1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993, 94, 95, 96, 97, 98, 1999
3 Free Software Foundation, Inc.
4 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
72 Creating a linker hash table
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocateable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
110 Adding symbols to the hash table
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
136 Differing file formats
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the <<creator>>
153 field of the hash table must be checked to make sure that the
154 hash table was created by an object file of the same format.
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the <<creator>> field before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
173 Adding symbols from an object file
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is true, so
204 that the <<-no-keep-memory>> linker switch is effective.
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
217 Adding symbols from an archive
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table.
226 @findex _bfd_generic_link_add_archive_symbols
227 In most cases the work of looking through the symbols in the
228 archive should be done by the
229 <<_bfd_generic_link_add_archive_symbols>> function. This
230 function builds a hash table from the archive symbol table and
231 looks through the list of undefined symbols to see which
232 elements should be included.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table.
238 The function passed to
239 <<_bfd_generic_link_add_archive_symbols>> must read the
240 symbols of the archive element and decide whether the archive
241 element should be included in the link. If the element is to
242 be included, the <<add_archive_element>> linker callback
243 routine must be called with the element as an argument, and
244 the elements symbols must be added to the linker hash table
245 just as though the element had itself been passed to the
246 <<_bfd_link_add_symbols>> function.
248 When the a.out <<_bfd_link_add_symbols>> function receives an
249 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
250 passing <<aout_link_check_archive_element>> as the function
251 argument. <<aout_link_check_archive_element>> calls
252 <<aout_link_check_ar_symbols>>. If the latter decides to add
253 the element (an element is only added if it provides a real,
254 non-common, definition for a previously undefined or common
255 symbol) it calls the <<add_archive_element>> callback and then
256 <<aout_link_check_archive_element>> calls
257 <<aout_link_add_symbols>> to actually add the symbols to the
260 The ECOFF back end is unusual in that it does not normally
261 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
262 archives already contain a hash table of symbols. The ECOFF
263 back end searches the archive itself to avoid the overhead of
264 creating a new hash table.
267 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
269 Performing the final link
271 @cindex _bfd_link_final_link in target vector
272 @cindex target vector (_bfd_final_link)
273 When all the input files have been processed, the linker calls
274 the <<_bfd_final_link>> entry point of the output BFD. This
275 routine is responsible for producing the final output file,
276 which has several aspects. It must relocate the contents of
277 the input sections and copy the data into the output sections.
278 It must build an output symbol table including any local
279 symbols from the input files and the global symbols from the
280 hash table. When producing relocateable output, it must
281 modify the input relocs and write them into the output file.
282 There may also be object format dependent work to be done.
284 The linker will also call the <<write_object_contents>> entry
285 point when the BFD is closed. The two entry points must work
286 together in order to produce the correct output file.
288 The details of how this works are inevitably dependent upon
289 the specific object file format. The a.out
290 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
293 @* Information provided by the linker::
294 @* Relocating the section contents::
295 @* Writing the symbol table::
299 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
301 Information provided by the linker
303 Before the linker calls the <<_bfd_final_link>> entry point,
304 it sets up some data structures for the function to use.
306 The <<input_bfds>> field of the <<bfd_link_info>> structure
307 will point to a list of all the input files included in the
308 link. These files are linked through the <<link_next>> field
309 of the <<bfd>> structure.
311 Each section in the output file will have a list of
312 <<link_order>> structures attached to the <<link_order_head>>
313 field (the <<link_order>> structure is defined in
314 <<bfdlink.h>>). These structures describe how to create the
315 contents of the output section in terms of the contents of
316 various input sections, fill constants, and, eventually, other
317 types of information. They also describe relocs that must be
318 created by the BFD backend, but do not correspond to any input
319 file; this is used to support -Ur, which builds constructors
320 while generating a relocateable object file.
323 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
325 Relocating the section contents
327 The <<_bfd_final_link>> function should look through the
328 <<link_order>> structures attached to each section of the
329 output file. Each <<link_order>> structure should either be
330 handled specially, or it should be passed to the function
331 <<_bfd_default_link_order>> which will do the right thing
332 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
334 For efficiency, a <<link_order>> of type
335 <<bfd_indirect_link_order>> whose associated section belongs
336 to a BFD of the same format as the output BFD must be handled
337 specially. This type of <<link_order>> describes part of an
338 output section in terms of a section belonging to one of the
339 input files. The <<_bfd_final_link>> function should read the
340 contents of the section and any associated relocs, apply the
341 relocs to the section contents, and write out the modified
342 section contents. If performing a relocateable link, the
343 relocs themselves must also be modified and written out.
345 @findex _bfd_relocate_contents
346 @findex _bfd_final_link_relocate
347 The functions <<_bfd_relocate_contents>> and
348 <<_bfd_final_link_relocate>> provide some general support for
349 performing the actual relocations, notably overflow checking.
350 Their arguments include information about the symbol the
351 relocation is against and a <<reloc_howto_type>> argument
352 which describes the relocation to perform. These functions
353 are defined in <<reloc.c>>.
355 The a.out function which handles reading, relocating, and
356 writing section contents is <<aout_link_input_section>>. The
357 actual relocation is done in <<aout_link_input_section_std>>
358 and <<aout_link_input_section_ext>>.
361 Writing the symbol table, , Relocating the section contents, Performing the Final Link
363 Writing the symbol table
365 The <<_bfd_final_link>> function must gather all the symbols
366 in the input files and write them out. It must also write out
367 all the symbols in the global hash table. This must be
368 controlled by the <<strip>> and <<discard>> fields of the
369 <<bfd_link_info>> structure.
371 The local symbols of the input files will not have been
372 entered into the linker hash table. The <<_bfd_final_link>>
373 routine must consider each input file and include the symbols
374 in the output file. It may be convenient to do this when
375 looking through the <<link_order>> structures, or it may be
376 done by stepping through the <<input_bfds>> list.
378 The <<_bfd_final_link>> routine must also traverse the global
379 hash table to gather all the externally visible symbols. It
380 is possible that most of the externally visible symbols may be
381 written out when considering the symbols of each input file,
382 but it is still necessary to traverse the hash table since the
383 linker script may have defined some symbols that are not in
384 any of the input files.
386 The <<strip>> field of the <<bfd_link_info>> structure
387 controls which symbols are written out. The possible values
388 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
389 then the <<keep_hash>> field of the <<bfd_link_info>>
390 structure is a hash table of symbols to keep; each symbol
391 should be looked up in this hash table, and only symbols which
392 are present should be included in the output file.
394 If the <<strip>> field of the <<bfd_link_info>> structure
395 permits local symbols to be written out, the <<discard>> field
396 is used to further controls which local symbols are included
397 in the output file. If the value is <<discard_l>>, then all
398 local symbols which begin with a certain prefix are discarded;
399 this is controlled by the <<bfd_is_local_label_name>> entry point.
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
409 static boolean generic_link_read_symbols
411 static boolean generic_link_add_symbols
412 PARAMS ((bfd
*, struct bfd_link_info
*, boolean collect
));
413 static boolean generic_link_add_object_symbols
414 PARAMS ((bfd
*, struct bfd_link_info
*, boolean collect
));
415 static boolean generic_link_check_archive_element_no_collect
416 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
));
417 static boolean generic_link_check_archive_element_collect
418 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
));
419 static boolean generic_link_check_archive_element
420 PARAMS ((bfd
*, struct bfd_link_info
*, boolean
*pneeded
, boolean collect
));
421 static boolean generic_link_add_symbol_list
422 PARAMS ((bfd
*, struct bfd_link_info
*, bfd_size_type count
, asymbol
**,
424 static bfd
*hash_entry_bfd
PARAMS ((struct bfd_link_hash_entry
*));
425 static void set_symbol_from_hash
426 PARAMS ((asymbol
*, struct bfd_link_hash_entry
*));
427 static boolean generic_add_output_symbol
428 PARAMS ((bfd
*, size_t *psymalloc
, asymbol
*));
429 static boolean default_fill_link_order
430 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
431 struct bfd_link_order
*));
432 static boolean default_indirect_link_order
433 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
434 struct bfd_link_order
*, boolean
));
436 /* The link hash table structure is defined in bfdlink.h. It provides
437 a base hash table which the backend specific hash tables are built
440 /* Routine to create an entry in the link hash table. */
442 struct bfd_hash_entry
*
443 _bfd_link_hash_newfunc (entry
, table
, string
)
444 struct bfd_hash_entry
*entry
;
445 struct bfd_hash_table
*table
;
448 struct bfd_link_hash_entry
*ret
= (struct bfd_link_hash_entry
*) entry
;
450 /* Allocate the structure if it has not already been allocated by a
452 if (ret
== (struct bfd_link_hash_entry
*) NULL
)
453 ret
= ((struct bfd_link_hash_entry
*)
454 bfd_hash_allocate (table
, sizeof (struct bfd_link_hash_entry
)));
455 if (ret
== (struct bfd_link_hash_entry
*) NULL
)
458 /* Call the allocation method of the superclass. */
459 ret
= ((struct bfd_link_hash_entry
*)
460 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
464 /* Initialize the local fields. */
465 ret
->type
= bfd_link_hash_new
;
469 return (struct bfd_hash_entry
*) ret
;
472 /* Initialize a link hash table. The BFD argument is the one
473 responsible for creating this table. */
476 _bfd_link_hash_table_init (table
, abfd
, newfunc
)
477 struct bfd_link_hash_table
*table
;
479 struct bfd_hash_entry
*(*newfunc
) PARAMS ((struct bfd_hash_entry
*,
480 struct bfd_hash_table
*,
483 table
->creator
= abfd
->xvec
;
484 table
->undefs
= NULL
;
485 table
->undefs_tail
= NULL
;
486 return bfd_hash_table_init (&table
->table
, newfunc
);
489 /* Look up a symbol in a link hash table. If follow is true, we
490 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
493 struct bfd_link_hash_entry
*
494 bfd_link_hash_lookup (table
, string
, create
, copy
, follow
)
495 struct bfd_link_hash_table
*table
;
501 struct bfd_link_hash_entry
*ret
;
503 ret
= ((struct bfd_link_hash_entry
*)
504 bfd_hash_lookup (&table
->table
, string
, create
, copy
));
506 if (follow
&& ret
!= (struct bfd_link_hash_entry
*) NULL
)
508 while (ret
->type
== bfd_link_hash_indirect
509 || ret
->type
== bfd_link_hash_warning
)
516 /* Look up a symbol in the main linker hash table if the symbol might
517 be wrapped. This should only be used for references to an
518 undefined symbol, not for definitions of a symbol. */
520 struct bfd_link_hash_entry
*
521 bfd_wrapped_link_hash_lookup (abfd
, info
, string
, create
, copy
, follow
)
523 struct bfd_link_info
*info
;
529 if (info
->wrap_hash
!= NULL
)
534 if (*l
== bfd_get_symbol_leading_char (abfd
))
538 #define WRAP "__wrap_"
540 if (bfd_hash_lookup (info
->wrap_hash
, l
, false, false) != NULL
)
543 struct bfd_link_hash_entry
*h
;
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
548 n
= (char *) bfd_malloc (strlen (l
) + sizeof WRAP
+ 1);
552 /* Note that symbol_leading_char may be '\0'. */
553 n
[0] = bfd_get_symbol_leading_char (abfd
);
557 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, true, follow
);
565 #define REAL "__real_"
568 && strncmp (l
, REAL
, sizeof REAL
- 1) == 0
569 && bfd_hash_lookup (info
->wrap_hash
, l
+ sizeof REAL
- 1,
570 false, false) != NULL
)
573 struct bfd_link_hash_entry
*h
;
575 /* This is a reference to __real_SYM, where SYM is being
576 wrapped. We want to replace all references to __real_SYM
577 with references to SYM. */
579 n
= (char *) bfd_malloc (strlen (l
+ sizeof REAL
- 1) + 2);
583 /* Note that symbol_leading_char may be '\0'. */
584 n
[0] = bfd_get_symbol_leading_char (abfd
);
586 strcat (n
, l
+ sizeof REAL
- 1);
587 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, true, follow
);
595 return bfd_link_hash_lookup (info
->hash
, string
, create
, copy
, follow
);
598 /* Traverse a generic link hash table. The only reason this is not a
599 macro is to do better type checking. This code presumes that an
600 argument passed as a struct bfd_hash_entry * may be caught as a
601 struct bfd_link_hash_entry * with no explicit cast required on the
605 bfd_link_hash_traverse (table
, func
, info
)
606 struct bfd_link_hash_table
*table
;
607 boolean (*func
) PARAMS ((struct bfd_link_hash_entry
*, PTR
));
610 bfd_hash_traverse (&table
->table
,
611 ((boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
)))
616 /* Add a symbol to the linker hash table undefs list. */
619 bfd_link_add_undef (table
, h
)
620 struct bfd_link_hash_table
*table
;
621 struct bfd_link_hash_entry
*h
;
623 BFD_ASSERT (h
->next
== NULL
);
624 if (table
->undefs_tail
!= (struct bfd_link_hash_entry
*) NULL
)
625 table
->undefs_tail
->next
= h
;
626 if (table
->undefs
== (struct bfd_link_hash_entry
*) NULL
)
628 table
->undefs_tail
= h
;
631 /* Routine to create an entry in an generic link hash table. */
633 struct bfd_hash_entry
*
634 _bfd_generic_link_hash_newfunc (entry
, table
, string
)
635 struct bfd_hash_entry
*entry
;
636 struct bfd_hash_table
*table
;
639 struct generic_link_hash_entry
*ret
=
640 (struct generic_link_hash_entry
*) entry
;
642 /* Allocate the structure if it has not already been allocated by a
644 if (ret
== (struct generic_link_hash_entry
*) NULL
)
645 ret
= ((struct generic_link_hash_entry
*)
646 bfd_hash_allocate (table
, sizeof (struct generic_link_hash_entry
)));
647 if (ret
== (struct generic_link_hash_entry
*) NULL
)
650 /* Call the allocation method of the superclass. */
651 ret
= ((struct generic_link_hash_entry
*)
652 _bfd_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
657 /* Set local fields. */
658 ret
->written
= false;
662 return (struct bfd_hash_entry
*) ret
;
665 /* Create an generic link hash table. */
667 struct bfd_link_hash_table
*
668 _bfd_generic_link_hash_table_create (abfd
)
671 struct generic_link_hash_table
*ret
;
673 ret
= ((struct generic_link_hash_table
*)
674 bfd_alloc (abfd
, sizeof (struct generic_link_hash_table
)));
676 return (struct bfd_link_hash_table
*) NULL
;
677 if (! _bfd_link_hash_table_init (&ret
->root
, abfd
,
678 _bfd_generic_link_hash_newfunc
))
681 return (struct bfd_link_hash_table
*) NULL
;
686 /* Grab the symbols for an object file when doing a generic link. We
687 store the symbols in the outsymbols field. We need to keep them
688 around for the entire link to ensure that we only read them once.
689 If we read them multiple times, we might wind up with relocs and
690 the hash table pointing to different instances of the symbol
694 generic_link_read_symbols (abfd
)
697 if (bfd_get_outsymbols (abfd
) == (asymbol
**) NULL
)
702 symsize
= bfd_get_symtab_upper_bound (abfd
);
705 bfd_get_outsymbols (abfd
) = (asymbol
**) bfd_alloc (abfd
, symsize
);
706 if (bfd_get_outsymbols (abfd
) == NULL
&& symsize
!= 0)
708 symcount
= bfd_canonicalize_symtab (abfd
, bfd_get_outsymbols (abfd
));
711 bfd_get_symcount (abfd
) = symcount
;
717 /* Generic function to add symbols to from an object file to the
718 global hash table. This version does not automatically collect
719 constructors by name. */
722 _bfd_generic_link_add_symbols (abfd
, info
)
724 struct bfd_link_info
*info
;
726 return generic_link_add_symbols (abfd
, info
, false);
729 /* Generic function to add symbols from an object file to the global
730 hash table. This version automatically collects constructors by
731 name, as the collect2 program does. It should be used for any
732 target which does not provide some other mechanism for setting up
733 constructors and destructors; these are approximately those targets
734 for which gcc uses collect2 and do not support stabs. */
737 _bfd_generic_link_add_symbols_collect (abfd
, info
)
739 struct bfd_link_info
*info
;
741 return generic_link_add_symbols (abfd
, info
, true);
744 /* Add symbols from an object file to the global hash table. */
747 generic_link_add_symbols (abfd
, info
, collect
)
749 struct bfd_link_info
*info
;
754 switch (bfd_get_format (abfd
))
757 ret
= generic_link_add_object_symbols (abfd
, info
, collect
);
760 ret
= (_bfd_generic_link_add_archive_symbols
763 ? generic_link_check_archive_element_collect
764 : generic_link_check_archive_element_no_collect
)));
767 bfd_set_error (bfd_error_wrong_format
);
774 /* Add symbols from an object file to the global hash table. */
777 generic_link_add_object_symbols (abfd
, info
, collect
)
779 struct bfd_link_info
*info
;
782 if (! generic_link_read_symbols (abfd
))
784 return generic_link_add_symbol_list (abfd
, info
,
785 _bfd_generic_link_get_symcount (abfd
),
786 _bfd_generic_link_get_symbols (abfd
),
790 /* We build a hash table of all symbols defined in an archive. */
792 /* An archive symbol may be defined by multiple archive elements.
793 This linked list is used to hold the elements. */
797 struct archive_list
*next
;
801 /* An entry in an archive hash table. */
803 struct archive_hash_entry
805 struct bfd_hash_entry root
;
806 /* Where the symbol is defined. */
807 struct archive_list
*defs
;
810 /* An archive hash table itself. */
812 struct archive_hash_table
814 struct bfd_hash_table table
;
817 static struct bfd_hash_entry
*archive_hash_newfunc
818 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
819 static boolean archive_hash_table_init
820 PARAMS ((struct archive_hash_table
*,
821 struct bfd_hash_entry
*(*) (struct bfd_hash_entry
*,
822 struct bfd_hash_table
*,
825 /* Create a new entry for an archive hash table. */
827 static struct bfd_hash_entry
*
828 archive_hash_newfunc (entry
, table
, string
)
829 struct bfd_hash_entry
*entry
;
830 struct bfd_hash_table
*table
;
833 struct archive_hash_entry
*ret
= (struct archive_hash_entry
*) entry
;
835 /* Allocate the structure if it has not already been allocated by a
837 if (ret
== (struct archive_hash_entry
*) NULL
)
838 ret
= ((struct archive_hash_entry
*)
839 bfd_hash_allocate (table
, sizeof (struct archive_hash_entry
)));
840 if (ret
== (struct archive_hash_entry
*) NULL
)
843 /* Call the allocation method of the superclass. */
844 ret
= ((struct archive_hash_entry
*)
845 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
849 /* Initialize the local fields. */
850 ret
->defs
= (struct archive_list
*) NULL
;
853 return (struct bfd_hash_entry
*) ret
;
856 /* Initialize an archive hash table. */
859 archive_hash_table_init (table
, newfunc
)
860 struct archive_hash_table
*table
;
861 struct bfd_hash_entry
*(*newfunc
) PARAMS ((struct bfd_hash_entry
*,
862 struct bfd_hash_table
*,
865 return bfd_hash_table_init (&table
->table
, newfunc
);
868 /* Look up an entry in an archive hash table. */
870 #define archive_hash_lookup(t, string, create, copy) \
871 ((struct archive_hash_entry *) \
872 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
874 /* Allocate space in an archive hash table. */
876 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
878 /* Free an archive hash table. */
880 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
882 /* Generic function to add symbols from an archive file to the global
883 hash file. This function presumes that the archive symbol table
884 has already been read in (this is normally done by the
885 bfd_check_format entry point). It looks through the undefined and
886 common symbols and searches the archive symbol table for them. If
887 it finds an entry, it includes the associated object file in the
890 The old linker looked through the archive symbol table for
891 undefined symbols. We do it the other way around, looking through
892 undefined symbols for symbols defined in the archive. The
893 advantage of the newer scheme is that we only have to look through
894 the list of undefined symbols once, whereas the old method had to
895 re-search the symbol table each time a new object file was added.
897 The CHECKFN argument is used to see if an object file should be
898 included. CHECKFN should set *PNEEDED to true if the object file
899 should be included, and must also call the bfd_link_info
900 add_archive_element callback function and handle adding the symbols
901 to the global hash table. CHECKFN should only return false if some
902 sort of error occurs.
904 For some formats, such as a.out, it is possible to look through an
905 object file but not actually include it in the link. The
906 archive_pass field in a BFD is used to avoid checking the symbols
907 of an object files too many times. When an object is included in
908 the link, archive_pass is set to -1. If an object is scanned but
909 not included, archive_pass is set to the pass number. The pass
910 number is incremented each time a new object file is included. The
911 pass number is used because when a new object file is included it
912 may create new undefined symbols which cause a previously examined
913 object file to be included. */
916 _bfd_generic_link_add_archive_symbols (abfd
, info
, checkfn
)
918 struct bfd_link_info
*info
;
919 boolean (*checkfn
) PARAMS ((bfd
*, struct bfd_link_info
*,
924 register carsym
*arsym
;
926 struct archive_hash_table arsym_hash
;
928 struct bfd_link_hash_entry
**pundef
;
930 if (! bfd_has_map (abfd
))
932 /* An empty archive is a special case. */
933 if (bfd_openr_next_archived_file (abfd
, (bfd
*) NULL
) == NULL
)
935 bfd_set_error (bfd_error_no_armap
);
939 arsyms
= bfd_ardata (abfd
)->symdefs
;
940 arsym_end
= arsyms
+ bfd_ardata (abfd
)->symdef_count
;
942 /* In order to quickly determine whether an symbol is defined in
943 this archive, we build a hash table of the symbols. */
944 if (! archive_hash_table_init (&arsym_hash
, archive_hash_newfunc
))
946 for (arsym
= arsyms
, indx
= 0; arsym
< arsym_end
; arsym
++, indx
++)
948 struct archive_hash_entry
*arh
;
949 struct archive_list
*l
, **pp
;
951 arh
= archive_hash_lookup (&arsym_hash
, arsym
->name
, true, false);
952 if (arh
== (struct archive_hash_entry
*) NULL
)
954 l
= ((struct archive_list
*)
955 archive_hash_allocate (&arsym_hash
, sizeof (struct archive_list
)));
959 for (pp
= &arh
->defs
;
960 *pp
!= (struct archive_list
*) NULL
;
967 /* The archive_pass field in the archive itself is used to
968 initialize PASS, sine we may search the same archive multiple
970 pass
= abfd
->archive_pass
+ 1;
972 /* New undefined symbols are added to the end of the list, so we
973 only need to look through it once. */
974 pundef
= &info
->hash
->undefs
;
975 while (*pundef
!= (struct bfd_link_hash_entry
*) NULL
)
977 struct bfd_link_hash_entry
*h
;
978 struct archive_hash_entry
*arh
;
979 struct archive_list
*l
;
983 /* When a symbol is defined, it is not necessarily removed from
985 if (h
->type
!= bfd_link_hash_undefined
986 && h
->type
!= bfd_link_hash_common
)
988 /* Remove this entry from the list, for general cleanliness
989 and because we are going to look through the list again
990 if we search any more libraries. We can't remove the
991 entry if it is the tail, because that would lose any
992 entries we add to the list later on (it would also cause
993 us to lose track of whether the symbol has been
995 if (*pundef
!= info
->hash
->undefs_tail
)
996 *pundef
= (*pundef
)->next
;
998 pundef
= &(*pundef
)->next
;
1002 /* Look for this symbol in the archive symbol map. */
1003 arh
= archive_hash_lookup (&arsym_hash
, h
->root
.string
, false, false);
1004 if (arh
== (struct archive_hash_entry
*) NULL
)
1006 pundef
= &(*pundef
)->next
;
1010 /* Look at all the objects which define this symbol. */
1011 for (l
= arh
->defs
; l
!= (struct archive_list
*) NULL
; l
= l
->next
)
1016 /* If the symbol has gotten defined along the way, quit. */
1017 if (h
->type
!= bfd_link_hash_undefined
1018 && h
->type
!= bfd_link_hash_common
)
1021 element
= bfd_get_elt_at_index (abfd
, l
->indx
);
1022 if (element
== (bfd
*) NULL
)
1025 /* If we've already included this element, or if we've
1026 already checked it on this pass, continue. */
1027 if (element
->archive_pass
== -1
1028 || element
->archive_pass
== pass
)
1031 /* If we can't figure this element out, just ignore it. */
1032 if (! bfd_check_format (element
, bfd_object
))
1034 element
->archive_pass
= -1;
1038 /* CHECKFN will see if this element should be included, and
1039 go ahead and include it if appropriate. */
1040 if (! (*checkfn
) (element
, info
, &needed
))
1044 element
->archive_pass
= pass
;
1047 element
->archive_pass
= -1;
1049 /* Increment the pass count to show that we may need to
1050 recheck object files which were already checked. */
1055 pundef
= &(*pundef
)->next
;
1058 archive_hash_table_free (&arsym_hash
);
1060 /* Save PASS in case we are called again. */
1061 abfd
->archive_pass
= pass
;
1066 archive_hash_table_free (&arsym_hash
);
1070 /* See if we should include an archive element. This version is used
1071 when we do not want to automatically collect constructors based on
1072 the symbol name, presumably because we have some other mechanism
1073 for finding them. */
1076 generic_link_check_archive_element_no_collect (abfd
, info
, pneeded
)
1078 struct bfd_link_info
*info
;
1081 return generic_link_check_archive_element (abfd
, info
, pneeded
, false);
1084 /* See if we should include an archive element. This version is used
1085 when we want to automatically collect constructors based on the
1086 symbol name, as collect2 does. */
1089 generic_link_check_archive_element_collect (abfd
, info
, pneeded
)
1091 struct bfd_link_info
*info
;
1094 return generic_link_check_archive_element (abfd
, info
, pneeded
, true);
1097 /* See if we should include an archive element. Optionally collect
1101 generic_link_check_archive_element (abfd
, info
, pneeded
, collect
)
1103 struct bfd_link_info
*info
;
1107 asymbol
**pp
, **ppend
;
1111 if (! generic_link_read_symbols (abfd
))
1114 pp
= _bfd_generic_link_get_symbols (abfd
);
1115 ppend
= pp
+ _bfd_generic_link_get_symcount (abfd
);
1116 for (; pp
< ppend
; pp
++)
1119 struct bfd_link_hash_entry
*h
;
1123 /* We are only interested in globally visible symbols. */
1124 if (! bfd_is_com_section (p
->section
)
1125 && (p
->flags
& (BSF_GLOBAL
| BSF_INDIRECT
| BSF_WEAK
)) == 0)
1128 /* We are only interested if we know something about this
1129 symbol, and it is undefined or common. An undefined weak
1130 symbol (type bfd_link_hash_undefweak) is not considered to be
1131 a reference when pulling files out of an archive. See the
1132 SVR4 ABI, p. 4-27. */
1133 h
= bfd_link_hash_lookup (info
->hash
, bfd_asymbol_name (p
), false,
1135 if (h
== (struct bfd_link_hash_entry
*) NULL
1136 || (h
->type
!= bfd_link_hash_undefined
1137 && h
->type
!= bfd_link_hash_common
))
1140 /* P is a symbol we are looking for. */
1142 if (! bfd_is_com_section (p
->section
))
1144 bfd_size_type symcount
;
1147 /* This object file defines this symbol, so pull it in. */
1148 if (! (*info
->callbacks
->add_archive_element
) (info
, abfd
,
1149 bfd_asymbol_name (p
)))
1151 symcount
= _bfd_generic_link_get_symcount (abfd
);
1152 symbols
= _bfd_generic_link_get_symbols (abfd
);
1153 if (! generic_link_add_symbol_list (abfd
, info
, symcount
,
1160 /* P is a common symbol. */
1162 if (h
->type
== bfd_link_hash_undefined
)
1168 symbfd
= h
->u
.undef
.abfd
;
1169 if (symbfd
== (bfd
*) NULL
)
1171 /* This symbol was created as undefined from outside
1172 BFD. We assume that we should link in the object
1173 file. This is for the -u option in the linker. */
1174 if (! (*info
->callbacks
->add_archive_element
)
1175 (info
, abfd
, bfd_asymbol_name (p
)))
1181 /* Turn the symbol into a common symbol but do not link in
1182 the object file. This is how a.out works. Object
1183 formats that require different semantics must implement
1184 this function differently. This symbol is already on the
1185 undefs list. We add the section to a common section
1186 attached to symbfd to ensure that it is in a BFD which
1187 will be linked in. */
1188 h
->type
= bfd_link_hash_common
;
1190 ((struct bfd_link_hash_common_entry
*)
1191 bfd_hash_allocate (&info
->hash
->table
,
1192 sizeof (struct bfd_link_hash_common_entry
)));
1193 if (h
->u
.c
.p
== NULL
)
1196 size
= bfd_asymbol_value (p
);
1199 power
= bfd_log2 (size
);
1202 h
->u
.c
.p
->alignment_power
= power
;
1204 if (p
->section
== bfd_com_section_ptr
)
1205 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
, "COMMON");
1207 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
,
1209 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1213 /* Adjust the size of the common symbol if necessary. This
1214 is how a.out works. Object formats that require
1215 different semantics must implement this function
1217 if (bfd_asymbol_value (p
) > h
->u
.c
.size
)
1218 h
->u
.c
.size
= bfd_asymbol_value (p
);
1222 /* This archive element is not needed. */
1226 /* Add the symbols from an object file to the global hash table. ABFD
1227 is the object file. INFO is the linker information. SYMBOL_COUNT
1228 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1229 is true if constructors should be automatically collected by name
1230 as is done by collect2. */
1233 generic_link_add_symbol_list (abfd
, info
, symbol_count
, symbols
, collect
)
1235 struct bfd_link_info
*info
;
1236 bfd_size_type symbol_count
;
1240 asymbol
**pp
, **ppend
;
1243 ppend
= symbols
+ symbol_count
;
1244 for (; pp
< ppend
; pp
++)
1250 if ((p
->flags
& (BSF_INDIRECT
1255 || bfd_is_und_section (bfd_get_section (p
))
1256 || bfd_is_com_section (bfd_get_section (p
))
1257 || bfd_is_ind_section (bfd_get_section (p
)))
1261 struct generic_link_hash_entry
*h
;
1263 name
= bfd_asymbol_name (p
);
1264 if (((p
->flags
& BSF_INDIRECT
) != 0
1265 || bfd_is_ind_section (p
->section
))
1269 string
= bfd_asymbol_name (*pp
);
1271 else if ((p
->flags
& BSF_WARNING
) != 0
1274 /* The name of P is actually the warning string, and the
1275 next symbol is the one to warn about. */
1278 name
= bfd_asymbol_name (*pp
);
1284 if (! (_bfd_generic_link_add_one_symbol
1285 (info
, abfd
, name
, p
->flags
, bfd_get_section (p
),
1286 p
->value
, string
, false, collect
,
1287 (struct bfd_link_hash_entry
**) &h
)))
1290 /* If this is a constructor symbol, and the linker didn't do
1291 anything with it, then we want to just pass the symbol
1292 through to the output file. This will happen when
1294 if ((p
->flags
& BSF_CONSTRUCTOR
) != 0
1295 && (h
== NULL
|| h
->root
.type
== bfd_link_hash_new
))
1301 /* Save the BFD symbol so that we don't lose any backend
1302 specific information that may be attached to it. We only
1303 want this one if it gives more information than the
1304 existing one; we don't want to replace a defined symbol
1305 with an undefined one. This routine may be called with a
1306 hash table other than the generic hash table, so we only
1307 do this if we are certain that the hash table is a
1309 if (info
->hash
->creator
== abfd
->xvec
)
1311 if (h
->sym
== (asymbol
*) NULL
1312 || (! bfd_is_und_section (bfd_get_section (p
))
1313 && (! bfd_is_com_section (bfd_get_section (p
))
1314 || bfd_is_und_section (bfd_get_section (h
->sym
)))))
1317 /* BSF_OLD_COMMON is a hack to support COFF reloc
1318 reading, and it should go away when the COFF
1319 linker is switched to the new version. */
1320 if (bfd_is_com_section (bfd_get_section (p
)))
1321 p
->flags
|= BSF_OLD_COMMON
;
1325 /* Store a back pointer from the symbol to the hash
1326 table entry for the benefit of relaxation code until
1327 it gets rewritten to not use asymbol structures.
1328 Setting this is also used to check whether these
1329 symbols were set up by the generic linker. */
1330 p
->udata
.p
= (PTR
) h
;
1337 /* We use a state table to deal with adding symbols from an object
1338 file. The first index into the state table describes the symbol
1339 from the object file. The second index into the state table is the
1340 type of the symbol in the hash table. */
1342 /* The symbol from the object file is turned into one of these row
1347 UNDEF_ROW
, /* Undefined. */
1348 UNDEFW_ROW
, /* Weak undefined. */
1349 DEF_ROW
, /* Defined. */
1350 DEFW_ROW
, /* Weak defined. */
1351 COMMON_ROW
, /* Common. */
1352 INDR_ROW
, /* Indirect. */
1353 WARN_ROW
, /* Warning. */
1354 SET_ROW
/* Member of set. */
1357 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1360 /* The actions to take in the state table. */
1365 UND
, /* Mark symbol undefined. */
1366 WEAK
, /* Mark symbol weak undefined. */
1367 DEF
, /* Mark symbol defined. */
1368 DEFW
, /* Mark symbol weak defined. */
1369 COM
, /* Mark symbol common. */
1370 REF
, /* Mark defined symbol referenced. */
1371 CREF
, /* Possibly warn about common reference to defined symbol. */
1372 CDEF
, /* Define existing common symbol. */
1373 NOACT
, /* No action. */
1374 BIG
, /* Mark symbol common using largest size. */
1375 MDEF
, /* Multiple definition error. */
1376 MIND
, /* Multiple indirect symbols. */
1377 IND
, /* Make indirect symbol. */
1378 CIND
, /* Make indirect symbol from existing common symbol. */
1379 SET
, /* Add value to set. */
1380 MWARN
, /* Make warning symbol. */
1381 WARN
, /* Issue warning. */
1382 CWARN
, /* Warn if referenced, else MWARN. */
1383 CYCLE
, /* Repeat with symbol pointed to. */
1384 REFC
, /* Mark indirect symbol referenced and then CYCLE. */
1385 WARNC
/* Issue warning and then CYCLE. */
1388 /* The state table itself. The first index is a link_row and the
1389 second index is a bfd_link_hash_type. */
1391 static const enum link_action link_action
[8][8] =
1393 /* current\prev new undef undefw def defw com indr warn */
1394 /* UNDEF_ROW */ {UND
, NOACT
, UND
, REF
, REF
, NOACT
, REFC
, WARNC
},
1395 /* UNDEFW_ROW */ {WEAK
, NOACT
, NOACT
, REF
, REF
, NOACT
, REFC
, WARNC
},
1396 /* DEF_ROW */ {DEF
, DEF
, DEF
, MDEF
, DEF
, CDEF
, MDEF
, CYCLE
},
1397 /* DEFW_ROW */ {DEFW
, DEFW
, DEFW
, NOACT
, NOACT
, NOACT
, NOACT
, CYCLE
},
1398 /* COMMON_ROW */ {COM
, COM
, COM
, CREF
, CREF
, BIG
, REFC
, WARNC
},
1399 /* INDR_ROW */ {IND
, IND
, IND
, MDEF
, IND
, CIND
, MIND
, CYCLE
},
1400 /* WARN_ROW */ {MWARN
, WARN
, WARN
, CWARN
, CWARN
, WARN
, CWARN
, MWARN
},
1401 /* SET_ROW */ {SET
, SET
, SET
, SET
, SET
, SET
, CYCLE
, CYCLE
}
1404 /* Most of the entries in the LINK_ACTION table are straightforward,
1405 but a few are somewhat subtle.
1407 A reference to an indirect symbol (UNDEF_ROW/indr or
1408 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1409 symbol and to the symbol the indirect symbol points to.
1411 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1412 causes the warning to be issued.
1414 A common definition of an indirect symbol (COMMON_ROW/indr) is
1415 treated as a multiple definition error. Likewise for an indirect
1416 definition of a common symbol (INDR_ROW/com).
1418 An indirect definition of a warning (INDR_ROW/warn) does not cause
1419 the warning to be issued.
1421 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1422 warning is created for the symbol the indirect symbol points to.
1424 Adding an entry to a set does not count as a reference to a set,
1425 and no warning is issued (SET_ROW/warn). */
1427 /* Return the BFD in which a hash entry has been defined, if known. */
1431 struct bfd_link_hash_entry
*h
;
1433 while (h
->type
== bfd_link_hash_warning
)
1439 case bfd_link_hash_undefined
:
1440 case bfd_link_hash_undefweak
:
1441 return h
->u
.undef
.abfd
;
1442 case bfd_link_hash_defined
:
1443 case bfd_link_hash_defweak
:
1444 return h
->u
.def
.section
->owner
;
1445 case bfd_link_hash_common
:
1446 return h
->u
.c
.p
->section
->owner
;
1451 /* Add a symbol to the global hash table.
1452 ABFD is the BFD the symbol comes from.
1453 NAME is the name of the symbol.
1454 FLAGS is the BSF_* bits associated with the symbol.
1455 SECTION is the section in which the symbol is defined; this may be
1456 bfd_und_section_ptr or bfd_com_section_ptr.
1457 VALUE is the value of the symbol, relative to the section.
1458 STRING is used for either an indirect symbol, in which case it is
1459 the name of the symbol to indirect to, or a warning symbol, in
1460 which case it is the warning string.
1461 COPY is true if NAME or STRING must be copied into locally
1462 allocated memory if they need to be saved.
1463 COLLECT is true if we should automatically collect gcc constructor
1464 or destructor names as collect2 does.
1465 HASHP, if not NULL, is a place to store the created hash table
1466 entry; if *HASHP is not NULL, the caller has already looked up
1467 the hash table entry, and stored it in *HASHP. */
1470 _bfd_generic_link_add_one_symbol (info
, abfd
, name
, flags
, section
, value
,
1471 string
, copy
, collect
, hashp
)
1472 struct bfd_link_info
*info
;
1481 struct bfd_link_hash_entry
**hashp
;
1484 struct bfd_link_hash_entry
*h
;
1487 if (bfd_is_ind_section (section
)
1488 || (flags
& BSF_INDIRECT
) != 0)
1490 else if ((flags
& BSF_WARNING
) != 0)
1492 else if ((flags
& BSF_CONSTRUCTOR
) != 0)
1494 else if (bfd_is_und_section (section
))
1496 if ((flags
& BSF_WEAK
) != 0)
1501 else if ((flags
& BSF_WEAK
) != 0)
1503 else if (bfd_is_com_section (section
))
1508 if (hashp
!= NULL
&& *hashp
!= NULL
)
1512 if (row
== UNDEF_ROW
|| row
== UNDEFW_ROW
)
1513 h
= bfd_wrapped_link_hash_lookup (abfd
, info
, name
, true, copy
, false);
1515 h
= bfd_link_hash_lookup (info
->hash
, name
, true, copy
, false);
1524 if (info
->notice_all
1525 || (info
->notice_hash
!= (struct bfd_hash_table
*) NULL
1526 && (bfd_hash_lookup (info
->notice_hash
, name
, false, false)
1527 != (struct bfd_hash_entry
*) NULL
)))
1529 if (! (*info
->callbacks
->notice
) (info
, h
->root
.string
, abfd
, section
,
1534 if (hashp
!= (struct bfd_link_hash_entry
**) NULL
)
1539 enum link_action action
;
1542 action
= link_action
[(int) row
][(int) h
->type
];
1553 /* Make a new undefined symbol. */
1554 h
->type
= bfd_link_hash_undefined
;
1555 h
->u
.undef
.abfd
= abfd
;
1556 bfd_link_add_undef (info
->hash
, h
);
1560 /* Make a new weak undefined symbol. */
1561 h
->type
= bfd_link_hash_undefweak
;
1562 h
->u
.undef
.abfd
= abfd
;
1566 /* We have found a definition for a symbol which was
1567 previously common. */
1568 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1569 if (! ((*info
->callbacks
->multiple_common
)
1570 (info
, h
->root
.string
,
1571 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1572 abfd
, bfd_link_hash_defined
, (bfd_vma
) 0)))
1578 enum bfd_link_hash_type oldtype
;
1580 /* Define a symbol. */
1583 h
->type
= bfd_link_hash_defweak
;
1585 h
->type
= bfd_link_hash_defined
;
1586 h
->u
.def
.section
= section
;
1587 h
->u
.def
.value
= value
;
1589 /* If we have been asked to, we act like collect2 and
1590 identify all functions that might be global
1591 constructors and destructors and pass them up in a
1592 callback. We only do this for certain object file
1593 types, since many object file types can handle this
1595 if (collect
&& name
[0] == '_')
1599 /* A constructor or destructor name starts like this:
1600 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1601 the second are the same character (we accept any
1602 character there, in case a new object file format
1603 comes along with even worse naming restrictions). */
1605 #define CONS_PREFIX "GLOBAL_"
1606 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1612 && strncmp (s
, CONS_PREFIX
, CONS_PREFIX_LEN
- 1) == 0)
1616 c
= s
[CONS_PREFIX_LEN
+ 1];
1617 if ((c
== 'I' || c
== 'D')
1618 && s
[CONS_PREFIX_LEN
] == s
[CONS_PREFIX_LEN
+ 2])
1620 /* If this is a definition of a symbol which
1621 was previously weakly defined, we are in
1622 trouble. We have already added a
1623 constructor entry for the weak defined
1624 symbol, and now we are trying to add one
1625 for the new symbol. Fortunately, this case
1626 should never arise in practice. */
1627 if (oldtype
== bfd_link_hash_defweak
)
1630 if (! ((*info
->callbacks
->constructor
)
1632 c
== 'I' ? true : false,
1633 h
->root
.string
, abfd
, section
, value
)))
1643 /* We have found a common definition for a symbol. */
1644 if (h
->type
== bfd_link_hash_new
)
1645 bfd_link_add_undef (info
->hash
, h
);
1646 h
->type
= bfd_link_hash_common
;
1648 ((struct bfd_link_hash_common_entry
*)
1649 bfd_hash_allocate (&info
->hash
->table
,
1650 sizeof (struct bfd_link_hash_common_entry
)));
1651 if (h
->u
.c
.p
== NULL
)
1654 h
->u
.c
.size
= value
;
1656 /* Select a default alignment based on the size. This may
1657 be overridden by the caller. */
1661 power
= bfd_log2 (value
);
1664 h
->u
.c
.p
->alignment_power
= power
;
1667 /* The section of a common symbol is only used if the common
1668 symbol is actually allocated. It basically provides a
1669 hook for the linker script to decide which output section
1670 the common symbols should be put in. In most cases, the
1671 section of a common symbol will be bfd_com_section_ptr,
1672 the code here will choose a common symbol section named
1673 "COMMON", and the linker script will contain *(COMMON) in
1674 the appropriate place. A few targets use separate common
1675 sections for small symbols, and they require special
1677 if (section
== bfd_com_section_ptr
)
1679 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
, "COMMON");
1680 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1682 else if (section
->owner
!= abfd
)
1684 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
,
1686 h
->u
.c
.p
->section
->flags
= SEC_ALLOC
;
1689 h
->u
.c
.p
->section
= section
;
1693 /* A reference to a defined symbol. */
1694 if (h
->next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1699 /* We have found a common definition for a symbol which
1700 already had a common definition. Use the maximum of the
1702 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1703 if (! ((*info
->callbacks
->multiple_common
)
1704 (info
, h
->root
.string
,
1705 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1706 abfd
, bfd_link_hash_common
, value
)))
1708 if (value
> h
->u
.c
.size
)
1712 h
->u
.c
.size
= value
;
1714 /* Select a default alignment based on the size. This may
1715 be overridden by the caller. */
1716 power
= bfd_log2 (value
);
1719 h
->u
.c
.p
->alignment_power
= power
;
1727 /* We have found a common definition for a symbol which
1728 was already defined. FIXME: It would nice if we could
1729 report the BFD which defined an indirect symbol, but we
1730 don't have anywhere to store the information. */
1731 if (h
->type
== bfd_link_hash_defined
1732 || h
->type
== bfd_link_hash_defweak
)
1733 obfd
= h
->u
.def
.section
->owner
;
1736 if (! ((*info
->callbacks
->multiple_common
)
1737 (info
, h
->root
.string
, obfd
, h
->type
, (bfd_vma
) 0,
1738 abfd
, bfd_link_hash_common
, value
)))
1744 /* Multiple indirect symbols. This is OK if they both point
1745 to the same symbol. */
1746 if (strcmp (h
->u
.i
.link
->root
.string
, string
) == 0)
1750 /* Handle a multiple definition. */
1752 asection
*msec
= NULL
;
1757 case bfd_link_hash_defined
:
1758 msec
= h
->u
.def
.section
;
1759 mval
= h
->u
.def
.value
;
1761 case bfd_link_hash_indirect
:
1762 msec
= bfd_ind_section_ptr
;
1769 /* Ignore a redefinition of an absolute symbol to the same
1770 value; it's harmless. */
1771 if (h
->type
== bfd_link_hash_defined
1772 && bfd_is_abs_section (msec
)
1773 && bfd_is_abs_section (section
)
1777 if (! ((*info
->callbacks
->multiple_definition
)
1778 (info
, h
->root
.string
, msec
->owner
, msec
, mval
, abfd
,
1785 /* Create an indirect symbol from an existing common symbol. */
1786 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1787 if (! ((*info
->callbacks
->multiple_common
)
1788 (info
, h
->root
.string
,
1789 h
->u
.c
.p
->section
->owner
, bfd_link_hash_common
, h
->u
.c
.size
,
1790 abfd
, bfd_link_hash_indirect
, (bfd_vma
) 0)))
1794 /* Create an indirect symbol. */
1796 struct bfd_link_hash_entry
*inh
;
1798 /* STRING is the name of the symbol we want to indirect
1800 inh
= bfd_wrapped_link_hash_lookup (abfd
, info
, string
, true,
1802 if (inh
== (struct bfd_link_hash_entry
*) NULL
)
1804 if (inh
->type
== bfd_link_hash_new
)
1806 inh
->type
= bfd_link_hash_undefined
;
1807 inh
->u
.undef
.abfd
= abfd
;
1808 bfd_link_add_undef (info
->hash
, inh
);
1811 /* If the indirect symbol has been referenced, we need to
1812 push the reference down to the symbol we are
1814 if (h
->type
!= bfd_link_hash_new
)
1820 h
->type
= bfd_link_hash_indirect
;
1826 /* Add an entry to a set. */
1827 if (! (*info
->callbacks
->add_to_set
) (info
, h
, BFD_RELOC_CTOR
,
1828 abfd
, section
, value
))
1833 /* Issue a warning and cycle. */
1834 if (h
->u
.i
.warning
!= NULL
)
1836 if (! (*info
->callbacks
->warning
) (info
, h
->u
.i
.warning
,
1837 h
->root
.string
, abfd
,
1841 /* Only issue a warning once. */
1842 h
->u
.i
.warning
= NULL
;
1846 /* Try again with the referenced symbol. */
1852 /* A reference to an indirect symbol. */
1853 if (h
->next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1860 /* Issue a warning. */
1861 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1863 (asection
*) NULL
, (bfd_vma
) 0))
1868 /* Warn if this symbol has been referenced already,
1869 otherwise add a warning. A symbol has been referenced if
1870 the next field is not NULL, or it is the tail of the
1871 undefined symbol list. The REF case above helps to
1873 if (h
->next
!= NULL
|| info
->hash
->undefs_tail
== h
)
1875 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1884 /* Make a warning symbol. */
1886 struct bfd_link_hash_entry
*sub
;
1888 /* STRING is the warning to give. */
1889 sub
= ((struct bfd_link_hash_entry
*)
1890 ((*info
->hash
->table
.newfunc
)
1891 ((struct bfd_hash_entry
*) NULL
, &info
->hash
->table
,
1896 sub
->type
= bfd_link_hash_warning
;
1899 sub
->u
.i
.warning
= string
;
1904 w
= bfd_hash_allocate (&info
->hash
->table
,
1905 strlen (string
) + 1);
1909 sub
->u
.i
.warning
= w
;
1912 bfd_hash_replace (&info
->hash
->table
,
1913 (struct bfd_hash_entry
*) h
,
1914 (struct bfd_hash_entry
*) sub
);
1926 /* Generic final link routine. */
1929 _bfd_generic_final_link (abfd
, info
)
1931 struct bfd_link_info
*info
;
1935 struct bfd_link_order
*p
;
1937 struct generic_write_global_symbol_info wginfo
;
1939 bfd_get_outsymbols (abfd
) = (asymbol
**) NULL
;
1940 bfd_get_symcount (abfd
) = 0;
1943 /* Mark all sections which will be included in the output file. */
1944 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
1945 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
1946 if (p
->type
== bfd_indirect_link_order
)
1947 p
->u
.indirect
.section
->linker_mark
= true;
1949 /* Build the output symbol table. */
1950 for (sub
= info
->input_bfds
; sub
!= (bfd
*) NULL
; sub
= sub
->link_next
)
1951 if (! _bfd_generic_link_output_symbols (abfd
, sub
, info
, &outsymalloc
))
1954 /* Accumulate the global symbols. */
1956 wginfo
.output_bfd
= abfd
;
1957 wginfo
.psymalloc
= &outsymalloc
;
1958 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info
),
1959 _bfd_generic_link_write_global_symbol
,
1962 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1963 shouldn't really need one, since we have SYMCOUNT, but some old
1964 code still expects one. */
1965 if (! generic_add_output_symbol (abfd
, &outsymalloc
, NULL
))
1968 if (info
->relocateable
)
1970 /* Allocate space for the output relocs for each section. */
1971 for (o
= abfd
->sections
;
1972 o
!= (asection
*) NULL
;
1976 for (p
= o
->link_order_head
;
1977 p
!= (struct bfd_link_order
*) NULL
;
1980 if (p
->type
== bfd_section_reloc_link_order
1981 || p
->type
== bfd_symbol_reloc_link_order
)
1983 else if (p
->type
== bfd_indirect_link_order
)
1985 asection
*input_section
;
1992 input_section
= p
->u
.indirect
.section
;
1993 input_bfd
= input_section
->owner
;
1994 relsize
= bfd_get_reloc_upper_bound (input_bfd
,
1998 relocs
= (arelent
**) bfd_malloc ((size_t) relsize
);
1999 if (!relocs
&& relsize
!= 0)
2001 symbols
= _bfd_generic_link_get_symbols (input_bfd
);
2002 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
2006 if (reloc_count
< 0)
2008 BFD_ASSERT ((unsigned long) reloc_count
2009 == input_section
->reloc_count
);
2010 o
->reloc_count
+= reloc_count
;
2014 if (o
->reloc_count
> 0)
2016 o
->orelocation
= ((arelent
**)
2019 * sizeof (arelent
*))));
2020 if (!o
->orelocation
)
2022 o
->flags
|= SEC_RELOC
;
2023 /* Reset the count so that it can be used as an index
2024 when putting in the output relocs. */
2030 /* Handle all the link order information for the sections. */
2031 for (o
= abfd
->sections
;
2032 o
!= (asection
*) NULL
;
2035 for (p
= o
->link_order_head
;
2036 p
!= (struct bfd_link_order
*) NULL
;
2041 case bfd_section_reloc_link_order
:
2042 case bfd_symbol_reloc_link_order
:
2043 if (! _bfd_generic_reloc_link_order (abfd
, info
, o
, p
))
2046 case bfd_indirect_link_order
:
2047 if (! default_indirect_link_order (abfd
, info
, o
, p
, true))
2051 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
2061 /* Add an output symbol to the output BFD. */
2064 generic_add_output_symbol (output_bfd
, psymalloc
, sym
)
2069 if (bfd_get_symcount (output_bfd
) >= *psymalloc
)
2073 if (*psymalloc
== 0)
2077 newsyms
= (asymbol
**) bfd_realloc (bfd_get_outsymbols (output_bfd
),
2078 *psymalloc
* sizeof (asymbol
*));
2079 if (newsyms
== (asymbol
**) NULL
)
2081 bfd_get_outsymbols (output_bfd
) = newsyms
;
2084 bfd_get_outsymbols (output_bfd
) [bfd_get_symcount (output_bfd
)] = sym
;
2086 ++ bfd_get_symcount (output_bfd
);
2091 /* Handle the symbols for an input BFD. */
2094 _bfd_generic_link_output_symbols (output_bfd
, input_bfd
, info
, psymalloc
)
2097 struct bfd_link_info
*info
;
2103 if (! generic_link_read_symbols (input_bfd
))
2106 /* Create a filename symbol if we are supposed to. */
2107 if (info
->create_object_symbols_section
!= (asection
*) NULL
)
2111 for (sec
= input_bfd
->sections
;
2112 sec
!= (asection
*) NULL
;
2115 if (sec
->output_section
== info
->create_object_symbols_section
)
2119 newsym
= bfd_make_empty_symbol (input_bfd
);
2122 newsym
->name
= input_bfd
->filename
;
2124 newsym
->flags
= BSF_LOCAL
| BSF_FILE
;
2125 newsym
->section
= sec
;
2127 if (! generic_add_output_symbol (output_bfd
, psymalloc
,
2136 /* Adjust the values of the globally visible symbols, and write out
2138 sym_ptr
= _bfd_generic_link_get_symbols (input_bfd
);
2139 sym_end
= sym_ptr
+ _bfd_generic_link_get_symcount (input_bfd
);
2140 for (; sym_ptr
< sym_end
; sym_ptr
++)
2143 struct generic_link_hash_entry
*h
;
2146 h
= (struct generic_link_hash_entry
*) NULL
;
2148 if ((sym
->flags
& (BSF_INDIRECT
2153 || bfd_is_und_section (bfd_get_section (sym
))
2154 || bfd_is_com_section (bfd_get_section (sym
))
2155 || bfd_is_ind_section (bfd_get_section (sym
)))
2157 if (sym
->udata
.p
!= NULL
)
2158 h
= (struct generic_link_hash_entry
*) sym
->udata
.p
;
2159 else if ((sym
->flags
& BSF_CONSTRUCTOR
) != 0)
2161 /* This case normally means that the main linker code
2162 deliberately ignored this constructor symbol. We
2163 should just pass it through. This will screw up if
2164 the constructor symbol is from a different,
2165 non-generic, object file format, but the case will
2166 only arise when linking with -r, which will probably
2167 fail anyhow, since there will be no way to represent
2168 the relocs in the output format being used. */
2171 else if (bfd_is_und_section (bfd_get_section (sym
)))
2172 h
= ((struct generic_link_hash_entry
*)
2173 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2174 bfd_asymbol_name (sym
),
2175 false, false, true));
2177 h
= _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info
),
2178 bfd_asymbol_name (sym
),
2179 false, false, true);
2181 if (h
!= (struct generic_link_hash_entry
*) NULL
)
2183 /* Force all references to this symbol to point to
2184 the same area in memory. It is possible that
2185 this routine will be called with a hash table
2186 other than a generic hash table, so we double
2188 if (info
->hash
->creator
== input_bfd
->xvec
)
2190 if (h
->sym
!= (asymbol
*) NULL
)
2191 *sym_ptr
= sym
= h
->sym
;
2194 switch (h
->root
.type
)
2197 case bfd_link_hash_new
:
2199 case bfd_link_hash_undefined
:
2201 case bfd_link_hash_undefweak
:
2202 sym
->flags
|= BSF_WEAK
;
2204 case bfd_link_hash_indirect
:
2205 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2207 case bfd_link_hash_defined
:
2208 sym
->flags
|= BSF_GLOBAL
;
2209 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2210 sym
->value
= h
->root
.u
.def
.value
;
2211 sym
->section
= h
->root
.u
.def
.section
;
2213 case bfd_link_hash_defweak
:
2214 sym
->flags
|= BSF_WEAK
;
2215 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2216 sym
->value
= h
->root
.u
.def
.value
;
2217 sym
->section
= h
->root
.u
.def
.section
;
2219 case bfd_link_hash_common
:
2220 sym
->value
= h
->root
.u
.c
.size
;
2221 sym
->flags
|= BSF_GLOBAL
;
2222 if (! bfd_is_com_section (sym
->section
))
2224 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2225 sym
->section
= bfd_com_section_ptr
;
2227 /* We do not set the section of the symbol to
2228 h->root.u.c.p->section. That value was saved so
2229 that we would know where to allocate the symbol
2230 if it was defined. In this case the type is
2231 still bfd_link_hash_common, so we did not define
2232 it, so we do not want to use that section. */
2238 /* This switch is straight from the old code in
2239 write_file_locals in ldsym.c. */
2240 if (info
->strip
== strip_all
2241 || (info
->strip
== strip_some
2242 && (bfd_hash_lookup (info
->keep_hash
, bfd_asymbol_name (sym
),
2244 == (struct bfd_hash_entry
*) NULL
)))
2246 else if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
2248 /* If this symbol is marked as occurring now, rather
2249 than at the end, output it now. This is used for
2250 COFF C_EXT FCN symbols. FIXME: There must be a
2252 if (bfd_asymbol_bfd (sym
) == input_bfd
2253 && (sym
->flags
& BSF_NOT_AT_END
) != 0)
2258 else if (bfd_is_ind_section (sym
->section
))
2260 else if ((sym
->flags
& BSF_DEBUGGING
) != 0)
2262 if (info
->strip
== strip_none
)
2267 else if (bfd_is_und_section (sym
->section
)
2268 || bfd_is_com_section (sym
->section
))
2270 else if ((sym
->flags
& BSF_LOCAL
) != 0)
2272 if ((sym
->flags
& BSF_WARNING
) != 0)
2276 switch (info
->discard
)
2283 if (bfd_is_local_label (input_bfd
, sym
))
2294 else if ((sym
->flags
& BSF_CONSTRUCTOR
))
2296 if (info
->strip
!= strip_all
)
2304 /* If this symbol is in a section which is not being included
2305 in the output file, then we don't want to output the symbol.
2307 Gross. .bss and similar sections won't have the linker_mark
2309 if ((sym
->section
->flags
& SEC_HAS_CONTENTS
) != 0
2310 && sym
->section
->linker_mark
== false)
2315 if (! generic_add_output_symbol (output_bfd
, psymalloc
, sym
))
2317 if (h
!= (struct generic_link_hash_entry
*) NULL
)
2325 /* Set the section and value of a generic BFD symbol based on a linker
2326 hash table entry. */
2329 set_symbol_from_hash (sym
, h
)
2331 struct bfd_link_hash_entry
*h
;
2338 case bfd_link_hash_new
:
2339 /* This can happen when a constructor symbol is seen but we are
2340 not building constructors. */
2341 if (sym
->section
!= NULL
)
2343 BFD_ASSERT ((sym
->flags
& BSF_CONSTRUCTOR
) != 0);
2347 sym
->flags
|= BSF_CONSTRUCTOR
;
2348 sym
->section
= bfd_abs_section_ptr
;
2352 case bfd_link_hash_undefined
:
2353 sym
->section
= bfd_und_section_ptr
;
2356 case bfd_link_hash_undefweak
:
2357 sym
->section
= bfd_und_section_ptr
;
2359 sym
->flags
|= BSF_WEAK
;
2361 case bfd_link_hash_defined
:
2362 sym
->section
= h
->u
.def
.section
;
2363 sym
->value
= h
->u
.def
.value
;
2365 case bfd_link_hash_defweak
:
2366 sym
->flags
|= BSF_WEAK
;
2367 sym
->section
= h
->u
.def
.section
;
2368 sym
->value
= h
->u
.def
.value
;
2370 case bfd_link_hash_common
:
2371 sym
->value
= h
->u
.c
.size
;
2372 if (sym
->section
== NULL
)
2373 sym
->section
= bfd_com_section_ptr
;
2374 else if (! bfd_is_com_section (sym
->section
))
2376 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2377 sym
->section
= bfd_com_section_ptr
;
2379 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2381 case bfd_link_hash_indirect
:
2382 case bfd_link_hash_warning
:
2383 /* FIXME: What should we do here? */
2388 /* Write out a global symbol, if it hasn't already been written out.
2389 This is called for each symbol in the hash table. */
2392 _bfd_generic_link_write_global_symbol (h
, data
)
2393 struct generic_link_hash_entry
*h
;
2396 struct generic_write_global_symbol_info
*wginfo
=
2397 (struct generic_write_global_symbol_info
*) data
;
2405 if (wginfo
->info
->strip
== strip_all
2406 || (wginfo
->info
->strip
== strip_some
2407 && bfd_hash_lookup (wginfo
->info
->keep_hash
, h
->root
.root
.string
,
2408 false, false) == NULL
))
2411 if (h
->sym
!= (asymbol
*) NULL
)
2415 sym
= bfd_make_empty_symbol (wginfo
->output_bfd
);
2418 sym
->name
= h
->root
.root
.string
;
2422 set_symbol_from_hash (sym
, &h
->root
);
2424 sym
->flags
|= BSF_GLOBAL
;
2426 if (! generic_add_output_symbol (wginfo
->output_bfd
, wginfo
->psymalloc
,
2429 /* FIXME: No way to return failure. */
2436 /* Create a relocation. */
2439 _bfd_generic_reloc_link_order (abfd
, info
, sec
, link_order
)
2441 struct bfd_link_info
*info
;
2443 struct bfd_link_order
*link_order
;
2447 if (! info
->relocateable
)
2449 if (sec
->orelocation
== (arelent
**) NULL
)
2452 r
= (arelent
*) bfd_alloc (abfd
, sizeof (arelent
));
2453 if (r
== (arelent
*) NULL
)
2456 r
->address
= link_order
->offset
;
2457 r
->howto
= bfd_reloc_type_lookup (abfd
, link_order
->u
.reloc
.p
->reloc
);
2460 bfd_set_error (bfd_error_bad_value
);
2464 /* Get the symbol to use for the relocation. */
2465 if (link_order
->type
== bfd_section_reloc_link_order
)
2466 r
->sym_ptr_ptr
= link_order
->u
.reloc
.p
->u
.section
->symbol_ptr_ptr
;
2469 struct generic_link_hash_entry
*h
;
2471 h
= ((struct generic_link_hash_entry
*)
2472 bfd_wrapped_link_hash_lookup (abfd
, info
,
2473 link_order
->u
.reloc
.p
->u
.name
,
2474 false, false, true));
2475 if (h
== (struct generic_link_hash_entry
*) NULL
2478 if (! ((*info
->callbacks
->unattached_reloc
)
2479 (info
, link_order
->u
.reloc
.p
->u
.name
,
2480 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
2482 bfd_set_error (bfd_error_bad_value
);
2485 r
->sym_ptr_ptr
= &h
->sym
;
2488 /* If this is an inplace reloc, write the addend to the object file.
2489 Otherwise, store it in the reloc addend. */
2490 if (! r
->howto
->partial_inplace
)
2491 r
->addend
= link_order
->u
.reloc
.p
->addend
;
2495 bfd_reloc_status_type rstat
;
2499 size
= bfd_get_reloc_size (r
->howto
);
2500 buf
= (bfd_byte
*) bfd_zmalloc (size
);
2501 if (buf
== (bfd_byte
*) NULL
)
2503 rstat
= _bfd_relocate_contents (r
->howto
, abfd
,
2504 link_order
->u
.reloc
.p
->addend
, buf
);
2510 case bfd_reloc_outofrange
:
2512 case bfd_reloc_overflow
:
2513 if (! ((*info
->callbacks
->reloc_overflow
)
2515 (link_order
->type
== bfd_section_reloc_link_order
2516 ? bfd_section_name (abfd
, link_order
->u
.reloc
.p
->u
.section
)
2517 : link_order
->u
.reloc
.p
->u
.name
),
2518 r
->howto
->name
, link_order
->u
.reloc
.p
->addend
,
2519 (bfd
*) NULL
, (asection
*) NULL
, (bfd_vma
) 0)))
2526 ok
= bfd_set_section_contents (abfd
, sec
, (PTR
) buf
,
2528 (link_order
->offset
*
2529 bfd_octets_per_byte (abfd
)), size
);
2537 sec
->orelocation
[sec
->reloc_count
] = r
;
2543 /* Allocate a new link_order for a section. */
2545 struct bfd_link_order
*
2546 bfd_new_link_order (abfd
, section
)
2550 struct bfd_link_order
*new;
2552 new = ((struct bfd_link_order
*)
2553 bfd_alloc (abfd
, sizeof (struct bfd_link_order
)));
2557 new->type
= bfd_undefined_link_order
;
2560 new->next
= (struct bfd_link_order
*) NULL
;
2562 if (section
->link_order_tail
!= (struct bfd_link_order
*) NULL
)
2563 section
->link_order_tail
->next
= new;
2565 section
->link_order_head
= new;
2566 section
->link_order_tail
= new;
2571 /* Default link order processing routine. Note that we can not handle
2572 the reloc_link_order types here, since they depend upon the details
2573 of how the particular backends generates relocs. */
2576 _bfd_default_link_order (abfd
, info
, sec
, link_order
)
2578 struct bfd_link_info
*info
;
2580 struct bfd_link_order
*link_order
;
2582 switch (link_order
->type
)
2584 case bfd_undefined_link_order
:
2585 case bfd_section_reloc_link_order
:
2586 case bfd_symbol_reloc_link_order
:
2589 case bfd_indirect_link_order
:
2590 return default_indirect_link_order (abfd
, info
, sec
, link_order
,
2592 case bfd_fill_link_order
:
2593 return default_fill_link_order (abfd
, info
, sec
, link_order
);
2594 case bfd_data_link_order
:
2595 return bfd_set_section_contents (abfd
, sec
,
2596 (PTR
) link_order
->u
.data
.contents
,
2598 (link_order
->offset
*
2599 bfd_octets_per_byte (abfd
)),
2604 /* Default routine to handle a bfd_fill_link_order. */
2607 default_fill_link_order (abfd
, info
, sec
, link_order
)
2609 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2611 struct bfd_link_order
*link_order
;
2619 BFD_ASSERT ((sec
->flags
& SEC_HAS_CONTENTS
) != 0);
2621 size
= (size_t) link_order
->size
;
2622 space
= (char *) bfd_malloc (size
);
2623 if (space
== NULL
&& size
!= 0)
2626 fill
= link_order
->u
.fill
.value
;
2627 for (i
= 0; i
< size
; i
+= 2)
2628 space
[i
] = fill
>> 8;
2629 for (i
= 1; i
< size
; i
+= 2)
2631 result
= bfd_set_section_contents (abfd
, sec
, space
,
2633 (link_order
->offset
*
2634 bfd_octets_per_byte (abfd
)),
2640 /* Default routine to handle a bfd_indirect_link_order. */
2643 default_indirect_link_order (output_bfd
, info
, output_section
, link_order
,
2646 struct bfd_link_info
*info
;
2647 asection
*output_section
;
2648 struct bfd_link_order
*link_order
;
2649 boolean generic_linker
;
2651 asection
*input_section
;
2653 bfd_byte
*contents
= NULL
;
2654 bfd_byte
*new_contents
;
2656 BFD_ASSERT ((output_section
->flags
& SEC_HAS_CONTENTS
) != 0);
2658 if (link_order
->size
== 0)
2661 input_section
= link_order
->u
.indirect
.section
;
2662 input_bfd
= input_section
->owner
;
2664 BFD_ASSERT (input_section
->output_section
== output_section
);
2665 BFD_ASSERT (input_section
->output_offset
== link_order
->offset
);
2666 BFD_ASSERT (input_section
->_cooked_size
== link_order
->size
);
2668 if (info
->relocateable
2669 && input_section
->reloc_count
> 0
2670 && output_section
->orelocation
== (arelent
**) NULL
)
2672 /* Space has not been allocated for the output relocations.
2673 This can happen when we are called by a specific backend
2674 because somebody is attempting to link together different
2675 types of object files. Handling this case correctly is
2676 difficult, and sometimes impossible. */
2677 (*_bfd_error_handler
)
2678 (_("Attempt to do relocateable link with %s input and %s output"),
2679 bfd_get_target (input_bfd
), bfd_get_target (output_bfd
));
2680 bfd_set_error (bfd_error_wrong_format
);
2684 if (! generic_linker
)
2689 /* Get the canonical symbols. The generic linker will always
2690 have retrieved them by this point, but we are being called by
2691 a specific linker, presumably because we are linking
2692 different types of object files together. */
2693 if (! generic_link_read_symbols (input_bfd
))
2696 /* Since we have been called by a specific linker, rather than
2697 the generic linker, the values of the symbols will not be
2698 right. They will be the values as seen in the input file,
2699 not the values of the final link. We need to fix them up
2700 before we can relocate the section. */
2701 sympp
= _bfd_generic_link_get_symbols (input_bfd
);
2702 symppend
= sympp
+ _bfd_generic_link_get_symcount (input_bfd
);
2703 for (; sympp
< symppend
; sympp
++)
2706 struct bfd_link_hash_entry
*h
;
2710 if ((sym
->flags
& (BSF_INDIRECT
2715 || bfd_is_und_section (bfd_get_section (sym
))
2716 || bfd_is_com_section (bfd_get_section (sym
))
2717 || bfd_is_ind_section (bfd_get_section (sym
)))
2719 /* sym->udata may have been set by
2720 generic_link_add_symbol_list. */
2721 if (sym
->udata
.p
!= NULL
)
2722 h
= (struct bfd_link_hash_entry
*) sym
->udata
.p
;
2723 else if (bfd_is_und_section (bfd_get_section (sym
)))
2724 h
= bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2725 bfd_asymbol_name (sym
),
2726 false, false, true);
2728 h
= bfd_link_hash_lookup (info
->hash
,
2729 bfd_asymbol_name (sym
),
2730 false, false, true);
2732 set_symbol_from_hash (sym
, h
);
2737 /* Get and relocate the section contents. */
2738 contents
= ((bfd_byte
*)
2739 bfd_malloc (bfd_section_size (input_bfd
, input_section
)));
2740 if (contents
== NULL
&& bfd_section_size (input_bfd
, input_section
) != 0)
2742 new_contents
= (bfd_get_relocated_section_contents
2743 (output_bfd
, info
, link_order
, contents
, info
->relocateable
,
2744 _bfd_generic_link_get_symbols (input_bfd
)));
2748 /* Output the section contents. */
2749 if (! bfd_set_section_contents (output_bfd
, output_section
,
2752 (link_order
->offset
*
2753 bfd_octets_per_byte (output_bfd
)),
2757 if (contents
!= NULL
)
2762 if (contents
!= NULL
)
2767 /* A little routine to count the number of relocs in a link_order
2771 _bfd_count_link_order_relocs (link_order
)
2772 struct bfd_link_order
*link_order
;
2774 register unsigned int c
;
2775 register struct bfd_link_order
*l
;
2778 for (l
= link_order
; l
!= (struct bfd_link_order
*) NULL
; l
= l
->next
)
2780 if (l
->type
== bfd_section_reloc_link_order
2781 || l
->type
== bfd_symbol_reloc_link_order
)
2790 bfd_link_split_section
2793 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2796 Return nonzero if @var{sec} should be split during a
2797 reloceatable or final link.
2799 .#define bfd_link_split_section(abfd, sec) \
2800 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2806 _bfd_generic_link_split_section (abfd
, sec
)
2807 bfd
*abfd ATTRIBUTE_UNUSED
;
2808 asection
*sec ATTRIBUTE_UNUSED
;