1 /* IBM S/390-specific support for 64-bit ELF
2 Copyright 2000, 2001 Free Software Foundation, Inc.
3 Contributed Martin Schwidefsky (schwidefsky@de.ibm.com).
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
28 static reloc_howto_type
*elf_s390_reloc_type_lookup
29 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
30 static void elf_s390_info_to_howto
31 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
32 static boolean elf_s390_is_local_label_name
33 PARAMS ((bfd
*, const char *));
34 static struct bfd_hash_entry
*link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
36 static struct bfd_link_hash_table
*elf_s390_link_hash_table_create
38 static boolean create_got_section
39 PARAMS((bfd
*, struct bfd_link_info
*));
40 static boolean elf_s390_create_dynamic_sections
41 PARAMS((bfd
*, struct bfd_link_info
*));
42 static void elf_s390_copy_indirect_symbol
43 PARAMS ((struct elf_link_hash_entry
*, struct elf_link_hash_entry
*));
44 static boolean elf_s390_check_relocs
45 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
46 const Elf_Internal_Rela
*));
47 static asection
*elf_s390_gc_mark_hook
48 PARAMS ((bfd
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
49 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
50 static boolean elf_s390_gc_sweep_hook
51 PARAMS ((bfd
*, struct bfd_link_info
*, asection
*,
52 const Elf_Internal_Rela
*));
53 static boolean elf_s390_adjust_dynamic_symbol
54 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
55 static boolean allocate_dynrelocs
56 PARAMS ((struct elf_link_hash_entry
*, PTR
));
57 static boolean readonly_dynrelocs
58 PARAMS ((struct elf_link_hash_entry
*, PTR
));
59 static boolean elf_s390_size_dynamic_sections
60 PARAMS ((bfd
*, struct bfd_link_info
*));
61 static boolean elf_s390_relocate_section
62 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
63 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
64 static boolean elf_s390_finish_dynamic_symbol
65 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf_link_hash_entry
*,
67 static enum elf_reloc_type_class elf_s390_reloc_type_class
68 PARAMS ((const Elf_Internal_Rela
*));
69 static boolean elf_s390_finish_dynamic_sections
70 PARAMS ((bfd
*, struct bfd_link_info
*));
71 static boolean elf_s390_object_p
PARAMS ((bfd
*));
73 #define USE_RELA 1 /* We want RELA relocations, not REL. */
77 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
78 from smaller values. Start with zero, widen, *then* decrement. */
79 #define MINUS_ONE (((bfd_vma)0) - 1)
81 /* The relocation "howto" table. */
82 static reloc_howto_type elf_howto_table
[] =
84 HOWTO (R_390_NONE
, /* type */
86 0, /* size (0 = byte, 1 = short, 2 = long) */
88 false, /* pc_relative */
90 complain_overflow_dont
, /* complain_on_overflow */
91 bfd_elf_generic_reloc
, /* special_function */
92 "R_390_NONE", /* name */
93 false, /* partial_inplace */
96 false), /* pcrel_offset */
98 HOWTO(R_390_8
, 0, 0, 8, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_8", false, 0,0x000000ff, false),
99 HOWTO(R_390_12
, 0, 1, 12, false, 0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_390_12", false, 0,0x00000fff, false),
100 HOWTO(R_390_16
, 0, 1, 16, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_16", false, 0,0x0000ffff, false),
101 HOWTO(R_390_32
, 0, 2, 32, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_32", false, 0,0xffffffff, false),
102 HOWTO(R_390_PC32
, 0, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PC32", false, 0,0xffffffff, true),
103 HOWTO(R_390_GOT12
, 0, 1, 12, false, 0, complain_overflow_dont
, bfd_elf_generic_reloc
, "R_390_GOT12", false, 0,0x00000fff, false),
104 HOWTO(R_390_GOT32
, 0, 2, 32, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOT32", false, 0,0xffffffff, false),
105 HOWTO(R_390_PLT32
, 0, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PLT32", false, 0,0xffffffff, true),
106 HOWTO(R_390_COPY
, 0, 4, 64, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_COPY", false, 0,MINUS_ONE
, false),
107 HOWTO(R_390_GLOB_DAT
, 0, 4, 64, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GLOB_DAT",false, 0,MINUS_ONE
, false),
108 HOWTO(R_390_JMP_SLOT
, 0, 4, 64, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_JMP_SLOT",false, 0,MINUS_ONE
, false),
109 HOWTO(R_390_RELATIVE
, 0, 4, 64, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_RELATIVE",false, 0,MINUS_ONE
, false),
110 HOWTO(R_390_GOTOFF
, 0, 4, 64, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOTOFF", false, 0,MINUS_ONE
, false),
111 HOWTO(R_390_GOTPC
, 0, 4, 64, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOTPC", false, 0,MINUS_ONE
, true),
112 HOWTO(R_390_GOT16
, 0, 1, 16, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOT16", false, 0,0x0000ffff, false),
113 HOWTO(R_390_PC16
, 0, 1, 16, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PC16", false, 0,0x0000ffff, true),
114 HOWTO(R_390_PC16DBL
, 1, 1, 16, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PC16DBL", false, 0,0x0000ffff, true),
115 HOWTO(R_390_PLT16DBL
, 1, 1, 16, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PLT16DBL", false, 0,0x0000ffff, true),
116 HOWTO(R_390_PC32DBL
, 1, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PC32DBL", false, 0,0xffffffff, true),
117 HOWTO(R_390_PLT32DBL
, 1, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PLT32DBL", false, 0,0xffffffff, true),
118 HOWTO(R_390_GOTPCDBL
, 1, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOTPCDBL", false, 0,MINUS_ONE
, true),
119 HOWTO(R_390_64
, 0, 4, 64, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_64", false, 0,MINUS_ONE
, false),
120 HOWTO(R_390_PC64
, 0, 4, 64, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PC64", false, 0,MINUS_ONE
, true),
121 HOWTO(R_390_GOT64
, 0, 4, 64, false, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOT64", false, 0,MINUS_ONE
, false),
122 HOWTO(R_390_PLT64
, 0, 4, 64, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_PLT64", false, 0,MINUS_ONE
, true),
123 HOWTO(R_390_GOTENT
, 1, 2, 32, true, 0, complain_overflow_bitfield
, bfd_elf_generic_reloc
, "R_390_GOTENT", false, 0,MINUS_ONE
, true),
126 /* GNU extension to record C++ vtable hierarchy. */
127 static reloc_howto_type elf64_s390_vtinherit_howto
=
128 HOWTO (R_390_GNU_VTINHERIT
, 0,4,0,false,0,complain_overflow_dont
, NULL
, "R_390_GNU_VTINHERIT", false,0, 0, false);
129 static reloc_howto_type elf64_s390_vtentry_howto
=
130 HOWTO (R_390_GNU_VTENTRY
, 0,4,0,false,0,complain_overflow_dont
, _bfd_elf_rel_vtable_reloc_fn
,"R_390_GNU_VTENTRY", false,0,0, false);
132 static reloc_howto_type
*
133 elf_s390_reloc_type_lookup (abfd
, code
)
134 bfd
*abfd ATTRIBUTE_UNUSED
;
135 bfd_reloc_code_real_type code
;
140 return &elf_howto_table
[(int) R_390_NONE
];
142 return &elf_howto_table
[(int) R_390_8
];
143 case BFD_RELOC_390_12
:
144 return &elf_howto_table
[(int) R_390_12
];
146 return &elf_howto_table
[(int) R_390_16
];
148 return &elf_howto_table
[(int) R_390_32
];
150 return &elf_howto_table
[(int) R_390_32
];
151 case BFD_RELOC_32_PCREL
:
152 return &elf_howto_table
[(int) R_390_PC32
];
153 case BFD_RELOC_390_GOT12
:
154 return &elf_howto_table
[(int) R_390_GOT12
];
155 case BFD_RELOC_32_GOT_PCREL
:
156 return &elf_howto_table
[(int) R_390_GOT32
];
157 case BFD_RELOC_390_PLT32
:
158 return &elf_howto_table
[(int) R_390_PLT32
];
159 case BFD_RELOC_390_COPY
:
160 return &elf_howto_table
[(int) R_390_COPY
];
161 case BFD_RELOC_390_GLOB_DAT
:
162 return &elf_howto_table
[(int) R_390_GLOB_DAT
];
163 case BFD_RELOC_390_JMP_SLOT
:
164 return &elf_howto_table
[(int) R_390_JMP_SLOT
];
165 case BFD_RELOC_390_RELATIVE
:
166 return &elf_howto_table
[(int) R_390_RELATIVE
];
167 case BFD_RELOC_32_GOTOFF
:
168 return &elf_howto_table
[(int) R_390_GOTOFF
];
169 case BFD_RELOC_390_GOTPC
:
170 return &elf_howto_table
[(int) R_390_GOTPC
];
171 case BFD_RELOC_390_GOT16
:
172 return &elf_howto_table
[(int) R_390_GOT16
];
173 case BFD_RELOC_16_PCREL
:
174 return &elf_howto_table
[(int) R_390_PC16
];
175 case BFD_RELOC_390_PC16DBL
:
176 return &elf_howto_table
[(int) R_390_PC16DBL
];
177 case BFD_RELOC_390_PLT16DBL
:
178 return &elf_howto_table
[(int) R_390_PLT16DBL
];
179 case BFD_RELOC_VTABLE_INHERIT
:
180 return &elf64_s390_vtinherit_howto
;
181 case BFD_RELOC_VTABLE_ENTRY
:
182 return &elf64_s390_vtentry_howto
;
183 case BFD_RELOC_390_PC32DBL
:
184 return &elf_howto_table
[(int) R_390_PC32DBL
];
185 case BFD_RELOC_390_PLT32DBL
:
186 return &elf_howto_table
[(int) R_390_PLT32DBL
];
187 case BFD_RELOC_390_GOTPCDBL
:
188 return &elf_howto_table
[(int) R_390_GOTPCDBL
];
190 return &elf_howto_table
[(int) R_390_64
];
191 case BFD_RELOC_64_PCREL
:
192 return &elf_howto_table
[(int) R_390_PC64
];
193 case BFD_RELOC_390_GOT64
:
194 return &elf_howto_table
[(int) R_390_GOT64
];
195 case BFD_RELOC_390_PLT64
:
196 return &elf_howto_table
[(int) R_390_PLT64
];
197 case BFD_RELOC_390_GOTENT
:
198 return &elf_howto_table
[(int) R_390_GOTENT
];
205 /* We need to use ELF64_R_TYPE so we have our own copy of this function,
206 and elf64-s390.c has its own copy. */
209 elf_s390_info_to_howto (abfd
, cache_ptr
, dst
)
210 bfd
*abfd ATTRIBUTE_UNUSED
;
212 Elf_Internal_Rela
*dst
;
214 switch (ELF64_R_TYPE(dst
->r_info
))
216 case R_390_GNU_VTINHERIT
:
217 cache_ptr
->howto
= &elf64_s390_vtinherit_howto
;
220 case R_390_GNU_VTENTRY
:
221 cache_ptr
->howto
= &elf64_s390_vtentry_howto
;
225 BFD_ASSERT (ELF64_R_TYPE(dst
->r_info
) < (unsigned int) R_390_max
);
226 cache_ptr
->howto
= &elf_howto_table
[ELF64_R_TYPE(dst
->r_info
)];
231 elf_s390_is_local_label_name (abfd
, name
)
235 if (name
[0] == '.' && (name
[1] == 'X' || name
[1] == 'L'))
238 return _bfd_elf_is_local_label_name (abfd
, name
);
241 /* Functions for the 390 ELF linker. */
243 /* The name of the dynamic interpreter. This is put in the .interp
246 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
248 /* The size in bytes of the first entry in the procedure linkage table. */
249 #define PLT_FIRST_ENTRY_SIZE 32
250 /* The size in bytes of an entry in the procedure linkage table. */
251 #define PLT_ENTRY_SIZE 32
253 #define GOT_ENTRY_SIZE 8
255 /* The first three entries in a procedure linkage table are reserved,
256 and the initial contents are unimportant (we zero them out).
257 Subsequent entries look like this. See the SVR4 ABI 386
258 supplement to see how this works. */
260 /* For the s390, simple addr offset can only be 0 - 4096.
261 To use the full 16777216 TB address space, several instructions
262 are needed to load an address in a register and execute
263 a branch( or just saving the address)
265 Furthermore, only r 0 and 1 are free to use!!! */
267 /* The first 3 words in the GOT are then reserved.
268 Word 0 is the address of the dynamic table.
269 Word 1 is a pointer to a structure describing the object
270 Word 2 is used to point to the loader entry address.
272 The code for PLT entries looks like this:
274 The GOT holds the address in the PLT to be executed.
275 The loader then gets:
276 24(15) = Pointer to the structure describing the object.
277 28(15) = Offset in symbol table
278 The loader must then find the module where the function is
279 and insert the address in the GOT.
281 PLT1: LARL 1,<fn>@GOTENT # 6 bytes Load address of GOT entry in r1
282 LG 1,0(1) # 6 bytes Load address from GOT in r1
283 BCR 15,1 # 2 bytes Jump to address
284 RET1: BASR 1,0 # 2 bytes Return from GOT 1st time
285 LGF 1,12(1) # 6 bytes Load offset in symbl table in r1
286 BRCL 15,-x # 6 bytes Jump to start of PLT
287 .long ? # 4 bytes offset into symbol table
289 Total = 32 bytes per PLT entry
290 Fixup at offset 2: relative address to GOT entry
291 Fixup at offset 22: relative branch to PLT0
292 Fixup at offset 28: 32 bit offset into symbol table
294 A 32 bit offset into the symbol table is enough. It allows for symbol
295 tables up to a size of 2 gigabyte. A single dynamic object (the main
296 program, any shared library) is limited to 4GB in size and I want to see
297 the program that manages to have a symbol table of more than 2 GB with a
298 total size of at max 4 GB. */
300 #define PLT_ENTRY_WORD0 (bfd_vma) 0xc0100000
301 #define PLT_ENTRY_WORD1 (bfd_vma) 0x0000e310
302 #define PLT_ENTRY_WORD2 (bfd_vma) 0x10000004
303 #define PLT_ENTRY_WORD3 (bfd_vma) 0x07f10d10
304 #define PLT_ENTRY_WORD4 (bfd_vma) 0xe310100c
305 #define PLT_ENTRY_WORD5 (bfd_vma) 0x0014c0f4
306 #define PLT_ENTRY_WORD6 (bfd_vma) 0x00000000
307 #define PLT_ENTRY_WORD7 (bfd_vma) 0x00000000
309 /* The first PLT entry pushes the offset into the symbol table
310 from R1 onto the stack at 8(15) and the loader object info
311 at 12(15), loads the loader address in R1 and jumps to it. */
313 /* The first entry in the PLT:
316 STG 1,56(15) # r1 contains the offset into the symbol table
317 LARL 1,_GLOBAL_OFFSET_TABLE # load address of global offset table
318 MVC 48(8,15),8(1) # move loader ino (object struct address) to stack
319 LG 1,16(1) # get entry address of loader
320 BCR 15,1 # jump to loader
322 Fixup at offset 8: relative address to start of GOT. */
324 #define PLT_FIRST_ENTRY_WORD0 (bfd_vma) 0xe310f038
325 #define PLT_FIRST_ENTRY_WORD1 (bfd_vma) 0x0024c010
326 #define PLT_FIRST_ENTRY_WORD2 (bfd_vma) 0x00000000
327 #define PLT_FIRST_ENTRY_WORD3 (bfd_vma) 0xd207f030
328 #define PLT_FIRST_ENTRY_WORD4 (bfd_vma) 0x1008e310
329 #define PLT_FIRST_ENTRY_WORD5 (bfd_vma) 0x10100004
330 #define PLT_FIRST_ENTRY_WORD6 (bfd_vma) 0x07f10700
331 #define PLT_FIRST_ENTRY_WORD7 (bfd_vma) 0x07000700
333 /* The s390 linker needs to keep track of the number of relocs that it
334 decides to copy as dynamic relocs in check_relocs for each symbol.
335 This is so that it can later discard them if they are found to be
336 unnecessary. We store the information in a field extending the
337 regular ELF linker hash table. */
339 struct elf_s390_dyn_relocs
341 struct elf_s390_dyn_relocs
*next
;
343 /* The input section of the reloc. */
346 /* Total number of relocs copied for the input section. */
349 /* Number of pc-relative relocs copied for the input section. */
350 bfd_size_type pc_count
;
353 /* s390 ELF linker hash entry. */
355 struct elf_s390_link_hash_entry
357 struct elf_link_hash_entry elf
;
359 /* Track dynamic relocs copied for this symbol. */
360 struct elf_s390_dyn_relocs
*dyn_relocs
;
363 /* s390 ELF linker hash table. */
365 struct elf_s390_link_hash_table
367 struct elf_link_hash_table elf
;
369 /* Short-cuts to get to dynamic linker sections. */
378 /* Small local sym to section mapping cache. */
379 struct sym_sec_cache sym_sec
;
382 /* Get the s390 ELF linker hash table from a link_info structure. */
384 #define elf_s390_hash_table(p) \
385 ((struct elf_s390_link_hash_table *) ((p)->hash))
387 /* Create an entry in an s390 ELF linker hash table. */
389 static struct bfd_hash_entry
*
390 link_hash_newfunc (entry
, table
, string
)
391 struct bfd_hash_entry
*entry
;
392 struct bfd_hash_table
*table
;
395 /* Allocate the structure if it has not already been allocated by a
399 entry
= bfd_hash_allocate (table
,
400 sizeof (struct elf_s390_link_hash_entry
));
405 /* Call the allocation method of the superclass. */
406 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
409 struct elf_s390_link_hash_entry
*eh
;
411 eh
= (struct elf_s390_link_hash_entry
*) entry
;
412 eh
->dyn_relocs
= NULL
;
418 /* Create an s390 ELF linker hash table. */
420 static struct bfd_link_hash_table
*
421 elf_s390_link_hash_table_create (abfd
)
424 struct elf_s390_link_hash_table
*ret
;
425 bfd_size_type amt
= sizeof (struct elf_s390_link_hash_table
);
427 ret
= (struct elf_s390_link_hash_table
*) bfd_alloc (abfd
, amt
);
431 if (! _bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, link_hash_newfunc
))
433 bfd_release (abfd
, ret
);
444 ret
->sym_sec
.abfd
= NULL
;
446 return &ret
->elf
.root
;
449 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
450 shortcuts to them in our hash table. */
453 create_got_section (dynobj
, info
)
455 struct bfd_link_info
*info
;
457 struct elf_s390_link_hash_table
*htab
;
459 if (! _bfd_elf_create_got_section (dynobj
, info
))
462 htab
= elf_s390_hash_table (info
);
463 htab
->sgot
= bfd_get_section_by_name (dynobj
, ".got");
464 htab
->sgotplt
= bfd_get_section_by_name (dynobj
, ".got.plt");
465 if (!htab
->sgot
|| !htab
->sgotplt
)
468 htab
->srelgot
= bfd_make_section (dynobj
, ".rela.got");
469 if (htab
->srelgot
== NULL
470 || ! bfd_set_section_flags (dynobj
, htab
->srelgot
,
471 (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
472 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
474 || ! bfd_set_section_alignment (dynobj
, htab
->srelgot
, 2))
479 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
480 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
484 elf_s390_create_dynamic_sections (dynobj
, info
)
486 struct bfd_link_info
*info
;
488 struct elf_s390_link_hash_table
*htab
;
490 htab
= elf_s390_hash_table (info
);
491 if (!htab
->sgot
&& !create_got_section (dynobj
, info
))
494 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
497 htab
->splt
= bfd_get_section_by_name (dynobj
, ".plt");
498 htab
->srelplt
= bfd_get_section_by_name (dynobj
, ".rela.plt");
499 htab
->sdynbss
= bfd_get_section_by_name (dynobj
, ".dynbss");
501 htab
->srelbss
= bfd_get_section_by_name (dynobj
, ".rela.bss");
503 if (!htab
->splt
|| !htab
->srelplt
|| !htab
->sdynbss
504 || (!info
->shared
&& !htab
->srelbss
))
510 /* Copy the extra info we tack onto an elf_link_hash_entry. */
513 elf_s390_copy_indirect_symbol (dir
, ind
)
514 struct elf_link_hash_entry
*dir
, *ind
;
516 struct elf_s390_link_hash_entry
*edir
, *eind
;
518 edir
= (struct elf_s390_link_hash_entry
*) dir
;
519 eind
= (struct elf_s390_link_hash_entry
*) ind
;
521 if (eind
->dyn_relocs
!= NULL
)
523 if (edir
->dyn_relocs
!= NULL
)
525 struct elf_s390_dyn_relocs
**pp
;
526 struct elf_s390_dyn_relocs
*p
;
528 if (ind
->root
.type
== bfd_link_hash_indirect
)
531 /* Add reloc counts against the weak sym to the strong sym
532 list. Merge any entries against the same section. */
533 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
535 struct elf_s390_dyn_relocs
*q
;
537 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
538 if (q
->sec
== p
->sec
)
540 q
->pc_count
+= p
->pc_count
;
541 q
->count
+= p
->count
;
548 *pp
= edir
->dyn_relocs
;
551 edir
->dyn_relocs
= eind
->dyn_relocs
;
552 eind
->dyn_relocs
= NULL
;
555 _bfd_elf_link_hash_copy_indirect (dir
, ind
);
558 /* Look through the relocs for a section during the first phase, and
559 allocate space in the global offset table or procedure linkage
563 elf_s390_check_relocs (abfd
, info
, sec
, relocs
)
565 struct bfd_link_info
*info
;
567 const Elf_Internal_Rela
*relocs
;
569 struct elf_s390_link_hash_table
*htab
;
570 Elf_Internal_Shdr
*symtab_hdr
;
571 struct elf_link_hash_entry
**sym_hashes
;
572 const Elf_Internal_Rela
*rel
;
573 const Elf_Internal_Rela
*rel_end
;
576 if (info
->relocateable
)
579 htab
= elf_s390_hash_table (info
);
580 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
581 sym_hashes
= elf_sym_hashes (abfd
);
585 rel_end
= relocs
+ sec
->reloc_count
;
586 for (rel
= relocs
; rel
< rel_end
; rel
++)
588 unsigned long r_symndx
;
589 struct elf_link_hash_entry
*h
;
591 r_symndx
= ELF64_R_SYM (rel
->r_info
);
593 if (r_symndx
>= NUM_SHDR_ENTRIES (symtab_hdr
))
595 (*_bfd_error_handler
) (_("%s: bad symbol index: %d"),
596 bfd_archive_filename (abfd
),
601 if (r_symndx
< symtab_hdr
->sh_info
)
604 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
606 switch (ELF64_R_TYPE (rel
->r_info
))
613 /* This symbol requires a global offset table entry. */
616 h
->got
.refcount
+= 1;
620 bfd_signed_vma
*local_got_refcounts
;
622 /* This is a global offset table entry for a local symbol. */
623 local_got_refcounts
= elf_local_got_refcounts (abfd
);
624 if (local_got_refcounts
== NULL
)
628 size
= symtab_hdr
->sh_info
;
629 size
*= sizeof (bfd_signed_vma
);
630 local_got_refcounts
= ((bfd_signed_vma
*)
631 bfd_zalloc (abfd
, size
));
632 if (local_got_refcounts
== NULL
)
634 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
636 local_got_refcounts
[r_symndx
] += 1;
643 if (htab
->sgot
== NULL
)
645 if (htab
->elf
.dynobj
== NULL
)
646 htab
->elf
.dynobj
= abfd
;
647 if (!create_got_section (htab
->elf
.dynobj
, info
))
656 /* This symbol requires a procedure linkage table entry. We
657 actually build the entry in adjust_dynamic_symbol,
658 because this might be a case of linking PIC code which is
659 never referenced by a dynamic object, in which case we
660 don't need to generate a procedure linkage table entry
663 /* If this is a local symbol, we resolve it directly without
664 creating a procedure linkage table entry. */
668 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
669 h
->plt
.refcount
+= 1;
681 if (h
!= NULL
&& !info
->shared
)
683 /* If this reloc is in a read-only section, we might
684 need a copy reloc. We can't check reliably at this
685 stage whether the section is read-only, as input
686 sections have not yet been mapped to output sections.
687 Tentatively set the flag for now, and correct in
688 adjust_dynamic_symbol. */
689 h
->elf_link_hash_flags
|= ELF_LINK_NON_GOT_REF
;
691 /* We may need a .plt entry if the function this reloc
692 refers to is in a shared lib. */
693 h
->plt
.refcount
+= 1;
696 /* If we are creating a shared library, and this is a reloc
697 against a global symbol, or a non PC relative reloc
698 against a local symbol, then we need to copy the reloc
699 into the shared library. However, if we are linking with
700 -Bsymbolic, we do not need to copy a reloc against a
701 global symbol which is defined in an object we are
702 including in the link (i.e., DEF_REGULAR is set). At
703 this point we have not seen all the input files, so it is
704 possible that DEF_REGULAR is not set now but will be set
705 later (it is never cleared). In case of a weak definition,
706 DEF_REGULAR may be cleared later by a strong definition in
707 a shared library. We account for that possibility below by
708 storing information in the relocs_copied field of the hash
709 table entry. A similar situation occurs when creating
710 shared libraries and symbol visibility changes render the
713 If on the other hand, we are creating an executable, we
714 may need to keep relocations for symbols satisfied by a
715 dynamic library if we manage to avoid copy relocs for the
718 && (sec
->flags
& SEC_ALLOC
) != 0
719 && ((ELF64_R_TYPE (rel
->r_info
) != R_390_PC16
720 && ELF64_R_TYPE (rel
->r_info
) != R_390_PC16DBL
721 && ELF64_R_TYPE (rel
->r_info
) != R_390_PC32
722 && ELF64_R_TYPE (rel
->r_info
) != R_390_PC32DBL
723 && ELF64_R_TYPE (rel
->r_info
) != R_390_PC64
)
726 || h
->root
.type
== bfd_link_hash_defweak
727 || (h
->elf_link_hash_flags
728 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
730 && (sec
->flags
& SEC_ALLOC
) != 0
732 && (h
->root
.type
== bfd_link_hash_defweak
733 || (h
->elf_link_hash_flags
734 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
736 struct elf_s390_dyn_relocs
*p
;
737 struct elf_s390_dyn_relocs
**head
;
739 /* We must copy these reloc types into the output file.
740 Create a reloc section in dynobj and make room for
747 name
= (bfd_elf_string_from_elf_section
749 elf_elfheader (abfd
)->e_shstrndx
,
750 elf_section_data (sec
)->rel_hdr
.sh_name
));
754 if (strncmp (name
, ".rela", 5) != 0
755 || strcmp (bfd_get_section_name (abfd
, sec
),
758 (*_bfd_error_handler
)
759 (_("%s: bad relocation section name `%s\'"),
760 bfd_archive_filename (abfd
), name
);
763 if (htab
->elf
.dynobj
== NULL
)
764 htab
->elf
.dynobj
= abfd
;
766 dynobj
= htab
->elf
.dynobj
;
767 sreloc
= bfd_get_section_by_name (dynobj
, name
);
772 sreloc
= bfd_make_section (dynobj
, name
);
773 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
774 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
775 if ((sec
->flags
& SEC_ALLOC
) != 0)
776 flags
|= SEC_ALLOC
| SEC_LOAD
;
778 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
779 || ! bfd_set_section_alignment (dynobj
, sreloc
, 2))
782 elf_section_data (sec
)->sreloc
= sreloc
;
785 /* If this is a global symbol, we count the number of
786 relocations we need for this symbol. */
789 head
= &((struct elf_s390_link_hash_entry
*) h
)->dyn_relocs
;
793 /* Track dynamic relocs needed for local syms too.
794 We really need local syms available to do this
798 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
803 head
= ((struct elf_s390_dyn_relocs
**)
804 &elf_section_data (s
)->local_dynrel
);
808 if (p
== NULL
|| p
->sec
!= sec
)
810 bfd_size_type amt
= sizeof *p
;
811 p
= ((struct elf_s390_dyn_relocs
*)
812 bfd_alloc (htab
->elf
.dynobj
, amt
));
823 if (ELF64_R_TYPE (rel
->r_info
) == R_390_PC16
824 || ELF64_R_TYPE (rel
->r_info
) == R_390_PC16DBL
825 || ELF64_R_TYPE (rel
->r_info
) == R_390_PC32
826 || ELF64_R_TYPE (rel
->r_info
) == R_390_PC32DBL
827 || ELF64_R_TYPE (rel
->r_info
) == R_390_PC64
)
832 /* This relocation describes the C++ object vtable hierarchy.
833 Reconstruct it for later use during GC. */
834 case R_390_GNU_VTINHERIT
:
835 if (!_bfd_elf64_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
839 /* This relocation describes which C++ vtable entries are actually
840 used. Record for later use during GC. */
841 case R_390_GNU_VTENTRY
:
842 if (!_bfd_elf64_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
854 /* Return the section that should be marked against GC for a given
858 elf_s390_gc_mark_hook (abfd
, info
, rel
, h
, sym
)
860 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
861 Elf_Internal_Rela
*rel
;
862 struct elf_link_hash_entry
*h
;
863 Elf_Internal_Sym
*sym
;
867 switch (ELF64_R_TYPE (rel
->r_info
))
869 case R_390_GNU_VTINHERIT
:
870 case R_390_GNU_VTENTRY
:
874 switch (h
->root
.type
)
876 case bfd_link_hash_defined
:
877 case bfd_link_hash_defweak
:
878 return h
->root
.u
.def
.section
;
880 case bfd_link_hash_common
:
881 return h
->root
.u
.c
.p
->section
;
890 if (!(elf_bad_symtab (abfd
)
891 && ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
892 && ! ((sym
->st_shndx
<= 0 || sym
->st_shndx
>= SHN_LORESERVE
)
893 && sym
->st_shndx
!= SHN_COMMON
))
895 return bfd_section_from_elf_index (abfd
, sym
->st_shndx
);
902 /* Update the got entry reference counts for the section being removed. */
905 elf_s390_gc_sweep_hook (abfd
, info
, sec
, relocs
)
907 struct bfd_link_info
*info
;
909 const Elf_Internal_Rela
*relocs
;
911 Elf_Internal_Shdr
*symtab_hdr
;
912 struct elf_link_hash_entry
**sym_hashes
;
913 bfd_signed_vma
*local_got_refcounts
;
914 const Elf_Internal_Rela
*rel
, *relend
;
915 unsigned long r_symndx
;
916 struct elf_link_hash_entry
*h
;
918 elf_section_data (sec
)->local_dynrel
= NULL
;
920 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
921 sym_hashes
= elf_sym_hashes (abfd
);
922 local_got_refcounts
= elf_local_got_refcounts (abfd
);
924 relend
= relocs
+ sec
->reloc_count
;
925 for (rel
= relocs
; rel
< relend
; rel
++)
926 switch (ELF64_R_TYPE (rel
->r_info
))
936 r_symndx
= ELF64_R_SYM (rel
->r_info
);
937 if (r_symndx
>= symtab_hdr
->sh_info
)
939 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
940 if (h
->got
.refcount
> 0)
941 h
->got
.refcount
-= 1;
943 else if (local_got_refcounts
!= NULL
)
945 if (local_got_refcounts
[r_symndx
] > 0)
946 local_got_refcounts
[r_symndx
] -= 1;
960 r_symndx
= ELF64_R_SYM (rel
->r_info
);
961 if (r_symndx
>= symtab_hdr
->sh_info
)
963 struct elf_s390_link_hash_entry
*eh
;
964 struct elf_s390_dyn_relocs
**pp
;
965 struct elf_s390_dyn_relocs
*p
;
967 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
969 if (!info
->shared
&& h
->plt
.refcount
> 0)
970 h
->plt
.refcount
-= 1;
972 eh
= (struct elf_s390_link_hash_entry
*) h
;
974 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
977 if (ELF64_R_TYPE (rel
->r_info
) == R_390_PC16
978 || ELF64_R_TYPE (rel
->r_info
) == R_390_PC16DBL
979 || ELF64_R_TYPE (rel
->r_info
) == R_390_PC32
)
993 r_symndx
= ELF64_R_SYM (rel
->r_info
);
994 if (r_symndx
>= symtab_hdr
->sh_info
)
996 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
997 if (h
->plt
.refcount
> 0)
998 h
->plt
.refcount
-= 1;
1009 /* Adjust a symbol defined by a dynamic object and referenced by a
1010 regular object. The current definition is in some section of the
1011 dynamic object, but we're not including those sections. We have to
1012 change the definition to something the rest of the link can
1016 elf_s390_adjust_dynamic_symbol (info
, h
)
1017 struct bfd_link_info
*info
;
1018 struct elf_link_hash_entry
*h
;
1020 struct elf_s390_link_hash_table
*htab
;
1021 struct elf_s390_link_hash_entry
* eh
;
1022 struct elf_s390_dyn_relocs
*p
;
1024 unsigned int power_of_two
;
1026 /* If this is a function, put it in the procedure linkage table. We
1027 will fill in the contents of the procedure linkage table later
1028 (although we could actually do it here). */
1029 if (h
->type
== STT_FUNC
1030 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
1032 if (h
->plt
.refcount
<= 0
1034 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
1035 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) == 0))
1037 /* This case can occur if we saw a PLT32 reloc in an input
1038 file, but the symbol was never referred to by a dynamic
1039 object, or if all references were garbage collected. In
1040 such a case, we don't actually need to build a procedure
1041 linkage table, and we can just do a PC32 reloc instead. */
1042 h
->plt
.offset
= (bfd_vma
) -1;
1043 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1049 /* It's possible that we incorrectly decided a .plt reloc was
1050 needed for an R_390_PC32 reloc to a non-function sym in
1051 check_relocs. We can't decide accurately between function and
1052 non-function syms in check-relocs; Objects loaded later in
1053 the link may change h->type. So fix it now. */
1054 h
->plt
.offset
= (bfd_vma
) -1;
1056 /* If this is a weak symbol, and there is a real definition, the
1057 processor independent code will have arranged for us to see the
1058 real definition first, and we can just use the same value. */
1059 if (h
->weakdef
!= NULL
)
1061 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1062 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1063 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1064 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1068 /* This is a reference to a symbol defined by a dynamic object which
1069 is not a function. */
1071 /* If we are creating a shared library, we must presume that the
1072 only references to the symbol are via the global offset table.
1073 For such cases we need not do anything here; the relocations will
1074 be handled correctly by relocate_section. */
1078 /* If there are no references to this symbol that do not use the
1079 GOT, we don't need to generate a copy reloc. */
1080 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0)
1083 /* If -z nocopyreloc was given, we won't generate them either. */
1084 if (info
->nocopyreloc
)
1086 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_GOT_REF
;
1090 eh
= (struct elf_s390_link_hash_entry
*) h
;
1091 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1093 s
= p
->sec
->output_section
;
1094 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1098 /* If we didn't find any dynamic relocs in read-only sections, then
1099 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1102 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_GOT_REF
;
1106 /* We must allocate the symbol in our .dynbss section, which will
1107 become part of the .bss section of the executable. There will be
1108 an entry for this symbol in the .dynsym section. The dynamic
1109 object will contain position independent code, so all references
1110 from the dynamic object to this symbol will go through the global
1111 offset table. The dynamic linker will use the .dynsym entry to
1112 determine the address it must put in the global offset table, so
1113 both the dynamic object and the regular object will refer to the
1114 same memory location for the variable. */
1116 htab
= elf_s390_hash_table (info
);
1118 /* We must generate a R_390_COPY reloc to tell the dynamic linker to
1119 copy the initial value out of the dynamic object and into the
1120 runtime process image. */
1121 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1123 htab
->srelbss
->_raw_size
+= sizeof (Elf64_External_Rela
);
1124 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1127 /* We need to figure out the alignment required for this symbol. I
1128 have no idea how ELF linkers handle this. */
1129 power_of_two
= bfd_log2 (h
->size
);
1130 if (power_of_two
> 3)
1133 /* Apply the required alignment. */
1135 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
, (bfd_size_type
) (1 << power_of_two
));
1136 if (power_of_two
> bfd_get_section_alignment (htab
->elf
.dynobj
, s
))
1138 if (! bfd_set_section_alignment (htab
->elf
.dynobj
, s
, power_of_two
))
1142 /* Define the symbol as being at this point in the section. */
1143 h
->root
.u
.def
.section
= s
;
1144 h
->root
.u
.def
.value
= s
->_raw_size
;
1146 /* Increment the section size to make room for the symbol. */
1147 s
->_raw_size
+= h
->size
;
1152 /* This is the condition under which elf_s390_finish_dynamic_symbol
1153 will be called from elflink.h. If elflink.h doesn't call our
1154 finish_dynamic_symbol routine, we'll need to do something about
1155 initializing any .plt and .got entries in elf_s390_relocate_section. */
1156 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1158 && ((INFO)->shared \
1159 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1160 && ((H)->dynindx != -1 \
1161 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1163 /* Allocate space in .plt, .got and associated reloc sections for
1167 allocate_dynrelocs (h
, inf
)
1168 struct elf_link_hash_entry
*h
;
1171 struct bfd_link_info
*info
;
1172 struct elf_s390_link_hash_table
*htab
;
1173 struct elf_s390_link_hash_entry
*eh
;
1174 struct elf_s390_dyn_relocs
*p
;
1176 if (h
->root
.type
== bfd_link_hash_indirect
1177 || h
->root
.type
== bfd_link_hash_warning
)
1180 info
= (struct bfd_link_info
*) inf
;
1181 htab
= elf_s390_hash_table (info
);
1183 if (htab
->elf
.dynamic_sections_created
1184 && h
->plt
.refcount
> 0)
1186 /* Make sure this symbol is output as a dynamic symbol.
1187 Undefined weak syms won't yet be marked as dynamic. */
1188 if (h
->dynindx
== -1
1189 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
1191 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1195 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
, h
))
1197 asection
*s
= htab
->splt
;
1199 /* If this is the first .plt entry, make room for the special
1201 if (s
->_raw_size
== 0)
1202 s
->_raw_size
+= PLT_FIRST_ENTRY_SIZE
;
1204 h
->plt
.offset
= s
->_raw_size
;
1206 /* If this symbol is not defined in a regular file, and we are
1207 not generating a shared library, then set the symbol to this
1208 location in the .plt. This is required to make function
1209 pointers compare as equal between the normal executable and
1210 the shared library. */
1212 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1214 h
->root
.u
.def
.section
= s
;
1215 h
->root
.u
.def
.value
= h
->plt
.offset
;
1218 /* Make room for this entry. */
1219 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1221 /* We also need to make an entry in the .got.plt section, which
1222 will be placed in the .got section by the linker script. */
1223 htab
->sgotplt
->_raw_size
+= GOT_ENTRY_SIZE
;
1225 /* We also need to make an entry in the .rela.plt section. */
1226 htab
->srelplt
->_raw_size
+= sizeof (Elf64_External_Rela
);
1230 h
->plt
.offset
= (bfd_vma
) -1;
1231 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1236 h
->plt
.offset
= (bfd_vma
) -1;
1237 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1240 if (h
->got
.refcount
> 0)
1245 /* Make sure this symbol is output as a dynamic symbol.
1246 Undefined weak syms won't yet be marked as dynamic. */
1247 if (h
->dynindx
== -1
1248 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
1250 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1255 h
->got
.offset
= s
->_raw_size
;
1256 s
->_raw_size
+= GOT_ENTRY_SIZE
;
1257 dyn
= htab
->elf
.dynamic_sections_created
;
1258 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
, h
))
1259 htab
->srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1262 h
->got
.offset
= (bfd_vma
) -1;
1264 eh
= (struct elf_s390_link_hash_entry
*) h
;
1265 if (eh
->dyn_relocs
== NULL
)
1268 /* In the shared -Bsymbolic case, discard space allocated for
1269 dynamic pc-relative relocs against symbols which turn out to be
1270 defined in regular objects. For the normal shared case, discard
1271 space for pc-relative relocs that have become local due to symbol
1272 visibility changes. */
1276 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1277 && ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0
1280 struct elf_s390_dyn_relocs
**pp
;
1282 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
1284 p
->count
-= p
->pc_count
;
1295 /* For the non-shared case, discard space for relocs against
1296 symbols which turn out to need copy relocs or are not
1299 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0
1300 && (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1301 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1302 || (htab
->elf
.dynamic_sections_created
1303 && (h
->root
.type
== bfd_link_hash_undefweak
1304 || h
->root
.type
== bfd_link_hash_undefined
))))
1306 /* Make sure this symbol is output as a dynamic symbol.
1307 Undefined weak syms won't yet be marked as dynamic. */
1308 if (h
->dynindx
== -1
1309 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
1311 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1315 /* If that succeeded, we know we'll be keeping all the
1317 if (h
->dynindx
!= -1)
1321 eh
->dyn_relocs
= NULL
;
1326 /* Finally, allocate space. */
1327 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1329 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
1330 sreloc
->_raw_size
+= p
->count
* sizeof (Elf64_External_Rela
);
1336 /* Find any dynamic relocs that apply to read-only sections. */
1339 readonly_dynrelocs (h
, inf
)
1340 struct elf_link_hash_entry
*h
;
1343 struct elf_s390_link_hash_entry
*eh
;
1344 struct elf_s390_dyn_relocs
*p
;
1346 eh
= (struct elf_s390_link_hash_entry
*) h
;
1347 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1349 asection
*s
= p
->sec
->output_section
;
1351 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1353 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
1355 info
->flags
|= DF_TEXTREL
;
1357 /* Not an error, just cut short the traversal. */
1364 /* Set the sizes of the dynamic sections. */
1367 elf_s390_size_dynamic_sections (output_bfd
, info
)
1368 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1369 struct bfd_link_info
*info
;
1371 struct elf_s390_link_hash_table
*htab
;
1377 htab
= elf_s390_hash_table (info
);
1378 dynobj
= htab
->elf
.dynobj
;
1382 if (htab
->elf
.dynamic_sections_created
)
1384 /* Set the contents of the .interp section to the interpreter. */
1387 s
= bfd_get_section_by_name (dynobj
, ".interp");
1390 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1391 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1395 /* Set up .got offsets for local syms, and space for local dynamic
1397 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1399 bfd_signed_vma
*local_got
;
1400 bfd_signed_vma
*end_local_got
;
1401 bfd_size_type locsymcount
;
1402 Elf_Internal_Shdr
*symtab_hdr
;
1405 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
1408 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
1410 struct elf_s390_dyn_relocs
*p
;
1412 for (p
= *((struct elf_s390_dyn_relocs
**)
1413 &elf_section_data (s
)->local_dynrel
);
1417 if (!bfd_is_abs_section (p
->sec
)
1418 && bfd_is_abs_section (p
->sec
->output_section
))
1420 /* Input section has been discarded, either because
1421 it is a copy of a linkonce section or due to
1422 linker script /DISCARD/, so we'll be discarding
1427 srela
= elf_section_data (p
->sec
)->sreloc
;
1428 srela
->_raw_size
+= p
->count
* sizeof (Elf64_External_Rela
);
1433 local_got
= elf_local_got_refcounts (ibfd
);
1437 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
1438 locsymcount
= symtab_hdr
->sh_info
;
1439 end_local_got
= local_got
+ locsymcount
;
1441 srela
= htab
->srelgot
;
1442 for (; local_got
< end_local_got
; ++local_got
)
1446 *local_got
= s
->_raw_size
;
1447 s
->_raw_size
+= GOT_ENTRY_SIZE
;
1449 srela
->_raw_size
+= sizeof (Elf64_External_Rela
);
1452 *local_got
= (bfd_vma
) -1;
1456 /* Allocate global sym .plt and .got entries, and space for global
1457 sym dynamic relocs. */
1458 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, (PTR
) info
);
1460 /* We now have determined the sizes of the various dynamic sections.
1461 Allocate memory for them. */
1463 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1465 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1470 || s
== htab
->sgotplt
)
1472 /* Strip this section if we don't need it; see the
1475 else if (strncmp (bfd_get_section_name (dynobj
, s
), ".rela", 5) == 0)
1477 if (s
->_raw_size
!= 0 && s
!= htab
->srelplt
)
1480 /* We use the reloc_count field as a counter if we need
1481 to copy relocs into the output file. */
1486 /* It's not one of our sections, so don't allocate space. */
1490 if (s
->_raw_size
== 0)
1492 /* If we don't need this section, strip it from the
1493 output file. This is to handle .rela.bss and
1494 .rela.plt. We must create it in
1495 create_dynamic_sections, because it must be created
1496 before the linker maps input sections to output
1497 sections. The linker does that before
1498 adjust_dynamic_symbol is called, and it is that
1499 function which decides whether anything needs to go
1500 into these sections. */
1502 _bfd_strip_section_from_output (info
, s
);
1506 /* Allocate memory for the section contents. We use bfd_zalloc
1507 here in case unused entries are not reclaimed before the
1508 section's contents are written out. This should not happen,
1509 but this way if it does, we get a R_390_NONE reloc instead
1511 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1512 if (s
->contents
== NULL
)
1516 if (htab
->elf
.dynamic_sections_created
)
1518 /* Add some entries to the .dynamic section. We fill in the
1519 values later, in elf_s390_finish_dynamic_sections, but we
1520 must add the entries now so that we get the correct size for
1521 the .dynamic section. The DT_DEBUG entry is filled in by the
1522 dynamic linker and used by the debugger. */
1523 #define add_dynamic_entry(TAG, VAL) \
1524 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1528 if (!add_dynamic_entry (DT_DEBUG
, 0))
1532 if (htab
->splt
->_raw_size
!= 0)
1534 if (!add_dynamic_entry (DT_PLTGOT
, 0)
1535 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
1536 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1537 || !add_dynamic_entry (DT_JMPREL
, 0))
1543 if (!add_dynamic_entry (DT_RELA
, 0)
1544 || !add_dynamic_entry (DT_RELASZ
, 0)
1545 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1548 /* If any dynamic relocs apply to a read-only section,
1549 then we need a DT_TEXTREL entry. */
1550 elf_link_hash_traverse (&htab
->elf
, readonly_dynrelocs
, (PTR
) info
);
1552 if ((info
->flags
& DF_TEXTREL
) != 0)
1554 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1559 #undef add_dynamic_entry
1564 /* Relocate a 390 ELF section. */
1567 elf_s390_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1568 contents
, relocs
, local_syms
, local_sections
)
1570 struct bfd_link_info
*info
;
1572 asection
*input_section
;
1574 Elf_Internal_Rela
*relocs
;
1575 Elf_Internal_Sym
*local_syms
;
1576 asection
**local_sections
;
1578 struct elf_s390_link_hash_table
*htab
;
1579 Elf_Internal_Shdr
*symtab_hdr
;
1580 struct elf_link_hash_entry
**sym_hashes
;
1581 bfd_vma
*local_got_offsets
;
1582 Elf_Internal_Rela
*rel
;
1583 Elf_Internal_Rela
*relend
;
1585 htab
= elf_s390_hash_table (info
);
1586 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1587 sym_hashes
= elf_sym_hashes (input_bfd
);
1588 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1591 relend
= relocs
+ input_section
->reloc_count
;
1592 for (; rel
< relend
; rel
++)
1595 reloc_howto_type
*howto
;
1596 unsigned long r_symndx
;
1597 struct elf_link_hash_entry
*h
;
1598 Elf_Internal_Sym
*sym
;
1602 boolean unresolved_reloc
;
1603 bfd_reloc_status_type r
;
1605 r_type
= ELF64_R_TYPE (rel
->r_info
);
1606 if (r_type
== (int) R_390_GNU_VTINHERIT
1607 || r_type
== (int) R_390_GNU_VTENTRY
)
1609 if (r_type
< 0 || r_type
>= (int) R_390_max
)
1611 bfd_set_error (bfd_error_bad_value
);
1614 howto
= elf_howto_table
+ r_type
;
1616 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1618 if (info
->relocateable
)
1620 /* This is a relocateable link. We don't have to change
1621 anything, unless the reloc is against a section symbol,
1622 in which case we have to adjust according to where the
1623 section symbol winds up in the output section. */
1624 if (r_symndx
< symtab_hdr
->sh_info
)
1626 sym
= local_syms
+ r_symndx
;
1627 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1629 sec
= local_sections
[r_symndx
];
1630 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1637 /* This is a final link. */
1641 unresolved_reloc
= false;
1642 if (r_symndx
< symtab_hdr
->sh_info
)
1644 sym
= local_syms
+ r_symndx
;
1645 sec
= local_sections
[r_symndx
];
1646 relocation
= (sec
->output_section
->vma
1647 + sec
->output_offset
1652 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1653 while (h
->root
.type
== bfd_link_hash_indirect
1654 || h
->root
.type
== bfd_link_hash_warning
)
1655 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1657 if (h
->root
.type
== bfd_link_hash_defined
1658 || h
->root
.type
== bfd_link_hash_defweak
)
1660 sec
= h
->root
.u
.def
.section
;
1661 if (r_type
== R_390_GOTPC
1662 || r_type
== R_390_GOTPCDBL
1663 || ((r_type
== R_390_PLT16DBL
1664 || r_type
== R_390_PLT32
1665 || r_type
== R_390_PLT32DBL
1666 || r_type
== R_390_PLT64
)
1667 && htab
->splt
!= NULL
1668 && h
->plt
.offset
!= (bfd_vma
) -1)
1669 || ((r_type
== R_390_GOT12
1670 || r_type
== R_390_GOT16
1671 || r_type
== R_390_GOT32
1672 || r_type
== R_390_GOT64
1673 || r_type
== R_390_GOTENT
)
1674 && elf_hash_table (info
)->dynamic_sections_created
1676 || (! info
->symbolic
&& h
->dynindx
!= -1)
1677 || (h
->elf_link_hash_flags
1678 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
1680 && ((! info
->symbolic
&& h
->dynindx
!= -1)
1681 || (h
->elf_link_hash_flags
1682 & ELF_LINK_HASH_DEF_REGULAR
) == 0)
1683 && (r_type
== R_390_8
1684 || r_type
== R_390_16
1685 || r_type
== R_390_32
1686 || r_type
== R_390_64
1687 || r_type
== R_390_PC16
1688 || r_type
== R_390_PC16DBL
1689 || r_type
== R_390_PC32
1690 || r_type
== R_390_PC32DBL
1691 || r_type
== R_390_PC64
)
1692 && ((input_section
->flags
& SEC_ALLOC
) != 0
1693 /* DWARF will emit R_390_32 relocations in its
1694 sections against symbols defined externally
1695 in shared libraries. We can't do anything
1697 || ((input_section
->flags
& SEC_DEBUGGING
) != 0
1698 && (h
->elf_link_hash_flags
1699 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0))))
1701 /* In these cases, we don't need the relocation
1702 value. We check specially because in some
1703 obscure cases sec->output_section will be NULL. */
1706 else if (sec
->output_section
== NULL
)
1708 /* Set a flag that will be cleared later if we find a
1709 relocation value for this symbol. output_section
1710 is typically NULL for symbols satisfied by a shared
1712 unresolved_reloc
= true;
1716 relocation
= (h
->root
.u
.def
.value
1717 + sec
->output_section
->vma
1718 + sec
->output_offset
);
1720 else if (h
->root
.type
== bfd_link_hash_undefweak
)
1722 else if (info
->shared
1723 && (!info
->symbolic
|| info
->allow_shlib_undefined
)
1724 && !info
->no_undefined
1725 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
1729 if (! ((*info
->callbacks
->undefined_symbol
)
1730 (info
, h
->root
.root
.string
, input_bfd
,
1731 input_section
, rel
->r_offset
,
1732 (!info
->shared
|| info
->no_undefined
1733 || ELF_ST_VISIBILITY (h
->other
)))))
1746 /* Relocation is to the entry for this symbol in the global
1748 if (htab
->sgot
== NULL
)
1755 off
= h
->got
.offset
;
1756 dyn
= htab
->elf
.dynamic_sections_created
;
1757 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
, h
)
1761 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
))
1762 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)))
1764 /* This is actually a static link, or it is a
1765 -Bsymbolic link and the symbol is defined
1766 locally, or the symbol was forced to be local
1767 because of a version file. We must initialize
1768 this entry in the global offset table. Since the
1769 offset must always be a multiple of 2, we use the
1770 least significant bit to record whether we have
1771 initialized it already.
1773 When doing a dynamic link, we create a .rel.got
1774 relocation entry to initialize the value. This
1775 is done in the finish_dynamic_symbol routine. */
1780 bfd_put_64 (output_bfd
, relocation
,
1781 htab
->sgot
->contents
+ off
);
1786 unresolved_reloc
= false;
1790 if (local_got_offsets
== NULL
)
1793 off
= local_got_offsets
[r_symndx
];
1795 /* The offset must always be a multiple of 8. We use
1796 the least significant bit to record whether we have
1797 already generated the necessary reloc. */
1802 bfd_put_64 (output_bfd
, relocation
,
1803 htab
->sgot
->contents
+ off
);
1808 Elf_Internal_Rela outrel
;
1809 Elf64_External_Rela
*loc
;
1811 srelgot
= htab
->srelgot
;
1812 if (srelgot
== NULL
)
1815 outrel
.r_offset
= (htab
->sgot
->output_section
->vma
1816 + htab
->sgot
->output_offset
1818 outrel
.r_info
= ELF64_R_INFO (0, R_390_RELATIVE
);
1819 outrel
.r_addend
= relocation
;
1820 loc
= (Elf64_External_Rela
*) srelgot
->contents
;
1821 loc
+= srelgot
->reloc_count
++;
1822 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
1825 local_got_offsets
[r_symndx
] |= 1;
1829 if (off
>= (bfd_vma
) -2)
1832 relocation
= htab
->sgot
->output_offset
+ off
;
1835 * For @GOTENT the relocation is against the offset between
1836 * the instruction and the symbols entry in the GOT and not
1837 * between the start of the GOT and the symbols entry. We
1838 * add the vma of the GOT to get the correct value.
1840 if (r_type
== R_390_GOTENT
)
1841 relocation
+= htab
->sgot
->output_section
->vma
;
1846 /* Relocation is relative to the start of the global offset
1849 /* Note that sgot->output_offset is not involved in this
1850 calculation. We always want the start of .got. If we
1851 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1852 permitted by the ABI, we might have to change this
1854 relocation
-= htab
->sgot
->output_section
->vma
;
1859 case R_390_GOTPCDBL
:
1860 /* Use global offset table as symbol value. */
1861 relocation
= htab
->sgot
->output_section
->vma
;
1862 unresolved_reloc
= false;
1865 case R_390_PLT16DBL
:
1867 case R_390_PLT32DBL
:
1869 /* Relocation is to the entry for this symbol in the
1870 procedure linkage table. */
1872 /* Resolve a PLT32 reloc against a local symbol directly,
1873 without using the procedure linkage table. */
1877 if (h
->plt
.offset
== (bfd_vma
) -1
1878 || htab
->splt
== NULL
)
1880 /* We didn't make a PLT entry for this symbol. This
1881 happens when statically linking PIC code, or when
1882 using -Bsymbolic. */
1886 relocation
= (htab
->splt
->output_section
->vma
1887 + htab
->splt
->output_offset
1889 unresolved_reloc
= false;
1901 /* r_symndx will be zero only for relocs against symbols
1902 from removed linkonce sections, or sections discarded by
1905 || (input_section
->flags
& SEC_ALLOC
) == 0)
1909 && ((r_type
!= R_390_PC16
1910 && r_type
!= R_390_PC16DBL
1911 && r_type
!= R_390_PC32
1912 && r_type
!= R_390_PC32DBL
1913 && r_type
!= R_390_PC64
)
1916 && (! info
->symbolic
1917 || (h
->elf_link_hash_flags
1918 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1922 && (h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0
1923 && (((h
->elf_link_hash_flags
1924 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1925 && (h
->elf_link_hash_flags
1926 & ELF_LINK_HASH_DEF_REGULAR
) == 0)
1927 || h
->root
.type
== bfd_link_hash_undefweak
1928 || h
->root
.type
== bfd_link_hash_undefined
)))
1930 Elf_Internal_Rela outrel
;
1931 boolean skip
, relocate
;
1933 Elf64_External_Rela
*loc
;
1935 /* When generating a shared object, these relocations
1936 are copied into the output file to be resolved at run
1941 if (elf_section_data (input_section
)->stab_info
== NULL
)
1942 outrel
.r_offset
= rel
->r_offset
;
1945 off
= (_bfd_stab_section_offset
1946 (output_bfd
, htab
->elf
.stab_info
, input_section
,
1947 &elf_section_data (input_section
)->stab_info
,
1949 if (off
== (bfd_vma
) -1)
1951 outrel
.r_offset
= off
;
1954 outrel
.r_offset
+= (input_section
->output_section
->vma
1955 + input_section
->output_offset
);
1959 memset (&outrel
, 0, sizeof outrel
);
1964 && (r_type
== R_390_PC16
1965 || r_type
== R_390_PC16DBL
1966 || r_type
== R_390_PC32
1967 || r_type
== R_390_PC32DBL
1968 || r_type
== R_390_PC64
1971 || (h
->elf_link_hash_flags
1972 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
1975 outrel
.r_info
= ELF64_R_INFO (h
->dynindx
, r_type
);
1976 outrel
.r_addend
= relocation
+ rel
->r_addend
;
1980 /* This symbol is local, or marked to become local. */
1982 outrel
.r_info
= ELF64_R_INFO (0, R_390_RELATIVE
);
1983 outrel
.r_addend
= relocation
+ rel
->r_addend
;
1986 sreloc
= elf_section_data (input_section
)->sreloc
;
1990 loc
= (Elf64_External_Rela
*) sreloc
->contents
;
1991 loc
+= sreloc
->reloc_count
++;
1992 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
, loc
);
1994 /* If this reloc is against an external symbol, we do
1995 not want to fiddle with the addend. Otherwise, we
1996 need to include the symbol value so that it becomes
1997 an addend for the dynamic reloc. */
2008 if (unresolved_reloc
2010 && (input_section
->flags
& SEC_DEBUGGING
) != 0
2011 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0))
2012 (*_bfd_error_handler
)
2013 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2014 bfd_archive_filename (input_bfd
),
2015 bfd_get_section_name (input_bfd
, input_section
),
2016 (long) rel
->r_offset
,
2017 h
->root
.root
.string
);
2019 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2020 contents
, rel
->r_offset
,
2021 relocation
, rel
->r_addend
);
2023 if (r
!= bfd_reloc_ok
)
2028 name
= h
->root
.root
.string
;
2031 name
= bfd_elf_string_from_elf_section (input_bfd
,
2032 symtab_hdr
->sh_link
,
2037 name
= bfd_section_name (input_bfd
, sec
);
2040 if (r
== bfd_reloc_overflow
)
2043 if (! ((*info
->callbacks
->reloc_overflow
)
2044 (info
, name
, howto
->name
, (bfd_vma
) 0,
2045 input_bfd
, input_section
, rel
->r_offset
)))
2050 (*_bfd_error_handler
)
2051 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2052 bfd_archive_filename (input_bfd
),
2053 bfd_get_section_name (input_bfd
, input_section
),
2054 (long) rel
->r_offset
, name
, (int) r
);
2063 /* Finish up dynamic symbol handling. We set the contents of various
2064 dynamic sections here. */
2067 elf_s390_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2069 struct bfd_link_info
*info
;
2070 struct elf_link_hash_entry
*h
;
2071 Elf_Internal_Sym
*sym
;
2073 struct elf_s390_link_hash_table
*htab
;
2075 htab
= elf_s390_hash_table (info
);
2077 if (h
->plt
.offset
!= (bfd_vma
) -1)
2081 Elf_Internal_Rela rela
;
2082 Elf64_External_Rela
*loc
;
2084 /* This symbol has an entry in the procedure linkage table. Set
2087 if (h
->dynindx
== -1
2088 || htab
->splt
== NULL
2089 || htab
->sgotplt
== NULL
2090 || htab
->srelplt
== NULL
)
2094 Current offset - size first entry / entry size. */
2095 plt_index
= (h
->plt
.offset
- PLT_FIRST_ENTRY_SIZE
) / PLT_ENTRY_SIZE
;
2097 /* Offset in GOT is PLT index plus GOT headers(3) times 8,
2099 got_offset
= (plt_index
+ 3) * GOT_ENTRY_SIZE
;
2101 /* Fill in the blueprint of a PLT. */
2102 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_ENTRY_WORD0
,
2103 htab
->splt
->contents
+ h
->plt
.offset
);
2104 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_ENTRY_WORD1
,
2105 htab
->splt
->contents
+ h
->plt
.offset
+ 4);
2106 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_ENTRY_WORD2
,
2107 htab
->splt
->contents
+ h
->plt
.offset
+ 8);
2108 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_ENTRY_WORD3
,
2109 htab
->splt
->contents
+ h
->plt
.offset
+ 12);
2110 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_ENTRY_WORD4
,
2111 htab
->splt
->contents
+ h
->plt
.offset
+ 16);
2112 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_ENTRY_WORD5
,
2113 htab
->splt
->contents
+ h
->plt
.offset
+ 20);
2114 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_ENTRY_WORD6
,
2115 htab
->splt
->contents
+ h
->plt
.offset
+ 24);
2116 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_ENTRY_WORD7
,
2117 htab
->splt
->contents
+ h
->plt
.offset
+ 28);
2118 /* Fixup the relative address to the GOT entry */
2119 bfd_put_32 (output_bfd
,
2120 (htab
->sgotplt
->output_section
->vma
+
2121 htab
->sgotplt
->output_offset
+ got_offset
2122 - (htab
->splt
->output_section
->vma
+ h
->plt
.offset
))/2,
2123 htab
->splt
->contents
+ h
->plt
.offset
+ 2);
2124 /* Fixup the relative branch to PLT 0 */
2125 bfd_put_32 (output_bfd
, - (PLT_FIRST_ENTRY_SIZE
+
2126 (PLT_ENTRY_SIZE
* plt_index
) + 22)/2,
2127 htab
->splt
->contents
+ h
->plt
.offset
+ 24);
2128 /* Fixup offset into symbol table */
2129 bfd_put_32 (output_bfd
, plt_index
* sizeof (Elf64_External_Rela
),
2130 htab
->splt
->contents
+ h
->plt
.offset
+ 28);
2132 /* Fill in the entry in the global offset table.
2133 Points to instruction after GOT offset. */
2134 bfd_put_64 (output_bfd
,
2135 (htab
->splt
->output_section
->vma
2136 + htab
->splt
->output_offset
2139 htab
->sgotplt
->contents
+ got_offset
);
2141 /* Fill in the entry in the .rela.plt section. */
2142 rela
.r_offset
= (htab
->sgotplt
->output_section
->vma
2143 + htab
->sgotplt
->output_offset
2145 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_390_JMP_SLOT
);
2147 loc
= (Elf64_External_Rela
*) htab
->srelplt
->contents
+ plt_index
;
2148 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2150 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2152 /* Mark the symbol as undefined, rather than as defined in
2153 the .plt section. Leave the value alone. This is a clue
2154 for the dynamic linker, to make function pointer
2155 comparisons work between an application and shared
2157 sym
->st_shndx
= SHN_UNDEF
;
2161 if (h
->got
.offset
!= (bfd_vma
) -1)
2163 Elf_Internal_Rela rela
;
2164 Elf64_External_Rela
*loc
;
2166 /* This symbol has an entry in the global offset table. Set it
2169 if (htab
->sgot
== NULL
|| htab
->srelgot
== NULL
)
2172 rela
.r_offset
= (htab
->sgot
->output_section
->vma
2173 + htab
->sgot
->output_offset
2174 + (h
->got
.offset
&~ (bfd_vma
) 1));
2176 /* If this is a static link, or it is a -Bsymbolic link and the
2177 symbol is defined locally or was forced to be local because
2178 of a version file, we just want to emit a RELATIVE reloc.
2179 The entry in the global offset table will already have been
2180 initialized in the relocate_section function. */
2184 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
))
2185 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2187 BFD_ASSERT((h
->got
.offset
& 1) != 0);
2188 rela
.r_info
= ELF64_R_INFO (0, R_390_RELATIVE
);
2189 rela
.r_addend
= (h
->root
.u
.def
.value
2190 + h
->root
.u
.def
.section
->output_section
->vma
2191 + h
->root
.u
.def
.section
->output_offset
);
2195 BFD_ASSERT((h
->got
.offset
& 1) == 0);
2196 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgot
->contents
+ h
->got
.offset
);
2197 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_390_GLOB_DAT
);
2201 loc
= (Elf64_External_Rela
*) htab
->srelgot
->contents
;
2202 loc
+= htab
->srelgot
->reloc_count
++;
2203 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2206 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2208 Elf_Internal_Rela rela
;
2209 Elf64_External_Rela
*loc
;
2211 /* This symbols needs a copy reloc. Set it up. */
2213 if (h
->dynindx
== -1
2214 || (h
->root
.type
!= bfd_link_hash_defined
2215 && h
->root
.type
!= bfd_link_hash_defweak
)
2216 || htab
->srelbss
== NULL
)
2219 rela
.r_offset
= (h
->root
.u
.def
.value
2220 + h
->root
.u
.def
.section
->output_section
->vma
2221 + h
->root
.u
.def
.section
->output_offset
);
2222 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_390_COPY
);
2224 loc
= (Elf64_External_Rela
*) htab
->srelbss
->contents
;
2225 loc
+= htab
->srelbss
->reloc_count
++;
2226 bfd_elf64_swap_reloca_out (output_bfd
, &rela
, loc
);
2229 /* Mark some specially defined symbols as absolute. */
2230 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2231 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2232 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2233 sym
->st_shndx
= SHN_ABS
;
2238 /* Used to decide how to sort relocs in an optimal manner for the
2239 dynamic linker, before writing them out. */
2241 static enum elf_reloc_type_class
2242 elf_s390_reloc_type_class (rela
)
2243 const Elf_Internal_Rela
*rela
;
2245 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2247 case R_390_RELATIVE
:
2248 return reloc_class_relative
;
2249 case R_390_JMP_SLOT
:
2250 return reloc_class_plt
;
2252 return reloc_class_copy
;
2254 return reloc_class_normal
;
2258 /* Finish up the dynamic sections. */
2261 elf_s390_finish_dynamic_sections (output_bfd
, info
)
2263 struct bfd_link_info
*info
;
2265 struct elf_s390_link_hash_table
*htab
;
2269 htab
= elf_s390_hash_table (info
);
2270 dynobj
= htab
->elf
.dynobj
;
2271 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2273 if (htab
->elf
.dynamic_sections_created
)
2275 Elf64_External_Dyn
*dyncon
, *dynconend
;
2277 if (sdyn
== NULL
|| htab
->sgot
== NULL
)
2280 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2281 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2282 for (; dyncon
< dynconend
; dyncon
++)
2284 Elf_Internal_Dyn dyn
;
2287 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2295 dyn
.d_un
.d_ptr
= htab
->sgot
->output_section
->vma
;
2299 dyn
.d_un
.d_ptr
= htab
->srelplt
->output_section
->vma
;
2303 s
= htab
->srelplt
->output_section
;
2304 if (s
->_cooked_size
!= 0)
2305 dyn
.d_un
.d_val
= s
->_cooked_size
;
2307 dyn
.d_un
.d_val
= s
->_raw_size
;
2311 /* The procedure linkage table relocs (DT_JMPREL) should
2312 not be included in the overall relocs (DT_RELA).
2313 Therefore, we override the DT_RELASZ entry here to
2314 make it not include the JMPREL relocs. Since the
2315 linker script arranges for .rela.plt to follow all
2316 other relocation sections, we don't have to worry
2317 about changing the DT_RELA entry. */
2318 s
= htab
->srelplt
->output_section
;
2319 if (s
->_cooked_size
!= 0)
2320 dyn
.d_un
.d_val
-= s
->_cooked_size
;
2322 dyn
.d_un
.d_val
-= s
->_raw_size
;
2326 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2329 /* Fill in the special first entry in the procedure linkage table. */
2330 if (htab
->splt
&& htab
->splt
->_raw_size
> 0)
2332 /* fill in blueprint for plt 0 entry */
2333 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_FIRST_ENTRY_WORD0
,
2334 htab
->splt
->contents
);
2335 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_FIRST_ENTRY_WORD1
,
2336 htab
->splt
->contents
+4 );
2337 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_FIRST_ENTRY_WORD3
,
2338 htab
->splt
->contents
+12 );
2339 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_FIRST_ENTRY_WORD4
,
2340 htab
->splt
->contents
+16 );
2341 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_FIRST_ENTRY_WORD5
,
2342 htab
->splt
->contents
+20 );
2343 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_FIRST_ENTRY_WORD6
,
2344 htab
->splt
->contents
+ 24);
2345 bfd_put_32 (output_bfd
, (bfd_vma
) PLT_FIRST_ENTRY_WORD7
,
2346 htab
->splt
->contents
+ 28 );
2347 /* Fixup relative address to start of GOT */
2348 bfd_put_32 (output_bfd
,
2349 (htab
->sgotplt
->output_section
->vma
+
2350 htab
->sgotplt
->output_offset
2351 - htab
->splt
->output_section
->vma
- 6)/2,
2352 htab
->splt
->contents
+ 8);
2354 elf_section_data (htab
->splt
->output_section
)
2355 ->this_hdr
.sh_entsize
= PLT_ENTRY_SIZE
;
2360 /* Fill in the first three entries in the global offset table. */
2361 if (htab
->sgotplt
->_raw_size
> 0)
2363 bfd_put_64 (output_bfd
,
2364 (sdyn
== NULL
? (bfd_vma
) 0
2365 : sdyn
->output_section
->vma
+ sdyn
->output_offset
),
2366 htab
->sgotplt
->contents
);
2367 /* One entry for shared object struct ptr. */
2368 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
+ 8);
2369 /* One entry for _dl_runtime_resolve. */
2370 bfd_put_64 (output_bfd
, (bfd_vma
) 0, htab
->sgotplt
->contents
+ 12);
2373 elf_section_data (htab
->sgot
->output_section
)
2374 ->this_hdr
.sh_entsize
= 8;
2380 elf_s390_object_p (abfd
)
2383 return bfd_default_set_arch_mach (abfd
, bfd_arch_s390
, bfd_mach_s390_esame
);
2387 * Why was the hash table entry size definition changed from
2388 * ARCH_SIZE/8 to 4? This breaks the 64 bit dynamic linker and
2389 * this is the only reason for the s390_elf64_size_info structure.
2392 const struct elf_size_info s390_elf64_size_info
=
2394 sizeof (Elf64_External_Ehdr
),
2395 sizeof (Elf64_External_Phdr
),
2396 sizeof (Elf64_External_Shdr
),
2397 sizeof (Elf64_External_Rel
),
2398 sizeof (Elf64_External_Rela
),
2399 sizeof (Elf64_External_Sym
),
2400 sizeof (Elf64_External_Dyn
),
2401 sizeof (Elf_External_Note
),
2402 8, /* hash-table entry size */
2403 1, /* internal relocations per external relocations */
2406 ELFCLASS64
, EV_CURRENT
,
2407 bfd_elf64_write_out_phdrs
,
2408 bfd_elf64_write_shdrs_and_ehdr
,
2409 bfd_elf64_write_relocs
,
2410 bfd_elf64_swap_symbol_out
,
2411 bfd_elf64_slurp_reloc_table
,
2412 bfd_elf64_slurp_symbol_table
,
2413 bfd_elf64_swap_dyn_in
,
2414 bfd_elf64_swap_dyn_out
,
2421 #define TARGET_BIG_SYM bfd_elf64_s390_vec
2422 #define TARGET_BIG_NAME "elf64-s390"
2423 #define ELF_ARCH bfd_arch_s390
2424 #define ELF_MACHINE_CODE EM_S390
2425 #define ELF_MACHINE_ALT1 EM_S390_OLD
2426 #define ELF_MAXPAGESIZE 0x1000
2428 #define elf_backend_size_info s390_elf64_size_info
2430 #define elf_backend_can_gc_sections 1
2431 #define elf_backend_can_refcount 1
2432 #define elf_backend_want_got_plt 1
2433 #define elf_backend_plt_readonly 1
2434 #define elf_backend_want_plt_sym 0
2435 #define elf_backend_got_header_size 24
2436 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2438 #define elf_info_to_howto elf_s390_info_to_howto
2440 #define bfd_elf64_bfd_is_local_label_name elf_s390_is_local_label_name
2441 #define bfd_elf64_bfd_link_hash_table_create elf_s390_link_hash_table_create
2442 #define bfd_elf64_bfd_reloc_type_lookup elf_s390_reloc_type_lookup
2444 #define elf_backend_adjust_dynamic_symbol elf_s390_adjust_dynamic_symbol
2445 #define elf_backend_check_relocs elf_s390_check_relocs
2446 #define elf_backend_copy_indirect_symbol elf_s390_copy_indirect_symbol
2447 #define elf_backend_create_dynamic_sections elf_s390_create_dynamic_sections
2448 #define elf_backend_finish_dynamic_sections elf_s390_finish_dynamic_sections
2449 #define elf_backend_finish_dynamic_symbol elf_s390_finish_dynamic_symbol
2450 #define elf_backend_gc_mark_hook elf_s390_gc_mark_hook
2451 #define elf_backend_gc_sweep_hook elf_s390_gc_sweep_hook
2452 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2453 #define elf_backend_relocate_section elf_s390_relocate_section
2454 #define elf_backend_size_dynamic_sections elf_s390_size_dynamic_sections
2455 #define elf_backend_reloc_type_class elf_s390_reloc_type_class
2457 #define elf_backend_object_p elf_s390_object_p
2459 #include "elf64-target.h"