1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h" // for unlink_if_ordinary()
34 #include "parameters.h"
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43 # define MAP_ANONYMOUS MAP_ANON
49 // Output_data variables.
51 bool Output_data::allocated_sizes_are_fixed
;
53 // Output_data methods.
55 Output_data::~Output_data()
59 // Return the default alignment for the target size.
62 Output_data::default_alignment()
64 return Output_data::default_alignment_for_size(
65 parameters
->target().get_size());
68 // Return the default alignment for a size--32 or 64.
71 Output_data::default_alignment_for_size(int size
)
81 // Output_section_header methods. This currently assumes that the
82 // segment and section lists are complete at construction time.
84 Output_section_headers::Output_section_headers(
86 const Layout::Segment_list
* segment_list
,
87 const Layout::Section_list
* section_list
,
88 const Layout::Section_list
* unattached_section_list
,
89 const Stringpool
* secnamepool
)
91 segment_list_(segment_list
),
92 section_list_(section_list
),
93 unattached_section_list_(unattached_section_list
),
94 secnamepool_(secnamepool
)
96 // Count all the sections. Start with 1 for the null section.
98 if (!parameters
->options().relocatable())
100 for (Layout::Segment_list::const_iterator p
= segment_list
->begin();
101 p
!= segment_list
->end();
103 if ((*p
)->type() == elfcpp::PT_LOAD
)
104 count
+= (*p
)->output_section_count();
108 for (Layout::Section_list::const_iterator p
= section_list
->begin();
109 p
!= section_list
->end();
111 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
114 count
+= unattached_section_list
->size();
116 const int size
= parameters
->target().get_size();
119 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
121 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
125 this->set_data_size(count
* shdr_size
);
128 // Write out the section headers.
131 Output_section_headers::do_write(Output_file
* of
)
133 switch (parameters
->size_and_endianness())
135 #ifdef HAVE_TARGET_32_LITTLE
136 case Parameters::TARGET_32_LITTLE
:
137 this->do_sized_write
<32, false>(of
);
140 #ifdef HAVE_TARGET_32_BIG
141 case Parameters::TARGET_32_BIG
:
142 this->do_sized_write
<32, true>(of
);
145 #ifdef HAVE_TARGET_64_LITTLE
146 case Parameters::TARGET_64_LITTLE
:
147 this->do_sized_write
<64, false>(of
);
150 #ifdef HAVE_TARGET_64_BIG
151 case Parameters::TARGET_64_BIG
:
152 this->do_sized_write
<64, true>(of
);
160 template<int size
, bool big_endian
>
162 Output_section_headers::do_sized_write(Output_file
* of
)
164 off_t all_shdrs_size
= this->data_size();
165 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
167 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
168 unsigned char* v
= view
;
171 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
172 oshdr
.put_sh_name(0);
173 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
174 oshdr
.put_sh_flags(0);
175 oshdr
.put_sh_addr(0);
176 oshdr
.put_sh_offset(0);
177 oshdr
.put_sh_size(0);
178 oshdr
.put_sh_link(0);
179 oshdr
.put_sh_info(0);
180 oshdr
.put_sh_addralign(0);
181 oshdr
.put_sh_entsize(0);
186 unsigned int shndx
= 1;
187 if (!parameters
->options().relocatable())
189 for (Layout::Segment_list::const_iterator p
=
190 this->segment_list_
->begin();
191 p
!= this->segment_list_
->end();
193 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
200 for (Layout::Section_list::const_iterator p
=
201 this->section_list_
->begin();
202 p
!= this->section_list_
->end();
205 // We do unallocated sections below, except that group
206 // sections have to come first.
207 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
208 && (*p
)->type() != elfcpp::SHT_GROUP
)
210 gold_assert(shndx
== (*p
)->out_shndx());
211 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
212 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
218 for (Layout::Section_list::const_iterator p
=
219 this->unattached_section_list_
->begin();
220 p
!= this->unattached_section_list_
->end();
223 // For a relocatable link, we did unallocated group sections
224 // above, since they have to come first.
225 if ((*p
)->type() == elfcpp::SHT_GROUP
226 && parameters
->options().relocatable())
228 gold_assert(shndx
== (*p
)->out_shndx());
229 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
230 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
235 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
238 // Output_segment_header methods.
240 Output_segment_headers::Output_segment_headers(
241 const Layout::Segment_list
& segment_list
)
242 : segment_list_(segment_list
)
244 const int size
= parameters
->target().get_size();
247 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
249 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
253 this->set_data_size(segment_list
.size() * phdr_size
);
257 Output_segment_headers::do_write(Output_file
* of
)
259 switch (parameters
->size_and_endianness())
261 #ifdef HAVE_TARGET_32_LITTLE
262 case Parameters::TARGET_32_LITTLE
:
263 this->do_sized_write
<32, false>(of
);
266 #ifdef HAVE_TARGET_32_BIG
267 case Parameters::TARGET_32_BIG
:
268 this->do_sized_write
<32, true>(of
);
271 #ifdef HAVE_TARGET_64_LITTLE
272 case Parameters::TARGET_64_LITTLE
:
273 this->do_sized_write
<64, false>(of
);
276 #ifdef HAVE_TARGET_64_BIG
277 case Parameters::TARGET_64_BIG
:
278 this->do_sized_write
<64, true>(of
);
286 template<int size
, bool big_endian
>
288 Output_segment_headers::do_sized_write(Output_file
* of
)
290 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
291 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
292 gold_assert(all_phdrs_size
== this->data_size());
293 unsigned char* view
= of
->get_output_view(this->offset(),
295 unsigned char* v
= view
;
296 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
297 p
!= this->segment_list_
.end();
300 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
301 (*p
)->write_header(&ophdr
);
305 gold_assert(v
- view
== all_phdrs_size
);
307 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
310 // Output_file_header methods.
312 Output_file_header::Output_file_header(const Target
* target
,
313 const Symbol_table
* symtab
,
314 const Output_segment_headers
* osh
,
318 segment_header_(osh
),
319 section_header_(NULL
),
323 const int size
= parameters
->target().get_size();
326 ehdr_size
= elfcpp::Elf_sizes
<32>::ehdr_size
;
328 ehdr_size
= elfcpp::Elf_sizes
<64>::ehdr_size
;
332 this->set_data_size(ehdr_size
);
335 // Set the section table information for a file header.
338 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
339 const Output_section
* shstrtab
)
341 this->section_header_
= shdrs
;
342 this->shstrtab_
= shstrtab
;
345 // Write out the file header.
348 Output_file_header::do_write(Output_file
* of
)
350 gold_assert(this->offset() == 0);
352 switch (parameters
->size_and_endianness())
354 #ifdef HAVE_TARGET_32_LITTLE
355 case Parameters::TARGET_32_LITTLE
:
356 this->do_sized_write
<32, false>(of
);
359 #ifdef HAVE_TARGET_32_BIG
360 case Parameters::TARGET_32_BIG
:
361 this->do_sized_write
<32, true>(of
);
364 #ifdef HAVE_TARGET_64_LITTLE
365 case Parameters::TARGET_64_LITTLE
:
366 this->do_sized_write
<64, false>(of
);
369 #ifdef HAVE_TARGET_64_BIG
370 case Parameters::TARGET_64_BIG
:
371 this->do_sized_write
<64, true>(of
);
379 // Write out the file header with appropriate size and endianess.
381 template<int size
, bool big_endian
>
383 Output_file_header::do_sized_write(Output_file
* of
)
385 gold_assert(this->offset() == 0);
387 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
388 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
389 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
391 unsigned char e_ident
[elfcpp::EI_NIDENT
];
392 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
393 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
394 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
395 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
396 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
398 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
400 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
403 e_ident
[elfcpp::EI_DATA
] = (big_endian
404 ? elfcpp::ELFDATA2MSB
405 : elfcpp::ELFDATA2LSB
);
406 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
407 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
408 oehdr
.put_e_ident(e_ident
);
411 if (parameters
->options().relocatable())
412 e_type
= elfcpp::ET_REL
;
413 else if (parameters
->options().shared())
414 e_type
= elfcpp::ET_DYN
;
416 e_type
= elfcpp::ET_EXEC
;
417 oehdr
.put_e_type(e_type
);
419 oehdr
.put_e_machine(this->target_
->machine_code());
420 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
422 oehdr
.put_e_entry(this->entry
<size
>());
424 if (this->segment_header_
== NULL
)
425 oehdr
.put_e_phoff(0);
427 oehdr
.put_e_phoff(this->segment_header_
->offset());
429 oehdr
.put_e_shoff(this->section_header_
->offset());
431 // FIXME: The target needs to set the flags.
432 oehdr
.put_e_flags(0);
434 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
436 if (this->segment_header_
== NULL
)
438 oehdr
.put_e_phentsize(0);
439 oehdr
.put_e_phnum(0);
443 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
444 oehdr
.put_e_phnum(this->segment_header_
->data_size()
445 / elfcpp::Elf_sizes
<size
>::phdr_size
);
448 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
449 oehdr
.put_e_shnum(this->section_header_
->data_size()
450 / elfcpp::Elf_sizes
<size
>::shdr_size
);
451 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
453 of
->write_output_view(0, ehdr_size
, view
);
456 // Return the value to use for the entry address. THIS->ENTRY_ is the
457 // symbol specified on the command line, if any.
460 typename
elfcpp::Elf_types
<size
>::Elf_Addr
461 Output_file_header::entry()
463 const bool should_issue_warning
= (this->entry_
!= NULL
464 && !parameters
->options().relocatable()
465 && !parameters
->options().shared());
467 // FIXME: Need to support target specific entry symbol.
468 const char* entry
= this->entry_
;
472 Symbol
* sym
= this->symtab_
->lookup(entry
);
474 typename Sized_symbol
<size
>::Value_type v
;
477 Sized_symbol
<size
>* ssym
;
478 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
479 if (!ssym
->is_defined() && should_issue_warning
)
480 gold_warning("entry symbol '%s' exists but is not defined", entry
);
485 // We couldn't find the entry symbol. See if we can parse it as
486 // a number. This supports, e.g., -e 0x1000.
488 v
= strtoull(entry
, &endptr
, 0);
491 if (should_issue_warning
)
492 gold_warning("cannot find entry symbol '%s'", entry
);
500 // Output_data_const methods.
503 Output_data_const::do_write(Output_file
* of
)
505 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
508 // Output_data_const_buffer methods.
511 Output_data_const_buffer::do_write(Output_file
* of
)
513 of
->write(this->offset(), this->p_
, this->data_size());
516 // Output_section_data methods.
518 // Record the output section, and set the entry size and such.
521 Output_section_data::set_output_section(Output_section
* os
)
523 gold_assert(this->output_section_
== NULL
);
524 this->output_section_
= os
;
525 this->do_adjust_output_section(os
);
528 // Return the section index of the output section.
531 Output_section_data::do_out_shndx() const
533 gold_assert(this->output_section_
!= NULL
);
534 return this->output_section_
->out_shndx();
537 // Output_data_strtab methods.
539 // Set the final data size.
542 Output_data_strtab::set_final_data_size()
544 this->strtab_
->set_string_offsets();
545 this->set_data_size(this->strtab_
->get_strtab_size());
548 // Write out a string table.
551 Output_data_strtab::do_write(Output_file
* of
)
553 this->strtab_
->write(of
, this->offset());
556 // Output_reloc methods.
558 // A reloc against a global symbol.
560 template<bool dynamic
, int size
, bool big_endian
>
561 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
567 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
568 is_relative_(is_relative
), is_section_symbol_(false), shndx_(INVALID_CODE
)
570 // this->type_ is a bitfield; make sure TYPE fits.
571 gold_assert(this->type_
== type
);
572 this->u1_
.gsym
= gsym
;
575 this->set_needs_dynsym_index();
578 template<bool dynamic
, int size
, bool big_endian
>
579 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
586 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
587 is_relative_(is_relative
), is_section_symbol_(false), shndx_(shndx
)
589 gold_assert(shndx
!= INVALID_CODE
);
590 // this->type_ is a bitfield; make sure TYPE fits.
591 gold_assert(this->type_
== type
);
592 this->u1_
.gsym
= gsym
;
593 this->u2_
.relobj
= relobj
;
595 this->set_needs_dynsym_index();
598 // A reloc against a local symbol.
600 template<bool dynamic
, int size
, bool big_endian
>
601 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
602 Sized_relobj
<size
, big_endian
>* relobj
,
603 unsigned int local_sym_index
,
608 bool is_section_symbol
)
609 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
610 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
613 gold_assert(local_sym_index
!= GSYM_CODE
614 && local_sym_index
!= INVALID_CODE
);
615 // this->type_ is a bitfield; make sure TYPE fits.
616 gold_assert(this->type_
== type
);
617 this->u1_
.relobj
= relobj
;
620 this->set_needs_dynsym_index();
623 template<bool dynamic
, int size
, bool big_endian
>
624 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
625 Sized_relobj
<size
, big_endian
>* relobj
,
626 unsigned int local_sym_index
,
631 bool is_section_symbol
)
632 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
633 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
636 gold_assert(local_sym_index
!= GSYM_CODE
637 && local_sym_index
!= INVALID_CODE
);
638 gold_assert(shndx
!= INVALID_CODE
);
639 // this->type_ is a bitfield; make sure TYPE fits.
640 gold_assert(this->type_
== type
);
641 this->u1_
.relobj
= relobj
;
642 this->u2_
.relobj
= relobj
;
644 this->set_needs_dynsym_index();
647 // A reloc against the STT_SECTION symbol of an output section.
649 template<bool dynamic
, int size
, bool big_endian
>
650 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
655 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
656 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE
)
658 // this->type_ is a bitfield; make sure TYPE fits.
659 gold_assert(this->type_
== type
);
663 this->set_needs_dynsym_index();
665 os
->set_needs_symtab_index();
668 template<bool dynamic
, int size
, bool big_endian
>
669 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
675 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
676 is_relative_(false), is_section_symbol_(true), shndx_(shndx
)
678 gold_assert(shndx
!= INVALID_CODE
);
679 // this->type_ is a bitfield; make sure TYPE fits.
680 gold_assert(this->type_
== type
);
682 this->u2_
.relobj
= relobj
;
684 this->set_needs_dynsym_index();
686 os
->set_needs_symtab_index();
689 // Record that we need a dynamic symbol index for this relocation.
691 template<bool dynamic
, int size
, bool big_endian
>
693 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
694 set_needs_dynsym_index()
696 if (this->is_relative_
)
698 switch (this->local_sym_index_
)
704 this->u1_
.gsym
->set_needs_dynsym_entry();
708 this->u1_
.os
->set_needs_dynsym_index();
716 const unsigned int lsi
= this->local_sym_index_
;
717 if (!this->is_section_symbol_
)
718 this->u1_
.relobj
->set_needs_output_dynsym_entry(lsi
);
721 section_offset_type dummy
;
722 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &dummy
);
723 gold_assert(os
!= NULL
);
724 os
->set_needs_dynsym_index();
731 // Get the symbol index of a relocation.
733 template<bool dynamic
, int size
, bool big_endian
>
735 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
739 switch (this->local_sym_index_
)
745 if (this->u1_
.gsym
== NULL
)
748 index
= this->u1_
.gsym
->dynsym_index();
750 index
= this->u1_
.gsym
->symtab_index();
755 index
= this->u1_
.os
->dynsym_index();
757 index
= this->u1_
.os
->symtab_index();
761 // Relocations without symbols use a symbol index of 0.
767 const unsigned int lsi
= this->local_sym_index_
;
768 if (!this->is_section_symbol_
)
771 index
= this->u1_
.relobj
->dynsym_index(lsi
);
773 index
= this->u1_
.relobj
->symtab_index(lsi
);
777 section_offset_type dummy
;
778 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &dummy
);
779 gold_assert(os
!= NULL
);
781 index
= os
->dynsym_index();
783 index
= os
->symtab_index();
788 gold_assert(index
!= -1U);
792 // For a local section symbol, get the section offset of the input
793 // section within the output section.
795 template<bool dynamic
, int size
, bool big_endian
>
797 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
798 local_section_offset() const
800 const unsigned int lsi
= this->local_sym_index_
;
801 section_offset_type offset
;
802 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &offset
);
803 gold_assert(os
!= NULL
);
807 // Write out the offset and info fields of a Rel or Rela relocation
810 template<bool dynamic
, int size
, bool big_endian
>
811 template<typename Write_rel
>
813 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
816 Address address
= this->address_
;
817 if (this->shndx_
!= INVALID_CODE
)
819 section_offset_type off
;
820 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
,
822 gold_assert(os
!= NULL
);
824 address
+= os
->address() + off
;
827 address
= os
->output_address(this->u2_
.relobj
, this->shndx_
,
829 gold_assert(address
!= -1U);
832 else if (this->u2_
.od
!= NULL
)
833 address
+= this->u2_
.od
->address();
834 wr
->put_r_offset(address
);
835 unsigned int sym_index
= this->is_relative_
? 0 : this->get_symbol_index();
836 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
839 // Write out a Rel relocation.
841 template<bool dynamic
, int size
, bool big_endian
>
843 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
844 unsigned char* pov
) const
846 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
847 this->write_rel(&orel
);
850 // Get the value of the symbol referred to by a Rel relocation.
852 template<bool dynamic
, int size
, bool big_endian
>
853 typename
elfcpp::Elf_types
<size
>::Elf_Addr
854 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value() const
856 if (this->local_sym_index_
== GSYM_CODE
)
858 const Sized_symbol
<size
>* sym
;
859 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
862 gold_assert(this->local_sym_index_
!= SECTION_CODE
863 && this->local_sym_index_
!= INVALID_CODE
);
864 const Sized_relobj
<size
, big_endian
>* relobj
= this->u1_
.relobj
;
865 return relobj
->local_symbol_value(this->local_sym_index_
);
868 // Write out a Rela relocation.
870 template<bool dynamic
, int size
, bool big_endian
>
872 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
873 unsigned char* pov
) const
875 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
876 this->rel_
.write_rel(&orel
);
877 Addend addend
= this->addend_
;
878 if (this->rel_
.is_relative())
879 addend
+= this->rel_
.symbol_value();
880 if (this->rel_
.is_local_section_symbol())
881 addend
+= this->rel_
.local_section_offset();
882 orel
.put_r_addend(addend
);
885 // Output_data_reloc_base methods.
887 // Adjust the output section.
889 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
891 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
892 ::do_adjust_output_section(Output_section
* os
)
894 if (sh_type
== elfcpp::SHT_REL
)
895 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
896 else if (sh_type
== elfcpp::SHT_RELA
)
897 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
901 os
->set_should_link_to_dynsym();
903 os
->set_should_link_to_symtab();
906 // Write out relocation data.
908 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
910 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
913 const off_t off
= this->offset();
914 const off_t oview_size
= this->data_size();
915 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
917 unsigned char* pov
= oview
;
918 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
919 p
!= this->relocs_
.end();
926 gold_assert(pov
- oview
== oview_size
);
928 of
->write_output_view(off
, oview_size
, oview
);
930 // We no longer need the relocation entries.
931 this->relocs_
.clear();
934 // Class Output_relocatable_relocs.
936 template<int sh_type
, int size
, bool big_endian
>
938 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
940 this->set_data_size(this->rr_
->output_reloc_count()
941 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
944 // class Output_data_group.
946 template<int size
, bool big_endian
>
947 Output_data_group
<size
, big_endian
>::Output_data_group(
948 Sized_relobj
<size
, big_endian
>* relobj
,
949 section_size_type entry_count
,
950 const elfcpp::Elf_Word
* contents
)
951 : Output_section_data(entry_count
* 4, 4),
954 this->flags_
= elfcpp::Swap
<32, big_endian
>::readval(contents
);
955 for (section_size_type i
= 1; i
< entry_count
; ++i
)
957 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
958 this->input_sections_
.push_back(shndx
);
962 // Write out the section group, which means translating the section
963 // indexes to apply to the output file.
965 template<int size
, bool big_endian
>
967 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
969 const off_t off
= this->offset();
970 const section_size_type oview_size
=
971 convert_to_section_size_type(this->data_size());
972 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
974 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
975 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
978 for (std::vector
<unsigned int>::const_iterator p
=
979 this->input_sections_
.begin();
980 p
!= this->input_sections_
.end();
983 section_offset_type dummy
;
984 Output_section
* os
= this->relobj_
->output_section(*p
, &dummy
);
986 unsigned int output_shndx
;
988 output_shndx
= os
->out_shndx();
991 this->relobj_
->error(_("section group retained but "
992 "group element discarded"));
996 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
999 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1000 gold_assert(wrote
== oview_size
);
1002 of
->write_output_view(off
, oview_size
, oview
);
1004 // We no longer need this information.
1005 this->input_sections_
.clear();
1008 // Output_data_got::Got_entry methods.
1010 // Write out the entry.
1012 template<int size
, bool big_endian
>
1014 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1018 switch (this->local_sym_index_
)
1022 // If the symbol is resolved locally, we need to write out the
1023 // link-time value, which will be relocated dynamically by a
1024 // RELATIVE relocation.
1025 Symbol
* gsym
= this->u_
.gsym
;
1026 Sized_symbol
<size
>* sgsym
;
1027 // This cast is a bit ugly. We don't want to put a
1028 // virtual method in Symbol, because we want Symbol to be
1029 // as small as possible.
1030 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1031 val
= sgsym
->value();
1036 val
= this->u_
.constant
;
1040 val
= this->u_
.object
->local_symbol_value(this->local_sym_index_
);
1044 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1047 // Output_data_got methods.
1049 // Add an entry for a global symbol to the GOT. This returns true if
1050 // this is a new GOT entry, false if the symbol already had a GOT
1053 template<int size
, bool big_endian
>
1055 Output_data_got
<size
, big_endian
>::add_global(Symbol
* gsym
)
1057 if (gsym
->has_got_offset())
1060 this->entries_
.push_back(Got_entry(gsym
));
1061 this->set_got_size();
1062 gsym
->set_got_offset(this->last_got_offset());
1066 // Add an entry for a global symbol to the GOT, and add a dynamic
1067 // relocation of type R_TYPE for the GOT entry.
1068 template<int size
, bool big_endian
>
1070 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1073 unsigned int r_type
)
1075 if (gsym
->has_got_offset())
1078 this->entries_
.push_back(Got_entry());
1079 this->set_got_size();
1080 unsigned int got_offset
= this->last_got_offset();
1081 gsym
->set_got_offset(got_offset
);
1082 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1085 template<int size
, bool big_endian
>
1087 Output_data_got
<size
, big_endian
>::add_global_with_rela(
1090 unsigned int r_type
)
1092 if (gsym
->has_got_offset())
1095 this->entries_
.push_back(Got_entry());
1096 this->set_got_size();
1097 unsigned int got_offset
= this->last_got_offset();
1098 gsym
->set_got_offset(got_offset
);
1099 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1102 // Add an entry for a local symbol to the GOT. This returns true if
1103 // this is a new GOT entry, false if the symbol already has a GOT
1106 template<int size
, bool big_endian
>
1108 Output_data_got
<size
, big_endian
>::add_local(
1109 Sized_relobj
<size
, big_endian
>* object
,
1110 unsigned int symndx
)
1112 if (object
->local_has_got_offset(symndx
))
1115 this->entries_
.push_back(Got_entry(object
, symndx
));
1116 this->set_got_size();
1117 object
->set_local_got_offset(symndx
, this->last_got_offset());
1121 // Add an entry for a local symbol to the GOT, and add a dynamic
1122 // relocation of type R_TYPE for the GOT entry.
1123 template<int size
, bool big_endian
>
1125 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1126 Sized_relobj
<size
, big_endian
>* object
,
1127 unsigned int symndx
,
1129 unsigned int r_type
)
1131 if (object
->local_has_got_offset(symndx
))
1134 this->entries_
.push_back(Got_entry());
1135 this->set_got_size();
1136 unsigned int got_offset
= this->last_got_offset();
1137 object
->set_local_got_offset(symndx
, got_offset
);
1138 rel_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
);
1141 template<int size
, bool big_endian
>
1143 Output_data_got
<size
, big_endian
>::add_local_with_rela(
1144 Sized_relobj
<size
, big_endian
>* object
,
1145 unsigned int symndx
,
1147 unsigned int r_type
)
1149 if (object
->local_has_got_offset(symndx
))
1152 this->entries_
.push_back(Got_entry());
1153 this->set_got_size();
1154 unsigned int got_offset
= this->last_got_offset();
1155 object
->set_local_got_offset(symndx
, got_offset
);
1156 rela_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
, 0);
1159 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
1160 // In a pair of entries, the first value in the pair will be used for the
1161 // module index, and the second value will be used for the dtv-relative
1162 // offset. This returns true if this is a new GOT entry, false if the symbol
1163 // already has a GOT entry.
1165 template<int size
, bool big_endian
>
1167 Output_data_got
<size
, big_endian
>::add_global_tls(Symbol
* gsym
, bool need_pair
)
1169 if (gsym
->has_tls_got_offset(need_pair
))
1172 this->entries_
.push_back(Got_entry(gsym
));
1173 gsym
->set_tls_got_offset(this->last_got_offset(), need_pair
);
1175 this->entries_
.push_back(Got_entry(gsym
));
1176 this->set_got_size();
1180 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
1181 // relocation of type R_TYPE.
1182 template<int size
, bool big_endian
>
1184 Output_data_got
<size
, big_endian
>::add_global_tls_with_rel(
1187 unsigned int r_type
)
1189 if (gsym
->has_tls_got_offset(false))
1192 this->entries_
.push_back(Got_entry());
1193 this->set_got_size();
1194 unsigned int got_offset
= this->last_got_offset();
1195 gsym
->set_tls_got_offset(got_offset
, false);
1196 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1199 template<int size
, bool big_endian
>
1201 Output_data_got
<size
, big_endian
>::add_global_tls_with_rela(
1204 unsigned int r_type
)
1206 if (gsym
->has_tls_got_offset(false))
1209 this->entries_
.push_back(Got_entry());
1210 this->set_got_size();
1211 unsigned int got_offset
= this->last_got_offset();
1212 gsym
->set_tls_got_offset(got_offset
, false);
1213 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1216 // Add a pair of entries for a global TLS symbol to the GOT, and add
1217 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
1218 template<int size
, bool big_endian
>
1220 Output_data_got
<size
, big_endian
>::add_global_tls_with_rel(
1223 unsigned int mod_r_type
,
1224 unsigned int dtv_r_type
)
1226 if (gsym
->has_tls_got_offset(true))
1229 this->entries_
.push_back(Got_entry());
1230 unsigned int got_offset
= this->last_got_offset();
1231 gsym
->set_tls_got_offset(got_offset
, true);
1232 rel_dyn
->add_global(gsym
, mod_r_type
, this, got_offset
);
1234 this->entries_
.push_back(Got_entry());
1235 this->set_got_size();
1236 got_offset
= this->last_got_offset();
1237 rel_dyn
->add_global(gsym
, dtv_r_type
, this, got_offset
);
1240 template<int size
, bool big_endian
>
1242 Output_data_got
<size
, big_endian
>::add_global_tls_with_rela(
1245 unsigned int mod_r_type
,
1246 unsigned int dtv_r_type
)
1248 if (gsym
->has_tls_got_offset(true))
1251 this->entries_
.push_back(Got_entry());
1252 unsigned int got_offset
= this->last_got_offset();
1253 gsym
->set_tls_got_offset(got_offset
, true);
1254 rela_dyn
->add_global(gsym
, mod_r_type
, this, got_offset
, 0);
1256 this->entries_
.push_back(Got_entry());
1257 this->set_got_size();
1258 got_offset
= this->last_got_offset();
1259 rela_dyn
->add_global(gsym
, dtv_r_type
, this, got_offset
, 0);
1262 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1263 // In a pair of entries, the first value in the pair will be used for the
1264 // module index, and the second value will be used for the dtv-relative
1265 // offset. This returns true if this is a new GOT entry, false if the symbol
1266 // already has a GOT entry.
1268 template<int size
, bool big_endian
>
1270 Output_data_got
<size
, big_endian
>::add_local_tls(
1271 Sized_relobj
<size
, big_endian
>* object
,
1272 unsigned int symndx
,
1275 if (object
->local_has_tls_got_offset(symndx
, need_pair
))
1278 this->entries_
.push_back(Got_entry(object
, symndx
));
1279 object
->set_local_tls_got_offset(symndx
, this->last_got_offset(), need_pair
);
1281 this->entries_
.push_back(Got_entry(object
, symndx
));
1282 this->set_got_size();
1286 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1287 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1288 // Because this is a local symbol, the first GOT entry can be relocated
1289 // relative to a section symbol, and the second GOT entry will have an
1290 // dtv-relative value that can be computed at link time.
1291 template<int size
, bool big_endian
>
1293 Output_data_got
<size
, big_endian
>::add_local_tls_with_rel(
1294 Sized_relobj
<size
, big_endian
>* object
,
1295 unsigned int symndx
,
1299 unsigned int r_type
)
1301 if (object
->local_has_tls_got_offset(symndx
, need_pair
))
1304 this->entries_
.push_back(Got_entry());
1305 unsigned int got_offset
= this->last_got_offset();
1306 object
->set_local_tls_got_offset(symndx
, got_offset
, need_pair
);
1307 section_offset_type off
;
1308 Output_section
* os
= object
->output_section(shndx
, &off
);
1309 rel_dyn
->add_output_section(os
, r_type
, this, got_offset
);
1311 // The second entry of the pair will be statically initialized
1312 // with the TLS offset of the symbol.
1314 this->entries_
.push_back(Got_entry(object
, symndx
));
1316 this->set_got_size();
1319 template<int size
, bool big_endian
>
1321 Output_data_got
<size
, big_endian
>::add_local_tls_with_rela(
1322 Sized_relobj
<size
, big_endian
>* object
,
1323 unsigned int symndx
,
1327 unsigned int r_type
)
1329 if (object
->local_has_tls_got_offset(symndx
, need_pair
))
1332 this->entries_
.push_back(Got_entry());
1333 unsigned int got_offset
= this->last_got_offset();
1334 object
->set_local_tls_got_offset(symndx
, got_offset
, need_pair
);
1335 section_offset_type off
;
1336 Output_section
* os
= object
->output_section(shndx
, &off
);
1337 rela_dyn
->add_output_section(os
, r_type
, this, got_offset
, 0);
1339 // The second entry of the pair will be statically initialized
1340 // with the TLS offset of the symbol.
1342 this->entries_
.push_back(Got_entry(object
, symndx
));
1344 this->set_got_size();
1347 // Write out the GOT.
1349 template<int size
, bool big_endian
>
1351 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1353 const int add
= size
/ 8;
1355 const off_t off
= this->offset();
1356 const off_t oview_size
= this->data_size();
1357 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1359 unsigned char* pov
= oview
;
1360 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1361 p
!= this->entries_
.end();
1368 gold_assert(pov
- oview
== oview_size
);
1370 of
->write_output_view(off
, oview_size
, oview
);
1372 // We no longer need the GOT entries.
1373 this->entries_
.clear();
1376 // Output_data_dynamic::Dynamic_entry methods.
1378 // Write out the entry.
1380 template<int size
, bool big_endian
>
1382 Output_data_dynamic::Dynamic_entry::write(
1384 const Stringpool
* pool
) const
1386 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1387 switch (this->classification_
)
1389 case DYNAMIC_NUMBER
:
1393 case DYNAMIC_SECTION_ADDRESS
:
1394 val
= this->u_
.od
->address();
1397 case DYNAMIC_SECTION_SIZE
:
1398 val
= this->u_
.od
->data_size();
1401 case DYNAMIC_SYMBOL
:
1403 const Sized_symbol
<size
>* s
=
1404 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1409 case DYNAMIC_STRING
:
1410 val
= pool
->get_offset(this->u_
.str
);
1417 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1418 dw
.put_d_tag(this->tag_
);
1422 // Output_data_dynamic methods.
1424 // Adjust the output section to set the entry size.
1427 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1429 if (parameters
->target().get_size() == 32)
1430 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1431 else if (parameters
->target().get_size() == 64)
1432 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1437 // Set the final data size.
1440 Output_data_dynamic::set_final_data_size()
1442 // Add the terminating entry.
1443 this->add_constant(elfcpp::DT_NULL
, 0);
1446 if (parameters
->target().get_size() == 32)
1447 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1448 else if (parameters
->target().get_size() == 64)
1449 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1452 this->set_data_size(this->entries_
.size() * dyn_size
);
1455 // Write out the dynamic entries.
1458 Output_data_dynamic::do_write(Output_file
* of
)
1460 switch (parameters
->size_and_endianness())
1462 #ifdef HAVE_TARGET_32_LITTLE
1463 case Parameters::TARGET_32_LITTLE
:
1464 this->sized_write
<32, false>(of
);
1467 #ifdef HAVE_TARGET_32_BIG
1468 case Parameters::TARGET_32_BIG
:
1469 this->sized_write
<32, true>(of
);
1472 #ifdef HAVE_TARGET_64_LITTLE
1473 case Parameters::TARGET_64_LITTLE
:
1474 this->sized_write
<64, false>(of
);
1477 #ifdef HAVE_TARGET_64_BIG
1478 case Parameters::TARGET_64_BIG
:
1479 this->sized_write
<64, true>(of
);
1487 template<int size
, bool big_endian
>
1489 Output_data_dynamic::sized_write(Output_file
* of
)
1491 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1493 const off_t offset
= this->offset();
1494 const off_t oview_size
= this->data_size();
1495 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1497 unsigned char* pov
= oview
;
1498 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1499 p
!= this->entries_
.end();
1502 p
->write
<size
, big_endian
>(pov
, this->pool_
);
1506 gold_assert(pov
- oview
== oview_size
);
1508 of
->write_output_view(offset
, oview_size
, oview
);
1510 // We no longer need the dynamic entries.
1511 this->entries_
.clear();
1514 // Output_section::Input_section methods.
1516 // Return the data size. For an input section we store the size here.
1517 // For an Output_section_data, we have to ask it for the size.
1520 Output_section::Input_section::data_size() const
1522 if (this->is_input_section())
1523 return this->u1_
.data_size
;
1525 return this->u2_
.posd
->data_size();
1528 // Set the address and file offset.
1531 Output_section::Input_section::set_address_and_file_offset(
1534 off_t section_file_offset
)
1536 if (this->is_input_section())
1537 this->u2_
.object
->set_section_offset(this->shndx_
,
1538 file_offset
- section_file_offset
);
1540 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
1543 // Reset the address and file offset.
1546 Output_section::Input_section::reset_address_and_file_offset()
1548 if (!this->is_input_section())
1549 this->u2_
.posd
->reset_address_and_file_offset();
1552 // Finalize the data size.
1555 Output_section::Input_section::finalize_data_size()
1557 if (!this->is_input_section())
1558 this->u2_
.posd
->finalize_data_size();
1561 // Try to turn an input offset into an output offset. We want to
1562 // return the output offset relative to the start of this
1563 // Input_section in the output section.
1566 Output_section::Input_section::output_offset(
1567 const Relobj
* object
,
1569 section_offset_type offset
,
1570 section_offset_type
*poutput
) const
1572 if (!this->is_input_section())
1573 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
1576 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
1583 // Return whether this is the merge section for the input section
1587 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
1588 unsigned int shndx
) const
1590 if (this->is_input_section())
1592 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
1595 // Write out the data. We don't have to do anything for an input
1596 // section--they are handled via Object::relocate--but this is where
1597 // we write out the data for an Output_section_data.
1600 Output_section::Input_section::write(Output_file
* of
)
1602 if (!this->is_input_section())
1603 this->u2_
.posd
->write(of
);
1606 // Write the data to a buffer. As for write(), we don't have to do
1607 // anything for an input section.
1610 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
1612 if (!this->is_input_section())
1613 this->u2_
.posd
->write_to_buffer(buffer
);
1616 // Output_section methods.
1618 // Construct an Output_section. NAME will point into a Stringpool.
1620 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
1621 elfcpp::Elf_Xword flags
)
1626 link_section_(NULL
),
1628 info_section_(NULL
),
1637 first_input_offset_(0),
1639 postprocessing_buffer_(NULL
),
1640 needs_symtab_index_(false),
1641 needs_dynsym_index_(false),
1642 should_link_to_symtab_(false),
1643 should_link_to_dynsym_(false),
1644 after_input_sections_(false),
1645 requires_postprocessing_(false),
1646 found_in_sections_clause_(false),
1647 has_load_address_(false),
1648 info_uses_section_index_(false),
1651 // An unallocated section has no address. Forcing this means that
1652 // we don't need special treatment for symbols defined in debug
1654 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
1655 this->set_address(0);
1658 Output_section::~Output_section()
1662 // Set the entry size.
1665 Output_section::set_entsize(uint64_t v
)
1667 if (this->entsize_
== 0)
1670 gold_assert(this->entsize_
== v
);
1673 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1674 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1675 // relocation section which applies to this section, or 0 if none, or
1676 // -1U if more than one. Return the offset of the input section
1677 // within the output section. Return -1 if the input section will
1678 // receive special handling. In the normal case we don't always keep
1679 // track of input sections for an Output_section. Instead, each
1680 // Object keeps track of the Output_section for each of its input
1681 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1682 // track of input sections here; this is used when SECTIONS appears in
1685 template<int size
, bool big_endian
>
1687 Output_section::add_input_section(Sized_relobj
<size
, big_endian
>* object
,
1689 const char* secname
,
1690 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1691 unsigned int reloc_shndx
,
1692 bool have_sections_script
)
1694 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
1695 if ((addralign
& (addralign
- 1)) != 0)
1697 object
->error(_("invalid alignment %lu for section \"%s\""),
1698 static_cast<unsigned long>(addralign
), secname
);
1702 if (addralign
> this->addralign_
)
1703 this->addralign_
= addralign
;
1705 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
1706 this->flags_
|= (sh_flags
1707 & (elfcpp::SHF_WRITE
1709 | elfcpp::SHF_EXECINSTR
));
1711 uint64_t entsize
= shdr
.get_sh_entsize();
1713 // .debug_str is a mergeable string section, but is not always so
1714 // marked by compilers. Mark manually here so we can optimize.
1715 if (strcmp(secname
, ".debug_str") == 0)
1717 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
1721 // If this is a SHF_MERGE section, we pass all the input sections to
1722 // a Output_data_merge. We don't try to handle relocations for such
1724 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
1725 && reloc_shndx
== 0)
1727 if (this->add_merge_input_section(object
, shndx
, sh_flags
,
1728 entsize
, addralign
))
1730 // Tell the relocation routines that they need to call the
1731 // output_offset method to determine the final address.
1736 off_t offset_in_section
= this->current_data_size_for_child();
1737 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1740 if (aligned_offset_in_section
> offset_in_section
1741 && !have_sections_script
1742 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
1743 && object
->target()->has_code_fill())
1745 // We need to add some fill data. Using fill_list_ when
1746 // possible is an optimization, since we will often have fill
1747 // sections without input sections.
1748 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
1749 if (this->input_sections_
.empty())
1750 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
1753 // FIXME: When relaxing, the size needs to adjust to
1754 // maintain a constant alignment.
1755 std::string
fill_data(object
->target()->code_fill(fill_len
));
1756 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
1757 this->input_sections_
.push_back(Input_section(odc
));
1761 this->set_current_data_size_for_child(aligned_offset_in_section
1762 + shdr
.get_sh_size());
1764 // We need to keep track of this section if we are already keeping
1765 // track of sections, or if we are relaxing. FIXME: Add test for
1767 if (have_sections_script
|| !this->input_sections_
.empty())
1768 this->input_sections_
.push_back(Input_section(object
, shndx
,
1772 return aligned_offset_in_section
;
1775 // Add arbitrary data to an output section.
1778 Output_section::add_output_section_data(Output_section_data
* posd
)
1780 Input_section
inp(posd
);
1781 this->add_output_section_data(&inp
);
1783 if (posd
->is_data_size_valid())
1785 off_t offset_in_section
= this->current_data_size_for_child();
1786 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1788 this->set_current_data_size_for_child(aligned_offset_in_section
1789 + posd
->data_size());
1793 // Add arbitrary data to an output section by Input_section.
1796 Output_section::add_output_section_data(Input_section
* inp
)
1798 if (this->input_sections_
.empty())
1799 this->first_input_offset_
= this->current_data_size_for_child();
1801 this->input_sections_
.push_back(*inp
);
1803 uint64_t addralign
= inp
->addralign();
1804 if (addralign
> this->addralign_
)
1805 this->addralign_
= addralign
;
1807 inp
->set_output_section(this);
1810 // Add a merge section to an output section.
1813 Output_section::add_output_merge_section(Output_section_data
* posd
,
1814 bool is_string
, uint64_t entsize
)
1816 Input_section
inp(posd
, is_string
, entsize
);
1817 this->add_output_section_data(&inp
);
1820 // Add an input section to a SHF_MERGE section.
1823 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
1824 uint64_t flags
, uint64_t entsize
,
1827 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
1829 // We only merge strings if the alignment is not more than the
1830 // character size. This could be handled, but it's unusual.
1831 if (is_string
&& addralign
> entsize
)
1834 Input_section_list::iterator p
;
1835 for (p
= this->input_sections_
.begin();
1836 p
!= this->input_sections_
.end();
1838 if (p
->is_merge_section(is_string
, entsize
, addralign
))
1840 p
->add_input_section(object
, shndx
);
1844 // We handle the actual constant merging in Output_merge_data or
1845 // Output_merge_string_data.
1846 Output_section_data
* posd
;
1848 posd
= new Output_merge_data(entsize
, addralign
);
1854 posd
= new Output_merge_string
<char>(addralign
);
1857 posd
= new Output_merge_string
<uint16_t>(addralign
);
1860 posd
= new Output_merge_string
<uint32_t>(addralign
);
1867 this->add_output_merge_section(posd
, is_string
, entsize
);
1868 posd
->add_input_section(object
, shndx
);
1873 // Given an address OFFSET relative to the start of input section
1874 // SHNDX in OBJECT, return whether this address is being included in
1875 // the final link. This should only be called if SHNDX in OBJECT has
1876 // a special mapping.
1879 Output_section::is_input_address_mapped(const Relobj
* object
,
1883 gold_assert(object
->is_section_specially_mapped(shndx
));
1885 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
1886 p
!= this->input_sections_
.end();
1889 section_offset_type output_offset
;
1890 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
1891 return output_offset
!= -1;
1894 // By default we assume that the address is mapped. This should
1895 // only be called after we have passed all sections to Layout. At
1896 // that point we should know what we are discarding.
1900 // Given an address OFFSET relative to the start of input section
1901 // SHNDX in object OBJECT, return the output offset relative to the
1902 // start of the input section in the output section. This should only
1903 // be called if SHNDX in OBJECT has a special mapping.
1906 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
1907 section_offset_type offset
) const
1909 gold_assert(object
->is_section_specially_mapped(shndx
));
1910 // This can only be called meaningfully when layout is complete.
1911 gold_assert(Output_data::is_layout_complete());
1913 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
1914 p
!= this->input_sections_
.end();
1917 section_offset_type output_offset
;
1918 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
1919 return output_offset
;
1924 // Return the output virtual address of OFFSET relative to the start
1925 // of input section SHNDX in object OBJECT.
1928 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
1931 gold_assert(object
->is_section_specially_mapped(shndx
));
1933 uint64_t addr
= this->address() + this->first_input_offset_
;
1934 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
1935 p
!= this->input_sections_
.end();
1938 addr
= align_address(addr
, p
->addralign());
1939 section_offset_type output_offset
;
1940 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
1942 if (output_offset
== -1)
1944 return addr
+ output_offset
;
1946 addr
+= p
->data_size();
1949 // If we get here, it means that we don't know the mapping for this
1950 // input section. This might happen in principle if
1951 // add_input_section were called before add_output_section_data.
1952 // But it should never actually happen.
1957 // Return the output address of the start of the merged section for
1958 // input section SHNDX in object OBJECT.
1961 Output_section::starting_output_address(const Relobj
* object
,
1962 unsigned int shndx
) const
1964 gold_assert(object
->is_section_specially_mapped(shndx
));
1966 uint64_t addr
= this->address() + this->first_input_offset_
;
1967 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
1968 p
!= this->input_sections_
.end();
1971 addr
= align_address(addr
, p
->addralign());
1973 // It would be nice if we could use the existing output_offset
1974 // method to get the output offset of input offset 0.
1975 // Unfortunately we don't know for sure that input offset 0 is
1977 if (p
->is_merge_section_for(object
, shndx
))
1980 addr
+= p
->data_size();
1985 // Set the data size of an Output_section. This is where we handle
1986 // setting the addresses of any Output_section_data objects.
1989 Output_section::set_final_data_size()
1991 if (this->input_sections_
.empty())
1993 this->set_data_size(this->current_data_size_for_child());
1997 uint64_t address
= this->address();
1998 off_t startoff
= this->offset();
1999 off_t off
= startoff
+ this->first_input_offset_
;
2000 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2001 p
!= this->input_sections_
.end();
2004 off
= align_address(off
, p
->addralign());
2005 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
2007 off
+= p
->data_size();
2010 this->set_data_size(off
- startoff
);
2013 // Reset the address and file offset.
2016 Output_section::do_reset_address_and_file_offset()
2018 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2019 p
!= this->input_sections_
.end();
2021 p
->reset_address_and_file_offset();
2024 // Set the TLS offset. Called only for SHT_TLS sections.
2027 Output_section::do_set_tls_offset(uint64_t tls_base
)
2029 this->tls_offset_
= this->address() - tls_base
;
2032 // Write the section header to *OSHDR.
2034 template<int size
, bool big_endian
>
2036 Output_section::write_header(const Layout
* layout
,
2037 const Stringpool
* secnamepool
,
2038 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
2040 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
2041 oshdr
->put_sh_type(this->type_
);
2043 elfcpp::Elf_Xword flags
= this->flags_
;
2044 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
2045 flags
|= elfcpp::SHF_INFO_LINK
;
2046 oshdr
->put_sh_flags(flags
);
2048 oshdr
->put_sh_addr(this->address());
2049 oshdr
->put_sh_offset(this->offset());
2050 oshdr
->put_sh_size(this->data_size());
2051 if (this->link_section_
!= NULL
)
2052 oshdr
->put_sh_link(this->link_section_
->out_shndx());
2053 else if (this->should_link_to_symtab_
)
2054 oshdr
->put_sh_link(layout
->symtab_section()->out_shndx());
2055 else if (this->should_link_to_dynsym_
)
2056 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
2058 oshdr
->put_sh_link(this->link_
);
2060 elfcpp::Elf_Word info
;
2061 if (this->info_section_
!= NULL
)
2063 if (this->info_uses_section_index_
)
2064 info
= this->info_section_
->out_shndx();
2066 info
= this->info_section_
->symtab_index();
2068 else if (this->info_symndx_
!= NULL
)
2069 info
= this->info_symndx_
->symtab_index();
2072 oshdr
->put_sh_info(info
);
2074 oshdr
->put_sh_addralign(this->addralign_
);
2075 oshdr
->put_sh_entsize(this->entsize_
);
2078 // Write out the data. For input sections the data is written out by
2079 // Object::relocate, but we have to handle Output_section_data objects
2083 Output_section::do_write(Output_file
* of
)
2085 gold_assert(!this->requires_postprocessing());
2087 off_t output_section_file_offset
= this->offset();
2088 for (Fill_list::iterator p
= this->fills_
.begin();
2089 p
!= this->fills_
.end();
2092 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2093 of
->write(output_section_file_offset
+ p
->section_offset(),
2094 fill_data
.data(), fill_data
.size());
2097 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2098 p
!= this->input_sections_
.end();
2103 // If a section requires postprocessing, create the buffer to use.
2106 Output_section::create_postprocessing_buffer()
2108 gold_assert(this->requires_postprocessing());
2110 if (this->postprocessing_buffer_
!= NULL
)
2113 if (!this->input_sections_
.empty())
2115 off_t off
= this->first_input_offset_
;
2116 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2117 p
!= this->input_sections_
.end();
2120 off
= align_address(off
, p
->addralign());
2121 p
->finalize_data_size();
2122 off
+= p
->data_size();
2124 this->set_current_data_size_for_child(off
);
2127 off_t buffer_size
= this->current_data_size_for_child();
2128 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
2131 // Write all the data of an Output_section into the postprocessing
2132 // buffer. This is used for sections which require postprocessing,
2133 // such as compression. Input sections are handled by
2134 // Object::Relocate.
2137 Output_section::write_to_postprocessing_buffer()
2139 gold_assert(this->requires_postprocessing());
2141 unsigned char* buffer
= this->postprocessing_buffer();
2142 for (Fill_list::iterator p
= this->fills_
.begin();
2143 p
!= this->fills_
.end();
2146 std::string
fill_data(parameters
->target().code_fill(p
->length()));
2147 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
2151 off_t off
= this->first_input_offset_
;
2152 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2153 p
!= this->input_sections_
.end();
2156 off
= align_address(off
, p
->addralign());
2157 p
->write_to_buffer(buffer
+ off
);
2158 off
+= p
->data_size();
2162 // Get the input sections for linker script processing. We leave
2163 // behind the Output_section_data entries. Note that this may be
2164 // slightly incorrect for merge sections. We will leave them behind,
2165 // but it is possible that the script says that they should follow
2166 // some other input sections, as in:
2167 // .rodata { *(.rodata) *(.rodata.cst*) }
2168 // For that matter, we don't handle this correctly:
2169 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2170 // With luck this will never matter.
2173 Output_section::get_input_sections(
2175 const std::string
& fill
,
2176 std::list
<std::pair
<Relobj
*, unsigned int> >* input_sections
)
2178 uint64_t orig_address
= address
;
2180 address
= align_address(address
, this->addralign());
2182 Input_section_list remaining
;
2183 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2184 p
!= this->input_sections_
.end();
2187 if (p
->is_input_section())
2188 input_sections
->push_back(std::make_pair(p
->relobj(), p
->shndx()));
2191 uint64_t aligned_address
= align_address(address
, p
->addralign());
2192 if (aligned_address
!= address
&& !fill
.empty())
2194 section_size_type length
=
2195 convert_to_section_size_type(aligned_address
- address
);
2196 std::string this_fill
;
2197 this_fill
.reserve(length
);
2198 while (this_fill
.length() + fill
.length() <= length
)
2200 if (this_fill
.length() < length
)
2201 this_fill
.append(fill
, 0, length
- this_fill
.length());
2203 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
2204 remaining
.push_back(Input_section(posd
));
2206 address
= aligned_address
;
2208 remaining
.push_back(*p
);
2210 p
->finalize_data_size();
2211 address
+= p
->data_size();
2215 this->input_sections_
.swap(remaining
);
2216 this->first_input_offset_
= 0;
2218 uint64_t data_size
= address
- orig_address
;
2219 this->set_current_data_size_for_child(data_size
);
2223 // Add an input section from a script.
2226 Output_section::add_input_section_for_script(Relobj
* object
,
2231 if (addralign
> this->addralign_
)
2232 this->addralign_
= addralign
;
2234 off_t offset_in_section
= this->current_data_size_for_child();
2235 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2238 this->set_current_data_size_for_child(aligned_offset_in_section
2241 this->input_sections_
.push_back(Input_section(object
, shndx
,
2242 data_size
, addralign
));
2245 // Print stats for merge sections to stderr.
2248 Output_section::print_merge_stats()
2250 Input_section_list::iterator p
;
2251 for (p
= this->input_sections_
.begin();
2252 p
!= this->input_sections_
.end();
2254 p
->print_merge_stats(this->name_
);
2257 // Output segment methods.
2259 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2271 is_max_align_known_(false),
2272 are_addresses_set_(false)
2276 // Add an Output_section to an Output_segment.
2279 Output_segment::add_output_section(Output_section
* os
,
2280 elfcpp::Elf_Word seg_flags
,
2283 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
2284 gold_assert(!this->is_max_align_known_
);
2286 // Update the segment flags.
2287 this->flags_
|= seg_flags
;
2289 Output_segment::Output_data_list
* pdl
;
2290 if (os
->type() == elfcpp::SHT_NOBITS
)
2291 pdl
= &this->output_bss_
;
2293 pdl
= &this->output_data_
;
2295 // So that PT_NOTE segments will work correctly, we need to ensure
2296 // that all SHT_NOTE sections are adjacent. This will normally
2297 // happen automatically, because all the SHT_NOTE input sections
2298 // will wind up in the same output section. However, it is possible
2299 // for multiple SHT_NOTE input sections to have different section
2300 // flags, and thus be in different output sections, but for the
2301 // different section flags to map into the same segment flags and
2302 // thus the same output segment.
2304 // Note that while there may be many input sections in an output
2305 // section, there are normally only a few output sections in an
2306 // output segment. This loop is expected to be fast.
2308 if (os
->type() == elfcpp::SHT_NOTE
&& !pdl
->empty())
2310 Output_segment::Output_data_list::iterator p
= pdl
->end();
2314 if ((*p
)->is_section_type(elfcpp::SHT_NOTE
))
2316 // We don't worry about the FRONT parameter.
2322 while (p
!= pdl
->begin());
2325 // Similarly, so that PT_TLS segments will work, we need to group
2326 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2327 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2328 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2329 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2330 // and the PT_TLS segment -- we do this grouping only for the
2332 if (this->type_
!= elfcpp::PT_TLS
2333 && (os
->flags() & elfcpp::SHF_TLS
) != 0
2334 && !this->output_data_
.empty())
2336 pdl
= &this->output_data_
;
2337 bool nobits
= os
->type() == elfcpp::SHT_NOBITS
;
2338 bool sawtls
= false;
2339 Output_segment::Output_data_list::iterator p
= pdl
->end();
2344 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
2347 // Put a NOBITS section after the first TLS section.
2348 // But a PROGBITS section after the first TLS/PROGBITS
2350 insert
= nobits
|| !(*p
)->is_section_type(elfcpp::SHT_NOBITS
);
2354 // If we've gone past the TLS sections, but we've seen a
2355 // TLS section, then we need to insert this section now.
2361 // We don't worry about the FRONT parameter.
2367 while (p
!= pdl
->begin());
2369 // There are no TLS sections yet; put this one at the requested
2370 // location in the section list.
2374 pdl
->push_front(os
);
2379 // Remove an Output_section from this segment. It is an error if it
2383 Output_segment::remove_output_section(Output_section
* os
)
2385 // We only need this for SHT_PROGBITS.
2386 gold_assert(os
->type() == elfcpp::SHT_PROGBITS
);
2387 for (Output_data_list::iterator p
= this->output_data_
.begin();
2388 p
!= this->output_data_
.end();
2393 this->output_data_
.erase(p
);
2400 // Add an Output_data (which is not an Output_section) to the start of
2404 Output_segment::add_initial_output_data(Output_data
* od
)
2406 gold_assert(!this->is_max_align_known_
);
2407 this->output_data_
.push_front(od
);
2410 // Return the maximum alignment of the Output_data in Output_segment.
2413 Output_segment::maximum_alignment()
2415 if (!this->is_max_align_known_
)
2419 addralign
= Output_segment::maximum_alignment_list(&this->output_data_
);
2420 if (addralign
> this->max_align_
)
2421 this->max_align_
= addralign
;
2423 addralign
= Output_segment::maximum_alignment_list(&this->output_bss_
);
2424 if (addralign
> this->max_align_
)
2425 this->max_align_
= addralign
;
2427 this->is_max_align_known_
= true;
2430 return this->max_align_
;
2433 // Return the maximum alignment of a list of Output_data.
2436 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
2439 for (Output_data_list::const_iterator p
= pdl
->begin();
2443 uint64_t addralign
= (*p
)->addralign();
2444 if (addralign
> ret
)
2450 // Return the number of dynamic relocs applied to this segment.
2453 Output_segment::dynamic_reloc_count() const
2455 return (this->dynamic_reloc_count_list(&this->output_data_
)
2456 + this->dynamic_reloc_count_list(&this->output_bss_
));
2459 // Return the number of dynamic relocs applied to an Output_data_list.
2462 Output_segment::dynamic_reloc_count_list(const Output_data_list
* pdl
) const
2464 unsigned int count
= 0;
2465 for (Output_data_list::const_iterator p
= pdl
->begin();
2468 count
+= (*p
)->dynamic_reloc_count();
2472 // Set the section addresses for an Output_segment. If RESET is true,
2473 // reset the addresses first. ADDR is the address and *POFF is the
2474 // file offset. Set the section indexes starting with *PSHNDX.
2475 // Return the address of the immediately following segment. Update
2476 // *POFF and *PSHNDX.
2479 Output_segment::set_section_addresses(bool reset
, uint64_t addr
, off_t
* poff
,
2480 unsigned int* pshndx
)
2482 gold_assert(this->type_
== elfcpp::PT_LOAD
);
2484 if (!reset
&& this->are_addresses_set_
)
2486 gold_assert(this->paddr_
== addr
);
2487 addr
= this->vaddr_
;
2491 this->vaddr_
= addr
;
2492 this->paddr_
= addr
;
2493 this->are_addresses_set_
= true;
2496 off_t orig_off
= *poff
;
2497 this->offset_
= orig_off
;
2499 addr
= this->set_section_list_addresses(reset
, &this->output_data_
,
2500 addr
, poff
, pshndx
);
2501 this->filesz_
= *poff
- orig_off
;
2505 uint64_t ret
= this->set_section_list_addresses(reset
, &this->output_bss_
,
2506 addr
, poff
, pshndx
);
2507 this->memsz_
= *poff
- orig_off
;
2509 // Ignore the file offset adjustments made by the BSS Output_data
2516 // Set the addresses and file offsets in a list of Output_data
2520 Output_segment::set_section_list_addresses(bool reset
, Output_data_list
* pdl
,
2521 uint64_t addr
, off_t
* poff
,
2522 unsigned int* pshndx
)
2524 off_t startoff
= *poff
;
2526 off_t off
= startoff
;
2527 for (Output_data_list::iterator p
= pdl
->begin();
2532 (*p
)->reset_address_and_file_offset();
2534 // When using a linker script the section will most likely
2535 // already have an address.
2536 if (!(*p
)->is_address_valid())
2538 off
= align_address(off
, (*p
)->addralign());
2539 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
2543 // The script may have inserted a skip forward, but it
2544 // better not have moved backward.
2545 gold_assert((*p
)->address() >= addr
+ (off
- startoff
));
2546 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
2547 (*p
)->set_file_offset(off
);
2548 (*p
)->finalize_data_size();
2551 // Unless this is a PT_TLS segment, we want to ignore the size
2552 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
2553 // affect the size of a PT_LOAD segment.
2554 if (this->type_
== elfcpp::PT_TLS
2555 || !(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
2556 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
2557 off
+= (*p
)->data_size();
2559 if ((*p
)->is_section())
2561 (*p
)->set_out_shndx(*pshndx
);
2567 return addr
+ (off
- startoff
);
2570 // For a non-PT_LOAD segment, set the offset from the sections, if
2574 Output_segment::set_offset()
2576 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
2578 gold_assert(!this->are_addresses_set_
);
2580 if (this->output_data_
.empty() && this->output_bss_
.empty())
2584 this->are_addresses_set_
= true;
2586 this->min_p_align_
= 0;
2592 const Output_data
* first
;
2593 if (this->output_data_
.empty())
2594 first
= this->output_bss_
.front();
2596 first
= this->output_data_
.front();
2597 this->vaddr_
= first
->address();
2598 this->paddr_
= (first
->has_load_address()
2599 ? first
->load_address()
2601 this->are_addresses_set_
= true;
2602 this->offset_
= first
->offset();
2604 if (this->output_data_
.empty())
2608 const Output_data
* last_data
= this->output_data_
.back();
2609 this->filesz_
= (last_data
->address()
2610 + last_data
->data_size()
2614 const Output_data
* last
;
2615 if (this->output_bss_
.empty())
2616 last
= this->output_data_
.back();
2618 last
= this->output_bss_
.back();
2619 this->memsz_
= (last
->address()
2624 // Set the TLS offsets of the sections in the PT_TLS segment.
2627 Output_segment::set_tls_offsets()
2629 gold_assert(this->type_
== elfcpp::PT_TLS
);
2631 for (Output_data_list::iterator p
= this->output_data_
.begin();
2632 p
!= this->output_data_
.end();
2634 (*p
)->set_tls_offset(this->vaddr_
);
2636 for (Output_data_list::iterator p
= this->output_bss_
.begin();
2637 p
!= this->output_bss_
.end();
2639 (*p
)->set_tls_offset(this->vaddr_
);
2642 // Return the address of the first section.
2645 Output_segment::first_section_load_address() const
2647 for (Output_data_list::const_iterator p
= this->output_data_
.begin();
2648 p
!= this->output_data_
.end();
2650 if ((*p
)->is_section())
2651 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
2653 for (Output_data_list::const_iterator p
= this->output_bss_
.begin();
2654 p
!= this->output_bss_
.end();
2656 if ((*p
)->is_section())
2657 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
2662 // Return the number of Output_sections in an Output_segment.
2665 Output_segment::output_section_count() const
2667 return (this->output_section_count_list(&this->output_data_
)
2668 + this->output_section_count_list(&this->output_bss_
));
2671 // Return the number of Output_sections in an Output_data_list.
2674 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
2676 unsigned int count
= 0;
2677 for (Output_data_list::const_iterator p
= pdl
->begin();
2681 if ((*p
)->is_section())
2687 // Return the section attached to the list segment with the lowest
2688 // load address. This is used when handling a PHDRS clause in a
2692 Output_segment::section_with_lowest_load_address() const
2694 Output_section
* found
= NULL
;
2695 uint64_t found_lma
= 0;
2696 this->lowest_load_address_in_list(&this->output_data_
, &found
, &found_lma
);
2698 Output_section
* found_data
= found
;
2699 this->lowest_load_address_in_list(&this->output_bss_
, &found
, &found_lma
);
2700 if (found
!= found_data
&& found_data
!= NULL
)
2702 gold_error(_("nobits section %s may not precede progbits section %s "
2704 found
->name(), found_data
->name());
2711 // Look through a list for a section with a lower load address.
2714 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
2715 Output_section
** found
,
2716 uint64_t* found_lma
) const
2718 for (Output_data_list::const_iterator p
= pdl
->begin();
2722 if (!(*p
)->is_section())
2724 Output_section
* os
= static_cast<Output_section
*>(*p
);
2725 uint64_t lma
= (os
->has_load_address()
2726 ? os
->load_address()
2728 if (*found
== NULL
|| lma
< *found_lma
)
2736 // Write the segment data into *OPHDR.
2738 template<int size
, bool big_endian
>
2740 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
2742 ophdr
->put_p_type(this->type_
);
2743 ophdr
->put_p_offset(this->offset_
);
2744 ophdr
->put_p_vaddr(this->vaddr_
);
2745 ophdr
->put_p_paddr(this->paddr_
);
2746 ophdr
->put_p_filesz(this->filesz_
);
2747 ophdr
->put_p_memsz(this->memsz_
);
2748 ophdr
->put_p_flags(this->flags_
);
2749 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
2752 // Write the section headers into V.
2754 template<int size
, bool big_endian
>
2756 Output_segment::write_section_headers(const Layout
* layout
,
2757 const Stringpool
* secnamepool
,
2759 unsigned int *pshndx
) const
2761 // Every section that is attached to a segment must be attached to a
2762 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2764 if (this->type_
!= elfcpp::PT_LOAD
)
2767 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
2768 &this->output_data_
,
2770 v
= this->write_section_headers_list
<size
, big_endian
>(layout
, secnamepool
,
2776 template<int size
, bool big_endian
>
2778 Output_segment::write_section_headers_list(const Layout
* layout
,
2779 const Stringpool
* secnamepool
,
2780 const Output_data_list
* pdl
,
2782 unsigned int* pshndx
) const
2784 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
2785 for (Output_data_list::const_iterator p
= pdl
->begin();
2789 if ((*p
)->is_section())
2791 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
2792 gold_assert(*pshndx
== ps
->out_shndx());
2793 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
2794 ps
->write_header(layout
, secnamepool
, &oshdr
);
2802 // Output_file methods.
2804 Output_file::Output_file(const char* name
)
2809 map_is_anonymous_(false),
2810 is_temporary_(false)
2814 // Open the output file.
2817 Output_file::open(off_t file_size
)
2819 this->file_size_
= file_size
;
2821 // Unlink the file first; otherwise the open() may fail if the file
2822 // is busy (e.g. it's an executable that's currently being executed).
2824 // However, the linker may be part of a system where a zero-length
2825 // file is created for it to write to, with tight permissions (gcc
2826 // 2.95 did something like this). Unlinking the file would work
2827 // around those permission controls, so we only unlink if the file
2828 // has a non-zero size. We also unlink only regular files to avoid
2829 // trouble with directories/etc.
2831 // If we fail, continue; this command is merely a best-effort attempt
2832 // to improve the odds for open().
2834 // We let the name "-" mean "stdout"
2835 if (!this->is_temporary_
)
2837 if (strcmp(this->name_
, "-") == 0)
2838 this->o_
= STDOUT_FILENO
;
2842 if (::stat(this->name_
, &s
) == 0 && s
.st_size
!= 0)
2843 unlink_if_ordinary(this->name_
);
2845 int mode
= parameters
->options().relocatable() ? 0666 : 0777;
2846 int o
= ::open(this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
, mode
);
2848 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
2856 // Resize the output file.
2859 Output_file::resize(off_t file_size
)
2861 // If the mmap is mapping an anonymous memory buffer, this is easy:
2862 // just mremap to the new size. If it's mapping to a file, we want
2863 // to unmap to flush to the file, then remap after growing the file.
2864 if (this->map_is_anonymous_
)
2866 void* base
= ::mremap(this->base_
, this->file_size_
, file_size
,
2868 if (base
== MAP_FAILED
)
2869 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
2870 this->base_
= static_cast<unsigned char*>(base
);
2871 this->file_size_
= file_size
;
2876 this->file_size_
= file_size
;
2881 // Map the file into memory.
2886 const int o
= this->o_
;
2888 // If the output file is not a regular file, don't try to mmap it;
2889 // instead, we'll mmap a block of memory (an anonymous buffer), and
2890 // then later write the buffer to the file.
2892 struct stat statbuf
;
2893 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
2894 || ::fstat(o
, &statbuf
) != 0
2895 || !S_ISREG(statbuf
.st_mode
)
2896 || this->is_temporary_
)
2898 this->map_is_anonymous_
= true;
2899 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
2900 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2904 // Write out one byte to make the file the right size.
2905 if (::lseek(o
, this->file_size_
- 1, SEEK_SET
) < 0)
2906 gold_fatal(_("%s: lseek: %s"), this->name_
, strerror(errno
));
2908 if (::write(o
, &b
, 1) != 1)
2909 gold_fatal(_("%s: write: %s"), this->name_
, strerror(errno
));
2911 // Map the file into memory.
2912 this->map_is_anonymous_
= false;
2913 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
2916 if (base
== MAP_FAILED
)
2917 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
2918 this->base_
= static_cast<unsigned char*>(base
);
2921 // Unmap the file from memory.
2924 Output_file::unmap()
2926 if (::munmap(this->base_
, this->file_size_
) < 0)
2927 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
2931 // Close the output file.
2934 Output_file::close()
2936 // If the map isn't file-backed, we need to write it now.
2937 if (this->map_is_anonymous_
&& !this->is_temporary_
)
2939 size_t bytes_to_write
= this->file_size_
;
2940 while (bytes_to_write
> 0)
2942 ssize_t bytes_written
= ::write(this->o_
, this->base_
, bytes_to_write
);
2943 if (bytes_written
== 0)
2944 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
2945 else if (bytes_written
< 0)
2946 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
2948 bytes_to_write
-= bytes_written
;
2953 // We don't close stdout or stderr
2954 if (this->o_
!= STDOUT_FILENO
2955 && this->o_
!= STDERR_FILENO
2956 && !this->is_temporary_
)
2957 if (::close(this->o_
) < 0)
2958 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
2962 // Instantiate the templates we need. We could use the configure
2963 // script to restrict this to only the ones for implemented targets.
2965 #ifdef HAVE_TARGET_32_LITTLE
2968 Output_section::add_input_section
<32, false>(
2969 Sized_relobj
<32, false>* object
,
2971 const char* secname
,
2972 const elfcpp::Shdr
<32, false>& shdr
,
2973 unsigned int reloc_shndx
,
2974 bool have_sections_script
);
2977 #ifdef HAVE_TARGET_32_BIG
2980 Output_section::add_input_section
<32, true>(
2981 Sized_relobj
<32, true>* object
,
2983 const char* secname
,
2984 const elfcpp::Shdr
<32, true>& shdr
,
2985 unsigned int reloc_shndx
,
2986 bool have_sections_script
);
2989 #ifdef HAVE_TARGET_64_LITTLE
2992 Output_section::add_input_section
<64, false>(
2993 Sized_relobj
<64, false>* object
,
2995 const char* secname
,
2996 const elfcpp::Shdr
<64, false>& shdr
,
2997 unsigned int reloc_shndx
,
2998 bool have_sections_script
);
3001 #ifdef HAVE_TARGET_64_BIG
3004 Output_section::add_input_section
<64, true>(
3005 Sized_relobj
<64, true>* object
,
3007 const char* secname
,
3008 const elfcpp::Shdr
<64, true>& shdr
,
3009 unsigned int reloc_shndx
,
3010 bool have_sections_script
);
3013 #ifdef HAVE_TARGET_32_LITTLE
3015 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
3018 #ifdef HAVE_TARGET_32_BIG
3020 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
3023 #ifdef HAVE_TARGET_64_LITTLE
3025 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
3028 #ifdef HAVE_TARGET_64_BIG
3030 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
3033 #ifdef HAVE_TARGET_32_LITTLE
3035 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
3038 #ifdef HAVE_TARGET_32_BIG
3040 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
3043 #ifdef HAVE_TARGET_64_LITTLE
3045 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
3048 #ifdef HAVE_TARGET_64_BIG
3050 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
3053 #ifdef HAVE_TARGET_32_LITTLE
3055 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
3058 #ifdef HAVE_TARGET_32_BIG
3060 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
3063 #ifdef HAVE_TARGET_64_LITTLE
3065 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
3068 #ifdef HAVE_TARGET_64_BIG
3070 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
3073 #ifdef HAVE_TARGET_32_LITTLE
3075 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
3078 #ifdef HAVE_TARGET_32_BIG
3080 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
3083 #ifdef HAVE_TARGET_64_LITTLE
3085 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
3088 #ifdef HAVE_TARGET_64_BIG
3090 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
3093 #ifdef HAVE_TARGET_32_LITTLE
3095 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
3098 #ifdef HAVE_TARGET_32_BIG
3100 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
3103 #ifdef HAVE_TARGET_64_LITTLE
3105 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
3108 #ifdef HAVE_TARGET_64_BIG
3110 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
3113 #ifdef HAVE_TARGET_32_LITTLE
3115 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
3118 #ifdef HAVE_TARGET_32_BIG
3120 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
3123 #ifdef HAVE_TARGET_64_LITTLE
3125 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
3128 #ifdef HAVE_TARGET_64_BIG
3130 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
3133 #ifdef HAVE_TARGET_32_LITTLE
3135 class Output_data_group
<32, false>;
3138 #ifdef HAVE_TARGET_32_BIG
3140 class Output_data_group
<32, true>;
3143 #ifdef HAVE_TARGET_64_LITTLE
3145 class Output_data_group
<64, false>;
3148 #ifdef HAVE_TARGET_64_BIG
3150 class Output_data_group
<64, true>;
3153 #ifdef HAVE_TARGET_32_LITTLE
3155 class Output_data_got
<32, false>;
3158 #ifdef HAVE_TARGET_32_BIG
3160 class Output_data_got
<32, true>;
3163 #ifdef HAVE_TARGET_64_LITTLE
3165 class Output_data_got
<64, false>;
3168 #ifdef HAVE_TARGET_64_BIG
3170 class Output_data_got
<64, true>;
3173 } // End namespace gold.