2008-03-13 Paolo Bonzini <bonzini@gnu.org>
[binutils.git] / gold / symtab.cc
blob1232d0573ca69dcad8d616ace52a511e79c1b228
1 // symtab.cc -- the gold symbol table
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <stdint.h>
26 #include <set>
27 #include <string>
28 #include <utility>
29 #include "demangle.h"
31 #include "object.h"
32 #include "dwarf_reader.h"
33 #include "dynobj.h"
34 #include "output.h"
35 #include "target.h"
36 #include "workqueue.h"
37 #include "symtab.h"
39 namespace gold
42 // Class Symbol.
44 // Initialize fields in Symbol. This initializes everything except u_
45 // and source_.
47 void
48 Symbol::init_fields(const char* name, const char* version,
49 elfcpp::STT type, elfcpp::STB binding,
50 elfcpp::STV visibility, unsigned char nonvis)
52 this->name_ = name;
53 this->version_ = version;
54 this->symtab_index_ = 0;
55 this->dynsym_index_ = 0;
56 this->got_offset_ = 0;
57 this->plt_offset_ = 0;
58 this->type_ = type;
59 this->binding_ = binding;
60 this->visibility_ = visibility;
61 this->nonvis_ = nonvis;
62 this->is_target_special_ = false;
63 this->is_def_ = false;
64 this->is_forwarder_ = false;
65 this->has_alias_ = false;
66 this->needs_dynsym_entry_ = false;
67 this->in_reg_ = false;
68 this->in_dyn_ = false;
69 this->has_got_offset_ = false;
70 this->has_plt_offset_ = false;
71 this->has_warning_ = false;
72 this->is_copied_from_dynobj_ = false;
73 this->is_forced_local_ = false;
76 // Return the demangled version of the symbol's name, but only
77 // if the --demangle flag was set.
79 static std::string
80 demangle(const char* name)
82 if (!parameters->options().demangle())
83 return name;
85 // cplus_demangle allocates memory for the result it returns,
86 // and returns NULL if the name is already demangled.
87 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
88 if (demangled_name == NULL)
89 return name;
91 std::string retval(demangled_name);
92 free(demangled_name);
93 return retval;
96 std::string
97 Symbol::demangled_name() const
99 return demangle(this->name());
102 // Initialize the fields in the base class Symbol for SYM in OBJECT.
104 template<int size, bool big_endian>
105 void
106 Symbol::init_base(const char* name, const char* version, Object* object,
107 const elfcpp::Sym<size, big_endian>& sym)
109 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
110 sym.get_st_visibility(), sym.get_st_nonvis());
111 this->u_.from_object.object = object;
112 // FIXME: Handle SHN_XINDEX.
113 this->u_.from_object.shndx = sym.get_st_shndx();
114 this->source_ = FROM_OBJECT;
115 this->in_reg_ = !object->is_dynamic();
116 this->in_dyn_ = object->is_dynamic();
119 // Initialize the fields in the base class Symbol for a symbol defined
120 // in an Output_data.
122 void
123 Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
124 elfcpp::STB binding, elfcpp::STV visibility,
125 unsigned char nonvis, bool offset_is_from_end)
127 this->init_fields(name, NULL, type, binding, visibility, nonvis);
128 this->u_.in_output_data.output_data = od;
129 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
130 this->source_ = IN_OUTPUT_DATA;
131 this->in_reg_ = true;
134 // Initialize the fields in the base class Symbol for a symbol defined
135 // in an Output_segment.
137 void
138 Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
139 elfcpp::STB binding, elfcpp::STV visibility,
140 unsigned char nonvis, Segment_offset_base offset_base)
142 this->init_fields(name, NULL, type, binding, visibility, nonvis);
143 this->u_.in_output_segment.output_segment = os;
144 this->u_.in_output_segment.offset_base = offset_base;
145 this->source_ = IN_OUTPUT_SEGMENT;
146 this->in_reg_ = true;
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // as a constant.
152 void
153 Symbol::init_base(const char* name, elfcpp::STT type,
154 elfcpp::STB binding, elfcpp::STV visibility,
155 unsigned char nonvis)
157 this->init_fields(name, NULL, type, binding, visibility, nonvis);
158 this->source_ = CONSTANT;
159 this->in_reg_ = true;
162 // Allocate a common symbol in the base.
164 void
165 Symbol::allocate_base_common(Output_data* od)
167 gold_assert(this->is_common());
168 this->source_ = IN_OUTPUT_DATA;
169 this->u_.in_output_data.output_data = od;
170 this->u_.in_output_data.offset_is_from_end = false;
173 // Initialize the fields in Sized_symbol for SYM in OBJECT.
175 template<int size>
176 template<bool big_endian>
177 void
178 Sized_symbol<size>::init(const char* name, const char* version, Object* object,
179 const elfcpp::Sym<size, big_endian>& sym)
181 this->init_base(name, version, object, sym);
182 this->value_ = sym.get_st_value();
183 this->symsize_ = sym.get_st_size();
186 // Initialize the fields in Sized_symbol for a symbol defined in an
187 // Output_data.
189 template<int size>
190 void
191 Sized_symbol<size>::init(const char* name, Output_data* od,
192 Value_type value, Size_type symsize,
193 elfcpp::STT type, elfcpp::STB binding,
194 elfcpp::STV visibility, unsigned char nonvis,
195 bool offset_is_from_end)
197 this->init_base(name, od, type, binding, visibility, nonvis,
198 offset_is_from_end);
199 this->value_ = value;
200 this->symsize_ = symsize;
203 // Initialize the fields in Sized_symbol for a symbol defined in an
204 // Output_segment.
206 template<int size>
207 void
208 Sized_symbol<size>::init(const char* name, Output_segment* os,
209 Value_type value, Size_type symsize,
210 elfcpp::STT type, elfcpp::STB binding,
211 elfcpp::STV visibility, unsigned char nonvis,
212 Segment_offset_base offset_base)
214 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
215 this->value_ = value;
216 this->symsize_ = symsize;
219 // Initialize the fields in Sized_symbol for a symbol defined as a
220 // constant.
222 template<int size>
223 void
224 Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
225 elfcpp::STT type, elfcpp::STB binding,
226 elfcpp::STV visibility, unsigned char nonvis)
228 this->init_base(name, type, binding, visibility, nonvis);
229 this->value_ = value;
230 this->symsize_ = symsize;
233 // Allocate a common symbol.
235 template<int size>
236 void
237 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239 this->allocate_base_common(od);
240 this->value_ = value;
243 // Return true if this symbol should be added to the dynamic symbol
244 // table.
246 inline bool
247 Symbol::should_add_dynsym_entry() const
249 // If the symbol is used by a dynamic relocation, we need to add it.
250 if (this->needs_dynsym_entry())
251 return true;
253 // If the symbol was forced local in a version script, do not add it.
254 if (this->is_forced_local())
255 return false;
257 // If exporting all symbols or building a shared library,
258 // and the symbol is defined in a regular object and is
259 // externally visible, we need to add it.
260 if ((parameters->options().export_dynamic() || parameters->options().shared())
261 && !this->is_from_dynobj()
262 && this->is_externally_visible())
263 return true;
265 return false;
268 // Return true if the final value of this symbol is known at link
269 // time.
271 bool
272 Symbol::final_value_is_known() const
274 // If we are not generating an executable, then no final values are
275 // known, since they will change at runtime.
276 if (parameters->options().shared() || parameters->options().relocatable())
277 return false;
279 // If the symbol is not from an object file, then it is defined, and
280 // known.
281 if (this->source_ != FROM_OBJECT)
282 return true;
284 // If the symbol is from a dynamic object, then the final value is
285 // not known.
286 if (this->object()->is_dynamic())
287 return false;
289 // If the symbol is not undefined (it is defined or common), then
290 // the final value is known.
291 if (!this->is_undefined())
292 return true;
294 // If the symbol is undefined, then whether the final value is known
295 // depends on whether we are doing a static link. If we are doing a
296 // dynamic link, then the final value could be filled in at runtime.
297 // This could reasonably be the case for a weak undefined symbol.
298 return parameters->doing_static_link();
301 // Return the output section where this symbol is defined.
303 Output_section*
304 Symbol::output_section() const
306 switch (this->source_)
308 case FROM_OBJECT:
310 unsigned int shndx = this->u_.from_object.shndx;
311 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 gold_assert(!this->u_.from_object.object->is_dynamic());
314 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
315 section_offset_type dummy;
316 return relobj->output_section(shndx, &dummy);
318 return NULL;
321 case IN_OUTPUT_DATA:
322 return this->u_.in_output_data.output_data->output_section();
324 case IN_OUTPUT_SEGMENT:
325 case CONSTANT:
326 return NULL;
328 default:
329 gold_unreachable();
333 // Set the symbol's output section. This is used for symbols defined
334 // in scripts. This should only be called after the symbol table has
335 // been finalized.
337 void
338 Symbol::set_output_section(Output_section* os)
340 switch (this->source_)
342 case FROM_OBJECT:
343 case IN_OUTPUT_DATA:
344 gold_assert(this->output_section() == os);
345 break;
346 case CONSTANT:
347 this->source_ = IN_OUTPUT_DATA;
348 this->u_.in_output_data.output_data = os;
349 this->u_.in_output_data.offset_is_from_end = false;
350 break;
351 case IN_OUTPUT_SEGMENT:
352 default:
353 gold_unreachable();
357 // Class Symbol_table.
359 Symbol_table::Symbol_table(unsigned int count,
360 const Version_script_info& version_script)
361 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
362 forwarders_(), commons_(), forced_locals_(), warnings_(),
363 version_script_(version_script)
365 namepool_.reserve(count);
368 Symbol_table::~Symbol_table()
372 // The hash function. The key values are Stringpool keys.
374 inline size_t
375 Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377 return key.first ^ key.second;
380 // The symbol table key equality function. This is called with
381 // Stringpool keys.
383 inline bool
384 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
385 const Symbol_table_key& k2) const
387 return k1.first == k2.first && k1.second == k2.second;
390 // Make TO a symbol which forwards to FROM.
392 void
393 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395 gold_assert(from != to);
396 gold_assert(!from->is_forwarder() && !to->is_forwarder());
397 this->forwarders_[from] = to;
398 from->set_forwarder();
401 // Resolve the forwards from FROM, returning the real symbol.
403 Symbol*
404 Symbol_table::resolve_forwards(const Symbol* from) const
406 gold_assert(from->is_forwarder());
407 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
408 this->forwarders_.find(from);
409 gold_assert(p != this->forwarders_.end());
410 return p->second;
413 // Look up a symbol by name.
415 Symbol*
416 Symbol_table::lookup(const char* name, const char* version) const
418 Stringpool::Key name_key;
419 name = this->namepool_.find(name, &name_key);
420 if (name == NULL)
421 return NULL;
423 Stringpool::Key version_key = 0;
424 if (version != NULL)
426 version = this->namepool_.find(version, &version_key);
427 if (version == NULL)
428 return NULL;
431 Symbol_table_key key(name_key, version_key);
432 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
433 if (p == this->table_.end())
434 return NULL;
435 return p->second;
438 // Resolve a Symbol with another Symbol. This is only used in the
439 // unusual case where there are references to both an unversioned
440 // symbol and a symbol with a version, and we then discover that that
441 // version is the default version. Because this is unusual, we do
442 // this the slow way, by converting back to an ELF symbol.
444 template<int size, bool big_endian>
445 void
446 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
447 const char* version)
449 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
450 elfcpp::Sym_write<size, big_endian> esym(buf);
451 // We don't bother to set the st_name field.
452 esym.put_st_value(from->value());
453 esym.put_st_size(from->symsize());
454 esym.put_st_info(from->binding(), from->type());
455 esym.put_st_other(from->visibility(), from->nonvis());
456 esym.put_st_shndx(from->shndx());
457 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
458 if (from->in_reg())
459 to->set_in_reg();
460 if (from->in_dyn())
461 to->set_in_dyn();
464 // Record that a symbol is forced to be local by a version script.
466 void
467 Symbol_table::force_local(Symbol* sym)
469 if (!sym->is_defined() && !sym->is_common())
470 return;
471 if (sym->is_forced_local())
473 // We already got this one.
474 return;
476 sym->set_is_forced_local();
477 this->forced_locals_.push_back(sym);
480 // Add one symbol from OBJECT to the symbol table. NAME is symbol
481 // name and VERSION is the version; both are canonicalized. DEF is
482 // whether this is the default version.
484 // If DEF is true, then this is the definition of a default version of
485 // a symbol. That means that any lookup of NAME/NULL and any lookup
486 // of NAME/VERSION should always return the same symbol. This is
487 // obvious for references, but in particular we want to do this for
488 // definitions: overriding NAME/NULL should also override
489 // NAME/VERSION. If we don't do that, it would be very hard to
490 // override functions in a shared library which uses versioning.
492 // We implement this by simply making both entries in the hash table
493 // point to the same Symbol structure. That is easy enough if this is
494 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
495 // that we have seen both already, in which case they will both have
496 // independent entries in the symbol table. We can't simply change
497 // the symbol table entry, because we have pointers to the entries
498 // attached to the object files. So we mark the entry attached to the
499 // object file as a forwarder, and record it in the forwarders_ map.
500 // Note that entries in the hash table will never be marked as
501 // forwarders.
503 // SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
504 // symbol exactly as it existed in the input file. SYM is usually
505 // that as well, but can be modified, for instance if we determine
506 // it's in a to-be-discarded section.
508 template<int size, bool big_endian>
509 Sized_symbol<size>*
510 Symbol_table::add_from_object(Object* object,
511 const char *name,
512 Stringpool::Key name_key,
513 const char *version,
514 Stringpool::Key version_key,
515 bool def,
516 const elfcpp::Sym<size, big_endian>& sym,
517 const elfcpp::Sym<size, big_endian>& orig_sym)
519 Symbol* const snull = NULL;
520 std::pair<typename Symbol_table_type::iterator, bool> ins =
521 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
522 snull));
524 std::pair<typename Symbol_table_type::iterator, bool> insdef =
525 std::make_pair(this->table_.end(), false);
526 if (def)
528 const Stringpool::Key vnull_key = 0;
529 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
530 vnull_key),
531 snull));
534 // ins.first: an iterator, which is a pointer to a pair.
535 // ins.first->first: the key (a pair of name and version).
536 // ins.first->second: the value (Symbol*).
537 // ins.second: true if new entry was inserted, false if not.
539 Sized_symbol<size>* ret;
540 bool was_undefined;
541 bool was_common;
542 if (!ins.second)
544 // We already have an entry for NAME/VERSION.
545 ret = this->get_sized_symbol<size>(ins.first->second);
546 gold_assert(ret != NULL);
548 was_undefined = ret->is_undefined();
549 was_common = ret->is_common();
551 this->resolve(ret, sym, orig_sym, object, version);
553 if (def)
555 if (insdef.second)
557 // This is the first time we have seen NAME/NULL. Make
558 // NAME/NULL point to NAME/VERSION.
559 insdef.first->second = ret;
561 else if (insdef.first->second != ret
562 && insdef.first->second->is_undefined())
564 // This is the unfortunate case where we already have
565 // entries for both NAME/VERSION and NAME/NULL. Note
566 // that we don't want to combine them if the existing
567 // symbol is going to override the new one. FIXME: We
568 // currently just test is_undefined, but this may not do
569 // the right thing if the existing symbol is from a
570 // shared library and the new one is from a regular
571 // object.
573 const Sized_symbol<size>* sym2;
574 sym2 = this->get_sized_symbol<size>(insdef.first->second);
575 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
576 this->make_forwarder(insdef.first->second, ret);
577 insdef.first->second = ret;
581 else
583 // This is the first time we have seen NAME/VERSION.
584 gold_assert(ins.first->second == NULL);
586 was_undefined = false;
587 was_common = false;
589 if (def && !insdef.second)
591 // We already have an entry for NAME/NULL. If we override
592 // it, then change it to NAME/VERSION.
593 ret = this->get_sized_symbol<size>(insdef.first->second);
594 this->resolve(ret, sym, orig_sym, object, version);
595 ins.first->second = ret;
597 else
599 Sized_target<size, big_endian>* target =
600 object->sized_target<size, big_endian>();
601 if (!target->has_make_symbol())
602 ret = new Sized_symbol<size>();
603 else
605 ret = target->make_symbol();
606 if (ret == NULL)
608 // This means that we don't want a symbol table
609 // entry after all.
610 if (!def)
611 this->table_.erase(ins.first);
612 else
614 this->table_.erase(insdef.first);
615 // Inserting insdef invalidated ins.
616 this->table_.erase(std::make_pair(name_key,
617 version_key));
619 return NULL;
623 ret->init(name, version, object, sym);
625 ins.first->second = ret;
626 if (def)
628 // This is the first time we have seen NAME/NULL. Point
629 // it at the new entry for NAME/VERSION.
630 gold_assert(insdef.second);
631 insdef.first->second = ret;
636 // Record every time we see a new undefined symbol, to speed up
637 // archive groups.
638 if (!was_undefined && ret->is_undefined())
639 ++this->saw_undefined_;
641 // Keep track of common symbols, to speed up common symbol
642 // allocation.
643 if (!was_common && ret->is_common())
644 this->commons_.push_back(ret);
646 ret->set_is_default(def);
647 return ret;
650 // Add all the symbols in a relocatable object to the hash table.
652 template<int size, bool big_endian>
653 void
654 Symbol_table::add_from_relobj(
655 Sized_relobj<size, big_endian>* relobj,
656 const unsigned char* syms,
657 size_t count,
658 const char* sym_names,
659 size_t sym_name_size,
660 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
662 gold_assert(size == relobj->target()->get_size());
663 gold_assert(size == parameters->target().get_size());
665 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
667 const bool just_symbols = relobj->just_symbols();
669 const unsigned char* p = syms;
670 for (size_t i = 0; i < count; ++i, p += sym_size)
672 elfcpp::Sym<size, big_endian> sym(p);
673 elfcpp::Sym<size, big_endian>* psym = &sym;
675 unsigned int st_name = psym->get_st_name();
676 if (st_name >= sym_name_size)
678 relobj->error(_("bad global symbol name offset %u at %zu"),
679 st_name, i);
680 continue;
683 const char* name = sym_names + st_name;
685 // A symbol defined in a section which we are not including must
686 // be treated as an undefined symbol.
687 unsigned char symbuf[sym_size];
688 elfcpp::Sym<size, big_endian> sym2(symbuf);
689 unsigned int st_shndx = psym->get_st_shndx();
690 if (st_shndx != elfcpp::SHN_UNDEF
691 && st_shndx < elfcpp::SHN_LORESERVE
692 && !relobj->is_section_included(st_shndx))
694 memcpy(symbuf, p, sym_size);
695 elfcpp::Sym_write<size, big_endian> sw(symbuf);
696 sw.put_st_shndx(elfcpp::SHN_UNDEF);
697 psym = &sym2;
700 // In an object file, an '@' in the name separates the symbol
701 // name from the version name. If there are two '@' characters,
702 // this is the default version.
703 const char* ver = strchr(name, '@');
704 int namelen = 0;
705 // DEF: is the version default? LOCAL: is the symbol forced local?
706 bool def = false;
707 bool local = false;
709 if (ver != NULL)
711 // The symbol name is of the form foo@VERSION or foo@@VERSION
712 namelen = ver - name;
713 ++ver;
714 if (*ver == '@')
716 def = true;
717 ++ver;
720 else if (!version_script_.empty())
722 // The symbol name did not have a version, but
723 // the version script may assign a version anyway.
724 namelen = strlen(name);
725 def = true;
726 // Check the global: entries from the version script.
727 const std::string& version =
728 version_script_.get_symbol_version(name);
729 if (!version.empty())
730 ver = version.c_str();
731 // Check the local: entries from the version script
732 if (version_script_.symbol_is_local(name))
733 local = true;
736 if (just_symbols)
738 if (psym != &sym2)
739 memcpy(symbuf, p, sym_size);
740 elfcpp::Sym_write<size, big_endian> sw(symbuf);
741 sw.put_st_shndx(elfcpp::SHN_ABS);
742 if (st_shndx != elfcpp::SHN_UNDEF
743 && st_shndx < elfcpp::SHN_LORESERVE)
745 // Symbol values in object files are section relative.
746 // This is normally what we want, but since here we are
747 // converting the symbol to absolute we need to add the
748 // section address. The section address in an object
749 // file is normally zero, but people can use a linker
750 // script to change it.
751 sw.put_st_value(sym2.get_st_value()
752 + relobj->section_address(st_shndx));
754 psym = &sym2;
757 Sized_symbol<size>* res;
758 if (ver == NULL)
760 Stringpool::Key name_key;
761 name = this->namepool_.add(name, true, &name_key);
762 res = this->add_from_object(relobj, name, name_key, NULL, 0,
763 false, *psym, sym);
764 if (local)
765 this->force_local(res);
767 else
769 Stringpool::Key name_key;
770 name = this->namepool_.add_with_length(name, namelen, true,
771 &name_key);
772 Stringpool::Key ver_key;
773 ver = this->namepool_.add(ver, true, &ver_key);
775 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
776 def, *psym, sym);
779 (*sympointers)[i] = res;
783 // Add all the symbols in a dynamic object to the hash table.
785 template<int size, bool big_endian>
786 void
787 Symbol_table::add_from_dynobj(
788 Sized_dynobj<size, big_endian>* dynobj,
789 const unsigned char* syms,
790 size_t count,
791 const char* sym_names,
792 size_t sym_name_size,
793 const unsigned char* versym,
794 size_t versym_size,
795 const std::vector<const char*>* version_map)
797 gold_assert(size == dynobj->target()->get_size());
798 gold_assert(size == parameters->target().get_size());
800 if (dynobj->just_symbols())
802 gold_error(_("--just-symbols does not make sense with a shared object"));
803 return;
806 if (versym != NULL && versym_size / 2 < count)
808 dynobj->error(_("too few symbol versions"));
809 return;
812 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
814 // We keep a list of all STT_OBJECT symbols, so that we can resolve
815 // weak aliases. This is necessary because if the dynamic object
816 // provides the same variable under two names, one of which is a
817 // weak definition, and the regular object refers to the weak
818 // definition, we have to put both the weak definition and the
819 // strong definition into the dynamic symbol table. Given a weak
820 // definition, the only way that we can find the corresponding
821 // strong definition, if any, is to search the symbol table.
822 std::vector<Sized_symbol<size>*> object_symbols;
824 const unsigned char* p = syms;
825 const unsigned char* vs = versym;
826 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
828 elfcpp::Sym<size, big_endian> sym(p);
830 // Ignore symbols with local binding or that have
831 // internal or hidden visibility.
832 if (sym.get_st_bind() == elfcpp::STB_LOCAL
833 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
834 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
835 continue;
837 unsigned int st_name = sym.get_st_name();
838 if (st_name >= sym_name_size)
840 dynobj->error(_("bad symbol name offset %u at %zu"),
841 st_name, i);
842 continue;
845 const char* name = sym_names + st_name;
847 Sized_symbol<size>* res;
849 if (versym == NULL)
851 Stringpool::Key name_key;
852 name = this->namepool_.add(name, true, &name_key);
853 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
854 false, sym, sym);
856 else
858 // Read the version information.
860 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
862 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
863 v &= elfcpp::VERSYM_VERSION;
865 // The Sun documentation says that V can be VER_NDX_LOCAL,
866 // or VER_NDX_GLOBAL, or a version index. The meaning of
867 // VER_NDX_LOCAL is defined as "Symbol has local scope."
868 // The old GNU linker will happily generate VER_NDX_LOCAL
869 // for an undefined symbol. I don't know what the Sun
870 // linker will generate.
872 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
873 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
875 // This symbol should not be visible outside the object.
876 continue;
879 // At this point we are definitely going to add this symbol.
880 Stringpool::Key name_key;
881 name = this->namepool_.add(name, true, &name_key);
883 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
884 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
886 // This symbol does not have a version.
887 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
888 false, sym, sym);
890 else
892 if (v >= version_map->size())
894 dynobj->error(_("versym for symbol %zu out of range: %u"),
895 i, v);
896 continue;
899 const char* version = (*version_map)[v];
900 if (version == NULL)
902 dynobj->error(_("versym for symbol %zu has no name: %u"),
903 i, v);
904 continue;
907 Stringpool::Key version_key;
908 version = this->namepool_.add(version, true, &version_key);
910 // If this is an absolute symbol, and the version name
911 // and symbol name are the same, then this is the
912 // version definition symbol. These symbols exist to
913 // support using -u to pull in particular versions. We
914 // do not want to record a version for them.
915 if (sym.get_st_shndx() == elfcpp::SHN_ABS
916 && name_key == version_key)
917 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
918 false, sym, sym);
919 else
921 const bool def = (!hidden
922 && (sym.get_st_shndx()
923 != elfcpp::SHN_UNDEF));
924 res = this->add_from_object(dynobj, name, name_key, version,
925 version_key, def, sym, sym);
930 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
931 && sym.get_st_type() == elfcpp::STT_OBJECT)
932 object_symbols.push_back(res);
935 this->record_weak_aliases(&object_symbols);
938 // This is used to sort weak aliases. We sort them first by section
939 // index, then by offset, then by weak ahead of strong.
941 template<int size>
942 class Weak_alias_sorter
944 public:
945 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
948 template<int size>
949 bool
950 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
951 const Sized_symbol<size>* s2) const
953 if (s1->shndx() != s2->shndx())
954 return s1->shndx() < s2->shndx();
955 if (s1->value() != s2->value())
956 return s1->value() < s2->value();
957 if (s1->binding() != s2->binding())
959 if (s1->binding() == elfcpp::STB_WEAK)
960 return true;
961 if (s2->binding() == elfcpp::STB_WEAK)
962 return false;
964 return std::string(s1->name()) < std::string(s2->name());
967 // SYMBOLS is a list of object symbols from a dynamic object. Look
968 // for any weak aliases, and record them so that if we add the weak
969 // alias to the dynamic symbol table, we also add the corresponding
970 // strong symbol.
972 template<int size>
973 void
974 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
976 // Sort the vector by section index, then by offset, then by weak
977 // ahead of strong.
978 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
980 // Walk through the vector. For each weak definition, record
981 // aliases.
982 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
983 symbols->begin();
984 p != symbols->end();
985 ++p)
987 if ((*p)->binding() != elfcpp::STB_WEAK)
988 continue;
990 // Build a circular list of weak aliases. Each symbol points to
991 // the next one in the circular list.
993 Sized_symbol<size>* from_sym = *p;
994 typename std::vector<Sized_symbol<size>*>::const_iterator q;
995 for (q = p + 1; q != symbols->end(); ++q)
997 if ((*q)->shndx() != from_sym->shndx()
998 || (*q)->value() != from_sym->value())
999 break;
1001 this->weak_aliases_[from_sym] = *q;
1002 from_sym->set_has_alias();
1003 from_sym = *q;
1006 if (from_sym != *p)
1008 this->weak_aliases_[from_sym] = *p;
1009 from_sym->set_has_alias();
1012 p = q - 1;
1016 // Create and return a specially defined symbol. If ONLY_IF_REF is
1017 // true, then only create the symbol if there is a reference to it.
1018 // If this does not return NULL, it sets *POLDSYM to the existing
1019 // symbol if there is one. This canonicalizes *PNAME and *PVERSION.
1021 template<int size, bool big_endian>
1022 Sized_symbol<size>*
1023 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1024 bool only_if_ref,
1025 Sized_symbol<size>** poldsym)
1027 Symbol* oldsym;
1028 Sized_symbol<size>* sym;
1029 bool add_to_table = false;
1030 typename Symbol_table_type::iterator add_loc = this->table_.end();
1032 // If the caller didn't give us a version, see if we get one from
1033 // the version script.
1034 if (*pversion == NULL)
1036 const std::string& v(this->version_script_.get_symbol_version(*pname));
1037 if (!v.empty())
1038 *pversion = v.c_str();
1041 if (only_if_ref)
1043 oldsym = this->lookup(*pname, *pversion);
1044 if (oldsym == NULL || !oldsym->is_undefined())
1045 return NULL;
1047 *pname = oldsym->name();
1048 *pversion = oldsym->version();
1050 else
1052 // Canonicalize NAME and VERSION.
1053 Stringpool::Key name_key;
1054 *pname = this->namepool_.add(*pname, true, &name_key);
1056 Stringpool::Key version_key = 0;
1057 if (*pversion != NULL)
1058 *pversion = this->namepool_.add(*pversion, true, &version_key);
1060 Symbol* const snull = NULL;
1061 std::pair<typename Symbol_table_type::iterator, bool> ins =
1062 this->table_.insert(std::make_pair(std::make_pair(name_key,
1063 version_key),
1064 snull));
1066 if (!ins.second)
1068 // We already have a symbol table entry for NAME/VERSION.
1069 oldsym = ins.first->second;
1070 gold_assert(oldsym != NULL);
1072 else
1074 // We haven't seen this symbol before.
1075 gold_assert(ins.first->second == NULL);
1076 add_to_table = true;
1077 add_loc = ins.first;
1078 oldsym = NULL;
1082 const Target& target = parameters->target();
1083 if (!target.has_make_symbol())
1084 sym = new Sized_symbol<size>();
1085 else
1087 gold_assert(target.get_size() == size);
1088 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
1089 typedef Sized_target<size, big_endian> My_target;
1090 const My_target* sized_target =
1091 static_cast<const My_target*>(&target);
1092 sym = sized_target->make_symbol();
1093 if (sym == NULL)
1094 return NULL;
1097 if (add_to_table)
1098 add_loc->second = sym;
1099 else
1100 gold_assert(oldsym != NULL);
1102 *poldsym = this->get_sized_symbol<size>(oldsym);
1104 return sym;
1107 // Define a symbol based on an Output_data.
1109 Symbol*
1110 Symbol_table::define_in_output_data(const char* name,
1111 const char* version,
1112 Output_data* od,
1113 uint64_t value,
1114 uint64_t symsize,
1115 elfcpp::STT type,
1116 elfcpp::STB binding,
1117 elfcpp::STV visibility,
1118 unsigned char nonvis,
1119 bool offset_is_from_end,
1120 bool only_if_ref)
1122 if (parameters->target().get_size() == 32)
1124 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1125 return this->do_define_in_output_data<32>(name, version, od,
1126 value, symsize, type, binding,
1127 visibility, nonvis,
1128 offset_is_from_end,
1129 only_if_ref);
1130 #else
1131 gold_unreachable();
1132 #endif
1134 else if (parameters->target().get_size() == 64)
1136 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1137 return this->do_define_in_output_data<64>(name, version, od,
1138 value, symsize, type, binding,
1139 visibility, nonvis,
1140 offset_is_from_end,
1141 only_if_ref);
1142 #else
1143 gold_unreachable();
1144 #endif
1146 else
1147 gold_unreachable();
1150 // Define a symbol in an Output_data, sized version.
1152 template<int size>
1153 Sized_symbol<size>*
1154 Symbol_table::do_define_in_output_data(
1155 const char* name,
1156 const char* version,
1157 Output_data* od,
1158 typename elfcpp::Elf_types<size>::Elf_Addr value,
1159 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1160 elfcpp::STT type,
1161 elfcpp::STB binding,
1162 elfcpp::STV visibility,
1163 unsigned char nonvis,
1164 bool offset_is_from_end,
1165 bool only_if_ref)
1167 Sized_symbol<size>* sym;
1168 Sized_symbol<size>* oldsym;
1170 if (parameters->target().is_big_endian())
1172 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1173 sym = this->define_special_symbol<size, true>(&name, &version,
1174 only_if_ref, &oldsym);
1175 #else
1176 gold_unreachable();
1177 #endif
1179 else
1181 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1182 sym = this->define_special_symbol<size, false>(&name, &version,
1183 only_if_ref, &oldsym);
1184 #else
1185 gold_unreachable();
1186 #endif
1189 if (sym == NULL)
1190 return NULL;
1192 gold_assert(version == NULL || oldsym != NULL);
1193 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1194 offset_is_from_end);
1196 if (oldsym == NULL)
1198 if (binding == elfcpp::STB_LOCAL
1199 || this->version_script_.symbol_is_local(name))
1200 this->force_local(sym);
1201 return sym;
1204 if (Symbol_table::should_override_with_special(oldsym))
1205 this->override_with_special(oldsym, sym);
1206 delete sym;
1207 return oldsym;
1210 // Define a symbol based on an Output_segment.
1212 Symbol*
1213 Symbol_table::define_in_output_segment(const char* name,
1214 const char* version, Output_segment* os,
1215 uint64_t value,
1216 uint64_t symsize,
1217 elfcpp::STT type,
1218 elfcpp::STB binding,
1219 elfcpp::STV visibility,
1220 unsigned char nonvis,
1221 Symbol::Segment_offset_base offset_base,
1222 bool only_if_ref)
1224 if (parameters->target().get_size() == 32)
1226 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1227 return this->do_define_in_output_segment<32>(name, version, os,
1228 value, symsize, type,
1229 binding, visibility, nonvis,
1230 offset_base, only_if_ref);
1231 #else
1232 gold_unreachable();
1233 #endif
1235 else if (parameters->target().get_size() == 64)
1237 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1238 return this->do_define_in_output_segment<64>(name, version, os,
1239 value, symsize, type,
1240 binding, visibility, nonvis,
1241 offset_base, only_if_ref);
1242 #else
1243 gold_unreachable();
1244 #endif
1246 else
1247 gold_unreachable();
1250 // Define a symbol in an Output_segment, sized version.
1252 template<int size>
1253 Sized_symbol<size>*
1254 Symbol_table::do_define_in_output_segment(
1255 const char* name,
1256 const char* version,
1257 Output_segment* os,
1258 typename elfcpp::Elf_types<size>::Elf_Addr value,
1259 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1260 elfcpp::STT type,
1261 elfcpp::STB binding,
1262 elfcpp::STV visibility,
1263 unsigned char nonvis,
1264 Symbol::Segment_offset_base offset_base,
1265 bool only_if_ref)
1267 Sized_symbol<size>* sym;
1268 Sized_symbol<size>* oldsym;
1270 if (parameters->target().is_big_endian())
1272 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1273 sym = this->define_special_symbol<size, true>(&name, &version,
1274 only_if_ref, &oldsym);
1275 #else
1276 gold_unreachable();
1277 #endif
1279 else
1281 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1282 sym = this->define_special_symbol<size, false>(&name, &version,
1283 only_if_ref, &oldsym);
1284 #else
1285 gold_unreachable();
1286 #endif
1289 if (sym == NULL)
1290 return NULL;
1292 gold_assert(version == NULL || oldsym != NULL);
1293 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1294 offset_base);
1296 if (oldsym == NULL)
1298 if (binding == elfcpp::STB_LOCAL
1299 || this->version_script_.symbol_is_local(name))
1300 this->force_local(sym);
1301 return sym;
1304 if (Symbol_table::should_override_with_special(oldsym))
1305 this->override_with_special(oldsym, sym);
1306 delete sym;
1307 return oldsym;
1310 // Define a special symbol with a constant value. It is a multiple
1311 // definition error if this symbol is already defined.
1313 Symbol*
1314 Symbol_table::define_as_constant(const char* name,
1315 const char* version,
1316 uint64_t value,
1317 uint64_t symsize,
1318 elfcpp::STT type,
1319 elfcpp::STB binding,
1320 elfcpp::STV visibility,
1321 unsigned char nonvis,
1322 bool only_if_ref,
1323 bool force_override)
1325 if (parameters->target().get_size() == 32)
1327 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1328 return this->do_define_as_constant<32>(name, version, value,
1329 symsize, type, binding,
1330 visibility, nonvis, only_if_ref,
1331 force_override);
1332 #else
1333 gold_unreachable();
1334 #endif
1336 else if (parameters->target().get_size() == 64)
1338 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1339 return this->do_define_as_constant<64>(name, version, value,
1340 symsize, type, binding,
1341 visibility, nonvis, only_if_ref,
1342 force_override);
1343 #else
1344 gold_unreachable();
1345 #endif
1347 else
1348 gold_unreachable();
1351 // Define a symbol as a constant, sized version.
1353 template<int size>
1354 Sized_symbol<size>*
1355 Symbol_table::do_define_as_constant(
1356 const char* name,
1357 const char* version,
1358 typename elfcpp::Elf_types<size>::Elf_Addr value,
1359 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1360 elfcpp::STT type,
1361 elfcpp::STB binding,
1362 elfcpp::STV visibility,
1363 unsigned char nonvis,
1364 bool only_if_ref,
1365 bool force_override)
1367 Sized_symbol<size>* sym;
1368 Sized_symbol<size>* oldsym;
1370 if (parameters->target().is_big_endian())
1372 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1373 sym = this->define_special_symbol<size, true>(&name, &version,
1374 only_if_ref, &oldsym);
1375 #else
1376 gold_unreachable();
1377 #endif
1379 else
1381 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1382 sym = this->define_special_symbol<size, false>(&name, &version,
1383 only_if_ref, &oldsym);
1384 #else
1385 gold_unreachable();
1386 #endif
1389 if (sym == NULL)
1390 return NULL;
1392 gold_assert(version == NULL || version == name || oldsym != NULL);
1393 sym->init(name, value, symsize, type, binding, visibility, nonvis);
1395 if (oldsym == NULL)
1397 if (binding == elfcpp::STB_LOCAL
1398 || this->version_script_.symbol_is_local(name))
1399 this->force_local(sym);
1400 return sym;
1403 if (force_override || Symbol_table::should_override_with_special(oldsym))
1404 this->override_with_special(oldsym, sym);
1405 delete sym;
1406 return oldsym;
1409 // Define a set of symbols in output sections.
1411 void
1412 Symbol_table::define_symbols(const Layout* layout, int count,
1413 const Define_symbol_in_section* p,
1414 bool only_if_ref)
1416 for (int i = 0; i < count; ++i, ++p)
1418 Output_section* os = layout->find_output_section(p->output_section);
1419 if (os != NULL)
1420 this->define_in_output_data(p->name, NULL, os, p->value,
1421 p->size, p->type, p->binding,
1422 p->visibility, p->nonvis,
1423 p->offset_is_from_end,
1424 only_if_ref || p->only_if_ref);
1425 else
1426 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1427 p->binding, p->visibility, p->nonvis,
1428 only_if_ref || p->only_if_ref,
1429 false);
1433 // Define a set of symbols in output segments.
1435 void
1436 Symbol_table::define_symbols(const Layout* layout, int count,
1437 const Define_symbol_in_segment* p,
1438 bool only_if_ref)
1440 for (int i = 0; i < count; ++i, ++p)
1442 Output_segment* os = layout->find_output_segment(p->segment_type,
1443 p->segment_flags_set,
1444 p->segment_flags_clear);
1445 if (os != NULL)
1446 this->define_in_output_segment(p->name, NULL, os, p->value,
1447 p->size, p->type, p->binding,
1448 p->visibility, p->nonvis,
1449 p->offset_base,
1450 only_if_ref || p->only_if_ref);
1451 else
1452 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
1453 p->binding, p->visibility, p->nonvis,
1454 only_if_ref || p->only_if_ref,
1455 false);
1459 // Define CSYM using a COPY reloc. POSD is the Output_data where the
1460 // symbol should be defined--typically a .dyn.bss section. VALUE is
1461 // the offset within POSD.
1463 template<int size>
1464 void
1465 Symbol_table::define_with_copy_reloc(
1466 Sized_symbol<size>* csym,
1467 Output_data* posd,
1468 typename elfcpp::Elf_types<size>::Elf_Addr value)
1470 gold_assert(csym->is_from_dynobj());
1471 gold_assert(!csym->is_copied_from_dynobj());
1472 Object* object = csym->object();
1473 gold_assert(object->is_dynamic());
1474 Dynobj* dynobj = static_cast<Dynobj*>(object);
1476 // Our copied variable has to override any variable in a shared
1477 // library.
1478 elfcpp::STB binding = csym->binding();
1479 if (binding == elfcpp::STB_WEAK)
1480 binding = elfcpp::STB_GLOBAL;
1482 this->define_in_output_data(csym->name(), csym->version(),
1483 posd, value, csym->symsize(),
1484 csym->type(), binding,
1485 csym->visibility(), csym->nonvis(),
1486 false, false);
1488 csym->set_is_copied_from_dynobj();
1489 csym->set_needs_dynsym_entry();
1491 this->copied_symbol_dynobjs_[csym] = dynobj;
1493 // We have now defined all aliases, but we have not entered them all
1494 // in the copied_symbol_dynobjs_ map.
1495 if (csym->has_alias())
1497 Symbol* sym = csym;
1498 while (true)
1500 sym = this->weak_aliases_[sym];
1501 if (sym == csym)
1502 break;
1503 gold_assert(sym->output_data() == posd);
1505 sym->set_is_copied_from_dynobj();
1506 this->copied_symbol_dynobjs_[sym] = dynobj;
1511 // SYM is defined using a COPY reloc. Return the dynamic object where
1512 // the original definition was found.
1514 Dynobj*
1515 Symbol_table::get_copy_source(const Symbol* sym) const
1517 gold_assert(sym->is_copied_from_dynobj());
1518 Copied_symbol_dynobjs::const_iterator p =
1519 this->copied_symbol_dynobjs_.find(sym);
1520 gold_assert(p != this->copied_symbol_dynobjs_.end());
1521 return p->second;
1524 // Set the dynamic symbol indexes. INDEX is the index of the first
1525 // global dynamic symbol. Pointers to the symbols are stored into the
1526 // vector SYMS. The names are added to DYNPOOL. This returns an
1527 // updated dynamic symbol index.
1529 unsigned int
1530 Symbol_table::set_dynsym_indexes(unsigned int index,
1531 std::vector<Symbol*>* syms,
1532 Stringpool* dynpool,
1533 Versions* versions)
1535 for (Symbol_table_type::iterator p = this->table_.begin();
1536 p != this->table_.end();
1537 ++p)
1539 Symbol* sym = p->second;
1541 // Note that SYM may already have a dynamic symbol index, since
1542 // some symbols appear more than once in the symbol table, with
1543 // and without a version.
1545 if (!sym->should_add_dynsym_entry())
1546 sym->set_dynsym_index(-1U);
1547 else if (!sym->has_dynsym_index())
1549 sym->set_dynsym_index(index);
1550 ++index;
1551 syms->push_back(sym);
1552 dynpool->add(sym->name(), false, NULL);
1554 // Record any version information.
1555 if (sym->version() != NULL)
1556 versions->record_version(this, dynpool, sym);
1560 // Finish up the versions. In some cases this may add new dynamic
1561 // symbols.
1562 index = versions->finalize(this, index, syms);
1564 return index;
1567 // Set the final values for all the symbols. The index of the first
1568 // global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1569 // file offset OFF. Add their names to POOL. Return the new file
1570 // offset. Update *PLOCAL_SYMCOUNT if necessary.
1572 off_t
1573 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1574 size_t dyncount, Stringpool* pool,
1575 unsigned int *plocal_symcount)
1577 off_t ret;
1579 gold_assert(*plocal_symcount != 0);
1580 this->first_global_index_ = *plocal_symcount;
1582 this->dynamic_offset_ = dynoff;
1583 this->first_dynamic_global_index_ = dyn_global_index;
1584 this->dynamic_count_ = dyncount;
1586 if (parameters->target().get_size() == 32)
1588 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1589 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
1590 #else
1591 gold_unreachable();
1592 #endif
1594 else if (parameters->target().get_size() == 64)
1596 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1597 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
1598 #else
1599 gold_unreachable();
1600 #endif
1602 else
1603 gold_unreachable();
1605 // Now that we have the final symbol table, we can reliably note
1606 // which symbols should get warnings.
1607 this->warnings_.note_warnings(this);
1609 return ret;
1612 // SYM is going into the symbol table at *PINDEX. Add the name to
1613 // POOL, update *PINDEX and *POFF.
1615 template<int size>
1616 void
1617 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1618 unsigned int* pindex, off_t* poff)
1620 sym->set_symtab_index(*pindex);
1621 pool->add(sym->name(), false, NULL);
1622 ++*pindex;
1623 *poff += elfcpp::Elf_sizes<size>::sym_size;
1626 // Set the final value for all the symbols. This is called after
1627 // Layout::finalize, so all the output sections have their final
1628 // address.
1630 template<int size>
1631 off_t
1632 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1633 unsigned int* plocal_symcount)
1635 off = align_address(off, size >> 3);
1636 this->offset_ = off;
1638 unsigned int index = *plocal_symcount;
1639 const unsigned int orig_index = index;
1641 // First do all the symbols which have been forced to be local, as
1642 // they must appear before all global symbols.
1643 for (Forced_locals::iterator p = this->forced_locals_.begin();
1644 p != this->forced_locals_.end();
1645 ++p)
1647 Symbol* sym = *p;
1648 gold_assert(sym->is_forced_local());
1649 if (this->sized_finalize_symbol<size>(sym))
1651 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1652 ++*plocal_symcount;
1656 // Now do all the remaining symbols.
1657 for (Symbol_table_type::iterator p = this->table_.begin();
1658 p != this->table_.end();
1659 ++p)
1661 Symbol* sym = p->second;
1662 if (this->sized_finalize_symbol<size>(sym))
1663 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1666 this->output_count_ = index - orig_index;
1668 return off;
1671 // Finalize the symbol SYM. This returns true if the symbol should be
1672 // added to the symbol table, false otherwise.
1674 template<int size>
1675 bool
1676 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1678 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
1680 // The default version of a symbol may appear twice in the symbol
1681 // table. We only need to finalize it once.
1682 if (sym->has_symtab_index())
1683 return false;
1685 if (!sym->in_reg())
1687 gold_assert(!sym->has_symtab_index());
1688 sym->set_symtab_index(-1U);
1689 gold_assert(sym->dynsym_index() == -1U);
1690 return false;
1693 typename Sized_symbol<size>::Value_type value;
1695 switch (sym->source())
1697 case Symbol::FROM_OBJECT:
1699 unsigned int shndx = sym->shndx();
1701 // FIXME: We need some target specific support here.
1702 if (shndx >= elfcpp::SHN_LORESERVE
1703 && shndx != elfcpp::SHN_ABS
1704 && shndx != elfcpp::SHN_COMMON)
1706 gold_error(_("%s: unsupported symbol section 0x%x"),
1707 sym->demangled_name().c_str(), shndx);
1708 shndx = elfcpp::SHN_UNDEF;
1711 Object* symobj = sym->object();
1712 if (symobj->is_dynamic())
1714 value = 0;
1715 shndx = elfcpp::SHN_UNDEF;
1717 else if (shndx == elfcpp::SHN_UNDEF)
1718 value = 0;
1719 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
1720 value = sym->value();
1721 else
1723 Relobj* relobj = static_cast<Relobj*>(symobj);
1724 section_offset_type secoff;
1725 Output_section* os = relobj->output_section(shndx, &secoff);
1727 if (os == NULL)
1729 sym->set_symtab_index(-1U);
1730 gold_assert(sym->dynsym_index() == -1U);
1731 return false;
1734 if (sym->type() == elfcpp::STT_TLS)
1735 value = sym->value() + os->tls_offset() + secoff;
1736 else
1737 value = sym->value() + os->address() + secoff;
1740 break;
1742 case Symbol::IN_OUTPUT_DATA:
1744 Output_data* od = sym->output_data();
1745 value = sym->value() + od->address();
1746 if (sym->offset_is_from_end())
1747 value += od->data_size();
1749 break;
1751 case Symbol::IN_OUTPUT_SEGMENT:
1753 Output_segment* os = sym->output_segment();
1754 value = sym->value() + os->vaddr();
1755 switch (sym->offset_base())
1757 case Symbol::SEGMENT_START:
1758 break;
1759 case Symbol::SEGMENT_END:
1760 value += os->memsz();
1761 break;
1762 case Symbol::SEGMENT_BSS:
1763 value += os->filesz();
1764 break;
1765 default:
1766 gold_unreachable();
1769 break;
1771 case Symbol::CONSTANT:
1772 value = sym->value();
1773 break;
1775 default:
1776 gold_unreachable();
1779 sym->set_value(value);
1781 if (parameters->options().strip_all())
1783 sym->set_symtab_index(-1U);
1784 return false;
1787 return true;
1790 // Write out the global symbols.
1792 void
1793 Symbol_table::write_globals(const Input_objects* input_objects,
1794 const Stringpool* sympool,
1795 const Stringpool* dynpool, Output_file* of) const
1797 switch (parameters->size_and_endianness())
1799 #ifdef HAVE_TARGET_32_LITTLE
1800 case Parameters::TARGET_32_LITTLE:
1801 this->sized_write_globals<32, false>(input_objects, sympool,
1802 dynpool, of);
1803 break;
1804 #endif
1805 #ifdef HAVE_TARGET_32_BIG
1806 case Parameters::TARGET_32_BIG:
1807 this->sized_write_globals<32, true>(input_objects, sympool,
1808 dynpool, of);
1809 break;
1810 #endif
1811 #ifdef HAVE_TARGET_64_LITTLE
1812 case Parameters::TARGET_64_LITTLE:
1813 this->sized_write_globals<64, false>(input_objects, sympool,
1814 dynpool, of);
1815 break;
1816 #endif
1817 #ifdef HAVE_TARGET_64_BIG
1818 case Parameters::TARGET_64_BIG:
1819 this->sized_write_globals<64, true>(input_objects, sympool,
1820 dynpool, of);
1821 break;
1822 #endif
1823 default:
1824 gold_unreachable();
1828 // Write out the global symbols.
1830 template<int size, bool big_endian>
1831 void
1832 Symbol_table::sized_write_globals(const Input_objects* input_objects,
1833 const Stringpool* sympool,
1834 const Stringpool* dynpool,
1835 Output_file* of) const
1837 const Target& target = parameters->target();
1839 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1841 const unsigned int output_count = this->output_count_;
1842 const section_size_type oview_size = output_count * sym_size;
1843 const unsigned int first_global_index = this->first_global_index_;
1844 unsigned char* psyms;
1845 if (this->offset_ == 0 || output_count == 0)
1846 psyms = NULL;
1847 else
1848 psyms = of->get_output_view(this->offset_, oview_size);
1850 const unsigned int dynamic_count = this->dynamic_count_;
1851 const section_size_type dynamic_size = dynamic_count * sym_size;
1852 const unsigned int first_dynamic_global_index =
1853 this->first_dynamic_global_index_;
1854 unsigned char* dynamic_view;
1855 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
1856 dynamic_view = NULL;
1857 else
1858 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
1860 for (Symbol_table_type::const_iterator p = this->table_.begin();
1861 p != this->table_.end();
1862 ++p)
1864 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1866 // Possibly warn about unresolved symbols in shared libraries.
1867 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
1869 unsigned int sym_index = sym->symtab_index();
1870 unsigned int dynsym_index;
1871 if (dynamic_view == NULL)
1872 dynsym_index = -1U;
1873 else
1874 dynsym_index = sym->dynsym_index();
1876 if (sym_index == -1U && dynsym_index == -1U)
1878 // This symbol is not included in the output file.
1879 continue;
1882 unsigned int shndx;
1883 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1884 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
1885 switch (sym->source())
1887 case Symbol::FROM_OBJECT:
1889 unsigned int in_shndx = sym->shndx();
1891 // FIXME: We need some target specific support here.
1892 if (in_shndx >= elfcpp::SHN_LORESERVE
1893 && in_shndx != elfcpp::SHN_ABS
1894 && in_shndx != elfcpp::SHN_COMMON)
1896 gold_error(_("%s: unsupported symbol section 0x%x"),
1897 sym->demangled_name().c_str(), in_shndx);
1898 shndx = in_shndx;
1900 else
1902 Object* symobj = sym->object();
1903 if (symobj->is_dynamic())
1905 if (sym->needs_dynsym_value())
1906 dynsym_value = target.dynsym_value(sym);
1907 shndx = elfcpp::SHN_UNDEF;
1909 else if (in_shndx == elfcpp::SHN_UNDEF
1910 || in_shndx == elfcpp::SHN_ABS
1911 || in_shndx == elfcpp::SHN_COMMON)
1912 shndx = in_shndx;
1913 else
1915 Relobj* relobj = static_cast<Relobj*>(symobj);
1916 section_offset_type secoff;
1917 Output_section* os = relobj->output_section(in_shndx,
1918 &secoff);
1919 gold_assert(os != NULL);
1920 shndx = os->out_shndx();
1922 // In object files symbol values are section
1923 // relative.
1924 if (parameters->options().relocatable())
1925 sym_value -= os->address();
1929 break;
1931 case Symbol::IN_OUTPUT_DATA:
1932 shndx = sym->output_data()->out_shndx();
1933 break;
1935 case Symbol::IN_OUTPUT_SEGMENT:
1936 shndx = elfcpp::SHN_ABS;
1937 break;
1939 case Symbol::CONSTANT:
1940 shndx = elfcpp::SHN_ABS;
1941 break;
1943 default:
1944 gold_unreachable();
1947 if (sym_index != -1U)
1949 sym_index -= first_global_index;
1950 gold_assert(sym_index < output_count);
1951 unsigned char* ps = psyms + (sym_index * sym_size);
1952 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1953 sympool, ps);
1956 if (dynsym_index != -1U)
1958 dynsym_index -= first_dynamic_global_index;
1959 gold_assert(dynsym_index < dynamic_count);
1960 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
1961 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1962 dynpool, pd);
1966 of->write_output_view(this->offset_, oview_size, psyms);
1967 if (dynamic_view != NULL)
1968 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1971 // Write out the symbol SYM, in section SHNDX, to P. POOL is the
1972 // strtab holding the name.
1974 template<int size, bool big_endian>
1975 void
1976 Symbol_table::sized_write_symbol(
1977 Sized_symbol<size>* sym,
1978 typename elfcpp::Elf_types<size>::Elf_Addr value,
1979 unsigned int shndx,
1980 const Stringpool* pool,
1981 unsigned char* p) const
1983 elfcpp::Sym_write<size, big_endian> osym(p);
1984 osym.put_st_name(pool->get_offset(sym->name()));
1985 osym.put_st_value(value);
1986 osym.put_st_size(sym->symsize());
1987 // A version script may have overridden the default binding.
1988 if (sym->is_forced_local())
1989 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1990 else
1991 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1992 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1993 osym.put_st_shndx(shndx);
1996 // Check for unresolved symbols in shared libraries. This is
1997 // controlled by the --allow-shlib-undefined option.
1999 // We only warn about libraries for which we have seen all the
2000 // DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2001 // which were not seen in this link. If we didn't see a DT_NEEDED
2002 // entry, we aren't going to be able to reliably report whether the
2003 // symbol is undefined.
2005 // We also don't warn about libraries found in the system library
2006 // directory (the directory were we find libc.so); we assume that
2007 // those libraries are OK. This heuristic avoids problems in
2008 // GNU/Linux, in which -ldl can have undefined references satisfied by
2009 // ld-linux.so.
2011 inline void
2012 Symbol_table::warn_about_undefined_dynobj_symbol(
2013 const Input_objects* input_objects,
2014 Symbol* sym) const
2016 if (sym->source() == Symbol::FROM_OBJECT
2017 && sym->object()->is_dynamic()
2018 && sym->shndx() == elfcpp::SHN_UNDEF
2019 && sym->binding() != elfcpp::STB_WEAK
2020 && !parameters->options().allow_shlib_undefined()
2021 && !parameters->target().is_defined_by_abi(sym)
2022 && !input_objects->found_in_system_library_directory(sym->object()))
2024 // A very ugly cast.
2025 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2026 if (!dynobj->has_unknown_needed_entries())
2027 gold_error(_("%s: undefined reference to '%s'"),
2028 sym->object()->name().c_str(),
2029 sym->demangled_name().c_str());
2033 // Write out a section symbol. Return the update offset.
2035 void
2036 Symbol_table::write_section_symbol(const Output_section *os,
2037 Output_file* of,
2038 off_t offset) const
2040 switch (parameters->size_and_endianness())
2042 #ifdef HAVE_TARGET_32_LITTLE
2043 case Parameters::TARGET_32_LITTLE:
2044 this->sized_write_section_symbol<32, false>(os, of, offset);
2045 break;
2046 #endif
2047 #ifdef HAVE_TARGET_32_BIG
2048 case Parameters::TARGET_32_BIG:
2049 this->sized_write_section_symbol<32, true>(os, of, offset);
2050 break;
2051 #endif
2052 #ifdef HAVE_TARGET_64_LITTLE
2053 case Parameters::TARGET_64_LITTLE:
2054 this->sized_write_section_symbol<64, false>(os, of, offset);
2055 break;
2056 #endif
2057 #ifdef HAVE_TARGET_64_BIG
2058 case Parameters::TARGET_64_BIG:
2059 this->sized_write_section_symbol<64, true>(os, of, offset);
2060 break;
2061 #endif
2062 default:
2063 gold_unreachable();
2067 // Write out a section symbol, specialized for size and endianness.
2069 template<int size, bool big_endian>
2070 void
2071 Symbol_table::sized_write_section_symbol(const Output_section* os,
2072 Output_file* of,
2073 off_t offset) const
2075 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2077 unsigned char* pov = of->get_output_view(offset, sym_size);
2079 elfcpp::Sym_write<size, big_endian> osym(pov);
2080 osym.put_st_name(0);
2081 osym.put_st_value(os->address());
2082 osym.put_st_size(0);
2083 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2084 elfcpp::STT_SECTION));
2085 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2086 osym.put_st_shndx(os->out_shndx());
2088 of->write_output_view(offset, sym_size, pov);
2091 // Print statistical information to stderr. This is used for --stats.
2093 void
2094 Symbol_table::print_stats() const
2096 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2097 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2098 program_name, this->table_.size(), this->table_.bucket_count());
2099 #else
2100 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2101 program_name, this->table_.size());
2102 #endif
2103 this->namepool_.print_stats("symbol table stringpool");
2106 // We check for ODR violations by looking for symbols with the same
2107 // name for which the debugging information reports that they were
2108 // defined in different source locations. When comparing the source
2109 // location, we consider instances with the same base filename and
2110 // line number to be the same. This is because different object
2111 // files/shared libraries can include the same header file using
2112 // different paths, and we don't want to report an ODR violation in
2113 // that case.
2115 // This struct is used to compare line information, as returned by
2116 // Dwarf_line_info::one_addr2line. It implements a < comparison
2117 // operator used with std::set.
2119 struct Odr_violation_compare
2121 bool
2122 operator()(const std::string& s1, const std::string& s2) const
2124 std::string::size_type pos1 = s1.rfind('/');
2125 std::string::size_type pos2 = s2.rfind('/');
2126 if (pos1 == std::string::npos
2127 || pos2 == std::string::npos)
2128 return s1 < s2;
2129 return s1.compare(pos1, std::string::npos,
2130 s2, pos2, std::string::npos) < 0;
2134 // Check candidate_odr_violations_ to find symbols with the same name
2135 // but apparently different definitions (different source-file/line-no).
2137 void
2138 Symbol_table::detect_odr_violations(const Task* task,
2139 const char* output_file_name) const
2141 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2142 it != candidate_odr_violations_.end();
2143 ++it)
2145 const char* symbol_name = it->first;
2146 // We use a sorted set so the output is deterministic.
2147 std::set<std::string, Odr_violation_compare> line_nums;
2149 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2150 locs = it->second.begin();
2151 locs != it->second.end();
2152 ++locs)
2154 // We need to lock the object in order to read it. This
2155 // means that we have to run in a singleton Task. If we
2156 // want to run this in a general Task for better
2157 // performance, we will need one Task for object, plus
2158 // appropriate locking to ensure that we don't conflict with
2159 // other uses of the object.
2160 Task_lock_obj<Object> tl(task, locs->object);
2161 std::string lineno = Dwarf_line_info::one_addr2line(
2162 locs->object, locs->shndx, locs->offset);
2163 if (!lineno.empty())
2164 line_nums.insert(lineno);
2167 if (line_nums.size() > 1)
2169 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
2170 "places (possible ODR violation):"),
2171 output_file_name, demangle(symbol_name).c_str());
2172 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2173 it2 != line_nums.end();
2174 ++it2)
2175 fprintf(stderr, " %s\n", it2->c_str());
2180 // Warnings functions.
2182 // Add a new warning.
2184 void
2185 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
2186 const std::string& warning)
2188 name = symtab->canonicalize_name(name);
2189 this->warnings_[name].set(obj, warning);
2192 // Look through the warnings and mark the symbols for which we should
2193 // warn. This is called during Layout::finalize when we know the
2194 // sources for all the symbols.
2196 void
2197 Warnings::note_warnings(Symbol_table* symtab)
2199 for (Warning_table::iterator p = this->warnings_.begin();
2200 p != this->warnings_.end();
2201 ++p)
2203 Symbol* sym = symtab->lookup(p->first, NULL);
2204 if (sym != NULL
2205 && sym->source() == Symbol::FROM_OBJECT
2206 && sym->object() == p->second.object)
2207 sym->set_has_warning();
2211 // Issue a warning. This is called when we see a relocation against a
2212 // symbol for which has a warning.
2214 template<int size, bool big_endian>
2215 void
2216 Warnings::issue_warning(const Symbol* sym,
2217 const Relocate_info<size, big_endian>* relinfo,
2218 size_t relnum, off_t reloffset) const
2220 gold_assert(sym->has_warning());
2221 Warning_table::const_iterator p = this->warnings_.find(sym->name());
2222 gold_assert(p != this->warnings_.end());
2223 gold_warning_at_location(relinfo, relnum, reloffset,
2224 "%s", p->second.text.c_str());
2227 // Instantiate the templates we need. We could use the configure
2228 // script to restrict this to only the ones needed for implemented
2229 // targets.
2231 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2232 template
2233 void
2234 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2235 #endif
2237 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2238 template
2239 void
2240 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2241 #endif
2243 #ifdef HAVE_TARGET_32_LITTLE
2244 template
2245 void
2246 Symbol_table::add_from_relobj<32, false>(
2247 Sized_relobj<32, false>* relobj,
2248 const unsigned char* syms,
2249 size_t count,
2250 const char* sym_names,
2251 size_t sym_name_size,
2252 Sized_relobj<32, true>::Symbols* sympointers);
2253 #endif
2255 #ifdef HAVE_TARGET_32_BIG
2256 template
2257 void
2258 Symbol_table::add_from_relobj<32, true>(
2259 Sized_relobj<32, true>* relobj,
2260 const unsigned char* syms,
2261 size_t count,
2262 const char* sym_names,
2263 size_t sym_name_size,
2264 Sized_relobj<32, false>::Symbols* sympointers);
2265 #endif
2267 #ifdef HAVE_TARGET_64_LITTLE
2268 template
2269 void
2270 Symbol_table::add_from_relobj<64, false>(
2271 Sized_relobj<64, false>* relobj,
2272 const unsigned char* syms,
2273 size_t count,
2274 const char* sym_names,
2275 size_t sym_name_size,
2276 Sized_relobj<64, true>::Symbols* sympointers);
2277 #endif
2279 #ifdef HAVE_TARGET_64_BIG
2280 template
2281 void
2282 Symbol_table::add_from_relobj<64, true>(
2283 Sized_relobj<64, true>* relobj,
2284 const unsigned char* syms,
2285 size_t count,
2286 const char* sym_names,
2287 size_t sym_name_size,
2288 Sized_relobj<64, false>::Symbols* sympointers);
2289 #endif
2291 #ifdef HAVE_TARGET_32_LITTLE
2292 template
2293 void
2294 Symbol_table::add_from_dynobj<32, false>(
2295 Sized_dynobj<32, false>* dynobj,
2296 const unsigned char* syms,
2297 size_t count,
2298 const char* sym_names,
2299 size_t sym_name_size,
2300 const unsigned char* versym,
2301 size_t versym_size,
2302 const std::vector<const char*>* version_map);
2303 #endif
2305 #ifdef HAVE_TARGET_32_BIG
2306 template
2307 void
2308 Symbol_table::add_from_dynobj<32, true>(
2309 Sized_dynobj<32, true>* dynobj,
2310 const unsigned char* syms,
2311 size_t count,
2312 const char* sym_names,
2313 size_t sym_name_size,
2314 const unsigned char* versym,
2315 size_t versym_size,
2316 const std::vector<const char*>* version_map);
2317 #endif
2319 #ifdef HAVE_TARGET_64_LITTLE
2320 template
2321 void
2322 Symbol_table::add_from_dynobj<64, false>(
2323 Sized_dynobj<64, false>* dynobj,
2324 const unsigned char* syms,
2325 size_t count,
2326 const char* sym_names,
2327 size_t sym_name_size,
2328 const unsigned char* versym,
2329 size_t versym_size,
2330 const std::vector<const char*>* version_map);
2331 #endif
2333 #ifdef HAVE_TARGET_64_BIG
2334 template
2335 void
2336 Symbol_table::add_from_dynobj<64, true>(
2337 Sized_dynobj<64, true>* dynobj,
2338 const unsigned char* syms,
2339 size_t count,
2340 const char* sym_names,
2341 size_t sym_name_size,
2342 const unsigned char* versym,
2343 size_t versym_size,
2344 const std::vector<const char*>* version_map);
2345 #endif
2347 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2348 template
2349 void
2350 Symbol_table::define_with_copy_reloc<32>(
2351 Sized_symbol<32>* sym,
2352 Output_data* posd,
2353 elfcpp::Elf_types<32>::Elf_Addr value);
2354 #endif
2356 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2357 template
2358 void
2359 Symbol_table::define_with_copy_reloc<64>(
2360 Sized_symbol<64>* sym,
2361 Output_data* posd,
2362 elfcpp::Elf_types<64>::Elf_Addr value);
2363 #endif
2365 #ifdef HAVE_TARGET_32_LITTLE
2366 template
2367 void
2368 Warnings::issue_warning<32, false>(const Symbol* sym,
2369 const Relocate_info<32, false>* relinfo,
2370 size_t relnum, off_t reloffset) const;
2371 #endif
2373 #ifdef HAVE_TARGET_32_BIG
2374 template
2375 void
2376 Warnings::issue_warning<32, true>(const Symbol* sym,
2377 const Relocate_info<32, true>* relinfo,
2378 size_t relnum, off_t reloffset) const;
2379 #endif
2381 #ifdef HAVE_TARGET_64_LITTLE
2382 template
2383 void
2384 Warnings::issue_warning<64, false>(const Symbol* sym,
2385 const Relocate_info<64, false>* relinfo,
2386 size_t relnum, off_t reloffset) const;
2387 #endif
2389 #ifdef HAVE_TARGET_64_BIG
2390 template
2391 void
2392 Warnings::issue_warning<64, true>(const Symbol* sym,
2393 const Relocate_info<64, true>* relinfo,
2394 size_t relnum, off_t reloffset) const;
2395 #endif
2397 } // End namespace gold.