1 // dynobj.cc -- dynamic object support for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
29 #include "parameters.h"
39 // Sets up the default soname_ to use, in the (rare) cases we never
40 // see a DT_SONAME entry.
42 Dynobj::Dynobj(const std::string
& name
, Input_file
* input_file
, off_t offset
)
43 : Object(name
, input_file
, true, offset
),
45 unknown_needed_(UNKNOWN_NEEDED_UNSET
)
47 // This will be overridden by a DT_SONAME entry, hopefully. But if
48 // we never see a DT_SONAME entry, our rule is to use the dynamic
49 // object's filename. The only exception is when the dynamic object
50 // is part of an archive (so the filename is the archive's
51 // filename). In that case, we use just the dynobj's name-in-archive.
52 this->soname_
= this->input_file()->found_name();
53 if (this->offset() != 0)
55 std::string::size_type open_paren
= this->name().find('(');
56 std::string::size_type close_paren
= this->name().find(')');
57 if (open_paren
!= std::string::npos
&& close_paren
!= std::string::npos
)
59 // It's an archive, and name() is of the form 'foo.a(bar.so)'.
60 this->soname_
= this->name().substr(open_paren
+ 1,
61 close_paren
- (open_paren
+ 1));
66 // Class Sized_dynobj.
68 template<int size
, bool big_endian
>
69 Sized_dynobj
<size
, big_endian
>::Sized_dynobj(
70 const std::string
& name
,
71 Input_file
* input_file
,
73 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
74 : Dynobj(name
, input_file
, offset
),
81 template<int size
, bool big_endian
>
83 Sized_dynobj
<size
, big_endian
>::setup(
84 const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
86 this->set_target(ehdr
.get_e_machine(), size
, big_endian
,
87 ehdr
.get_e_ident()[elfcpp::EI_OSABI
],
88 ehdr
.get_e_ident()[elfcpp::EI_ABIVERSION
]);
90 const unsigned int shnum
= this->elf_file_
.shnum();
91 this->set_shnum(shnum
);
94 // Find the SHT_DYNSYM section and the various version sections, and
95 // the dynamic section, given the section headers.
97 template<int size
, bool big_endian
>
99 Sized_dynobj
<size
, big_endian
>::find_dynsym_sections(
100 const unsigned char* pshdrs
,
101 unsigned int* pdynsym_shndx
,
102 unsigned int* pversym_shndx
,
103 unsigned int* pverdef_shndx
,
104 unsigned int* pverneed_shndx
,
105 unsigned int* pdynamic_shndx
)
107 *pdynsym_shndx
= -1U;
108 *pversym_shndx
= -1U;
109 *pverdef_shndx
= -1U;
110 *pverneed_shndx
= -1U;
111 *pdynamic_shndx
= -1U;
113 const unsigned int shnum
= this->shnum();
114 const unsigned char* p
= pshdrs
;
115 for (unsigned int i
= 0; i
< shnum
; ++i
, p
+= This::shdr_size
)
117 typename
This::Shdr
shdr(p
);
120 switch (shdr
.get_sh_type())
122 case elfcpp::SHT_DYNSYM
:
125 case elfcpp::SHT_GNU_versym
:
128 case elfcpp::SHT_GNU_verdef
:
131 case elfcpp::SHT_GNU_verneed
:
134 case elfcpp::SHT_DYNAMIC
:
146 this->error(_("unexpected duplicate type %u section: %u, %u"),
147 shdr
.get_sh_type(), *pi
, i
);
153 // Read the contents of section SHNDX. PSHDRS points to the section
154 // headers. TYPE is the expected section type. LINK is the expected
155 // section link. Store the data in *VIEW and *VIEW_SIZE. The
156 // section's sh_info field is stored in *VIEW_INFO.
158 template<int size
, bool big_endian
>
160 Sized_dynobj
<size
, big_endian
>::read_dynsym_section(
161 const unsigned char* pshdrs
,
166 section_size_type
* view_size
,
167 unsigned int* view_info
)
177 typename
This::Shdr
shdr(pshdrs
+ shndx
* This::shdr_size
);
179 gold_assert(shdr
.get_sh_type() == type
);
181 if (shdr
.get_sh_link() != link
)
182 this->error(_("unexpected link in section %u header: %u != %u"),
183 shndx
, shdr
.get_sh_link(), link
);
185 *view
= this->get_lasting_view(shdr
.get_sh_offset(), shdr
.get_sh_size(),
187 *view_size
= convert_to_section_size_type(shdr
.get_sh_size());
188 *view_info
= shdr
.get_sh_info();
191 // Read the dynamic tags. Set the soname field if this shared object
192 // has a DT_SONAME tag. Record the DT_NEEDED tags. PSHDRS points to
193 // the section headers. DYNAMIC_SHNDX is the section index of the
194 // SHT_DYNAMIC section. STRTAB_SHNDX, STRTAB, and STRTAB_SIZE are the
195 // section index and contents of a string table which may be the one
196 // associated with the SHT_DYNAMIC section.
198 template<int size
, bool big_endian
>
200 Sized_dynobj
<size
, big_endian
>::read_dynamic(const unsigned char* pshdrs
,
201 unsigned int dynamic_shndx
,
202 unsigned int strtab_shndx
,
203 const unsigned char* strtabu
,
206 typename
This::Shdr
dynamicshdr(pshdrs
+ dynamic_shndx
* This::shdr_size
);
207 gold_assert(dynamicshdr
.get_sh_type() == elfcpp::SHT_DYNAMIC
);
209 const off_t dynamic_size
= dynamicshdr
.get_sh_size();
210 const unsigned char* pdynamic
= this->get_view(dynamicshdr
.get_sh_offset(),
211 dynamic_size
, false);
213 const unsigned int link
= dynamicshdr
.get_sh_link();
214 if (link
!= strtab_shndx
)
216 if (link
>= this->shnum())
218 this->error(_("DYNAMIC section %u link out of range: %u"),
219 dynamic_shndx
, link
);
223 typename
This::Shdr
strtabshdr(pshdrs
+ link
* This::shdr_size
);
224 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
226 this->error(_("DYNAMIC section %u link %u is not a strtab"),
227 dynamic_shndx
, link
);
231 strtab_size
= strtabshdr
.get_sh_size();
232 strtabu
= this->get_view(strtabshdr
.get_sh_offset(), strtab_size
, false);
235 const char* const strtab
= reinterpret_cast<const char*>(strtabu
);
237 for (const unsigned char* p
= pdynamic
;
238 p
< pdynamic
+ dynamic_size
;
241 typename
This::Dyn
dyn(p
);
243 switch (dyn
.get_d_tag())
245 case elfcpp::DT_NULL
:
246 // We should always see DT_NULL at the end of the dynamic
250 case elfcpp::DT_SONAME
:
252 off_t val
= dyn
.get_d_val();
253 if (val
>= strtab_size
)
254 this->error(_("DT_SONAME value out of range: %lld >= %lld"),
255 static_cast<long long>(val
),
256 static_cast<long long>(strtab_size
));
258 this->set_soname_string(strtab
+ val
);
262 case elfcpp::DT_NEEDED
:
264 off_t val
= dyn
.get_d_val();
265 if (val
>= strtab_size
)
266 this->error(_("DT_NEEDED value out of range: %lld >= %lld"),
267 static_cast<long long>(val
),
268 static_cast<long long>(strtab_size
));
270 this->add_needed(strtab
+ val
);
279 this->error(_("missing DT_NULL in dynamic segment"));
282 // Read the symbols and sections from a dynamic object. We read the
283 // dynamic symbols, not the normal symbols.
285 template<int size
, bool big_endian
>
287 Sized_dynobj
<size
, big_endian
>::do_read_symbols(Read_symbols_data
* sd
)
289 this->read_section_data(&this->elf_file_
, sd
);
291 const unsigned char* const pshdrs
= sd
->section_headers
->data();
293 unsigned int dynsym_shndx
;
294 unsigned int versym_shndx
;
295 unsigned int verdef_shndx
;
296 unsigned int verneed_shndx
;
297 unsigned int dynamic_shndx
;
298 this->find_dynsym_sections(pshdrs
, &dynsym_shndx
, &versym_shndx
,
299 &verdef_shndx
, &verneed_shndx
, &dynamic_shndx
);
301 unsigned int strtab_shndx
= -1U;
304 sd
->symbols_size
= 0;
305 sd
->external_symbols_offset
= 0;
306 sd
->symbol_names
= NULL
;
307 sd
->symbol_names_size
= 0;
309 if (dynsym_shndx
!= -1U)
311 // Get the dynamic symbols.
312 typename
This::Shdr
dynsymshdr(pshdrs
+ dynsym_shndx
* This::shdr_size
);
313 gold_assert(dynsymshdr
.get_sh_type() == elfcpp::SHT_DYNSYM
);
315 sd
->symbols
= this->get_lasting_view(dynsymshdr
.get_sh_offset(),
316 dynsymshdr
.get_sh_size(), false);
318 convert_to_section_size_type(dynsymshdr
.get_sh_size());
320 // Get the symbol names.
321 strtab_shndx
= dynsymshdr
.get_sh_link();
322 if (strtab_shndx
>= this->shnum())
324 this->error(_("invalid dynamic symbol table name index: %u"),
328 typename
This::Shdr
strtabshdr(pshdrs
+ strtab_shndx
* This::shdr_size
);
329 if (strtabshdr
.get_sh_type() != elfcpp::SHT_STRTAB
)
331 this->error(_("dynamic symbol table name section "
332 "has wrong type: %u"),
333 static_cast<unsigned int>(strtabshdr
.get_sh_type()));
337 sd
->symbol_names
= this->get_lasting_view(strtabshdr
.get_sh_offset(),
338 strtabshdr
.get_sh_size(),
340 sd
->symbol_names_size
=
341 convert_to_section_size_type(strtabshdr
.get_sh_size());
343 // Get the version information.
346 this->read_dynsym_section(pshdrs
, versym_shndx
, elfcpp::SHT_GNU_versym
,
347 dynsym_shndx
, &sd
->versym
, &sd
->versym_size
,
350 // We require that the version definition and need section link
351 // to the same string table as the dynamic symbol table. This
352 // is not a technical requirement, but it always happens in
353 // practice. We could change this if necessary.
355 this->read_dynsym_section(pshdrs
, verdef_shndx
, elfcpp::SHT_GNU_verdef
,
356 strtab_shndx
, &sd
->verdef
, &sd
->verdef_size
,
359 this->read_dynsym_section(pshdrs
, verneed_shndx
, elfcpp::SHT_GNU_verneed
,
360 strtab_shndx
, &sd
->verneed
, &sd
->verneed_size
,
364 // Read the SHT_DYNAMIC section to find whether this shared object
365 // has a DT_SONAME tag and to record any DT_NEEDED tags. This
366 // doesn't really have anything to do with reading the symbols, but
367 // this is a convenient place to do it.
368 if (dynamic_shndx
!= -1U)
369 this->read_dynamic(pshdrs
, dynamic_shndx
, strtab_shndx
,
370 (sd
->symbol_names
== NULL
372 : sd
->symbol_names
->data()),
373 sd
->symbol_names_size
);
376 // Lay out the input sections for a dynamic object. We don't want to
377 // include sections from a dynamic object, so all that we actually do
378 // here is check for .gnu.warning sections.
380 template<int size
, bool big_endian
>
382 Sized_dynobj
<size
, big_endian
>::do_layout(Symbol_table
* symtab
,
384 Read_symbols_data
* sd
)
386 const unsigned int shnum
= this->shnum();
390 // Get the section headers.
391 const unsigned char* pshdrs
= sd
->section_headers
->data();
393 // Get the section names.
394 const unsigned char* pnamesu
= sd
->section_names
->data();
395 const char* pnames
= reinterpret_cast<const char*>(pnamesu
);
397 // Skip the first, dummy, section.
398 pshdrs
+= This::shdr_size
;
399 for (unsigned int i
= 1; i
< shnum
; ++i
, pshdrs
+= This::shdr_size
)
401 typename
This::Shdr
shdr(pshdrs
);
403 if (shdr
.get_sh_name() >= sd
->section_names_size
)
405 this->error(_("bad section name offset for section %u: %lu"),
406 i
, static_cast<unsigned long>(shdr
.get_sh_name()));
410 const char* name
= pnames
+ shdr
.get_sh_name();
412 this->handle_gnu_warning_section(name
, i
, symtab
);
415 delete sd
->section_headers
;
416 sd
->section_headers
= NULL
;
417 delete sd
->section_names
;
418 sd
->section_names
= NULL
;
421 // Add an entry to the vector mapping version numbers to version
424 template<int size
, bool big_endian
>
426 Sized_dynobj
<size
, big_endian
>::set_version_map(
427 Version_map
* version_map
,
429 const char* name
) const
431 if (ndx
>= version_map
->size())
432 version_map
->resize(ndx
+ 1);
433 if ((*version_map
)[ndx
] != NULL
)
434 this->error(_("duplicate definition for version %u"), ndx
);
435 (*version_map
)[ndx
] = name
;
438 // Add mappings for the version definitions to VERSION_MAP.
440 template<int size
, bool big_endian
>
442 Sized_dynobj
<size
, big_endian
>::make_verdef_map(
443 Read_symbols_data
* sd
,
444 Version_map
* version_map
) const
446 if (sd
->verdef
== NULL
)
449 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
450 section_size_type names_size
= sd
->symbol_names_size
;
452 const unsigned char* pverdef
= sd
->verdef
->data();
453 section_size_type verdef_size
= sd
->verdef_size
;
454 const unsigned int count
= sd
->verdef_info
;
456 const unsigned char* p
= pverdef
;
457 for (unsigned int i
= 0; i
< count
; ++i
)
459 elfcpp::Verdef
<size
, big_endian
> verdef(p
);
461 if (verdef
.get_vd_version() != elfcpp::VER_DEF_CURRENT
)
463 this->error(_("unexpected verdef version %u"),
464 verdef
.get_vd_version());
468 const section_size_type vd_ndx
= verdef
.get_vd_ndx();
470 // The GNU linker clears the VERSYM_HIDDEN bit. I'm not
473 // The first Verdaux holds the name of this version. Subsequent
474 // ones are versions that this one depends upon, which we don't
476 const section_size_type vd_cnt
= verdef
.get_vd_cnt();
479 this->error(_("verdef vd_cnt field too small: %u"),
480 static_cast<unsigned int>(vd_cnt
));
484 const section_size_type vd_aux
= verdef
.get_vd_aux();
485 if ((p
- pverdef
) + vd_aux
>= verdef_size
)
487 this->error(_("verdef vd_aux field out of range: %u"),
488 static_cast<unsigned int>(vd_aux
));
492 const unsigned char* pvda
= p
+ vd_aux
;
493 elfcpp::Verdaux
<size
, big_endian
> verdaux(pvda
);
495 const section_size_type vda_name
= verdaux
.get_vda_name();
496 if (vda_name
>= names_size
)
498 this->error(_("verdaux vda_name field out of range: %u"),
499 static_cast<unsigned int>(vda_name
));
503 this->set_version_map(version_map
, vd_ndx
, names
+ vda_name
);
505 const section_size_type vd_next
= verdef
.get_vd_next();
506 if ((p
- pverdef
) + vd_next
>= verdef_size
)
508 this->error(_("verdef vd_next field out of range: %u"),
509 static_cast<unsigned int>(vd_next
));
517 // Add mappings for the required versions to VERSION_MAP.
519 template<int size
, bool big_endian
>
521 Sized_dynobj
<size
, big_endian
>::make_verneed_map(
522 Read_symbols_data
* sd
,
523 Version_map
* version_map
) const
525 if (sd
->verneed
== NULL
)
528 const char* names
= reinterpret_cast<const char*>(sd
->symbol_names
->data());
529 section_size_type names_size
= sd
->symbol_names_size
;
531 const unsigned char* pverneed
= sd
->verneed
->data();
532 const section_size_type verneed_size
= sd
->verneed_size
;
533 const unsigned int count
= sd
->verneed_info
;
535 const unsigned char* p
= pverneed
;
536 for (unsigned int i
= 0; i
< count
; ++i
)
538 elfcpp::Verneed
<size
, big_endian
> verneed(p
);
540 if (verneed
.get_vn_version() != elfcpp::VER_NEED_CURRENT
)
542 this->error(_("unexpected verneed version %u"),
543 verneed
.get_vn_version());
547 const section_size_type vn_aux
= verneed
.get_vn_aux();
549 if ((p
- pverneed
) + vn_aux
>= verneed_size
)
551 this->error(_("verneed vn_aux field out of range: %u"),
552 static_cast<unsigned int>(vn_aux
));
556 const unsigned int vn_cnt
= verneed
.get_vn_cnt();
557 const unsigned char* pvna
= p
+ vn_aux
;
558 for (unsigned int j
= 0; j
< vn_cnt
; ++j
)
560 elfcpp::Vernaux
<size
, big_endian
> vernaux(pvna
);
562 const unsigned int vna_name
= vernaux
.get_vna_name();
563 if (vna_name
>= names_size
)
565 this->error(_("vernaux vna_name field out of range: %u"),
566 static_cast<unsigned int>(vna_name
));
570 this->set_version_map(version_map
, vernaux
.get_vna_other(),
573 const section_size_type vna_next
= vernaux
.get_vna_next();
574 if ((pvna
- pverneed
) + vna_next
>= verneed_size
)
576 this->error(_("verneed vna_next field out of range: %u"),
577 static_cast<unsigned int>(vna_next
));
584 const section_size_type vn_next
= verneed
.get_vn_next();
585 if ((p
- pverneed
) + vn_next
>= verneed_size
)
587 this->error(_("verneed vn_next field out of range: %u"),
588 static_cast<unsigned int>(vn_next
));
596 // Create a vector mapping version numbers to version strings.
598 template<int size
, bool big_endian
>
600 Sized_dynobj
<size
, big_endian
>::make_version_map(
601 Read_symbols_data
* sd
,
602 Version_map
* version_map
) const
604 if (sd
->verdef
== NULL
&& sd
->verneed
== NULL
)
607 // A guess at the maximum version number we will see. If this is
608 // wrong we will be less efficient but still correct.
609 version_map
->reserve(sd
->verdef_info
+ sd
->verneed_info
* 10);
611 this->make_verdef_map(sd
, version_map
);
612 this->make_verneed_map(sd
, version_map
);
615 // Add the dynamic symbols to the symbol table.
617 template<int size
, bool big_endian
>
619 Sized_dynobj
<size
, big_endian
>::do_add_symbols(Symbol_table
* symtab
,
620 Read_symbols_data
* sd
)
622 if (sd
->symbols
== NULL
)
624 gold_assert(sd
->symbol_names
== NULL
);
625 gold_assert(sd
->versym
== NULL
&& sd
->verdef
== NULL
626 && sd
->verneed
== NULL
);
630 const int sym_size
= This::sym_size
;
631 const size_t symcount
= sd
->symbols_size
/ sym_size
;
632 gold_assert(sd
->external_symbols_offset
== 0);
633 if (symcount
* sym_size
!= sd
->symbols_size
)
635 this->error(_("size of dynamic symbols is not multiple of symbol size"));
639 Version_map version_map
;
640 this->make_version_map(sd
, &version_map
);
642 const char* sym_names
=
643 reinterpret_cast<const char*>(sd
->symbol_names
->data());
644 symtab
->add_from_dynobj(this, sd
->symbols
->data(), symcount
,
645 sym_names
, sd
->symbol_names_size
,
648 : sd
->versym
->data()),
654 delete sd
->symbol_names
;
655 sd
->symbol_names
= NULL
;
656 if (sd
->versym
!= NULL
)
661 if (sd
->verdef
!= NULL
)
666 if (sd
->verneed
!= NULL
)
672 // This is normally the last time we will read any data from this
674 this->clear_view_cache_marks();
677 // Given a vector of hash codes, compute the number of hash buckets to
681 Dynobj::compute_bucket_count(const std::vector
<uint32_t>& hashcodes
,
682 bool for_gnu_hash_table
)
684 // FIXME: Implement optional hash table optimization.
686 // Array used to determine the number of hash table buckets to use
687 // based on the number of symbols there are. If there are fewer
688 // than 3 symbols we use 1 bucket, fewer than 17 symbols we use 3
689 // buckets, fewer than 37 we use 17 buckets, and so forth. We never
690 // use more than 262147 buckets. This is straight from the old GNU
692 static const unsigned int buckets
[] =
694 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
695 16411, 32771, 65537, 131101, 262147
697 const int buckets_count
= sizeof buckets
/ sizeof buckets
[0];
699 unsigned int symcount
= hashcodes
.size();
700 unsigned int ret
= 1;
701 const double full_fraction
702 = 1.0 - parameters
->options().hash_bucket_empty_fraction();
703 for (int i
= 0; i
< buckets_count
; ++i
)
705 if (symcount
< buckets
[i
] * full_fraction
)
710 if (for_gnu_hash_table
&& ret
< 2)
716 // The standard ELF hash function. This hash function must not
717 // change, as the dynamic linker uses it also.
720 Dynobj::elf_hash(const char* name
)
722 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
725 while ((c
= *nameu
++) != '\0')
728 uint32_t g
= h
& 0xf0000000;
732 // The ELF ABI says h &= ~g, but using xor is equivalent in
733 // this case (since g was set from h) and may save one
741 // Create a standard ELF hash table, setting *PPHASH and *PHASHLEN.
742 // DYNSYMS is a vector with all the global dynamic symbols.
743 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
747 Dynobj::create_elf_hash_table(const std::vector
<Symbol
*>& dynsyms
,
748 unsigned int local_dynsym_count
,
749 unsigned char** pphash
,
750 unsigned int* phashlen
)
752 unsigned int dynsym_count
= dynsyms
.size();
754 // Get the hash values for all the symbols.
755 std::vector
<uint32_t> dynsym_hashvals(dynsym_count
);
756 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
757 dynsym_hashvals
[i
] = Dynobj::elf_hash(dynsyms
[i
]->name());
759 const unsigned int bucketcount
=
760 Dynobj::compute_bucket_count(dynsym_hashvals
, false);
762 std::vector
<uint32_t> bucket(bucketcount
);
763 std::vector
<uint32_t> chain(local_dynsym_count
+ dynsym_count
);
765 for (unsigned int i
= 0; i
< dynsym_count
; ++i
)
767 unsigned int dynsym_index
= dynsyms
[i
]->dynsym_index();
768 unsigned int bucketpos
= dynsym_hashvals
[i
] % bucketcount
;
769 chain
[dynsym_index
] = bucket
[bucketpos
];
770 bucket
[bucketpos
] = dynsym_index
;
773 unsigned int hashlen
= ((2
778 unsigned char* phash
= new unsigned char[hashlen
];
780 if (parameters
->target().is_big_endian())
782 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
783 Dynobj::sized_create_elf_hash_table
<true>(bucket
, chain
, phash
,
791 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
792 Dynobj::sized_create_elf_hash_table
<false>(bucket
, chain
, phash
,
803 // Fill in an ELF hash table.
805 template<bool big_endian
>
807 Dynobj::sized_create_elf_hash_table(const std::vector
<uint32_t>& bucket
,
808 const std::vector
<uint32_t>& chain
,
809 unsigned char* phash
,
810 unsigned int hashlen
)
812 unsigned char* p
= phash
;
814 const unsigned int bucketcount
= bucket
.size();
815 const unsigned int chaincount
= chain
.size();
817 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucketcount
);
819 elfcpp::Swap
<32, big_endian
>::writeval(p
, chaincount
);
822 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
824 elfcpp::Swap
<32, big_endian
>::writeval(p
, bucket
[i
]);
828 for (unsigned int i
= 0; i
< chaincount
; ++i
)
830 elfcpp::Swap
<32, big_endian
>::writeval(p
, chain
[i
]);
834 gold_assert(static_cast<unsigned int>(p
- phash
) == hashlen
);
837 // The hash function used for the GNU hash table. This hash function
838 // must not change, as the dynamic linker uses it also.
841 Dynobj::gnu_hash(const char* name
)
843 const unsigned char* nameu
= reinterpret_cast<const unsigned char*>(name
);
846 while ((c
= *nameu
++) != '\0')
847 h
= (h
<< 5) + h
+ c
;
851 // Create a GNU hash table, setting *PPHASH and *PHASHLEN. GNU hash
852 // tables are an extension to ELF which are recognized by the GNU
853 // dynamic linker. They are referenced using dynamic tag DT_GNU_HASH.
854 // TARGET is the target. DYNSYMS is a vector with all the global
855 // symbols which will be going into the dynamic symbol table.
856 // LOCAL_DYNSYM_COUNT is the number of local symbols in the dynamic
860 Dynobj::create_gnu_hash_table(const std::vector
<Symbol
*>& dynsyms
,
861 unsigned int local_dynsym_count
,
862 unsigned char** pphash
,
863 unsigned int* phashlen
)
865 const unsigned int count
= dynsyms
.size();
867 // Sort the dynamic symbols into two vectors. Symbols which we do
868 // not want to put into the hash table we store into
869 // UNHASHED_DYNSYMS. Symbols which we do want to store we put into
870 // HASHED_DYNSYMS. DYNSYM_HASHVALS is parallel to HASHED_DYNSYMS,
871 // and records the hash codes.
873 std::vector
<Symbol
*> unhashed_dynsyms
;
874 unhashed_dynsyms
.reserve(count
);
876 std::vector
<Symbol
*> hashed_dynsyms
;
877 hashed_dynsyms
.reserve(count
);
879 std::vector
<uint32_t> dynsym_hashvals
;
880 dynsym_hashvals
.reserve(count
);
882 for (unsigned int i
= 0; i
< count
; ++i
)
884 Symbol
* sym
= dynsyms
[i
];
886 // FIXME: Should put on unhashed_dynsyms if the symbol is
888 if (sym
->is_undefined())
889 unhashed_dynsyms
.push_back(sym
);
892 hashed_dynsyms
.push_back(sym
);
893 dynsym_hashvals
.push_back(Dynobj::gnu_hash(sym
->name()));
897 // Put the unhashed symbols at the start of the global portion of
898 // the dynamic symbol table.
899 const unsigned int unhashed_count
= unhashed_dynsyms
.size();
900 unsigned int unhashed_dynsym_index
= local_dynsym_count
;
901 for (unsigned int i
= 0; i
< unhashed_count
; ++i
)
903 unhashed_dynsyms
[i
]->set_dynsym_index(unhashed_dynsym_index
);
904 ++unhashed_dynsym_index
;
907 // For the actual data generation we call out to a templatized
909 int size
= parameters
->target().get_size();
910 bool big_endian
= parameters
->target().is_big_endian();
915 #ifdef HAVE_TARGET_32_BIG
916 Dynobj::sized_create_gnu_hash_table
<32, true>(hashed_dynsyms
,
918 unhashed_dynsym_index
,
927 #ifdef HAVE_TARGET_32_LITTLE
928 Dynobj::sized_create_gnu_hash_table
<32, false>(hashed_dynsyms
,
930 unhashed_dynsym_index
,
942 #ifdef HAVE_TARGET_64_BIG
943 Dynobj::sized_create_gnu_hash_table
<64, true>(hashed_dynsyms
,
945 unhashed_dynsym_index
,
954 #ifdef HAVE_TARGET_64_LITTLE
955 Dynobj::sized_create_gnu_hash_table
<64, false>(hashed_dynsyms
,
957 unhashed_dynsym_index
,
969 // Create the actual data for a GNU hash table. This is just a copy
970 // of the code from the old GNU linker.
972 template<int size
, bool big_endian
>
974 Dynobj::sized_create_gnu_hash_table(
975 const std::vector
<Symbol
*>& hashed_dynsyms
,
976 const std::vector
<uint32_t>& dynsym_hashvals
,
977 unsigned int unhashed_dynsym_count
,
978 unsigned char** pphash
,
979 unsigned int* phashlen
)
981 if (hashed_dynsyms
.empty())
983 // Special case for the empty hash table.
984 unsigned int hashlen
= 5 * 4 + size
/ 8;
985 unsigned char* phash
= new unsigned char[hashlen
];
987 elfcpp::Swap
<32, big_endian
>::writeval(phash
, 1);
988 // Symbol index above unhashed symbols.
989 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, unhashed_dynsym_count
);
990 // One word for bitmask.
991 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, 1);
992 // Only bloom filter.
993 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, 0);
995 elfcpp::Swap
<size
, big_endian
>::writeval(phash
+ 16, 0);
996 // No hashes in only bucket.
997 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 16 + size
/ 8, 0);
1005 const unsigned int bucketcount
=
1006 Dynobj::compute_bucket_count(dynsym_hashvals
, true);
1008 const unsigned int nsyms
= hashed_dynsyms
.size();
1010 uint32_t maskbitslog2
= 1;
1011 uint32_t x
= nsyms
>> 1;
1017 if (maskbitslog2
< 3)
1019 else if (((1U << (maskbitslog2
- 2)) & nsyms
) != 0)
1029 if (maskbitslog2
== 5)
1033 uint32_t mask
= (1U << shift1
) - 1U;
1034 uint32_t shift2
= maskbitslog2
;
1035 uint32_t maskbits
= 1U << maskbitslog2
;
1036 uint32_t maskwords
= 1U << (maskbitslog2
- shift1
);
1038 typedef typename
elfcpp::Elf_types
<size
>::Elf_WXword Word
;
1039 std::vector
<Word
> bitmask(maskwords
);
1040 std::vector
<uint32_t> counts(bucketcount
);
1041 std::vector
<uint32_t> indx(bucketcount
);
1042 uint32_t symindx
= unhashed_dynsym_count
;
1044 // Count the number of times each hash bucket is used.
1045 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1046 ++counts
[dynsym_hashvals
[i
] % bucketcount
];
1048 unsigned int cnt
= symindx
;
1049 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1055 unsigned int hashlen
= (4 + bucketcount
+ nsyms
) * 4;
1056 hashlen
+= maskbits
/ 8;
1057 unsigned char* phash
= new unsigned char[hashlen
];
1059 elfcpp::Swap
<32, big_endian
>::writeval(phash
, bucketcount
);
1060 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 4, symindx
);
1061 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 8, maskwords
);
1062 elfcpp::Swap
<32, big_endian
>::writeval(phash
+ 12, shift2
);
1064 unsigned char* p
= phash
+ 16 + maskbits
/ 8;
1065 for (unsigned int i
= 0; i
< bucketcount
; ++i
)
1068 elfcpp::Swap
<32, big_endian
>::writeval(p
, 0);
1070 elfcpp::Swap
<32, big_endian
>::writeval(p
, indx
[i
]);
1074 for (unsigned int i
= 0; i
< nsyms
; ++i
)
1076 Symbol
* sym
= hashed_dynsyms
[i
];
1077 uint32_t hashval
= dynsym_hashvals
[i
];
1079 unsigned int bucket
= hashval
% bucketcount
;
1080 unsigned int val
= ((hashval
>> shift1
)
1081 & ((maskbits
>> shift1
) - 1));
1082 bitmask
[val
] |= (static_cast<Word
>(1U)) << (hashval
& mask
);
1083 bitmask
[val
] |= (static_cast<Word
>(1U)) << ((hashval
>> shift2
) & mask
);
1084 val
= hashval
& ~ 1U;
1085 if (counts
[bucket
] == 1)
1087 // Last element terminates the chain.
1090 elfcpp::Swap
<32, big_endian
>::writeval(p
+ (indx
[bucket
] - symindx
) * 4,
1094 sym
->set_dynsym_index(indx
[bucket
]);
1099 for (unsigned int i
= 0; i
< maskwords
; ++i
)
1101 elfcpp::Swap
<size
, big_endian
>::writeval(p
, bitmask
[i
]);
1105 *phashlen
= hashlen
;
1111 // Write this definition to a buffer for the output section.
1113 template<int size
, bool big_endian
>
1115 Verdef::write(const Stringpool
* dynpool
, bool is_last
, unsigned char* pb
) const
1117 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1118 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1120 elfcpp::Verdef_write
<size
, big_endian
> vd(pb
);
1121 vd
.set_vd_version(elfcpp::VER_DEF_CURRENT
);
1122 vd
.set_vd_flags((this->is_base_
? elfcpp::VER_FLG_BASE
: 0)
1123 | (this->is_weak_
? elfcpp::VER_FLG_WEAK
: 0));
1124 vd
.set_vd_ndx(this->index());
1125 vd
.set_vd_cnt(1 + this->deps_
.size());
1126 vd
.set_vd_hash(Dynobj::elf_hash(this->name()));
1127 vd
.set_vd_aux(verdef_size
);
1128 vd
.set_vd_next(is_last
1130 : verdef_size
+ (1 + this->deps_
.size()) * verdaux_size
);
1133 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1134 vda
.set_vda_name(dynpool
->get_offset(this->name()));
1135 vda
.set_vda_next(this->deps_
.empty() ? 0 : verdaux_size
);
1138 Deps::const_iterator p
;
1140 for (p
= this->deps_
.begin(), i
= 0;
1141 p
!= this->deps_
.end();
1144 elfcpp::Verdaux_write
<size
, big_endian
> vda(pb
);
1145 vda
.set_vda_name(dynpool
->get_offset(*p
));
1146 vda
.set_vda_next(i
+ 1 >= this->deps_
.size() ? 0 : verdaux_size
);
1157 for (Need_versions::iterator p
= this->need_versions_
.begin();
1158 p
!= this->need_versions_
.end();
1163 // Add a new version to this file reference.
1166 Verneed::add_name(const char* name
)
1168 Verneed_version
* vv
= new Verneed_version(name
);
1169 this->need_versions_
.push_back(vv
);
1173 // Set the version indexes starting at INDEX.
1176 Verneed::finalize(unsigned int index
)
1178 for (Need_versions::iterator p
= this->need_versions_
.begin();
1179 p
!= this->need_versions_
.end();
1182 (*p
)->set_index(index
);
1188 // Write this list of referenced versions to a buffer for the output
1191 template<int size
, bool big_endian
>
1193 Verneed::write(const Stringpool
* dynpool
, bool is_last
,
1194 unsigned char* pb
) const
1196 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1197 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1199 elfcpp::Verneed_write
<size
, big_endian
> vn(pb
);
1200 vn
.set_vn_version(elfcpp::VER_NEED_CURRENT
);
1201 vn
.set_vn_cnt(this->need_versions_
.size());
1202 vn
.set_vn_file(dynpool
->get_offset(this->filename()));
1203 vn
.set_vn_aux(verneed_size
);
1204 vn
.set_vn_next(is_last
1206 : verneed_size
+ this->need_versions_
.size() * vernaux_size
);
1209 Need_versions::const_iterator p
;
1211 for (p
= this->need_versions_
.begin(), i
= 0;
1212 p
!= this->need_versions_
.end();
1215 elfcpp::Vernaux_write
<size
, big_endian
> vna(pb
);
1216 vna
.set_vna_hash(Dynobj::elf_hash((*p
)->version()));
1217 // FIXME: We need to sometimes set VER_FLG_WEAK here.
1218 vna
.set_vna_flags(0);
1219 vna
.set_vna_other((*p
)->index());
1220 vna
.set_vna_name(dynpool
->get_offset((*p
)->version()));
1221 vna
.set_vna_next(i
+ 1 >= this->need_versions_
.size()
1230 // Versions methods.
1232 Versions::Versions(const Version_script_info
& version_script
,
1233 Stringpool
* dynpool
)
1234 : defs_(), needs_(), version_table_(),
1235 is_finalized_(false), version_script_(version_script
)
1237 // We always need a base version, so define that first. Nothing
1238 // explicitly declares itself as part of base, so it doesn't need to
1239 // be in version_table_.
1240 // FIXME: Should use soname here when creating a shared object. Is
1241 // this fixme still valid? It looks like it's doing the right thing
1243 if (parameters
->options().shared())
1245 const char* name
= dynpool
->add(parameters
->options().output_file_name(),
1247 Verdef
* vdbase
= new Verdef(name
, std::vector
<std::string
>(),
1249 this->defs_
.push_back(vdbase
);
1252 if (!this->version_script_
.empty())
1254 // Parse the version script, and insert each declared version into
1255 // defs_ and version_table_.
1256 std::vector
<std::string
> versions
= this->version_script_
.get_versions();
1257 for (size_t k
= 0; k
< versions
.size(); ++k
)
1259 Stringpool::Key version_key
;
1260 const char* version
= dynpool
->add(versions
[k
].c_str(),
1261 true, &version_key
);
1262 Verdef
* const vd
= new Verdef(
1264 this->version_script_
.get_dependencies(version
),
1265 false, false, false);
1266 this->defs_
.push_back(vd
);
1267 Key
key(version_key
, 0);
1268 this->version_table_
.insert(std::make_pair(key
, vd
));
1273 Versions::~Versions()
1275 for (Defs::iterator p
= this->defs_
.begin();
1276 p
!= this->defs_
.end();
1280 for (Needs::iterator p
= this->needs_
.begin();
1281 p
!= this->needs_
.end();
1286 // Return the dynamic object which a symbol refers to.
1289 Versions::get_dynobj_for_sym(const Symbol_table
* symtab
,
1290 const Symbol
* sym
) const
1292 if (sym
->is_copied_from_dynobj())
1293 return symtab
->get_copy_source(sym
);
1296 Object
* object
= sym
->object();
1297 gold_assert(object
->is_dynamic());
1298 return static_cast<Dynobj
*>(object
);
1302 // Record version information for a symbol going into the dynamic
1306 Versions::record_version(const Symbol_table
* symtab
,
1307 Stringpool
* dynpool
, const Symbol
* sym
)
1309 gold_assert(!this->is_finalized_
);
1310 gold_assert(sym
->version() != NULL
);
1312 Stringpool::Key version_key
;
1313 const char* version
= dynpool
->add(sym
->version(), false, &version_key
);
1315 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1317 if (parameters
->options().shared())
1318 this->add_def(sym
, version
, version_key
);
1322 // This is a version reference.
1323 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1324 this->add_need(dynpool
, dynobj
->soname(), version
, version_key
);
1328 // We've found a symbol SYM defined in version VERSION.
1331 Versions::add_def(const Symbol
* sym
, const char* version
,
1332 Stringpool::Key version_key
)
1334 Key
k(version_key
, 0);
1335 Version_base
* const vbnull
= NULL
;
1336 std::pair
<Version_table::iterator
, bool> ins
=
1337 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1341 // We already have an entry for this version.
1342 Version_base
* vb
= ins
.first
->second
;
1344 // We have now seen a symbol in this version, so it is not
1346 gold_assert(vb
!= NULL
);
1351 // If we are creating a shared object, it is an error to
1352 // find a definition of a symbol with a version which is not
1353 // in the version script.
1354 if (parameters
->options().shared())
1356 gold_error(_("symbol %s has undefined version %s"),
1357 sym
->demangled_name().c_str(), version
);
1361 // When creating a regular executable, automatically define
1363 Verdef
* vd
= new Verdef(version
, std::vector
<std::string
>(),
1364 false, false, false);
1365 this->defs_
.push_back(vd
);
1366 ins
.first
->second
= vd
;
1370 // Add a reference to version NAME in file FILENAME.
1373 Versions::add_need(Stringpool
* dynpool
, const char* filename
, const char* name
,
1374 Stringpool::Key name_key
)
1376 Stringpool::Key filename_key
;
1377 filename
= dynpool
->add(filename
, true, &filename_key
);
1379 Key
k(name_key
, filename_key
);
1380 Version_base
* const vbnull
= NULL
;
1381 std::pair
<Version_table::iterator
, bool> ins
=
1382 this->version_table_
.insert(std::make_pair(k
, vbnull
));
1386 // We already have an entry for this filename/version.
1390 // See whether we already have this filename. We don't expect many
1391 // version references, so we just do a linear search. This could be
1392 // replaced by a hash table.
1394 for (Needs::iterator p
= this->needs_
.begin();
1395 p
!= this->needs_
.end();
1398 if ((*p
)->filename() == filename
)
1407 // We have a new filename.
1408 vn
= new Verneed(filename
);
1409 this->needs_
.push_back(vn
);
1412 ins
.first
->second
= vn
->add_name(name
);
1415 // Set the version indexes. Create a new dynamic version symbol for
1416 // each new version definition.
1419 Versions::finalize(Symbol_table
* symtab
, unsigned int dynsym_index
,
1420 std::vector
<Symbol
*>* syms
)
1422 gold_assert(!this->is_finalized_
);
1424 unsigned int vi
= 1;
1426 for (Defs::iterator p
= this->defs_
.begin();
1427 p
!= this->defs_
.end();
1430 (*p
)->set_index(vi
);
1433 // Create a version symbol if necessary.
1434 if (!(*p
)->is_symbol_created())
1436 Symbol
* vsym
= symtab
->define_as_constant((*p
)->name(),
1440 elfcpp::STV_DEFAULT
, 0,
1442 vsym
->set_needs_dynsym_entry();
1443 vsym
->set_dynsym_index(dynsym_index
);
1445 syms
->push_back(vsym
);
1446 // The name is already in the dynamic pool.
1450 // Index 1 is used for global symbols.
1453 gold_assert(this->defs_
.empty());
1457 for (Needs::iterator p
= this->needs_
.begin();
1458 p
!= this->needs_
.end();
1460 vi
= (*p
)->finalize(vi
);
1462 this->is_finalized_
= true;
1464 return dynsym_index
;
1467 // Return the version index to use for a symbol. This does two hash
1468 // table lookups: one in DYNPOOL and one in this->version_table_.
1469 // Another approach alternative would be store a pointer in SYM, which
1470 // would increase the size of the symbol table. Or perhaps we could
1471 // use a hash table from dynamic symbol pointer values to Version_base
1475 Versions::version_index(const Symbol_table
* symtab
, const Stringpool
* dynpool
,
1476 const Symbol
* sym
) const
1478 Stringpool::Key version_key
;
1479 const char* version
= dynpool
->find(sym
->version(), &version_key
);
1480 gold_assert(version
!= NULL
);
1483 if (!sym
->is_from_dynobj() && !sym
->is_copied_from_dynobj())
1485 if (!parameters
->options().shared())
1486 return elfcpp::VER_NDX_GLOBAL
;
1487 k
= Key(version_key
, 0);
1491 Dynobj
* dynobj
= this->get_dynobj_for_sym(symtab
, sym
);
1493 Stringpool::Key filename_key
;
1494 const char* filename
= dynpool
->find(dynobj
->soname(), &filename_key
);
1495 gold_assert(filename
!= NULL
);
1497 k
= Key(version_key
, filename_key
);
1500 Version_table::const_iterator p
= this->version_table_
.find(k
);
1501 gold_assert(p
!= this->version_table_
.end());
1503 return p
->second
->index();
1506 // Return an allocated buffer holding the contents of the symbol
1509 template<int size
, bool big_endian
>
1511 Versions::symbol_section_contents(const Symbol_table
* symtab
,
1512 const Stringpool
* dynpool
,
1513 unsigned int local_symcount
,
1514 const std::vector
<Symbol
*>& syms
,
1516 unsigned int* psize
) const
1518 gold_assert(this->is_finalized_
);
1520 unsigned int sz
= (local_symcount
+ syms
.size()) * 2;
1521 unsigned char* pbuf
= new unsigned char[sz
];
1523 for (unsigned int i
= 0; i
< local_symcount
; ++i
)
1524 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ i
* 2,
1525 elfcpp::VER_NDX_LOCAL
);
1527 for (std::vector
<Symbol
*>::const_iterator p
= syms
.begin();
1531 unsigned int version_index
;
1532 const char* version
= (*p
)->version();
1533 if (version
== NULL
)
1534 version_index
= elfcpp::VER_NDX_GLOBAL
;
1536 version_index
= this->version_index(symtab
, dynpool
, *p
);
1537 // If the symbol was defined as foo@V1 instead of foo@@V1, add
1539 if ((*p
)->version() != NULL
&& !(*p
)->is_default())
1540 version_index
|= elfcpp::VERSYM_HIDDEN
;
1541 elfcpp::Swap
<16, big_endian
>::writeval(pbuf
+ (*p
)->dynsym_index() * 2,
1549 // Return an allocated buffer holding the contents of the version
1550 // definition section.
1552 template<int size
, bool big_endian
>
1554 Versions::def_section_contents(const Stringpool
* dynpool
,
1555 unsigned char** pp
, unsigned int* psize
,
1556 unsigned int* pentries
) const
1558 gold_assert(this->is_finalized_
);
1559 gold_assert(!this->defs_
.empty());
1561 const int verdef_size
= elfcpp::Elf_sizes
<size
>::verdef_size
;
1562 const int verdaux_size
= elfcpp::Elf_sizes
<size
>::verdaux_size
;
1564 unsigned int sz
= 0;
1565 for (Defs::const_iterator p
= this->defs_
.begin();
1566 p
!= this->defs_
.end();
1569 sz
+= verdef_size
+ verdaux_size
;
1570 sz
+= (*p
)->count_dependencies() * verdaux_size
;
1573 unsigned char* pbuf
= new unsigned char[sz
];
1575 unsigned char* pb
= pbuf
;
1576 Defs::const_iterator p
;
1578 for (p
= this->defs_
.begin(), i
= 0;
1579 p
!= this->defs_
.end();
1581 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1582 i
+ 1 >= this->defs_
.size(),
1585 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1589 *pentries
= this->defs_
.size();
1592 // Return an allocated buffer holding the contents of the version
1593 // reference section.
1595 template<int size
, bool big_endian
>
1597 Versions::need_section_contents(const Stringpool
* dynpool
,
1598 unsigned char** pp
, unsigned int *psize
,
1599 unsigned int *pentries
) const
1601 gold_assert(this->is_finalized_
);
1602 gold_assert(!this->needs_
.empty());
1604 const int verneed_size
= elfcpp::Elf_sizes
<size
>::verneed_size
;
1605 const int vernaux_size
= elfcpp::Elf_sizes
<size
>::vernaux_size
;
1607 unsigned int sz
= 0;
1608 for (Needs::const_iterator p
= this->needs_
.begin();
1609 p
!= this->needs_
.end();
1613 sz
+= (*p
)->count_versions() * vernaux_size
;
1616 unsigned char* pbuf
= new unsigned char[sz
];
1618 unsigned char* pb
= pbuf
;
1619 Needs::const_iterator p
;
1621 for (p
= this->needs_
.begin(), i
= 0;
1622 p
!= this->needs_
.end();
1624 pb
= (*p
)->write
<size
, big_endian
>(dynpool
,
1625 i
+ 1 >= this->needs_
.size(),
1628 gold_assert(static_cast<unsigned int>(pb
- pbuf
) == sz
);
1632 *pentries
= this->needs_
.size();
1635 // Instantiate the templates we need. We could use the configure
1636 // script to restrict this to only the ones for implemented targets.
1638 #ifdef HAVE_TARGET_32_LITTLE
1640 class Sized_dynobj
<32, false>;
1643 #ifdef HAVE_TARGET_32_BIG
1645 class Sized_dynobj
<32, true>;
1648 #ifdef HAVE_TARGET_64_LITTLE
1650 class Sized_dynobj
<64, false>;
1653 #ifdef HAVE_TARGET_64_BIG
1655 class Sized_dynobj
<64, true>;
1658 #ifdef HAVE_TARGET_32_LITTLE
1661 Versions::symbol_section_contents
<32, false>(
1662 const Symbol_table
*,
1665 const std::vector
<Symbol
*>&,
1667 unsigned int*) const;
1670 #ifdef HAVE_TARGET_32_BIG
1673 Versions::symbol_section_contents
<32, true>(
1674 const Symbol_table
*,
1677 const std::vector
<Symbol
*>&,
1679 unsigned int*) const;
1682 #ifdef HAVE_TARGET_64_LITTLE
1685 Versions::symbol_section_contents
<64, false>(
1686 const Symbol_table
*,
1689 const std::vector
<Symbol
*>&,
1691 unsigned int*) const;
1694 #ifdef HAVE_TARGET_64_BIG
1697 Versions::symbol_section_contents
<64, true>(
1698 const Symbol_table
*,
1701 const std::vector
<Symbol
*>&,
1703 unsigned int*) const;
1706 #ifdef HAVE_TARGET_32_LITTLE
1709 Versions::def_section_contents
<32, false>(
1713 unsigned int*) const;
1716 #ifdef HAVE_TARGET_32_BIG
1719 Versions::def_section_contents
<32, true>(
1723 unsigned int*) const;
1726 #ifdef HAVE_TARGET_64_LITTLE
1729 Versions::def_section_contents
<64, false>(
1733 unsigned int*) const;
1736 #ifdef HAVE_TARGET_64_BIG
1739 Versions::def_section_contents
<64, true>(
1743 unsigned int*) const;
1746 #ifdef HAVE_TARGET_32_LITTLE
1749 Versions::need_section_contents
<32, false>(
1753 unsigned int*) const;
1756 #ifdef HAVE_TARGET_32_BIG
1759 Versions::need_section_contents
<32, true>(
1763 unsigned int*) const;
1766 #ifdef HAVE_TARGET_64_LITTLE
1769 Versions::need_section_contents
<64, false>(
1773 unsigned int*) const;
1776 #ifdef HAVE_TARGET_64_BIG
1779 Versions::need_section_contents
<64, true>(
1783 unsigned int*) const;
1786 } // End namespace gold.