1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12 This file is part of BFD, the Binary File Descriptor library.
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
28 /* This file handles functionality common to the different MIPS ABI's. */
33 #include "libiberty.h"
35 #include "elfxx-mips.h"
37 #include "elf-vxworks.h"
39 /* Get the ECOFF swapping routines. */
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
50 (1) absolute addresses
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
82 /* The input bfd in which the symbol is defined. */
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
89 /* If abfd == NULL, an address that must be stored in the got. */
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
97 struct mips_elf_link_hash_entry
*h
;
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type
;
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
113 /* This structure is used to hold .got information when linking. */
117 /* The global symbol in the GOT with the lowest index in the dynamic
119 struct elf_link_hash_entry
*global_gotsym
;
120 /* The number of global .got entries. */
121 unsigned int global_gotno
;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno
;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno
;
127 /* The number of local .got entries. */
128 unsigned int local_gotno
;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno
;
131 /* A hash table holding members of the got. */
132 struct htab
*got_entries
;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab
*bfd2got
;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info
*next
;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset
;
146 /* Map an input bfd to a got in a multi-got link. */
148 struct mips_elf_bfd2got_hash
{
150 struct mips_got_info
*g
;
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
156 struct mips_elf_got_per_bfd_arg
158 /* A hashtable that maps bfds to gots. */
160 /* The output bfd. */
162 /* The link information. */
163 struct bfd_link_info
*info
;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
167 struct mips_got_info
*primary
;
168 /* A non-primary got we're trying to merge with other input bfd's
170 struct mips_got_info
*current
;
171 /* The maximum number of got entries that can be addressed with a
173 unsigned int max_count
;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count
;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count
;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
182 unsigned int global_count
;
185 /* Another structure used to pass arguments for got entries traversal. */
187 struct mips_elf_set_global_got_offset_arg
189 struct mips_got_info
*g
;
191 unsigned int needed_relocs
;
192 struct bfd_link_info
*info
;
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
198 struct mips_elf_count_tls_arg
200 struct bfd_link_info
*info
;
204 struct _mips_elf_section_data
206 struct bfd_elf_section_data elf
;
209 struct mips_got_info
*got_info
;
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
220 struct mips_elf_hash_sort_data
222 /* The symbol in the global GOT with the lowest dynamic symbol table
224 struct elf_link_hash_entry
*low
;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx
;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx
;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx
;
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
240 struct mips_elf_link_hash_entry
242 struct elf_link_hash_entry root
;
244 /* External symbol information. */
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
249 unsigned int possibly_dynamic_relocs
;
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc
;
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
259 bfd_boolean no_fn_stub
;
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub
;
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection
*call_fp_stub
;
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local
;
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target
;
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target
;
289 #define GOT_TLS_LDM 2
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type
;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset
;
303 /* MIPS ELF linker hash table. */
305 struct mips_elf_link_hash_table
307 struct elf_link_hash_table root
;
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count
;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size
;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head
;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen
;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks
;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size
;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size
;
340 #define TLS_RELOC_P(r_type) \
341 (r_type == R_MIPS_TLS_DTPMOD32 \
342 || r_type == R_MIPS_TLS_DTPMOD64 \
343 || r_type == R_MIPS_TLS_DTPREL32 \
344 || r_type == R_MIPS_TLS_DTPREL64 \
345 || r_type == R_MIPS_TLS_GD \
346 || r_type == R_MIPS_TLS_LDM \
347 || r_type == R_MIPS_TLS_DTPREL_HI16 \
348 || r_type == R_MIPS_TLS_DTPREL_LO16 \
349 || r_type == R_MIPS_TLS_GOTTPREL \
350 || r_type == R_MIPS_TLS_TPREL32 \
351 || r_type == R_MIPS_TLS_TPREL64 \
352 || r_type == R_MIPS_TLS_TPREL_HI16 \
353 || r_type == R_MIPS_TLS_TPREL_LO16)
355 /* Structure used to pass information to mips_elf_output_extsym. */
360 struct bfd_link_info
*info
;
361 struct ecoff_debug_info
*debug
;
362 const struct ecoff_debug_swap
*swap
;
366 /* The names of the runtime procedure table symbols used on IRIX5. */
368 static const char * const mips_elf_dynsym_rtproc_names
[] =
371 "_procedure_string_table",
372 "_procedure_table_size",
376 /* These structures are used to generate the .compact_rel section on
381 unsigned long id1
; /* Always one? */
382 unsigned long num
; /* Number of compact relocation entries. */
383 unsigned long id2
; /* Always two? */
384 unsigned long offset
; /* The file offset of the first relocation. */
385 unsigned long reserved0
; /* Zero? */
386 unsigned long reserved1
; /* Zero? */
395 bfd_byte reserved0
[4];
396 bfd_byte reserved1
[4];
397 } Elf32_External_compact_rel
;
401 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
402 unsigned int rtype
: 4; /* Relocation types. See below. */
403 unsigned int dist2to
: 8;
404 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
405 unsigned long konst
; /* KONST field. See below. */
406 unsigned long vaddr
; /* VADDR to be relocated. */
411 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
412 unsigned int rtype
: 4; /* Relocation types. See below. */
413 unsigned int dist2to
: 8;
414 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
415 unsigned long konst
; /* KONST field. See below. */
423 } Elf32_External_crinfo
;
429 } Elf32_External_crinfo2
;
431 /* These are the constants used to swap the bitfields in a crinfo. */
433 #define CRINFO_CTYPE (0x1)
434 #define CRINFO_CTYPE_SH (31)
435 #define CRINFO_RTYPE (0xf)
436 #define CRINFO_RTYPE_SH (27)
437 #define CRINFO_DIST2TO (0xff)
438 #define CRINFO_DIST2TO_SH (19)
439 #define CRINFO_RELVADDR (0x7ffff)
440 #define CRINFO_RELVADDR_SH (0)
442 /* A compact relocation info has long (3 words) or short (2 words)
443 formats. A short format doesn't have VADDR field and relvaddr
444 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
445 #define CRF_MIPS_LONG 1
446 #define CRF_MIPS_SHORT 0
448 /* There are 4 types of compact relocation at least. The value KONST
449 has different meaning for each type:
452 CT_MIPS_REL32 Address in data
453 CT_MIPS_WORD Address in word (XXX)
454 CT_MIPS_GPHI_LO GP - vaddr
455 CT_MIPS_JMPAD Address to jump
458 #define CRT_MIPS_REL32 0xa
459 #define CRT_MIPS_WORD 0xb
460 #define CRT_MIPS_GPHI_LO 0xc
461 #define CRT_MIPS_JMPAD 0xd
463 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
464 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
465 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
466 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
468 /* The structure of the runtime procedure descriptor created by the
469 loader for use by the static exception system. */
471 typedef struct runtime_pdr
{
472 bfd_vma adr
; /* Memory address of start of procedure. */
473 long regmask
; /* Save register mask. */
474 long regoffset
; /* Save register offset. */
475 long fregmask
; /* Save floating point register mask. */
476 long fregoffset
; /* Save floating point register offset. */
477 long frameoffset
; /* Frame size. */
478 short framereg
; /* Frame pointer register. */
479 short pcreg
; /* Offset or reg of return pc. */
480 long irpss
; /* Index into the runtime string table. */
482 struct exception_info
*exception_info
;/* Pointer to exception array. */
484 #define cbRPDR sizeof (RPDR)
485 #define rpdNil ((pRPDR) 0)
487 static struct mips_got_entry
*mips_elf_create_local_got_entry
488 (bfd
*, struct bfd_link_info
*, bfd
*, struct mips_got_info
*, asection
*,
489 asection
*, bfd_vma
, unsigned long, struct mips_elf_link_hash_entry
*, int);
490 static bfd_boolean mips_elf_sort_hash_table_f
491 (struct mips_elf_link_hash_entry
*, void *);
492 static bfd_vma mips_elf_high
494 static bfd_boolean mips_elf_stub_section_p
496 static bfd_boolean mips_elf_create_dynamic_relocation
497 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
498 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
499 bfd_vma
*, asection
*);
500 static hashval_t mips_elf_got_entry_hash
502 static bfd_vma mips_elf_adjust_gp
503 (bfd
*, struct mips_got_info
*, bfd
*);
504 static struct mips_got_info
*mips_elf_got_for_ibfd
505 (struct mips_got_info
*, bfd
*);
507 /* This will be used when we sort the dynamic relocation records. */
508 static bfd
*reldyn_sorting_bfd
;
510 /* Nonzero if ABFD is using the N32 ABI. */
511 #define ABI_N32_P(abfd) \
512 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
514 /* Nonzero if ABFD is using the N64 ABI. */
515 #define ABI_64_P(abfd) \
516 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
518 /* Nonzero if ABFD is using NewABI conventions. */
519 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
521 /* The IRIX compatibility level we are striving for. */
522 #define IRIX_COMPAT(abfd) \
523 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
525 /* Whether we are trying to be compatible with IRIX at all. */
526 #define SGI_COMPAT(abfd) \
527 (IRIX_COMPAT (abfd) != ict_none)
529 /* The name of the options section. */
530 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
531 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
533 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
534 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
535 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
536 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
538 /* The name of the stub section. */
539 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
541 /* The size of an external REL relocation. */
542 #define MIPS_ELF_REL_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->sizeof_rel)
545 /* The size of an external RELA relocation. */
546 #define MIPS_ELF_RELA_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_rela)
549 /* The size of an external dynamic table entry. */
550 #define MIPS_ELF_DYN_SIZE(abfd) \
551 (get_elf_backend_data (abfd)->s->sizeof_dyn)
553 /* The size of a GOT entry. */
554 #define MIPS_ELF_GOT_SIZE(abfd) \
555 (get_elf_backend_data (abfd)->s->arch_size / 8)
557 /* The size of a symbol-table entry. */
558 #define MIPS_ELF_SYM_SIZE(abfd) \
559 (get_elf_backend_data (abfd)->s->sizeof_sym)
561 /* The default alignment for sections, as a power of two. */
562 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
563 (get_elf_backend_data (abfd)->s->log_file_align)
565 /* Get word-sized data. */
566 #define MIPS_ELF_GET_WORD(abfd, ptr) \
567 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
569 /* Put out word-sized data. */
570 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
572 ? bfd_put_64 (abfd, val, ptr) \
573 : bfd_put_32 (abfd, val, ptr))
575 /* Add a dynamic symbol table-entry. */
576 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
577 _bfd_elf_add_dynamic_entry (info, tag, val)
579 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
580 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
582 /* Determine whether the internal relocation of index REL_IDX is REL
583 (zero) or RELA (non-zero). The assumption is that, if there are
584 two relocation sections for this section, one of them is REL and
585 the other is RELA. If the index of the relocation we're testing is
586 in range for the first relocation section, check that the external
587 relocation size is that for RELA. It is also assumed that, if
588 rel_idx is not in range for the first section, and this first
589 section contains REL relocs, then the relocation is in the second
590 section, that is RELA. */
591 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
592 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
593 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
594 > (bfd_vma)(rel_idx)) \
595 == (elf_section_data (sec)->rel_hdr.sh_entsize \
596 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
597 : sizeof (Elf32_External_Rela))))
599 /* The name of the dynamic relocation section. */
600 #define MIPS_ELF_REL_DYN_NAME(INFO) \
601 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
603 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
604 from smaller values. Start with zero, widen, *then* decrement. */
605 #define MINUS_ONE (((bfd_vma)0) - 1)
606 #define MINUS_TWO (((bfd_vma)0) - 2)
608 /* The number of local .got entries we reserve. */
609 #define MIPS_RESERVED_GOTNO(INFO) \
610 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
612 /* The offset of $gp from the beginning of the .got section. */
613 #define ELF_MIPS_GP_OFFSET(INFO) \
614 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
616 /* The maximum size of the GOT for it to be addressable using 16-bit
618 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
620 /* Instructions which appear in a stub. */
621 #define STUB_LW(abfd) \
623 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
624 : 0x8f998010)) /* lw t9,0x8010(gp) */
625 #define STUB_MOVE(abfd) \
627 ? 0x03e0782d /* daddu t7,ra */ \
628 : 0x03e07821)) /* addu t7,ra */
629 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
630 #define STUB_LI16(abfd) \
632 ? 0x64180000 /* daddiu t8,zero,0 */ \
633 : 0x24180000)) /* addiu t8,zero,0 */
634 #define MIPS_FUNCTION_STUB_SIZE (16)
636 /* The name of the dynamic interpreter. This is put in the .interp
639 #define ELF_DYNAMIC_INTERPRETER(abfd) \
640 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
641 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
642 : "/usr/lib/libc.so.1")
645 #define MNAME(bfd,pre,pos) \
646 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
647 #define ELF_R_SYM(bfd, i) \
648 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
649 #define ELF_R_TYPE(bfd, i) \
650 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
651 #define ELF_R_INFO(bfd, s, t) \
652 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
654 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
655 #define ELF_R_SYM(bfd, i) \
657 #define ELF_R_TYPE(bfd, i) \
659 #define ELF_R_INFO(bfd, s, t) \
660 (ELF32_R_INFO (s, t))
663 /* The mips16 compiler uses a couple of special sections to handle
664 floating point arguments.
666 Section names that look like .mips16.fn.FNNAME contain stubs that
667 copy floating point arguments from the fp regs to the gp regs and
668 then jump to FNNAME. If any 32 bit function calls FNNAME, the
669 call should be redirected to the stub instead. If no 32 bit
670 function calls FNNAME, the stub should be discarded. We need to
671 consider any reference to the function, not just a call, because
672 if the address of the function is taken we will need the stub,
673 since the address might be passed to a 32 bit function.
675 Section names that look like .mips16.call.FNNAME contain stubs
676 that copy floating point arguments from the gp regs to the fp
677 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
678 then any 16 bit function that calls FNNAME should be redirected
679 to the stub instead. If FNNAME is not a 32 bit function, the
680 stub should be discarded.
682 .mips16.call.fp.FNNAME sections are similar, but contain stubs
683 which call FNNAME and then copy the return value from the fp regs
684 to the gp regs. These stubs store the return value in $18 while
685 calling FNNAME; any function which might call one of these stubs
686 must arrange to save $18 around the call. (This case is not
687 needed for 32 bit functions that call 16 bit functions, because
688 16 bit functions always return floating point values in both
691 Note that in all cases FNNAME might be defined statically.
692 Therefore, FNNAME is not used literally. Instead, the relocation
693 information will indicate which symbol the section is for.
695 We record any stubs that we find in the symbol table. */
697 #define FN_STUB ".mips16.fn."
698 #define CALL_STUB ".mips16.call."
699 #define CALL_FP_STUB ".mips16.call.fp."
701 /* The format of the first PLT entry in a VxWorks executable. */
702 static const bfd_vma mips_vxworks_exec_plt0_entry
[] = {
703 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
704 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
705 0x8f390008, /* lw t9, 8(t9) */
706 0x00000000, /* nop */
707 0x03200008, /* jr t9 */
711 /* The format of subsequent PLT entries. */
712 static const bfd_vma mips_vxworks_exec_plt_entry
[] = {
713 0x10000000, /* b .PLT_resolver */
714 0x24180000, /* li t8, <pltindex> */
715 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
716 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
717 0x8f390000, /* lw t9, 0(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
723 /* The format of the first PLT entry in a VxWorks shared object. */
724 static const bfd_vma mips_vxworks_shared_plt0_entry
[] = {
725 0x8f990008, /* lw t9, 8(gp) */
726 0x00000000, /* nop */
727 0x03200008, /* jr t9 */
728 0x00000000, /* nop */
729 0x00000000, /* nop */
733 /* The format of subsequent PLT entries. */
734 static const bfd_vma mips_vxworks_shared_plt_entry
[] = {
735 0x10000000, /* b .PLT_resolver */
736 0x24180000 /* li t8, <pltindex> */
739 /* Look up an entry in a MIPS ELF linker hash table. */
741 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
742 ((struct mips_elf_link_hash_entry *) \
743 elf_link_hash_lookup (&(table)->root, (string), (create), \
746 /* Traverse a MIPS ELF linker hash table. */
748 #define mips_elf_link_hash_traverse(table, func, info) \
749 (elf_link_hash_traverse \
751 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
754 /* Get the MIPS ELF linker hash table from a link_info structure. */
756 #define mips_elf_hash_table(p) \
757 ((struct mips_elf_link_hash_table *) ((p)->hash))
759 /* Find the base offsets for thread-local storage in this object,
760 for GD/LD and IE/LE respectively. */
762 #define TP_OFFSET 0x7000
763 #define DTP_OFFSET 0x8000
766 dtprel_base (struct bfd_link_info
*info
)
768 /* If tls_sec is NULL, we should have signalled an error already. */
769 if (elf_hash_table (info
)->tls_sec
== NULL
)
771 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
775 tprel_base (struct bfd_link_info
*info
)
777 /* If tls_sec is NULL, we should have signalled an error already. */
778 if (elf_hash_table (info
)->tls_sec
== NULL
)
780 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
783 /* Create an entry in a MIPS ELF linker hash table. */
785 static struct bfd_hash_entry
*
786 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
787 struct bfd_hash_table
*table
, const char *string
)
789 struct mips_elf_link_hash_entry
*ret
=
790 (struct mips_elf_link_hash_entry
*) entry
;
792 /* Allocate the structure if it has not already been allocated by a
795 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
797 return (struct bfd_hash_entry
*) ret
;
799 /* Call the allocation method of the superclass. */
800 ret
= ((struct mips_elf_link_hash_entry
*)
801 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
805 /* Set local fields. */
806 memset (&ret
->esym
, 0, sizeof (EXTR
));
807 /* We use -2 as a marker to indicate that the information has
808 not been set. -1 means there is no associated ifd. */
810 ret
->possibly_dynamic_relocs
= 0;
811 ret
->readonly_reloc
= FALSE
;
812 ret
->no_fn_stub
= FALSE
;
814 ret
->need_fn_stub
= FALSE
;
815 ret
->call_stub
= NULL
;
816 ret
->call_fp_stub
= NULL
;
817 ret
->forced_local
= FALSE
;
818 ret
->is_branch_target
= FALSE
;
819 ret
->is_relocation_target
= FALSE
;
820 ret
->tls_type
= GOT_NORMAL
;
823 return (struct bfd_hash_entry
*) ret
;
827 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
829 struct _mips_elf_section_data
*sdata
;
830 bfd_size_type amt
= sizeof (*sdata
);
832 sdata
= bfd_zalloc (abfd
, amt
);
835 sec
->used_by_bfd
= sdata
;
837 return _bfd_elf_new_section_hook (abfd
, sec
);
840 /* Read ECOFF debugging information from a .mdebug section into a
841 ecoff_debug_info structure. */
844 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
845 struct ecoff_debug_info
*debug
)
848 const struct ecoff_debug_swap
*swap
;
851 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
852 memset (debug
, 0, sizeof (*debug
));
854 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
855 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
858 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
859 swap
->external_hdr_size
))
862 symhdr
= &debug
->symbolic_header
;
863 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
865 /* The symbolic header contains absolute file offsets and sizes to
867 #define READ(ptr, offset, count, size, type) \
868 if (symhdr->count == 0) \
872 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
873 debug->ptr = bfd_malloc (amt); \
874 if (debug->ptr == NULL) \
876 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
877 || bfd_bread (debug->ptr, amt, abfd) != amt) \
881 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
882 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
883 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
884 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
885 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
886 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
888 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
889 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
890 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
891 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
892 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
902 if (debug
->line
!= NULL
)
904 if (debug
->external_dnr
!= NULL
)
905 free (debug
->external_dnr
);
906 if (debug
->external_pdr
!= NULL
)
907 free (debug
->external_pdr
);
908 if (debug
->external_sym
!= NULL
)
909 free (debug
->external_sym
);
910 if (debug
->external_opt
!= NULL
)
911 free (debug
->external_opt
);
912 if (debug
->external_aux
!= NULL
)
913 free (debug
->external_aux
);
914 if (debug
->ss
!= NULL
)
916 if (debug
->ssext
!= NULL
)
918 if (debug
->external_fdr
!= NULL
)
919 free (debug
->external_fdr
);
920 if (debug
->external_rfd
!= NULL
)
921 free (debug
->external_rfd
);
922 if (debug
->external_ext
!= NULL
)
923 free (debug
->external_ext
);
927 /* Swap RPDR (runtime procedure table entry) for output. */
930 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
932 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
933 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
934 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
935 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
936 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
937 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
939 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
940 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
942 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
945 /* Create a runtime procedure table from the .mdebug section. */
948 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
949 struct bfd_link_info
*info
, asection
*s
,
950 struct ecoff_debug_info
*debug
)
952 const struct ecoff_debug_swap
*swap
;
953 HDRR
*hdr
= &debug
->symbolic_header
;
955 struct rpdr_ext
*erp
;
957 struct pdr_ext
*epdr
;
958 struct sym_ext
*esym
;
963 unsigned long sindex
;
967 const char *no_name_func
= _("static procedure (no name)");
975 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
977 sindex
= strlen (no_name_func
) + 1;
981 size
= swap
->external_pdr_size
;
983 epdr
= bfd_malloc (size
* count
);
987 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
990 size
= sizeof (RPDR
);
991 rp
= rpdr
= bfd_malloc (size
* count
);
995 size
= sizeof (char *);
996 sv
= bfd_malloc (size
* count
);
1000 count
= hdr
->isymMax
;
1001 size
= swap
->external_sym_size
;
1002 esym
= bfd_malloc (size
* count
);
1006 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1009 count
= hdr
->issMax
;
1010 ss
= bfd_malloc (count
);
1013 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1016 count
= hdr
->ipdMax
;
1017 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1019 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1020 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1021 rp
->adr
= sym
.value
;
1022 rp
->regmask
= pdr
.regmask
;
1023 rp
->regoffset
= pdr
.regoffset
;
1024 rp
->fregmask
= pdr
.fregmask
;
1025 rp
->fregoffset
= pdr
.fregoffset
;
1026 rp
->frameoffset
= pdr
.frameoffset
;
1027 rp
->framereg
= pdr
.framereg
;
1028 rp
->pcreg
= pdr
.pcreg
;
1030 sv
[i
] = ss
+ sym
.iss
;
1031 sindex
+= strlen (sv
[i
]) + 1;
1035 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1036 size
= BFD_ALIGN (size
, 16);
1037 rtproc
= bfd_alloc (abfd
, size
);
1040 mips_elf_hash_table (info
)->procedure_count
= 0;
1044 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1047 memset (erp
, 0, sizeof (struct rpdr_ext
));
1049 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1050 strcpy (str
, no_name_func
);
1051 str
+= strlen (no_name_func
) + 1;
1052 for (i
= 0; i
< count
; i
++)
1054 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1055 strcpy (str
, sv
[i
]);
1056 str
+= strlen (sv
[i
]) + 1;
1058 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1060 /* Set the size and contents of .rtproc section. */
1062 s
->contents
= rtproc
;
1064 /* Skip this section later on (I don't think this currently
1065 matters, but someday it might). */
1066 s
->map_head
.link_order
= NULL
;
1095 /* Check the mips16 stubs for a particular symbol, and see if we can
1099 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry
*h
,
1100 void *data ATTRIBUTE_UNUSED
)
1102 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1103 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1105 if (h
->fn_stub
!= NULL
1106 && ! h
->need_fn_stub
)
1108 /* We don't need the fn_stub; the only references to this symbol
1109 are 16 bit calls. Clobber the size to 0 to prevent it from
1110 being included in the link. */
1111 h
->fn_stub
->size
= 0;
1112 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1113 h
->fn_stub
->reloc_count
= 0;
1114 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1117 if (h
->call_stub
!= NULL
1118 && h
->root
.other
== STO_MIPS16
)
1120 /* We don't need the call_stub; this is a 16 bit function, so
1121 calls from other 16 bit functions are OK. Clobber the size
1122 to 0 to prevent it from being included in the link. */
1123 h
->call_stub
->size
= 0;
1124 h
->call_stub
->flags
&= ~SEC_RELOC
;
1125 h
->call_stub
->reloc_count
= 0;
1126 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1129 if (h
->call_fp_stub
!= NULL
1130 && h
->root
.other
== STO_MIPS16
)
1132 /* We don't need the call_stub; this is a 16 bit function, so
1133 calls from other 16 bit functions are OK. Clobber the size
1134 to 0 to prevent it from being included in the link. */
1135 h
->call_fp_stub
->size
= 0;
1136 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1137 h
->call_fp_stub
->reloc_count
= 0;
1138 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1144 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1145 Most mips16 instructions are 16 bits, but these instructions
1148 The format of these instructions is:
1150 +--------------+--------------------------------+
1151 | JALX | X| Imm 20:16 | Imm 25:21 |
1152 +--------------+--------------------------------+
1154 +-----------------------------------------------+
1156 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1157 Note that the immediate value in the first word is swapped.
1159 When producing a relocatable object file, R_MIPS16_26 is
1160 handled mostly like R_MIPS_26. In particular, the addend is
1161 stored as a straight 26-bit value in a 32-bit instruction.
1162 (gas makes life simpler for itself by never adjusting a
1163 R_MIPS16_26 reloc to be against a section, so the addend is
1164 always zero). However, the 32 bit instruction is stored as 2
1165 16-bit values, rather than a single 32-bit value. In a
1166 big-endian file, the result is the same; in a little-endian
1167 file, the two 16-bit halves of the 32 bit value are swapped.
1168 This is so that a disassembler can recognize the jal
1171 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1172 instruction stored as two 16-bit values. The addend A is the
1173 contents of the targ26 field. The calculation is the same as
1174 R_MIPS_26. When storing the calculated value, reorder the
1175 immediate value as shown above, and don't forget to store the
1176 value as two 16-bit values.
1178 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1182 +--------+----------------------+
1186 +--------+----------------------+
1189 +----------+------+-------------+
1193 +----------+--------------------+
1194 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1195 ((sub1 << 16) | sub2)).
1197 When producing a relocatable object file, the calculation is
1198 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1199 When producing a fully linked file, the calculation is
1200 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1201 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1203 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1204 mode. A typical instruction will have a format like this:
1206 +--------------+--------------------------------+
1207 | EXTEND | Imm 10:5 | Imm 15:11 |
1208 +--------------+--------------------------------+
1209 | Major | rx | ry | Imm 4:0 |
1210 +--------------+--------------------------------+
1212 EXTEND is the five bit value 11110. Major is the instruction
1215 This is handled exactly like R_MIPS_GPREL16, except that the
1216 addend is retrieved and stored as shown in this diagram; that
1217 is, the Imm fields above replace the V-rel16 field.
1219 All we need to do here is shuffle the bits appropriately. As
1220 above, the two 16-bit halves must be swapped on a
1221 little-endian system.
1223 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1224 access data when neither GP-relative nor PC-relative addressing
1225 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1226 except that the addend is retrieved and stored as shown above
1230 _bfd_mips16_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
1231 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1233 bfd_vma extend
, insn
, val
;
1235 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1236 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1239 /* Pick up the mips16 extend instruction and the real instruction. */
1240 extend
= bfd_get_16 (abfd
, data
);
1241 insn
= bfd_get_16 (abfd
, data
+ 2);
1242 if (r_type
== R_MIPS16_26
)
1245 val
= ((extend
& 0xfc00) << 16) | ((extend
& 0x3e0) << 11)
1246 | ((extend
& 0x1f) << 21) | insn
;
1248 val
= extend
<< 16 | insn
;
1251 val
= ((extend
& 0xf800) << 16) | ((insn
& 0xffe0) << 11)
1252 | ((extend
& 0x1f) << 11) | (extend
& 0x7e0) | (insn
& 0x1f);
1253 bfd_put_32 (abfd
, val
, data
);
1257 _bfd_mips16_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
1258 bfd_boolean jal_shuffle
, bfd_byte
*data
)
1260 bfd_vma extend
, insn
, val
;
1262 if (r_type
!= R_MIPS16_26
&& r_type
!= R_MIPS16_GPREL
1263 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
1266 val
= bfd_get_32 (abfd
, data
);
1267 if (r_type
== R_MIPS16_26
)
1271 insn
= val
& 0xffff;
1272 extend
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
1273 | ((val
>> 21) & 0x1f);
1277 insn
= val
& 0xffff;
1283 insn
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
1284 extend
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
1286 bfd_put_16 (abfd
, insn
, data
+ 2);
1287 bfd_put_16 (abfd
, extend
, data
);
1290 bfd_reloc_status_type
1291 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
1292 arelent
*reloc_entry
, asection
*input_section
,
1293 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
1297 bfd_reloc_status_type status
;
1299 if (bfd_is_com_section (symbol
->section
))
1302 relocation
= symbol
->value
;
1304 relocation
+= symbol
->section
->output_section
->vma
;
1305 relocation
+= symbol
->section
->output_offset
;
1307 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1308 return bfd_reloc_outofrange
;
1310 /* Set val to the offset into the section or symbol. */
1311 val
= reloc_entry
->addend
;
1313 _bfd_mips_elf_sign_extend (val
, 16);
1315 /* Adjust val for the final section location and GP value. If we
1316 are producing relocatable output, we don't want to do this for
1317 an external symbol. */
1319 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1320 val
+= relocation
- gp
;
1322 if (reloc_entry
->howto
->partial_inplace
)
1324 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1326 + reloc_entry
->address
);
1327 if (status
!= bfd_reloc_ok
)
1331 reloc_entry
->addend
= val
;
1334 reloc_entry
->address
+= input_section
->output_offset
;
1336 return bfd_reloc_ok
;
1339 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1340 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1341 that contains the relocation field and DATA points to the start of
1346 struct mips_hi16
*next
;
1348 asection
*input_section
;
1352 /* FIXME: This should not be a static variable. */
1354 static struct mips_hi16
*mips_hi16_list
;
1356 /* A howto special_function for REL *HI16 relocations. We can only
1357 calculate the correct value once we've seen the partnering
1358 *LO16 relocation, so just save the information for later.
1360 The ABI requires that the *LO16 immediately follow the *HI16.
1361 However, as a GNU extension, we permit an arbitrary number of
1362 *HI16s to be associated with a single *LO16. This significantly
1363 simplies the relocation handling in gcc. */
1365 bfd_reloc_status_type
1366 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1367 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
1368 asection
*input_section
, bfd
*output_bfd
,
1369 char **error_message ATTRIBUTE_UNUSED
)
1371 struct mips_hi16
*n
;
1373 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1374 return bfd_reloc_outofrange
;
1376 n
= bfd_malloc (sizeof *n
);
1378 return bfd_reloc_outofrange
;
1380 n
->next
= mips_hi16_list
;
1382 n
->input_section
= input_section
;
1383 n
->rel
= *reloc_entry
;
1386 if (output_bfd
!= NULL
)
1387 reloc_entry
->address
+= input_section
->output_offset
;
1389 return bfd_reloc_ok
;
1392 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1393 like any other 16-bit relocation when applied to global symbols, but is
1394 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1396 bfd_reloc_status_type
1397 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1398 void *data
, asection
*input_section
,
1399 bfd
*output_bfd
, char **error_message
)
1401 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
1402 || bfd_is_und_section (bfd_get_section (symbol
))
1403 || bfd_is_com_section (bfd_get_section (symbol
)))
1404 /* The relocation is against a global symbol. */
1405 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1406 input_section
, output_bfd
,
1409 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
1410 input_section
, output_bfd
, error_message
);
1413 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1414 is a straightforward 16 bit inplace relocation, but we must deal with
1415 any partnering high-part relocations as well. */
1417 bfd_reloc_status_type
1418 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
1419 void *data
, asection
*input_section
,
1420 bfd
*output_bfd
, char **error_message
)
1423 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1425 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1426 return bfd_reloc_outofrange
;
1428 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1430 vallo
= bfd_get_32 (abfd
, location
);
1431 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1434 while (mips_hi16_list
!= NULL
)
1436 bfd_reloc_status_type ret
;
1437 struct mips_hi16
*hi
;
1439 hi
= mips_hi16_list
;
1441 /* R_MIPS_GOT16 relocations are something of a special case. We
1442 want to install the addend in the same way as for a R_MIPS_HI16
1443 relocation (with a rightshift of 16). However, since GOT16
1444 relocations can also be used with global symbols, their howto
1445 has a rightshift of 0. */
1446 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
1447 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
1449 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1450 carry or borrow will induce a change of +1 or -1 in the high part. */
1451 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
1453 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
1454 hi
->input_section
, output_bfd
,
1456 if (ret
!= bfd_reloc_ok
)
1459 mips_hi16_list
= hi
->next
;
1463 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
1464 input_section
, output_bfd
,
1468 /* A generic howto special_function. This calculates and installs the
1469 relocation itself, thus avoiding the oft-discussed problems in
1470 bfd_perform_relocation and bfd_install_relocation. */
1472 bfd_reloc_status_type
1473 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
1474 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
1475 asection
*input_section
, bfd
*output_bfd
,
1476 char **error_message ATTRIBUTE_UNUSED
)
1479 bfd_reloc_status_type status
;
1480 bfd_boolean relocatable
;
1482 relocatable
= (output_bfd
!= NULL
);
1484 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
1485 return bfd_reloc_outofrange
;
1487 /* Build up the field adjustment in VAL. */
1489 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
1491 /* Either we're calculating the final field value or we have a
1492 relocation against a section symbol. Add in the section's
1493 offset or address. */
1494 val
+= symbol
->section
->output_section
->vma
;
1495 val
+= symbol
->section
->output_offset
;
1500 /* We're calculating the final field value. Add in the symbol's value
1501 and, if pc-relative, subtract the address of the field itself. */
1502 val
+= symbol
->value
;
1503 if (reloc_entry
->howto
->pc_relative
)
1505 val
-= input_section
->output_section
->vma
;
1506 val
-= input_section
->output_offset
;
1507 val
-= reloc_entry
->address
;
1511 /* VAL is now the final adjustment. If we're keeping this relocation
1512 in the output file, and if the relocation uses a separate addend,
1513 we just need to add VAL to that addend. Otherwise we need to add
1514 VAL to the relocation field itself. */
1515 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
1516 reloc_entry
->addend
+= val
;
1519 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
1521 /* Add in the separate addend, if any. */
1522 val
+= reloc_entry
->addend
;
1524 /* Add VAL to the relocation field. */
1525 _bfd_mips16_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1527 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
1529 _bfd_mips16_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
1532 if (status
!= bfd_reloc_ok
)
1537 reloc_entry
->address
+= input_section
->output_offset
;
1539 return bfd_reloc_ok
;
1542 /* Swap an entry in a .gptab section. Note that these routines rely
1543 on the equivalence of the two elements of the union. */
1546 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
1549 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
1550 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
1554 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
1555 Elf32_External_gptab
*ex
)
1557 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
1558 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
1562 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
1563 Elf32_External_compact_rel
*ex
)
1565 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
1566 H_PUT_32 (abfd
, in
->num
, ex
->num
);
1567 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
1568 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
1569 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
1570 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
1574 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
1575 Elf32_External_crinfo
*ex
)
1579 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
1580 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
1581 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
1582 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
1583 H_PUT_32 (abfd
, l
, ex
->info
);
1584 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
1585 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
1588 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1589 routines swap this structure in and out. They are used outside of
1590 BFD, so they are globally visible. */
1593 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
1596 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1597 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1598 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1599 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1600 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1601 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
1605 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
1606 Elf32_External_RegInfo
*ex
)
1608 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1609 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1610 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1611 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1612 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1613 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1616 /* In the 64 bit ABI, the .MIPS.options section holds register
1617 information in an Elf64_Reginfo structure. These routines swap
1618 them in and out. They are globally visible because they are used
1619 outside of BFD. These routines are here so that gas can call them
1620 without worrying about whether the 64 bit ABI has been included. */
1623 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
1624 Elf64_Internal_RegInfo
*in
)
1626 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
1627 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
1628 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
1629 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
1630 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
1631 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
1632 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
1636 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
1637 Elf64_External_RegInfo
*ex
)
1639 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
1640 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
1641 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
1642 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
1643 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
1644 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
1645 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
1648 /* Swap in an options header. */
1651 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
1652 Elf_Internal_Options
*in
)
1654 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
1655 in
->size
= H_GET_8 (abfd
, ex
->size
);
1656 in
->section
= H_GET_16 (abfd
, ex
->section
);
1657 in
->info
= H_GET_32 (abfd
, ex
->info
);
1660 /* Swap out an options header. */
1663 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
1664 Elf_External_Options
*ex
)
1666 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
1667 H_PUT_8 (abfd
, in
->size
, ex
->size
);
1668 H_PUT_16 (abfd
, in
->section
, ex
->section
);
1669 H_PUT_32 (abfd
, in
->info
, ex
->info
);
1672 /* This function is called via qsort() to sort the dynamic relocation
1673 entries by increasing r_symndx value. */
1676 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
1678 Elf_Internal_Rela int_reloc1
;
1679 Elf_Internal_Rela int_reloc2
;
1681 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
1682 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
1684 return ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
1687 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1690 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
1691 const void *arg2 ATTRIBUTE_UNUSED
)
1694 Elf_Internal_Rela int_reloc1
[3];
1695 Elf_Internal_Rela int_reloc2
[3];
1697 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1698 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
1699 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
1700 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
1702 return (ELF64_R_SYM (int_reloc1
[0].r_info
)
1703 - ELF64_R_SYM (int_reloc2
[0].r_info
));
1710 /* This routine is used to write out ECOFF debugging external symbol
1711 information. It is called via mips_elf_link_hash_traverse. The
1712 ECOFF external symbol information must match the ELF external
1713 symbol information. Unfortunately, at this point we don't know
1714 whether a symbol is required by reloc information, so the two
1715 tables may wind up being different. We must sort out the external
1716 symbol information before we can set the final size of the .mdebug
1717 section, and we must set the size of the .mdebug section before we
1718 can relocate any sections, and we can't know which symbols are
1719 required by relocation until we relocate the sections.
1720 Fortunately, it is relatively unlikely that any symbol will be
1721 stripped but required by a reloc. In particular, it can not happen
1722 when generating a final executable. */
1725 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
1727 struct extsym_info
*einfo
= data
;
1729 asection
*sec
, *output_section
;
1731 if (h
->root
.root
.type
== bfd_link_hash_warning
)
1732 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
1734 if (h
->root
.indx
== -2)
1736 else if ((h
->root
.def_dynamic
1737 || h
->root
.ref_dynamic
1738 || h
->root
.type
== bfd_link_hash_new
)
1739 && !h
->root
.def_regular
1740 && !h
->root
.ref_regular
)
1742 else if (einfo
->info
->strip
== strip_all
1743 || (einfo
->info
->strip
== strip_some
1744 && bfd_hash_lookup (einfo
->info
->keep_hash
,
1745 h
->root
.root
.root
.string
,
1746 FALSE
, FALSE
) == NULL
))
1754 if (h
->esym
.ifd
== -2)
1757 h
->esym
.cobol_main
= 0;
1758 h
->esym
.weakext
= 0;
1759 h
->esym
.reserved
= 0;
1760 h
->esym
.ifd
= ifdNil
;
1761 h
->esym
.asym
.value
= 0;
1762 h
->esym
.asym
.st
= stGlobal
;
1764 if (h
->root
.root
.type
== bfd_link_hash_undefined
1765 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
1769 /* Use undefined class. Also, set class and type for some
1771 name
= h
->root
.root
.root
.string
;
1772 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
1773 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
1775 h
->esym
.asym
.sc
= scData
;
1776 h
->esym
.asym
.st
= stLabel
;
1777 h
->esym
.asym
.value
= 0;
1779 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
1781 h
->esym
.asym
.sc
= scAbs
;
1782 h
->esym
.asym
.st
= stLabel
;
1783 h
->esym
.asym
.value
=
1784 mips_elf_hash_table (einfo
->info
)->procedure_count
;
1786 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
1788 h
->esym
.asym
.sc
= scAbs
;
1789 h
->esym
.asym
.st
= stLabel
;
1790 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
1793 h
->esym
.asym
.sc
= scUndefined
;
1795 else if (h
->root
.root
.type
!= bfd_link_hash_defined
1796 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
1797 h
->esym
.asym
.sc
= scAbs
;
1802 sec
= h
->root
.root
.u
.def
.section
;
1803 output_section
= sec
->output_section
;
1805 /* When making a shared library and symbol h is the one from
1806 the another shared library, OUTPUT_SECTION may be null. */
1807 if (output_section
== NULL
)
1808 h
->esym
.asym
.sc
= scUndefined
;
1811 name
= bfd_section_name (output_section
->owner
, output_section
);
1813 if (strcmp (name
, ".text") == 0)
1814 h
->esym
.asym
.sc
= scText
;
1815 else if (strcmp (name
, ".data") == 0)
1816 h
->esym
.asym
.sc
= scData
;
1817 else if (strcmp (name
, ".sdata") == 0)
1818 h
->esym
.asym
.sc
= scSData
;
1819 else if (strcmp (name
, ".rodata") == 0
1820 || strcmp (name
, ".rdata") == 0)
1821 h
->esym
.asym
.sc
= scRData
;
1822 else if (strcmp (name
, ".bss") == 0)
1823 h
->esym
.asym
.sc
= scBss
;
1824 else if (strcmp (name
, ".sbss") == 0)
1825 h
->esym
.asym
.sc
= scSBss
;
1826 else if (strcmp (name
, ".init") == 0)
1827 h
->esym
.asym
.sc
= scInit
;
1828 else if (strcmp (name
, ".fini") == 0)
1829 h
->esym
.asym
.sc
= scFini
;
1831 h
->esym
.asym
.sc
= scAbs
;
1835 h
->esym
.asym
.reserved
= 0;
1836 h
->esym
.asym
.index
= indexNil
;
1839 if (h
->root
.root
.type
== bfd_link_hash_common
)
1840 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
1841 else if (h
->root
.root
.type
== bfd_link_hash_defined
1842 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1844 if (h
->esym
.asym
.sc
== scCommon
)
1845 h
->esym
.asym
.sc
= scBss
;
1846 else if (h
->esym
.asym
.sc
== scSCommon
)
1847 h
->esym
.asym
.sc
= scSBss
;
1849 sec
= h
->root
.root
.u
.def
.section
;
1850 output_section
= sec
->output_section
;
1851 if (output_section
!= NULL
)
1852 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
1853 + sec
->output_offset
1854 + output_section
->vma
);
1856 h
->esym
.asym
.value
= 0;
1858 else if (h
->root
.needs_plt
)
1860 struct mips_elf_link_hash_entry
*hd
= h
;
1861 bfd_boolean no_fn_stub
= h
->no_fn_stub
;
1863 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
1865 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
1866 no_fn_stub
= no_fn_stub
|| hd
->no_fn_stub
;
1871 /* Set type and value for a symbol with a function stub. */
1872 h
->esym
.asym
.st
= stProc
;
1873 sec
= hd
->root
.root
.u
.def
.section
;
1875 h
->esym
.asym
.value
= 0;
1878 output_section
= sec
->output_section
;
1879 if (output_section
!= NULL
)
1880 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
1881 + sec
->output_offset
1882 + output_section
->vma
);
1884 h
->esym
.asym
.value
= 0;
1889 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
1890 h
->root
.root
.root
.string
,
1893 einfo
->failed
= TRUE
;
1900 /* A comparison routine used to sort .gptab entries. */
1903 gptab_compare (const void *p1
, const void *p2
)
1905 const Elf32_gptab
*a1
= p1
;
1906 const Elf32_gptab
*a2
= p2
;
1908 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
1911 /* Functions to manage the got entry hash table. */
1913 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1916 static INLINE hashval_t
1917 mips_elf_hash_bfd_vma (bfd_vma addr
)
1920 return addr
+ (addr
>> 32);
1926 /* got_entries only match if they're identical, except for gotidx, so
1927 use all fields to compute the hash, and compare the appropriate
1931 mips_elf_got_entry_hash (const void *entry_
)
1933 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1935 return entry
->symndx
1936 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
1937 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
1939 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
1940 : entry
->d
.h
->root
.root
.root
.hash
));
1944 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
1946 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1947 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1949 /* An LDM entry can only match another LDM entry. */
1950 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
1953 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
1954 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
1955 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
1956 : e1
->d
.h
== e2
->d
.h
);
1959 /* multi_got_entries are still a match in the case of global objects,
1960 even if the input bfd in which they're referenced differs, so the
1961 hash computation and compare functions are adjusted
1965 mips_elf_multi_got_entry_hash (const void *entry_
)
1967 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
1969 return entry
->symndx
1971 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
1972 : entry
->symndx
>= 0
1973 ? ((entry
->tls_type
& GOT_TLS_LDM
)
1974 ? (GOT_TLS_LDM
<< 17)
1976 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
1977 : entry
->d
.h
->root
.root
.root
.hash
);
1981 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
1983 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
1984 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
1986 /* Any two LDM entries match. */
1987 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
1990 /* Nothing else matches an LDM entry. */
1991 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
1994 return e1
->symndx
== e2
->symndx
1995 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
1996 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
1997 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
1998 : e1
->d
.h
== e2
->d
.h
);
2001 /* Return the dynamic relocation section. If it doesn't exist, try to
2002 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2003 if creation fails. */
2006 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2012 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2013 dynobj
= elf_hash_table (info
)->dynobj
;
2014 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2015 if (sreloc
== NULL
&& create_p
)
2017 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2022 | SEC_LINKER_CREATED
2025 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2026 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2032 /* Returns the GOT section for ABFD. */
2035 mips_elf_got_section (bfd
*abfd
, bfd_boolean maybe_excluded
)
2037 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
2039 || (! maybe_excluded
&& (sgot
->flags
& SEC_EXCLUDE
) != 0))
2044 /* Returns the GOT information associated with the link indicated by
2045 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2048 static struct mips_got_info
*
2049 mips_elf_got_info (bfd
*abfd
, asection
**sgotp
)
2052 struct mips_got_info
*g
;
2054 sgot
= mips_elf_got_section (abfd
, TRUE
);
2055 BFD_ASSERT (sgot
!= NULL
);
2056 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
2057 g
= mips_elf_section_data (sgot
)->u
.got_info
;
2058 BFD_ASSERT (g
!= NULL
);
2061 *sgotp
= (sgot
->flags
& SEC_EXCLUDE
) == 0 ? sgot
: NULL
;
2066 /* Count the number of relocations needed for a TLS GOT entry, with
2067 access types from TLS_TYPE, and symbol H (or a local symbol if H
2071 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2072 struct elf_link_hash_entry
*h
)
2076 bfd_boolean need_relocs
= FALSE
;
2077 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2079 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2080 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2083 if ((info
->shared
|| indx
!= 0)
2085 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2086 || h
->root
.type
!= bfd_link_hash_undefweak
))
2092 if (tls_type
& GOT_TLS_GD
)
2099 if (tls_type
& GOT_TLS_IE
)
2102 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2108 /* Count the number of TLS relocations required for the GOT entry in
2109 ARG1, if it describes a local symbol. */
2112 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2114 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2115 struct mips_elf_count_tls_arg
*arg
= arg2
;
2117 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2118 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2123 /* Count the number of TLS GOT entries required for the global (or
2124 forced-local) symbol in ARG1. */
2127 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2129 struct mips_elf_link_hash_entry
*hm
2130 = (struct mips_elf_link_hash_entry
*) arg1
;
2131 struct mips_elf_count_tls_arg
*arg
= arg2
;
2133 if (hm
->tls_type
& GOT_TLS_GD
)
2135 if (hm
->tls_type
& GOT_TLS_IE
)
2141 /* Count the number of TLS relocations required for the global (or
2142 forced-local) symbol in ARG1. */
2145 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2147 struct mips_elf_link_hash_entry
*hm
2148 = (struct mips_elf_link_hash_entry
*) arg1
;
2149 struct mips_elf_count_tls_arg
*arg
= arg2
;
2151 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2156 /* Output a simple dynamic relocation into SRELOC. */
2159 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2165 Elf_Internal_Rela rel
[3];
2167 memset (rel
, 0, sizeof (rel
));
2169 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2170 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2172 if (ABI_64_P (output_bfd
))
2174 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2175 (output_bfd
, &rel
[0],
2177 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
2180 bfd_elf32_swap_reloc_out
2181 (output_bfd
, &rel
[0],
2183 + sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
2184 ++sreloc
->reloc_count
;
2187 /* Initialize a set of TLS GOT entries for one symbol. */
2190 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
2191 unsigned char *tls_type_p
,
2192 struct bfd_link_info
*info
,
2193 struct mips_elf_link_hash_entry
*h
,
2197 asection
*sreloc
, *sgot
;
2198 bfd_vma offset
, offset2
;
2200 bfd_boolean need_relocs
= FALSE
;
2202 dynobj
= elf_hash_table (info
)->dynobj
;
2203 sgot
= mips_elf_got_section (dynobj
, FALSE
);
2208 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2210 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
2211 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
2212 indx
= h
->root
.dynindx
;
2215 if (*tls_type_p
& GOT_TLS_DONE
)
2218 if ((info
->shared
|| indx
!= 0)
2220 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
2221 || h
->root
.type
!= bfd_link_hash_undefweak
))
2224 /* MINUS_ONE means the symbol is not defined in this object. It may not
2225 be defined at all; assume that the value doesn't matter in that
2226 case. Otherwise complain if we would use the value. */
2227 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
2228 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
2230 /* Emit necessary relocations. */
2231 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
2233 /* General Dynamic. */
2234 if (*tls_type_p
& GOT_TLS_GD
)
2236 offset
= got_offset
;
2237 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
2241 mips_elf_output_dynamic_relocation
2242 (abfd
, sreloc
, indx
,
2243 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2244 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2247 mips_elf_output_dynamic_relocation
2248 (abfd
, sreloc
, indx
,
2249 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
2250 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
2252 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2253 sgot
->contents
+ offset2
);
2257 MIPS_ELF_PUT_WORD (abfd
, 1,
2258 sgot
->contents
+ offset
);
2259 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
2260 sgot
->contents
+ offset2
);
2263 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
2266 /* Initial Exec model. */
2267 if (*tls_type_p
& GOT_TLS_IE
)
2269 offset
= got_offset
;
2274 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
2275 sgot
->contents
+ offset
);
2277 MIPS_ELF_PUT_WORD (abfd
, 0,
2278 sgot
->contents
+ offset
);
2280 mips_elf_output_dynamic_relocation
2281 (abfd
, sreloc
, indx
,
2282 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
2283 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
2286 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
2287 sgot
->contents
+ offset
);
2290 if (*tls_type_p
& GOT_TLS_LDM
)
2292 /* The initial offset is zero, and the LD offsets will include the
2293 bias by DTP_OFFSET. */
2294 MIPS_ELF_PUT_WORD (abfd
, 0,
2295 sgot
->contents
+ got_offset
2296 + MIPS_ELF_GOT_SIZE (abfd
));
2299 MIPS_ELF_PUT_WORD (abfd
, 1,
2300 sgot
->contents
+ got_offset
);
2302 mips_elf_output_dynamic_relocation
2303 (abfd
, sreloc
, indx
,
2304 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
2305 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
2308 *tls_type_p
|= GOT_TLS_DONE
;
2311 /* Return the GOT index to use for a relocation of type R_TYPE against
2312 a symbol accessed using TLS_TYPE models. The GOT entries for this
2313 symbol in this GOT start at GOT_INDEX. This function initializes the
2314 GOT entries and corresponding relocations. */
2317 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
2318 int r_type
, struct bfd_link_info
*info
,
2319 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
2321 BFD_ASSERT (r_type
== R_MIPS_TLS_GOTTPREL
|| r_type
== R_MIPS_TLS_GD
2322 || r_type
== R_MIPS_TLS_LDM
);
2324 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
2326 if (r_type
== R_MIPS_TLS_GOTTPREL
)
2328 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
2329 if (*tls_type
& GOT_TLS_GD
)
2330 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
2335 if (r_type
== R_MIPS_TLS_GD
)
2337 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
2341 if (r_type
== R_MIPS_TLS_LDM
)
2343 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
2350 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2351 for global symbol H. .got.plt comes before the GOT, so the offset
2352 will be negative. */
2355 mips_elf_gotplt_index (struct bfd_link_info
*info
,
2356 struct elf_link_hash_entry
*h
)
2358 bfd_vma plt_index
, got_address
, got_value
;
2359 struct mips_elf_link_hash_table
*htab
;
2361 htab
= mips_elf_hash_table (info
);
2362 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
2364 /* Calculate the index of the symbol's PLT entry. */
2365 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
2367 /* Calculate the address of the associated .got.plt entry. */
2368 got_address
= (htab
->sgotplt
->output_section
->vma
2369 + htab
->sgotplt
->output_offset
2372 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2373 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
2374 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
2375 + htab
->root
.hgot
->root
.u
.def
.value
);
2377 return got_address
- got_value
;
2380 /* Return the GOT offset for address VALUE, which was derived from
2381 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2382 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2383 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2384 offset can be found. */
2387 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2388 asection
*input_section
, bfd_vma value
,
2389 unsigned long r_symndx
,
2390 struct mips_elf_link_hash_entry
*h
, int r_type
)
2393 struct mips_got_info
*g
;
2394 struct mips_got_entry
*entry
;
2396 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2398 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2399 input_section
, value
,
2400 r_symndx
, h
, r_type
);
2404 if (TLS_RELOC_P (r_type
))
2406 if (entry
->symndx
== -1 && g
->next
== NULL
)
2407 /* A type (3) entry in the single-GOT case. We use the symbol's
2408 hash table entry to track the index. */
2409 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
2410 r_type
, info
, h
, value
);
2412 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
2413 r_type
, info
, h
, value
);
2416 return entry
->gotidx
;
2419 /* Returns the GOT index for the global symbol indicated by H. */
2422 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
2423 int r_type
, struct bfd_link_info
*info
)
2427 struct mips_got_info
*g
, *gg
;
2428 long global_got_dynindx
= 0;
2430 gg
= g
= mips_elf_got_info (abfd
, &sgot
);
2431 if (g
->bfd2got
&& ibfd
)
2433 struct mips_got_entry e
, *p
;
2435 BFD_ASSERT (h
->dynindx
>= 0);
2437 g
= mips_elf_got_for_ibfd (g
, ibfd
);
2438 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
2442 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
2445 p
= htab_find (g
->got_entries
, &e
);
2447 BFD_ASSERT (p
->gotidx
> 0);
2449 if (TLS_RELOC_P (r_type
))
2451 bfd_vma value
= MINUS_ONE
;
2452 if ((h
->root
.type
== bfd_link_hash_defined
2453 || h
->root
.type
== bfd_link_hash_defweak
)
2454 && h
->root
.u
.def
.section
->output_section
)
2455 value
= (h
->root
.u
.def
.value
2456 + h
->root
.u
.def
.section
->output_offset
2457 + h
->root
.u
.def
.section
->output_section
->vma
);
2459 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
2460 info
, e
.d
.h
, value
);
2467 if (gg
->global_gotsym
!= NULL
)
2468 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
2470 if (TLS_RELOC_P (r_type
))
2472 struct mips_elf_link_hash_entry
*hm
2473 = (struct mips_elf_link_hash_entry
*) h
;
2474 bfd_vma value
= MINUS_ONE
;
2476 if ((h
->root
.type
== bfd_link_hash_defined
2477 || h
->root
.type
== bfd_link_hash_defweak
)
2478 && h
->root
.u
.def
.section
->output_section
)
2479 value
= (h
->root
.u
.def
.value
2480 + h
->root
.u
.def
.section
->output_offset
2481 + h
->root
.u
.def
.section
->output_section
->vma
);
2483 index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
2484 r_type
, info
, hm
, value
);
2488 /* Once we determine the global GOT entry with the lowest dynamic
2489 symbol table index, we must put all dynamic symbols with greater
2490 indices into the GOT. That makes it easy to calculate the GOT
2492 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
2493 index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
2494 * MIPS_ELF_GOT_SIZE (abfd
));
2496 BFD_ASSERT (index
< sgot
->size
);
2501 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2502 calculated from a symbol belonging to INPUT_SECTION. These entries
2503 are supposed to be placed at small offsets in the GOT, i.e., within
2504 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2505 could be created. If OFFSETP is nonnull, use it to return the
2506 offset of the GOT entry from VALUE. */
2509 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2510 asection
*input_section
, bfd_vma value
, bfd_vma
*offsetp
)
2513 struct mips_got_info
*g
;
2514 bfd_vma page
, index
;
2515 struct mips_got_entry
*entry
;
2517 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2519 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
2520 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2521 input_section
, page
, 0,
2522 NULL
, R_MIPS_GOT_PAGE
);
2527 index
= entry
->gotidx
;
2530 *offsetp
= value
- entry
->d
.address
;
2535 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2536 which was calculated from a symbol belonging to INPUT_SECTION.
2537 EXTERNAL is true if the relocation was against a global symbol
2538 that has been forced local. */
2541 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
2542 asection
*input_section
, bfd_vma value
,
2543 bfd_boolean external
)
2546 struct mips_got_info
*g
;
2547 struct mips_got_entry
*entry
;
2549 /* GOT16 relocations against local symbols are followed by a LO16
2550 relocation; those against global symbols are not. Thus if the
2551 symbol was originally local, the GOT16 relocation should load the
2552 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2554 value
= mips_elf_high (value
) << 16;
2556 g
= mips_elf_got_info (elf_hash_table (info
)->dynobj
, &sgot
);
2558 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, g
, sgot
,
2559 input_section
, value
, 0,
2560 NULL
, R_MIPS_GOT16
);
2562 return entry
->gotidx
;
2567 /* Returns the offset for the entry at the INDEXth position
2571 mips_elf_got_offset_from_index (bfd
*dynobj
, bfd
*output_bfd
,
2572 bfd
*input_bfd
, bfd_vma index
)
2576 struct mips_got_info
*g
;
2578 g
= mips_elf_got_info (dynobj
, &sgot
);
2579 gp
= _bfd_get_gp_value (output_bfd
)
2580 + mips_elf_adjust_gp (output_bfd
, g
, input_bfd
);
2582 return sgot
->output_section
->vma
+ sgot
->output_offset
+ index
- gp
;
2585 /* Create and return a local GOT entry for VALUE, which was calculated
2586 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2587 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2590 static struct mips_got_entry
*
2591 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
2592 bfd
*ibfd
, struct mips_got_info
*gg
,
2593 asection
*sgot
, asection
*input_section
,
2594 bfd_vma value
, unsigned long r_symndx
,
2595 struct mips_elf_link_hash_entry
*h
,
2598 struct mips_got_entry entry
, **loc
;
2599 struct mips_got_info
*g
;
2600 struct mips_elf_link_hash_table
*htab
;
2602 htab
= mips_elf_hash_table (info
);
2606 entry
.d
.address
= value
;
2609 g
= mips_elf_got_for_ibfd (gg
, ibfd
);
2612 g
= mips_elf_got_for_ibfd (gg
, abfd
);
2613 BFD_ASSERT (g
!= NULL
);
2616 /* We might have a symbol, H, if it has been forced local. Use the
2617 global entry then. It doesn't matter whether an entry is local
2618 or global for TLS, since the dynamic linker does not
2619 automatically relocate TLS GOT entries. */
2620 BFD_ASSERT (h
== NULL
|| h
->root
.forced_local
);
2621 if (TLS_RELOC_P (r_type
))
2623 struct mips_got_entry
*p
;
2626 if (r_type
== R_MIPS_TLS_LDM
)
2628 entry
.tls_type
= GOT_TLS_LDM
;
2634 entry
.symndx
= r_symndx
;
2640 p
= (struct mips_got_entry
*)
2641 htab_find (g
->got_entries
, &entry
);
2647 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2652 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
2655 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2660 memcpy (*loc
, &entry
, sizeof entry
);
2662 if (g
->assigned_gotno
>= g
->local_gotno
)
2664 (*loc
)->gotidx
= -1;
2665 /* We didn't allocate enough space in the GOT. */
2666 (*_bfd_error_handler
)
2667 (_("not enough GOT space for local GOT entries"));
2668 bfd_set_error (bfd_error_bad_value
);
2672 MIPS_ELF_PUT_WORD (abfd
, value
,
2673 (sgot
->contents
+ entry
.gotidx
));
2675 /* These GOT entries need a dynamic relocation on VxWorks. Because
2676 the offset between segments is not fixed, the relocation must be
2677 against a symbol in the same segment as the original symbol.
2678 The easiest way to do this is to take INPUT_SECTION's output
2679 section and emit a relocation against its section symbol. */
2680 if (htab
->is_vxworks
)
2682 Elf_Internal_Rela outrel
;
2683 asection
*s
, *output_section
;
2685 bfd_vma got_address
;
2688 s
= mips_elf_rel_dyn_section (info
, FALSE
);
2689 output_section
= input_section
->output_section
;
2690 dynindx
= elf_section_data (output_section
)->dynindx
;
2691 got_address
= (sgot
->output_section
->vma
2692 + sgot
->output_offset
2695 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
2696 outrel
.r_offset
= got_address
;
2697 outrel
.r_info
= ELF32_R_INFO (dynindx
, R_MIPS_32
);
2698 outrel
.r_addend
= value
- output_section
->vma
;
2699 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
2705 /* Sort the dynamic symbol table so that symbols that need GOT entries
2706 appear towards the end. This reduces the amount of GOT space
2707 required. MAX_LOCAL is used to set the number of local symbols
2708 known to be in the dynamic symbol table. During
2709 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2710 section symbols are added and the count is higher. */
2713 mips_elf_sort_hash_table (struct bfd_link_info
*info
, unsigned long max_local
)
2715 struct mips_elf_hash_sort_data hsd
;
2716 struct mips_got_info
*g
;
2719 dynobj
= elf_hash_table (info
)->dynobj
;
2721 g
= mips_elf_got_info (dynobj
, NULL
);
2724 hsd
.max_unref_got_dynindx
=
2725 hsd
.min_got_dynindx
= elf_hash_table (info
)->dynsymcount
2726 /* In the multi-got case, assigned_gotno of the master got_info
2727 indicate the number of entries that aren't referenced in the
2728 primary GOT, but that must have entries because there are
2729 dynamic relocations that reference it. Since they aren't
2730 referenced, we move them to the end of the GOT, so that they
2731 don't prevent other entries that are referenced from getting
2732 too large offsets. */
2733 - (g
->next
? g
->assigned_gotno
: 0);
2734 hsd
.max_non_got_dynindx
= max_local
;
2735 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
2736 elf_hash_table (info
)),
2737 mips_elf_sort_hash_table_f
,
2740 /* There should have been enough room in the symbol table to
2741 accommodate both the GOT and non-GOT symbols. */
2742 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
2743 BFD_ASSERT ((unsigned long)hsd
.max_unref_got_dynindx
2744 <= elf_hash_table (info
)->dynsymcount
);
2746 /* Now we know which dynamic symbol has the lowest dynamic symbol
2747 table index in the GOT. */
2748 g
->global_gotsym
= hsd
.low
;
2753 /* If H needs a GOT entry, assign it the highest available dynamic
2754 index. Otherwise, assign it the lowest available dynamic
2758 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
2760 struct mips_elf_hash_sort_data
*hsd
= data
;
2762 if (h
->root
.root
.type
== bfd_link_hash_warning
)
2763 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
2765 /* Symbols without dynamic symbol table entries aren't interesting
2767 if (h
->root
.dynindx
== -1)
2770 /* Global symbols that need GOT entries that are not explicitly
2771 referenced are marked with got offset 2. Those that are
2772 referenced get a 1, and those that don't need GOT entries get
2774 if (h
->root
.got
.offset
== 2)
2776 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2778 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
2779 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2780 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
2782 else if (h
->root
.got
.offset
!= 1)
2783 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
2786 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
2788 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
2789 hsd
->low
= (struct elf_link_hash_entry
*) h
;
2795 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2796 symbol table index lower than any we've seen to date, record it for
2800 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
2801 bfd
*abfd
, struct bfd_link_info
*info
,
2802 struct mips_got_info
*g
,
2803 unsigned char tls_flag
)
2805 struct mips_got_entry entry
, **loc
;
2807 /* A global symbol in the GOT must also be in the dynamic symbol
2809 if (h
->dynindx
== -1)
2811 switch (ELF_ST_VISIBILITY (h
->other
))
2815 _bfd_mips_elf_hide_symbol (info
, h
, TRUE
);
2818 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
2822 /* Make sure we have a GOT to put this entry into. */
2823 BFD_ASSERT (g
!= NULL
);
2827 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
2830 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
2833 /* If we've already marked this entry as needing GOT space, we don't
2834 need to do it again. */
2837 (*loc
)->tls_type
|= tls_flag
;
2841 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2847 entry
.tls_type
= tls_flag
;
2849 memcpy (*loc
, &entry
, sizeof entry
);
2851 if (h
->got
.offset
!= MINUS_ONE
)
2854 /* By setting this to a value other than -1, we are indicating that
2855 there needs to be a GOT entry for H. Avoid using zero, as the
2856 generic ELF copy_indirect_symbol tests for <= 0. */
2863 /* Reserve space in G for a GOT entry containing the value of symbol
2864 SYMNDX in input bfd ABDF, plus ADDEND. */
2867 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
2868 struct mips_got_info
*g
,
2869 unsigned char tls_flag
)
2871 struct mips_got_entry entry
, **loc
;
2874 entry
.symndx
= symndx
;
2875 entry
.d
.addend
= addend
;
2876 entry
.tls_type
= tls_flag
;
2877 loc
= (struct mips_got_entry
**)
2878 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
2882 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
2885 (*loc
)->tls_type
|= tls_flag
;
2887 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
2890 (*loc
)->tls_type
|= tls_flag
;
2898 entry
.tls_type
= tls_flag
;
2899 if (tls_flag
== GOT_TLS_IE
)
2901 else if (tls_flag
== GOT_TLS_GD
)
2903 else if (g
->tls_ldm_offset
== MINUS_ONE
)
2905 g
->tls_ldm_offset
= MINUS_TWO
;
2911 entry
.gotidx
= g
->local_gotno
++;
2915 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
2920 memcpy (*loc
, &entry
, sizeof entry
);
2925 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2928 mips_elf_bfd2got_entry_hash (const void *entry_
)
2930 const struct mips_elf_bfd2got_hash
*entry
2931 = (struct mips_elf_bfd2got_hash
*)entry_
;
2933 return entry
->bfd
->id
;
2936 /* Check whether two hash entries have the same bfd. */
2939 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
2941 const struct mips_elf_bfd2got_hash
*e1
2942 = (const struct mips_elf_bfd2got_hash
*)entry1
;
2943 const struct mips_elf_bfd2got_hash
*e2
2944 = (const struct mips_elf_bfd2got_hash
*)entry2
;
2946 return e1
->bfd
== e2
->bfd
;
2949 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2950 be the master GOT data. */
2952 static struct mips_got_info
*
2953 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
2955 struct mips_elf_bfd2got_hash e
, *p
;
2961 p
= htab_find (g
->bfd2got
, &e
);
2962 return p
? p
->g
: NULL
;
2965 /* Create one separate got for each bfd that has entries in the global
2966 got, such that we can tell how many local and global entries each
2970 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
2972 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
2973 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
2974 htab_t bfd2got
= arg
->bfd2got
;
2975 struct mips_got_info
*g
;
2976 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
2979 /* Find the got_info for this GOT entry's input bfd. Create one if
2981 bfdgot_entry
.bfd
= entry
->abfd
;
2982 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
2983 bfdgot
= (struct mips_elf_bfd2got_hash
*)*bfdgotp
;
2989 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
2990 (arg
->obfd
, sizeof (struct mips_elf_bfd2got_hash
));
3000 bfdgot
->bfd
= entry
->abfd
;
3001 bfdgot
->g
= g
= (struct mips_got_info
*)
3002 bfd_alloc (arg
->obfd
, sizeof (struct mips_got_info
));
3009 g
->global_gotsym
= NULL
;
3010 g
->global_gotno
= 0;
3012 g
->assigned_gotno
= -1;
3014 g
->tls_assigned_gotno
= 0;
3015 g
->tls_ldm_offset
= MINUS_ONE
;
3016 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3017 mips_elf_multi_got_entry_eq
, NULL
);
3018 if (g
->got_entries
== NULL
)
3028 /* Insert the GOT entry in the bfd's got entry hash table. */
3029 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
3030 if (*entryp
!= NULL
)
3035 if (entry
->tls_type
)
3037 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3039 if (entry
->tls_type
& GOT_TLS_IE
)
3042 else if (entry
->symndx
>= 0 || entry
->d
.h
->forced_local
)
3050 /* Attempt to merge gots of different input bfds. Try to use as much
3051 as possible of the primary got, since it doesn't require explicit
3052 dynamic relocations, but don't use bfds that would reference global
3053 symbols out of the addressable range. Failing the primary got,
3054 attempt to merge with the current got, or finish the current got
3055 and then make make the new got current. */
3058 mips_elf_merge_gots (void **bfd2got_
, void *p
)
3060 struct mips_elf_bfd2got_hash
*bfd2got
3061 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
3062 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
3063 unsigned int lcount
= bfd2got
->g
->local_gotno
;
3064 unsigned int gcount
= bfd2got
->g
->global_gotno
;
3065 unsigned int tcount
= bfd2got
->g
->tls_gotno
;
3066 unsigned int maxcnt
= arg
->max_count
;
3067 bfd_boolean too_many_for_tls
= FALSE
;
3069 /* We place TLS GOT entries after both locals and globals. The globals
3070 for the primary GOT may overflow the normal GOT size limit, so be
3071 sure not to merge a GOT which requires TLS with the primary GOT in that
3072 case. This doesn't affect non-primary GOTs. */
3075 unsigned int primary_total
= lcount
+ tcount
+ arg
->global_count
;
3076 if (primary_total
* MIPS_ELF_GOT_SIZE (bfd2got
->bfd
)
3077 >= MIPS_ELF_GOT_MAX_SIZE (arg
->info
))
3078 too_many_for_tls
= TRUE
;
3081 /* If we don't have a primary GOT and this is not too big, use it as
3082 a starting point for the primary GOT. */
3083 if (! arg
->primary
&& lcount
+ gcount
+ tcount
<= maxcnt
3084 && ! too_many_for_tls
)
3086 arg
->primary
= bfd2got
->g
;
3087 arg
->primary_count
= lcount
+ gcount
;
3089 /* If it looks like we can merge this bfd's entries with those of
3090 the primary, merge them. The heuristics is conservative, but we
3091 don't have to squeeze it too hard. */
3092 else if (arg
->primary
&& ! too_many_for_tls
3093 && (arg
->primary_count
+ lcount
+ gcount
+ tcount
) <= maxcnt
)
3095 struct mips_got_info
*g
= bfd2got
->g
;
3096 int old_lcount
= arg
->primary
->local_gotno
;
3097 int old_gcount
= arg
->primary
->global_gotno
;
3098 int old_tcount
= arg
->primary
->tls_gotno
;
3100 bfd2got
->g
= arg
->primary
;
3102 htab_traverse (g
->got_entries
,
3103 mips_elf_make_got_per_bfd
,
3105 if (arg
->obfd
== NULL
)
3108 htab_delete (g
->got_entries
);
3109 /* We don't have to worry about releasing memory of the actual
3110 got entries, since they're all in the master got_entries hash
3113 BFD_ASSERT (old_lcount
+ lcount
>= arg
->primary
->local_gotno
);
3114 BFD_ASSERT (old_gcount
+ gcount
>= arg
->primary
->global_gotno
);
3115 BFD_ASSERT (old_tcount
+ tcount
>= arg
->primary
->tls_gotno
);
3117 arg
->primary_count
= arg
->primary
->local_gotno
3118 + arg
->primary
->global_gotno
+ arg
->primary
->tls_gotno
;
3120 /* If we can merge with the last-created got, do it. */
3121 else if (arg
->current
3122 && arg
->current_count
+ lcount
+ gcount
+ tcount
<= maxcnt
)
3124 struct mips_got_info
*g
= bfd2got
->g
;
3125 int old_lcount
= arg
->current
->local_gotno
;
3126 int old_gcount
= arg
->current
->global_gotno
;
3127 int old_tcount
= arg
->current
->tls_gotno
;
3129 bfd2got
->g
= arg
->current
;
3131 htab_traverse (g
->got_entries
,
3132 mips_elf_make_got_per_bfd
,
3134 if (arg
->obfd
== NULL
)
3137 htab_delete (g
->got_entries
);
3139 BFD_ASSERT (old_lcount
+ lcount
>= arg
->current
->local_gotno
);
3140 BFD_ASSERT (old_gcount
+ gcount
>= arg
->current
->global_gotno
);
3141 BFD_ASSERT (old_tcount
+ tcount
>= arg
->current
->tls_gotno
);
3143 arg
->current_count
= arg
->current
->local_gotno
3144 + arg
->current
->global_gotno
+ arg
->current
->tls_gotno
;
3146 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3147 fits; if it turns out that it doesn't, we'll get relocation
3148 overflows anyway. */
3151 bfd2got
->g
->next
= arg
->current
;
3152 arg
->current
= bfd2got
->g
;
3154 arg
->current_count
= lcount
+ gcount
+ 2 * tcount
;
3160 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3161 is null iff there is just a single GOT. */
3164 mips_elf_initialize_tls_index (void **entryp
, void *p
)
3166 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3167 struct mips_got_info
*g
= p
;
3170 /* We're only interested in TLS symbols. */
3171 if (entry
->tls_type
== 0)
3174 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
3176 if (entry
->symndx
== -1 && g
->next
== NULL
)
3178 /* A type (3) got entry in the single-GOT case. We use the symbol's
3179 hash table entry to track its index. */
3180 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
3182 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
3183 entry
->d
.h
->tls_got_offset
= next_index
;
3187 if (entry
->tls_type
& GOT_TLS_LDM
)
3189 /* There are separate mips_got_entry objects for each input bfd
3190 that requires an LDM entry. Make sure that all LDM entries in
3191 a GOT resolve to the same index. */
3192 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
3194 entry
->gotidx
= g
->tls_ldm_offset
;
3197 g
->tls_ldm_offset
= next_index
;
3199 entry
->gotidx
= next_index
;
3202 /* Account for the entries we've just allocated. */
3203 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
3204 g
->tls_assigned_gotno
+= 2;
3205 if (entry
->tls_type
& GOT_TLS_IE
)
3206 g
->tls_assigned_gotno
+= 1;
3211 /* If passed a NULL mips_got_info in the argument, set the marker used
3212 to tell whether a global symbol needs a got entry (in the primary
3213 got) to the given VALUE.
3215 If passed a pointer G to a mips_got_info in the argument (it must
3216 not be the primary GOT), compute the offset from the beginning of
3217 the (primary) GOT section to the entry in G corresponding to the
3218 global symbol. G's assigned_gotno must contain the index of the
3219 first available global GOT entry in G. VALUE must contain the size
3220 of a GOT entry in bytes. For each global GOT entry that requires a
3221 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3222 marked as not eligible for lazy resolution through a function
3225 mips_elf_set_global_got_offset (void **entryp
, void *p
)
3227 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3228 struct mips_elf_set_global_got_offset_arg
*arg
3229 = (struct mips_elf_set_global_got_offset_arg
*)p
;
3230 struct mips_got_info
*g
= arg
->g
;
3232 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
3233 arg
->needed_relocs
+=
3234 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
3235 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
3237 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1
3238 && entry
->d
.h
->root
.dynindx
!= -1
3239 && entry
->d
.h
->tls_type
== GOT_NORMAL
)
3243 BFD_ASSERT (g
->global_gotsym
== NULL
);
3245 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
3246 if (arg
->info
->shared
3247 || (elf_hash_table (arg
->info
)->dynamic_sections_created
3248 && entry
->d
.h
->root
.def_dynamic
3249 && !entry
->d
.h
->root
.def_regular
))
3250 ++arg
->needed_relocs
;
3253 entry
->d
.h
->root
.got
.offset
= arg
->value
;
3259 /* Mark any global symbols referenced in the GOT we are iterating over
3260 as inelligible for lazy resolution stubs. */
3262 mips_elf_set_no_stub (void **entryp
, void *p ATTRIBUTE_UNUSED
)
3264 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3266 if (entry
->abfd
!= NULL
3267 && entry
->symndx
== -1
3268 && entry
->d
.h
->root
.dynindx
!= -1)
3269 entry
->d
.h
->no_fn_stub
= TRUE
;
3274 /* Follow indirect and warning hash entries so that each got entry
3275 points to the final symbol definition. P must point to a pointer
3276 to the hash table we're traversing. Since this traversal may
3277 modify the hash table, we set this pointer to NULL to indicate
3278 we've made a potentially-destructive change to the hash table, so
3279 the traversal must be restarted. */
3281 mips_elf_resolve_final_got_entry (void **entryp
, void *p
)
3283 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
3284 htab_t got_entries
= *(htab_t
*)p
;
3286 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3288 struct mips_elf_link_hash_entry
*h
= entry
->d
.h
;
3290 while (h
->root
.root
.type
== bfd_link_hash_indirect
3291 || h
->root
.root
.type
== bfd_link_hash_warning
)
3292 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3294 if (entry
->d
.h
== h
)
3299 /* If we can't find this entry with the new bfd hash, re-insert
3300 it, and get the traversal restarted. */
3301 if (! htab_find (got_entries
, entry
))
3303 htab_clear_slot (got_entries
, entryp
);
3304 entryp
= htab_find_slot (got_entries
, entry
, INSERT
);
3307 /* Abort the traversal, since the whole table may have
3308 moved, and leave it up to the parent to restart the
3310 *(htab_t
*)p
= NULL
;
3313 /* We might want to decrement the global_gotno count, but it's
3314 either too early or too late for that at this point. */
3320 /* Turn indirect got entries in a got_entries table into their final
3323 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3329 got_entries
= g
->got_entries
;
3331 htab_traverse (got_entries
,
3332 mips_elf_resolve_final_got_entry
,
3335 while (got_entries
== NULL
);
3338 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3341 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
3343 if (g
->bfd2got
== NULL
)
3346 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3350 BFD_ASSERT (g
->next
);
3354 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
3355 * MIPS_ELF_GOT_SIZE (abfd
);
3358 /* Turn a single GOT that is too big for 16-bit addressing into
3359 a sequence of GOTs, each one 16-bit addressable. */
3362 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
3363 struct mips_got_info
*g
, asection
*got
,
3364 bfd_size_type pages
)
3366 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
3367 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
3368 struct mips_got_info
*gg
;
3369 unsigned int assign
;
3371 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
3372 mips_elf_bfd2got_entry_eq
, NULL
);
3373 if (g
->bfd2got
== NULL
)
3376 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
3377 got_per_bfd_arg
.obfd
= abfd
;
3378 got_per_bfd_arg
.info
= info
;
3380 /* Count how many GOT entries each input bfd requires, creating a
3381 map from bfd to got info while at that. */
3382 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
3383 if (got_per_bfd_arg
.obfd
== NULL
)
3386 got_per_bfd_arg
.current
= NULL
;
3387 got_per_bfd_arg
.primary
= NULL
;
3388 /* Taking out PAGES entries is a worst-case estimate. We could
3389 compute the maximum number of pages that each separate input bfd
3390 uses, but it's probably not worth it. */
3391 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
3392 / MIPS_ELF_GOT_SIZE (abfd
))
3393 - MIPS_RESERVED_GOTNO (info
) - pages
);
3394 /* The number of globals that will be included in the primary GOT.
3395 See the calls to mips_elf_set_global_got_offset below for more
3397 got_per_bfd_arg
.global_count
= g
->global_gotno
;
3399 /* Try to merge the GOTs of input bfds together, as long as they
3400 don't seem to exceed the maximum GOT size, choosing one of them
3401 to be the primary GOT. */
3402 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
3403 if (got_per_bfd_arg
.obfd
== NULL
)
3406 /* If we do not find any suitable primary GOT, create an empty one. */
3407 if (got_per_bfd_arg
.primary
== NULL
)
3409 g
->next
= (struct mips_got_info
*)
3410 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
3411 if (g
->next
== NULL
)
3414 g
->next
->global_gotsym
= NULL
;
3415 g
->next
->global_gotno
= 0;
3416 g
->next
->local_gotno
= 0;
3417 g
->next
->tls_gotno
= 0;
3418 g
->next
->assigned_gotno
= 0;
3419 g
->next
->tls_assigned_gotno
= 0;
3420 g
->next
->tls_ldm_offset
= MINUS_ONE
;
3421 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
3422 mips_elf_multi_got_entry_eq
,
3424 if (g
->next
->got_entries
== NULL
)
3426 g
->next
->bfd2got
= NULL
;
3429 g
->next
= got_per_bfd_arg
.primary
;
3430 g
->next
->next
= got_per_bfd_arg
.current
;
3432 /* GG is now the master GOT, and G is the primary GOT. */
3436 /* Map the output bfd to the primary got. That's what we're going
3437 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3438 didn't mark in check_relocs, and we want a quick way to find it.
3439 We can't just use gg->next because we're going to reverse the
3442 struct mips_elf_bfd2got_hash
*bfdgot
;
3445 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
3446 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
3453 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
3455 BFD_ASSERT (*bfdgotp
== NULL
);
3459 /* The IRIX dynamic linker requires every symbol that is referenced
3460 in a dynamic relocation to be present in the primary GOT, so
3461 arrange for them to appear after those that are actually
3464 GNU/Linux could very well do without it, but it would slow down
3465 the dynamic linker, since it would have to resolve every dynamic
3466 symbol referenced in other GOTs more than once, without help from
3467 the cache. Also, knowing that every external symbol has a GOT
3468 helps speed up the resolution of local symbols too, so GNU/Linux
3469 follows IRIX's practice.
3471 The number 2 is used by mips_elf_sort_hash_table_f to count
3472 global GOT symbols that are unreferenced in the primary GOT, with
3473 an initial dynamic index computed from gg->assigned_gotno, where
3474 the number of unreferenced global entries in the primary GOT is
3478 gg
->assigned_gotno
= gg
->global_gotno
- g
->global_gotno
;
3479 g
->global_gotno
= gg
->global_gotno
;
3480 set_got_offset_arg
.value
= 2;
3484 /* This could be used for dynamic linkers that don't optimize
3485 symbol resolution while applying relocations so as to use
3486 primary GOT entries or assuming the symbol is locally-defined.
3487 With this code, we assign lower dynamic indices to global
3488 symbols that are not referenced in the primary GOT, so that
3489 their entries can be omitted. */
3490 gg
->assigned_gotno
= 0;
3491 set_got_offset_arg
.value
= -1;
3494 /* Reorder dynamic symbols as described above (which behavior
3495 depends on the setting of VALUE). */
3496 set_got_offset_arg
.g
= NULL
;
3497 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
3498 &set_got_offset_arg
);
3499 set_got_offset_arg
.value
= 1;
3500 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
3501 &set_got_offset_arg
);
3502 if (! mips_elf_sort_hash_table (info
, 1))
3505 /* Now go through the GOTs assigning them offset ranges.
3506 [assigned_gotno, local_gotno[ will be set to the range of local
3507 entries in each GOT. We can then compute the end of a GOT by
3508 adding local_gotno to global_gotno. We reverse the list and make
3509 it circular since then we'll be able to quickly compute the
3510 beginning of a GOT, by computing the end of its predecessor. To
3511 avoid special cases for the primary GOT, while still preserving
3512 assertions that are valid for both single- and multi-got links,
3513 we arrange for the main got struct to have the right number of
3514 global entries, but set its local_gotno such that the initial
3515 offset of the primary GOT is zero. Remember that the primary GOT
3516 will become the last item in the circular linked list, so it
3517 points back to the master GOT. */
3518 gg
->local_gotno
= -g
->global_gotno
;
3519 gg
->global_gotno
= g
->global_gotno
;
3526 struct mips_got_info
*gn
;
3528 assign
+= MIPS_RESERVED_GOTNO (info
);
3529 g
->assigned_gotno
= assign
;
3530 g
->local_gotno
+= assign
+ pages
;
3531 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
3533 /* Take g out of the direct list, and push it onto the reversed
3534 list that gg points to. g->next is guaranteed to be nonnull after
3535 this operation, as required by mips_elf_initialize_tls_index. */
3540 /* Set up any TLS entries. We always place the TLS entries after
3541 all non-TLS entries. */
3542 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
3543 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
3545 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3548 /* Mark global symbols in every non-primary GOT as ineligible for
3551 htab_traverse (g
->got_entries
, mips_elf_set_no_stub
, NULL
);
3555 got
->size
= (gg
->next
->local_gotno
3556 + gg
->next
->global_gotno
3557 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
3563 /* Returns the first relocation of type r_type found, beginning with
3564 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3566 static const Elf_Internal_Rela
*
3567 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
3568 const Elf_Internal_Rela
*relocation
,
3569 const Elf_Internal_Rela
*relend
)
3571 while (relocation
< relend
)
3573 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
)
3579 /* We didn't find it. */
3580 bfd_set_error (bfd_error_bad_value
);
3584 /* Return whether a relocation is against a local symbol. */
3587 mips_elf_local_relocation_p (bfd
*input_bfd
,
3588 const Elf_Internal_Rela
*relocation
,
3589 asection
**local_sections
,
3590 bfd_boolean check_forced
)
3592 unsigned long r_symndx
;
3593 Elf_Internal_Shdr
*symtab_hdr
;
3594 struct mips_elf_link_hash_entry
*h
;
3597 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3598 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3599 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
3601 if (r_symndx
< extsymoff
)
3603 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
3608 /* Look up the hash table to check whether the symbol
3609 was forced local. */
3610 h
= (struct mips_elf_link_hash_entry
*)
3611 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
3612 /* Find the real hash-table entry for this symbol. */
3613 while (h
->root
.root
.type
== bfd_link_hash_indirect
3614 || h
->root
.root
.type
== bfd_link_hash_warning
)
3615 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3616 if (h
->root
.forced_local
)
3623 /* Sign-extend VALUE, which has the indicated number of BITS. */
3626 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
3628 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
3629 /* VALUE is negative. */
3630 value
|= ((bfd_vma
) - 1) << bits
;
3635 /* Return non-zero if the indicated VALUE has overflowed the maximum
3636 range expressible by a signed number with the indicated number of
3640 mips_elf_overflow_p (bfd_vma value
, int bits
)
3642 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
3644 if (svalue
> (1 << (bits
- 1)) - 1)
3645 /* The value is too big. */
3647 else if (svalue
< -(1 << (bits
- 1)))
3648 /* The value is too small. */
3655 /* Calculate the %high function. */
3658 mips_elf_high (bfd_vma value
)
3660 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
3663 /* Calculate the %higher function. */
3666 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
3669 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
3676 /* Calculate the %highest function. */
3679 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
3682 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3689 /* Create the .compact_rel section. */
3692 mips_elf_create_compact_rel_section
3693 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
3696 register asection
*s
;
3698 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
3700 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
3703 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
3705 || ! bfd_set_section_alignment (abfd
, s
,
3706 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
3709 s
->size
= sizeof (Elf32_External_compact_rel
);
3715 /* Create the .got section to hold the global offset table. */
3718 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
,
3719 bfd_boolean maybe_exclude
)
3722 register asection
*s
;
3723 struct elf_link_hash_entry
*h
;
3724 struct bfd_link_hash_entry
*bh
;
3725 struct mips_got_info
*g
;
3727 struct mips_elf_link_hash_table
*htab
;
3729 htab
= mips_elf_hash_table (info
);
3731 /* This function may be called more than once. */
3732 s
= mips_elf_got_section (abfd
, TRUE
);
3735 if (! maybe_exclude
)
3736 s
->flags
&= ~SEC_EXCLUDE
;
3740 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
3741 | SEC_LINKER_CREATED
);
3744 flags
|= SEC_EXCLUDE
;
3746 /* We have to use an alignment of 2**4 here because this is hardcoded
3747 in the function stub generation and in the linker script. */
3748 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
3750 || ! bfd_set_section_alignment (abfd
, s
, 4))
3753 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3754 linker script because we don't want to define the symbol if we
3755 are not creating a global offset table. */
3757 if (! (_bfd_generic_link_add_one_symbol
3758 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
3759 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
3762 h
= (struct elf_link_hash_entry
*) bh
;
3765 h
->type
= STT_OBJECT
;
3766 elf_hash_table (info
)->hgot
= h
;
3769 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
3772 amt
= sizeof (struct mips_got_info
);
3773 g
= bfd_alloc (abfd
, amt
);
3776 g
->global_gotsym
= NULL
;
3777 g
->global_gotno
= 0;
3779 g
->local_gotno
= MIPS_RESERVED_GOTNO (info
);
3780 g
->assigned_gotno
= MIPS_RESERVED_GOTNO (info
);
3783 g
->tls_ldm_offset
= MINUS_ONE
;
3784 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
3785 mips_elf_got_entry_eq
, NULL
);
3786 if (g
->got_entries
== NULL
)
3788 mips_elf_section_data (s
)->u
.got_info
= g
;
3789 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
3790 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
3792 /* VxWorks also needs a .got.plt section. */
3793 if (htab
->is_vxworks
)
3795 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
3796 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
3797 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
3798 if (s
== NULL
|| !bfd_set_section_alignment (abfd
, s
, 4))
3806 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3807 __GOTT_INDEX__ symbols. These symbols are only special for
3808 shared objects; they are not used in executables. */
3811 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
3813 return (mips_elf_hash_table (info
)->is_vxworks
3815 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
3816 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
3819 /* Calculate the value produced by the RELOCATION (which comes from
3820 the INPUT_BFD). The ADDEND is the addend to use for this
3821 RELOCATION; RELOCATION->R_ADDEND is ignored.
3823 The result of the relocation calculation is stored in VALUEP.
3824 REQUIRE_JALXP indicates whether or not the opcode used with this
3825 relocation must be JALX.
3827 This function returns bfd_reloc_continue if the caller need take no
3828 further action regarding this relocation, bfd_reloc_notsupported if
3829 something goes dramatically wrong, bfd_reloc_overflow if an
3830 overflow occurs, and bfd_reloc_ok to indicate success. */
3832 static bfd_reloc_status_type
3833 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
3834 asection
*input_section
,
3835 struct bfd_link_info
*info
,
3836 const Elf_Internal_Rela
*relocation
,
3837 bfd_vma addend
, reloc_howto_type
*howto
,
3838 Elf_Internal_Sym
*local_syms
,
3839 asection
**local_sections
, bfd_vma
*valuep
,
3840 const char **namep
, bfd_boolean
*require_jalxp
,
3841 bfd_boolean save_addend
)
3843 /* The eventual value we will return. */
3845 /* The address of the symbol against which the relocation is
3848 /* The final GP value to be used for the relocatable, executable, or
3849 shared object file being produced. */
3850 bfd_vma gp
= MINUS_ONE
;
3851 /* The place (section offset or address) of the storage unit being
3854 /* The value of GP used to create the relocatable object. */
3855 bfd_vma gp0
= MINUS_ONE
;
3856 /* The offset into the global offset table at which the address of
3857 the relocation entry symbol, adjusted by the addend, resides
3858 during execution. */
3859 bfd_vma g
= MINUS_ONE
;
3860 /* The section in which the symbol referenced by the relocation is
3862 asection
*sec
= NULL
;
3863 struct mips_elf_link_hash_entry
*h
= NULL
;
3864 /* TRUE if the symbol referred to by this relocation is a local
3866 bfd_boolean local_p
, was_local_p
;
3867 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3868 bfd_boolean gp_disp_p
= FALSE
;
3869 /* TRUE if the symbol referred to by this relocation is
3870 "__gnu_local_gp". */
3871 bfd_boolean gnu_local_gp_p
= FALSE
;
3872 Elf_Internal_Shdr
*symtab_hdr
;
3874 unsigned long r_symndx
;
3876 /* TRUE if overflow occurred during the calculation of the
3877 relocation value. */
3878 bfd_boolean overflowed_p
;
3879 /* TRUE if this relocation refers to a MIPS16 function. */
3880 bfd_boolean target_is_16_bit_code_p
= FALSE
;
3881 struct mips_elf_link_hash_table
*htab
;
3884 dynobj
= elf_hash_table (info
)->dynobj
;
3885 htab
= mips_elf_hash_table (info
);
3887 /* Parse the relocation. */
3888 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
3889 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
3890 p
= (input_section
->output_section
->vma
3891 + input_section
->output_offset
3892 + relocation
->r_offset
);
3894 /* Assume that there will be no overflow. */
3895 overflowed_p
= FALSE
;
3897 /* Figure out whether or not the symbol is local, and get the offset
3898 used in the array of hash table entries. */
3899 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3900 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
3901 local_sections
, FALSE
);
3902 was_local_p
= local_p
;
3903 if (! elf_bad_symtab (input_bfd
))
3904 extsymoff
= symtab_hdr
->sh_info
;
3907 /* The symbol table does not follow the rule that local symbols
3908 must come before globals. */
3912 /* Figure out the value of the symbol. */
3915 Elf_Internal_Sym
*sym
;
3917 sym
= local_syms
+ r_symndx
;
3918 sec
= local_sections
[r_symndx
];
3920 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
3921 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
3922 || (sec
->flags
& SEC_MERGE
))
3923 symbol
+= sym
->st_value
;
3924 if ((sec
->flags
& SEC_MERGE
)
3925 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
3927 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
3929 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
3932 /* MIPS16 text labels should be treated as odd. */
3933 if (sym
->st_other
== STO_MIPS16
)
3936 /* Record the name of this symbol, for our caller. */
3937 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
3938 symtab_hdr
->sh_link
,
3941 *namep
= bfd_section_name (input_bfd
, sec
);
3943 target_is_16_bit_code_p
= (sym
->st_other
== STO_MIPS16
);
3947 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3949 /* For global symbols we look up the symbol in the hash-table. */
3950 h
= ((struct mips_elf_link_hash_entry
*)
3951 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
3952 /* Find the real hash-table entry for this symbol. */
3953 while (h
->root
.root
.type
== bfd_link_hash_indirect
3954 || h
->root
.root
.type
== bfd_link_hash_warning
)
3955 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3957 /* Record the name of this symbol, for our caller. */
3958 *namep
= h
->root
.root
.root
.string
;
3960 /* See if this is the special _gp_disp symbol. Note that such a
3961 symbol must always be a global symbol. */
3962 if (strcmp (*namep
, "_gp_disp") == 0
3963 && ! NEWABI_P (input_bfd
))
3965 /* Relocations against _gp_disp are permitted only with
3966 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3967 if (r_type
!= R_MIPS_HI16
&& r_type
!= R_MIPS_LO16
3968 && r_type
!= R_MIPS16_HI16
&& r_type
!= R_MIPS16_LO16
)
3969 return bfd_reloc_notsupported
;
3973 /* See if this is the special _gp symbol. Note that such a
3974 symbol must always be a global symbol. */
3975 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
3976 gnu_local_gp_p
= TRUE
;
3979 /* If this symbol is defined, calculate its address. Note that
3980 _gp_disp is a magic symbol, always implicitly defined by the
3981 linker, so it's inappropriate to check to see whether or not
3983 else if ((h
->root
.root
.type
== bfd_link_hash_defined
3984 || h
->root
.root
.type
== bfd_link_hash_defweak
)
3985 && h
->root
.root
.u
.def
.section
)
3987 sec
= h
->root
.root
.u
.def
.section
;
3988 if (sec
->output_section
)
3989 symbol
= (h
->root
.root
.u
.def
.value
3990 + sec
->output_section
->vma
3991 + sec
->output_offset
);
3993 symbol
= h
->root
.root
.u
.def
.value
;
3995 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
3996 /* We allow relocations against undefined weak symbols, giving
3997 it the value zero, so that you can undefined weak functions
3998 and check to see if they exist by looking at their
4001 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
4002 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
4004 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
4005 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4007 /* If this is a dynamic link, we should have created a
4008 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4009 in in _bfd_mips_elf_create_dynamic_sections.
4010 Otherwise, we should define the symbol with a value of 0.
4011 FIXME: It should probably get into the symbol table
4013 BFD_ASSERT (! info
->shared
);
4014 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
4017 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
4019 /* This is an optional symbol - an Irix specific extension to the
4020 ELF spec. Ignore it for now.
4021 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4022 than simply ignoring them, but we do not handle this for now.
4023 For information see the "64-bit ELF Object File Specification"
4024 which is available from here:
4025 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4030 if (! ((*info
->callbacks
->undefined_symbol
)
4031 (info
, h
->root
.root
.root
.string
, input_bfd
,
4032 input_section
, relocation
->r_offset
,
4033 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
4034 || ELF_ST_VISIBILITY (h
->root
.other
))))
4035 return bfd_reloc_undefined
;
4039 target_is_16_bit_code_p
= (h
->root
.other
== STO_MIPS16
);
4042 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4043 need to redirect the call to the stub, unless we're already *in*
4045 if (r_type
!= R_MIPS16_26
&& !info
->relocatable
4046 && ((h
!= NULL
&& h
->fn_stub
!= NULL
)
4047 || (local_p
&& elf_tdata (input_bfd
)->local_stubs
!= NULL
4048 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
4049 && !mips_elf_stub_section_p (input_bfd
, input_section
))
4051 /* This is a 32- or 64-bit call to a 16-bit function. We should
4052 have already noticed that we were going to need the
4055 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
4058 BFD_ASSERT (h
->need_fn_stub
);
4062 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4064 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4065 need to redirect the call to the stub. */
4066 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
4068 && (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
)
4069 && !target_is_16_bit_code_p
)
4071 /* If both call_stub and call_fp_stub are defined, we can figure
4072 out which one to use by seeing which one appears in the input
4074 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
4079 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
4081 if (strncmp (bfd_get_section_name (input_bfd
, o
),
4082 CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
4084 sec
= h
->call_fp_stub
;
4091 else if (h
->call_stub
!= NULL
)
4094 sec
= h
->call_fp_stub
;
4096 BFD_ASSERT (sec
->size
> 0);
4097 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
4100 /* Calls from 16-bit code to 32-bit code and vice versa require the
4101 special jalx instruction. */
4102 *require_jalxp
= (!info
->relocatable
4103 && (((r_type
== R_MIPS16_26
) && !target_is_16_bit_code_p
)
4104 || ((r_type
== R_MIPS_26
) && target_is_16_bit_code_p
)));
4106 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
4107 local_sections
, TRUE
);
4109 /* If we haven't already determined the GOT offset, or the GP value,
4110 and we're going to need it, get it now. */
4113 case R_MIPS_GOT_PAGE
:
4114 case R_MIPS_GOT_OFST
:
4115 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4117 local_p
= local_p
|| _bfd_elf_symbol_refs_local_p (&h
->root
, info
, 1);
4118 if (local_p
|| r_type
== R_MIPS_GOT_OFST
)
4124 case R_MIPS_GOT_DISP
:
4125 case R_MIPS_GOT_HI16
:
4126 case R_MIPS_CALL_HI16
:
4127 case R_MIPS_GOT_LO16
:
4128 case R_MIPS_CALL_LO16
:
4130 case R_MIPS_TLS_GOTTPREL
:
4131 case R_MIPS_TLS_LDM
:
4132 /* Find the index into the GOT where this value is located. */
4133 if (r_type
== R_MIPS_TLS_LDM
)
4135 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
4136 sec
, 0, 0, NULL
, r_type
);
4138 return bfd_reloc_outofrange
;
4142 /* On VxWorks, CALL relocations should refer to the .got.plt
4143 entry, which is initialized to point at the PLT stub. */
4144 if (htab
->is_vxworks
4145 && (r_type
== R_MIPS_CALL_HI16
4146 || r_type
== R_MIPS_CALL_LO16
4147 || r_type
== R_MIPS_CALL16
))
4149 BFD_ASSERT (addend
== 0);
4150 BFD_ASSERT (h
->root
.needs_plt
);
4151 g
= mips_elf_gotplt_index (info
, &h
->root
);
4155 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4156 GOT_PAGE relocation that decays to GOT_DISP because the
4157 symbol turns out to be global. The addend is then added
4159 BFD_ASSERT (addend
== 0 || r_type
== R_MIPS_GOT_PAGE
);
4160 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
4161 &h
->root
, r_type
, info
);
4162 if (h
->tls_type
== GOT_NORMAL
4163 && (! elf_hash_table(info
)->dynamic_sections_created
4165 && (info
->symbolic
|| h
->root
.forced_local
)
4166 && h
->root
.def_regular
)))
4168 /* This is a static link or a -Bsymbolic link. The
4169 symbol is defined locally, or was forced to be local.
4170 We must initialize this entry in the GOT. */
4171 asection
*sgot
= mips_elf_got_section (dynobj
, FALSE
);
4172 MIPS_ELF_PUT_WORD (dynobj
, symbol
, sgot
->contents
+ g
);
4176 else if (!htab
->is_vxworks
4177 && (r_type
== R_MIPS_CALL16
|| (r_type
== R_MIPS_GOT16
)))
4178 /* The calculation below does not involve "g". */
4182 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
, sec
,
4183 symbol
+ addend
, r_symndx
, h
, r_type
);
4185 return bfd_reloc_outofrange
;
4188 /* Convert GOT indices to actual offsets. */
4189 g
= mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, g
);
4194 case R_MIPS_GPREL16
:
4195 case R_MIPS_GPREL32
:
4196 case R_MIPS_LITERAL
:
4199 case R_MIPS16_GPREL
:
4200 gp0
= _bfd_get_gp_value (input_bfd
);
4201 gp
= _bfd_get_gp_value (abfd
);
4203 gp
+= mips_elf_adjust_gp (abfd
, mips_elf_got_info (dynobj
, NULL
),
4214 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4215 symbols are resolved by the loader. Add them to .rela.dyn. */
4216 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
4218 Elf_Internal_Rela outrel
;
4222 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4223 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4225 outrel
.r_offset
= (input_section
->output_section
->vma
4226 + input_section
->output_offset
4227 + relocation
->r_offset
);
4228 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
4229 outrel
.r_addend
= addend
;
4230 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
4232 return bfd_reloc_ok
;
4235 /* Figure out what kind of relocation is being performed. */
4239 return bfd_reloc_continue
;
4242 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
4243 overflowed_p
= mips_elf_overflow_p (value
, 16);
4250 || (!htab
->is_vxworks
4251 && htab
->root
.dynamic_sections_created
4253 && h
->root
.def_dynamic
4254 && !h
->root
.def_regular
))
4256 && (input_section
->flags
& SEC_ALLOC
) != 0)
4258 /* If we're creating a shared library, or this relocation is
4259 against a symbol in a shared library, then we can't know
4260 where the symbol will end up. So, we create a relocation
4261 record in the output, and leave the job up to the dynamic
4264 In VxWorks executables, references to external symbols
4265 are handled using copy relocs or PLT stubs, so there's
4266 no need to add a dynamic relocation here. */
4268 if (!mips_elf_create_dynamic_relocation (abfd
,
4276 return bfd_reloc_undefined
;
4280 if (r_type
!= R_MIPS_REL32
)
4281 value
= symbol
+ addend
;
4285 value
&= howto
->dst_mask
;
4289 value
= symbol
+ addend
- p
;
4290 value
&= howto
->dst_mask
;
4294 /* The calculation for R_MIPS16_26 is just the same as for an
4295 R_MIPS_26. It's only the storage of the relocated field into
4296 the output file that's different. That's handled in
4297 mips_elf_perform_relocation. So, we just fall through to the
4298 R_MIPS_26 case here. */
4301 value
= ((addend
| ((p
+ 4) & 0xf0000000)) + symbol
) >> 2;
4304 value
= (_bfd_mips_elf_sign_extend (addend
, 28) + symbol
) >> 2;
4305 if (h
->root
.root
.type
!= bfd_link_hash_undefweak
)
4306 overflowed_p
= (value
>> 26) != ((p
+ 4) >> 28);
4308 value
&= howto
->dst_mask
;
4311 case R_MIPS_TLS_DTPREL_HI16
:
4312 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
4316 case R_MIPS_TLS_DTPREL_LO16
:
4317 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
4320 case R_MIPS_TLS_TPREL_HI16
:
4321 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
4325 case R_MIPS_TLS_TPREL_LO16
:
4326 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
4333 value
= mips_elf_high (addend
+ symbol
);
4334 value
&= howto
->dst_mask
;
4338 /* For MIPS16 ABI code we generate this sequence
4339 0: li $v0,%hi(_gp_disp)
4340 4: addiupc $v1,%lo(_gp_disp)
4344 So the offsets of hi and lo relocs are the same, but the
4345 $pc is four higher than $t9 would be, so reduce
4346 both reloc addends by 4. */
4347 if (r_type
== R_MIPS16_HI16
)
4348 value
= mips_elf_high (addend
+ gp
- p
- 4);
4350 value
= mips_elf_high (addend
+ gp
- p
);
4351 overflowed_p
= mips_elf_overflow_p (value
, 16);
4358 value
= (symbol
+ addend
) & howto
->dst_mask
;
4361 /* See the comment for R_MIPS16_HI16 above for the reason
4362 for this conditional. */
4363 if (r_type
== R_MIPS16_LO16
)
4364 value
= addend
+ gp
- p
;
4366 value
= addend
+ gp
- p
+ 4;
4367 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4368 for overflow. But, on, say, IRIX5, relocations against
4369 _gp_disp are normally generated from the .cpload
4370 pseudo-op. It generates code that normally looks like
4373 lui $gp,%hi(_gp_disp)
4374 addiu $gp,$gp,%lo(_gp_disp)
4377 Here $t9 holds the address of the function being called,
4378 as required by the MIPS ELF ABI. The R_MIPS_LO16
4379 relocation can easily overflow in this situation, but the
4380 R_MIPS_HI16 relocation will handle the overflow.
4381 Therefore, we consider this a bug in the MIPS ABI, and do
4382 not check for overflow here. */
4386 case R_MIPS_LITERAL
:
4387 /* Because we don't merge literal sections, we can handle this
4388 just like R_MIPS_GPREL16. In the long run, we should merge
4389 shared literals, and then we will need to additional work
4394 case R_MIPS16_GPREL
:
4395 /* The R_MIPS16_GPREL performs the same calculation as
4396 R_MIPS_GPREL16, but stores the relocated bits in a different
4397 order. We don't need to do anything special here; the
4398 differences are handled in mips_elf_perform_relocation. */
4399 case R_MIPS_GPREL16
:
4400 /* Only sign-extend the addend if it was extracted from the
4401 instruction. If the addend was separate, leave it alone,
4402 otherwise we may lose significant bits. */
4403 if (howto
->partial_inplace
)
4404 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
4405 value
= symbol
+ addend
- gp
;
4406 /* If the symbol was local, any earlier relocatable links will
4407 have adjusted its addend with the gp offset, so compensate
4408 for that now. Don't do it for symbols forced local in this
4409 link, though, since they won't have had the gp offset applied
4413 overflowed_p
= mips_elf_overflow_p (value
, 16);
4418 /* VxWorks does not have separate local and global semantics for
4419 R_MIPS_GOT16; every relocation evaluates to "G". */
4420 if (!htab
->is_vxworks
&& local_p
)
4424 forced
= ! mips_elf_local_relocation_p (input_bfd
, relocation
,
4425 local_sections
, FALSE
);
4426 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
, sec
,
4427 symbol
+ addend
, forced
);
4428 if (value
== MINUS_ONE
)
4429 return bfd_reloc_outofrange
;
4431 = mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, value
);
4432 overflowed_p
= mips_elf_overflow_p (value
, 16);
4439 case R_MIPS_TLS_GOTTPREL
:
4440 case R_MIPS_TLS_LDM
:
4441 case R_MIPS_GOT_DISP
:
4444 overflowed_p
= mips_elf_overflow_p (value
, 16);
4447 case R_MIPS_GPREL32
:
4448 value
= (addend
+ symbol
+ gp0
- gp
);
4450 value
&= howto
->dst_mask
;
4454 case R_MIPS_GNU_REL16_S2
:
4455 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
4456 overflowed_p
= mips_elf_overflow_p (value
, 18);
4457 value
= (value
>> 2) & howto
->dst_mask
;
4460 case R_MIPS_GOT_HI16
:
4461 case R_MIPS_CALL_HI16
:
4462 /* We're allowed to handle these two relocations identically.
4463 The dynamic linker is allowed to handle the CALL relocations
4464 differently by creating a lazy evaluation stub. */
4466 value
= mips_elf_high (value
);
4467 value
&= howto
->dst_mask
;
4470 case R_MIPS_GOT_LO16
:
4471 case R_MIPS_CALL_LO16
:
4472 value
= g
& howto
->dst_mask
;
4475 case R_MIPS_GOT_PAGE
:
4476 /* GOT_PAGE relocations that reference non-local symbols decay
4477 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4481 value
= mips_elf_got_page (abfd
, input_bfd
, info
, sec
,
4482 symbol
+ addend
, NULL
);
4483 if (value
== MINUS_ONE
)
4484 return bfd_reloc_outofrange
;
4485 value
= mips_elf_got_offset_from_index (dynobj
, abfd
, input_bfd
, value
);
4486 overflowed_p
= mips_elf_overflow_p (value
, 16);
4489 case R_MIPS_GOT_OFST
:
4491 mips_elf_got_page (abfd
, input_bfd
, info
, sec
,
4492 symbol
+ addend
, &value
);
4495 overflowed_p
= mips_elf_overflow_p (value
, 16);
4499 value
= symbol
- addend
;
4500 value
&= howto
->dst_mask
;
4504 value
= mips_elf_higher (addend
+ symbol
);
4505 value
&= howto
->dst_mask
;
4508 case R_MIPS_HIGHEST
:
4509 value
= mips_elf_highest (addend
+ symbol
);
4510 value
&= howto
->dst_mask
;
4513 case R_MIPS_SCN_DISP
:
4514 value
= symbol
+ addend
- sec
->output_offset
;
4515 value
&= howto
->dst_mask
;
4519 /* This relocation is only a hint. In some cases, we optimize
4520 it into a bal instruction. But we don't try to optimize
4521 branches to the PLT; that will wind up wasting time. */
4522 if (h
!= NULL
&& h
->root
.plt
.offset
!= (bfd_vma
) -1)
4523 return bfd_reloc_continue
;
4524 value
= symbol
+ addend
;
4528 case R_MIPS_GNU_VTINHERIT
:
4529 case R_MIPS_GNU_VTENTRY
:
4530 /* We don't do anything with these at present. */
4531 return bfd_reloc_continue
;
4534 /* An unrecognized relocation type. */
4535 return bfd_reloc_notsupported
;
4538 /* Store the VALUE for our caller. */
4540 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
4543 /* Obtain the field relocated by RELOCATION. */
4546 mips_elf_obtain_contents (reloc_howto_type
*howto
,
4547 const Elf_Internal_Rela
*relocation
,
4548 bfd
*input_bfd
, bfd_byte
*contents
)
4551 bfd_byte
*location
= contents
+ relocation
->r_offset
;
4553 /* Obtain the bytes. */
4554 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
4559 /* It has been determined that the result of the RELOCATION is the
4560 VALUE. Use HOWTO to place VALUE into the output file at the
4561 appropriate position. The SECTION is the section to which the
4562 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4563 for the relocation must be either JAL or JALX, and it is
4564 unconditionally converted to JALX.
4566 Returns FALSE if anything goes wrong. */
4569 mips_elf_perform_relocation (struct bfd_link_info
*info
,
4570 reloc_howto_type
*howto
,
4571 const Elf_Internal_Rela
*relocation
,
4572 bfd_vma value
, bfd
*input_bfd
,
4573 asection
*input_section
, bfd_byte
*contents
,
4574 bfd_boolean require_jalx
)
4578 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
4580 /* Figure out where the relocation is occurring. */
4581 location
= contents
+ relocation
->r_offset
;
4583 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
4585 /* Obtain the current value. */
4586 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
4588 /* Clear the field we are setting. */
4589 x
&= ~howto
->dst_mask
;
4591 /* Set the field. */
4592 x
|= (value
& howto
->dst_mask
);
4594 /* If required, turn JAL into JALX. */
4598 bfd_vma opcode
= x
>> 26;
4599 bfd_vma jalx_opcode
;
4601 /* Check to see if the opcode is already JAL or JALX. */
4602 if (r_type
== R_MIPS16_26
)
4604 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
4609 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
4613 /* If the opcode is not JAL or JALX, there's a problem. */
4616 (*_bfd_error_handler
)
4617 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4620 (unsigned long) relocation
->r_offset
);
4621 bfd_set_error (bfd_error_bad_value
);
4625 /* Make this the JALX opcode. */
4626 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
4629 /* On the RM9000, bal is faster than jal, because bal uses branch
4630 prediction hardware. If we are linking for the RM9000, and we
4631 see jal, and bal fits, use it instead. Note that this
4632 transformation should be safe for all architectures. */
4633 if (bfd_get_mach (input_bfd
) == bfd_mach_mips9000
4634 && !info
->relocatable
4636 && ((r_type
== R_MIPS_26
&& (x
>> 26) == 0x3) /* jal addr */
4637 || (r_type
== R_MIPS_JALR
&& x
== 0x0320f809))) /* jalr t9 */
4643 addr
= (input_section
->output_section
->vma
4644 + input_section
->output_offset
4645 + relocation
->r_offset
4647 if (r_type
== R_MIPS_26
)
4648 dest
= (value
<< 2) | ((addr
>> 28) << 28);
4652 if (off
<= 0x1ffff && off
>= -0x20000)
4653 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
4656 /* Put the value into the output. */
4657 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
4659 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, !info
->relocatable
,
4665 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4668 mips_elf_stub_section_p (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*section
)
4670 const char *name
= bfd_get_section_name (abfd
, section
);
4672 return (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0
4673 || strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
4674 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0);
4677 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4680 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
4684 struct mips_elf_link_hash_table
*htab
;
4686 htab
= mips_elf_hash_table (info
);
4687 s
= mips_elf_rel_dyn_section (info
, FALSE
);
4688 BFD_ASSERT (s
!= NULL
);
4690 if (htab
->is_vxworks
)
4691 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
4696 /* Make room for a null element. */
4697 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
4700 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
4704 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4705 is the original relocation, which is now being transformed into a
4706 dynamic relocation. The ADDENDP is adjusted if necessary; the
4707 caller should store the result in place of the original addend. */
4710 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
4711 struct bfd_link_info
*info
,
4712 const Elf_Internal_Rela
*rel
,
4713 struct mips_elf_link_hash_entry
*h
,
4714 asection
*sec
, bfd_vma symbol
,
4715 bfd_vma
*addendp
, asection
*input_section
)
4717 Elf_Internal_Rela outrel
[3];
4722 bfd_boolean defined_p
;
4723 struct mips_elf_link_hash_table
*htab
;
4725 htab
= mips_elf_hash_table (info
);
4726 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
4727 dynobj
= elf_hash_table (info
)->dynobj
;
4728 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
4729 BFD_ASSERT (sreloc
!= NULL
);
4730 BFD_ASSERT (sreloc
->contents
!= NULL
);
4731 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
4734 outrel
[0].r_offset
=
4735 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
4736 outrel
[1].r_offset
=
4737 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
4738 outrel
[2].r_offset
=
4739 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
4741 if (outrel
[0].r_offset
== MINUS_ONE
)
4742 /* The relocation field has been deleted. */
4745 if (outrel
[0].r_offset
== MINUS_TWO
)
4747 /* The relocation field has been converted into a relative value of
4748 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4749 the field to be fully relocated, so add in the symbol's value. */
4754 /* We must now calculate the dynamic symbol table index to use
4755 in the relocation. */
4757 && (!h
->root
.def_regular
4758 || (info
->shared
&& !info
->symbolic
&& !h
->root
.forced_local
)))
4760 indx
= h
->root
.dynindx
;
4761 if (SGI_COMPAT (output_bfd
))
4762 defined_p
= h
->root
.def_regular
;
4764 /* ??? glibc's ld.so just adds the final GOT entry to the
4765 relocation field. It therefore treats relocs against
4766 defined symbols in the same way as relocs against
4767 undefined symbols. */
4772 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
4774 else if (sec
== NULL
|| sec
->owner
== NULL
)
4776 bfd_set_error (bfd_error_bad_value
);
4781 indx
= elf_section_data (sec
->output_section
)->dynindx
;
4786 /* Instead of generating a relocation using the section
4787 symbol, we may as well make it a fully relative
4788 relocation. We want to avoid generating relocations to
4789 local symbols because we used to generate them
4790 incorrectly, without adding the original symbol value,
4791 which is mandated by the ABI for section symbols. In
4792 order to give dynamic loaders and applications time to
4793 phase out the incorrect use, we refrain from emitting
4794 section-relative relocations. It's not like they're
4795 useful, after all. This should be a bit more efficient
4797 /* ??? Although this behavior is compatible with glibc's ld.so,
4798 the ABI says that relocations against STN_UNDEF should have
4799 a symbol value of 0. Irix rld honors this, so relocations
4800 against STN_UNDEF have no effect. */
4801 if (!SGI_COMPAT (output_bfd
))
4806 /* If the relocation was previously an absolute relocation and
4807 this symbol will not be referred to by the relocation, we must
4808 adjust it by the value we give it in the dynamic symbol table.
4809 Otherwise leave the job up to the dynamic linker. */
4810 if (defined_p
&& r_type
!= R_MIPS_REL32
)
4813 if (htab
->is_vxworks
)
4814 /* VxWorks uses non-relative relocations for this. */
4815 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
4817 /* The relocation is always an REL32 relocation because we don't
4818 know where the shared library will wind up at load-time. */
4819 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
4822 /* For strict adherence to the ABI specification, we should
4823 generate a R_MIPS_64 relocation record by itself before the
4824 _REL32/_64 record as well, such that the addend is read in as
4825 a 64-bit value (REL32 is a 32-bit relocation, after all).
4826 However, since none of the existing ELF64 MIPS dynamic
4827 loaders seems to care, we don't waste space with these
4828 artificial relocations. If this turns out to not be true,
4829 mips_elf_allocate_dynamic_relocation() should be tweaked so
4830 as to make room for a pair of dynamic relocations per
4831 invocation if ABI_64_P, and here we should generate an
4832 additional relocation record with R_MIPS_64 by itself for a
4833 NULL symbol before this relocation record. */
4834 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
4835 ABI_64_P (output_bfd
)
4838 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
4840 /* Adjust the output offset of the relocation to reference the
4841 correct location in the output file. */
4842 outrel
[0].r_offset
+= (input_section
->output_section
->vma
4843 + input_section
->output_offset
);
4844 outrel
[1].r_offset
+= (input_section
->output_section
->vma
4845 + input_section
->output_offset
);
4846 outrel
[2].r_offset
+= (input_section
->output_section
->vma
4847 + input_section
->output_offset
);
4849 /* Put the relocation back out. We have to use the special
4850 relocation outputter in the 64-bit case since the 64-bit
4851 relocation format is non-standard. */
4852 if (ABI_64_P (output_bfd
))
4854 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
4855 (output_bfd
, &outrel
[0],
4857 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
4859 else if (htab
->is_vxworks
)
4861 /* VxWorks uses RELA rather than REL dynamic relocations. */
4862 outrel
[0].r_addend
= *addendp
;
4863 bfd_elf32_swap_reloca_out
4864 (output_bfd
, &outrel
[0],
4866 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
4869 bfd_elf32_swap_reloc_out
4870 (output_bfd
, &outrel
[0],
4871 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
4873 /* We've now added another relocation. */
4874 ++sreloc
->reloc_count
;
4876 /* Make sure the output section is writable. The dynamic linker
4877 will be writing to it. */
4878 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
4881 /* On IRIX5, make an entry of compact relocation info. */
4882 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
4884 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
4889 Elf32_crinfo cptrel
;
4891 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
4892 cptrel
.vaddr
= (rel
->r_offset
4893 + input_section
->output_section
->vma
4894 + input_section
->output_offset
);
4895 if (r_type
== R_MIPS_REL32
)
4896 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
4898 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
4899 mips_elf_set_cr_dist2to (cptrel
, 0);
4900 cptrel
.konst
= *addendp
;
4902 cr
= (scpt
->contents
4903 + sizeof (Elf32_External_compact_rel
));
4904 mips_elf_set_cr_relvaddr (cptrel
, 0);
4905 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
4906 ((Elf32_External_crinfo
*) cr
4907 + scpt
->reloc_count
));
4908 ++scpt
->reloc_count
;
4915 /* Return the MACH for a MIPS e_flags value. */
4918 _bfd_elf_mips_mach (flagword flags
)
4920 switch (flags
& EF_MIPS_MACH
)
4922 case E_MIPS_MACH_3900
:
4923 return bfd_mach_mips3900
;
4925 case E_MIPS_MACH_4010
:
4926 return bfd_mach_mips4010
;
4928 case E_MIPS_MACH_4100
:
4929 return bfd_mach_mips4100
;
4931 case E_MIPS_MACH_4111
:
4932 return bfd_mach_mips4111
;
4934 case E_MIPS_MACH_4120
:
4935 return bfd_mach_mips4120
;
4937 case E_MIPS_MACH_4650
:
4938 return bfd_mach_mips4650
;
4940 case E_MIPS_MACH_5400
:
4941 return bfd_mach_mips5400
;
4943 case E_MIPS_MACH_5500
:
4944 return bfd_mach_mips5500
;
4946 case E_MIPS_MACH_9000
:
4947 return bfd_mach_mips9000
;
4949 case E_MIPS_MACH_SB1
:
4950 return bfd_mach_mips_sb1
;
4953 switch (flags
& EF_MIPS_ARCH
)
4957 return bfd_mach_mips3000
;
4960 return bfd_mach_mips6000
;
4963 return bfd_mach_mips4000
;
4966 return bfd_mach_mips8000
;
4969 return bfd_mach_mips5
;
4971 case E_MIPS_ARCH_32
:
4972 return bfd_mach_mipsisa32
;
4974 case E_MIPS_ARCH_64
:
4975 return bfd_mach_mipsisa64
;
4977 case E_MIPS_ARCH_32R2
:
4978 return bfd_mach_mipsisa32r2
;
4980 case E_MIPS_ARCH_64R2
:
4981 return bfd_mach_mipsisa64r2
;
4988 /* Return printable name for ABI. */
4990 static INLINE
char *
4991 elf_mips_abi_name (bfd
*abfd
)
4995 flags
= elf_elfheader (abfd
)->e_flags
;
4996 switch (flags
& EF_MIPS_ABI
)
4999 if (ABI_N32_P (abfd
))
5001 else if (ABI_64_P (abfd
))
5005 case E_MIPS_ABI_O32
:
5007 case E_MIPS_ABI_O64
:
5009 case E_MIPS_ABI_EABI32
:
5011 case E_MIPS_ABI_EABI64
:
5014 return "unknown abi";
5018 /* MIPS ELF uses two common sections. One is the usual one, and the
5019 other is for small objects. All the small objects are kept
5020 together, and then referenced via the gp pointer, which yields
5021 faster assembler code. This is what we use for the small common
5022 section. This approach is copied from ecoff.c. */
5023 static asection mips_elf_scom_section
;
5024 static asymbol mips_elf_scom_symbol
;
5025 static asymbol
*mips_elf_scom_symbol_ptr
;
5027 /* MIPS ELF also uses an acommon section, which represents an
5028 allocated common symbol which may be overridden by a
5029 definition in a shared library. */
5030 static asection mips_elf_acom_section
;
5031 static asymbol mips_elf_acom_symbol
;
5032 static asymbol
*mips_elf_acom_symbol_ptr
;
5034 /* Handle the special MIPS section numbers that a symbol may use.
5035 This is used for both the 32-bit and the 64-bit ABI. */
5038 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
5040 elf_symbol_type
*elfsym
;
5042 elfsym
= (elf_symbol_type
*) asym
;
5043 switch (elfsym
->internal_elf_sym
.st_shndx
)
5045 case SHN_MIPS_ACOMMON
:
5046 /* This section is used in a dynamically linked executable file.
5047 It is an allocated common section. The dynamic linker can
5048 either resolve these symbols to something in a shared
5049 library, or it can just leave them here. For our purposes,
5050 we can consider these symbols to be in a new section. */
5051 if (mips_elf_acom_section
.name
== NULL
)
5053 /* Initialize the acommon section. */
5054 mips_elf_acom_section
.name
= ".acommon";
5055 mips_elf_acom_section
.flags
= SEC_ALLOC
;
5056 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
5057 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
5058 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
5059 mips_elf_acom_symbol
.name
= ".acommon";
5060 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
5061 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
5062 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
5064 asym
->section
= &mips_elf_acom_section
;
5068 /* Common symbols less than the GP size are automatically
5069 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5070 if (asym
->value
> elf_gp_size (abfd
)
5071 || IRIX_COMPAT (abfd
) == ict_irix6
)
5074 case SHN_MIPS_SCOMMON
:
5075 if (mips_elf_scom_section
.name
== NULL
)
5077 /* Initialize the small common section. */
5078 mips_elf_scom_section
.name
= ".scommon";
5079 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
5080 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
5081 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
5082 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
5083 mips_elf_scom_symbol
.name
= ".scommon";
5084 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
5085 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
5086 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
5088 asym
->section
= &mips_elf_scom_section
;
5089 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
5092 case SHN_MIPS_SUNDEFINED
:
5093 asym
->section
= bfd_und_section_ptr
;
5098 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
5100 BFD_ASSERT (SGI_COMPAT (abfd
));
5101 if (section
!= NULL
)
5103 asym
->section
= section
;
5104 /* MIPS_TEXT is a bit special, the address is not an offset
5105 to the base of the .text section. So substract the section
5106 base address to make it an offset. */
5107 asym
->value
-= section
->vma
;
5114 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
5116 BFD_ASSERT (SGI_COMPAT (abfd
));
5117 if (section
!= NULL
)
5119 asym
->section
= section
;
5120 /* MIPS_DATA is a bit special, the address is not an offset
5121 to the base of the .data section. So substract the section
5122 base address to make it an offset. */
5123 asym
->value
-= section
->vma
;
5130 /* Implement elf_backend_eh_frame_address_size. This differs from
5131 the default in the way it handles EABI64.
5133 EABI64 was originally specified as an LP64 ABI, and that is what
5134 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5135 historically accepted the combination of -mabi=eabi and -mlong32,
5136 and this ILP32 variation has become semi-official over time.
5137 Both forms use elf32 and have pointer-sized FDE addresses.
5139 If an EABI object was generated by GCC 4.0 or above, it will have
5140 an empty .gcc_compiled_longXX section, where XX is the size of longs
5141 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5142 have no special marking to distinguish them from LP64 objects.
5144 We don't want users of the official LP64 ABI to be punished for the
5145 existence of the ILP32 variant, but at the same time, we don't want
5146 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5147 We therefore take the following approach:
5149 - If ABFD contains a .gcc_compiled_longXX section, use it to
5150 determine the pointer size.
5152 - Otherwise check the type of the first relocation. Assume that
5153 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5157 The second check is enough to detect LP64 objects generated by pre-4.0
5158 compilers because, in the kind of output generated by those compilers,
5159 the first relocation will be associated with either a CIE personality
5160 routine or an FDE start address. Furthermore, the compilers never
5161 used a special (non-pointer) encoding for this ABI.
5163 Checking the relocation type should also be safe because there is no
5164 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5168 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
5170 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
5172 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
5174 bfd_boolean long32_p
, long64_p
;
5176 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
5177 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
5178 if (long32_p
&& long64_p
)
5185 if (sec
->reloc_count
> 0
5186 && elf_section_data (sec
)->relocs
!= NULL
5187 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
5196 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5197 relocations against two unnamed section symbols to resolve to the
5198 same address. For example, if we have code like:
5200 lw $4,%got_disp(.data)($gp)
5201 lw $25,%got_disp(.text)($gp)
5204 then the linker will resolve both relocations to .data and the program
5205 will jump there rather than to .text.
5207 We can work around this problem by giving names to local section symbols.
5208 This is also what the MIPSpro tools do. */
5211 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
5213 return SGI_COMPAT (abfd
);
5216 /* Work over a section just before writing it out. This routine is
5217 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5218 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5222 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
5224 if (hdr
->sh_type
== SHT_MIPS_REGINFO
5225 && hdr
->sh_size
> 0)
5229 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
5230 BFD_ASSERT (hdr
->contents
== NULL
);
5233 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
5236 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
5237 if (bfd_bwrite (buf
, 4, abfd
) != 4)
5241 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
5242 && hdr
->bfd_section
!= NULL
5243 && mips_elf_section_data (hdr
->bfd_section
) != NULL
5244 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
5246 bfd_byte
*contents
, *l
, *lend
;
5248 /* We stored the section contents in the tdata field in the
5249 set_section_contents routine. We save the section contents
5250 so that we don't have to read them again.
5251 At this point we know that elf_gp is set, so we can look
5252 through the section contents to see if there is an
5253 ODK_REGINFO structure. */
5255 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
5257 lend
= contents
+ hdr
->sh_size
;
5258 while (l
+ sizeof (Elf_External_Options
) <= lend
)
5260 Elf_Internal_Options intopt
;
5262 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5264 if (intopt
.size
< sizeof (Elf_External_Options
))
5266 (*_bfd_error_handler
)
5267 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5268 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5271 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5278 + sizeof (Elf_External_Options
)
5279 + (sizeof (Elf64_External_RegInfo
) - 8)),
5282 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
5283 if (bfd_bwrite (buf
, 8, abfd
) != 8)
5286 else if (intopt
.kind
== ODK_REGINFO
)
5293 + sizeof (Elf_External_Options
)
5294 + (sizeof (Elf32_External_RegInfo
) - 4)),
5297 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
5298 if (bfd_bwrite (buf
, 4, abfd
) != 4)
5305 if (hdr
->bfd_section
!= NULL
)
5307 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
5309 if (strcmp (name
, ".sdata") == 0
5310 || strcmp (name
, ".lit8") == 0
5311 || strcmp (name
, ".lit4") == 0)
5313 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5314 hdr
->sh_type
= SHT_PROGBITS
;
5316 else if (strcmp (name
, ".sbss") == 0)
5318 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
5319 hdr
->sh_type
= SHT_NOBITS
;
5321 else if (strcmp (name
, ".srdata") == 0)
5323 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
5324 hdr
->sh_type
= SHT_PROGBITS
;
5326 else if (strcmp (name
, ".compact_rel") == 0)
5329 hdr
->sh_type
= SHT_PROGBITS
;
5331 else if (strcmp (name
, ".rtproc") == 0)
5333 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
5335 unsigned int adjust
;
5337 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
5339 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
5347 /* Handle a MIPS specific section when reading an object file. This
5348 is called when elfcode.h finds a section with an unknown type.
5349 This routine supports both the 32-bit and 64-bit ELF ABI.
5351 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5355 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
5356 Elf_Internal_Shdr
*hdr
,
5362 /* There ought to be a place to keep ELF backend specific flags, but
5363 at the moment there isn't one. We just keep track of the
5364 sections by their name, instead. Fortunately, the ABI gives
5365 suggested names for all the MIPS specific sections, so we will
5366 probably get away with this. */
5367 switch (hdr
->sh_type
)
5369 case SHT_MIPS_LIBLIST
:
5370 if (strcmp (name
, ".liblist") != 0)
5374 if (strcmp (name
, ".msym") != 0)
5377 case SHT_MIPS_CONFLICT
:
5378 if (strcmp (name
, ".conflict") != 0)
5381 case SHT_MIPS_GPTAB
:
5382 if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) != 0)
5385 case SHT_MIPS_UCODE
:
5386 if (strcmp (name
, ".ucode") != 0)
5389 case SHT_MIPS_DEBUG
:
5390 if (strcmp (name
, ".mdebug") != 0)
5392 flags
= SEC_DEBUGGING
;
5394 case SHT_MIPS_REGINFO
:
5395 if (strcmp (name
, ".reginfo") != 0
5396 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
5398 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
5400 case SHT_MIPS_IFACE
:
5401 if (strcmp (name
, ".MIPS.interfaces") != 0)
5404 case SHT_MIPS_CONTENT
:
5405 if (strncmp (name
, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5408 case SHT_MIPS_OPTIONS
:
5409 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5412 case SHT_MIPS_DWARF
:
5413 if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) != 0)
5416 case SHT_MIPS_SYMBOL_LIB
:
5417 if (strcmp (name
, ".MIPS.symlib") != 0)
5420 case SHT_MIPS_EVENTS
:
5421 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5422 && strncmp (name
, ".MIPS.post_rel",
5423 sizeof ".MIPS.post_rel" - 1) != 0)
5430 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
5435 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
5436 (bfd_get_section_flags (abfd
,
5442 /* FIXME: We should record sh_info for a .gptab section. */
5444 /* For a .reginfo section, set the gp value in the tdata information
5445 from the contents of this section. We need the gp value while
5446 processing relocs, so we just get it now. The .reginfo section
5447 is not used in the 64-bit MIPS ELF ABI. */
5448 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
5450 Elf32_External_RegInfo ext
;
5453 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
5454 &ext
, 0, sizeof ext
))
5456 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
5457 elf_gp (abfd
) = s
.ri_gp_value
;
5460 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5461 set the gp value based on what we find. We may see both
5462 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5463 they should agree. */
5464 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
5466 bfd_byte
*contents
, *l
, *lend
;
5468 contents
= bfd_malloc (hdr
->sh_size
);
5469 if (contents
== NULL
)
5471 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
5478 lend
= contents
+ hdr
->sh_size
;
5479 while (l
+ sizeof (Elf_External_Options
) <= lend
)
5481 Elf_Internal_Options intopt
;
5483 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
5485 if (intopt
.size
< sizeof (Elf_External_Options
))
5487 (*_bfd_error_handler
)
5488 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5489 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
5492 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
5494 Elf64_Internal_RegInfo intreg
;
5496 bfd_mips_elf64_swap_reginfo_in
5498 ((Elf64_External_RegInfo
*)
5499 (l
+ sizeof (Elf_External_Options
))),
5501 elf_gp (abfd
) = intreg
.ri_gp_value
;
5503 else if (intopt
.kind
== ODK_REGINFO
)
5505 Elf32_RegInfo intreg
;
5507 bfd_mips_elf32_swap_reginfo_in
5509 ((Elf32_External_RegInfo
*)
5510 (l
+ sizeof (Elf_External_Options
))),
5512 elf_gp (abfd
) = intreg
.ri_gp_value
;
5522 /* Set the correct type for a MIPS ELF section. We do this by the
5523 section name, which is a hack, but ought to work. This routine is
5524 used by both the 32-bit and the 64-bit ABI. */
5527 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
5529 register const char *name
;
5530 unsigned int sh_type
;
5532 name
= bfd_get_section_name (abfd
, sec
);
5533 sh_type
= hdr
->sh_type
;
5535 if (strcmp (name
, ".liblist") == 0)
5537 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
5538 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
5539 /* The sh_link field is set in final_write_processing. */
5541 else if (strcmp (name
, ".conflict") == 0)
5542 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
5543 else if (strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0)
5545 hdr
->sh_type
= SHT_MIPS_GPTAB
;
5546 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
5547 /* The sh_info field is set in final_write_processing. */
5549 else if (strcmp (name
, ".ucode") == 0)
5550 hdr
->sh_type
= SHT_MIPS_UCODE
;
5551 else if (strcmp (name
, ".mdebug") == 0)
5553 hdr
->sh_type
= SHT_MIPS_DEBUG
;
5554 /* In a shared object on IRIX 5.3, the .mdebug section has an
5555 entsize of 0. FIXME: Does this matter? */
5556 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
5557 hdr
->sh_entsize
= 0;
5559 hdr
->sh_entsize
= 1;
5561 else if (strcmp (name
, ".reginfo") == 0)
5563 hdr
->sh_type
= SHT_MIPS_REGINFO
;
5564 /* In a shared object on IRIX 5.3, the .reginfo section has an
5565 entsize of 0x18. FIXME: Does this matter? */
5566 if (SGI_COMPAT (abfd
))
5568 if ((abfd
->flags
& DYNAMIC
) != 0)
5569 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5571 hdr
->sh_entsize
= 1;
5574 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
5576 else if (SGI_COMPAT (abfd
)
5577 && (strcmp (name
, ".hash") == 0
5578 || strcmp (name
, ".dynamic") == 0
5579 || strcmp (name
, ".dynstr") == 0))
5581 if (SGI_COMPAT (abfd
))
5582 hdr
->sh_entsize
= 0;
5584 /* This isn't how the IRIX6 linker behaves. */
5585 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
5588 else if (strcmp (name
, ".got") == 0
5589 || strcmp (name
, ".srdata") == 0
5590 || strcmp (name
, ".sdata") == 0
5591 || strcmp (name
, ".sbss") == 0
5592 || strcmp (name
, ".lit4") == 0
5593 || strcmp (name
, ".lit8") == 0)
5594 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
5595 else if (strcmp (name
, ".MIPS.interfaces") == 0)
5597 hdr
->sh_type
= SHT_MIPS_IFACE
;
5598 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5600 else if (strncmp (name
, ".MIPS.content", strlen (".MIPS.content")) == 0)
5602 hdr
->sh_type
= SHT_MIPS_CONTENT
;
5603 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5604 /* The sh_info field is set in final_write_processing. */
5606 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
5608 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
5609 hdr
->sh_entsize
= 1;
5610 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5612 else if (strncmp (name
, ".debug_", sizeof ".debug_" - 1) == 0)
5613 hdr
->sh_type
= SHT_MIPS_DWARF
;
5614 else if (strcmp (name
, ".MIPS.symlib") == 0)
5616 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
5617 /* The sh_link and sh_info fields are set in
5618 final_write_processing. */
5620 else if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5621 || strncmp (name
, ".MIPS.post_rel",
5622 sizeof ".MIPS.post_rel" - 1) == 0)
5624 hdr
->sh_type
= SHT_MIPS_EVENTS
;
5625 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
5626 /* The sh_link field is set in final_write_processing. */
5628 else if (strcmp (name
, ".msym") == 0)
5630 hdr
->sh_type
= SHT_MIPS_MSYM
;
5631 hdr
->sh_flags
|= SHF_ALLOC
;
5632 hdr
->sh_entsize
= 8;
5635 /* In the unlikely event a special section is empty it has to lose its
5636 special meaning. This may happen e.g. when using `strip' with the
5637 "--only-keep-debug" option. */
5638 if (sec
->size
> 0 && !(sec
->flags
& SEC_HAS_CONTENTS
))
5639 hdr
->sh_type
= sh_type
;
5641 /* The generic elf_fake_sections will set up REL_HDR using the default
5642 kind of relocations. We used to set up a second header for the
5643 non-default kind of relocations here, but only NewABI would use
5644 these, and the IRIX ld doesn't like resulting empty RELA sections.
5645 Thus we create those header only on demand now. */
5650 /* Given a BFD section, try to locate the corresponding ELF section
5651 index. This is used by both the 32-bit and the 64-bit ABI.
5652 Actually, it's not clear to me that the 64-bit ABI supports these,
5653 but for non-PIC objects we will certainly want support for at least
5654 the .scommon section. */
5657 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
5658 asection
*sec
, int *retval
)
5660 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
5662 *retval
= SHN_MIPS_SCOMMON
;
5665 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
5667 *retval
= SHN_MIPS_ACOMMON
;
5673 /* Hook called by the linker routine which adds symbols from an object
5674 file. We must handle the special MIPS section numbers here. */
5677 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
5678 Elf_Internal_Sym
*sym
, const char **namep
,
5679 flagword
*flagsp ATTRIBUTE_UNUSED
,
5680 asection
**secp
, bfd_vma
*valp
)
5682 if (SGI_COMPAT (abfd
)
5683 && (abfd
->flags
& DYNAMIC
) != 0
5684 && strcmp (*namep
, "_rld_new_interface") == 0)
5686 /* Skip IRIX5 rld entry name. */
5691 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5692 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5693 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5694 a magic symbol resolved by the linker, we ignore this bogus definition
5695 of _gp_disp. New ABI objects do not suffer from this problem so this
5696 is not done for them. */
5698 && (sym
->st_shndx
== SHN_ABS
)
5699 && (strcmp (*namep
, "_gp_disp") == 0))
5705 switch (sym
->st_shndx
)
5708 /* Common symbols less than the GP size are automatically
5709 treated as SHN_MIPS_SCOMMON symbols. */
5710 if (sym
->st_size
> elf_gp_size (abfd
)
5711 || IRIX_COMPAT (abfd
) == ict_irix6
)
5714 case SHN_MIPS_SCOMMON
:
5715 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
5716 (*secp
)->flags
|= SEC_IS_COMMON
;
5717 *valp
= sym
->st_size
;
5721 /* This section is used in a shared object. */
5722 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
5724 asymbol
*elf_text_symbol
;
5725 asection
*elf_text_section
;
5726 bfd_size_type amt
= sizeof (asection
);
5728 elf_text_section
= bfd_zalloc (abfd
, amt
);
5729 if (elf_text_section
== NULL
)
5732 amt
= sizeof (asymbol
);
5733 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
5734 if (elf_text_symbol
== NULL
)
5737 /* Initialize the section. */
5739 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
5740 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
5742 elf_text_section
->symbol
= elf_text_symbol
;
5743 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
5745 elf_text_section
->name
= ".text";
5746 elf_text_section
->flags
= SEC_NO_FLAGS
;
5747 elf_text_section
->output_section
= NULL
;
5748 elf_text_section
->owner
= abfd
;
5749 elf_text_symbol
->name
= ".text";
5750 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5751 elf_text_symbol
->section
= elf_text_section
;
5753 /* This code used to do *secp = bfd_und_section_ptr if
5754 info->shared. I don't know why, and that doesn't make sense,
5755 so I took it out. */
5756 *secp
= elf_tdata (abfd
)->elf_text_section
;
5759 case SHN_MIPS_ACOMMON
:
5760 /* Fall through. XXX Can we treat this as allocated data? */
5762 /* This section is used in a shared object. */
5763 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
5765 asymbol
*elf_data_symbol
;
5766 asection
*elf_data_section
;
5767 bfd_size_type amt
= sizeof (asection
);
5769 elf_data_section
= bfd_zalloc (abfd
, amt
);
5770 if (elf_data_section
== NULL
)
5773 amt
= sizeof (asymbol
);
5774 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
5775 if (elf_data_symbol
== NULL
)
5778 /* Initialize the section. */
5780 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
5781 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
5783 elf_data_section
->symbol
= elf_data_symbol
;
5784 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
5786 elf_data_section
->name
= ".data";
5787 elf_data_section
->flags
= SEC_NO_FLAGS
;
5788 elf_data_section
->output_section
= NULL
;
5789 elf_data_section
->owner
= abfd
;
5790 elf_data_symbol
->name
= ".data";
5791 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
5792 elf_data_symbol
->section
= elf_data_section
;
5794 /* This code used to do *secp = bfd_und_section_ptr if
5795 info->shared. I don't know why, and that doesn't make sense,
5796 so I took it out. */
5797 *secp
= elf_tdata (abfd
)->elf_data_section
;
5800 case SHN_MIPS_SUNDEFINED
:
5801 *secp
= bfd_und_section_ptr
;
5805 if (SGI_COMPAT (abfd
)
5807 && info
->hash
->creator
== abfd
->xvec
5808 && strcmp (*namep
, "__rld_obj_head") == 0)
5810 struct elf_link_hash_entry
*h
;
5811 struct bfd_link_hash_entry
*bh
;
5813 /* Mark __rld_obj_head as dynamic. */
5815 if (! (_bfd_generic_link_add_one_symbol
5816 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
5817 get_elf_backend_data (abfd
)->collect
, &bh
)))
5820 h
= (struct elf_link_hash_entry
*) bh
;
5823 h
->type
= STT_OBJECT
;
5825 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5828 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
5831 /* If this is a mips16 text symbol, add 1 to the value to make it
5832 odd. This will cause something like .word SYM to come up with
5833 the right value when it is loaded into the PC. */
5834 if (sym
->st_other
== STO_MIPS16
)
5840 /* This hook function is called before the linker writes out a global
5841 symbol. We mark symbols as small common if appropriate. This is
5842 also where we undo the increment of the value for a mips16 symbol. */
5845 _bfd_mips_elf_link_output_symbol_hook
5846 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5847 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
5848 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
5850 /* If we see a common symbol, which implies a relocatable link, then
5851 if a symbol was small common in an input file, mark it as small
5852 common in the output file. */
5853 if (sym
->st_shndx
== SHN_COMMON
5854 && strcmp (input_sec
->name
, ".scommon") == 0)
5855 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
5857 if (sym
->st_other
== STO_MIPS16
)
5858 sym
->st_value
&= ~1;
5863 /* Functions for the dynamic linker. */
5865 /* Create dynamic sections when linking against a dynamic object. */
5868 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
5870 struct elf_link_hash_entry
*h
;
5871 struct bfd_link_hash_entry
*bh
;
5873 register asection
*s
;
5874 const char * const *namep
;
5875 struct mips_elf_link_hash_table
*htab
;
5877 htab
= mips_elf_hash_table (info
);
5878 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
5879 | SEC_LINKER_CREATED
| SEC_READONLY
);
5881 /* The psABI requires a read-only .dynamic section, but the VxWorks
5883 if (!htab
->is_vxworks
)
5885 s
= bfd_get_section_by_name (abfd
, ".dynamic");
5888 if (! bfd_set_section_flags (abfd
, s
, flags
))
5893 /* We need to create .got section. */
5894 if (! mips_elf_create_got_section (abfd
, info
, FALSE
))
5897 if (! mips_elf_rel_dyn_section (info
, TRUE
))
5900 /* Create .stub section. */
5901 if (bfd_get_section_by_name (abfd
,
5902 MIPS_ELF_STUB_SECTION_NAME (abfd
)) == NULL
)
5904 s
= bfd_make_section_with_flags (abfd
,
5905 MIPS_ELF_STUB_SECTION_NAME (abfd
),
5908 || ! bfd_set_section_alignment (abfd
, s
,
5909 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5913 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
5915 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
5917 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
5918 flags
&~ (flagword
) SEC_READONLY
);
5920 || ! bfd_set_section_alignment (abfd
, s
,
5921 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
5925 /* On IRIX5, we adjust add some additional symbols and change the
5926 alignments of several sections. There is no ABI documentation
5927 indicating that this is necessary on IRIX6, nor any evidence that
5928 the linker takes such action. */
5929 if (IRIX_COMPAT (abfd
) == ict_irix5
)
5931 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
5934 if (! (_bfd_generic_link_add_one_symbol
5935 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
5936 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5939 h
= (struct elf_link_hash_entry
*) bh
;
5942 h
->type
= STT_SECTION
;
5944 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5948 /* We need to create a .compact_rel section. */
5949 if (SGI_COMPAT (abfd
))
5951 if (!mips_elf_create_compact_rel_section (abfd
, info
))
5955 /* Change alignments of some sections. */
5956 s
= bfd_get_section_by_name (abfd
, ".hash");
5958 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5959 s
= bfd_get_section_by_name (abfd
, ".dynsym");
5961 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5962 s
= bfd_get_section_by_name (abfd
, ".dynstr");
5964 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5965 s
= bfd_get_section_by_name (abfd
, ".reginfo");
5967 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5968 s
= bfd_get_section_by_name (abfd
, ".dynamic");
5970 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
5977 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5979 if (!(_bfd_generic_link_add_one_symbol
5980 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
5981 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
5984 h
= (struct elf_link_hash_entry
*) bh
;
5987 h
->type
= STT_SECTION
;
5989 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5992 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
5994 /* __rld_map is a four byte word located in the .data section
5995 and is filled in by the rtld to contain a pointer to
5996 the _r_debug structure. Its symbol value will be set in
5997 _bfd_mips_elf_finish_dynamic_symbol. */
5998 s
= bfd_get_section_by_name (abfd
, ".rld_map");
5999 BFD_ASSERT (s
!= NULL
);
6001 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
6003 if (!(_bfd_generic_link_add_one_symbol
6004 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
6005 get_elf_backend_data (abfd
)->collect
, &bh
)))
6008 h
= (struct elf_link_hash_entry
*) bh
;
6011 h
->type
= STT_OBJECT
;
6013 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6018 if (htab
->is_vxworks
)
6020 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6021 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6022 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
6025 /* Cache the sections created above. */
6026 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
6027 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
6028 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
6029 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
6031 || (!htab
->srelbss
&& !info
->shared
)
6036 /* Do the usual VxWorks handling. */
6037 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
6040 /* Work out the PLT sizes. */
6043 htab
->plt_header_size
6044 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
6045 htab
->plt_entry_size
6046 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
6050 htab
->plt_header_size
6051 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
6052 htab
->plt_entry_size
6053 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
6060 /* Look through the relocs for a section during the first phase, and
6061 allocate space in the global offset table. */
6064 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
6065 asection
*sec
, const Elf_Internal_Rela
*relocs
)
6069 Elf_Internal_Shdr
*symtab_hdr
;
6070 struct elf_link_hash_entry
**sym_hashes
;
6071 struct mips_got_info
*g
;
6073 const Elf_Internal_Rela
*rel
;
6074 const Elf_Internal_Rela
*rel_end
;
6077 const struct elf_backend_data
*bed
;
6078 struct mips_elf_link_hash_table
*htab
;
6080 if (info
->relocatable
)
6083 htab
= mips_elf_hash_table (info
);
6084 dynobj
= elf_hash_table (info
)->dynobj
;
6085 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6086 sym_hashes
= elf_sym_hashes (abfd
);
6087 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
6089 /* Check for the mips16 stub sections. */
6091 name
= bfd_get_section_name (abfd
, sec
);
6092 if (strncmp (name
, FN_STUB
, sizeof FN_STUB
- 1) == 0)
6094 unsigned long r_symndx
;
6096 /* Look at the relocation information to figure out which symbol
6099 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
6101 if (r_symndx
< extsymoff
6102 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
6106 /* This stub is for a local symbol. This stub will only be
6107 needed if there is some relocation in this BFD, other
6108 than a 16 bit function call, which refers to this symbol. */
6109 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
6111 Elf_Internal_Rela
*sec_relocs
;
6112 const Elf_Internal_Rela
*r
, *rend
;
6114 /* We can ignore stub sections when looking for relocs. */
6115 if ((o
->flags
& SEC_RELOC
) == 0
6116 || o
->reloc_count
== 0
6117 || strncmp (bfd_get_section_name (abfd
, o
), FN_STUB
,
6118 sizeof FN_STUB
- 1) == 0
6119 || strncmp (bfd_get_section_name (abfd
, o
), CALL_STUB
,
6120 sizeof CALL_STUB
- 1) == 0
6121 || strncmp (bfd_get_section_name (abfd
, o
), CALL_FP_STUB
,
6122 sizeof CALL_FP_STUB
- 1) == 0)
6126 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
6128 if (sec_relocs
== NULL
)
6131 rend
= sec_relocs
+ o
->reloc_count
;
6132 for (r
= sec_relocs
; r
< rend
; r
++)
6133 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
6134 && ELF_R_TYPE (abfd
, r
->r_info
) != R_MIPS16_26
)
6137 if (elf_section_data (o
)->relocs
!= sec_relocs
)
6146 /* There is no non-call reloc for this stub, so we do
6147 not need it. Since this function is called before
6148 the linker maps input sections to output sections, we
6149 can easily discard it by setting the SEC_EXCLUDE
6151 sec
->flags
|= SEC_EXCLUDE
;
6155 /* Record this stub in an array of local symbol stubs for
6157 if (elf_tdata (abfd
)->local_stubs
== NULL
)
6159 unsigned long symcount
;
6163 if (elf_bad_symtab (abfd
))
6164 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
6166 symcount
= symtab_hdr
->sh_info
;
6167 amt
= symcount
* sizeof (asection
*);
6168 n
= bfd_zalloc (abfd
, amt
);
6171 elf_tdata (abfd
)->local_stubs
= n
;
6174 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
6176 /* We don't need to set mips16_stubs_seen in this case.
6177 That flag is used to see whether we need to look through
6178 the global symbol table for stubs. We don't need to set
6179 it here, because we just have a local stub. */
6183 struct mips_elf_link_hash_entry
*h
;
6185 h
= ((struct mips_elf_link_hash_entry
*)
6186 sym_hashes
[r_symndx
- extsymoff
]);
6188 while (h
->root
.root
.type
== bfd_link_hash_indirect
6189 || h
->root
.root
.type
== bfd_link_hash_warning
)
6190 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6192 /* H is the symbol this stub is for. */
6195 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
6198 else if (strncmp (name
, CALL_STUB
, sizeof CALL_STUB
- 1) == 0
6199 || strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
6201 unsigned long r_symndx
;
6202 struct mips_elf_link_hash_entry
*h
;
6205 /* Look at the relocation information to figure out which symbol
6208 r_symndx
= ELF_R_SYM (abfd
, relocs
->r_info
);
6210 if (r_symndx
< extsymoff
6211 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
6213 /* This stub was actually built for a static symbol defined
6214 in the same file. We assume that all static symbols in
6215 mips16 code are themselves mips16, so we can simply
6216 discard this stub. Since this function is called before
6217 the linker maps input sections to output sections, we can
6218 easily discard it by setting the SEC_EXCLUDE flag. */
6219 sec
->flags
|= SEC_EXCLUDE
;
6223 h
= ((struct mips_elf_link_hash_entry
*)
6224 sym_hashes
[r_symndx
- extsymoff
]);
6226 /* H is the symbol this stub is for. */
6228 if (strncmp (name
, CALL_FP_STUB
, sizeof CALL_FP_STUB
- 1) == 0)
6229 loc
= &h
->call_fp_stub
;
6231 loc
= &h
->call_stub
;
6233 /* If we already have an appropriate stub for this function, we
6234 don't need another one, so we can discard this one. Since
6235 this function is called before the linker maps input sections
6236 to output sections, we can easily discard it by setting the
6237 SEC_EXCLUDE flag. We can also discard this section if we
6238 happen to already know that this is a mips16 function; it is
6239 not necessary to check this here, as it is checked later, but
6240 it is slightly faster to check now. */
6241 if (*loc
!= NULL
|| h
->root
.other
== STO_MIPS16
)
6243 sec
->flags
|= SEC_EXCLUDE
;
6248 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
6258 sgot
= mips_elf_got_section (dynobj
, FALSE
);
6263 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
6264 g
= mips_elf_section_data (sgot
)->u
.got_info
;
6265 BFD_ASSERT (g
!= NULL
);
6270 bed
= get_elf_backend_data (abfd
);
6271 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6272 for (rel
= relocs
; rel
< rel_end
; ++rel
)
6274 unsigned long r_symndx
;
6275 unsigned int r_type
;
6276 struct elf_link_hash_entry
*h
;
6278 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
6279 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
6281 if (r_symndx
< extsymoff
)
6283 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
6285 (*_bfd_error_handler
)
6286 (_("%B: Malformed reloc detected for section %s"),
6288 bfd_set_error (bfd_error_bad_value
);
6293 h
= sym_hashes
[r_symndx
- extsymoff
];
6295 /* This may be an indirect symbol created because of a version. */
6298 while (h
->root
.type
== bfd_link_hash_indirect
)
6299 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6303 /* Some relocs require a global offset table. */
6304 if (dynobj
== NULL
|| sgot
== NULL
)
6310 case R_MIPS_CALL_HI16
:
6311 case R_MIPS_CALL_LO16
:
6312 case R_MIPS_GOT_HI16
:
6313 case R_MIPS_GOT_LO16
:
6314 case R_MIPS_GOT_PAGE
:
6315 case R_MIPS_GOT_OFST
:
6316 case R_MIPS_GOT_DISP
:
6317 case R_MIPS_TLS_GOTTPREL
:
6319 case R_MIPS_TLS_LDM
:
6321 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6322 if (! mips_elf_create_got_section (dynobj
, info
, FALSE
))
6324 g
= mips_elf_got_info (dynobj
, &sgot
);
6325 if (htab
->is_vxworks
&& !info
->shared
)
6327 (*_bfd_error_handler
)
6328 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6329 abfd
, (unsigned long) rel
->r_offset
);
6330 bfd_set_error (bfd_error_bad_value
);
6338 /* In VxWorks executables, references to external symbols
6339 are handled using copy relocs or PLT stubs, so there's
6340 no need to add a dynamic relocation here. */
6342 && (info
->shared
|| (h
!= NULL
&& !htab
->is_vxworks
))
6343 && (sec
->flags
& SEC_ALLOC
) != 0)
6344 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6354 ((struct mips_elf_link_hash_entry
*) h
)->is_relocation_target
= TRUE
;
6356 /* Relocations against the special VxWorks __GOTT_BASE__ and
6357 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6358 room for them in .rela.dyn. */
6359 if (is_gott_symbol (info
, h
))
6363 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
6367 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
6370 else if (r_type
== R_MIPS_CALL_LO16
6371 || r_type
== R_MIPS_GOT_LO16
6372 || r_type
== R_MIPS_GOT_DISP
6373 || (r_type
== R_MIPS_GOT16
&& htab
->is_vxworks
))
6375 /* We may need a local GOT entry for this relocation. We
6376 don't count R_MIPS_GOT_PAGE because we can estimate the
6377 maximum number of pages needed by looking at the size of
6378 the segment. Similar comments apply to R_MIPS_GOT16 and
6379 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6380 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6381 R_MIPS_CALL_HI16 because these are always followed by an
6382 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6383 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6384 rel
->r_addend
, g
, 0))
6393 (*_bfd_error_handler
)
6394 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6395 abfd
, (unsigned long) rel
->r_offset
);
6396 bfd_set_error (bfd_error_bad_value
);
6401 case R_MIPS_CALL_HI16
:
6402 case R_MIPS_CALL_LO16
:
6405 /* VxWorks call relocations point the function's .got.plt
6406 entry, which will be allocated by adjust_dynamic_symbol.
6407 Otherwise, this symbol requires a global GOT entry. */
6408 if (!htab
->is_vxworks
6409 && !mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6412 /* We need a stub, not a plt entry for the undefined
6413 function. But we record it as if it needs plt. See
6414 _bfd_elf_adjust_dynamic_symbol. */
6420 case R_MIPS_GOT_PAGE
:
6421 /* If this is a global, overridable symbol, GOT_PAGE will
6422 decay to GOT_DISP, so we'll need a GOT entry for it. */
6427 struct mips_elf_link_hash_entry
*hmips
=
6428 (struct mips_elf_link_hash_entry
*) h
;
6430 while (hmips
->root
.root
.type
== bfd_link_hash_indirect
6431 || hmips
->root
.root
.type
== bfd_link_hash_warning
)
6432 hmips
= (struct mips_elf_link_hash_entry
*)
6433 hmips
->root
.root
.u
.i
.link
;
6435 if (hmips
->root
.def_regular
6436 && ! (info
->shared
&& ! info
->symbolic
6437 && ! hmips
->root
.forced_local
))
6443 case R_MIPS_GOT_HI16
:
6444 case R_MIPS_GOT_LO16
:
6445 case R_MIPS_GOT_DISP
:
6446 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6450 case R_MIPS_TLS_GOTTPREL
:
6452 info
->flags
|= DF_STATIC_TLS
;
6455 case R_MIPS_TLS_LDM
:
6456 if (r_type
== R_MIPS_TLS_LDM
)
6464 /* This symbol requires a global offset table entry, or two
6465 for TLS GD relocations. */
6467 unsigned char flag
= (r_type
== R_MIPS_TLS_GD
6469 : r_type
== R_MIPS_TLS_LDM
6474 struct mips_elf_link_hash_entry
*hmips
=
6475 (struct mips_elf_link_hash_entry
*) h
;
6476 hmips
->tls_type
|= flag
;
6478 if (h
&& ! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, flag
))
6483 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= 0);
6485 if (! mips_elf_record_local_got_symbol (abfd
, r_symndx
,
6486 rel
->r_addend
, g
, flag
))
6495 /* In VxWorks executables, references to external symbols
6496 are handled using copy relocs or PLT stubs, so there's
6497 no need to add a .rela.dyn entry for this relocation. */
6498 if ((info
->shared
|| (h
!= NULL
&& !htab
->is_vxworks
))
6499 && (sec
->flags
& SEC_ALLOC
) != 0)
6503 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
6507 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
6510 /* When creating a shared object, we must copy these
6511 reloc types into the output file as R_MIPS_REL32
6512 relocs. Make room for this reloc in .rel(a).dyn. */
6513 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
6514 if ((sec
->flags
& MIPS_READONLY_SECTION
)
6515 == MIPS_READONLY_SECTION
)
6516 /* We tell the dynamic linker that there are
6517 relocations against the text segment. */
6518 info
->flags
|= DF_TEXTREL
;
6522 struct mips_elf_link_hash_entry
*hmips
;
6524 /* We only need to copy this reloc if the symbol is
6525 defined in a dynamic object. */
6526 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6527 ++hmips
->possibly_dynamic_relocs
;
6528 if ((sec
->flags
& MIPS_READONLY_SECTION
)
6529 == MIPS_READONLY_SECTION
)
6530 /* We need it to tell the dynamic linker if there
6531 are relocations against the text segment. */
6532 hmips
->readonly_reloc
= TRUE
;
6535 /* Even though we don't directly need a GOT entry for
6536 this symbol, a symbol must have a dynamic symbol
6537 table index greater that DT_MIPS_GOTSYM if there are
6538 dynamic relocations against it. This does not apply
6539 to VxWorks, which does not have the usual coupling
6540 between global GOT entries and .dynsym entries. */
6541 if (h
!= NULL
&& !htab
->is_vxworks
)
6544 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
6545 if (! mips_elf_create_got_section (dynobj
, info
, TRUE
))
6547 g
= mips_elf_got_info (dynobj
, &sgot
);
6548 if (! mips_elf_record_global_got_symbol (h
, abfd
, info
, g
, 0))
6553 if (SGI_COMPAT (abfd
))
6554 mips_elf_hash_table (info
)->compact_rel_size
+=
6555 sizeof (Elf32_External_crinfo
);
6560 ((struct mips_elf_link_hash_entry
*) h
)->is_branch_target
= TRUE
;
6565 ((struct mips_elf_link_hash_entry
*) h
)->is_branch_target
= TRUE
;
6568 case R_MIPS_GPREL16
:
6569 case R_MIPS_LITERAL
:
6570 case R_MIPS_GPREL32
:
6571 if (SGI_COMPAT (abfd
))
6572 mips_elf_hash_table (info
)->compact_rel_size
+=
6573 sizeof (Elf32_External_crinfo
);
6576 /* This relocation describes the C++ object vtable hierarchy.
6577 Reconstruct it for later use during GC. */
6578 case R_MIPS_GNU_VTINHERIT
:
6579 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
6583 /* This relocation describes which C++ vtable entries are actually
6584 used. Record for later use during GC. */
6585 case R_MIPS_GNU_VTENTRY
:
6586 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
6594 /* We must not create a stub for a symbol that has relocations
6595 related to taking the function's address. This doesn't apply to
6596 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6597 a normal .got entry. */
6598 if (!htab
->is_vxworks
&& h
!= NULL
)
6602 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
6605 case R_MIPS_CALL_HI16
:
6606 case R_MIPS_CALL_LO16
:
6611 /* If this reloc is not a 16 bit call, and it has a global
6612 symbol, then we will need the fn_stub if there is one.
6613 References from a stub section do not count. */
6615 && r_type
!= R_MIPS16_26
6616 && strncmp (bfd_get_section_name (abfd
, sec
), FN_STUB
,
6617 sizeof FN_STUB
- 1) != 0
6618 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_STUB
,
6619 sizeof CALL_STUB
- 1) != 0
6620 && strncmp (bfd_get_section_name (abfd
, sec
), CALL_FP_STUB
,
6621 sizeof CALL_FP_STUB
- 1) != 0)
6623 struct mips_elf_link_hash_entry
*mh
;
6625 mh
= (struct mips_elf_link_hash_entry
*) h
;
6626 mh
->need_fn_stub
= TRUE
;
6634 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
6635 struct bfd_link_info
*link_info
,
6638 Elf_Internal_Rela
*internal_relocs
;
6639 Elf_Internal_Rela
*irel
, *irelend
;
6640 Elf_Internal_Shdr
*symtab_hdr
;
6641 bfd_byte
*contents
= NULL
;
6643 bfd_boolean changed_contents
= FALSE
;
6644 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
6645 Elf_Internal_Sym
*isymbuf
= NULL
;
6647 /* We are not currently changing any sizes, so only one pass. */
6650 if (link_info
->relocatable
)
6653 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
6654 link_info
->keep_memory
);
6655 if (internal_relocs
== NULL
)
6658 irelend
= internal_relocs
+ sec
->reloc_count
6659 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
6660 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6661 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
6663 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6666 bfd_signed_vma sym_offset
;
6667 unsigned int r_type
;
6668 unsigned long r_symndx
;
6670 unsigned long instruction
;
6672 /* Turn jalr into bgezal, and jr into beq, if they're marked
6673 with a JALR relocation, that indicate where they jump to.
6674 This saves some pipeline bubbles. */
6675 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
6676 if (r_type
!= R_MIPS_JALR
)
6679 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
6680 /* Compute the address of the jump target. */
6681 if (r_symndx
>= extsymoff
)
6683 struct mips_elf_link_hash_entry
*h
6684 = ((struct mips_elf_link_hash_entry
*)
6685 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
6687 while (h
->root
.root
.type
== bfd_link_hash_indirect
6688 || h
->root
.root
.type
== bfd_link_hash_warning
)
6689 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
6691 /* If a symbol is undefined, or if it may be overridden,
6693 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
6694 || h
->root
.root
.type
== bfd_link_hash_defweak
)
6695 && h
->root
.root
.u
.def
.section
)
6696 || (link_info
->shared
&& ! link_info
->symbolic
6697 && !h
->root
.forced_local
))
6700 sym_sec
= h
->root
.root
.u
.def
.section
;
6701 if (sym_sec
->output_section
)
6702 symval
= (h
->root
.root
.u
.def
.value
6703 + sym_sec
->output_section
->vma
6704 + sym_sec
->output_offset
);
6706 symval
= h
->root
.root
.u
.def
.value
;
6710 Elf_Internal_Sym
*isym
;
6712 /* Read this BFD's symbols if we haven't done so already. */
6713 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
6715 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6716 if (isymbuf
== NULL
)
6717 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
6718 symtab_hdr
->sh_info
, 0,
6720 if (isymbuf
== NULL
)
6724 isym
= isymbuf
+ r_symndx
;
6725 if (isym
->st_shndx
== SHN_UNDEF
)
6727 else if (isym
->st_shndx
== SHN_ABS
)
6728 sym_sec
= bfd_abs_section_ptr
;
6729 else if (isym
->st_shndx
== SHN_COMMON
)
6730 sym_sec
= bfd_com_section_ptr
;
6733 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6734 symval
= isym
->st_value
6735 + sym_sec
->output_section
->vma
6736 + sym_sec
->output_offset
;
6739 /* Compute branch offset, from delay slot of the jump to the
6741 sym_offset
= (symval
+ irel
->r_addend
)
6742 - (sec_start
+ irel
->r_offset
+ 4);
6744 /* Branch offset must be properly aligned. */
6745 if ((sym_offset
& 3) != 0)
6750 /* Check that it's in range. */
6751 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
6754 /* Get the section contents if we haven't done so already. */
6755 if (contents
== NULL
)
6757 /* Get cached copy if it exists. */
6758 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6759 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6762 if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6767 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
6769 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6770 if ((instruction
& 0xfc1fffff) == 0x0000f809)
6771 instruction
= 0x04110000;
6772 /* If it was jr <reg>, turn it into b <target>. */
6773 else if ((instruction
& 0xfc1fffff) == 0x00000008)
6774 instruction
= 0x10000000;
6778 instruction
|= (sym_offset
& 0xffff);
6779 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
6780 changed_contents
= TRUE
;
6783 if (contents
!= NULL
6784 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6786 if (!changed_contents
&& !link_info
->keep_memory
)
6790 /* Cache the section contents for elf_link_input_bfd. */
6791 elf_section_data (sec
)->this_hdr
.contents
= contents
;
6797 if (contents
!= NULL
6798 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6803 /* Adjust a symbol defined by a dynamic object and referenced by a
6804 regular object. The current definition is in some section of the
6805 dynamic object, but we're not including those sections. We have to
6806 change the definition to something the rest of the link can
6810 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
6811 struct elf_link_hash_entry
*h
)
6814 struct mips_elf_link_hash_entry
*hmips
;
6817 dynobj
= elf_hash_table (info
)->dynobj
;
6819 /* Make sure we know what is going on here. */
6820 BFD_ASSERT (dynobj
!= NULL
6822 || h
->u
.weakdef
!= NULL
6825 && !h
->def_regular
)));
6827 /* If this symbol is defined in a dynamic object, we need to copy
6828 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6830 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6831 if (! info
->relocatable
6832 && hmips
->possibly_dynamic_relocs
!= 0
6833 && (h
->root
.type
== bfd_link_hash_defweak
6834 || !h
->def_regular
))
6836 mips_elf_allocate_dynamic_relocations
6837 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
6838 if (hmips
->readonly_reloc
)
6839 /* We tell the dynamic linker that there are relocations
6840 against the text segment. */
6841 info
->flags
|= DF_TEXTREL
;
6844 /* For a function, create a stub, if allowed. */
6845 if (! hmips
->no_fn_stub
6848 if (! elf_hash_table (info
)->dynamic_sections_created
)
6851 /* If this symbol is not defined in a regular file, then set
6852 the symbol to the stub location. This is required to make
6853 function pointers compare as equal between the normal
6854 executable and the shared library. */
6855 if (!h
->def_regular
)
6857 /* We need .stub section. */
6858 s
= bfd_get_section_by_name (dynobj
,
6859 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
6860 BFD_ASSERT (s
!= NULL
);
6862 h
->root
.u
.def
.section
= s
;
6863 h
->root
.u
.def
.value
= s
->size
;
6865 /* XXX Write this stub address somewhere. */
6866 h
->plt
.offset
= s
->size
;
6868 /* Make room for this stub code. */
6869 s
->size
+= MIPS_FUNCTION_STUB_SIZE
;
6871 /* The last half word of the stub will be filled with the index
6872 of this symbol in .dynsym section. */
6876 else if ((h
->type
== STT_FUNC
)
6879 /* This will set the entry for this symbol in the GOT to 0, and
6880 the dynamic linker will take care of this. */
6881 h
->root
.u
.def
.value
= 0;
6885 /* If this is a weak symbol, and there is a real definition, the
6886 processor independent code will have arranged for us to see the
6887 real definition first, and we can just use the same value. */
6888 if (h
->u
.weakdef
!= NULL
)
6890 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
6891 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
6892 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
6893 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
6897 /* This is a reference to a symbol defined by a dynamic object which
6898 is not a function. */
6903 /* Likewise, for VxWorks. */
6906 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info
*info
,
6907 struct elf_link_hash_entry
*h
)
6910 struct mips_elf_link_hash_entry
*hmips
;
6911 struct mips_elf_link_hash_table
*htab
;
6912 unsigned int power_of_two
;
6914 htab
= mips_elf_hash_table (info
);
6915 dynobj
= elf_hash_table (info
)->dynobj
;
6916 hmips
= (struct mips_elf_link_hash_entry
*) h
;
6918 /* Make sure we know what is going on here. */
6919 BFD_ASSERT (dynobj
!= NULL
6922 || h
->u
.weakdef
!= NULL
6925 && !h
->def_regular
)));
6927 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6928 either (a) we want to branch to the symbol or (b) we're linking an
6929 executable that needs a canonical function address. In the latter
6930 case, the canonical address will be the address of the executable's
6932 if ((hmips
->is_branch_target
6934 && h
->type
== STT_FUNC
6935 && hmips
->is_relocation_target
))
6939 && !h
->forced_local
)
6942 /* Locally-binding symbols do not need a PLT stub; we can refer to
6943 the functions directly. */
6944 else if (h
->needs_plt
6945 && (SYMBOL_CALLS_LOCAL (info
, h
)
6946 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
6947 && h
->root
.type
== bfd_link_hash_undefweak
)))
6955 /* If this is the first symbol to need a PLT entry, allocate room
6956 for the header, and for the header's .rela.plt.unloaded entries. */
6957 if (htab
->splt
->size
== 0)
6959 htab
->splt
->size
+= htab
->plt_header_size
;
6961 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
6964 /* Assign the next .plt entry to this symbol. */
6965 h
->plt
.offset
= htab
->splt
->size
;
6966 htab
->splt
->size
+= htab
->plt_entry_size
;
6968 /* If the output file has no definition of the symbol, set the
6969 symbol's value to the address of the stub. For executables,
6970 point at the PLT load stub rather than the lazy resolution stub;
6971 this stub will become the canonical function address. */
6972 if (!h
->def_regular
)
6974 h
->root
.u
.def
.section
= htab
->splt
;
6975 h
->root
.u
.def
.value
= h
->plt
.offset
;
6977 h
->root
.u
.def
.value
+= 8;
6980 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
6981 htab
->sgotplt
->size
+= 4;
6982 htab
->srelplt
->size
+= sizeof (Elf32_External_Rela
);
6984 /* Make room for the .rela.plt.unloaded relocations. */
6986 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
6991 /* If a function symbol is defined by a dynamic object, and we do not
6992 need a PLT stub for it, the symbol's value should be zero. */
6993 if (h
->type
== STT_FUNC
6998 h
->root
.u
.def
.value
= 0;
7002 /* If this is a weak symbol, and there is a real definition, the
7003 processor independent code will have arranged for us to see the
7004 real definition first, and we can just use the same value. */
7005 if (h
->u
.weakdef
!= NULL
)
7007 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
7008 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
7009 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
7010 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
7014 /* This is a reference to a symbol defined by a dynamic object which
7015 is not a function. */
7019 /* We must allocate the symbol in our .dynbss section, which will
7020 become part of the .bss section of the executable. There will be
7021 an entry for this symbol in the .dynsym section. The dynamic
7022 object will contain position independent code, so all references
7023 from the dynamic object to this symbol will go through the global
7024 offset table. The dynamic linker will use the .dynsym entry to
7025 determine the address it must put in the global offset table, so
7026 both the dynamic object and the regular object will refer to the
7027 same memory location for the variable. */
7029 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
7031 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
7035 /* We need to figure out the alignment required for this symbol. */
7036 power_of_two
= bfd_log2 (h
->size
);
7037 if (power_of_two
> 4)
7040 /* Apply the required alignment. */
7041 htab
->sdynbss
->size
= BFD_ALIGN (htab
->sdynbss
->size
,
7042 (bfd_size_type
) 1 << power_of_two
);
7043 if (power_of_two
> bfd_get_section_alignment (dynobj
, htab
->sdynbss
)
7044 && !bfd_set_section_alignment (dynobj
, htab
->sdynbss
, power_of_two
))
7047 /* Define the symbol as being at this point in the section. */
7048 h
->root
.u
.def
.section
= htab
->sdynbss
;
7049 h
->root
.u
.def
.value
= htab
->sdynbss
->size
;
7051 /* Increment the section size to make room for the symbol. */
7052 htab
->sdynbss
->size
+= h
->size
;
7057 /* This function is called after all the input files have been read,
7058 and the input sections have been assigned to output sections. We
7059 check for any mips16 stub sections that we can discard. */
7062 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
7063 struct bfd_link_info
*info
)
7069 struct mips_got_info
*g
;
7071 bfd_size_type loadable_size
= 0;
7072 bfd_size_type local_gotno
;
7074 struct mips_elf_count_tls_arg count_tls_arg
;
7075 struct mips_elf_link_hash_table
*htab
;
7077 htab
= mips_elf_hash_table (info
);
7079 /* The .reginfo section has a fixed size. */
7080 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
7082 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
7084 if (! (info
->relocatable
7085 || ! mips_elf_hash_table (info
)->mips16_stubs_seen
))
7086 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
7087 mips_elf_check_mips16_stubs
, NULL
);
7089 dynobj
= elf_hash_table (info
)->dynobj
;
7091 /* Relocatable links don't have it. */
7094 g
= mips_elf_got_info (dynobj
, &s
);
7098 /* Calculate the total loadable size of the output. That
7099 will give us the maximum number of GOT_PAGE entries
7101 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
7103 asection
*subsection
;
7105 for (subsection
= sub
->sections
;
7107 subsection
= subsection
->next
)
7109 if ((subsection
->flags
& SEC_ALLOC
) == 0)
7111 loadable_size
+= ((subsection
->size
+ 0xf)
7112 &~ (bfd_size_type
) 0xf);
7116 /* There has to be a global GOT entry for every symbol with
7117 a dynamic symbol table index of DT_MIPS_GOTSYM or
7118 higher. Therefore, it make sense to put those symbols
7119 that need GOT entries at the end of the symbol table. We
7121 if (! mips_elf_sort_hash_table (info
, 1))
7124 if (g
->global_gotsym
!= NULL
)
7125 i
= elf_hash_table (info
)->dynsymcount
- g
->global_gotsym
->dynindx
;
7127 /* If there are no global symbols, or none requiring
7128 relocations, then GLOBAL_GOTSYM will be NULL. */
7131 /* In the worst case, we'll get one stub per dynamic symbol, plus
7132 one to account for the dummy entry at the end required by IRIX
7134 loadable_size
+= MIPS_FUNCTION_STUB_SIZE
* (i
+ 1);
7136 if (htab
->is_vxworks
)
7137 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7138 relocations against local symbols evaluate to "G", and the EABI does
7139 not include R_MIPS_GOT_PAGE. */
7142 /* Assume there are two loadable segments consisting of contiguous
7143 sections. Is 5 enough? */
7144 local_gotno
= (loadable_size
>> 16) + 5;
7146 g
->local_gotno
+= local_gotno
;
7147 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
7149 g
->global_gotno
= i
;
7150 s
->size
+= i
* MIPS_ELF_GOT_SIZE (output_bfd
);
7152 /* We need to calculate tls_gotno for global symbols at this point
7153 instead of building it up earlier, to avoid doublecounting
7154 entries for one global symbol from multiple input files. */
7155 count_tls_arg
.info
= info
;
7156 count_tls_arg
.needed
= 0;
7157 elf_link_hash_traverse (elf_hash_table (info
),
7158 mips_elf_count_global_tls_entries
,
7160 g
->tls_gotno
+= count_tls_arg
.needed
;
7161 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
7163 mips_elf_resolve_final_got_entries (g
);
7165 /* VxWorks does not support multiple GOTs. It initializes $gp to
7166 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7168 if (!htab
->is_vxworks
&& s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
7170 if (! mips_elf_multi_got (output_bfd
, info
, g
, s
, local_gotno
))
7175 /* Set up TLS entries for the first GOT. */
7176 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
7177 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
7183 /* Set the sizes of the dynamic sections. */
7186 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
7187 struct bfd_link_info
*info
)
7190 asection
*s
, *sreldyn
;
7191 bfd_boolean reltext
;
7192 struct mips_elf_link_hash_table
*htab
;
7194 htab
= mips_elf_hash_table (info
);
7195 dynobj
= elf_hash_table (info
)->dynobj
;
7196 BFD_ASSERT (dynobj
!= NULL
);
7198 if (elf_hash_table (info
)->dynamic_sections_created
)
7200 /* Set the contents of the .interp section to the interpreter. */
7201 if (info
->executable
)
7203 s
= bfd_get_section_by_name (dynobj
, ".interp");
7204 BFD_ASSERT (s
!= NULL
);
7206 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
7208 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
7212 /* The check_relocs and adjust_dynamic_symbol entry points have
7213 determined the sizes of the various dynamic sections. Allocate
7217 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
7221 /* It's OK to base decisions on the section name, because none
7222 of the dynobj section names depend upon the input files. */
7223 name
= bfd_get_section_name (dynobj
, s
);
7225 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
7228 if (strncmp (name
, ".rel", 4) == 0)
7232 const char *outname
;
7235 /* If this relocation section applies to a read only
7236 section, then we probably need a DT_TEXTREL entry.
7237 If the relocation section is .rel(a).dyn, we always
7238 assert a DT_TEXTREL entry rather than testing whether
7239 there exists a relocation to a read only section or
7241 outname
= bfd_get_section_name (output_bfd
,
7243 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
7245 && (target
->flags
& SEC_READONLY
) != 0
7246 && (target
->flags
& SEC_ALLOC
) != 0)
7247 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
7250 /* We use the reloc_count field as a counter if we need
7251 to copy relocs into the output file. */
7252 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
7255 /* If combreloc is enabled, elf_link_sort_relocs() will
7256 sort relocations, but in a different way than we do,
7257 and before we're done creating relocations. Also, it
7258 will move them around between input sections'
7259 relocation's contents, so our sorting would be
7260 broken, so don't let it run. */
7261 info
->combreloc
= 0;
7264 else if (htab
->is_vxworks
&& strcmp (name
, ".got") == 0)
7266 /* Executables do not need a GOT. */
7269 /* Allocate relocations for all but the reserved entries. */
7270 struct mips_got_info
*g
;
7273 g
= mips_elf_got_info (dynobj
, NULL
);
7274 count
= (g
->global_gotno
7276 - MIPS_RESERVED_GOTNO (info
));
7277 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
7280 else if (!htab
->is_vxworks
&& strncmp (name
, ".got", 4) == 0)
7282 /* _bfd_mips_elf_always_size_sections() has already done
7283 most of the work, but some symbols may have been mapped
7284 to versions that we must now resolve in the got_entries
7286 struct mips_got_info
*gg
= mips_elf_got_info (dynobj
, NULL
);
7287 struct mips_got_info
*g
= gg
;
7288 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
7289 unsigned int needed_relocs
= 0;
7293 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (output_bfd
);
7294 set_got_offset_arg
.info
= info
;
7296 /* NOTE 2005-02-03: How can this call, or the next, ever
7297 find any indirect entries to resolve? They were all
7298 resolved in mips_elf_multi_got. */
7299 mips_elf_resolve_final_got_entries (gg
);
7300 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
7302 unsigned int save_assign
;
7304 mips_elf_resolve_final_got_entries (g
);
7306 /* Assign offsets to global GOT entries. */
7307 save_assign
= g
->assigned_gotno
;
7308 g
->assigned_gotno
= g
->local_gotno
;
7309 set_got_offset_arg
.g
= g
;
7310 set_got_offset_arg
.needed_relocs
= 0;
7311 htab_traverse (g
->got_entries
,
7312 mips_elf_set_global_got_offset
,
7313 &set_got_offset_arg
);
7314 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
7315 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
7316 <= g
->global_gotno
);
7318 g
->assigned_gotno
= save_assign
;
7321 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
7322 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
7323 + g
->next
->global_gotno
7324 + g
->next
->tls_gotno
7325 + MIPS_RESERVED_GOTNO (info
));
7331 struct mips_elf_count_tls_arg arg
;
7335 htab_traverse (gg
->got_entries
, mips_elf_count_local_tls_relocs
,
7337 elf_link_hash_traverse (elf_hash_table (info
),
7338 mips_elf_count_global_tls_relocs
,
7341 needed_relocs
+= arg
.needed
;
7345 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
7348 else if (strcmp (name
, MIPS_ELF_STUB_SECTION_NAME (output_bfd
)) == 0)
7350 /* IRIX rld assumes that the function stub isn't at the end
7351 of .text section. So put a dummy. XXX */
7352 s
->size
+= MIPS_FUNCTION_STUB_SIZE
;
7354 else if (! info
->shared
7355 && ! mips_elf_hash_table (info
)->use_rld_obj_head
7356 && strncmp (name
, ".rld_map", 8) == 0)
7358 /* We add a room for __rld_map. It will be filled in by the
7359 rtld to contain a pointer to the _r_debug structure. */
7362 else if (SGI_COMPAT (output_bfd
)
7363 && strncmp (name
, ".compact_rel", 12) == 0)
7364 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
7365 else if (strncmp (name
, ".init", 5) != 0
7366 && s
!= htab
->sgotplt
7369 /* It's not one of our sections, so don't allocate space. */
7375 s
->flags
|= SEC_EXCLUDE
;
7379 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
7382 /* Allocate memory for this section last, since we may increase its
7384 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
7390 /* Allocate memory for the section contents. */
7391 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
7392 if (s
->contents
== NULL
)
7394 bfd_set_error (bfd_error_no_memory
);
7399 /* Allocate memory for the .rel(a).dyn section. */
7400 if (sreldyn
!= NULL
)
7402 sreldyn
->contents
= bfd_zalloc (dynobj
, sreldyn
->size
);
7403 if (sreldyn
->contents
== NULL
)
7405 bfd_set_error (bfd_error_no_memory
);
7410 if (elf_hash_table (info
)->dynamic_sections_created
)
7412 /* Add some entries to the .dynamic section. We fill in the
7413 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7414 must add the entries now so that we get the correct size for
7415 the .dynamic section. The DT_DEBUG entry is filled in by the
7416 dynamic linker and used by the debugger. */
7419 /* SGI object has the equivalence of DT_DEBUG in the
7420 DT_MIPS_RLD_MAP entry. */
7421 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
7423 if (!SGI_COMPAT (output_bfd
))
7425 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
7431 /* Shared libraries on traditional mips have DT_DEBUG. */
7432 if (!SGI_COMPAT (output_bfd
))
7434 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
7439 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
7440 info
->flags
|= DF_TEXTREL
;
7442 if ((info
->flags
& DF_TEXTREL
) != 0)
7444 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
7448 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
7451 if (htab
->is_vxworks
)
7453 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7454 use any of the DT_MIPS_* tags. */
7455 if (mips_elf_rel_dyn_section (info
, FALSE
))
7457 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
7460 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
7463 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
7466 if (htab
->splt
->size
> 0)
7468 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
7471 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
7474 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
7480 if (mips_elf_rel_dyn_section (info
, FALSE
))
7482 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
7485 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
7488 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
7492 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
7495 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
7498 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
7501 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
7504 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
7507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
7510 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
7513 if (IRIX_COMPAT (dynobj
) == ict_irix5
7514 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
7517 if (IRIX_COMPAT (dynobj
) == ict_irix6
7518 && (bfd_get_section_by_name
7519 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
7520 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
7528 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7529 Adjust its R_ADDEND field so that it is correct for the output file.
7530 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7531 and sections respectively; both use symbol indexes. */
7534 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
7535 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
7536 asection
**local_sections
, Elf_Internal_Rela
*rel
)
7538 unsigned int r_type
, r_symndx
;
7539 Elf_Internal_Sym
*sym
;
7542 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
, FALSE
))
7544 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
7545 if (r_type
== R_MIPS16_GPREL
7546 || r_type
== R_MIPS_GPREL16
7547 || r_type
== R_MIPS_GPREL32
7548 || r_type
== R_MIPS_LITERAL
)
7550 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
7551 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
7554 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
7555 sym
= local_syms
+ r_symndx
;
7557 /* Adjust REL's addend to account for section merging. */
7558 if (!info
->relocatable
)
7560 sec
= local_sections
[r_symndx
];
7561 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
7564 /* This would normally be done by the rela_normal code in elflink.c. */
7565 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
7566 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
7570 /* Relocate a MIPS ELF section. */
7573 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
7574 bfd
*input_bfd
, asection
*input_section
,
7575 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
7576 Elf_Internal_Sym
*local_syms
,
7577 asection
**local_sections
)
7579 Elf_Internal_Rela
*rel
;
7580 const Elf_Internal_Rela
*relend
;
7582 bfd_boolean use_saved_addend_p
= FALSE
;
7583 const struct elf_backend_data
*bed
;
7585 bed
= get_elf_backend_data (output_bfd
);
7586 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7587 for (rel
= relocs
; rel
< relend
; ++rel
)
7591 reloc_howto_type
*howto
;
7592 bfd_boolean require_jalx
;
7593 /* TRUE if the relocation is a RELA relocation, rather than a
7595 bfd_boolean rela_relocation_p
= TRUE
;
7596 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
7599 /* Find the relocation howto for this relocation. */
7600 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
7602 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7603 64-bit code, but make sure all their addresses are in the
7604 lowermost or uppermost 32-bit section of the 64-bit address
7605 space. Thus, when they use an R_MIPS_64 they mean what is
7606 usually meant by R_MIPS_32, with the exception that the
7607 stored value is sign-extended to 64 bits. */
7608 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
7610 /* On big-endian systems, we need to lie about the position
7612 if (bfd_big_endian (input_bfd
))
7616 /* NewABI defaults to RELA relocations. */
7617 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
,
7618 NEWABI_P (input_bfd
)
7619 && (MIPS_RELOC_RELA_P
7620 (input_bfd
, input_section
,
7623 if (!use_saved_addend_p
)
7625 Elf_Internal_Shdr
*rel_hdr
;
7627 /* If these relocations were originally of the REL variety,
7628 we must pull the addend out of the field that will be
7629 relocated. Otherwise, we simply use the contents of the
7630 RELA relocation. To determine which flavor or relocation
7631 this is, we depend on the fact that the INPUT_SECTION's
7632 REL_HDR is read before its REL_HDR2. */
7633 rel_hdr
= &elf_section_data (input_section
)->rel_hdr
;
7634 if ((size_t) (rel
- relocs
)
7635 >= (NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
))
7636 rel_hdr
= elf_section_data (input_section
)->rel_hdr2
;
7637 if (rel_hdr
->sh_entsize
== MIPS_ELF_REL_SIZE (input_bfd
))
7639 bfd_byte
*location
= contents
+ rel
->r_offset
;
7641 /* Note that this is a REL relocation. */
7642 rela_relocation_p
= FALSE
;
7644 /* Get the addend, which is stored in the input file. */
7645 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
,
7647 addend
= mips_elf_obtain_contents (howto
, rel
, input_bfd
,
7649 _bfd_mips16_elf_reloc_shuffle(input_bfd
, r_type
, FALSE
,
7652 addend
&= howto
->src_mask
;
7654 /* For some kinds of relocations, the ADDEND is a
7655 combination of the addend stored in two different
7657 if (r_type
== R_MIPS_HI16
|| r_type
== R_MIPS16_HI16
7658 || (r_type
== R_MIPS_GOT16
7659 && mips_elf_local_relocation_p (input_bfd
, rel
,
7660 local_sections
, FALSE
)))
7663 const Elf_Internal_Rela
*lo16_relocation
;
7664 reloc_howto_type
*lo16_howto
;
7665 bfd_byte
*lo16_location
;
7668 if (r_type
== R_MIPS16_HI16
)
7669 lo16_type
= R_MIPS16_LO16
;
7671 lo16_type
= R_MIPS_LO16
;
7673 /* The combined value is the sum of the HI16 addend,
7674 left-shifted by sixteen bits, and the LO16
7675 addend, sign extended. (Usually, the code does
7676 a `lui' of the HI16 value, and then an `addiu' of
7679 Scan ahead to find a matching LO16 relocation.
7681 According to the MIPS ELF ABI, the R_MIPS_LO16
7682 relocation must be immediately following.
7683 However, for the IRIX6 ABI, the next relocation
7684 may be a composed relocation consisting of
7685 several relocations for the same address. In
7686 that case, the R_MIPS_LO16 relocation may occur
7687 as one of these. We permit a similar extension
7688 in general, as that is useful for GCC. */
7689 lo16_relocation
= mips_elf_next_relocation (input_bfd
,
7692 if (lo16_relocation
== NULL
)
7695 lo16_location
= contents
+ lo16_relocation
->r_offset
;
7697 /* Obtain the addend kept there. */
7698 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
,
7700 _bfd_mips16_elf_reloc_unshuffle (input_bfd
, lo16_type
, FALSE
,
7702 l
= mips_elf_obtain_contents (lo16_howto
, lo16_relocation
,
7703 input_bfd
, contents
);
7704 _bfd_mips16_elf_reloc_shuffle (input_bfd
, lo16_type
, FALSE
,
7706 l
&= lo16_howto
->src_mask
;
7707 l
<<= lo16_howto
->rightshift
;
7708 l
= _bfd_mips_elf_sign_extend (l
, 16);
7712 /* Compute the combined addend. */
7716 addend
<<= howto
->rightshift
;
7719 addend
= rel
->r_addend
;
7720 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
7721 local_syms
, local_sections
, rel
);
7724 if (info
->relocatable
)
7726 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
7727 && bfd_big_endian (input_bfd
))
7730 if (!rela_relocation_p
&& rel
->r_addend
)
7732 addend
+= rel
->r_addend
;
7733 if (r_type
== R_MIPS_HI16
7734 || r_type
== R_MIPS_GOT16
)
7735 addend
= mips_elf_high (addend
);
7736 else if (r_type
== R_MIPS_HIGHER
)
7737 addend
= mips_elf_higher (addend
);
7738 else if (r_type
== R_MIPS_HIGHEST
)
7739 addend
= mips_elf_highest (addend
);
7741 addend
>>= howto
->rightshift
;
7743 /* We use the source mask, rather than the destination
7744 mask because the place to which we are writing will be
7745 source of the addend in the final link. */
7746 addend
&= howto
->src_mask
;
7748 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
7749 /* See the comment above about using R_MIPS_64 in the 32-bit
7750 ABI. Here, we need to update the addend. It would be
7751 possible to get away with just using the R_MIPS_32 reloc
7752 but for endianness. */
7758 if (addend
& ((bfd_vma
) 1 << 31))
7760 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7767 /* If we don't know that we have a 64-bit type,
7768 do two separate stores. */
7769 if (bfd_big_endian (input_bfd
))
7771 /* Store the sign-bits (which are most significant)
7773 low_bits
= sign_bits
;
7779 high_bits
= sign_bits
;
7781 bfd_put_32 (input_bfd
, low_bits
,
7782 contents
+ rel
->r_offset
);
7783 bfd_put_32 (input_bfd
, high_bits
,
7784 contents
+ rel
->r_offset
+ 4);
7788 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
7789 input_bfd
, input_section
,
7794 /* Go on to the next relocation. */
7798 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7799 relocations for the same offset. In that case we are
7800 supposed to treat the output of each relocation as the addend
7802 if (rel
+ 1 < relend
7803 && rel
->r_offset
== rel
[1].r_offset
7804 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
7805 use_saved_addend_p
= TRUE
;
7807 use_saved_addend_p
= FALSE
;
7809 /* Figure out what value we are supposed to relocate. */
7810 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
7811 input_section
, info
, rel
,
7812 addend
, howto
, local_syms
,
7813 local_sections
, &value
,
7814 &name
, &require_jalx
,
7815 use_saved_addend_p
))
7817 case bfd_reloc_continue
:
7818 /* There's nothing to do. */
7821 case bfd_reloc_undefined
:
7822 /* mips_elf_calculate_relocation already called the
7823 undefined_symbol callback. There's no real point in
7824 trying to perform the relocation at this point, so we
7825 just skip ahead to the next relocation. */
7828 case bfd_reloc_notsupported
:
7829 msg
= _("internal error: unsupported relocation error");
7830 info
->callbacks
->warning
7831 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
7834 case bfd_reloc_overflow
:
7835 if (use_saved_addend_p
)
7836 /* Ignore overflow until we reach the last relocation for
7837 a given location. */
7841 BFD_ASSERT (name
!= NULL
);
7842 if (! ((*info
->callbacks
->reloc_overflow
)
7843 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
7844 input_bfd
, input_section
, rel
->r_offset
)))
7857 /* If we've got another relocation for the address, keep going
7858 until we reach the last one. */
7859 if (use_saved_addend_p
)
7865 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
7866 /* See the comment above about using R_MIPS_64 in the 32-bit
7867 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7868 that calculated the right value. Now, however, we
7869 sign-extend the 32-bit result to 64-bits, and store it as a
7870 64-bit value. We are especially generous here in that we
7871 go to extreme lengths to support this usage on systems with
7872 only a 32-bit VMA. */
7878 if (value
& ((bfd_vma
) 1 << 31))
7880 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
7887 /* If we don't know that we have a 64-bit type,
7888 do two separate stores. */
7889 if (bfd_big_endian (input_bfd
))
7891 /* Undo what we did above. */
7893 /* Store the sign-bits (which are most significant)
7895 low_bits
= sign_bits
;
7901 high_bits
= sign_bits
;
7903 bfd_put_32 (input_bfd
, low_bits
,
7904 contents
+ rel
->r_offset
);
7905 bfd_put_32 (input_bfd
, high_bits
,
7906 contents
+ rel
->r_offset
+ 4);
7910 /* Actually perform the relocation. */
7911 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
7912 input_bfd
, input_section
,
7913 contents
, require_jalx
))
7920 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7921 adjust it appropriately now. */
7924 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
7925 const char *name
, Elf_Internal_Sym
*sym
)
7927 /* The linker script takes care of providing names and values for
7928 these, but we must place them into the right sections. */
7929 static const char* const text_section_symbols
[] = {
7932 "__dso_displacement",
7934 "__program_header_table",
7938 static const char* const data_section_symbols
[] = {
7946 const char* const *p
;
7949 for (i
= 0; i
< 2; ++i
)
7950 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
7953 if (strcmp (*p
, name
) == 0)
7955 /* All of these symbols are given type STT_SECTION by the
7957 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
7958 sym
->st_other
= STO_PROTECTED
;
7960 /* The IRIX linker puts these symbols in special sections. */
7962 sym
->st_shndx
= SHN_MIPS_TEXT
;
7964 sym
->st_shndx
= SHN_MIPS_DATA
;
7970 /* Finish up dynamic symbol handling. We set the contents of various
7971 dynamic sections here. */
7974 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
7975 struct bfd_link_info
*info
,
7976 struct elf_link_hash_entry
*h
,
7977 Elf_Internal_Sym
*sym
)
7981 struct mips_got_info
*g
, *gg
;
7984 dynobj
= elf_hash_table (info
)->dynobj
;
7986 if (h
->plt
.offset
!= MINUS_ONE
)
7989 bfd_byte stub
[MIPS_FUNCTION_STUB_SIZE
];
7991 /* This symbol has a stub. Set it up. */
7993 BFD_ASSERT (h
->dynindx
!= -1);
7995 s
= bfd_get_section_by_name (dynobj
,
7996 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
7997 BFD_ASSERT (s
!= NULL
);
7999 /* FIXME: Can h->dynindx be more than 64K? */
8000 if (h
->dynindx
& 0xffff0000)
8003 /* Fill the stub. */
8004 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
);
8005 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ 4);
8006 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ 8);
8007 bfd_put_32 (output_bfd
, STUB_LI16 (output_bfd
) + h
->dynindx
, stub
+ 12);
8009 BFD_ASSERT (h
->plt
.offset
<= s
->size
);
8010 memcpy (s
->contents
+ h
->plt
.offset
, stub
, MIPS_FUNCTION_STUB_SIZE
);
8012 /* Mark the symbol as undefined. plt.offset != -1 occurs
8013 only for the referenced symbol. */
8014 sym
->st_shndx
= SHN_UNDEF
;
8016 /* The run-time linker uses the st_value field of the symbol
8017 to reset the global offset table entry for this external
8018 to its stub address when unlinking a shared object. */
8019 sym
->st_value
= (s
->output_section
->vma
+ s
->output_offset
8023 BFD_ASSERT (h
->dynindx
!= -1
8024 || h
->forced_local
);
8026 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8027 BFD_ASSERT (sgot
!= NULL
);
8028 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8029 g
= mips_elf_section_data (sgot
)->u
.got_info
;
8030 BFD_ASSERT (g
!= NULL
);
8032 /* Run through the global symbol table, creating GOT entries for all
8033 the symbols that need them. */
8034 if (g
->global_gotsym
!= NULL
8035 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
8040 value
= sym
->st_value
;
8041 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
, R_MIPS_GOT16
, info
);
8042 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
8045 if (g
->next
&& h
->dynindx
!= -1 && h
->type
!= STT_TLS
)
8047 struct mips_got_entry e
, *p
;
8053 e
.abfd
= output_bfd
;
8055 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
8058 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
8061 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
8066 || (elf_hash_table (info
)->dynamic_sections_created
8068 && p
->d
.h
->root
.def_dynamic
8069 && !p
->d
.h
->root
.def_regular
))
8071 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8072 the various compatibility problems, it's easier to mock
8073 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8074 mips_elf_create_dynamic_relocation to calculate the
8075 appropriate addend. */
8076 Elf_Internal_Rela rel
[3];
8078 memset (rel
, 0, sizeof (rel
));
8079 if (ABI_64_P (output_bfd
))
8080 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
8082 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
8083 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
8086 if (! (mips_elf_create_dynamic_relocation
8087 (output_bfd
, info
, rel
,
8088 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
8092 entry
= sym
->st_value
;
8093 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
8098 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8099 name
= h
->root
.root
.string
;
8100 if (strcmp (name
, "_DYNAMIC") == 0
8101 || h
== elf_hash_table (info
)->hgot
)
8102 sym
->st_shndx
= SHN_ABS
;
8103 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
8104 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
8106 sym
->st_shndx
= SHN_ABS
;
8107 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8110 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
8112 sym
->st_shndx
= SHN_ABS
;
8113 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8114 sym
->st_value
= elf_gp (output_bfd
);
8116 else if (SGI_COMPAT (output_bfd
))
8118 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
8119 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
8121 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8122 sym
->st_other
= STO_PROTECTED
;
8124 sym
->st_shndx
= SHN_MIPS_DATA
;
8126 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
8128 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
8129 sym
->st_other
= STO_PROTECTED
;
8130 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
8131 sym
->st_shndx
= SHN_ABS
;
8133 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
8135 if (h
->type
== STT_FUNC
)
8136 sym
->st_shndx
= SHN_MIPS_TEXT
;
8137 else if (h
->type
== STT_OBJECT
)
8138 sym
->st_shndx
= SHN_MIPS_DATA
;
8142 /* Handle the IRIX6-specific symbols. */
8143 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
8144 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
8148 if (! mips_elf_hash_table (info
)->use_rld_obj_head
8149 && (strcmp (name
, "__rld_map") == 0
8150 || strcmp (name
, "__RLD_MAP") == 0))
8152 asection
*s
= bfd_get_section_by_name (dynobj
, ".rld_map");
8153 BFD_ASSERT (s
!= NULL
);
8154 sym
->st_value
= s
->output_section
->vma
+ s
->output_offset
;
8155 bfd_put_32 (output_bfd
, 0, s
->contents
);
8156 if (mips_elf_hash_table (info
)->rld_value
== 0)
8157 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8159 else if (mips_elf_hash_table (info
)->use_rld_obj_head
8160 && strcmp (name
, "__rld_obj_head") == 0)
8162 /* IRIX6 does not use a .rld_map section. */
8163 if (IRIX_COMPAT (output_bfd
) == ict_irix5
8164 || IRIX_COMPAT (output_bfd
) == ict_none
)
8165 BFD_ASSERT (bfd_get_section_by_name (dynobj
, ".rld_map")
8167 mips_elf_hash_table (info
)->rld_value
= sym
->st_value
;
8171 /* If this is a mips16 symbol, force the value to be even. */
8172 if (sym
->st_other
== STO_MIPS16
)
8173 sym
->st_value
&= ~1;
8178 /* Likewise, for VxWorks. */
8181 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
8182 struct bfd_link_info
*info
,
8183 struct elf_link_hash_entry
*h
,
8184 Elf_Internal_Sym
*sym
)
8188 struct mips_got_info
*g
;
8189 struct mips_elf_link_hash_table
*htab
;
8191 htab
= mips_elf_hash_table (info
);
8192 dynobj
= elf_hash_table (info
)->dynobj
;
8194 if (h
->plt
.offset
!= (bfd_vma
) -1)
8197 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
8198 Elf_Internal_Rela rel
;
8199 static const bfd_vma
*plt_entry
;
8201 BFD_ASSERT (h
->dynindx
!= -1);
8202 BFD_ASSERT (htab
->splt
!= NULL
);
8203 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
8205 /* Calculate the address of the .plt entry. */
8206 plt_address
= (htab
->splt
->output_section
->vma
8207 + htab
->splt
->output_offset
8210 /* Calculate the index of the entry. */
8211 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
8212 / htab
->plt_entry_size
);
8214 /* Calculate the address of the .got.plt entry. */
8215 got_address
= (htab
->sgotplt
->output_section
->vma
8216 + htab
->sgotplt
->output_offset
8219 /* Calculate the offset of the .got.plt entry from
8220 _GLOBAL_OFFSET_TABLE_. */
8221 got_offset
= mips_elf_gotplt_index (info
, h
);
8223 /* Calculate the offset for the branch at the start of the PLT
8224 entry. The branch jumps to the beginning of .plt. */
8225 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
8227 /* Fill in the initial value of the .got.plt entry. */
8228 bfd_put_32 (output_bfd
, plt_address
,
8229 htab
->sgotplt
->contents
+ plt_index
* 4);
8231 /* Find out where the .plt entry should go. */
8232 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
8236 plt_entry
= mips_vxworks_shared_plt_entry
;
8237 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
8238 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
8242 bfd_vma got_address_high
, got_address_low
;
8244 plt_entry
= mips_vxworks_exec_plt_entry
;
8245 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
8246 got_address_low
= got_address
& 0xffff;
8248 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
8249 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
8250 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
8251 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
8252 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
8253 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
8254 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
8255 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
8257 loc
= (htab
->srelplt2
->contents
8258 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
8260 /* Emit a relocation for the .got.plt entry. */
8261 rel
.r_offset
= got_address
;
8262 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
8263 rel
.r_addend
= h
->plt
.offset
;
8264 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8266 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8267 loc
+= sizeof (Elf32_External_Rela
);
8268 rel
.r_offset
= plt_address
+ 8;
8269 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8270 rel
.r_addend
= got_offset
;
8271 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8273 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8274 loc
+= sizeof (Elf32_External_Rela
);
8276 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8277 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8280 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8281 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
8282 rel
.r_offset
= got_address
;
8283 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
8285 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8287 if (!h
->def_regular
)
8288 sym
->st_shndx
= SHN_UNDEF
;
8291 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
8293 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8294 BFD_ASSERT (sgot
!= NULL
);
8295 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8296 g
= mips_elf_section_data (sgot
)->u
.got_info
;
8297 BFD_ASSERT (g
!= NULL
);
8299 /* See if this symbol has an entry in the GOT. */
8300 if (g
->global_gotsym
!= NULL
8301 && h
->dynindx
>= g
->global_gotsym
->dynindx
)
8304 Elf_Internal_Rela outrel
;
8308 /* Install the symbol value in the GOT. */
8309 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
8310 R_MIPS_GOT16
, info
);
8311 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
8313 /* Add a dynamic relocation for it. */
8314 s
= mips_elf_rel_dyn_section (info
, FALSE
);
8315 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
8316 outrel
.r_offset
= (sgot
->output_section
->vma
8317 + sgot
->output_offset
8319 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
8320 outrel
.r_addend
= 0;
8321 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
8324 /* Emit a copy reloc, if needed. */
8327 Elf_Internal_Rela rel
;
8329 BFD_ASSERT (h
->dynindx
!= -1);
8331 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
8332 + h
->root
.u
.def
.section
->output_offset
8333 + h
->root
.u
.def
.value
);
8334 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
8336 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
8337 htab
->srelbss
->contents
8338 + (htab
->srelbss
->reloc_count
8339 * sizeof (Elf32_External_Rela
)));
8340 ++htab
->srelbss
->reloc_count
;
8343 /* If this is a mips16 symbol, force the value to be even. */
8344 if (sym
->st_other
== STO_MIPS16
)
8345 sym
->st_value
&= ~1;
8350 /* Install the PLT header for a VxWorks executable and finalize the
8351 contents of .rela.plt.unloaded. */
8354 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
8356 Elf_Internal_Rela rela
;
8358 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
8359 static const bfd_vma
*plt_entry
;
8360 struct mips_elf_link_hash_table
*htab
;
8362 htab
= mips_elf_hash_table (info
);
8363 plt_entry
= mips_vxworks_exec_plt0_entry
;
8365 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8366 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
8367 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
8368 + htab
->root
.hgot
->root
.u
.def
.value
);
8370 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
8371 got_value_low
= got_value
& 0xffff;
8373 /* Calculate the address of the PLT header. */
8374 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
8376 /* Install the PLT header. */
8377 loc
= htab
->splt
->contents
;
8378 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
8379 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
8380 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
8381 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
8382 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
8383 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
8385 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8386 loc
= htab
->srelplt2
->contents
;
8387 rela
.r_offset
= plt_address
;
8388 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8390 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
8391 loc
+= sizeof (Elf32_External_Rela
);
8393 /* Output the relocation for the following addiu of
8394 %lo(_GLOBAL_OFFSET_TABLE_). */
8396 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8397 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
8398 loc
+= sizeof (Elf32_External_Rela
);
8400 /* Fix up the remaining relocations. They may have the wrong
8401 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8402 in which symbols were output. */
8403 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
8405 Elf_Internal_Rela rel
;
8407 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8408 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
8409 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8410 loc
+= sizeof (Elf32_External_Rela
);
8412 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8413 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
8414 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8415 loc
+= sizeof (Elf32_External_Rela
);
8417 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
8418 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
8419 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
8420 loc
+= sizeof (Elf32_External_Rela
);
8424 /* Install the PLT header for a VxWorks shared library. */
8427 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
8430 struct mips_elf_link_hash_table
*htab
;
8432 htab
= mips_elf_hash_table (info
);
8434 /* We just need to copy the entry byte-by-byte. */
8435 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
8436 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
8437 htab
->splt
->contents
+ i
* 4);
8440 /* Finish up the dynamic sections. */
8443 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
8444 struct bfd_link_info
*info
)
8449 struct mips_got_info
*gg
, *g
;
8450 struct mips_elf_link_hash_table
*htab
;
8452 htab
= mips_elf_hash_table (info
);
8453 dynobj
= elf_hash_table (info
)->dynobj
;
8455 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
8457 sgot
= mips_elf_got_section (dynobj
, FALSE
);
8462 BFD_ASSERT (mips_elf_section_data (sgot
) != NULL
);
8463 gg
= mips_elf_section_data (sgot
)->u
.got_info
;
8464 BFD_ASSERT (gg
!= NULL
);
8465 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
8466 BFD_ASSERT (g
!= NULL
);
8469 if (elf_hash_table (info
)->dynamic_sections_created
)
8473 BFD_ASSERT (sdyn
!= NULL
);
8474 BFD_ASSERT (g
!= NULL
);
8476 for (b
= sdyn
->contents
;
8477 b
< sdyn
->contents
+ sdyn
->size
;
8478 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
8480 Elf_Internal_Dyn dyn
;
8484 bfd_boolean swap_out_p
;
8486 /* Read in the current dynamic entry. */
8487 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
8489 /* Assume that we're going to modify it and write it out. */
8495 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
8499 BFD_ASSERT (htab
->is_vxworks
);
8500 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
8504 /* Rewrite DT_STRSZ. */
8506 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
8511 if (htab
->is_vxworks
)
8513 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8514 of the ".got" section in DYNOBJ. */
8515 s
= bfd_get_section_by_name (dynobj
, name
);
8516 BFD_ASSERT (s
!= NULL
);
8517 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
8521 s
= bfd_get_section_by_name (output_bfd
, name
);
8522 BFD_ASSERT (s
!= NULL
);
8523 dyn
.d_un
.d_ptr
= s
->vma
;
8527 case DT_MIPS_RLD_VERSION
:
8528 dyn
.d_un
.d_val
= 1; /* XXX */
8532 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
8535 case DT_MIPS_TIME_STAMP
:
8543 case DT_MIPS_ICHECKSUM
:
8548 case DT_MIPS_IVERSION
:
8553 case DT_MIPS_BASE_ADDRESS
:
8554 s
= output_bfd
->sections
;
8555 BFD_ASSERT (s
!= NULL
);
8556 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
8559 case DT_MIPS_LOCAL_GOTNO
:
8560 dyn
.d_un
.d_val
= g
->local_gotno
;
8563 case DT_MIPS_UNREFEXTNO
:
8564 /* The index into the dynamic symbol table which is the
8565 entry of the first external symbol that is not
8566 referenced within the same object. */
8567 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
8570 case DT_MIPS_GOTSYM
:
8571 if (gg
->global_gotsym
)
8573 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
8576 /* In case if we don't have global got symbols we default
8577 to setting DT_MIPS_GOTSYM to the same value as
8578 DT_MIPS_SYMTABNO, so we just fall through. */
8580 case DT_MIPS_SYMTABNO
:
8582 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
8583 s
= bfd_get_section_by_name (output_bfd
, name
);
8584 BFD_ASSERT (s
!= NULL
);
8586 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
8589 case DT_MIPS_HIPAGENO
:
8590 dyn
.d_un
.d_val
= g
->local_gotno
- MIPS_RESERVED_GOTNO (info
);
8593 case DT_MIPS_RLD_MAP
:
8594 dyn
.d_un
.d_ptr
= mips_elf_hash_table (info
)->rld_value
;
8597 case DT_MIPS_OPTIONS
:
8598 s
= (bfd_get_section_by_name
8599 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
8600 dyn
.d_un
.d_ptr
= s
->vma
;
8604 BFD_ASSERT (htab
->is_vxworks
);
8605 /* The count does not include the JUMP_SLOT relocations. */
8607 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
8611 BFD_ASSERT (htab
->is_vxworks
);
8612 dyn
.d_un
.d_val
= DT_RELA
;
8616 BFD_ASSERT (htab
->is_vxworks
);
8617 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
8621 BFD_ASSERT (htab
->is_vxworks
);
8622 dyn
.d_un
.d_val
= (htab
->srelplt
->output_section
->vma
8623 + htab
->srelplt
->output_offset
);
8632 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
8637 if (sgot
!= NULL
&& sgot
->size
> 0)
8639 if (htab
->is_vxworks
)
8641 /* The first entry of the global offset table points to the
8642 ".dynamic" section. The second is initialized by the
8643 loader and contains the shared library identifier.
8644 The third is also initialized by the loader and points
8645 to the lazy resolution stub. */
8646 MIPS_ELF_PUT_WORD (output_bfd
,
8647 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
8649 MIPS_ELF_PUT_WORD (output_bfd
, 0,
8650 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
8651 MIPS_ELF_PUT_WORD (output_bfd
, 0,
8653 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
8657 /* The first entry of the global offset table will be filled at
8658 runtime. The second entry will be used by some runtime loaders.
8659 This isn't the case of IRIX rld. */
8660 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
8661 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0x80000000,
8662 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
8667 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
8668 = MIPS_ELF_GOT_SIZE (output_bfd
);
8670 /* Generate dynamic relocations for the non-primary gots. */
8671 if (gg
!= NULL
&& gg
->next
)
8673 Elf_Internal_Rela rel
[3];
8676 memset (rel
, 0, sizeof (rel
));
8677 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
8679 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
8681 bfd_vma index
= g
->next
->local_gotno
+ g
->next
->global_gotno
8682 + g
->next
->tls_gotno
;
8684 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
8685 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
8686 MIPS_ELF_PUT_WORD (output_bfd
, 0x80000000, sgot
->contents
8687 + index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
8692 while (index
< g
->assigned_gotno
)
8694 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
8695 = index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
8696 if (!(mips_elf_create_dynamic_relocation
8697 (output_bfd
, info
, rel
, NULL
,
8698 bfd_abs_section_ptr
,
8701 BFD_ASSERT (addend
== 0);
8706 /* The generation of dynamic relocations for the non-primary gots
8707 adds more dynamic relocations. We cannot count them until
8710 if (elf_hash_table (info
)->dynamic_sections_created
)
8713 bfd_boolean swap_out_p
;
8715 BFD_ASSERT (sdyn
!= NULL
);
8717 for (b
= sdyn
->contents
;
8718 b
< sdyn
->contents
+ sdyn
->size
;
8719 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
8721 Elf_Internal_Dyn dyn
;
8724 /* Read in the current dynamic entry. */
8725 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
8727 /* Assume that we're going to modify it and write it out. */
8733 /* Reduce DT_RELSZ to account for any relocations we
8734 decided not to make. This is for the n64 irix rld,
8735 which doesn't seem to apply any relocations if there
8736 are trailing null entries. */
8737 s
= mips_elf_rel_dyn_section (info
, FALSE
);
8738 dyn
.d_un
.d_val
= (s
->reloc_count
8739 * (ABI_64_P (output_bfd
)
8740 ? sizeof (Elf64_Mips_External_Rel
)
8741 : sizeof (Elf32_External_Rel
)));
8750 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
8757 Elf32_compact_rel cpt
;
8759 if (SGI_COMPAT (output_bfd
))
8761 /* Write .compact_rel section out. */
8762 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
8766 cpt
.num
= s
->reloc_count
;
8768 cpt
.offset
= (s
->output_section
->filepos
8769 + sizeof (Elf32_External_compact_rel
));
8772 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
8773 ((Elf32_External_compact_rel
*)
8776 /* Clean up a dummy stub function entry in .text. */
8777 s
= bfd_get_section_by_name (dynobj
,
8778 MIPS_ELF_STUB_SECTION_NAME (dynobj
));
8781 file_ptr dummy_offset
;
8783 BFD_ASSERT (s
->size
>= MIPS_FUNCTION_STUB_SIZE
);
8784 dummy_offset
= s
->size
- MIPS_FUNCTION_STUB_SIZE
;
8785 memset (s
->contents
+ dummy_offset
, 0,
8786 MIPS_FUNCTION_STUB_SIZE
);
8791 /* The psABI says that the dynamic relocations must be sorted in
8792 increasing order of r_symndx. The VxWorks EABI doesn't require
8793 this, and because the code below handles REL rather than RELA
8794 relocations, using it for VxWorks would be outright harmful. */
8795 if (!htab
->is_vxworks
)
8797 s
= mips_elf_rel_dyn_section (info
, FALSE
);
8799 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
8801 reldyn_sorting_bfd
= output_bfd
;
8803 if (ABI_64_P (output_bfd
))
8804 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
8805 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
8806 sort_dynamic_relocs_64
);
8808 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
8809 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
8810 sort_dynamic_relocs
);
8815 if (htab
->is_vxworks
&& htab
->splt
->size
> 0)
8818 mips_vxworks_finish_shared_plt (output_bfd
, info
);
8820 mips_vxworks_finish_exec_plt (output_bfd
, info
);
8826 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8829 mips_set_isa_flags (bfd
*abfd
)
8833 switch (bfd_get_mach (abfd
))
8836 case bfd_mach_mips3000
:
8837 val
= E_MIPS_ARCH_1
;
8840 case bfd_mach_mips3900
:
8841 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
8844 case bfd_mach_mips6000
:
8845 val
= E_MIPS_ARCH_2
;
8848 case bfd_mach_mips4000
:
8849 case bfd_mach_mips4300
:
8850 case bfd_mach_mips4400
:
8851 case bfd_mach_mips4600
:
8852 val
= E_MIPS_ARCH_3
;
8855 case bfd_mach_mips4010
:
8856 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
8859 case bfd_mach_mips4100
:
8860 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
8863 case bfd_mach_mips4111
:
8864 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
8867 case bfd_mach_mips4120
:
8868 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
8871 case bfd_mach_mips4650
:
8872 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
8875 case bfd_mach_mips5400
:
8876 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
8879 case bfd_mach_mips5500
:
8880 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
8883 case bfd_mach_mips9000
:
8884 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
8887 case bfd_mach_mips5000
:
8888 case bfd_mach_mips7000
:
8889 case bfd_mach_mips8000
:
8890 case bfd_mach_mips10000
:
8891 case bfd_mach_mips12000
:
8892 val
= E_MIPS_ARCH_4
;
8895 case bfd_mach_mips5
:
8896 val
= E_MIPS_ARCH_5
;
8899 case bfd_mach_mips_sb1
:
8900 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
8903 case bfd_mach_mipsisa32
:
8904 val
= E_MIPS_ARCH_32
;
8907 case bfd_mach_mipsisa64
:
8908 val
= E_MIPS_ARCH_64
;
8911 case bfd_mach_mipsisa32r2
:
8912 val
= E_MIPS_ARCH_32R2
;
8915 case bfd_mach_mipsisa64r2
:
8916 val
= E_MIPS_ARCH_64R2
;
8919 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
8920 elf_elfheader (abfd
)->e_flags
|= val
;
8925 /* The final processing done just before writing out a MIPS ELF object
8926 file. This gets the MIPS architecture right based on the machine
8927 number. This is used by both the 32-bit and the 64-bit ABI. */
8930 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
8931 bfd_boolean linker ATTRIBUTE_UNUSED
)
8934 Elf_Internal_Shdr
**hdrpp
;
8938 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
8939 is nonzero. This is for compatibility with old objects, which used
8940 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8941 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
8942 mips_set_isa_flags (abfd
);
8944 /* Set the sh_info field for .gptab sections and other appropriate
8945 info for each special section. */
8946 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
8947 i
< elf_numsections (abfd
);
8950 switch ((*hdrpp
)->sh_type
)
8953 case SHT_MIPS_LIBLIST
:
8954 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
8956 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8959 case SHT_MIPS_GPTAB
:
8960 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8961 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8962 BFD_ASSERT (name
!= NULL
8963 && strncmp (name
, ".gptab.", sizeof ".gptab." - 1) == 0);
8964 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
8965 BFD_ASSERT (sec
!= NULL
);
8966 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
8969 case SHT_MIPS_CONTENT
:
8970 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8971 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8972 BFD_ASSERT (name
!= NULL
8973 && strncmp (name
, ".MIPS.content",
8974 sizeof ".MIPS.content" - 1) == 0);
8975 sec
= bfd_get_section_by_name (abfd
,
8976 name
+ sizeof ".MIPS.content" - 1);
8977 BFD_ASSERT (sec
!= NULL
);
8978 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8981 case SHT_MIPS_SYMBOL_LIB
:
8982 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
8984 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
8985 sec
= bfd_get_section_by_name (abfd
, ".liblist");
8987 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
8990 case SHT_MIPS_EVENTS
:
8991 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
8992 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
8993 BFD_ASSERT (name
!= NULL
);
8994 if (strncmp (name
, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8995 sec
= bfd_get_section_by_name (abfd
,
8996 name
+ sizeof ".MIPS.events" - 1);
8999 BFD_ASSERT (strncmp (name
, ".MIPS.post_rel",
9000 sizeof ".MIPS.post_rel" - 1) == 0);
9001 sec
= bfd_get_section_by_name (abfd
,
9003 + sizeof ".MIPS.post_rel" - 1));
9005 BFD_ASSERT (sec
!= NULL
);
9006 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
9013 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9017 _bfd_mips_elf_additional_program_headers (bfd
*abfd
)
9022 /* See if we need a PT_MIPS_REGINFO segment. */
9023 s
= bfd_get_section_by_name (abfd
, ".reginfo");
9024 if (s
&& (s
->flags
& SEC_LOAD
))
9027 /* See if we need a PT_MIPS_OPTIONS segment. */
9028 if (IRIX_COMPAT (abfd
) == ict_irix6
9029 && bfd_get_section_by_name (abfd
,
9030 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
9033 /* See if we need a PT_MIPS_RTPROC segment. */
9034 if (IRIX_COMPAT (abfd
) == ict_irix5
9035 && bfd_get_section_by_name (abfd
, ".dynamic")
9036 && bfd_get_section_by_name (abfd
, ".mdebug"))
9042 /* Modify the segment map for an IRIX5 executable. */
9045 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
9046 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
9049 struct elf_segment_map
*m
, **pm
;
9052 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9054 s
= bfd_get_section_by_name (abfd
, ".reginfo");
9055 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
9057 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
9058 if (m
->p_type
== PT_MIPS_REGINFO
)
9063 m
= bfd_zalloc (abfd
, amt
);
9067 m
->p_type
= PT_MIPS_REGINFO
;
9071 /* We want to put it after the PHDR and INTERP segments. */
9072 pm
= &elf_tdata (abfd
)->segment_map
;
9074 && ((*pm
)->p_type
== PT_PHDR
9075 || (*pm
)->p_type
== PT_INTERP
))
9083 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9084 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9085 PT_MIPS_OPTIONS segment immediately following the program header
9088 /* On non-IRIX6 new abi, we'll have already created a segment
9089 for this section, so don't create another. I'm not sure this
9090 is not also the case for IRIX 6, but I can't test it right
9092 && IRIX_COMPAT (abfd
) == ict_irix6
)
9094 for (s
= abfd
->sections
; s
; s
= s
->next
)
9095 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
9100 struct elf_segment_map
*options_segment
;
9102 pm
= &elf_tdata (abfd
)->segment_map
;
9104 && ((*pm
)->p_type
== PT_PHDR
9105 || (*pm
)->p_type
== PT_INTERP
))
9108 amt
= sizeof (struct elf_segment_map
);
9109 options_segment
= bfd_zalloc (abfd
, amt
);
9110 options_segment
->next
= *pm
;
9111 options_segment
->p_type
= PT_MIPS_OPTIONS
;
9112 options_segment
->p_flags
= PF_R
;
9113 options_segment
->p_flags_valid
= TRUE
;
9114 options_segment
->count
= 1;
9115 options_segment
->sections
[0] = s
;
9116 *pm
= options_segment
;
9121 if (IRIX_COMPAT (abfd
) == ict_irix5
)
9123 /* If there are .dynamic and .mdebug sections, we make a room
9124 for the RTPROC header. FIXME: Rewrite without section names. */
9125 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
9126 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
9127 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
9129 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
9130 if (m
->p_type
== PT_MIPS_RTPROC
)
9135 m
= bfd_zalloc (abfd
, amt
);
9139 m
->p_type
= PT_MIPS_RTPROC
;
9141 s
= bfd_get_section_by_name (abfd
, ".rtproc");
9146 m
->p_flags_valid
= 1;
9154 /* We want to put it after the DYNAMIC segment. */
9155 pm
= &elf_tdata (abfd
)->segment_map
;
9156 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
9166 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9167 .dynstr, .dynsym, and .hash sections, and everything in
9169 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
9171 if ((*pm
)->p_type
== PT_DYNAMIC
)
9174 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
9176 /* For a normal mips executable the permissions for the PT_DYNAMIC
9177 segment are read, write and execute. We do that here since
9178 the code in elf.c sets only the read permission. This matters
9179 sometimes for the dynamic linker. */
9180 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
9182 m
->p_flags
= PF_R
| PF_W
| PF_X
;
9183 m
->p_flags_valid
= 1;
9187 && m
->count
== 1 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
9189 static const char *sec_names
[] =
9191 ".dynamic", ".dynstr", ".dynsym", ".hash"
9195 struct elf_segment_map
*n
;
9199 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
9201 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
9202 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
9209 if (high
< s
->vma
+ sz
)
9215 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
9216 if ((s
->flags
& SEC_LOAD
) != 0
9218 && s
->vma
+ s
->size
<= high
)
9221 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
9222 n
= bfd_zalloc (abfd
, amt
);
9229 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
9231 if ((s
->flags
& SEC_LOAD
) != 0
9233 && s
->vma
+ s
->size
<= high
)
9247 /* Return the section that should be marked against GC for a given
9251 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
9252 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
9253 Elf_Internal_Rela
*rel
,
9254 struct elf_link_hash_entry
*h
,
9255 Elf_Internal_Sym
*sym
)
9257 /* ??? Do mips16 stub sections need to be handled special? */
9261 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
9263 case R_MIPS_GNU_VTINHERIT
:
9264 case R_MIPS_GNU_VTENTRY
:
9268 switch (h
->root
.type
)
9270 case bfd_link_hash_defined
:
9271 case bfd_link_hash_defweak
:
9272 return h
->root
.u
.def
.section
;
9274 case bfd_link_hash_common
:
9275 return h
->root
.u
.c
.p
->section
;
9283 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
9288 /* Update the got entry reference counts for the section being removed. */
9291 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
9292 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
9293 asection
*sec ATTRIBUTE_UNUSED
,
9294 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
9297 Elf_Internal_Shdr
*symtab_hdr
;
9298 struct elf_link_hash_entry
**sym_hashes
;
9299 bfd_signed_vma
*local_got_refcounts
;
9300 const Elf_Internal_Rela
*rel
, *relend
;
9301 unsigned long r_symndx
;
9302 struct elf_link_hash_entry
*h
;
9304 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
9305 sym_hashes
= elf_sym_hashes (abfd
);
9306 local_got_refcounts
= elf_local_got_refcounts (abfd
);
9308 relend
= relocs
+ sec
->reloc_count
;
9309 for (rel
= relocs
; rel
< relend
; rel
++)
9310 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
9314 case R_MIPS_CALL_HI16
:
9315 case R_MIPS_CALL_LO16
:
9316 case R_MIPS_GOT_HI16
:
9317 case R_MIPS_GOT_LO16
:
9318 case R_MIPS_GOT_DISP
:
9319 case R_MIPS_GOT_PAGE
:
9320 case R_MIPS_GOT_OFST
:
9321 /* ??? It would seem that the existing MIPS code does no sort
9322 of reference counting or whatnot on its GOT and PLT entries,
9323 so it is not possible to garbage collect them at this time. */
9334 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9335 hiding the old indirect symbol. Process additional relocation
9336 information. Also called for weakdefs, in which case we just let
9337 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9340 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
9341 struct elf_link_hash_entry
*dir
,
9342 struct elf_link_hash_entry
*ind
)
9344 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
9346 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
9348 if (ind
->root
.type
!= bfd_link_hash_indirect
)
9351 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
9352 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
9353 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
9354 if (indmips
->readonly_reloc
)
9355 dirmips
->readonly_reloc
= TRUE
;
9356 if (indmips
->no_fn_stub
)
9357 dirmips
->no_fn_stub
= TRUE
;
9359 if (dirmips
->tls_type
== 0)
9360 dirmips
->tls_type
= indmips
->tls_type
;
9364 _bfd_mips_elf_hide_symbol (struct bfd_link_info
*info
,
9365 struct elf_link_hash_entry
*entry
,
9366 bfd_boolean force_local
)
9370 struct mips_got_info
*g
;
9371 struct mips_elf_link_hash_entry
*h
;
9373 h
= (struct mips_elf_link_hash_entry
*) entry
;
9374 if (h
->forced_local
)
9376 h
->forced_local
= force_local
;
9378 dynobj
= elf_hash_table (info
)->dynobj
;
9379 if (dynobj
!= NULL
&& force_local
&& h
->root
.type
!= STT_TLS
9380 && (got
= mips_elf_got_section (dynobj
, FALSE
)) != NULL
9381 && (g
= mips_elf_section_data (got
)->u
.got_info
) != NULL
)
9385 struct mips_got_entry e
;
9386 struct mips_got_info
*gg
= g
;
9388 /* Since we're turning what used to be a global symbol into a
9389 local one, bump up the number of local entries of each GOT
9390 that had an entry for it. This will automatically decrease
9391 the number of global entries, since global_gotno is actually
9392 the upper limit of global entries. */
9398 for (g
= g
->next
; g
!= gg
; g
= g
->next
)
9399 if (htab_find (g
->got_entries
, &e
))
9401 BFD_ASSERT (g
->global_gotno
> 0);
9406 /* If this was a global symbol forced into the primary GOT, we
9407 no longer need an entry for it. We can't release the entry
9408 at this point, but we must at least stop counting it as one
9409 of the symbols that required a forced got entry. */
9410 if (h
->root
.got
.offset
== 2)
9412 BFD_ASSERT (gg
->assigned_gotno
> 0);
9413 gg
->assigned_gotno
--;
9416 else if (g
->global_gotno
== 0 && g
->global_gotsym
== NULL
)
9417 /* If we haven't got through GOT allocation yet, just bump up the
9418 number of local entries, as this symbol won't be counted as
9421 else if (h
->root
.got
.offset
== 1)
9423 /* If we're past non-multi-GOT allocation and this symbol had
9424 been marked for a global got entry, give it a local entry
9426 BFD_ASSERT (g
->global_gotno
> 0);
9432 _bfd_elf_link_hash_hide_symbol (info
, &h
->root
, force_local
);
9438 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
9439 struct bfd_link_info
*info
)
9442 bfd_boolean ret
= FALSE
;
9443 unsigned char *tdata
;
9446 o
= bfd_get_section_by_name (abfd
, ".pdr");
9451 if (o
->size
% PDR_SIZE
!= 0)
9453 if (o
->output_section
!= NULL
9454 && bfd_is_abs_section (o
->output_section
))
9457 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
9461 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
9469 cookie
->rel
= cookie
->rels
;
9470 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
9472 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
9474 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
9483 mips_elf_section_data (o
)->u
.tdata
= tdata
;
9484 o
->size
-= skip
* PDR_SIZE
;
9490 if (! info
->keep_memory
)
9491 free (cookie
->rels
);
9497 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
9499 if (strcmp (sec
->name
, ".pdr") == 0)
9505 _bfd_mips_elf_write_section (bfd
*output_bfd
, asection
*sec
,
9508 bfd_byte
*to
, *from
, *end
;
9511 if (strcmp (sec
->name
, ".pdr") != 0)
9514 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
9518 end
= contents
+ sec
->size
;
9519 for (from
= contents
, i
= 0;
9521 from
+= PDR_SIZE
, i
++)
9523 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
9526 memcpy (to
, from
, PDR_SIZE
);
9529 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
9530 sec
->output_offset
, sec
->size
);
9534 /* MIPS ELF uses a special find_nearest_line routine in order the
9535 handle the ECOFF debugging information. */
9537 struct mips_elf_find_line
9539 struct ecoff_debug_info d
;
9540 struct ecoff_find_line i
;
9544 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
9545 asymbol
**symbols
, bfd_vma offset
,
9546 const char **filename_ptr
,
9547 const char **functionname_ptr
,
9548 unsigned int *line_ptr
)
9552 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
9553 filename_ptr
, functionname_ptr
,
9557 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
9558 filename_ptr
, functionname_ptr
,
9559 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
9560 &elf_tdata (abfd
)->dwarf2_find_line_info
))
9563 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
9567 struct mips_elf_find_line
*fi
;
9568 const struct ecoff_debug_swap
* const swap
=
9569 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
9571 /* If we are called during a link, mips_elf_final_link may have
9572 cleared the SEC_HAS_CONTENTS field. We force it back on here
9573 if appropriate (which it normally will be). */
9574 origflags
= msec
->flags
;
9575 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
9576 msec
->flags
|= SEC_HAS_CONTENTS
;
9578 fi
= elf_tdata (abfd
)->find_line_info
;
9581 bfd_size_type external_fdr_size
;
9584 struct fdr
*fdr_ptr
;
9585 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
9587 fi
= bfd_zalloc (abfd
, amt
);
9590 msec
->flags
= origflags
;
9594 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
9596 msec
->flags
= origflags
;
9600 /* Swap in the FDR information. */
9601 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
9602 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
9603 if (fi
->d
.fdr
== NULL
)
9605 msec
->flags
= origflags
;
9608 external_fdr_size
= swap
->external_fdr_size
;
9609 fdr_ptr
= fi
->d
.fdr
;
9610 fraw_src
= (char *) fi
->d
.external_fdr
;
9611 fraw_end
= (fraw_src
9612 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
9613 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
9614 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
9616 elf_tdata (abfd
)->find_line_info
= fi
;
9618 /* Note that we don't bother to ever free this information.
9619 find_nearest_line is either called all the time, as in
9620 objdump -l, so the information should be saved, or it is
9621 rarely called, as in ld error messages, so the memory
9622 wasted is unimportant. Still, it would probably be a
9623 good idea for free_cached_info to throw it away. */
9626 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
9627 &fi
->i
, filename_ptr
, functionname_ptr
,
9630 msec
->flags
= origflags
;
9634 msec
->flags
= origflags
;
9637 /* Fall back on the generic ELF find_nearest_line routine. */
9639 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
9640 filename_ptr
, functionname_ptr
,
9645 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
9646 const char **filename_ptr
,
9647 const char **functionname_ptr
,
9648 unsigned int *line_ptr
)
9651 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
9652 functionname_ptr
, line_ptr
,
9653 & elf_tdata (abfd
)->dwarf2_find_line_info
);
9658 /* When are writing out the .options or .MIPS.options section,
9659 remember the bytes we are writing out, so that we can install the
9660 GP value in the section_processing routine. */
9663 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
9664 const void *location
,
9665 file_ptr offset
, bfd_size_type count
)
9667 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
9671 if (elf_section_data (section
) == NULL
)
9673 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
9674 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
9675 if (elf_section_data (section
) == NULL
)
9678 c
= mips_elf_section_data (section
)->u
.tdata
;
9681 c
= bfd_zalloc (abfd
, section
->size
);
9684 mips_elf_section_data (section
)->u
.tdata
= c
;
9687 memcpy (c
+ offset
, location
, count
);
9690 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
9694 /* This is almost identical to bfd_generic_get_... except that some
9695 MIPS relocations need to be handled specially. Sigh. */
9698 _bfd_elf_mips_get_relocated_section_contents
9700 struct bfd_link_info
*link_info
,
9701 struct bfd_link_order
*link_order
,
9703 bfd_boolean relocatable
,
9706 /* Get enough memory to hold the stuff */
9707 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
9708 asection
*input_section
= link_order
->u
.indirect
.section
;
9711 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
9712 arelent
**reloc_vector
= NULL
;
9718 reloc_vector
= bfd_malloc (reloc_size
);
9719 if (reloc_vector
== NULL
&& reloc_size
!= 0)
9722 /* read in the section */
9723 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
9724 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
9727 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
9731 if (reloc_count
< 0)
9734 if (reloc_count
> 0)
9739 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
9742 struct bfd_hash_entry
*h
;
9743 struct bfd_link_hash_entry
*lh
;
9744 /* Skip all this stuff if we aren't mixing formats. */
9745 if (abfd
&& input_bfd
9746 && abfd
->xvec
== input_bfd
->xvec
)
9750 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
9751 lh
= (struct bfd_link_hash_entry
*) h
;
9758 case bfd_link_hash_undefined
:
9759 case bfd_link_hash_undefweak
:
9760 case bfd_link_hash_common
:
9763 case bfd_link_hash_defined
:
9764 case bfd_link_hash_defweak
:
9766 gp
= lh
->u
.def
.value
;
9768 case bfd_link_hash_indirect
:
9769 case bfd_link_hash_warning
:
9771 /* @@FIXME ignoring warning for now */
9773 case bfd_link_hash_new
:
9782 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
9784 char *error_message
= NULL
;
9785 bfd_reloc_status_type r
;
9787 /* Specific to MIPS: Deal with relocation types that require
9788 knowing the gp of the output bfd. */
9789 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
9791 /* If we've managed to find the gp and have a special
9792 function for the relocation then go ahead, else default
9793 to the generic handling. */
9795 && (*parent
)->howto
->special_function
9796 == _bfd_mips_elf32_gprel16_reloc
)
9797 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
9798 input_section
, relocatable
,
9801 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
9803 relocatable
? abfd
: NULL
,
9808 asection
*os
= input_section
->output_section
;
9810 /* A partial link, so keep the relocs */
9811 os
->orelocation
[os
->reloc_count
] = *parent
;
9815 if (r
!= bfd_reloc_ok
)
9819 case bfd_reloc_undefined
:
9820 if (!((*link_info
->callbacks
->undefined_symbol
)
9821 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
9822 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
9825 case bfd_reloc_dangerous
:
9826 BFD_ASSERT (error_message
!= NULL
);
9827 if (!((*link_info
->callbacks
->reloc_dangerous
)
9828 (link_info
, error_message
, input_bfd
, input_section
,
9829 (*parent
)->address
)))
9832 case bfd_reloc_overflow
:
9833 if (!((*link_info
->callbacks
->reloc_overflow
)
9835 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
9836 (*parent
)->howto
->name
, (*parent
)->addend
,
9837 input_bfd
, input_section
, (*parent
)->address
)))
9840 case bfd_reloc_outofrange
:
9849 if (reloc_vector
!= NULL
)
9850 free (reloc_vector
);
9854 if (reloc_vector
!= NULL
)
9855 free (reloc_vector
);
9859 /* Create a MIPS ELF linker hash table. */
9861 struct bfd_link_hash_table
*
9862 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
9864 struct mips_elf_link_hash_table
*ret
;
9865 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
9867 ret
= bfd_malloc (amt
);
9871 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
9872 mips_elf_link_hash_newfunc
,
9873 sizeof (struct mips_elf_link_hash_entry
)))
9880 /* We no longer use this. */
9881 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
9882 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
9884 ret
->procedure_count
= 0;
9885 ret
->compact_rel_size
= 0;
9886 ret
->use_rld_obj_head
= FALSE
;
9888 ret
->mips16_stubs_seen
= FALSE
;
9889 ret
->is_vxworks
= FALSE
;
9890 ret
->srelbss
= NULL
;
9891 ret
->sdynbss
= NULL
;
9892 ret
->srelplt
= NULL
;
9893 ret
->srelplt2
= NULL
;
9894 ret
->sgotplt
= NULL
;
9896 ret
->plt_header_size
= 0;
9897 ret
->plt_entry_size
= 0;
9899 return &ret
->root
.root
;
9902 /* Likewise, but indicate that the target is VxWorks. */
9904 struct bfd_link_hash_table
*
9905 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
9907 struct bfd_link_hash_table
*ret
;
9909 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
9912 struct mips_elf_link_hash_table
*htab
;
9914 htab
= (struct mips_elf_link_hash_table
*) ret
;
9915 htab
->is_vxworks
= 1;
9920 /* We need to use a special link routine to handle the .reginfo and
9921 the .mdebug sections. We need to merge all instances of these
9922 sections together, not write them all out sequentially. */
9925 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
9928 struct bfd_link_order
*p
;
9929 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
9930 asection
*rtproc_sec
;
9931 Elf32_RegInfo reginfo
;
9932 struct ecoff_debug_info debug
;
9933 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9934 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
9935 HDRR
*symhdr
= &debug
.symbolic_header
;
9936 void *mdebug_handle
= NULL
;
9941 struct mips_elf_link_hash_table
*htab
;
9943 static const char * const secname
[] =
9945 ".text", ".init", ".fini", ".data",
9946 ".rodata", ".sdata", ".sbss", ".bss"
9948 static const int sc
[] =
9950 scText
, scInit
, scFini
, scData
,
9951 scRData
, scSData
, scSBss
, scBss
9954 /* We'd carefully arranged the dynamic symbol indices, and then the
9955 generic size_dynamic_sections renumbered them out from under us.
9956 Rather than trying somehow to prevent the renumbering, just do
9958 htab
= mips_elf_hash_table (info
);
9959 if (elf_hash_table (info
)->dynamic_sections_created
)
9963 struct mips_got_info
*g
;
9964 bfd_size_type dynsecsymcount
;
9966 /* When we resort, we must tell mips_elf_sort_hash_table what
9967 the lowest index it may use is. That's the number of section
9968 symbols we're going to add. The generic ELF linker only
9969 adds these symbols when building a shared object. Note that
9970 we count the sections after (possibly) removing the .options
9978 for (p
= abfd
->sections
; p
; p
= p
->next
)
9979 if ((p
->flags
& SEC_EXCLUDE
) == 0
9980 && (p
->flags
& SEC_ALLOC
) != 0
9981 && !(*bed
->elf_backend_omit_section_dynsym
) (abfd
, info
, p
))
9985 if (! mips_elf_sort_hash_table (info
, dynsecsymcount
+ 1))
9988 /* Make sure we didn't grow the global .got region. */
9989 dynobj
= elf_hash_table (info
)->dynobj
;
9990 got
= mips_elf_got_section (dynobj
, FALSE
);
9991 g
= mips_elf_section_data (got
)->u
.got_info
;
9993 if (g
->global_gotsym
!= NULL
)
9994 BFD_ASSERT ((elf_hash_table (info
)->dynsymcount
9995 - g
->global_gotsym
->dynindx
)
9996 <= g
->global_gotno
);
9999 /* Get a value for the GP register. */
10000 if (elf_gp (abfd
) == 0)
10002 struct bfd_link_hash_entry
*h
;
10004 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
10005 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
10006 elf_gp (abfd
) = (h
->u
.def
.value
10007 + h
->u
.def
.section
->output_section
->vma
10008 + h
->u
.def
.section
->output_offset
);
10009 else if (htab
->is_vxworks
10010 && (h
= bfd_link_hash_lookup (info
->hash
,
10011 "_GLOBAL_OFFSET_TABLE_",
10012 FALSE
, FALSE
, TRUE
))
10013 && h
->type
== bfd_link_hash_defined
)
10014 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
10015 + h
->u
.def
.section
->output_offset
10017 else if (info
->relocatable
)
10019 bfd_vma lo
= MINUS_ONE
;
10021 /* Find the GP-relative section with the lowest offset. */
10022 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10024 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
10027 /* And calculate GP relative to that. */
10028 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
10032 /* If the relocate_section function needs to do a reloc
10033 involving the GP value, it should make a reloc_dangerous
10034 callback to warn that GP is not defined. */
10038 /* Go through the sections and collect the .reginfo and .mdebug
10040 reginfo_sec
= NULL
;
10042 gptab_data_sec
= NULL
;
10043 gptab_bss_sec
= NULL
;
10044 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10046 if (strcmp (o
->name
, ".reginfo") == 0)
10048 memset (®info
, 0, sizeof reginfo
);
10050 /* We have found the .reginfo section in the output file.
10051 Look through all the link_orders comprising it and merge
10052 the information together. */
10053 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10055 asection
*input_section
;
10057 Elf32_External_RegInfo ext
;
10060 if (p
->type
!= bfd_indirect_link_order
)
10062 if (p
->type
== bfd_data_link_order
)
10067 input_section
= p
->u
.indirect
.section
;
10068 input_bfd
= input_section
->owner
;
10070 if (! bfd_get_section_contents (input_bfd
, input_section
,
10071 &ext
, 0, sizeof ext
))
10074 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
10076 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
10077 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
10078 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
10079 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
10080 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
10082 /* ri_gp_value is set by the function
10083 mips_elf32_section_processing when the section is
10084 finally written out. */
10086 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10087 elf_link_input_bfd ignores this section. */
10088 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10091 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10092 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
10094 /* Skip this section later on (I don't think this currently
10095 matters, but someday it might). */
10096 o
->map_head
.link_order
= NULL
;
10101 if (strcmp (o
->name
, ".mdebug") == 0)
10103 struct extsym_info einfo
;
10106 /* We have found the .mdebug section in the output file.
10107 Look through all the link_orders comprising it and merge
10108 the information together. */
10109 symhdr
->magic
= swap
->sym_magic
;
10110 /* FIXME: What should the version stamp be? */
10111 symhdr
->vstamp
= 0;
10112 symhdr
->ilineMax
= 0;
10113 symhdr
->cbLine
= 0;
10114 symhdr
->idnMax
= 0;
10115 symhdr
->ipdMax
= 0;
10116 symhdr
->isymMax
= 0;
10117 symhdr
->ioptMax
= 0;
10118 symhdr
->iauxMax
= 0;
10119 symhdr
->issMax
= 0;
10120 symhdr
->issExtMax
= 0;
10121 symhdr
->ifdMax
= 0;
10123 symhdr
->iextMax
= 0;
10125 /* We accumulate the debugging information itself in the
10126 debug_info structure. */
10128 debug
.external_dnr
= NULL
;
10129 debug
.external_pdr
= NULL
;
10130 debug
.external_sym
= NULL
;
10131 debug
.external_opt
= NULL
;
10132 debug
.external_aux
= NULL
;
10134 debug
.ssext
= debug
.ssext_end
= NULL
;
10135 debug
.external_fdr
= NULL
;
10136 debug
.external_rfd
= NULL
;
10137 debug
.external_ext
= debug
.external_ext_end
= NULL
;
10139 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
10140 if (mdebug_handle
== NULL
)
10144 esym
.cobol_main
= 0;
10148 esym
.asym
.iss
= issNil
;
10149 esym
.asym
.st
= stLocal
;
10150 esym
.asym
.reserved
= 0;
10151 esym
.asym
.index
= indexNil
;
10153 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
10155 esym
.asym
.sc
= sc
[i
];
10156 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
10159 esym
.asym
.value
= s
->vma
;
10160 last
= s
->vma
+ s
->size
;
10163 esym
.asym
.value
= last
;
10164 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
10165 secname
[i
], &esym
))
10169 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10171 asection
*input_section
;
10173 const struct ecoff_debug_swap
*input_swap
;
10174 struct ecoff_debug_info input_debug
;
10178 if (p
->type
!= bfd_indirect_link_order
)
10180 if (p
->type
== bfd_data_link_order
)
10185 input_section
= p
->u
.indirect
.section
;
10186 input_bfd
= input_section
->owner
;
10188 if (bfd_get_flavour (input_bfd
) != bfd_target_elf_flavour
10189 || (get_elf_backend_data (input_bfd
)
10190 ->elf_backend_ecoff_debug_swap
) == NULL
)
10192 /* I don't know what a non MIPS ELF bfd would be
10193 doing with a .mdebug section, but I don't really
10194 want to deal with it. */
10198 input_swap
= (get_elf_backend_data (input_bfd
)
10199 ->elf_backend_ecoff_debug_swap
);
10201 BFD_ASSERT (p
->size
== input_section
->size
);
10203 /* The ECOFF linking code expects that we have already
10204 read in the debugging information and set up an
10205 ecoff_debug_info structure, so we do that now. */
10206 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
10210 if (! (bfd_ecoff_debug_accumulate
10211 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
10212 &input_debug
, input_swap
, info
)))
10215 /* Loop through the external symbols. For each one with
10216 interesting information, try to find the symbol in
10217 the linker global hash table and save the information
10218 for the output external symbols. */
10219 eraw_src
= input_debug
.external_ext
;
10220 eraw_end
= (eraw_src
10221 + (input_debug
.symbolic_header
.iextMax
10222 * input_swap
->external_ext_size
));
10224 eraw_src
< eraw_end
;
10225 eraw_src
+= input_swap
->external_ext_size
)
10229 struct mips_elf_link_hash_entry
*h
;
10231 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
10232 if (ext
.asym
.sc
== scNil
10233 || ext
.asym
.sc
== scUndefined
10234 || ext
.asym
.sc
== scSUndefined
)
10237 name
= input_debug
.ssext
+ ext
.asym
.iss
;
10238 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
10239 name
, FALSE
, FALSE
, TRUE
);
10240 if (h
== NULL
|| h
->esym
.ifd
!= -2)
10245 BFD_ASSERT (ext
.ifd
10246 < input_debug
.symbolic_header
.ifdMax
);
10247 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
10253 /* Free up the information we just read. */
10254 free (input_debug
.line
);
10255 free (input_debug
.external_dnr
);
10256 free (input_debug
.external_pdr
);
10257 free (input_debug
.external_sym
);
10258 free (input_debug
.external_opt
);
10259 free (input_debug
.external_aux
);
10260 free (input_debug
.ss
);
10261 free (input_debug
.ssext
);
10262 free (input_debug
.external_fdr
);
10263 free (input_debug
.external_rfd
);
10264 free (input_debug
.external_ext
);
10266 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10267 elf_link_input_bfd ignores this section. */
10268 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10271 if (SGI_COMPAT (abfd
) && info
->shared
)
10273 /* Create .rtproc section. */
10274 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
10275 if (rtproc_sec
== NULL
)
10277 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
10278 | SEC_LINKER_CREATED
| SEC_READONLY
);
10280 rtproc_sec
= bfd_make_section_with_flags (abfd
,
10283 if (rtproc_sec
== NULL
10284 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
10288 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
10294 /* Build the external symbol information. */
10297 einfo
.debug
= &debug
;
10299 einfo
.failed
= FALSE
;
10300 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
10301 mips_elf_output_extsym
, &einfo
);
10305 /* Set the size of the .mdebug section. */
10306 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
10308 /* Skip this section later on (I don't think this currently
10309 matters, but someday it might). */
10310 o
->map_head
.link_order
= NULL
;
10315 if (strncmp (o
->name
, ".gptab.", sizeof ".gptab." - 1) == 0)
10317 const char *subname
;
10320 Elf32_External_gptab
*ext_tab
;
10323 /* The .gptab.sdata and .gptab.sbss sections hold
10324 information describing how the small data area would
10325 change depending upon the -G switch. These sections
10326 not used in executables files. */
10327 if (! info
->relocatable
)
10329 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10331 asection
*input_section
;
10333 if (p
->type
!= bfd_indirect_link_order
)
10335 if (p
->type
== bfd_data_link_order
)
10340 input_section
= p
->u
.indirect
.section
;
10342 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10343 elf_link_input_bfd ignores this section. */
10344 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10347 /* Skip this section later on (I don't think this
10348 currently matters, but someday it might). */
10349 o
->map_head
.link_order
= NULL
;
10351 /* Really remove the section. */
10352 bfd_section_list_remove (abfd
, o
);
10353 --abfd
->section_count
;
10358 /* There is one gptab for initialized data, and one for
10359 uninitialized data. */
10360 if (strcmp (o
->name
, ".gptab.sdata") == 0)
10361 gptab_data_sec
= o
;
10362 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
10366 (*_bfd_error_handler
)
10367 (_("%s: illegal section name `%s'"),
10368 bfd_get_filename (abfd
), o
->name
);
10369 bfd_set_error (bfd_error_nonrepresentable_section
);
10373 /* The linker script always combines .gptab.data and
10374 .gptab.sdata into .gptab.sdata, and likewise for
10375 .gptab.bss and .gptab.sbss. It is possible that there is
10376 no .sdata or .sbss section in the output file, in which
10377 case we must change the name of the output section. */
10378 subname
= o
->name
+ sizeof ".gptab" - 1;
10379 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
10381 if (o
== gptab_data_sec
)
10382 o
->name
= ".gptab.data";
10384 o
->name
= ".gptab.bss";
10385 subname
= o
->name
+ sizeof ".gptab" - 1;
10386 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
10389 /* Set up the first entry. */
10391 amt
= c
* sizeof (Elf32_gptab
);
10392 tab
= bfd_malloc (amt
);
10395 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
10396 tab
[0].gt_header
.gt_unused
= 0;
10398 /* Combine the input sections. */
10399 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10401 asection
*input_section
;
10403 bfd_size_type size
;
10404 unsigned long last
;
10405 bfd_size_type gpentry
;
10407 if (p
->type
!= bfd_indirect_link_order
)
10409 if (p
->type
== bfd_data_link_order
)
10414 input_section
= p
->u
.indirect
.section
;
10415 input_bfd
= input_section
->owner
;
10417 /* Combine the gptab entries for this input section one
10418 by one. We know that the input gptab entries are
10419 sorted by ascending -G value. */
10420 size
= input_section
->size
;
10422 for (gpentry
= sizeof (Elf32_External_gptab
);
10424 gpentry
+= sizeof (Elf32_External_gptab
))
10426 Elf32_External_gptab ext_gptab
;
10427 Elf32_gptab int_gptab
;
10433 if (! (bfd_get_section_contents
10434 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
10435 sizeof (Elf32_External_gptab
))))
10441 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
10443 val
= int_gptab
.gt_entry
.gt_g_value
;
10444 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
10447 for (look
= 1; look
< c
; look
++)
10449 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
10450 tab
[look
].gt_entry
.gt_bytes
+= add
;
10452 if (tab
[look
].gt_entry
.gt_g_value
== val
)
10458 Elf32_gptab
*new_tab
;
10461 /* We need a new table entry. */
10462 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
10463 new_tab
= bfd_realloc (tab
, amt
);
10464 if (new_tab
== NULL
)
10470 tab
[c
].gt_entry
.gt_g_value
= val
;
10471 tab
[c
].gt_entry
.gt_bytes
= add
;
10473 /* Merge in the size for the next smallest -G
10474 value, since that will be implied by this new
10477 for (look
= 1; look
< c
; look
++)
10479 if (tab
[look
].gt_entry
.gt_g_value
< val
10481 || (tab
[look
].gt_entry
.gt_g_value
10482 > tab
[max
].gt_entry
.gt_g_value
)))
10486 tab
[c
].gt_entry
.gt_bytes
+=
10487 tab
[max
].gt_entry
.gt_bytes
;
10492 last
= int_gptab
.gt_entry
.gt_bytes
;
10495 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10496 elf_link_input_bfd ignores this section. */
10497 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10500 /* The table must be sorted by -G value. */
10502 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
10504 /* Swap out the table. */
10505 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
10506 ext_tab
= bfd_alloc (abfd
, amt
);
10507 if (ext_tab
== NULL
)
10513 for (j
= 0; j
< c
; j
++)
10514 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
10517 o
->size
= c
* sizeof (Elf32_External_gptab
);
10518 o
->contents
= (bfd_byte
*) ext_tab
;
10520 /* Skip this section later on (I don't think this currently
10521 matters, but someday it might). */
10522 o
->map_head
.link_order
= NULL
;
10526 /* Invoke the regular ELF backend linker to do all the work. */
10527 if (!bfd_elf_final_link (abfd
, info
))
10530 /* Now write out the computed sections. */
10532 if (reginfo_sec
!= NULL
)
10534 Elf32_External_RegInfo ext
;
10536 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
10537 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
10541 if (mdebug_sec
!= NULL
)
10543 BFD_ASSERT (abfd
->output_has_begun
);
10544 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
10546 mdebug_sec
->filepos
))
10549 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
10552 if (gptab_data_sec
!= NULL
)
10554 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
10555 gptab_data_sec
->contents
,
10556 0, gptab_data_sec
->size
))
10560 if (gptab_bss_sec
!= NULL
)
10562 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
10563 gptab_bss_sec
->contents
,
10564 0, gptab_bss_sec
->size
))
10568 if (SGI_COMPAT (abfd
))
10570 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
10571 if (rtproc_sec
!= NULL
)
10573 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
10574 rtproc_sec
->contents
,
10575 0, rtproc_sec
->size
))
10583 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10585 struct mips_mach_extension
{
10586 unsigned long extension
, base
;
10590 /* An array describing how BFD machines relate to one another. The entries
10591 are ordered topologically with MIPS I extensions listed last. */
10593 static const struct mips_mach_extension mips_mach_extensions
[] = {
10594 /* MIPS64 extensions. */
10595 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
10596 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
10598 /* MIPS V extensions. */
10599 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
10601 /* R10000 extensions. */
10602 { bfd_mach_mips12000
, bfd_mach_mips10000
},
10604 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10605 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10606 better to allow vr5400 and vr5500 code to be merged anyway, since
10607 many libraries will just use the core ISA. Perhaps we could add
10608 some sort of ASE flag if this ever proves a problem. */
10609 { bfd_mach_mips5500
, bfd_mach_mips5400
},
10610 { bfd_mach_mips5400
, bfd_mach_mips5000
},
10612 /* MIPS IV extensions. */
10613 { bfd_mach_mips5
, bfd_mach_mips8000
},
10614 { bfd_mach_mips10000
, bfd_mach_mips8000
},
10615 { bfd_mach_mips5000
, bfd_mach_mips8000
},
10616 { bfd_mach_mips7000
, bfd_mach_mips8000
},
10617 { bfd_mach_mips9000
, bfd_mach_mips8000
},
10619 /* VR4100 extensions. */
10620 { bfd_mach_mips4120
, bfd_mach_mips4100
},
10621 { bfd_mach_mips4111
, bfd_mach_mips4100
},
10623 /* MIPS III extensions. */
10624 { bfd_mach_mips8000
, bfd_mach_mips4000
},
10625 { bfd_mach_mips4650
, bfd_mach_mips4000
},
10626 { bfd_mach_mips4600
, bfd_mach_mips4000
},
10627 { bfd_mach_mips4400
, bfd_mach_mips4000
},
10628 { bfd_mach_mips4300
, bfd_mach_mips4000
},
10629 { bfd_mach_mips4100
, bfd_mach_mips4000
},
10630 { bfd_mach_mips4010
, bfd_mach_mips4000
},
10632 /* MIPS32 extensions. */
10633 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
10635 /* MIPS II extensions. */
10636 { bfd_mach_mips4000
, bfd_mach_mips6000
},
10637 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
10639 /* MIPS I extensions. */
10640 { bfd_mach_mips6000
, bfd_mach_mips3000
},
10641 { bfd_mach_mips3900
, bfd_mach_mips3000
}
10645 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10648 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
10652 if (extension
== base
)
10655 if (base
== bfd_mach_mipsisa32
10656 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
10659 if (base
== bfd_mach_mipsisa32r2
10660 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
10663 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
10664 if (extension
== mips_mach_extensions
[i
].extension
)
10666 extension
= mips_mach_extensions
[i
].base
;
10667 if (extension
== base
)
10675 /* Return true if the given ELF header flags describe a 32-bit binary. */
10678 mips_32bit_flags_p (flagword flags
)
10680 return ((flags
& EF_MIPS_32BITMODE
) != 0
10681 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
10682 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
10683 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
10684 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
10685 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
10686 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
10690 /* Merge backend specific data from an object file to the output
10691 object file when linking. */
10694 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
10696 flagword old_flags
;
10697 flagword new_flags
;
10699 bfd_boolean null_input_bfd
= TRUE
;
10702 /* Check if we have the same endianess */
10703 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
10705 (*_bfd_error_handler
)
10706 (_("%B: endianness incompatible with that of the selected emulation"),
10711 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
10712 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
10715 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
10717 (*_bfd_error_handler
)
10718 (_("%B: ABI is incompatible with that of the selected emulation"),
10723 new_flags
= elf_elfheader (ibfd
)->e_flags
;
10724 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
10725 old_flags
= elf_elfheader (obfd
)->e_flags
;
10727 if (! elf_flags_init (obfd
))
10729 elf_flags_init (obfd
) = TRUE
;
10730 elf_elfheader (obfd
)->e_flags
= new_flags
;
10731 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
10732 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
10734 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
10735 && bfd_get_arch_info (obfd
)->the_default
)
10737 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
10738 bfd_get_mach (ibfd
)))
10745 /* Check flag compatibility. */
10747 new_flags
&= ~EF_MIPS_NOREORDER
;
10748 old_flags
&= ~EF_MIPS_NOREORDER
;
10750 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10751 doesn't seem to matter. */
10752 new_flags
&= ~EF_MIPS_XGOT
;
10753 old_flags
&= ~EF_MIPS_XGOT
;
10755 /* MIPSpro generates ucode info in n64 objects. Again, we should
10756 just be able to ignore this. */
10757 new_flags
&= ~EF_MIPS_UCODE
;
10758 old_flags
&= ~EF_MIPS_UCODE
;
10760 /* Don't care about the PIC flags from dynamic objects; they are
10762 if ((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0
10763 && (ibfd
->flags
& DYNAMIC
) != 0)
10764 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
10766 if (new_flags
== old_flags
)
10769 /* Check to see if the input BFD actually contains any sections.
10770 If not, its flags may not have been initialised either, but it cannot
10771 actually cause any incompatibility. */
10772 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
10774 /* Ignore synthetic sections and empty .text, .data and .bss sections
10775 which are automatically generated by gas. */
10776 if (strcmp (sec
->name
, ".reginfo")
10777 && strcmp (sec
->name
, ".mdebug")
10779 || (strcmp (sec
->name
, ".text")
10780 && strcmp (sec
->name
, ".data")
10781 && strcmp (sec
->name
, ".bss"))))
10783 null_input_bfd
= FALSE
;
10787 if (null_input_bfd
)
10792 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
10793 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
10795 (*_bfd_error_handler
)
10796 (_("%B: warning: linking PIC files with non-PIC files"),
10801 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
10802 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
10803 if (! (new_flags
& EF_MIPS_PIC
))
10804 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
10806 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
10807 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
10809 /* Compare the ISAs. */
10810 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
10812 (*_bfd_error_handler
)
10813 (_("%B: linking 32-bit code with 64-bit code"),
10817 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
10819 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10820 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
10822 /* Copy the architecture info from IBFD to OBFD. Also copy
10823 the 32-bit flag (if set) so that we continue to recognise
10824 OBFD as a 32-bit binary. */
10825 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
10826 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
10827 elf_elfheader (obfd
)->e_flags
10828 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
10830 /* Copy across the ABI flags if OBFD doesn't use them
10831 and if that was what caused us to treat IBFD as 32-bit. */
10832 if ((old_flags
& EF_MIPS_ABI
) == 0
10833 && mips_32bit_flags_p (new_flags
)
10834 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
10835 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
10839 /* The ISAs aren't compatible. */
10840 (*_bfd_error_handler
)
10841 (_("%B: linking %s module with previous %s modules"),
10843 bfd_printable_name (ibfd
),
10844 bfd_printable_name (obfd
));
10849 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
10850 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
10852 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10853 does set EI_CLASS differently from any 32-bit ABI. */
10854 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
10855 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
10856 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
10858 /* Only error if both are set (to different values). */
10859 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
10860 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
10861 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
10863 (*_bfd_error_handler
)
10864 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10866 elf_mips_abi_name (ibfd
),
10867 elf_mips_abi_name (obfd
));
10870 new_flags
&= ~EF_MIPS_ABI
;
10871 old_flags
&= ~EF_MIPS_ABI
;
10874 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10875 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
10877 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
10879 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
10880 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
10883 /* Warn about any other mismatches */
10884 if (new_flags
!= old_flags
)
10886 (*_bfd_error_handler
)
10887 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
10888 ibfd
, (unsigned long) new_flags
,
10889 (unsigned long) old_flags
);
10895 bfd_set_error (bfd_error_bad_value
);
10902 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
10905 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
10907 BFD_ASSERT (!elf_flags_init (abfd
)
10908 || elf_elfheader (abfd
)->e_flags
== flags
);
10910 elf_elfheader (abfd
)->e_flags
= flags
;
10911 elf_flags_init (abfd
) = TRUE
;
10916 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
10920 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
10922 /* Print normal ELF private data. */
10923 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
10925 /* xgettext:c-format */
10926 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
10928 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
10929 fprintf (file
, _(" [abi=O32]"));
10930 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
10931 fprintf (file
, _(" [abi=O64]"));
10932 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
10933 fprintf (file
, _(" [abi=EABI32]"));
10934 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
10935 fprintf (file
, _(" [abi=EABI64]"));
10936 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
10937 fprintf (file
, _(" [abi unknown]"));
10938 else if (ABI_N32_P (abfd
))
10939 fprintf (file
, _(" [abi=N32]"));
10940 else if (ABI_64_P (abfd
))
10941 fprintf (file
, _(" [abi=64]"));
10943 fprintf (file
, _(" [no abi set]"));
10945 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
10946 fprintf (file
, _(" [mips1]"));
10947 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
10948 fprintf (file
, _(" [mips2]"));
10949 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
10950 fprintf (file
, _(" [mips3]"));
10951 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
10952 fprintf (file
, _(" [mips4]"));
10953 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
10954 fprintf (file
, _(" [mips5]"));
10955 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
10956 fprintf (file
, _(" [mips32]"));
10957 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
10958 fprintf (file
, _(" [mips64]"));
10959 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
10960 fprintf (file
, _(" [mips32r2]"));
10961 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
10962 fprintf (file
, _(" [mips64r2]"));
10964 fprintf (file
, _(" [unknown ISA]"));
10966 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
10967 fprintf (file
, _(" [mdmx]"));
10969 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
10970 fprintf (file
, _(" [mips16]"));
10972 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
10973 fprintf (file
, _(" [32bitmode]"));
10975 fprintf (file
, _(" [not 32bitmode]"));
10977 fputc ('\n', file
);
10982 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
10984 { ".lit4", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10985 { ".lit8", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10986 { ".mdebug", 7, 0, SHT_MIPS_DEBUG
, 0 },
10987 { ".sbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10988 { ".sdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
10989 { ".ucode", 6, 0, SHT_MIPS_UCODE
, 0 },
10990 { NULL
, 0, 0, 0, 0 }
10993 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
10994 even if this is not a defintion of the symbol. */
10996 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
10997 const Elf_Internal_Sym
*isym
,
10998 bfd_boolean definition
,
10999 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
11002 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
11003 h
->other
|= STO_OPTIONAL
;
11006 /* Decide whether an undefined symbol is special and can be ignored.
11007 This is the case for OPTIONAL symbols on IRIX. */
11009 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
11011 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;