2 Not part of GAS yet. */
7 /* this bit glommed from tahoe-inst.h */
9 typedef unsigned char byte
;
10 typedef byte tahoe_opcodeT
;
13 * This is part of tahoe-ins-parse.c & friends.
14 * We want to parse a tahoe instruction text into a tree defined here.
17 #define TIT_MAX_OPERANDS (4) /* maximum number of operands in one
18 single tahoe instruction */
20 struct top
/* tahoe instruction operand */
22 int top_ndx
; /* -1, or index register. eg 7=[R7] */
23 int top_reg
; /* -1, or register number. eg 7 = R7 or (R7) */
24 byte top_mode
; /* Addressing mode byte. This byte, defines
25 which of the 11 modes opcode is. */
27 char top_access
; /* Access type wanted for this opperand
28 'b'branch ' 'no-instruction 'amrvw' */
29 char top_width
; /* Operand width expected, one of "bwlq?-:!" */
31 char *top_error
; /* Say if operand is inappropriate */
33 segT seg_of_operand
; /* segment as returned by expression()*/
35 expressionS exp_of_operand
; /* The expression as parsed by expression()*/
37 byte top_dispsize
; /* Number of bytes in the displacement if we
41 /* The addressing modes for an operand. These numbers are the acutal values
42 for certain modes, so be carefull if you screw with them. */
43 #define TAHOE_DIRECT_REG (0x50)
44 #define TAHOE_REG_DEFERRED (0x60)
46 #define TAHOE_REG_DISP (0xE0)
47 #define TAHOE_REG_DISP_DEFERRED (0xF0)
49 #define TAHOE_IMMEDIATE (0x8F)
50 #define TAHOE_IMMEDIATE_BYTE (0x88)
51 #define TAHOE_IMMEDIATE_WORD (0x89)
52 #define TAHOE_IMMEDIATE_LONGWORD (0x8F)
53 #define TAHOE_ABSOLUTE_ADDR (0x9F)
55 #define TAHOE_DISPLACED_RELATIVE (0xEF)
56 #define TAHOE_DISP_REL_DEFERRED (0xFF)
58 #define TAHOE_AUTO_DEC (0x7E)
59 #define TAHOE_AUTO_INC (0x8E)
60 #define TAHOE_AUTO_INC_DEFERRED (0x9E)
61 /* INDEXED_REG is decided by the existance or lack of a [reg] */
63 /* These are encoded into top_width when top_access=='b'
64 and it's a psuedo op.*/
65 #define TAHOE_WIDTH_ALWAYS_JUMP '-'
66 #define TAHOE_WIDTH_CONDITIONAL_JUMP '?'
67 #define TAHOE_WIDTH_BIG_REV_JUMP '!'
68 #define TAHOE_WIDTH_BIG_NON_REV_JUMP ':'
70 /* The hex code for certain tahoe commands and modes.
71 This is just for readability. */
72 #define TAHOE_JMP (0x71)
73 #define TAHOE_PC_REL_LONG (0xEF)
74 #define TAHOE_BRB (0x11)
75 #define TAHOE_BRW (0x13)
76 /* These, when 'ored' with, or added to, a register number,
77 set up the number for the displacement mode. */
78 #define TAHOE_PC_OR_BYTE (0xA0)
79 #define TAHOE_PC_OR_WORD (0xC0)
80 #define TAHOE_PC_OR_LONG (0xE0)
82 struct tit
/* get it out of the sewer, it stands for
83 tahoe instruction tree (Geeze!) */
85 tahoe_opcodeT tit_opcode
; /* The opcode. */
86 byte tit_operands
; /* How many operands are here. */
87 struct top tit_operand
[TIT_MAX_OPERANDS
]; /* Operands */
88 char *tit_error
; /* "" or fatal error text */
91 /* end: tahoe-inst.h */
93 /* tahoe.c - tahoe-specific -
97 #include "opcode/tahoe.h"
99 /* This is the number to put at the beginning of the a.out file */
100 long omagic
= OMAGIC
;
102 /* These chars start a comment anywhere in a source file (except inside
103 another comment or a quoted string. */
104 const char comment_chars
[] = "#;";
106 /* These chars only start a comment at the beginning of a line. */
107 const char line_comment_chars
[] = "#";
109 /* Chars that can be used to separate mant from exp in floating point nums */
110 const char EXP_CHARS
[] = "eE";
112 /* Chars that mean this number is a floating point constant
114 or 0d1.234E-12 (see exp chars above)
115 Note: The Tahoe port doesn't support floating point constants. This is
116 consistant with 'as' If it's needed, I can always add it later. */
117 const char FLT_CHARS
[] = "df";
119 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
120 changed in read.c . Ideally it shouldn't have to know about it at all,
121 but nothing is ideal around here.
122 (The tahoe has plenty of room, so the change currently isn't needed.)
125 static struct tit t
; /* A tahoe instruction after decoding. */
128 /* A table of pseudo ops (sans .), the function called, and an integer op
129 that the function is called with. */
131 const pseudo_typeS md_pseudo_table
[] =
133 {"dfloat", float_cons
, 'd'},
134 {"ffloat", float_cons
, 'f'},
139 * For Tahoe, relative addresses of "just the right length" are pretty easy.
140 * The branch displacement is always the last operand, even in
141 * synthetic instructions.
142 * For Tahoe, we encode the relax_substateTs (in e.g. fr_substate) as:
144 * 4 3 2 1 0 bit number
145 * ---/ /--+-------+-------+-------+-------+-------+
146 * | what state ? | how long ? |
147 * ---/ /--+-------+-------+-------+-------+-------+
149 * The "how long" bits are 00=byte, 01=word, 10=long.
150 * This is a Un*x convention.
151 * Not all lengths are legit for a given value of (what state).
152 * The four states are listed below.
153 * The "how long" refers merely to the displacement length.
154 * The address usually has some constant bytes in it as well.
157 States for Tahoe address relaxing.
158 1. TAHOE_WIDTH_ALWAYS_JUMP (-)
160 Tahoe opcodes are: (Hex)
164 Always, 1 byte opcode, then displacement/absolute.
165 If word or longword, change opcode to brw or jmp.
168 2. TAHOE_WIDTH_CONDITIONAL_JUMP (?)
169 J<cond> where <cond> is a simple flag test.
171 Tahoe opcodes are: (Hex)
184 Always, you complement 4th bit to reverse the condition.
185 Always, 1-byte opcode, then 1-byte displacement.
187 3. TAHOE_WIDTH_BIG_REV_JUMP (!)
188 Jbc/Jbs where cond tests a memory bit.
190 Tahoe opcodes are: (Hex)
193 Always, you complement 4th bit to reverse the condition.
194 Always, 1-byte opcde, longword, longword-address, 1-word-displacement
196 4. TAHOE_WIDTH_BIG_NON_REV_JUMP (:)
199 Tahoe opcodes are: (Hex)
205 Always, we cannot reverse the sense of the branch; we have a word
208 We need to modify the opcode is for class 1, 2 and 3 instructions.
209 After relax() we may complement the 4th bit of 2 or 3 to reverse sense of
212 We sometimes store context in the operand literal. This way we can figure out
213 after relax() what the original addressing mode was. (Was is pc_rel, or
214 pc_rel_disp? That sort of thing.) */
216 /* These displacements are relative to the START address of the
217 displacement which is at the start of the displacement, not the end of
218 the instruction. The hardware pc_rel is at the end of the instructions.
219 That's why all the displacements have the length of the displacement added
220 to them. (WF + length(word))
222 The first letter is Byte, Word.
223 2nd letter is Forward, Backward. */
226 #define WF (2+ 32767)
227 #define WB (2+-32768)
228 /* Dont need LF, LB because they always reach. [They are coded as 0.] */
230 #define C(a,b) ENCODE_RELAX(a,b)
231 /* This macro has no side-effects. */
232 #define ENCODE_RELAX(what,length) (((what) << 2) + (length))
233 #define RELAX_STATE(what) ((what) >> 2)
234 #define RELAX_LENGTH(length) ((length) && 3)
236 #define STATE_ALWAYS_BRANCH (1)
237 #define STATE_CONDITIONAL_BRANCH (2)
238 #define STATE_BIG_REV_BRANCH (3)
239 #define STATE_BIG_NON_REV_BRANCH (4)
240 #define STATE_PC_RELATIVE (5)
242 #define STATE_BYTE (0)
243 #define STATE_WORD (1)
244 #define STATE_LONG (2)
245 #define STATE_UNDF (3) /* Symbol undefined in pass1 */
247 /* This is the table used by gas to figure out relaxing modes. The fields are
248 forward_branch reach, backward_branch reach, number of bytes it would take,
249 where the next biggest branch is. */
250 const relax_typeS md_relax_table
[] =
254 }, /* error sentinel 0,0 */
264 /* Unconditional branch cases "jrb"
265 The relax part is the actual displacement */
268 }, /* brb B`foo 1,0 */
271 }, /* brw W`foo 1,1 */
274 }, /* Jmp L`foo 1,2 */
278 /* Reversible Conditional Branch. If the branch won't reach, reverse
279 it, and jump over a brw or a jmp that will reach. The relax part is the
283 }, /* b<cond> B`foo 2,0 */
285 WF
+ 2, WB
+ 2, 4, C (2, 2)
286 }, /* brev over, brw W`foo, over: 2,1 */
289 }, /* brev over, jmp L`foo, over: 2,2 */
293 /* Another type of reversable branch. But this only has a word
300 }, /* jbX W`foo 3,1 */
303 }, /* jrevX over, jmp L`foo, over: 3,2 */
307 /* These are the non reversable branches, all of which have a word
308 displacement. If I can't reach, branch over a byte branch, to a
309 jump that will reach. The jumped branch jumps over the reaching
310 branch, to continue with the flow of the program. It's like playing
317 }, /* aobl_ W`foo 4,1 */
320 }, /*aobl_ W`hop,br over,hop: jmp L^foo,over 4,2*/
324 /* Normal displacement mode, no jumping or anything like that.
325 The relax points to one byte before the address, thats why all
326 the numbers are up by one. */
328 BF
+ 1, BB
+ 1, 2, C (5, 1)
331 WF
+ 1, WB
+ 1, 3, C (5, 2)
346 /* End relax stuff */
348 /* Handle of the OPCODE hash table. NULL means any use before
349 md_begin() will crash. */
350 static struct hash_control
*op_hash
;
352 /* Init function. Build the hash table. */
358 int synthetic_too
= 1; /* If 0, just use real opcodes. */
360 op_hash
= hash_new ();
362 for (tP
= totstrs
; *tP
->name
&& !errorval
; tP
++)
363 errorval
= hash_insert (op_hash
, tP
->name
, &tP
->detail
);
366 for (tP
= synthetic_totstrs
; *tP
->name
&& !errorval
; tP
++)
367 errorval
= hash_insert (op_hash
, tP
->name
, &tP
->detail
);
373 CONST
char *md_shortopts
= "ad:STt:V";
374 struct option md_longopts
[] = {
375 {NULL
, no_argument
, NULL
, 0}
377 size_t md_longopts_size
= sizeof(md_longopts
);
380 md_parse_option (c
, arg
)
387 as_warn (_("The -a option doesn't exist. (Despite what the man page says!"));
391 as_warn (_("Displacement length %s ignored!"), arg
);
395 as_warn (_("SYMBOL TABLE not implemented"));
399 as_warn (_("TOKEN TRACE not implemented"));
403 as_warn (_("I don't need or use temp. file \"%s\"."), arg
);
407 as_warn (_("I don't use an interpass file! -V ignored"));
418 md_show_usage (stream
)
432 /* The functions in this section take numbers in the machine format, and
433 munges them into Tahoe byte order.
434 They exist primarily for cross assembly purpose. */
435 void /* Knows about order of bytes in address. */
436 md_number_to_chars (con
, value
, nbytes
)
437 char con
[]; /* Return 'nbytes' of chars here. */
438 valueT value
; /* The value of the bits. */
439 int nbytes
; /* Number of bytes in the output. */
441 number_to_chars_bigendian (con
, value
, nbytes
);
445 void /* Knows about order of bytes in address. */
446 md_number_to_imm (con
, value
, nbytes
)
447 char con
[]; /* Return 'nbytes' of chars here. */
448 long int value
; /* The value of the bits. */
449 int nbytes
; /* Number of bytes in the output. */
451 md_number_to_chars (con
, value
, nbytes
);
457 tc_apply_fix (fixP
, val
)
461 /* should never be called */
465 void /* Knows about order of bytes in address. */
466 md_number_to_disp (con
, value
, nbytes
)
467 char con
[]; /* Return 'nbytes' of chars here. */
468 long int value
; /* The value of the bits. */
469 int nbytes
; /* Number of bytes in the output. */
471 md_number_to_chars (con
, value
, nbytes
);
474 void /* Knows about order of bytes in address. */
475 md_number_to_field (con
, value
, nbytes
)
476 char con
[]; /* Return 'nbytes' of chars here. */
477 long int value
; /* The value of the bits. */
478 int nbytes
; /* Number of bytes in the output. */
480 md_number_to_chars (con
, value
, nbytes
);
483 /* Put the bits in an order that a tahoe will understand, despite the ordering
484 of the native machine.
485 On Tahoe: first 4 bytes are normal unsigned big endian long,
486 next three bytes are symbolnum, in kind of 3 byte big endian (least sig. byte last).
487 The last byte is broken up with bit 7 as pcrel,
488 bits 6 & 5 as length,
489 bit 4 as extern and the last nibble as 'undefined'. */
493 md_ri_to_chars (ri_p
, ri
)
494 struct relocation_info
*ri_p
, ri
;
496 byte the_bytes
[sizeof (struct relocation_info
)];
497 /* The reason I can't just encode these directly into ri_p is that
498 ri_p may point to ri. */
501 md_number_to_chars (the_bytes
, ri
.r_address
, sizeof (ri
.r_address
));
503 /* now the fun stuff */
504 the_bytes
[4] = (ri
.r_symbolnum
>> 16) & 0x0ff;
505 the_bytes
[5] = (ri
.r_symbolnum
>> 8) & 0x0ff;
506 the_bytes
[6] = ri
.r_symbolnum
& 0x0ff;
507 the_bytes
[7] = (((ri
.r_extern
<< 4) & 0x10) | ((ri
.r_length
<< 5) & 0x60) |
508 ((ri
.r_pcrel
<< 7) & 0x80)) & 0xf0;
510 bcopy (the_bytes
, (char *) ri_p
, sizeof (struct relocation_info
));
515 /* Put the bits in an order that a tahoe will understand, despite the ordering
516 of the native machine.
517 On Tahoe: first 4 bytes are normal unsigned big endian long,
518 next three bytes are symbolnum, in kind of 3 byte big endian (least sig. byte last).
519 The last byte is broken up with bit 7 as pcrel,
520 bits 6 & 5 as length,
521 bit 4 as extern and the last nibble as 'undefined'. */
524 tc_aout_fix_to_chars (where
, fixP
, segment_address_in_file
)
527 relax_addressT segment_address_in_file
;
531 know (fixP
->fx_addsy
!= NULL
);
533 md_number_to_chars (where
,
534 fixP
->fx_frag
->fr_address
+ fixP
->fx_where
- segment_address_in_file
,
537 r_symbolnum
= (S_IS_DEFINED (fixP
->fx_addsy
)
538 ? S_GET_TYPE (fixP
->fx_addsy
)
539 : fixP
->fx_addsy
->sy_number
);
541 where
[4] = (r_symbolnum
>> 16) & 0x0ff;
542 where
[5] = (r_symbolnum
>> 8) & 0x0ff;
543 where
[6] = r_symbolnum
& 0x0ff;
544 where
[7] = (((is_pcrel (fixP
) << 7) & 0x80)
545 | ((((fixP
->fx_type
== FX_8
|| fixP
->fx_type
== FX_PCREL8
547 : (fixP
->fx_type
== FX_16
|| fixP
->fx_type
== FX_PCREL16
549 : (fixP
->fx_type
== FX_32
|| fixP
->fx_type
== FX_PCREL32
551 : 42)))) << 5) & 0x60)
552 | ((!S_IS_DEFINED (fixP
->fx_addsy
) << 4) & 0x10));
555 /* Relocate byte stuff */
557 /* This is for broken word. */
558 const int md_short_jump_size
= 3;
561 md_create_short_jump (ptr
, from_addr
, to_addr
, frag
, to_symbol
)
563 addressT from_addr
, to_addr
;
569 offset
= to_addr
- (from_addr
+ 1);
571 md_number_to_chars (ptr
, offset
, 2);
574 const int md_long_jump_size
= 6;
575 const int md_reloc_size
= 8; /* Size of relocation record */
578 md_create_long_jump (ptr
, from_addr
, to_addr
, frag
, to_symbol
)
580 addressT from_addr
, to_addr
;
586 offset
= to_addr
- (from_addr
+ 4);
588 *ptr
++ = TAHOE_PC_REL_LONG
;
589 md_number_to_chars (ptr
, offset
, 4);
593 * md_estimate_size_before_relax()
595 * Called just before relax().
596 * Any symbol that is now undefined will not become defined, so we assumed
597 * that it will be resolved by the linker.
598 * Return the correct fr_subtype in the frag, for relax()
599 * Return the initial "guess for fr_var" to caller. (How big I think this
601 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
602 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
603 * Although it may not be explicit in the frag, pretend fr_var starts with a
607 md_estimate_size_before_relax (fragP
, segment_type
)
608 register fragS
*fragP
;
609 segT segment_type
; /* N_DATA or N_TEXT. */
612 register int old_fr_fix
;
613 /* int pc_rel; FIXME: remove this */
615 old_fr_fix
= fragP
->fr_fix
;
616 switch (fragP
->fr_subtype
)
618 case ENCODE_RELAX (STATE_PC_RELATIVE
, STATE_UNDF
):
619 if (S_GET_SEGMENT (fragP
->fr_symbol
) == segment_type
)
621 /* The symbol was in the same segment as the opcode, and it's
622 a real pc_rel case so it's a relaxable case. */
623 fragP
->fr_subtype
= ENCODE_RELAX (STATE_PC_RELATIVE
, STATE_BYTE
);
627 /* This case is still undefined, so asume it's a long word for the
629 p
= fragP
->fr_literal
+ old_fr_fix
;
630 *p
|= TAHOE_PC_OR_LONG
;
631 /* We now know how big it will be, one long word. */
632 fragP
->fr_fix
+= 1 + 4;
633 fix_new (fragP
, old_fr_fix
+ 1, fragP
->fr_symbol
,
634 fragP
->fr_offset
, FX_PCREL32
, NULL
);
639 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH
, STATE_UNDF
):
640 if (S_GET_SEGMENT (fragP
->fr_symbol
) == segment_type
)
642 fragP
->fr_subtype
= ENCODE_RELAX (STATE_CONDITIONAL_BRANCH
, STATE_BYTE
);
646 p
= fragP
->fr_literal
+ old_fr_fix
;
647 *fragP
->fr_opcode
^= 0x10; /* Reverse sense of branch. */
650 *p
++ = TAHOE_PC_REL_LONG
;
651 fragP
->fr_fix
+= 1 + 1 + 1 + 4;
652 fix_new (fragP
, old_fr_fix
+ 3, fragP
->fr_symbol
,
653 fragP
->fr_offset
, FX_PCREL32
, NULL
);
658 case ENCODE_RELAX (STATE_BIG_REV_BRANCH
, STATE_UNDF
):
659 if (S_GET_SEGMENT (fragP
->fr_symbol
) == segment_type
)
662 ENCODE_RELAX (STATE_BIG_REV_BRANCH
, STATE_WORD
);
666 p
= fragP
->fr_literal
+ old_fr_fix
;
667 *fragP
->fr_opcode
^= 0x10; /* Reverse sense of branch. */
671 *p
++ = TAHOE_PC_REL_LONG
;
672 fragP
->fr_fix
+= 2 + 2 + 4;
673 fix_new (fragP
, old_fr_fix
+ 4, fragP
->fr_symbol
,
674 fragP
->fr_offset
, FX_PCREL32
, NULL
);
679 case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH
, STATE_UNDF
):
680 if (S_GET_SEGMENT (fragP
->fr_symbol
) == segment_type
)
682 fragP
->fr_subtype
= ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH
, STATE_WORD
);
686 p
= fragP
->fr_literal
+ old_fr_fix
;
692 *p
++ = TAHOE_PC_REL_LONG
;
693 fragP
->fr_fix
+= 2 + 2 + 2 + 4;
694 fix_new (fragP
, old_fr_fix
+ 6, fragP
->fr_symbol
,
695 fragP
->fr_offset
, FX_PCREL32
, NULL
);
700 case ENCODE_RELAX (STATE_ALWAYS_BRANCH
, STATE_UNDF
):
701 if (S_GET_SEGMENT (fragP
->fr_symbol
) == segment_type
)
703 fragP
->fr_subtype
= ENCODE_RELAX (STATE_ALWAYS_BRANCH
, STATE_BYTE
);
707 p
= fragP
->fr_literal
+ old_fr_fix
;
708 *fragP
->fr_opcode
= TAHOE_JMP
;
709 *p
++ = TAHOE_PC_REL_LONG
;
710 fragP
->fr_fix
+= 1 + 4;
711 fix_new (fragP
, old_fr_fix
+ 1, fragP
->fr_symbol
,
712 fragP
->fr_offset
, FX_PCREL32
, NULL
);
720 return (fragP
->fr_var
+ fragP
->fr_fix
- old_fr_fix
);
721 } /* md_estimate_size_before_relax() */
726 * Called after relax() is finished.
727 * In: Address of frag.
728 * fr_type == rs_machine_dependent.
729 * fr_subtype is what the address relaxed to.
731 * Out: Any fixSs and constants are set up.
732 * Caller will turn frag into a ".space 0".
735 md_convert_frag (headers
, seg
, fragP
)
736 object_headers
*headers
;
738 register fragS
*fragP
;
740 register char *addressP
; /* -> _var to change. */
741 register char *opcodeP
; /* -> opcode char(s) to change. */
742 register short int length_code
; /* 2=long 1=word 0=byte */
743 register short int extension
= 0; /* Size of relaxed address.
744 Added to fr_fix: incl. ALL var chars. */
745 register symbolS
*symbolP
;
746 register long int where
;
747 register long int address_of_var
;
748 /* Where, in file space, is _var of *fragP? */
749 register long int target_address
;
750 /* Where, in file space, does addr point? */
752 know (fragP
->fr_type
== rs_machine_dependent
);
753 length_code
= RELAX_LENGTH (fragP
->fr_subtype
);
754 know (length_code
>= 0 && length_code
< 3);
755 where
= fragP
->fr_fix
;
756 addressP
= fragP
->fr_literal
+ where
;
757 opcodeP
= fragP
->fr_opcode
;
758 symbolP
= fragP
->fr_symbol
;
760 target_address
= S_GET_VALUE (symbolP
) + fragP
->fr_offset
;
761 address_of_var
= fragP
->fr_address
+ where
;
762 switch (fragP
->fr_subtype
)
764 case ENCODE_RELAX (STATE_PC_RELATIVE
, STATE_BYTE
):
765 /* *addressP holds the registers number, plus 0x10, if it's deferred
766 mode. To set up the right mode, just OR the size of this displacement */
767 /* Byte displacement. */
768 *addressP
++ |= TAHOE_PC_OR_BYTE
;
769 *addressP
= target_address
- (address_of_var
+ 2);
773 case ENCODE_RELAX (STATE_PC_RELATIVE
, STATE_WORD
):
774 /* Word displacement. */
775 *addressP
++ |= TAHOE_PC_OR_WORD
;
776 md_number_to_chars (addressP
, target_address
- (address_of_var
+ 3), 2);
780 case ENCODE_RELAX (STATE_PC_RELATIVE
, STATE_LONG
):
781 /* Long word displacement. */
782 *addressP
++ |= TAHOE_PC_OR_LONG
;
783 md_number_to_chars (addressP
, target_address
- (address_of_var
+ 5), 4);
787 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH
, STATE_BYTE
):
788 *addressP
= target_address
- (address_of_var
+ 1);
792 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH
, STATE_WORD
):
793 *opcodeP
^= 0x10; /* Reverse sense of test. */
794 *addressP
++ = 3; /* Jump over word branch */
795 *addressP
++ = TAHOE_BRW
;
796 md_number_to_chars (addressP
, target_address
- (address_of_var
+ 4), 2);
800 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH
, STATE_LONG
):
801 *opcodeP
^= 0x10; /* Reverse sense of test. */
803 *addressP
++ = TAHOE_JMP
;
804 *addressP
++ = TAHOE_PC_REL_LONG
;
805 md_number_to_chars (addressP
, target_address
, 4);
809 case ENCODE_RELAX (STATE_ALWAYS_BRANCH
, STATE_BYTE
):
810 *addressP
= target_address
- (address_of_var
+ 1);
814 case ENCODE_RELAX (STATE_ALWAYS_BRANCH
, STATE_WORD
):
815 *opcodeP
= TAHOE_BRW
;
816 md_number_to_chars (addressP
, target_address
- (address_of_var
+ 2), 2);
820 case ENCODE_RELAX (STATE_ALWAYS_BRANCH
, STATE_LONG
):
821 *opcodeP
= TAHOE_JMP
;
822 *addressP
++ = TAHOE_PC_REL_LONG
;
823 md_number_to_chars (addressP
, target_address
- (address_of_var
+ 5), 4);
827 case ENCODE_RELAX (STATE_BIG_REV_BRANCH
, STATE_WORD
):
828 md_number_to_chars (addressP
, target_address
- (address_of_var
+ 2), 2);
832 case ENCODE_RELAX (STATE_BIG_REV_BRANCH
, STATE_LONG
):
836 *addressP
++ = TAHOE_JMP
;
837 *addressP
++ = TAHOE_PC_REL_LONG
;
838 md_number_to_chars (addressP
, target_address
, 4);
842 case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH
, STATE_WORD
):
843 md_number_to_chars (addressP
, target_address
- (address_of_var
+ 2), 2);
847 case ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH
, STATE_LONG
):
850 *addressP
++ = TAHOE_BRB
;
852 *addressP
++ = TAHOE_JMP
;
853 *addressP
++ = TAHOE_PC_REL_LONG
;
854 md_number_to_chars (addressP
, target_address
, 4);
859 BAD_CASE (fragP
->fr_subtype
);
862 fragP
->fr_fix
+= extension
;
863 } /* md_convert_frag */
866 /* This is the stuff for md_assemble. */
870 #define BIGGESTREG PC_REG
873 * Parse the string pointed to by START
874 * If it represents a valid register, point START to the character after
875 * the last valid register char, and return the register number (0-15).
876 * If invalid, leave START alone, return -1.
877 * The format has to be exact. I don't do things like eat leading zeros
879 * Note: This doesn't check for the next character in the string making
880 * this invalid. Ex: R123 would return 12, it's the callers job to check
881 * what start is point to apon return.
883 * Valid registers are R1-R15, %1-%15, FP (13), SP (14), PC (15)
884 * Case doesn't matter.
887 tahoe_reg_parse (start
)
888 char **start
; /* A pointer to the string to parse. */
890 register char *regpoint
= *start
;
891 register int regnum
= -1;
895 case '%': /* Registers can start with a %,
896 R or r, and then a number. */
899 if (isdigit (*regpoint
))
901 /* Got the first digit. */
902 regnum
= *regpoint
++ - '0';
903 if ((regnum
== 1) && isdigit (*regpoint
))
905 /* Its a two digit number. */
906 regnum
= 10 + (*regpoint
++ - '0');
907 if (regnum
> BIGGESTREG
)
908 { /* Number too big? */
914 case 'F': /* Is it the FP */
923 case 's': /* How about the SP */
932 case 'p': /* OR the PC even */
944 { /* No error, so move string pointer */
947 return regnum
; /* Return results */
948 } /* tahoe_reg_parse */
951 * This chops up an operand and figures out its modes and stuff.
952 * It's a little touchy about extra characters.
953 * Optex to start with one extra character so it can be overwritten for
954 * the backward part of the parsing.
955 * You can't put a bunch of extra characters in side to
956 * make the command look cute. ie: * foo ( r1 ) [ r0 ]
957 * If you like doing a lot of typing, try COBOL!
958 * Actually, this parser is a little weak all around. It's designed to be
959 * used with compliers, so I emphisise correct decoding of valid code quickly
960 * rather that catching every possable error.
961 * Note: This uses the expression function, so save input_line_pointer before
964 * Sperry defines the semantics of address modes (and values)
965 * by a two-letter code, explained here.
967 * letter 1: access type
969 * a address calculation - no data access, registers forbidden
970 * b branch displacement
971 * m read - let go of bus - write back "modify"
974 * v bit field address: like 'a' but registers are OK
976 * letter 2: data type (i.e. width, alignment)
981 * q quadword (Even regs < 14 allowed) (if 12, you get a warning)
982 * - unconditional synthetic jbr operand
983 * ? simple synthetic reversable branch operand
984 * ! complex synthetic reversable branch operand
985 * : complex synthetic non-reversable branch operand
987 * The '-?!:' letter 2's are not for external consumption. They are used
988 * by GAS for psuedo ops relaxing code.
990 * After parsing topP has:
992 * top_ndx: -1, or the index register. eg 7=[R7]
993 * top_reg: -1, or register number. eg 7 = R7 or (R7)
994 * top_mode: The addressing mode byte. This byte, defines which of
995 * the 11 modes opcode is.
996 * top_access: Access type wanted for this opperand 'b'branch ' '
997 * no-instruction 'amrvw'
998 * top_width: Operand width expected, one of "bwlq?-:!"
999 * exp_of_operand: The expression as parsed by expression()
1000 * top_dispsize: Number of bytes in the displacement if we can figure it
1001 * out and it's relavent.
1003 * Need syntax checks built.
1007 tip_op (optex
, topP
)
1008 char *optex
; /* The users text input, with one leading character */
1009 struct top
*topP
; /* The tahoe instruction with some fields already set:
1011 out: ndx, reg, mode, error, dispsize */
1014 int mode
= 0; /* This operand's mode. */
1015 char segfault
= *optex
; /* To keep the back parsing from freaking. */
1016 char *point
= optex
+ 1; /* Parsing from front to back. */
1017 char *end
; /* Parsing from back to front. */
1018 int reg
= -1; /* major register, -1 means absent */
1019 int imreg
= -1; /* Major register in immediate mode */
1020 int ndx
= -1; /* index register number, -1 means absent */
1021 char dec_inc
= ' '; /* Is the SP auto-incremented '+' or
1022 auto-decremented '-' or neither ' '. */
1023 int immediate
= 0; /* 1 if '$' immediate mode */
1024 int call_width
= 0; /* If the caller casts the displacement */
1025 int abs_width
= 0; /* The width of the absolute displacment */
1026 int com_width
= 0; /* Displacement width required by branch */
1027 int deferred
= 0; /* 1 if '*' deferral is used */
1028 byte disp_size
= 0; /* How big is this operand. 0 == don't know */
1029 char *op_bad
= ""; /* Bad operand error */
1031 char *tp
, *temp
, c
; /* Temporary holders */
1033 char access
= topP
->top_access
; /* Save on a deref. */
1034 char width
= topP
->top_width
;
1036 int really_none
= 0; /* Empty expressions evaluate to 0
1037 but I need to know if it's there or not */
1038 expressionS
*expP
; /* -> expression values for this operand */
1040 /* Does this command restrict the displacement size. */
1042 com_width
= (width
== 'b' ? 1 :
1044 (width
== 'l' ? 4 : 0)));
1046 *optex
= '\0'; /* This is kind of a back stop for all
1047 the searches to fail on if needed.*/
1049 { /* A dereference? */
1054 /* Force words into a certain mode */
1055 /* Bitch, Bitch, Bitch! */
1057 * Using the ^ operator is ambigous. If I have an absolute label
1058 * called 'w' set to, say 2, and I have the expression 'w^1', do I get
1059 * 1, forced to be in word displacement mode, or do I get the value of
1060 * 'w' or'ed with 1 (3 in this case).
1061 * The default is 'w' as an offset, so that's what I use.
1062 * Stick with `, it does the same, and isn't ambig.
1065 if (*point
!= '\0' && ((point
[1] == '^') || (point
[1] == '`')))
1075 as_warn (_("Casting a branch displacement is bad form, and is ignored."));
1078 c
= (isupper (*point
) ? tolower (*point
) : *point
);
1079 call_width
= ((c
== 'b') ? 1 :
1080 ((c
== 'w') ? 2 : 4));
1086 /* Setting immediate mode */
1094 * I've pulled off all the easy stuff off the front, move to the end and
1098 for (end
= point
; *end
!= '\0'; end
++) /* Move to the end. */
1101 if (end
!= point
) /* Null string? */
1104 if (end
> point
&& *end
== ' ' && end
[-1] != '\'')
1105 end
--; /* Hop white space */
1107 /* Is this an index reg. */
1108 if ((*end
== ']') && (end
[-1] != '\''))
1112 /* Find opening brace. */
1113 for (--end
; (*end
!= '[' && end
!= point
); end
--)
1116 /* If I found the opening brace, get the index register number. */
1119 tp
= end
+ 1; /* tp should point to the start of a reg. */
1120 ndx
= tahoe_reg_parse (&tp
);
1122 { /* Reg. parse error. */
1127 end
--; /* Found it, move past brace. */
1131 op_bad
= _("Couldn't parse the [index] in this operand.");
1132 end
= point
; /* Force all the rest of the tests to fail. */
1137 op_bad
= _("Couldn't find the opening '[' for the index of this operand.");
1138 end
= point
; /* Force all the rest of the tests to fail. */
1142 /* Post increment? */
1150 /* register in parens? */
1151 if ((*end
== ')') && (end
[-1] != '\''))
1155 /* Find opening paren. */
1156 for (--end
; (*end
!= '(' && end
!= point
); end
--)
1159 /* If I found the opening paren, get the register number. */
1163 reg
= tahoe_reg_parse (&tp
);
1166 /* Not a register, but could be part of the expression. */
1168 end
= temp
; /* Rest the pointer back */
1172 end
--; /* Found the reg. move before opening paren. */
1177 op_bad
= _("Couldn't find the opening '(' for the deref of this operand.");
1178 end
= point
; /* Force all the rest of the tests to fail. */
1182 /* Pre decrement? */
1187 op_bad
= _("Operand can't be both pre-inc and post-dec.");
1199 * Everything between point and end is the 'expression', unless it's
1207 imreg
= tahoe_reg_parse (&point
); /* Get the immediate register
1211 /* If there is junk after point, then the it's not immediate reg. */
1216 if (imreg
!= -1 && reg
!= -1)
1217 op_bad
= _("I parsed 2 registers in this operand.");
1220 * Evaluate whats left of the expression to see if it's valid.
1221 * Note again: This assumes that the calling expression has saved
1222 * input_line_pointer. (Nag, nag, nag!)
1225 if (*op_bad
== '\0')
1227 /* statement has no syntax goofs yet: lets sniff the expression */
1228 input_line_pointer
= point
;
1229 expP
= &(topP
->exp_of_operand
);
1230 topP
->seg_of_operand
= expression (expP
);
1234 /* No expression. For BSD4.2 compatibility, missing expression is
1236 expP
->X_op
= O_constant
;
1237 expP
->X_add_number
= 0;
1240 /* for SEG_ABSOLUTE, we shouldnt need to set X_op_symbol,
1241 X_add_symbol to any particular value. */
1242 /* But, we will program defensively. Since this situation occurs
1243 rarely so it costs us little to do so. */
1244 expP
->X_add_symbol
= NULL
;
1245 expP
->X_op_symbol
= NULL
;
1246 /* How many bytes are needed to express this abs value? */
1248 ((((expP
->X_add_number
& 0xFFFFFF80) == 0) ||
1249 ((expP
->X_add_number
& 0xFFFFFF80) == 0xFFFFFF80)) ? 1 :
1250 (((expP
->X_add_number
& 0xFFFF8000) == 0) ||
1251 ((expP
->X_add_number
& 0xFFFF8000) == 0xFFFF8000)) ? 2 : 4);
1258 * Major bug. We can't handle the case of a operator
1259 * expression in a synthetic opcode variable-length
1260 * instruction. We don't have a frag type that is smart
1261 * enough to relax a operator, and so we just force all
1262 * operators to behave like SEG_PASS1s. Clearly, if there is
1263 * a demand we can invent a new or modified frag type and
1264 * then coding up a frag for this case will be easy.
1267 op_bad
= _("Can't relocate expression error.");
1271 /* This is an error. Tahoe doesn't allow any expressions
1272 bigger that a 32 bit long word. Any bigger has to be referenced
1274 op_bad
= _("Expression is too large for a 32 bits.");
1277 if (*input_line_pointer
!= '\0')
1279 op_bad
= _("Junk at end of expression.");
1285 /* I'm done, so restore optex */
1290 * At this point in the game, we (in theory) have all the components of
1291 * the operand at least parsed. Now it's time to check for syntax/semantic
1292 * errors, and build the mode.
1293 * This is what I have:
1294 * deferred = 1 if '*'
1295 * call_width = 0,1,2,4
1296 * abs_width = 0,1,2,4
1297 * com_width = 0,1,2,4
1298 * immediate = 1 if '$'
1299 * ndx = -1 or reg num
1300 * dec_inc = '-' or '+' or ' '
1301 * reg = -1 or reg num
1302 * imreg = -1 or reg num
1303 * topP->exp_of_operand
1306 /* Is there a displacement size? */
1307 disp_size
= (call_width
? call_width
:
1308 (com_width
? com_width
:
1309 abs_width
? abs_width
: 0));
1311 if (*op_bad
== '\0')
1316 mode
= TAHOE_DIRECT_REG
;
1317 if (deferred
|| immediate
|| (dec_inc
!= ' ') ||
1318 (reg
!= -1) || !really_none
)
1319 op_bad
= _("Syntax error in direct register mode.");
1321 op_bad
= _("You can't index a register in direct register mode.");
1322 else if (imreg
== SP_REG
&& access
== 'r')
1324 _("SP can't be the source operand with direct register addressing.");
1325 else if (access
== 'a')
1326 op_bad
= _("Can't take the address of a register.");
1327 else if (access
== 'b')
1328 op_bad
= _("Direct Register can't be used in a branch.");
1329 else if (width
== 'q' && ((imreg
% 2) || (imreg
> 13)))
1330 op_bad
= _("For quad access, the register must be even and < 14.");
1331 else if (call_width
)
1332 op_bad
= _("You can't cast a direct register.");
1334 if (*op_bad
== '\0')
1336 /* No errors, check for warnings */
1337 if (width
== 'q' && imreg
== 12)
1338 as_warn (_("Using reg 14 for quadwords can tromp the FP register."));
1343 /* We know: imm = -1 */
1345 else if (dec_inc
== '-')
1348 mode
= TAHOE_AUTO_DEC
;
1349 if (deferred
|| immediate
|| !really_none
)
1350 op_bad
= _("Syntax error in auto-dec mode.");
1352 op_bad
= _("You can't have an index auto dec mode.");
1353 else if (access
== 'r')
1354 op_bad
= _("Auto dec mode cant be used for reading.");
1355 else if (reg
!= SP_REG
)
1356 op_bad
= _("Auto dec only works of the SP register.");
1357 else if (access
== 'b')
1358 op_bad
= _("Auto dec can't be used in a branch.");
1359 else if (width
== 'q')
1360 op_bad
= _("Auto dec won't work with quadwords.");
1362 /* We know: imm = -1, dec_inc != '-' */
1364 else if (dec_inc
== '+')
1366 if (immediate
|| !really_none
)
1367 op_bad
= _("Syntax error in one of the auto-inc modes.");
1371 mode
= TAHOE_AUTO_INC_DEFERRED
;
1373 op_bad
= _("Auto inc deferred only works of the SP register.");
1375 op_bad
= _("You can't have an index auto inc deferred mode.");
1376 else if (access
== 'b')
1377 op_bad
= _("Auto inc can't be used in a branch.");
1382 mode
= TAHOE_AUTO_INC
;
1383 if (access
== 'm' || access
== 'w')
1384 op_bad
= _("You can't write to an auto inc register.");
1385 else if (reg
!= SP_REG
)
1386 op_bad
= _("Auto inc only works of the SP register.");
1387 else if (access
== 'b')
1388 op_bad
= _("Auto inc can't be used in a branch.");
1389 else if (width
== 'q')
1390 op_bad
= _("Auto inc won't work with quadwords.");
1392 op_bad
= _("You can't have an index in auto inc mode.");
1395 /* We know: imm = -1, dec_inc == ' ' */
1399 if ((ndx
!= -1) && (reg
== SP_REG
))
1400 op_bad
= _("You can't index the sp register.");
1404 mode
= TAHOE_REG_DISP_DEFERRED
;
1406 op_bad
= _("Syntax error in register displaced mode.");
1408 else if (really_none
)
1411 mode
= TAHOE_REG_DEFERRED
;
1412 /* if reg = SP then cant be indexed */
1417 mode
= TAHOE_REG_DISP
;
1420 /* We know: imm = -1, dec_inc == ' ', Reg = -1 */
1425 op_bad
= _("An offest is needed for this operand.");
1426 if (deferred
&& immediate
)
1429 mode
= TAHOE_ABSOLUTE_ADDR
;
1435 mode
= TAHOE_IMMEDIATE
;
1437 op_bad
= _("You can't index a register in immediate mode.");
1439 op_bad
= _("Immediate access can't be used as an address.");
1440 /* ponder the wisdom of a cast because it doesn't do any good. */
1445 mode
= TAHOE_DISP_REL_DEFERRED
;
1450 mode
= TAHOE_DISPLACED_RELATIVE
;
1456 * At this point, all the errors we can do have be checked for.
1457 * We can build the 'top'. */
1459 topP
->top_ndx
= ndx
;
1460 topP
->top_reg
= reg
;
1461 topP
->top_mode
= mode
;
1462 topP
->top_error
= op_bad
;
1463 topP
->top_dispsize
= disp_size
;
1469 * This converts a string into a tahoe instruction.
1470 * The string must be a bare single instruction in tahoe (with BSD4 frobs)
1472 * It provides at most one fatal error message (which stops the scan)
1473 * some warning messages as it finds them.
1474 * The tahoe instruction is returned in exploded form.
1476 * The exploded instruction is returned to a struct tit of your choice.
1477 * #include "tahoe-inst.h" to know what a struct tit is.
1482 tip (titP
, instring
)
1483 struct tit
*titP
; /* We build an exploded instruction here. */
1484 char *instring
; /* Text of a vax instruction: we modify. */
1486 register struct tot_wot
*twP
= NULL
; /* How to bit-encode this opcode. */
1487 register char *p
; /* 1/skip whitespace.2/scan vot_how */
1488 register char *q
; /* */
1489 register unsigned char count
; /* counts number of operands seen */
1490 register struct top
*operandp
;/* scan operands in struct tit */
1491 register char *alloperr
= ""; /* error over all operands */
1492 register char c
; /* Remember char, (we clobber it
1493 with '\0' temporarily). */
1494 char *save_input_line_pointer
;
1496 if (*instring
== ' ')
1497 ++instring
; /* Skip leading whitespace. */
1498 for (p
= instring
; *p
&& *p
!= ' '; p
++)
1499 ; /* MUST end in end-of-string or
1501 /* Scanned up to end of operation-code. */
1502 /* Operation-code is ended with whitespace. */
1505 titP
->tit_error
= _("No operator");
1507 titP
->tit_opcode
= 0;
1514 * Here with instring pointing to what better be an op-name, and p
1515 * pointing to character just past that.
1516 * We trust instring points to an op-name, with no whitespace.
1518 twP
= (struct tot_wot
*) hash_find (op_hash
, instring
);
1519 *p
= c
; /* Restore char after op-code. */
1522 titP
->tit_error
= _("Unknown operator");
1524 titP
->tit_opcode
= 0;
1529 * We found a match! So lets pick up as many operands as the
1530 * instruction wants, and even gripe if there are too many.
1531 * We expect comma to seperate each operand.
1532 * We let instring track the text, while p tracks a part of the
1536 count
= 0; /* no operands seen yet */
1537 instring
= p
+ (*p
!= '\0'); /* point past the operation code */
1538 /* tip_op() screws with the input_line_pointer, so save it before
1540 save_input_line_pointer
= input_line_pointer
;
1541 for (p
= twP
->args
, operandp
= titP
->tit_operand
;
1546 * Here to parse one operand. Leave instring pointing just
1547 * past any one ',' that marks the end of this operand.
1550 as_fatal (_("Compiler bug: ODD number of bytes in arg structure %s."),
1554 for (q
= instring
; (*q
!= ',' && *q
!= '\0'); q
++)
1556 if (*q
== '\'' && q
[1] != '\0') /* Jump quoted characters */
1561 * Q points to ',' or '\0' that ends argument. C is that
1565 operandp
->top_access
= p
[0];
1566 operandp
->top_width
= p
[1];
1567 tip_op (instring
- 1, operandp
);
1568 *q
= c
; /* Restore input text. */
1569 if (*(operandp
->top_error
))
1571 alloperr
= operandp
->top_error
;
1573 instring
= q
+ (c
? 1 : 0); /* next operand (if any) */
1574 count
++; /* won another argument, may have an operr */
1577 alloperr
= _("Not enough operands");
1579 /* Restore the pointer. */
1580 input_line_pointer
= save_input_line_pointer
;
1584 if (*instring
== ' ')
1585 instring
++; /* Skip whitespace. */
1587 alloperr
= _("Too many operands");
1589 titP
->tit_error
= alloperr
;
1593 titP
->tit_opcode
= twP
->code
; /* The op-code. */
1594 titP
->tit_operands
= count
;
1597 /* md_assemble() emit frags for 1 instruction */
1599 md_assemble (instruction_string
)
1600 char *instruction_string
; /* A string: assemble 1 instruction. */
1603 register struct top
*operandP
;/* An operand. Scans all operands. */
1604 /* char c_save; fixme: remove this line *//* What used to live after an expression. */
1605 /* struct frag *fragP; fixme: remove this line *//* Fragment of code we just made. */
1606 /* register struct top *end_operandP; fixme: remove this line *//* -> slot just after last operand
1607 Limit of the for (each operand). */
1608 register expressionS
*expP
; /* -> expression values for this operand */
1610 /* These refer to an instruction operand expression. */
1611 segT to_seg
; /* Target segment of the address. */
1613 register valueT this_add_number
;
1614 register symbolS
*this_add_symbol
; /* +ve (minuend) symbol. */
1616 /* tahoe_opcodeT opcode_as_number; fixme: remove this line *//* The opcode as a number. */
1617 char *opcodeP
; /* Where it is in a frag. */
1618 /* char *opmodeP; fixme: remove this line *//* Where opcode type is, in a frag. */
1620 int dispsize
; /* From top_dispsize: tahoe_operand_width
1622 int is_undefined
; /* 1 if operand expression's
1623 segment not known yet. */
1624 int pc_rel
; /* Is this operand pc relative? */
1626 /* Decode the operand. */
1627 tip (&t
, instruction_string
);
1630 * Check to see if this operand decode properly.
1631 * Notice that we haven't made any frags yet.
1632 * If it goofed, then this instruction will wedge in any pass,
1633 * and we can safely flush it, without causing interpass symbol phase
1634 * errors. That is, without changing label values in different passes.
1638 as_warn (_("Ignoring statement due to \"%s\""), t
.tit_error
);
1642 /* We saw no errors in any operands - try to make frag(s) */
1644 /* Remember where it is, in case we want to modify the op-code later. */
1645 opcodeP
= frag_more (1);
1646 *opcodeP
= t
.tit_opcode
;
1647 /* Now do each operand. */
1648 for (operandP
= t
.tit_operand
;
1649 operandP
< t
.tit_operand
+ t
.tit_operands
;
1651 { /* for each operand */
1652 expP
= &(operandP
->exp_of_operand
);
1653 if (operandP
->top_ndx
>= 0)
1655 /* Indexed addressing byte
1656 Legality of indexed mode already checked: it is OK */
1657 FRAG_APPEND_1_CHAR (0x40 + operandP
->top_ndx
);
1658 } /* if(top_ndx>=0) */
1660 /* Here to make main operand frag(s). */
1661 this_add_number
= expP
->X_add_number
;
1662 this_add_symbol
= expP
->X_add_symbol
;
1663 to_seg
= operandP
->seg_of_operand
;
1664 know (to_seg
== SEG_UNKNOWN
|| \
1665 to_seg
== SEG_ABSOLUTE
|| \
1666 to_seg
== SEG_DATA
|| \
1667 to_seg
== SEG_TEXT
|| \
1669 is_undefined
= (to_seg
== SEG_UNKNOWN
);
1670 /* Do we know how big this opperand is? */
1671 dispsize
= operandP
->top_dispsize
;
1673 /* Deal with the branch possabilities. (Note, this doesn't include
1675 if (operandP
->top_access
== 'b')
1677 /* Branches must be expressions. A psuedo branch can also jump to
1678 an absolute address. */
1679 if (to_seg
== now_seg
|| is_undefined
)
1681 /* If is_undefined, then it might BECOME now_seg by relax time. */
1684 /* I know how big the branch is supposed to be (it's a normal
1685 branch), so I set up the frag, and let GAS do the rest. */
1686 p
= frag_more (dispsize
);
1687 fix_new (frag_now
, p
- frag_now
->fr_literal
,
1688 this_add_symbol
, this_add_number
,
1689 size_to_fx (dispsize
, 1),
1694 /* (to_seg==now_seg || to_seg == SEG_UNKNOWN) && dispsize==0 */
1695 /* If we don't know how big it is, then its a synthetic branch,
1696 so we set up a simple relax state. */
1697 switch (operandP
->top_width
)
1699 case TAHOE_WIDTH_CONDITIONAL_JUMP
:
1700 /* Simple (conditional) jump. I may have to reverse the
1701 condition of opcodeP, and then jump to my destination.
1702 I set 1 byte aside for the branch off set, and could need 6
1703 more bytes for the pc_rel jump */
1704 frag_var (rs_machine_dependent
, 7, 1,
1705 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH
,
1706 is_undefined
? STATE_UNDF
: STATE_BYTE
),
1707 this_add_symbol
, this_add_number
, opcodeP
);
1709 case TAHOE_WIDTH_ALWAYS_JUMP
:
1710 /* Simple (unconditional) jump. I may have to convert this to
1711 a word branch, or an absolute jump. */
1712 frag_var (rs_machine_dependent
, 5, 1,
1713 ENCODE_RELAX (STATE_ALWAYS_BRANCH
,
1714 is_undefined
? STATE_UNDF
: STATE_BYTE
),
1715 this_add_symbol
, this_add_number
, opcodeP
);
1717 /* The smallest size for the next 2 cases is word. */
1718 case TAHOE_WIDTH_BIG_REV_JUMP
:
1719 frag_var (rs_machine_dependent
, 8, 2,
1720 ENCODE_RELAX (STATE_BIG_REV_BRANCH
,
1721 is_undefined
? STATE_UNDF
: STATE_WORD
),
1722 this_add_symbol
, this_add_number
,
1725 case TAHOE_WIDTH_BIG_NON_REV_JUMP
:
1726 frag_var (rs_machine_dependent
, 10, 2,
1727 ENCODE_RELAX (STATE_BIG_NON_REV_BRANCH
,
1728 is_undefined
? STATE_UNDF
: STATE_WORD
),
1729 this_add_symbol
, this_add_number
,
1733 as_fatal (_("Compliler bug: Got a case (%d) I wasn't expecting."),
1734 operandP
->top_width
);
1740 /* to_seg != now_seg && to_seg != seg_unknown (still in branch)
1741 In other words, I'm jumping out of my segment so extend the
1742 branches to jumps, and let GAS fix them. */
1744 /* These are "branches" what will always be branches around a jump
1745 to the correct addresss in real life.
1746 If to_seg is SEG_ABSOLUTE, just encode the branch in,
1747 else let GAS fix the address. */
1749 switch (operandP
->top_width
)
1752 For SEG_ABSOLUTE, then mode is ABSOLUTE_ADDR, jump
1753 to that addresss (not pc_rel).
1754 For other segs, address is a long word PC rel jump. */
1755 case TAHOE_WIDTH_CONDITIONAL_JUMP
:
1757 /* To reverse the condition in a TAHOE branch,
1763 *p
++ = (operandP
->top_mode
==
1764 TAHOE_ABSOLUTE_ADDR
? TAHOE_ABSOLUTE_ADDR
:
1766 fix_new (frag_now
, p
- frag_now
->fr_literal
,
1767 this_add_symbol
, this_add_number
,
1768 (to_seg
!= SEG_ABSOLUTE
) ? FX_PCREL32
: FX_32
, NULL
);
1775 case TAHOE_WIDTH_ALWAYS_JUMP
:
1776 /* br, just turn it into a jump */
1777 *opcodeP
= TAHOE_JMP
;
1779 *p
++ = (operandP
->top_mode
==
1780 TAHOE_ABSOLUTE_ADDR
? TAHOE_ABSOLUTE_ADDR
:
1782 fix_new (frag_now
, p
- frag_now
->fr_literal
,
1783 this_add_symbol
, this_add_number
,
1784 (to_seg
!= SEG_ABSOLUTE
) ? FX_PCREL32
: FX_32
, NULL
);
1785 /* Now (eg) JMP foo */
1787 case TAHOE_WIDTH_BIG_REV_JUMP
:
1793 *p
++ = (operandP
->top_mode
==
1794 TAHOE_ABSOLUTE_ADDR
? TAHOE_ABSOLUTE_ADDR
:
1796 fix_new (frag_now
, p
- frag_now
->fr_literal
,
1797 this_add_symbol
, this_add_number
,
1798 (to_seg
!= SEG_ABSOLUTE
) ? FX_PCREL32
: FX_32
, NULL
);
1805 case TAHOE_WIDTH_BIG_NON_REV_JUMP
:
1812 *p
++ = (operandP
->top_mode
==
1813 TAHOE_ABSOLUTE_ADDR
? TAHOE_ABSOLUTE_ADDR
:
1815 fix_new (frag_now
, p
- frag_now
->fr_literal
,
1816 this_add_symbol
, this_add_number
,
1817 (to_seg
!= SEG_ABSOLUTE
) ? FX_PCREL32
: FX_32
, NULL
);
1819 * Now (eg) xOBxxx 1f
1827 as_warn (_("Real branch displacements must be expressions."));
1830 as_fatal (_("Complier error: I got an unknown synthetic branch :%c"),
1831 operandP
->top_width
);
1838 /* It ain't a branch operand. */
1839 switch (operandP
->top_mode
)
1841 /* Auto-foo access, only works for one reg (SP)
1842 so the only thing needed is the mode. */
1843 case TAHOE_AUTO_DEC
:
1844 case TAHOE_AUTO_INC
:
1845 case TAHOE_AUTO_INC_DEFERRED
:
1846 FRAG_APPEND_1_CHAR (operandP
->top_mode
);
1849 /* Numbered Register only access. Only thing needed is the
1850 mode + Register number */
1851 case TAHOE_DIRECT_REG
:
1852 case TAHOE_REG_DEFERRED
:
1853 FRAG_APPEND_1_CHAR (operandP
->top_mode
+ operandP
->top_reg
);
1856 /* An absolute address. It's size is always 5 bytes.
1857 (mode_type + 4 byte address). */
1858 case TAHOE_ABSOLUTE_ADDR
:
1859 know ((this_add_symbol
== NULL
));
1861 *p
= TAHOE_ABSOLUTE_ADDR
;
1862 md_number_to_chars (p
+ 1, this_add_number
, 4);
1865 /* Immediate data. If the size isn't known, then it's an address
1866 + and offset, which is 4 bytes big. */
1867 case TAHOE_IMMEDIATE
:
1868 if (this_add_symbol
!= NULL
)
1871 *p
++ = TAHOE_IMMEDIATE_LONGWORD
;
1872 fix_new (frag_now
, p
- frag_now
->fr_literal
,
1873 this_add_symbol
, this_add_number
,
1878 /* It's a integer, and I know it's size. */
1879 if ((unsigned) this_add_number
< 0x40)
1881 /* Will it fit in a literal? */
1882 FRAG_APPEND_1_CHAR ((byte
) this_add_number
);
1886 p
= frag_more (dispsize
+ 1);
1890 *p
++ = TAHOE_IMMEDIATE_BYTE
;
1891 *p
= (byte
) this_add_number
;
1894 *p
++ = TAHOE_IMMEDIATE_WORD
;
1895 md_number_to_chars (p
, this_add_number
, 2);
1898 *p
++ = TAHOE_IMMEDIATE_LONGWORD
;
1899 md_number_to_chars (p
, this_add_number
, 4);
1906 /* Distance from the PC. If the size isn't known, we have to relax
1907 into it. The difference between this and disp(sp) is that
1908 this offset is pc_rel, and disp(sp) isn't.
1909 Note the drop through code. */
1911 case TAHOE_DISPLACED_RELATIVE
:
1912 case TAHOE_DISP_REL_DEFERRED
:
1913 operandP
->top_reg
= PC_REG
;
1916 /* Register, plus a displacement mode. Save the register number,
1917 and weather its deffered or not, and relax the size if it isn't
1919 case TAHOE_REG_DISP
:
1920 case TAHOE_REG_DISP_DEFERRED
:
1921 if (operandP
->top_mode
== TAHOE_DISP_REL_DEFERRED
||
1922 operandP
->top_mode
== TAHOE_REG_DISP_DEFERRED
)
1923 operandP
->top_reg
+= 0x10; /* deffered mode is always 0x10 higher
1924 than it's non-deffered sibling. */
1926 /* Is this a value out of this segment?
1927 The first part of this conditional is a cludge to make gas
1928 produce the same output as 'as' when there is a lable, in
1929 the current segment, displaceing a register. It's strange,
1930 and no one in their right mind would do it, but it's easy
1932 if ((dispsize
== 0 && !pc_rel
) ||
1933 (to_seg
!= now_seg
&& !is_undefined
&& to_seg
!= SEG_ABSOLUTE
))
1939 * We have a SEG_UNKNOWN symbol, or the size isn't cast.
1940 * It might turn out to be in the same segment as
1941 * the instruction, permitting relaxation.
1943 p
= frag_var (rs_machine_dependent
, 5, 2,
1944 ENCODE_RELAX (STATE_PC_RELATIVE
,
1945 is_undefined
? STATE_UNDF
: STATE_BYTE
),
1946 this_add_symbol
, this_add_number
, 0);
1947 *p
= operandP
->top_reg
;
1951 /* Either this is an abs, or a cast. */
1952 p
= frag_more (dispsize
+ 1);
1956 *p
= TAHOE_PC_OR_BYTE
+ operandP
->top_reg
;
1959 *p
= TAHOE_PC_OR_WORD
+ operandP
->top_reg
;
1962 *p
= TAHOE_PC_OR_LONG
+ operandP
->top_reg
;
1965 fix_new (frag_now
, p
+ 1 - frag_now
->fr_literal
,
1966 this_add_symbol
, this_add_number
,
1967 size_to_fx (dispsize
, pc_rel
), NULL
);
1971 as_fatal (_("Barf, bad mode %x\n"), operandP
->top_mode
);
1974 } /* for(operandP) */
1975 } /* if(!need_pass_2 && !goofed) */
1976 } /* tahoe_assemble() */
1979 /* We have no need to default values of symbols. */
1983 md_undefined_symbol (name
)
1987 } /* md_undefined_symbol() */
1989 /* Round up a section size to the appropriate boundary. */
1991 md_section_align (segment
, size
)
1995 return ((size
+ 7) & ~7); /* Round all sects to multiple of 8 */
1996 } /* md_section_align() */
1998 /* Exactly what point is a PC-relative offset relative TO?
1999 On the sparc, they're relative to the address of the offset, plus
2000 its size. This gets us to the following instruction.
2001 (??? Is this right? FIXME-SOON) */
2003 md_pcrel_from (fixP
)
2006 return (((fixP
->fx_type
== FX_8
2007 || fixP
->fx_type
== FX_PCREL8
)
2009 : ((fixP
->fx_type
== FX_16
2010 || fixP
->fx_type
== FX_PCREL16
)
2012 : ((fixP
->fx_type
== FX_32
2013 || fixP
->fx_type
== FX_PCREL32
)
2015 : 0))) + fixP
->fx_where
+ fixP
->fx_frag
->fr_address
);
2016 } /* md_pcrel_from() */
2022 /* should never be called */
2025 } /* tc_is_pcrel() */
2027 /* end of tc-tahoe.c */