ATTRIBUTE_UNUSED
;
732 char **error_message ATTRIBUTE_UNUSED
;
734 return bfd_reloc_notsupported
;
737 /* Handle the WDISP16 reloc. */
739 static bfd_reloc_status_type
740 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
741 output_bfd
, error_message
)
743 arelent
*reloc_entry
;
746 asection
*input_section
;
748 char **error_message ATTRIBUTE_UNUSED
;
752 bfd_reloc_status_type status
;
754 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
755 input_section
, output_bfd
, &relocation
, &insn
);
756 if (status
!= bfd_reloc_other
)
759 insn
= (insn
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
760 | ((relocation
>> 2) & 0x3fff));
761 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
763 if ((bfd_signed_vma
) relocation
< - 0x40000
764 || (bfd_signed_vma
) relocation
> 0x3ffff)
765 return bfd_reloc_overflow
;
770 /* Handle the HIX22 reloc. */
772 static bfd_reloc_status_type
773 sparc_elf_hix22_reloc (abfd
,
781 arelent
*reloc_entry
;
784 asection
*input_section
;
786 char **error_message ATTRIBUTE_UNUSED
;
790 bfd_reloc_status_type status
;
792 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
793 input_section
, output_bfd
, &relocation
, &insn
);
794 if (status
!= bfd_reloc_other
)
797 relocation
^= MINUS_ONE
;
798 insn
= (insn
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
799 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
801 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
802 return bfd_reloc_overflow
;
807 /* Handle the LOX10 reloc. */
809 static bfd_reloc_status_type
810 sparc_elf_lox10_reloc (abfd
,
818 arelent
*reloc_entry
;
821 asection
*input_section
;
823 char **error_message ATTRIBUTE_UNUSED
;
827 bfd_reloc_status_type status
;
829 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
830 input_section
, output_bfd
, &relocation
, &insn
);
831 if (status
!= bfd_reloc_other
)
834 insn
= (insn
& ~0x1fff) | 0x1c00 | (relocation
& 0x3ff);
835 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
842 /* Both the headers and the entries are icache aligned. */
843 #define PLT_ENTRY_SIZE 32
844 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
845 #define LARGE_PLT_THRESHOLD 32768
846 #define GOT_RESERVED_ENTRIES 1
848 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
850 /* Fill in the .plt section. */
853 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
855 unsigned char *contents
;
858 const unsigned int nop
= 0x01000000;
861 /* The first four entries are reserved, and are initially undefined.
862 We fill them with `illtrap 0' to force ld.so to do something. */
864 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
865 bfd_put_32 (output_bfd
, 0, contents
+i
*4);
867 /* The first 32768 entries are close enough to plt1 to get there via
868 a straight branch. */
870 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
872 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
873 unsigned int sethi
, ba
;
875 /* sethi (. - plt0), %g1 */
876 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
878 /* ba,a,pt %xcc, plt1 */
879 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
881 bfd_put_32 (output_bfd
, sethi
, entry
);
882 bfd_put_32 (output_bfd
, ba
, entry
+4);
883 bfd_put_32 (output_bfd
, nop
, entry
+8);
884 bfd_put_32 (output_bfd
, nop
, entry
+12);
885 bfd_put_32 (output_bfd
, nop
, entry
+16);
886 bfd_put_32 (output_bfd
, nop
, entry
+20);
887 bfd_put_32 (output_bfd
, nop
, entry
+24);
888 bfd_put_32 (output_bfd
, nop
, entry
+28);
891 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
892 160: 160 entries and 160 pointers. This is to separate code from data,
893 which is much friendlier on the cache. */
895 for (; i
< nentries
; i
+= 160)
897 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
898 for (j
= 0; j
< block
; ++j
)
900 unsigned char *entry
, *ptr
;
903 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
904 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
906 /* ldx [%o7 + ptr - entry+4], %g1 */
907 ldx
= 0xc25be000 | ((ptr
- entry
+4) & 0x1fff);
909 bfd_put_32 (output_bfd
, 0x8a10000f, entry
); /* mov %o7,%g5 */
910 bfd_put_32 (output_bfd
, 0x40000002, entry
+4); /* call .+8 */
911 bfd_put_32 (output_bfd
, nop
, entry
+8); /* nop */
912 bfd_put_32 (output_bfd
, ldx
, entry
+12); /* ldx [%o7+P],%g1 */
913 bfd_put_32 (output_bfd
, 0x83c3c001, entry
+16); /* jmpl %o7+%g1,%g1 */
914 bfd_put_32 (output_bfd
, 0x9e100005, entry
+20); /* mov %g5,%o7 */
916 bfd_put_64 (output_bfd
, contents
- (entry
+4), ptr
);
921 /* Return the offset of a particular plt entry within the .plt section. */
924 sparc64_elf_plt_entry_offset (index
)
929 if (index
< LARGE_PLT_THRESHOLD
)
930 return index
* PLT_ENTRY_SIZE
;
932 /* See above for details. */
934 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
935 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
937 return ((bfd_vma
) (LARGE_PLT_THRESHOLD
+ block
*160) * PLT_ENTRY_SIZE
942 sparc64_elf_plt_ptr_offset (index
, max
)
945 int block
, ofs
, last
;
947 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
949 /* See above for details. */
951 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160)
952 + LARGE_PLT_THRESHOLD
;
954 if (block
+ 160 > max
)
955 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
959 return (block
* PLT_ENTRY_SIZE
964 /* Look through the relocs for a section during the first phase, and
965 allocate space in the global offset table or procedure linkage
969 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
971 struct bfd_link_info
*info
;
973 const Elf_Internal_Rela
*relocs
;
976 Elf_Internal_Shdr
*symtab_hdr
;
977 struct elf_link_hash_entry
**sym_hashes
;
978 bfd_vma
*local_got_offsets
;
979 const Elf_Internal_Rela
*rel
;
980 const Elf_Internal_Rela
*rel_end
;
985 if (info
->relocateable
|| !(sec
->flags
& SEC_ALLOC
))
988 dynobj
= elf_hash_table (info
)->dynobj
;
989 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
990 sym_hashes
= elf_sym_hashes (abfd
);
991 local_got_offsets
= elf_local_got_offsets (abfd
);
997 rel_end
= relocs
+ sec
->reloc_count
;
998 for (rel
= relocs
; rel
< rel_end
; rel
++)
1000 unsigned long r_symndx
;
1001 struct elf_link_hash_entry
*h
;
1003 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1004 if (r_symndx
< symtab_hdr
->sh_info
)
1007 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1009 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1014 /* This symbol requires a global offset table entry. */
1018 /* Create the .got section. */
1019 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1020 if (! _bfd_elf_create_got_section (dynobj
, info
))
1026 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1027 BFD_ASSERT (sgot
!= NULL
);
1030 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1032 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1033 if (srelgot
== NULL
)
1035 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1037 || ! bfd_set_section_flags (dynobj
, srelgot
,
1042 | SEC_LINKER_CREATED
1044 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1051 if (h
->got
.offset
!= (bfd_vma
) -1)
1053 /* We have already allocated space in the .got. */
1056 h
->got
.offset
= sgot
->_raw_size
;
1058 /* Make sure this symbol is output as a dynamic symbol. */
1059 if (h
->dynindx
== -1)
1061 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1065 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1069 /* This is a global offset table entry for a local
1071 if (local_got_offsets
== NULL
)
1074 register unsigned int i
;
1076 size
= symtab_hdr
->sh_info
* sizeof (bfd_vma
);
1077 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1078 if (local_got_offsets
== NULL
)
1080 elf_local_got_offsets (abfd
) = local_got_offsets
;
1081 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1082 local_got_offsets
[i
] = (bfd_vma
) -1;
1084 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1086 /* We have already allocated space in the .got. */
1089 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
1093 /* If we are generating a shared object, we need to
1094 output a R_SPARC_RELATIVE reloc so that the
1095 dynamic linker can adjust this GOT entry. */
1096 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1100 sgot
->_raw_size
+= 8;
1103 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1104 unsigned numbers. If we permit ourselves to modify
1105 code so we get sethi/xor, this could work.
1106 Question: do we consider conditionally re-enabling
1107 this for -fpic, once we know about object code models? */
1108 /* If the .got section is more than 0x1000 bytes, we add
1109 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1110 bit relocations have a greater chance of working. */
1111 if (sgot
->_raw_size
>= 0x1000
1112 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1113 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1118 case R_SPARC_WPLT30
:
1120 case R_SPARC_HIPLT22
:
1121 case R_SPARC_LOPLT10
:
1122 case R_SPARC_PCPLT32
:
1123 case R_SPARC_PCPLT22
:
1124 case R_SPARC_PCPLT10
:
1126 /* This symbol requires a procedure linkage table entry. We
1127 actually build the entry in adjust_dynamic_symbol,
1128 because this might be a case of linking PIC code without
1129 linking in any dynamic objects, in which case we don't
1130 need to generate a procedure linkage table after all. */
1134 /* It does not make sense to have a procedure linkage
1135 table entry for a local symbol. */
1136 bfd_set_error (bfd_error_bad_value
);
1140 /* Make sure this symbol is output as a dynamic symbol. */
1141 if (h
->dynindx
== -1)
1143 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1147 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1152 case R_SPARC_PC_HH22
:
1153 case R_SPARC_PC_HM10
:
1154 case R_SPARC_PC_LM22
:
1156 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1160 case R_SPARC_DISP16
:
1161 case R_SPARC_DISP32
:
1162 case R_SPARC_DISP64
:
1163 case R_SPARC_WDISP30
:
1164 case R_SPARC_WDISP22
:
1165 case R_SPARC_WDISP19
:
1166 case R_SPARC_WDISP16
:
1195 /* When creating a shared object, we must copy these relocs
1196 into the output file. We create a reloc section in
1197 dynobj and make room for the reloc.
1199 But don't do this for debugging sections -- this shows up
1200 with DWARF2 -- first because they are not loaded, and
1201 second because DWARF sez the debug info is not to be
1202 biased by the load address. */
1203 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1209 name
= (bfd_elf_string_from_elf_section
1211 elf_elfheader (abfd
)->e_shstrndx
,
1212 elf_section_data (sec
)->rel_hdr
.sh_name
));
1216 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1217 && strcmp (bfd_get_section_name (abfd
, sec
),
1220 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1225 sreloc
= bfd_make_section (dynobj
, name
);
1226 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1227 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1228 if ((sec
->flags
& SEC_ALLOC
) != 0)
1229 flags
|= SEC_ALLOC
| SEC_LOAD
;
1231 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1232 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1237 sreloc
->_raw_size
+= sizeof (Elf64_External_Rela
);
1241 case R_SPARC_REGISTER
:
1242 /* Nothing to do. */
1246 (*_bfd_error_handler
) (_("%s: check_relocs: unhandled reloc type %d"),
1247 bfd_get_filename(abfd
),
1248 ELF64_R_TYPE_ID (rel
->r_info
));
1256 /* Hook called by the linker routine which adds symbols from an object
1257 file. We use it for STT_REGISTER symbols. */
1260 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1262 struct bfd_link_info
*info
;
1263 const Elf_Internal_Sym
*sym
;
1265 flagword
*flagsp ATTRIBUTE_UNUSED
;
1266 asection
**secp ATTRIBUTE_UNUSED
;
1267 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1269 static char *stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1271 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1274 struct sparc64_elf_app_reg
*p
;
1276 reg
= (int)sym
->st_value
;
1279 case 2: reg
-= 2; break;
1280 case 6: reg
-= 4; break;
1282 (*_bfd_error_handler
)
1283 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1284 bfd_get_filename (abfd
));
1288 if (info
->hash
->creator
!= abfd
->xvec
1289 || (abfd
->flags
& DYNAMIC
) != 0)
1291 /* STT_REGISTER only works when linking an elf64_sparc object.
1292 If STT_REGISTER comes from a dynamic object, don't put it into
1293 the output bfd. The dynamic linker will recheck it. */
1298 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1300 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1302 (*_bfd_error_handler
)
1303 (_("Register %%g%d used incompatibly: "
1304 "previously declared in %s to %s, in %s redefined to %s"),
1306 bfd_get_filename (p
->abfd
), *p
->name
? p
->name
: "#scratch",
1307 bfd_get_filename (abfd
), **namep
? *namep
: "#scratch");
1311 if (p
->name
== NULL
)
1315 struct elf_link_hash_entry
*h
;
1317 h
= (struct elf_link_hash_entry
*)
1318 bfd_link_hash_lookup (info
->hash
, *namep
, false, false, false);
1322 unsigned char type
= h
->type
;
1324 if (type
> STT_FUNC
) type
= 0;
1325 (*_bfd_error_handler
)
1326 (_("Symbol `%s' has differing types: "
1327 "previously %s, REGISTER in %s"),
1328 *namep
, stt_types
[type
], bfd_get_filename (abfd
));
1332 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1333 strlen (*namep
) + 1);
1337 strcpy (p
->name
, *namep
);
1341 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1343 p
->shndx
= sym
->st_shndx
;
1347 if (p
->bind
== STB_WEAK
1348 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1350 p
->bind
= STB_GLOBAL
;
1357 else if (! *namep
|| ! **namep
)
1362 struct sparc64_elf_app_reg
*p
;
1364 p
= sparc64_elf_hash_table(info
)->app_regs
;
1365 for (i
= 0; i
< 4; i
++, p
++)
1366 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1368 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1370 if (type
> STT_FUNC
) type
= 0;
1371 (*_bfd_error_handler
)
1372 (_("Symbol `%s' has differing types: "
1373 "REGISTER in %s, %s in %s"),
1374 *namep
, bfd_get_filename (p
->abfd
), stt_types
[type
],
1375 bfd_get_filename (abfd
));
1382 /* This function takes care of emiting STT_REGISTER symbols
1383 which we cannot easily keep in the symbol hash table. */
1386 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1387 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1388 struct bfd_link_info
*info
;
1390 boolean (*func
) PARAMS ((PTR
, const char *,
1391 Elf_Internal_Sym
*, asection
*));
1394 struct sparc64_elf_app_reg
*app_regs
=
1395 sparc64_elf_hash_table(info
)->app_regs
;
1396 Elf_Internal_Sym sym
;
1398 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1399 at the end of the dynlocal list, so they came at the end of the local
1400 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1401 to back up symtab->sh_info. */
1402 if (elf_hash_table (info
)->dynlocal
)
1404 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1405 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1406 struct elf_link_local_dynamic_entry
*e
;
1408 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1409 if (e
->input_indx
== -1)
1413 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1418 if (info
->strip
== strip_all
)
1421 for (reg
= 0; reg
< 4; reg
++)
1422 if (app_regs
[reg
].name
!= NULL
)
1424 if (info
->strip
== strip_some
1425 && bfd_hash_lookup (info
->keep_hash
,
1426 app_regs
[reg
].name
,
1427 false, false) == NULL
)
1430 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1433 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1434 sym
.st_shndx
= app_regs
[reg
].shndx
;
1435 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1436 sym
.st_shndx
== SHN_ABS
1437 ? bfd_abs_section_ptr
: bfd_und_section_ptr
))
1445 sparc64_elf_get_symbol_type (elf_sym
, type
)
1446 Elf_Internal_Sym
* elf_sym
;
1449 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1450 return STT_REGISTER
;
1455 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1456 even in SHN_UNDEF section. */
1459 sparc64_elf_symbol_processing (abfd
, asym
)
1460 bfd
*abfd ATTRIBUTE_UNUSED
;
1463 elf_symbol_type
*elfsym
;
1465 elfsym
= (elf_symbol_type
*) asym
;
1466 if (elfsym
->internal_elf_sym
.st_info
1467 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1469 asym
->flags
|= BSF_GLOBAL
;
1473 /* Adjust a symbol defined by a dynamic object and referenced by a
1474 regular object. The current definition is in some section of the
1475 dynamic object, but we're not including those sections. We have to
1476 change the definition to something the rest of the link can
1480 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1481 struct bfd_link_info
*info
;
1482 struct elf_link_hash_entry
*h
;
1486 unsigned int power_of_two
;
1488 dynobj
= elf_hash_table (info
)->dynobj
;
1490 /* Make sure we know what is going on here. */
1491 BFD_ASSERT (dynobj
!= NULL
1492 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
1493 || h
->weakdef
!= NULL
1494 || ((h
->elf_link_hash_flags
1495 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1496 && (h
->elf_link_hash_flags
1497 & ELF_LINK_HASH_REF_REGULAR
) != 0
1498 && (h
->elf_link_hash_flags
1499 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
1501 /* If this is a function, put it in the procedure linkage table. We
1502 will fill in the contents of the procedure linkage table later
1503 (although we could actually do it here). The STT_NOTYPE
1504 condition is a hack specifically for the Oracle libraries
1505 delivered for Solaris; for some inexplicable reason, they define
1506 some of their functions as STT_NOTYPE when they really should be
1508 if (h
->type
== STT_FUNC
1509 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
1510 || (h
->type
== STT_NOTYPE
1511 && (h
->root
.type
== bfd_link_hash_defined
1512 || h
->root
.type
== bfd_link_hash_defweak
)
1513 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1515 if (! elf_hash_table (info
)->dynamic_sections_created
)
1517 /* This case can occur if we saw a WPLT30 reloc in an input
1518 file, but none of the input files were dynamic objects.
1519 In such a case, we don't actually need to build a
1520 procedure linkage table, and we can just do a WDISP30
1522 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
1526 s
= bfd_get_section_by_name (dynobj
, ".plt");
1527 BFD_ASSERT (s
!= NULL
);
1529 /* The first four bit in .plt is reserved. */
1530 if (s
->_raw_size
== 0)
1531 s
->_raw_size
= PLT_HEADER_SIZE
;
1533 /* If this symbol is not defined in a regular file, and we are
1534 not generating a shared library, then set the symbol to this
1535 location in the .plt. This is required to make function
1536 pointers compare as equal between the normal executable and
1537 the shared library. */
1539 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1541 h
->root
.u
.def
.section
= s
;
1542 h
->root
.u
.def
.value
= s
->_raw_size
;
1545 /* To simplify matters later, just store the plt index here. */
1546 h
->plt
.offset
= s
->_raw_size
/ PLT_ENTRY_SIZE
;
1548 /* Make room for this entry. */
1549 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1551 /* We also need to make an entry in the .rela.plt section. */
1553 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1554 BFD_ASSERT (s
!= NULL
);
1556 s
->_raw_size
+= sizeof (Elf64_External_Rela
);
1558 /* The procedure linkage table size is bounded by the magnitude
1559 of the offset we can describe in the entry. */
1560 if (s
->_raw_size
>= (bfd_vma
)1 << 32)
1562 bfd_set_error (bfd_error_bad_value
);
1569 /* If this is a weak symbol, and there is a real definition, the
1570 processor independent code will have arranged for us to see the
1571 real definition first, and we can just use the same value. */
1572 if (h
->weakdef
!= NULL
)
1574 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1575 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1576 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1577 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1581 /* This is a reference to a symbol defined by a dynamic object which
1582 is not a function. */
1584 /* If we are creating a shared library, we must presume that the
1585 only references to the symbol are via the global offset table.
1586 For such cases we need not do anything here; the relocations will
1587 be handled correctly by relocate_section. */
1591 /* We must allocate the symbol in our .dynbss section, which will
1592 become part of the .bss section of the executable. There will be
1593 an entry for this symbol in the .dynsym section. The dynamic
1594 object will contain position independent code, so all references
1595 from the dynamic object to this symbol will go through the global
1596 offset table. The dynamic linker will use the .dynsym entry to
1597 determine the address it must put in the global offset table, so
1598 both the dynamic object and the regular object will refer to the
1599 same memory location for the variable. */
1601 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1602 BFD_ASSERT (s
!= NULL
);
1604 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1605 to copy the initial value out of the dynamic object and into the
1606 runtime process image. We need to remember the offset into the
1607 .rel.bss section we are going to use. */
1608 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1612 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1613 BFD_ASSERT (srel
!= NULL
);
1614 srel
->_raw_size
+= sizeof (Elf64_External_Rela
);
1615 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1618 /* We need to figure out the alignment required for this symbol. I
1619 have no idea how ELF linkers handle this. 16-bytes is the size
1620 of the largest type that requires hard alignment -- long double. */
1621 power_of_two
= bfd_log2 (h
->size
);
1622 if (power_of_two
> 4)
1625 /* Apply the required alignment. */
1626 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1627 (bfd_size_type
) (1 << power_of_two
));
1628 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1630 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1634 /* Define the symbol as being at this point in the section. */
1635 h
->root
.u
.def
.section
= s
;
1636 h
->root
.u
.def
.value
= s
->_raw_size
;
1638 /* Increment the section size to make room for the symbol. */
1639 s
->_raw_size
+= h
->size
;
1644 /* Set the sizes of the dynamic sections. */
1647 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1649 struct bfd_link_info
*info
;
1656 dynobj
= elf_hash_table (info
)->dynobj
;
1657 BFD_ASSERT (dynobj
!= NULL
);
1659 if (elf_hash_table (info
)->dynamic_sections_created
)
1661 /* Set the contents of the .interp section to the interpreter. */
1664 s
= bfd_get_section_by_name (dynobj
, ".interp");
1665 BFD_ASSERT (s
!= NULL
);
1666 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1667 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1672 /* We may have created entries in the .rela.got section.
1673 However, if we are not creating the dynamic sections, we will
1674 not actually use these entries. Reset the size of .rela.got,
1675 which will cause it to get stripped from the output file
1677 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1682 /* The check_relocs and adjust_dynamic_symbol entry points have
1683 determined the sizes of the various dynamic sections. Allocate
1687 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1692 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1695 /* It's OK to base decisions on the section name, because none
1696 of the dynobj section names depend upon the input files. */
1697 name
= bfd_get_section_name (dynobj
, s
);
1701 if (strncmp (name
, ".rela", 5) == 0)
1703 if (s
->_raw_size
== 0)
1705 /* If we don't need this section, strip it from the
1706 output file. This is to handle .rela.bss and
1707 .rel.plt. We must create it in
1708 create_dynamic_sections, because it must be created
1709 before the linker maps input sections to output
1710 sections. The linker does that before
1711 adjust_dynamic_symbol is called, and it is that
1712 function which decides whether anything needs to go
1713 into these sections. */
1718 const char *outname
;
1721 /* If this relocation section applies to a read only
1722 section, then we probably need a DT_TEXTREL entry. */
1723 outname
= bfd_get_section_name (output_bfd
,
1725 target
= bfd_get_section_by_name (output_bfd
, outname
+ 5);
1727 && (target
->flags
& SEC_READONLY
) != 0)
1730 if (strcmp (name
, ".rela.plt") == 0)
1733 /* We use the reloc_count field as a counter if we need
1734 to copy relocs into the output file. */
1738 else if (strcmp (name
, ".plt") != 0
1739 && strncmp (name
, ".got", 4) != 0)
1741 /* It's not one of our sections, so don't allocate space. */
1747 _bfd_strip_section_from_output (info
, s
);
1751 /* Allocate memory for the section contents. Zero the memory
1752 for the benefit of .rela.plt, which has 4 unused entries
1753 at the beginning, and we don't want garbage. */
1754 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1755 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1759 if (elf_hash_table (info
)->dynamic_sections_created
)
1761 /* Add some entries to the .dynamic section. We fill in the
1762 values later, in sparc64_elf_finish_dynamic_sections, but we
1763 must add the entries now so that we get the correct size for
1764 the .dynamic section. The DT_DEBUG entry is filled in by the
1765 dynamic linker and used by the debugger. */
1767 struct sparc64_elf_app_reg
* app_regs
;
1768 struct bfd_strtab_hash
*dynstr
;
1769 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1773 if (! bfd_elf64_add_dynamic_entry (info
, DT_DEBUG
, 0))
1779 if (! bfd_elf64_add_dynamic_entry (info
, DT_PLTGOT
, 0)
1780 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1781 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTREL
, DT_RELA
)
1782 || ! bfd_elf64_add_dynamic_entry (info
, DT_JMPREL
, 0))
1786 if (! bfd_elf64_add_dynamic_entry (info
, DT_RELA
, 0)
1787 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELASZ
, 0)
1788 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELAENT
,
1789 sizeof (Elf64_External_Rela
)))
1794 if (! bfd_elf64_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1796 info
->flags
|= DF_TEXTREL
;
1799 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1800 entries if needed. */
1801 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1802 dynstr
= eht
->dynstr
;
1804 for (reg
= 0; reg
< 4; reg
++)
1805 if (app_regs
[reg
].name
!= NULL
)
1807 struct elf_link_local_dynamic_entry
*entry
, *e
;
1809 if (! bfd_elf64_add_dynamic_entry (info
, DT_SPARC_REGISTER
, 0))
1812 entry
= (struct elf_link_local_dynamic_entry
*)
1813 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1817 /* We cheat here a little bit: the symbol will not be local, so we
1818 put it at the end of the dynlocal linked list. We will fix it
1819 later on, as we have to fix other fields anyway. */
1820 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1821 entry
->isym
.st_size
= 0;
1822 if (*app_regs
[reg
].name
!= '\0')
1824 = _bfd_stringtab_add (dynstr
, app_regs
[reg
].name
, true, false);
1826 entry
->isym
.st_name
= 0;
1827 entry
->isym
.st_other
= 0;
1828 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1830 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1832 entry
->input_bfd
= output_bfd
;
1833 entry
->input_indx
= -1;
1835 if (eht
->dynlocal
== NULL
)
1836 eht
->dynlocal
= entry
;
1839 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1850 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1851 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1854 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1855 bfd
*abfd ATTRIBUTE_UNUSED
;
1856 asection
*section ATTRIBUTE_UNUSED
;
1857 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1861 SET_SEC_DO_RELAX (section
);
1865 /* Relocate a SPARC64 ELF section. */
1868 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1869 contents
, relocs
, local_syms
, local_sections
)
1871 struct bfd_link_info
*info
;
1873 asection
*input_section
;
1875 Elf_Internal_Rela
*relocs
;
1876 Elf_Internal_Sym
*local_syms
;
1877 asection
**local_sections
;
1880 Elf_Internal_Shdr
*symtab_hdr
;
1881 struct elf_link_hash_entry
**sym_hashes
;
1882 bfd_vma
*local_got_offsets
;
1887 Elf_Internal_Rela
*rel
;
1888 Elf_Internal_Rela
*relend
;
1890 dynobj
= elf_hash_table (info
)->dynobj
;
1891 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1892 sym_hashes
= elf_sym_hashes (input_bfd
);
1893 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1895 if (elf_hash_table(info
)->hgot
== NULL
)
1898 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
1900 sgot
= splt
= sreloc
= NULL
;
1903 relend
= relocs
+ input_section
->reloc_count
;
1904 for (; rel
< relend
; rel
++)
1907 reloc_howto_type
*howto
;
1908 unsigned long r_symndx
;
1909 struct elf_link_hash_entry
*h
;
1910 Elf_Internal_Sym
*sym
;
1913 bfd_reloc_status_type r
;
1915 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
1916 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
1918 bfd_set_error (bfd_error_bad_value
);
1921 howto
= sparc64_elf_howto_table
+ r_type
;
1923 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1925 if (info
->relocateable
)
1927 /* This is a relocateable link. We don't have to change
1928 anything, unless the reloc is against a section symbol,
1929 in which case we have to adjust according to where the
1930 section symbol winds up in the output section. */
1931 if (r_symndx
< symtab_hdr
->sh_info
)
1933 sym
= local_syms
+ r_symndx
;
1934 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1936 sec
= local_sections
[r_symndx
];
1937 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1944 /* This is a final link. */
1948 if (r_symndx
< symtab_hdr
->sh_info
)
1950 sym
= local_syms
+ r_symndx
;
1951 sec
= local_sections
[r_symndx
];
1952 relocation
= (sec
->output_section
->vma
1953 + sec
->output_offset
1958 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1959 while (h
->root
.type
== bfd_link_hash_indirect
1960 || h
->root
.type
== bfd_link_hash_warning
)
1961 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1962 if (h
->root
.type
== bfd_link_hash_defined
1963 || h
->root
.type
== bfd_link_hash_defweak
)
1965 boolean skip_it
= false;
1966 sec
= h
->root
.u
.def
.section
;
1970 case R_SPARC_WPLT30
:
1972 case R_SPARC_HIPLT22
:
1973 case R_SPARC_LOPLT10
:
1974 case R_SPARC_PCPLT32
:
1975 case R_SPARC_PCPLT22
:
1976 case R_SPARC_PCPLT10
:
1978 if (h
->plt
.offset
!= (bfd_vma
) -1)
1985 if (elf_hash_table(info
)->dynamic_sections_created
1987 || (!info
->symbolic
&& h
->dynindx
!= -1)
1988 || !(h
->elf_link_hash_flags
1989 & ELF_LINK_HASH_DEF_REGULAR
)))
1995 case R_SPARC_PC_HH22
:
1996 case R_SPARC_PC_HM10
:
1997 case R_SPARC_PC_LM22
:
1998 if (!strcmp(h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2006 case R_SPARC_DISP16
:
2007 case R_SPARC_DISP32
:
2008 case R_SPARC_WDISP30
:
2009 case R_SPARC_WDISP22
:
2022 case R_SPARC_WDISP19
:
2023 case R_SPARC_WDISP16
:
2027 case R_SPARC_DISP64
:
2036 && ((!info
->symbolic
&& h
->dynindx
!= -1)
2037 || !(h
->elf_link_hash_flags
2038 & ELF_LINK_HASH_DEF_REGULAR
)))
2045 /* In these cases, we don't need the relocation
2046 value. We check specially because in some
2047 obscure cases sec->output_section will be NULL. */
2052 relocation
= (h
->root
.u
.def
.value
2053 + sec
->output_section
->vma
2054 + sec
->output_offset
);
2057 else if (h
->root
.type
== bfd_link_hash_undefweak
)
2059 else if (info
->shared
&& !info
->symbolic
2060 && !info
->no_undefined
2061 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2065 if (! ((*info
->callbacks
->undefined_symbol
)
2066 (info
, h
->root
.root
.string
, input_bfd
,
2067 input_section
, rel
->r_offset
,
2068 (!info
->shared
|| info
->no_undefined
2069 || ELF_ST_VISIBILITY (h
->other
)))))
2072 /* To avoid generating warning messages about truncated
2073 relocations, set the relocation's address to be the same as
2074 the start of this section. */
2076 if (input_section
->output_section
!= NULL
)
2077 relocation
= input_section
->output_section
->vma
;
2083 /* When generating a shared object, these relocations are copied
2084 into the output file to be resolved at run time. */
2085 if (info
->shared
&& (input_section
->flags
& SEC_ALLOC
))
2091 case R_SPARC_PC_HH22
:
2092 case R_SPARC_PC_HM10
:
2093 case R_SPARC_PC_LM22
:
2095 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2099 case R_SPARC_DISP16
:
2100 case R_SPARC_DISP32
:
2101 case R_SPARC_WDISP30
:
2102 case R_SPARC_WDISP22
:
2103 case R_SPARC_WDISP19
:
2104 case R_SPARC_WDISP16
:
2105 case R_SPARC_DISP64
:
2135 Elf_Internal_Rela outrel
;
2141 (bfd_elf_string_from_elf_section
2143 elf_elfheader (input_bfd
)->e_shstrndx
,
2144 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2149 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2150 && strcmp (bfd_get_section_name(input_bfd
,
2154 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2155 BFD_ASSERT (sreloc
!= NULL
);
2160 if (elf_section_data (input_section
)->stab_info
== NULL
)
2161 outrel
.r_offset
= rel
->r_offset
;
2166 off
= (_bfd_stab_section_offset
2167 (output_bfd
, &elf_hash_table (info
)->stab_info
,
2169 &elf_section_data (input_section
)->stab_info
,
2171 if (off
== MINUS_ONE
)
2173 outrel
.r_offset
= off
;
2176 outrel
.r_offset
+= (input_section
->output_section
->vma
2177 + input_section
->output_offset
);
2179 /* Optimize unaligned reloc usage now that we know where
2180 it finally resides. */
2184 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2187 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2190 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2193 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2196 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2199 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2204 memset (&outrel
, 0, sizeof outrel
);
2205 /* h->dynindx may be -1 if the symbol was marked to
2208 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2209 || (h
->elf_link_hash_flags
2210 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2212 BFD_ASSERT (h
->dynindx
!= -1);
2214 = ELF64_R_INFO (h
->dynindx
,
2216 ELF64_R_TYPE_DATA (rel
->r_info
),
2218 outrel
.r_addend
= rel
->r_addend
;
2222 if (r_type
== R_SPARC_64
)
2224 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2225 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2232 sec
= local_sections
[r_symndx
];
2235 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2237 == bfd_link_hash_defweak
));
2238 sec
= h
->root
.u
.def
.section
;
2240 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
2242 else if (sec
== NULL
|| sec
->owner
== NULL
)
2244 bfd_set_error (bfd_error_bad_value
);
2251 osec
= sec
->output_section
;
2252 indx
= elf_section_data (osec
)->dynindx
;
2254 /* FIXME: we really should be able to link non-pic
2255 shared libraries. */
2259 (*_bfd_error_handler
)
2260 (_("%s: probably compiled without -fPIC?"),
2261 bfd_get_filename (input_bfd
));
2262 bfd_set_error (bfd_error_bad_value
);
2268 = ELF64_R_INFO (indx
,
2270 ELF64_R_TYPE_DATA (rel
->r_info
),
2272 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2276 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2277 (((Elf64_External_Rela
*)
2279 + sreloc
->reloc_count
));
2280 ++sreloc
->reloc_count
;
2282 /* This reloc will be computed at runtime, so there's no
2283 need to do anything now, unless this is a RELATIVE
2284 reloc in an unallocated section. */
2286 || (input_section
->flags
& SEC_ALLOC
) != 0
2287 || ELF64_R_TYPE_ID (outrel
.r_info
) != R_SPARC_RELATIVE
)
2299 /* Relocation is to the entry for this symbol in the global
2303 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2304 BFD_ASSERT (sgot
!= NULL
);
2309 bfd_vma off
= h
->got
.offset
;
2310 BFD_ASSERT (off
!= (bfd_vma
) -1);
2312 if (! elf_hash_table (info
)->dynamic_sections_created
2314 && (info
->symbolic
|| h
->dynindx
== -1)
2315 && (h
->elf_link_hash_flags
2316 & ELF_LINK_HASH_DEF_REGULAR
)))
2318 /* This is actually a static link, or it is a -Bsymbolic
2319 link and the symbol is defined locally, or the symbol
2320 was forced to be local because of a version file. We
2321 must initialize this entry in the global offset table.
2322 Since the offset must always be a multiple of 8, we
2323 use the least significant bit to record whether we
2324 have initialized it already.
2326 When doing a dynamic link, we create a .rela.got
2327 relocation entry to initialize the value. This is
2328 done in the finish_dynamic_symbol routine. */
2334 bfd_put_64 (output_bfd
, relocation
,
2335 sgot
->contents
+ off
);
2339 relocation
= sgot
->output_offset
+ off
- got_base
;
2345 BFD_ASSERT (local_got_offsets
!= NULL
);
2346 off
= local_got_offsets
[r_symndx
];
2347 BFD_ASSERT (off
!= (bfd_vma
) -1);
2349 /* The offset must always be a multiple of 8. We use
2350 the least significant bit to record whether we have
2351 already processed this entry. */
2356 local_got_offsets
[r_symndx
] |= 1;
2361 Elf_Internal_Rela outrel
;
2363 /* The Solaris 2.7 64-bit linker adds the contents
2364 of the location to the value of the reloc.
2365 Note this is different behaviour to the
2366 32-bit linker, which both adds the contents
2367 and ignores the addend. So clear the location. */
2368 bfd_put_64 (output_bfd
, 0, sgot
->contents
+ off
);
2370 /* We need to generate a R_SPARC_RELATIVE reloc
2371 for the dynamic linker. */
2372 srelgot
= bfd_get_section_by_name(dynobj
, ".rela.got");
2373 BFD_ASSERT (srelgot
!= NULL
);
2375 outrel
.r_offset
= (sgot
->output_section
->vma
2376 + sgot
->output_offset
2378 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2379 outrel
.r_addend
= relocation
;
2380 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2381 (((Elf64_External_Rela
*)
2383 + srelgot
->reloc_count
));
2384 ++srelgot
->reloc_count
;
2387 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2389 relocation
= sgot
->output_offset
+ off
- got_base
;
2393 case R_SPARC_WPLT30
:
2395 case R_SPARC_HIPLT22
:
2396 case R_SPARC_LOPLT10
:
2397 case R_SPARC_PCPLT32
:
2398 case R_SPARC_PCPLT22
:
2399 case R_SPARC_PCPLT10
:
2401 /* Relocation is to the entry for this symbol in the
2402 procedure linkage table. */
2403 BFD_ASSERT (h
!= NULL
);
2405 if (h
->plt
.offset
== (bfd_vma
) -1)
2407 /* We didn't make a PLT entry for this symbol. This
2408 happens when statically linking PIC code, or when
2409 using -Bsymbolic. */
2415 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2416 BFD_ASSERT (splt
!= NULL
);
2419 relocation
= (splt
->output_section
->vma
2420 + splt
->output_offset
2421 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2422 if (r_type
== R_SPARC_WPLT30
)
2430 relocation
+= rel
->r_addend
;
2431 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2433 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2434 x
= (x
& ~0x1fff) | (relocation
& 0x1fff);
2435 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2437 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2438 howto
->bitsize
, howto
->rightshift
,
2439 bfd_arch_bits_per_address (input_bfd
),
2444 case R_SPARC_WDISP16
:
2448 relocation
+= rel
->r_addend
;
2449 /* Adjust for pc-relative-ness. */
2450 relocation
-= (input_section
->output_section
->vma
2451 + input_section
->output_offset
);
2452 relocation
-= rel
->r_offset
;
2454 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2455 x
= (x
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
2456 | ((relocation
>> 2) & 0x3fff));
2457 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2459 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2460 howto
->bitsize
, howto
->rightshift
,
2461 bfd_arch_bits_per_address (input_bfd
),
2470 relocation
+= rel
->r_addend
;
2471 relocation
= relocation
^ MINUS_ONE
;
2473 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2474 x
= (x
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2475 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2477 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2478 howto
->bitsize
, howto
->rightshift
,
2479 bfd_arch_bits_per_address (input_bfd
),
2488 relocation
+= rel
->r_addend
;
2489 relocation
= (relocation
& 0x3ff) | 0x1c00;
2491 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2492 x
= (x
& ~0x1fff) | relocation
;
2493 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2499 case R_SPARC_WDISP30
:
2501 if (SEC_DO_RELAX (input_section
)
2502 && rel
->r_offset
+ 4 < input_section
->_raw_size
)
2506 #define XCC (2 << 20)
2507 #define COND(x) (((x)&0xf)<<25)
2508 #define CONDA COND(0x8)
2509 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2510 #define INSN_BA (F2(0,2) | CONDA)
2511 #define INSN_OR F3(2, 0x2, 0)
2512 #define INSN_NOP F2(0,4)
2516 /* If the instruction is a call with either:
2518 arithmetic instruction with rd == %o7
2519 where rs1 != %o7 and rs2 if it is register != %o7
2520 then we can optimize if the call destination is near
2521 by changing the call into a branch always. */
2522 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2523 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2524 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2526 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2527 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2528 && (y
& RD(~0)) == RD(O7
)))
2529 && (y
& RS1(~0)) != RS1(O7
)
2531 || (y
& RS2(~0)) != RS2(O7
)))
2535 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2536 reloc
-= (input_section
->output_section
->vma
2537 + input_section
->output_offset
);
2541 /* Ensure the branch fits into simm22. */
2542 if ((reloc
& ~(bfd_vma
)0x7fffff)
2543 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2547 /* Check whether it fits into simm19. */
2548 if ((reloc
& 0x3c0000) == 0
2549 || (reloc
& 0x3c0000) == 0x3c0000)
2550 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2552 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2553 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2555 if (rel
->r_offset
>= 4
2556 && (y
& (0xffffffff ^ RS1(~0)))
2557 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2562 z
= bfd_get_32 (input_bfd
,
2563 contents
+ rel
->r_offset
- 4);
2564 if ((z
& (0xffffffff ^ RD(~0)))
2565 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2573 If call foo was replaced with ba, replace
2574 or %rN, %g0, %o7 with nop. */
2576 reg
= (y
& RS1(~0)) >> 14;
2577 if (reg
!= ((z
& RD(~0)) >> 25)
2578 || reg
== G0
|| reg
== O7
)
2581 bfd_put_32 (input_bfd
, INSN_NOP
,
2582 contents
+ rel
->r_offset
+ 4);
2592 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2593 contents
, rel
->r_offset
,
2594 relocation
, rel
->r_addend
);
2604 case bfd_reloc_outofrange
:
2607 case bfd_reloc_overflow
:
2613 if (h
->root
.type
== bfd_link_hash_undefweak
2614 && howto
->pc_relative
)
2616 /* Assume this is a call protected by other code that
2617 detect the symbol is undefined. If this is the case,
2618 we can safely ignore the overflow. If not, the
2619 program is hosed anyway, and a little warning isn't
2624 name
= h
->root
.root
.string
;
2628 name
= (bfd_elf_string_from_elf_section
2630 symtab_hdr
->sh_link
,
2635 name
= bfd_section_name (input_bfd
, sec
);
2637 if (! ((*info
->callbacks
->reloc_overflow
)
2638 (info
, name
, howto
->name
, (bfd_vma
) 0,
2639 input_bfd
, input_section
, rel
->r_offset
)))
2649 /* Finish up dynamic symbol handling. We set the contents of various
2650 dynamic sections here. */
2653 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2655 struct bfd_link_info
*info
;
2656 struct elf_link_hash_entry
*h
;
2657 Elf_Internal_Sym
*sym
;
2661 dynobj
= elf_hash_table (info
)->dynobj
;
2663 if (h
->plt
.offset
!= (bfd_vma
) -1)
2667 Elf_Internal_Rela rela
;
2669 /* This symbol has an entry in the PLT. Set it up. */
2671 BFD_ASSERT (h
->dynindx
!= -1);
2673 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2674 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2675 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2677 /* Fill in the entry in the .rela.plt section. */
2679 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2681 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2686 int max
= splt
->_raw_size
/ PLT_ENTRY_SIZE
;
2687 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2688 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2689 -(splt
->output_section
->vma
+ splt
->output_offset
);
2691 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2692 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2694 /* Adjust for the first 4 reserved elements in the .plt section
2695 when setting the offset in the .rela.plt section.
2696 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2697 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2699 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2700 ((Elf64_External_Rela
*) srela
->contents
2701 + (h
->plt
.offset
- 4)));
2703 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2705 /* Mark the symbol as undefined, rather than as defined in
2706 the .plt section. Leave the value alone. */
2707 sym
->st_shndx
= SHN_UNDEF
;
2711 if (h
->got
.offset
!= (bfd_vma
) -1)
2715 Elf_Internal_Rela rela
;
2717 /* This symbol has an entry in the GOT. Set it up. */
2719 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2720 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2721 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2723 rela
.r_offset
= (sgot
->output_section
->vma
2724 + sgot
->output_offset
2725 + (h
->got
.offset
&~ 1));
2727 /* If this is a -Bsymbolic link, and the symbol is defined
2728 locally, we just want to emit a RELATIVE reloc. Likewise if
2729 the symbol was forced to be local because of a version file.
2730 The entry in the global offset table will already have been
2731 initialized in the relocate_section function. */
2733 && (info
->symbolic
|| h
->dynindx
== -1)
2734 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2736 asection
*sec
= h
->root
.u
.def
.section
;
2737 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2738 rela
.r_addend
= (h
->root
.u
.def
.value
2739 + sec
->output_section
->vma
2740 + sec
->output_offset
);
2744 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
2745 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2749 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2750 ((Elf64_External_Rela
*) srela
->contents
2751 + srela
->reloc_count
));
2752 ++srela
->reloc_count
;
2755 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2758 Elf_Internal_Rela rela
;
2760 /* This symbols needs a copy reloc. Set it up. */
2762 BFD_ASSERT (h
->dynindx
!= -1);
2764 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2766 BFD_ASSERT (s
!= NULL
);
2768 rela
.r_offset
= (h
->root
.u
.def
.value
2769 + h
->root
.u
.def
.section
->output_section
->vma
2770 + h
->root
.u
.def
.section
->output_offset
);
2771 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2773 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2774 ((Elf64_External_Rela
*) s
->contents
2779 /* Mark some specially defined symbols as absolute. */
2780 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2781 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2782 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2783 sym
->st_shndx
= SHN_ABS
;
2788 /* Finish up the dynamic sections. */
2791 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2793 struct bfd_link_info
*info
;
2796 int stt_regidx
= -1;
2800 dynobj
= elf_hash_table (info
)->dynobj
;
2802 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2804 if (elf_hash_table (info
)->dynamic_sections_created
)
2807 Elf64_External_Dyn
*dyncon
, *dynconend
;
2809 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2810 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2812 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2813 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2814 for (; dyncon
< dynconend
; dyncon
++)
2816 Elf_Internal_Dyn dyn
;
2820 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2824 case DT_PLTGOT
: name
= ".plt"; size
= false; break;
2825 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= true; break;
2826 case DT_JMPREL
: name
= ".rela.plt"; size
= false; break;
2827 case DT_SPARC_REGISTER
:
2828 if (stt_regidx
== -1)
2831 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2832 if (stt_regidx
== -1)
2835 dyn
.d_un
.d_val
= stt_regidx
++;
2836 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2838 default: name
= NULL
; size
= false; break;
2845 s
= bfd_get_section_by_name (output_bfd
, name
);
2851 dyn
.d_un
.d_ptr
= s
->vma
;
2854 if (s
->_cooked_size
!= 0)
2855 dyn
.d_un
.d_val
= s
->_cooked_size
;
2857 dyn
.d_un
.d_val
= s
->_raw_size
;
2860 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2864 /* Initialize the contents of the .plt section. */
2865 if (splt
->_raw_size
> 0)
2867 sparc64_elf_build_plt(output_bfd
, splt
->contents
,
2868 splt
->_raw_size
/ PLT_ENTRY_SIZE
);
2871 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2875 /* Set the first entry in the global offset table to the address of
2876 the dynamic section. */
2877 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2878 BFD_ASSERT (sgot
!= NULL
);
2879 if (sgot
->_raw_size
> 0)
2882 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2884 bfd_put_64 (output_bfd
,
2885 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2889 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2894 /* Functions for dealing with the e_flags field. */
2896 /* Merge backend specific data from an object file to the output
2897 object file when linking. */
2900 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2905 flagword new_flags
, old_flags
;
2908 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2909 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2912 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2913 old_flags
= elf_elfheader (obfd
)->e_flags
;
2915 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2917 elf_flags_init (obfd
) = true;
2918 elf_elfheader (obfd
)->e_flags
= new_flags
;
2921 else if (new_flags
== old_flags
) /* Compatible flags are ok */
2924 else /* Incompatible flags */
2928 #define EF_SPARC_ISA_EXTENSIONS \
2929 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
2931 if ((ibfd
->flags
& DYNAMIC
) != 0)
2933 /* We don't want dynamic objects memory ordering and
2934 architecture to have any role. That's what dynamic linker
2936 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
);
2937 new_flags
|= (old_flags
2938 & (EF_SPARCV9_MM
| EF_SPARC_ISA_EXTENSIONS
));
2942 /* Choose the highest architecture requirements. */
2943 old_flags
|= (new_flags
& EF_SPARC_ISA_EXTENSIONS
);
2944 new_flags
|= (old_flags
& EF_SPARC_ISA_EXTENSIONS
);
2945 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_SUN_US3
))
2946 && (old_flags
& EF_SPARC_HAL_R1
))
2949 (*_bfd_error_handler
)
2950 (_("%s: linking UltraSPARC specific with HAL specific code"),
2951 bfd_get_filename (ibfd
));
2953 /* Choose the most restrictive memory ordering. */
2954 old_mm
= (old_flags
& EF_SPARCV9_MM
);
2955 new_mm
= (new_flags
& EF_SPARCV9_MM
);
2956 old_flags
&= ~EF_SPARCV9_MM
;
2957 new_flags
&= ~EF_SPARCV9_MM
;
2958 if (new_mm
< old_mm
)
2960 old_flags
|= old_mm
;
2961 new_flags
|= old_mm
;
2964 /* Warn about any other mismatches */
2965 if (new_flags
!= old_flags
)
2968 (*_bfd_error_handler
)
2969 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2970 bfd_get_filename (ibfd
), (long)new_flags
, (long)old_flags
);
2973 elf_elfheader (obfd
)->e_flags
= old_flags
;
2977 bfd_set_error (bfd_error_bad_value
);
2984 /* Print a STT_REGISTER symbol to file FILE. */
2987 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
2988 bfd
*abfd ATTRIBUTE_UNUSED
;
2992 FILE *file
= (FILE *) filep
;
2995 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
2999 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
3000 type
= symbol
->flags
;
3001 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
3003 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
3004 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
3005 (type
& BSF_WEAK
) ? 'w' : ' ');
3006 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
3009 return symbol
->name
;
3012 /* Set the right machine number for a SPARC64 ELF file. */
3015 sparc64_elf_object_p (abfd
)
3018 unsigned long mach
= bfd_mach_sparc_v9
;
3020 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US3
)
3021 mach
= bfd_mach_sparc_v9b
;
3022 else if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3023 mach
= bfd_mach_sparc_v9a
;
3024 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3027 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3028 standard ELF, because R_SPARC_OLO10 has secondary addend in
3029 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3030 relocation handling routines. */
3032 const struct elf_size_info sparc64_elf_size_info
=
3034 sizeof (Elf64_External_Ehdr
),
3035 sizeof (Elf64_External_Phdr
),
3036 sizeof (Elf64_External_Shdr
),
3037 sizeof (Elf64_External_Rel
),
3038 sizeof (Elf64_External_Rela
),
3039 sizeof (Elf64_External_Sym
),
3040 sizeof (Elf64_External_Dyn
),
3041 sizeof (Elf_External_Note
),
3042 4, /* hash-table entry size */
3043 /* internal relocations per external relocations.
3044 For link purposes we use just 1 internal per
3045 1 external, for assembly and slurp symbol table
3052 bfd_elf64_write_out_phdrs
,
3053 bfd_elf64_write_shdrs_and_ehdr
,
3054 sparc64_elf_write_relocs
,
3055 bfd_elf64_swap_symbol_out
,
3056 sparc64_elf_slurp_reloc_table
,
3057 bfd_elf64_slurp_symbol_table
,
3058 bfd_elf64_swap_dyn_in
,
3059 bfd_elf64_swap_dyn_out
,
3066 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3067 #define TARGET_BIG_NAME "elf64-sparc"
3068 #define ELF_ARCH bfd_arch_sparc
3069 #define ELF_MAXPAGESIZE 0x100000
3071 /* This is the official ABI value. */
3072 #define ELF_MACHINE_CODE EM_SPARCV9
3074 /* This is the value that we used before the ABI was released. */
3075 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3077 #define bfd_elf64_bfd_link_hash_table_create \
3078 sparc64_elf_bfd_link_hash_table_create
3080 #define elf_info_to_howto \
3081 sparc64_elf_info_to_howto
3082 #define bfd_elf64_get_reloc_upper_bound \
3083 sparc64_elf_get_reloc_upper_bound
3084 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3085 sparc64_elf_get_dynamic_reloc_upper_bound
3086 #define bfd_elf64_canonicalize_dynamic_reloc \
3087 sparc64_elf_canonicalize_dynamic_reloc
3088 #define bfd_elf64_bfd_reloc_type_lookup \
3089 sparc64_elf_reloc_type_lookup
3090 #define bfd_elf64_bfd_relax_section \
3091 sparc64_elf_relax_section
3093 #define elf_backend_create_dynamic_sections \
3094 _bfd_elf_create_dynamic_sections
3095 #define elf_backend_add_symbol_hook \
3096 sparc64_elf_add_symbol_hook
3097 #define elf_backend_get_symbol_type \
3098 sparc64_elf_get_symbol_type
3099 #define elf_backend_symbol_processing \
3100 sparc64_elf_symbol_processing
3101 #define elf_backend_check_relocs \
3102 sparc64_elf_check_relocs
3103 #define elf_backend_adjust_dynamic_symbol \
3104 sparc64_elf_adjust_dynamic_symbol
3105 #define elf_backend_size_dynamic_sections \
3106 sparc64_elf_size_dynamic_sections
3107 #define elf_backend_relocate_section \
3108 sparc64_elf_relocate_section
3109 #define elf_backend_finish_dynamic_symbol \
3110 sparc64_elf_finish_dynamic_symbol
3111 #define elf_backend_finish_dynamic_sections \
3112 sparc64_elf_finish_dynamic_sections
3113 #define elf_backend_print_symbol_all \
3114 sparc64_elf_print_symbol_all
3115 #define elf_backend_output_arch_syms \
3116 sparc64_elf_output_arch_syms
3118 #define bfd_elf64_bfd_merge_private_bfd_data \
3119 sparc64_elf_merge_private_bfd_data
3121 #define elf_backend_size_info \
3122 sparc64_elf_size_info
3123 #define elf_backend_object_p \
3124 sparc64_elf_object_p
3126 #define elf_backend_want_got_plt 0
3127 #define elf_backend_plt_readonly 0
3128 #define elf_backend_want_plt_sym 1
3130 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3131 #define elf_backend_plt_alignment 8
3133 #define elf_backend_got_header_size 8
3134 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3136 #include "elf64-target.h"