1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
210 bfd_elf_mkobject (bfd
*abfd
)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
215 if (elf_tdata (abfd
) == 0)
217 /* Since everything is done at close time, do we need any
224 bfd_elf_mkcorefile (bfd
*abfd
)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd
);
231 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
233 Elf_Internal_Shdr
**i_shdrp
;
234 bfd_byte
*shstrtab
= NULL
;
236 bfd_size_type shstrtabsize
;
238 i_shdrp
= elf_elfsections (abfd
);
239 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
242 shstrtab
= i_shdrp
[shindex
]->contents
;
243 if (shstrtab
== NULL
)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset
= i_shdrp
[shindex
]->sh_offset
;
247 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize
+ 1 == 0
252 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
253 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
255 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
257 if (bfd_get_error () != bfd_error_system_call
)
258 bfd_set_error (bfd_error_file_truncated
);
262 shstrtab
[shstrtabsize
] = '\0';
263 i_shdrp
[shindex
]->contents
= shstrtab
;
265 return (char *) shstrtab
;
269 bfd_elf_string_from_elf_section (bfd
*abfd
,
270 unsigned int shindex
,
271 unsigned int strindex
)
273 Elf_Internal_Shdr
*hdr
;
278 hdr
= elf_elfsections (abfd
)[shindex
];
280 if (hdr
->contents
== NULL
281 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
284 if (strindex
>= hdr
->sh_size
)
286 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
287 (*_bfd_error_handler
)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
290 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
292 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
296 return ((char *) hdr
->contents
) + strindex
;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
306 bfd_elf_get_elf_syms (bfd
*ibfd
,
307 Elf_Internal_Shdr
*symtab_hdr
,
310 Elf_Internal_Sym
*intsym_buf
,
312 Elf_External_Sym_Shndx
*extshndx_buf
)
314 Elf_Internal_Shdr
*shndx_hdr
;
316 const bfd_byte
*esym
;
317 Elf_External_Sym_Shndx
*alloc_extshndx
;
318 Elf_External_Sym_Shndx
*shndx
;
319 Elf_Internal_Sym
*isym
;
320 Elf_Internal_Sym
*isymend
;
321 const struct elf_backend_data
*bed
;
329 /* Normal syms might have section extension entries. */
331 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
332 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
334 /* Read the symbols. */
336 alloc_extshndx
= NULL
;
337 bed
= get_elf_backend_data (ibfd
);
338 extsym_size
= bed
->s
->sizeof_sym
;
339 amt
= symcount
* extsym_size
;
340 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
341 if (extsym_buf
== NULL
)
343 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
344 extsym_buf
= alloc_ext
;
346 if (extsym_buf
== NULL
347 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
348 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
354 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
358 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
359 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
360 if (extshndx_buf
== NULL
)
362 alloc_extshndx
= bfd_malloc2 (symcount
,
363 sizeof (Elf_External_Sym_Shndx
));
364 extshndx_buf
= alloc_extshndx
;
366 if (extshndx_buf
== NULL
367 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
368 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
375 if (intsym_buf
== NULL
)
377 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
378 if (intsym_buf
== NULL
)
382 /* Convert the symbols to internal form. */
383 isymend
= intsym_buf
+ symcount
;
384 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
386 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
387 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
390 if (alloc_ext
!= NULL
)
392 if (alloc_extshndx
!= NULL
)
393 free (alloc_extshndx
);
398 /* Look up a symbol name. */
400 bfd_elf_sym_name (bfd
*abfd
,
401 Elf_Internal_Shdr
*symtab_hdr
,
402 Elf_Internal_Sym
*isym
,
406 unsigned int iname
= isym
->st_name
;
407 unsigned int shindex
= symtab_hdr
->sh_link
;
409 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym
->st_shndx
< elf_numsections (abfd
)
412 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 else if (sym_sec
&& *name
== '\0')
422 name
= bfd_section_name (abfd
, sym_sec
);
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
431 typedef union elf_internal_group
{
432 Elf_Internal_Shdr
*shdr
;
434 } Elf_Internal_Group
;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
440 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
442 Elf_Internal_Shdr
*hdr
;
443 unsigned char esym
[sizeof (Elf64_External_Sym
)];
444 Elf_External_Sym_Shndx eshndx
;
445 Elf_Internal_Sym isym
;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
450 if (hdr
->sh_type
!= SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
454 /* Go read the symbol. */
455 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
456 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
457 &isym
, esym
, &eshndx
) == NULL
)
460 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
466 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
468 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
474 unsigned int i
, shnum
;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum
= elf_numsections (abfd
);
480 for (i
= 0; i
< shnum
; i
++)
482 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
483 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
489 num_group
= (unsigned) -1;
490 elf_tdata (abfd
)->num_group
= num_group
;
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
498 elf_tdata (abfd
)->num_group
= num_group
;
499 elf_tdata (abfd
)->group_sect_ptr
500 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
501 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
505 for (i
= 0; i
< shnum
; i
++)
507 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
508 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
511 Elf_Internal_Group
*dest
;
513 /* Add to list of sections. */
514 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest
) >= 4);
519 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
520 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
522 if (shdr
->contents
== NULL
523 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
524 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
532 src
= shdr
->contents
+ shdr
->sh_size
;
533 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
540 idx
= H_GET_32 (abfd
, src
);
541 if (src
== shdr
->contents
)
544 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
545 shdr
->bfd_section
->flags
546 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
551 ((*_bfd_error_handler
)
552 (_("%B: invalid SHT_GROUP entry"), abfd
));
555 dest
->shdr
= elf_elfsections (abfd
)[idx
];
562 if (num_group
!= (unsigned) -1)
566 for (i
= 0; i
< num_group
; i
++)
568 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
569 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
570 unsigned int n_elt
= shdr
->sh_size
/ 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
575 if ((++idx
)->shdr
== hdr
)
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
582 idx
= (Elf_Internal_Group
*) shdr
->contents
;
583 n_elt
= shdr
->sh_size
/ 4;
585 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
586 && elf_next_in_group (s
) != NULL
)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect
) = elf_group_name (s
);
593 elf_next_in_group (newsect
) = elf_next_in_group (s
);
594 elf_next_in_group (s
) = newsect
;
600 gname
= group_signature (abfd
, shdr
);
603 elf_group_name (newsect
) = gname
;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect
) = newsect
;
609 /* If the group section has been created, point to the
611 if (shdr
->bfd_section
!= NULL
)
612 elf_next_in_group (shdr
->bfd_section
) = newsect
;
620 if (elf_group_name (newsect
) == NULL
)
622 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
629 _bfd_elf_setup_sections (bfd
*abfd
)
632 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
633 bfd_boolean result
= TRUE
;
636 /* Process SHF_LINK_ORDER. */
637 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
639 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
640 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
642 unsigned int elfsec
= this_hdr
->sh_link
;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
648 const struct elf_backend_data
*bed
649 = get_elf_backend_data (abfd
);
650 if (bed
->link_order_error_handler
)
651 bed
->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
659 this_hdr
= elf_elfsections (abfd
)[elfsec
];
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link
= this_hdr
->bfd_section
;
667 (*_bfd_error_handler
)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s
->owner
, s
, elfsec
);
673 elf_linked_to_section (s
) = link
;
678 /* Process section groups. */
679 if (num_group
== (unsigned) -1)
682 for (i
= 0; i
< num_group
; i
++)
684 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
685 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
686 unsigned int n_elt
= shdr
->sh_size
/ 4;
689 if ((++idx
)->shdr
->bfd_section
)
690 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
691 else if (idx
->shdr
->sh_type
== SHT_RELA
692 || idx
->shdr
->sh_type
== SHT_REL
)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
698 shdr
->bfd_section
->size
-= 4;
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler
)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
705 (unsigned int) idx
->shdr
->sh_type
,
706 bfd_elf_string_from_elf_section (abfd
,
707 (elf_elfheader (abfd
)
710 shdr
->bfd_section
->name
);
718 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
720 return elf_next_in_group (sec
) != NULL
;
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
727 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
728 Elf_Internal_Shdr
*hdr
,
734 const struct elf_backend_data
*bed
;
736 if (hdr
->bfd_section
!= NULL
)
738 BFD_ASSERT (strcmp (name
,
739 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
743 newsect
= bfd_make_section_anyway (abfd
, name
);
747 hdr
->bfd_section
= newsect
;
748 elf_section_data (newsect
)->this_hdr
= *hdr
;
749 elf_section_data (newsect
)->this_idx
= shindex
;
751 /* Always use the real type/flags. */
752 elf_section_type (newsect
) = hdr
->sh_type
;
753 elf_section_flags (newsect
) = hdr
->sh_flags
;
755 newsect
->filepos
= hdr
->sh_offset
;
757 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
758 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
759 || ! bfd_set_section_alignment (abfd
, newsect
,
760 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
763 flags
= SEC_NO_FLAGS
;
764 if (hdr
->sh_type
!= SHT_NOBITS
)
765 flags
|= SEC_HAS_CONTENTS
;
766 if (hdr
->sh_type
== SHT_GROUP
)
767 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
768 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
771 if (hdr
->sh_type
!= SHT_NOBITS
)
774 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
775 flags
|= SEC_READONLY
;
776 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
778 else if ((flags
& SEC_LOAD
) != 0)
780 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
783 newsect
->entsize
= hdr
->sh_entsize
;
784 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
785 flags
|= SEC_STRINGS
;
787 if (hdr
->sh_flags
& SHF_GROUP
)
788 if (!setup_group (abfd
, hdr
, newsect
))
790 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
791 flags
|= SEC_THREAD_LOCAL
;
793 if ((flags
& SEC_ALLOC
) == 0)
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
801 } debug_sections
[] =
803 { "debug", 5 }, /* 'd' */
804 { NULL
, 0 }, /* 'e' */
805 { NULL
, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL
, 0 }, /* 'h' */
808 { NULL
, 0 }, /* 'i' */
809 { NULL
, 0 }, /* 'j' */
810 { NULL
, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL
, 0 }, /* 'm' */
813 { NULL
, 0 }, /* 'n' */
814 { NULL
, 0 }, /* 'o' */
815 { NULL
, 0 }, /* 'p' */
816 { NULL
, 0 }, /* 'q' */
817 { NULL
, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
823 int i
= name
[1] - 'd';
825 && i
< (int) ARRAY_SIZE (debug_sections
)
826 && debug_sections
[i
].name
!= NULL
827 && strncmp (&name
[1], debug_sections
[i
].name
,
828 debug_sections
[i
].len
) == 0)
829 flags
|= SEC_DEBUGGING
;
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect
) == NULL
)
841 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
843 bed
= get_elf_backend_data (abfd
);
844 if (bed
->elf_backend_section_flags
)
845 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
848 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
851 if ((flags
& SEC_ALLOC
) != 0)
853 Elf_Internal_Phdr
*phdr
;
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr
= elf_tdata (abfd
)->phdr
;
860 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
862 if (phdr
->p_paddr
!= 0)
865 if (i
< elf_elfheader (abfd
)->e_phnum
)
867 phdr
= elf_tdata (abfd
)->phdr
;
868 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr
->p_type
== PT_LOAD
883 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
884 && (hdr
->sh_offset
+ hdr
->sh_size
885 <= phdr
->p_offset
+ phdr
->p_memsz
)
886 && ((flags
& SEC_LOAD
) == 0
887 || (hdr
->sh_offset
+ hdr
->sh_size
888 <= phdr
->p_offset
+ phdr
->p_filesz
)))
890 if ((flags
& SEC_LOAD
) == 0)
891 newsect
->lma
= (phdr
->p_paddr
892 + hdr
->sh_addr
- phdr
->p_vaddr
);
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect
->lma
= (phdr
->p_paddr
902 + hdr
->sh_offset
- phdr
->p_offset
);
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr
->sh_addr
>= phdr
->p_vaddr
909 && (hdr
->sh_addr
+ hdr
->sh_size
910 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
935 struct elf_internal_shdr
*
936 bfd_elf_find_section (bfd
*abfd
, char *name
)
938 Elf_Internal_Shdr
**i_shdrp
;
943 i_shdrp
= elf_elfsections (abfd
);
946 shstrtab
= bfd_elf_get_str_section (abfd
,
947 elf_elfheader (abfd
)->e_shstrndx
);
948 if (shstrtab
!= NULL
)
950 max
= elf_numsections (abfd
);
951 for (i
= 1; i
< max
; i
++)
952 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
959 const char *const bfd_elf_section_type_names
[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
977 arelent
*reloc_entry
,
979 void *data ATTRIBUTE_UNUSED
,
980 asection
*input_section
,
982 char **error_message ATTRIBUTE_UNUSED
)
984 if (output_bfd
!= NULL
985 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
986 && (! reloc_entry
->howto
->partial_inplace
987 || reloc_entry
->addend
== 0))
989 reloc_entry
->address
+= input_section
->output_offset
;
993 return bfd_reloc_continue
;
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
999 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1002 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1003 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1006 /* Finish SHF_MERGE section merging. */
1009 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1014 if (!is_elf_hash_table (info
->hash
))
1017 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1018 if ((ibfd
->flags
& DYNAMIC
) == 0)
1019 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1020 if ((sec
->flags
& SEC_MERGE
) != 0
1021 && !bfd_is_abs_section (sec
->output_section
))
1023 struct bfd_elf_section_data
*secdata
;
1025 secdata
= elf_section_data (sec
);
1026 if (! _bfd_add_merge_section (abfd
,
1027 &elf_hash_table (info
)->merge_info
,
1028 sec
, &secdata
->sec_info
))
1030 else if (secdata
->sec_info
)
1031 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1034 if (elf_hash_table (info
)->merge_info
!= NULL
)
1035 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1036 merge_sections_remove_hook
);
1041 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1043 sec
->output_section
= bfd_abs_section_ptr
;
1044 sec
->output_offset
= sec
->vma
;
1045 if (!is_elf_hash_table (info
->hash
))
1048 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1051 /* Copy the program header and other data from one object module to
1055 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1057 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1061 BFD_ASSERT (!elf_flags_init (obfd
)
1062 || (elf_elfheader (obfd
)->e_flags
1063 == elf_elfheader (ibfd
)->e_flags
));
1065 elf_gp (obfd
) = elf_gp (ibfd
);
1066 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1067 elf_flags_init (obfd
) = TRUE
;
1072 get_segment_type (unsigned int p_type
)
1077 case PT_NULL
: pt
= "NULL"; break;
1078 case PT_LOAD
: pt
= "LOAD"; break;
1079 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1080 case PT_INTERP
: pt
= "INTERP"; break;
1081 case PT_NOTE
: pt
= "NOTE"; break;
1082 case PT_SHLIB
: pt
= "SHLIB"; break;
1083 case PT_PHDR
: pt
= "PHDR"; break;
1084 case PT_TLS
: pt
= "TLS"; break;
1085 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1086 case PT_GNU_STACK
: pt
= "STACK"; break;
1087 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1088 default: pt
= NULL
; break;
1093 /* Print out the program headers. */
1096 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1099 Elf_Internal_Phdr
*p
;
1101 bfd_byte
*dynbuf
= NULL
;
1103 p
= elf_tdata (abfd
)->phdr
;
1108 fprintf (f
, _("\nProgram Header:\n"));
1109 c
= elf_elfheader (abfd
)->e_phnum
;
1110 for (i
= 0; i
< c
; i
++, p
++)
1112 const char *pt
= get_segment_type (p
->p_type
);
1117 sprintf (buf
, "0x%lx", p
->p_type
);
1120 fprintf (f
, "%8s off 0x", pt
);
1121 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1122 fprintf (f
, " vaddr 0x");
1123 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1124 fprintf (f
, " paddr 0x");
1125 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1126 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1127 fprintf (f
, " filesz 0x");
1128 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1129 fprintf (f
, " memsz 0x");
1130 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1131 fprintf (f
, " flags %c%c%c",
1132 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1133 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1134 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1135 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1136 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1141 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1145 unsigned long shlink
;
1146 bfd_byte
*extdyn
, *extdynend
;
1148 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1150 fprintf (f
, _("\nDynamic Section:\n"));
1152 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1155 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1158 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1160 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1161 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1164 extdynend
= extdyn
+ s
->size
;
1165 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1167 Elf_Internal_Dyn dyn
;
1170 bfd_boolean stringp
;
1172 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1174 if (dyn
.d_tag
== DT_NULL
)
1181 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1185 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1186 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1187 case DT_PLTGOT
: name
= "PLTGOT"; break;
1188 case DT_HASH
: name
= "HASH"; break;
1189 case DT_STRTAB
: name
= "STRTAB"; break;
1190 case DT_SYMTAB
: name
= "SYMTAB"; break;
1191 case DT_RELA
: name
= "RELA"; break;
1192 case DT_RELASZ
: name
= "RELASZ"; break;
1193 case DT_RELAENT
: name
= "RELAENT"; break;
1194 case DT_STRSZ
: name
= "STRSZ"; break;
1195 case DT_SYMENT
: name
= "SYMENT"; break;
1196 case DT_INIT
: name
= "INIT"; break;
1197 case DT_FINI
: name
= "FINI"; break;
1198 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1199 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1200 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1201 case DT_REL
: name
= "REL"; break;
1202 case DT_RELSZ
: name
= "RELSZ"; break;
1203 case DT_RELENT
: name
= "RELENT"; break;
1204 case DT_PLTREL
: name
= "PLTREL"; break;
1205 case DT_DEBUG
: name
= "DEBUG"; break;
1206 case DT_TEXTREL
: name
= "TEXTREL"; break;
1207 case DT_JMPREL
: name
= "JMPREL"; break;
1208 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1209 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1214 case DT_FLAGS
: name
= "FLAGS"; break;
1215 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1218 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1219 case DT_MOVEENT
: name
= "MOVEENT"; break;
1220 case DT_MOVESZ
: name
= "MOVESZ"; break;
1221 case DT_FEATURE
: name
= "FEATURE"; break;
1222 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1223 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1224 case DT_SYMINENT
: name
= "SYMINENT"; break;
1225 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1226 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1227 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1228 case DT_PLTPAD
: name
= "PLTPAD"; break;
1229 case DT_MOVETAB
: name
= "MOVETAB"; break;
1230 case DT_SYMINFO
: name
= "SYMINFO"; break;
1231 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1232 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1233 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1234 case DT_VERSYM
: name
= "VERSYM"; break;
1235 case DT_VERDEF
: name
= "VERDEF"; break;
1236 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1237 case DT_VERNEED
: name
= "VERNEED"; break;
1238 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1239 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1240 case DT_USED
: name
= "USED"; break;
1241 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1244 fprintf (f
, " %-11s ", name
);
1246 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1250 unsigned int tagv
= dyn
.d_un
.d_val
;
1252 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1255 fprintf (f
, "%s", string
);
1264 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1265 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1267 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1271 if (elf_dynverdef (abfd
) != 0)
1273 Elf_Internal_Verdef
*t
;
1275 fprintf (f
, _("\nVersion definitions:\n"));
1276 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1278 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1279 t
->vd_flags
, t
->vd_hash
,
1280 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1281 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1283 Elf_Internal_Verdaux
*a
;
1286 for (a
= t
->vd_auxptr
->vda_nextptr
;
1290 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1296 if (elf_dynverref (abfd
) != 0)
1298 Elf_Internal_Verneed
*t
;
1300 fprintf (f
, _("\nVersion References:\n"));
1301 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1303 Elf_Internal_Vernaux
*a
;
1305 fprintf (f
, _(" required from %s:\n"),
1306 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1307 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1308 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1309 a
->vna_flags
, a
->vna_other
,
1310 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1322 /* Display ELF-specific fields of a symbol. */
1325 bfd_elf_print_symbol (bfd
*abfd
,
1328 bfd_print_symbol_type how
)
1333 case bfd_print_symbol_name
:
1334 fprintf (file
, "%s", symbol
->name
);
1336 case bfd_print_symbol_more
:
1337 fprintf (file
, "elf ");
1338 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1339 fprintf (file
, " %lx", (long) symbol
->flags
);
1341 case bfd_print_symbol_all
:
1343 const char *section_name
;
1344 const char *name
= NULL
;
1345 const struct elf_backend_data
*bed
;
1346 unsigned char st_other
;
1349 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1351 bed
= get_elf_backend_data (abfd
);
1352 if (bed
->elf_backend_print_symbol_all
)
1353 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1357 name
= symbol
->name
;
1358 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1361 fprintf (file
, " %s\t", section_name
);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol
->section
))
1367 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1369 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1370 bfd_fprintf_vma (abfd
, file
, val
);
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd
)->dynversym_section
!= 0
1374 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1375 || elf_tdata (abfd
)->dynverref_section
!= 0))
1377 unsigned int vernum
;
1378 const char *version_string
;
1380 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1383 version_string
= "";
1384 else if (vernum
== 1)
1385 version_string
= "Base";
1386 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1388 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1391 Elf_Internal_Verneed
*t
;
1393 version_string
= "";
1394 for (t
= elf_tdata (abfd
)->verref
;
1398 Elf_Internal_Vernaux
*a
;
1400 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1402 if (a
->vna_other
== vernum
)
1404 version_string
= a
->vna_nodename
;
1411 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1412 fprintf (file
, " %-11s", version_string
);
1417 fprintf (file
, " (%s)", version_string
);
1418 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1423 /* If the st_other field is not zero, print it. */
1424 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1429 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1430 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1431 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1433 /* Some other non-defined flags are also present, so print
1435 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1438 fprintf (file
, " %s", name
);
1444 /* Create an entry in an ELF linker hash table. */
1446 struct bfd_hash_entry
*
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1448 struct bfd_hash_table
*table
,
1451 /* Allocate the structure if it has not already been allocated by a
1455 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1460 /* Call the allocation method of the superclass. */
1461 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1464 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1465 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1467 /* Set local fields. */
1470 ret
->got
= htab
->init_got_refcount
;
1471 ret
->plt
= htab
->init_plt_refcount
;
1472 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1473 - offsetof (struct elf_link_hash_entry
, size
)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1489 struct elf_link_hash_entry
*dir
,
1490 struct elf_link_hash_entry
*ind
)
1492 struct elf_link_hash_table
*htab
;
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1497 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1498 dir
->ref_regular
|= ind
->ref_regular
;
1499 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1500 dir
->non_got_ref
|= ind
->non_got_ref
;
1501 dir
->needs_plt
|= ind
->needs_plt
;
1502 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1504 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab
= elf_hash_table (info
);
1510 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1512 if (dir
->got
.refcount
< 0)
1513 dir
->got
.refcount
= 0;
1514 dir
->got
.refcount
+= ind
->got
.refcount
;
1515 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1518 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1520 if (dir
->plt
.refcount
< 0)
1521 dir
->plt
.refcount
= 0;
1522 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1523 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1526 if (ind
->dynindx
!= -1)
1528 if (dir
->dynindx
!= -1)
1529 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1530 dir
->dynindx
= ind
->dynindx
;
1531 dir
->dynstr_index
= ind
->dynstr_index
;
1533 ind
->dynstr_index
= 0;
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1539 struct elf_link_hash_entry
*h
,
1540 bfd_boolean force_local
)
1542 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1546 h
->forced_local
= 1;
1547 if (h
->dynindx
!= -1)
1550 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1556 /* Initialize an ELF linker hash table. */
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table
*table
,
1562 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1563 struct bfd_hash_table
*,
1565 unsigned int entsize
)
1568 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1570 table
->dynamic_sections_created
= FALSE
;
1571 table
->dynobj
= NULL
;
1572 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1573 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1574 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1575 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table
->dynsymcount
= 1;
1578 table
->dynstr
= NULL
;
1579 table
->bucketcount
= 0;
1580 table
->needed
= NULL
;
1582 table
->merge_info
= NULL
;
1583 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1584 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1585 table
->dynlocal
= NULL
;
1586 table
->runpath
= NULL
;
1587 table
->tls_sec
= NULL
;
1588 table
->tls_size
= 0;
1589 table
->loaded
= NULL
;
1590 table
->is_relocatable_executable
= FALSE
;
1592 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1593 table
->root
.type
= bfd_link_elf_hash_table
;
1598 /* Create an ELF linker hash table. */
1600 struct bfd_link_hash_table
*
1601 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1603 struct elf_link_hash_table
*ret
;
1604 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1606 ret
= bfd_malloc (amt
);
1610 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1611 sizeof (struct elf_link_hash_entry
)))
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1625 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1627 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd
) == bfd_object
)
1629 elf_dt_name (abfd
) = name
;
1633 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1636 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd
) == bfd_object
)
1638 lib_class
= elf_dyn_lib_class (abfd
);
1645 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1647 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd
) == bfd_object
)
1649 elf_dyn_lib_class (abfd
) = lib_class
;
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1655 struct bfd_link_needed_list
*
1656 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1657 struct bfd_link_info
*info
)
1659 if (! is_elf_hash_table (info
->hash
))
1661 return elf_hash_table (info
)->needed
;
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1667 struct bfd_link_needed_list
*
1668 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1669 struct bfd_link_info
*info
)
1671 if (! is_elf_hash_table (info
->hash
))
1673 return elf_hash_table (info
)->runpath
;
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1681 bfd_elf_get_dt_soname (bfd
*abfd
)
1683 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd
) == bfd_object
)
1685 return elf_dt_name (abfd
);
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1693 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1694 struct bfd_link_needed_list
**pneeded
)
1697 bfd_byte
*dynbuf
= NULL
;
1699 unsigned long shlink
;
1700 bfd_byte
*extdyn
, *extdynend
;
1702 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1706 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd
) != bfd_object
)
1710 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1711 if (s
== NULL
|| s
->size
== 0)
1714 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1717 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1721 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1723 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1724 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1727 extdynend
= extdyn
+ s
->size
;
1728 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1730 Elf_Internal_Dyn dyn
;
1732 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1734 if (dyn
.d_tag
== DT_NULL
)
1737 if (dyn
.d_tag
== DT_NEEDED
)
1740 struct bfd_link_needed_list
*l
;
1741 unsigned int tagv
= dyn
.d_un
.d_val
;
1744 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1749 l
= bfd_alloc (abfd
, amt
);
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1772 struct bfd_strtab_hash
*
1773 _bfd_elf_stringtab_init (void)
1775 struct bfd_strtab_hash
*ret
;
1777 ret
= _bfd_stringtab_init ();
1782 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1783 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1784 if (loc
== (bfd_size_type
) -1)
1786 _bfd_stringtab_free (ret
);
1793 /* ELF .o/exec file reading */
1795 /* Create a new bfd section from an ELF section header. */
1798 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1800 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1801 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1802 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1805 name
= bfd_elf_string_from_elf_section (abfd
,
1806 elf_elfheader (abfd
)->e_shstrndx
,
1811 switch (hdr
->sh_type
)
1814 /* Inactive section. Throw it away. */
1817 case SHT_PROGBITS
: /* Normal section with contents. */
1818 case SHT_NOBITS
: /* .bss section. */
1819 case SHT_HASH
: /* .hash section. */
1820 case SHT_NOTE
: /* .note section. */
1821 case SHT_INIT_ARRAY
: /* .init_array section. */
1822 case SHT_FINI_ARRAY
: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1827 case SHT_DYNAMIC
: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1830 if (hdr
->sh_link
> elf_numsections (abfd
)
1831 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1833 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1835 Elf_Internal_Shdr
*dynsymhdr
;
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd
) != 0)
1842 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1843 hdr
->sh_link
= dynsymhdr
->sh_link
;
1847 unsigned int i
, num_sec
;
1849 num_sec
= elf_numsections (abfd
);
1850 for (i
= 1; i
< num_sec
; i
++)
1852 dynsymhdr
= elf_elfsections (abfd
)[i
];
1853 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1855 hdr
->sh_link
= dynsymhdr
->sh_link
;
1863 case SHT_SYMTAB
: /* A symbol table */
1864 if (elf_onesymtab (abfd
) == shindex
)
1867 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1869 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1870 elf_onesymtab (abfd
) = shindex
;
1871 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1872 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1873 abfd
->flags
|= HAS_SYMS
;
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1881 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1882 && (abfd
->flags
& DYNAMIC
) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1892 unsigned int i
, num_sec
;
1894 num_sec
= elf_numsections (abfd
);
1895 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1897 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1898 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1899 && hdr2
->sh_link
== shindex
)
1903 for (i
= 1; i
< shindex
; i
++)
1905 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1906 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1907 && hdr2
->sh_link
== shindex
)
1911 return bfd_section_from_shdr (abfd
, i
);
1915 case SHT_DYNSYM
: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd
) == shindex
)
1919 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1921 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1922 elf_dynsymtab (abfd
) = shindex
;
1923 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1924 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1925 abfd
->flags
|= HAS_SYMS
;
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1931 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd
) == shindex
)
1935 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1936 elf_symtab_shndx (abfd
) = shindex
;
1937 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1938 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1941 case SHT_STRTAB
: /* A string table */
1942 if (hdr
->bfd_section
!= NULL
)
1944 if (ehdr
->e_shstrndx
== shindex
)
1946 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1947 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1950 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1953 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1954 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1957 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1960 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1961 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1962 elf_elfsections (abfd
)[shindex
] = hdr
;
1963 /* We also treat this as a regular section, so that objcopy
1965 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1974 unsigned int i
, num_sec
;
1976 num_sec
= elf_numsections (abfd
);
1977 for (i
= 1; i
< num_sec
; i
++)
1979 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1980 if (hdr2
->sh_link
== shindex
)
1982 /* Prevent endless recursion on broken objects. */
1985 if (! bfd_section_from_shdr (abfd
, i
))
1987 if (elf_onesymtab (abfd
) == i
)
1989 if (elf_dynsymtab (abfd
) == i
)
1990 goto dynsymtab_strtab
;
1994 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1998 /* *These* do a lot of work -- but build no sections! */
2000 asection
*target_sect
;
2001 Elf_Internal_Shdr
*hdr2
;
2002 unsigned int num_sec
= elf_numsections (abfd
);
2005 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2006 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2011 || hdr
->sh_link
>= num_sec
)
2013 ((*_bfd_error_handler
)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd
, hdr
->sh_link
, name
, shindex
));
2016 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2028 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2034 for (scan
= 1; scan
< num_sec
; scan
++)
2036 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2037 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2048 hdr
->sh_link
= found
;
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2053 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2054 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2064 || hdr
->sh_info
== SHN_UNDEF
2065 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2066 || hdr
->sh_info
>= num_sec
2067 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2068 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2069 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2072 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2074 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2075 if (target_sect
== NULL
)
2078 if ((target_sect
->flags
& SEC_RELOC
) == 0
2079 || target_sect
->reloc_count
== 0)
2080 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2084 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2085 amt
= sizeof (*hdr2
);
2086 hdr2
= bfd_alloc (abfd
, amt
);
2087 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2090 elf_elfsections (abfd
)[shindex
] = hdr2
;
2091 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2092 target_sect
->flags
|= SEC_RELOC
;
2093 target_sect
->relocation
= NULL
;
2094 target_sect
->rel_filepos
= hdr
->sh_offset
;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr
->sh_size
!= 0)
2098 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2099 abfd
->flags
|= HAS_RELOC
;
2104 case SHT_GNU_verdef
:
2105 elf_dynverdef (abfd
) = shindex
;
2106 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2107 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2110 case SHT_GNU_versym
:
2111 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2113 elf_dynversym (abfd
) = shindex
;
2114 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2115 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2117 case SHT_GNU_verneed
:
2118 elf_dynverref (abfd
) = shindex
;
2119 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2120 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2126 /* We need a BFD section for objcopy and relocatable linking,
2127 and it's handy to have the signature available as the section
2129 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2131 name
= group_signature (abfd
, hdr
);
2134 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2136 if (hdr
->contents
!= NULL
)
2138 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2139 unsigned int n_elt
= hdr
->sh_size
/ 4;
2142 if (idx
->flags
& GRP_COMDAT
)
2143 hdr
->bfd_section
->flags
2144 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2146 /* We try to keep the same section order as it comes in. */
2148 while (--n_elt
!= 0)
2149 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2150 && elf_next_in_group (s
) != NULL
)
2152 elf_next_in_group (hdr
->bfd_section
) = s
;
2159 /* Check for any processor-specific section types. */
2160 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
2163 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
2165 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
2166 /* FIXME: How to properly handle allocated section reserved
2167 for applications? */
2168 (*_bfd_error_handler
)
2169 (_("%B: don't know how to handle allocated, application "
2170 "specific section `%s' [0x%8x]"),
2171 abfd
, name
, hdr
->sh_type
);
2173 /* Allow sections reserved for applications. */
2174 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2177 else if (hdr
->sh_type
>= SHT_LOPROC
2178 && hdr
->sh_type
<= SHT_HIPROC
)
2179 /* FIXME: We should handle this section. */
2180 (*_bfd_error_handler
)
2181 (_("%B: don't know how to handle processor specific section "
2183 abfd
, name
, hdr
->sh_type
);
2184 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
2185 /* FIXME: We should handle this section. */
2186 (*_bfd_error_handler
)
2187 (_("%B: don't know how to handle OS specific section "
2189 abfd
, name
, hdr
->sh_type
);
2191 /* FIXME: We should handle this section. */
2192 (*_bfd_error_handler
)
2193 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2194 abfd
, name
, hdr
->sh_type
);
2202 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2203 Return SEC for sections that have no elf section, and NULL on error. */
2206 bfd_section_from_r_symndx (bfd
*abfd
,
2207 struct sym_sec_cache
*cache
,
2209 unsigned long r_symndx
)
2211 Elf_Internal_Shdr
*symtab_hdr
;
2212 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2213 Elf_External_Sym_Shndx eshndx
;
2214 Elf_Internal_Sym isym
;
2215 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2217 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2218 return cache
->sec
[ent
];
2220 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2221 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2222 &isym
, esym
, &eshndx
) == NULL
)
2225 if (cache
->abfd
!= abfd
)
2227 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2230 cache
->indx
[ent
] = r_symndx
;
2231 cache
->sec
[ent
] = sec
;
2232 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2233 || isym
.st_shndx
> SHN_HIRESERVE
)
2236 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2238 cache
->sec
[ent
] = s
;
2240 return cache
->sec
[ent
];
2243 /* Given an ELF section number, retrieve the corresponding BFD
2247 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2249 if (index
>= elf_numsections (abfd
))
2251 return elf_elfsections (abfd
)[index
]->bfd_section
;
2254 static const struct bfd_elf_special_section special_sections_b
[] =
2256 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2257 { NULL
, 0, 0, 0, 0 }
2260 static const struct bfd_elf_special_section special_sections_c
[] =
2262 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2263 { NULL
, 0, 0, 0, 0 }
2266 static const struct bfd_elf_special_section special_sections_d
[] =
2268 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2269 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2270 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2271 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2272 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2273 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2274 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2275 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2276 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2277 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2278 { NULL
, 0, 0, 0, 0 }
2281 static const struct bfd_elf_special_section special_sections_f
[] =
2283 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2284 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2285 { NULL
, 0, 0, 0, 0 }
2288 static const struct bfd_elf_special_section special_sections_g
[] =
2290 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2291 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2292 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2293 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2294 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2295 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2296 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2297 { NULL
, 0, 0, 0, 0 }
2300 static const struct bfd_elf_special_section special_sections_h
[] =
2302 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2303 { NULL
, 0, 0, 0, 0 }
2306 static const struct bfd_elf_special_section special_sections_i
[] =
2308 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2309 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2310 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2311 { NULL
, 0, 0, 0, 0 }
2314 static const struct bfd_elf_special_section special_sections_l
[] =
2316 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2317 { NULL
, 0, 0, 0, 0 }
2320 static const struct bfd_elf_special_section special_sections_n
[] =
2322 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2323 { ".note", 5, -1, SHT_NOTE
, 0 },
2324 { NULL
, 0, 0, 0, 0 }
2327 static const struct bfd_elf_special_section special_sections_p
[] =
2329 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2330 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2331 { NULL
, 0, 0, 0, 0 }
2334 static const struct bfd_elf_special_section special_sections_r
[] =
2336 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2337 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2338 { ".rela", 5, -1, SHT_RELA
, 0 },
2339 { ".rel", 4, -1, SHT_REL
, 0 },
2340 { NULL
, 0, 0, 0, 0 }
2343 static const struct bfd_elf_special_section special_sections_s
[] =
2345 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2346 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2347 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2348 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2349 { NULL
, 0, 0, 0, 0 }
2352 static const struct bfd_elf_special_section special_sections_t
[] =
2354 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2355 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2356 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2357 { NULL
, 0, 0, 0, 0 }
2360 static const struct bfd_elf_special_section
*special_sections
[] =
2362 special_sections_b
, /* 'b' */
2363 special_sections_c
, /* 'b' */
2364 special_sections_d
, /* 'd' */
2366 special_sections_f
, /* 'f' */
2367 special_sections_g
, /* 'g' */
2368 special_sections_h
, /* 'h' */
2369 special_sections_i
, /* 'i' */
2372 special_sections_l
, /* 'l' */
2374 special_sections_n
, /* 'n' */
2376 special_sections_p
, /* 'p' */
2378 special_sections_r
, /* 'r' */
2379 special_sections_s
, /* 's' */
2380 special_sections_t
, /* 't' */
2383 const struct bfd_elf_special_section
*
2384 _bfd_elf_get_special_section (const char *name
,
2385 const struct bfd_elf_special_section
*spec
,
2391 len
= strlen (name
);
2393 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2396 int prefix_len
= spec
[i
].prefix_length
;
2398 if (len
< prefix_len
)
2400 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2403 suffix_len
= spec
[i
].suffix_length
;
2404 if (suffix_len
<= 0)
2406 if (name
[prefix_len
] != 0)
2408 if (suffix_len
== 0)
2410 if (name
[prefix_len
] != '.'
2411 && (suffix_len
== -2
2412 || (rela
&& spec
[i
].type
== SHT_REL
)))
2418 if (len
< prefix_len
+ suffix_len
)
2420 if (memcmp (name
+ len
- suffix_len
,
2421 spec
[i
].prefix
+ prefix_len
,
2431 const struct bfd_elf_special_section
*
2432 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2435 const struct bfd_elf_special_section
*spec
;
2436 const struct elf_backend_data
*bed
;
2438 /* See if this is one of the special sections. */
2439 if (sec
->name
== NULL
)
2442 bed
= get_elf_backend_data (abfd
);
2443 spec
= bed
->special_sections
;
2446 spec
= _bfd_elf_get_special_section (sec
->name
,
2447 bed
->special_sections
,
2453 if (sec
->name
[0] != '.')
2456 i
= sec
->name
[1] - 'b';
2457 if (i
< 0 || i
> 't' - 'b')
2460 spec
= special_sections
[i
];
2465 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2469 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2471 struct bfd_elf_section_data
*sdata
;
2472 const struct elf_backend_data
*bed
;
2473 const struct bfd_elf_special_section
*ssect
;
2475 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2478 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2481 sec
->used_by_bfd
= sdata
;
2484 /* Indicate whether or not this section should use RELA relocations. */
2485 bed
= get_elf_backend_data (abfd
);
2486 sec
->use_rela_p
= bed
->default_use_rela_p
;
2488 /* When we read a file, we don't need to set ELF section type and
2489 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2490 anyway. We will set ELF section type and flags for all linker
2491 created sections. If user specifies BFD section flags, we will
2492 set ELF section type and flags based on BFD section flags in
2493 elf_fake_sections. */
2494 if ((!sec
->flags
&& abfd
->direction
!= read_direction
)
2495 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2497 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2500 elf_section_type (sec
) = ssect
->type
;
2501 elf_section_flags (sec
) = ssect
->attr
;
2505 return _bfd_generic_new_section_hook (abfd
, sec
);
2508 /* Create a new bfd section from an ELF program header.
2510 Since program segments have no names, we generate a synthetic name
2511 of the form segment<NUM>, where NUM is generally the index in the
2512 program header table. For segments that are split (see below) we
2513 generate the names segment<NUM>a and segment<NUM>b.
2515 Note that some program segments may have a file size that is different than
2516 (less than) the memory size. All this means is that at execution the
2517 system must allocate the amount of memory specified by the memory size,
2518 but only initialize it with the first "file size" bytes read from the
2519 file. This would occur for example, with program segments consisting
2520 of combined data+bss.
2522 To handle the above situation, this routine generates TWO bfd sections
2523 for the single program segment. The first has the length specified by
2524 the file size of the segment, and the second has the length specified
2525 by the difference between the two sizes. In effect, the segment is split
2526 into it's initialized and uninitialized parts.
2531 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2532 Elf_Internal_Phdr
*hdr
,
2534 const char *typename
)
2542 split
= ((hdr
->p_memsz
> 0)
2543 && (hdr
->p_filesz
> 0)
2544 && (hdr
->p_memsz
> hdr
->p_filesz
));
2545 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2546 len
= strlen (namebuf
) + 1;
2547 name
= bfd_alloc (abfd
, len
);
2550 memcpy (name
, namebuf
, len
);
2551 newsect
= bfd_make_section (abfd
, name
);
2552 if (newsect
== NULL
)
2554 newsect
->vma
= hdr
->p_vaddr
;
2555 newsect
->lma
= hdr
->p_paddr
;
2556 newsect
->size
= hdr
->p_filesz
;
2557 newsect
->filepos
= hdr
->p_offset
;
2558 newsect
->flags
|= SEC_HAS_CONTENTS
;
2559 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2560 if (hdr
->p_type
== PT_LOAD
)
2562 newsect
->flags
|= SEC_ALLOC
;
2563 newsect
->flags
|= SEC_LOAD
;
2564 if (hdr
->p_flags
& PF_X
)
2566 /* FIXME: all we known is that it has execute PERMISSION,
2568 newsect
->flags
|= SEC_CODE
;
2571 if (!(hdr
->p_flags
& PF_W
))
2573 newsect
->flags
|= SEC_READONLY
;
2578 sprintf (namebuf
, "%s%db", typename
, index
);
2579 len
= strlen (namebuf
) + 1;
2580 name
= bfd_alloc (abfd
, len
);
2583 memcpy (name
, namebuf
, len
);
2584 newsect
= bfd_make_section (abfd
, name
);
2585 if (newsect
== NULL
)
2587 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2588 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2589 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2590 if (hdr
->p_type
== PT_LOAD
)
2592 newsect
->flags
|= SEC_ALLOC
;
2593 if (hdr
->p_flags
& PF_X
)
2594 newsect
->flags
|= SEC_CODE
;
2596 if (!(hdr
->p_flags
& PF_W
))
2597 newsect
->flags
|= SEC_READONLY
;
2604 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2606 const struct elf_backend_data
*bed
;
2608 switch (hdr
->p_type
)
2611 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2614 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2617 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2620 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2623 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2625 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2630 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2633 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2635 case PT_GNU_EH_FRAME
:
2636 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2640 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2643 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2646 /* Check for any processor-specific program segment types. */
2647 bed
= get_elf_backend_data (abfd
);
2648 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2652 /* Initialize REL_HDR, the section-header for new section, containing
2653 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2654 relocations; otherwise, we use REL relocations. */
2657 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2658 Elf_Internal_Shdr
*rel_hdr
,
2660 bfd_boolean use_rela_p
)
2663 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2664 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2666 name
= bfd_alloc (abfd
, amt
);
2669 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2671 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2673 if (rel_hdr
->sh_name
== (unsigned int) -1)
2675 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2676 rel_hdr
->sh_entsize
= (use_rela_p
2677 ? bed
->s
->sizeof_rela
2678 : bed
->s
->sizeof_rel
);
2679 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2680 rel_hdr
->sh_flags
= 0;
2681 rel_hdr
->sh_addr
= 0;
2682 rel_hdr
->sh_size
= 0;
2683 rel_hdr
->sh_offset
= 0;
2688 /* Set up an ELF internal section header for a section. */
2691 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2693 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2694 bfd_boolean
*failedptr
= failedptrarg
;
2695 Elf_Internal_Shdr
*this_hdr
;
2699 /* We already failed; just get out of the bfd_map_over_sections
2704 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2706 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2707 asect
->name
, FALSE
);
2708 if (this_hdr
->sh_name
== (unsigned int) -1)
2714 /* Don't clear sh_flags. Assembler may set additional bits. */
2716 if ((asect
->flags
& SEC_ALLOC
) != 0
2717 || asect
->user_set_vma
)
2718 this_hdr
->sh_addr
= asect
->vma
;
2720 this_hdr
->sh_addr
= 0;
2722 this_hdr
->sh_offset
= 0;
2723 this_hdr
->sh_size
= asect
->size
;
2724 this_hdr
->sh_link
= 0;
2725 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2726 /* The sh_entsize and sh_info fields may have been set already by
2727 copy_private_section_data. */
2729 this_hdr
->bfd_section
= asect
;
2730 this_hdr
->contents
= NULL
;
2732 /* If the section type is unspecified, we set it based on
2734 if (this_hdr
->sh_type
== SHT_NULL
)
2736 if ((asect
->flags
& SEC_GROUP
) != 0)
2737 this_hdr
->sh_type
= SHT_GROUP
;
2738 else if ((asect
->flags
& SEC_ALLOC
) != 0
2739 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2740 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2741 this_hdr
->sh_type
= SHT_NOBITS
;
2743 this_hdr
->sh_type
= SHT_PROGBITS
;
2746 switch (this_hdr
->sh_type
)
2752 case SHT_INIT_ARRAY
:
2753 case SHT_FINI_ARRAY
:
2754 case SHT_PREINIT_ARRAY
:
2761 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2765 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2769 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2773 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2774 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2778 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2779 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2782 case SHT_GNU_versym
:
2783 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2786 case SHT_GNU_verdef
:
2787 this_hdr
->sh_entsize
= 0;
2788 /* objcopy or strip will copy over sh_info, but may not set
2789 cverdefs. The linker will set cverdefs, but sh_info will be
2791 if (this_hdr
->sh_info
== 0)
2792 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2794 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2795 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2798 case SHT_GNU_verneed
:
2799 this_hdr
->sh_entsize
= 0;
2800 /* objcopy or strip will copy over sh_info, but may not set
2801 cverrefs. The linker will set cverrefs, but sh_info will be
2803 if (this_hdr
->sh_info
== 0)
2804 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2806 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2807 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2811 this_hdr
->sh_entsize
= 4;
2815 if ((asect
->flags
& SEC_ALLOC
) != 0)
2816 this_hdr
->sh_flags
|= SHF_ALLOC
;
2817 if ((asect
->flags
& SEC_READONLY
) == 0)
2818 this_hdr
->sh_flags
|= SHF_WRITE
;
2819 if ((asect
->flags
& SEC_CODE
) != 0)
2820 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2821 if ((asect
->flags
& SEC_MERGE
) != 0)
2823 this_hdr
->sh_flags
|= SHF_MERGE
;
2824 this_hdr
->sh_entsize
= asect
->entsize
;
2825 if ((asect
->flags
& SEC_STRINGS
) != 0)
2826 this_hdr
->sh_flags
|= SHF_STRINGS
;
2828 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2829 this_hdr
->sh_flags
|= SHF_GROUP
;
2830 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2832 this_hdr
->sh_flags
|= SHF_TLS
;
2833 if (asect
->size
== 0
2834 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2836 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2838 this_hdr
->sh_size
= 0;
2841 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2842 if (this_hdr
->sh_size
!= 0)
2843 this_hdr
->sh_type
= SHT_NOBITS
;
2848 /* Check for processor-specific section types. */
2849 if (bed
->elf_backend_fake_sections
2850 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2853 /* If the section has relocs, set up a section header for the
2854 SHT_REL[A] section. If two relocation sections are required for
2855 this section, it is up to the processor-specific back-end to
2856 create the other. */
2857 if ((asect
->flags
& SEC_RELOC
) != 0
2858 && !_bfd_elf_init_reloc_shdr (abfd
,
2859 &elf_section_data (asect
)->rel_hdr
,
2865 /* Fill in the contents of a SHT_GROUP section. */
2868 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2870 bfd_boolean
*failedptr
= failedptrarg
;
2871 unsigned long symindx
;
2872 asection
*elt
, *first
;
2876 /* Ignore linker created group section. See elfNN_ia64_object_p in
2878 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2883 if (elf_group_id (sec
) != NULL
)
2884 symindx
= elf_group_id (sec
)->udata
.i
;
2888 /* If called from the assembler, swap_out_syms will have set up
2889 elf_section_syms; If called for "ld -r", use target_index. */
2890 if (elf_section_syms (abfd
) != NULL
)
2891 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2893 symindx
= sec
->target_index
;
2895 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2897 /* The contents won't be allocated for "ld -r" or objcopy. */
2899 if (sec
->contents
== NULL
)
2902 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2904 /* Arrange for the section to be written out. */
2905 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2906 if (sec
->contents
== NULL
)
2913 loc
= sec
->contents
+ sec
->size
;
2915 /* Get the pointer to the first section in the group that gas
2916 squirreled away here. objcopy arranges for this to be set to the
2917 start of the input section group. */
2918 first
= elt
= elf_next_in_group (sec
);
2920 /* First element is a flag word. Rest of section is elf section
2921 indices for all the sections of the group. Write them backwards
2922 just to keep the group in the same order as given in .section
2923 directives, not that it matters. */
2932 s
= s
->output_section
;
2935 idx
= elf_section_data (s
)->this_idx
;
2936 H_PUT_32 (abfd
, idx
, loc
);
2937 elt
= elf_next_in_group (elt
);
2942 if ((loc
-= 4) != sec
->contents
)
2945 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2948 /* Assign all ELF section numbers. The dummy first section is handled here
2949 too. The link/info pointers for the standard section types are filled
2950 in here too, while we're at it. */
2953 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2955 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2957 unsigned int section_number
, secn
;
2958 Elf_Internal_Shdr
**i_shdrp
;
2959 struct bfd_elf_section_data
*d
;
2963 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2965 /* SHT_GROUP sections are in relocatable files only. */
2966 if (link_info
== NULL
|| link_info
->relocatable
)
2968 /* Put SHT_GROUP sections first. */
2969 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2971 d
= elf_section_data (sec
);
2973 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2975 if (sec
->flags
& SEC_LINKER_CREATED
)
2977 /* Remove the linker created SHT_GROUP sections. */
2978 bfd_section_list_remove (abfd
, sec
);
2979 abfd
->section_count
--;
2983 if (section_number
== SHN_LORESERVE
)
2984 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2985 d
->this_idx
= section_number
++;
2991 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2993 d
= elf_section_data (sec
);
2995 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2997 if (section_number
== SHN_LORESERVE
)
2998 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2999 d
->this_idx
= section_number
++;
3001 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
3002 if ((sec
->flags
& SEC_RELOC
) == 0)
3006 if (section_number
== SHN_LORESERVE
)
3007 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3008 d
->rel_idx
= section_number
++;
3009 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
3014 if (section_number
== SHN_LORESERVE
)
3015 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3016 d
->rel_idx2
= section_number
++;
3017 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
3023 if (section_number
== SHN_LORESERVE
)
3024 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3025 t
->shstrtab_section
= section_number
++;
3026 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
3027 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
3029 if (bfd_get_symcount (abfd
) > 0)
3031 if (section_number
== SHN_LORESERVE
)
3032 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3033 t
->symtab_section
= section_number
++;
3034 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
3035 if (section_number
> SHN_LORESERVE
- 2)
3037 if (section_number
== SHN_LORESERVE
)
3038 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3039 t
->symtab_shndx_section
= section_number
++;
3040 t
->symtab_shndx_hdr
.sh_name
3041 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3042 ".symtab_shndx", FALSE
);
3043 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3046 if (section_number
== SHN_LORESERVE
)
3047 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3048 t
->strtab_section
= section_number
++;
3049 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3052 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3053 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3055 elf_numsections (abfd
) = section_number
;
3056 elf_elfheader (abfd
)->e_shnum
= section_number
;
3057 if (section_number
> SHN_LORESERVE
)
3058 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3060 /* Set up the list of section header pointers, in agreement with the
3062 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3063 if (i_shdrp
== NULL
)
3066 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3067 if (i_shdrp
[0] == NULL
)
3069 bfd_release (abfd
, i_shdrp
);
3073 elf_elfsections (abfd
) = i_shdrp
;
3075 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3076 if (bfd_get_symcount (abfd
) > 0)
3078 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3079 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3081 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3082 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3084 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3085 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3088 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3090 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3094 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3095 if (d
->rel_idx
!= 0)
3096 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3097 if (d
->rel_idx2
!= 0)
3098 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3100 /* Fill in the sh_link and sh_info fields while we're at it. */
3102 /* sh_link of a reloc section is the section index of the symbol
3103 table. sh_info is the section index of the section to which
3104 the relocation entries apply. */
3105 if (d
->rel_idx
!= 0)
3107 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3108 d
->rel_hdr
.sh_info
= d
->this_idx
;
3110 if (d
->rel_idx2
!= 0)
3112 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3113 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3116 /* We need to set up sh_link for SHF_LINK_ORDER. */
3117 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3119 s
= elf_linked_to_section (sec
);
3122 /* elf_linked_to_section points to the input section. */
3123 if (link_info
!= NULL
)
3125 /* Check discarded linkonce section. */
3126 if (elf_discarded_section (s
))
3129 (*_bfd_error_handler
)
3130 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3131 abfd
, d
->this_hdr
.bfd_section
,
3133 /* Point to the kept section if it has the same
3134 size as the discarded one. */
3135 kept
= _bfd_elf_check_kept_section (s
);
3138 bfd_set_error (bfd_error_bad_value
);
3144 s
= s
->output_section
;
3145 BFD_ASSERT (s
!= NULL
);
3149 /* Handle objcopy. */
3150 if (s
->output_section
== NULL
)
3152 (*_bfd_error_handler
)
3153 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3154 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3155 bfd_set_error (bfd_error_bad_value
);
3158 s
= s
->output_section
;
3160 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3165 The Intel C compiler generates SHT_IA_64_UNWIND with
3166 SHF_LINK_ORDER. But it doesn't set the sh_link or
3167 sh_info fields. Hence we could get the situation
3169 const struct elf_backend_data
*bed
3170 = get_elf_backend_data (abfd
);
3171 if (bed
->link_order_error_handler
)
3172 bed
->link_order_error_handler
3173 (_("%B: warning: sh_link not set for section `%A'"),
3178 switch (d
->this_hdr
.sh_type
)
3182 /* A reloc section which we are treating as a normal BFD
3183 section. sh_link is the section index of the symbol
3184 table. sh_info is the section index of the section to
3185 which the relocation entries apply. We assume that an
3186 allocated reloc section uses the dynamic symbol table.
3187 FIXME: How can we be sure? */
3188 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3190 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3192 /* We look up the section the relocs apply to by name. */
3194 if (d
->this_hdr
.sh_type
== SHT_REL
)
3198 s
= bfd_get_section_by_name (abfd
, name
);
3200 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3204 /* We assume that a section named .stab*str is a stabs
3205 string section. We look for a section with the same name
3206 but without the trailing ``str'', and set its sh_link
3207 field to point to this section. */
3208 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3209 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3214 len
= strlen (sec
->name
);
3215 alc
= bfd_malloc (len
- 2);
3218 memcpy (alc
, sec
->name
, len
- 3);
3219 alc
[len
- 3] = '\0';
3220 s
= bfd_get_section_by_name (abfd
, alc
);
3224 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3226 /* This is a .stab section. */
3227 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3228 elf_section_data (s
)->this_hdr
.sh_entsize
3229 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3236 case SHT_GNU_verneed
:
3237 case SHT_GNU_verdef
:
3238 /* sh_link is the section header index of the string table
3239 used for the dynamic entries, or the symbol table, or the
3241 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3243 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3246 case SHT_GNU_LIBLIST
:
3247 /* sh_link is the section header index of the prelink library
3249 used for the dynamic entries, or the symbol table, or the
3251 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3252 ? ".dynstr" : ".gnu.libstr");
3254 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3258 case SHT_GNU_versym
:
3259 /* sh_link is the section header index of the symbol table
3260 this hash table or version table is for. */
3261 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3263 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3267 d
->this_hdr
.sh_link
= t
->symtab_section
;
3271 for (secn
= 1; secn
< section_number
; ++secn
)
3272 if (i_shdrp
[secn
] == NULL
)
3273 i_shdrp
[secn
] = i_shdrp
[0];
3275 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3276 i_shdrp
[secn
]->sh_name
);
3280 /* Map symbol from it's internal number to the external number, moving
3281 all local symbols to be at the head of the list. */
3284 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3286 /* If the backend has a special mapping, use it. */
3287 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3288 if (bed
->elf_backend_sym_is_global
)
3289 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3291 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3292 || bfd_is_und_section (bfd_get_section (sym
))
3293 || bfd_is_com_section (bfd_get_section (sym
)));
3297 elf_map_symbols (bfd
*abfd
)
3299 unsigned int symcount
= bfd_get_symcount (abfd
);
3300 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3301 asymbol
**sect_syms
;
3302 unsigned int num_locals
= 0;
3303 unsigned int num_globals
= 0;
3304 unsigned int num_locals2
= 0;
3305 unsigned int num_globals2
= 0;
3312 fprintf (stderr
, "elf_map_symbols\n");
3316 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3318 if (max_index
< asect
->index
)
3319 max_index
= asect
->index
;
3323 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3324 if (sect_syms
== NULL
)
3326 elf_section_syms (abfd
) = sect_syms
;
3327 elf_num_section_syms (abfd
) = max_index
;
3329 /* Init sect_syms entries for any section symbols we have already
3330 decided to output. */
3331 for (idx
= 0; idx
< symcount
; idx
++)
3333 asymbol
*sym
= syms
[idx
];
3335 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3342 if (sec
->owner
!= NULL
)
3344 if (sec
->owner
!= abfd
)
3346 if (sec
->output_offset
!= 0)
3349 sec
= sec
->output_section
;
3351 /* Empty sections in the input files may have had a
3352 section symbol created for them. (See the comment
3353 near the end of _bfd_generic_link_output_symbols in
3354 linker.c). If the linker script discards such
3355 sections then we will reach this point. Since we know
3356 that we cannot avoid this case, we detect it and skip
3357 the abort and the assignment to the sect_syms array.
3358 To reproduce this particular case try running the
3359 linker testsuite test ld-scripts/weak.exp for an ELF
3360 port that uses the generic linker. */
3361 if (sec
->owner
== NULL
)
3364 BFD_ASSERT (sec
->owner
== abfd
);
3366 sect_syms
[sec
->index
] = syms
[idx
];
3371 /* Classify all of the symbols. */
3372 for (idx
= 0; idx
< symcount
; idx
++)
3374 if (!sym_is_global (abfd
, syms
[idx
]))
3380 /* We will be adding a section symbol for each BFD section. Most normal
3381 sections will already have a section symbol in outsymbols, but
3382 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3383 at least in that case. */
3384 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3386 if (sect_syms
[asect
->index
] == NULL
)
3388 if (!sym_is_global (abfd
, asect
->symbol
))
3395 /* Now sort the symbols so the local symbols are first. */
3396 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3398 if (new_syms
== NULL
)
3401 for (idx
= 0; idx
< symcount
; idx
++)
3403 asymbol
*sym
= syms
[idx
];
3406 if (!sym_is_global (abfd
, sym
))
3409 i
= num_locals
+ num_globals2
++;
3411 sym
->udata
.i
= i
+ 1;
3413 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3415 if (sect_syms
[asect
->index
] == NULL
)
3417 asymbol
*sym
= asect
->symbol
;
3420 sect_syms
[asect
->index
] = sym
;
3421 if (!sym_is_global (abfd
, sym
))
3424 i
= num_locals
+ num_globals2
++;
3426 sym
->udata
.i
= i
+ 1;
3430 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3432 elf_num_locals (abfd
) = num_locals
;
3433 elf_num_globals (abfd
) = num_globals
;
3437 /* Align to the maximum file alignment that could be required for any
3438 ELF data structure. */
3440 static inline file_ptr
3441 align_file_position (file_ptr off
, int align
)
3443 return (off
+ align
- 1) & ~(align
- 1);
3446 /* Assign a file position to a section, optionally aligning to the
3447 required section alignment. */
3450 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3458 al
= i_shdrp
->sh_addralign
;
3460 offset
= BFD_ALIGN (offset
, al
);
3462 i_shdrp
->sh_offset
= offset
;
3463 if (i_shdrp
->bfd_section
!= NULL
)
3464 i_shdrp
->bfd_section
->filepos
= offset
;
3465 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3466 offset
+= i_shdrp
->sh_size
;
3470 /* Compute the file positions we are going to put the sections at, and
3471 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3472 is not NULL, this is being called by the ELF backend linker. */
3475 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3476 struct bfd_link_info
*link_info
)
3478 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3480 struct bfd_strtab_hash
*strtab
= NULL
;
3481 Elf_Internal_Shdr
*shstrtab_hdr
;
3483 if (abfd
->output_has_begun
)
3486 /* Do any elf backend specific processing first. */
3487 if (bed
->elf_backend_begin_write_processing
)
3488 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3490 if (! prep_headers (abfd
))
3493 /* Post process the headers if necessary. */
3494 if (bed
->elf_backend_post_process_headers
)
3495 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3498 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3502 if (!assign_section_numbers (abfd
, link_info
))
3505 /* The backend linker builds symbol table information itself. */
3506 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3508 /* Non-zero if doing a relocatable link. */
3509 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3511 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3515 if (link_info
== NULL
)
3517 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3522 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3523 /* sh_name was set in prep_headers. */
3524 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3525 shstrtab_hdr
->sh_flags
= 0;
3526 shstrtab_hdr
->sh_addr
= 0;
3527 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3528 shstrtab_hdr
->sh_entsize
= 0;
3529 shstrtab_hdr
->sh_link
= 0;
3530 shstrtab_hdr
->sh_info
= 0;
3531 /* sh_offset is set in assign_file_positions_except_relocs. */
3532 shstrtab_hdr
->sh_addralign
= 1;
3534 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3537 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3540 Elf_Internal_Shdr
*hdr
;
3542 off
= elf_tdata (abfd
)->next_file_pos
;
3544 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3545 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3547 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3548 if (hdr
->sh_size
!= 0)
3549 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3551 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3552 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3554 elf_tdata (abfd
)->next_file_pos
= off
;
3556 /* Now that we know where the .strtab section goes, write it
3558 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3559 || ! _bfd_stringtab_emit (abfd
, strtab
))
3561 _bfd_stringtab_free (strtab
);
3564 abfd
->output_has_begun
= TRUE
;
3569 /* Create a mapping from a set of sections to a program segment. */
3571 static struct elf_segment_map
*
3572 make_mapping (bfd
*abfd
,
3573 asection
**sections
,
3578 struct elf_segment_map
*m
;
3583 amt
= sizeof (struct elf_segment_map
);
3584 amt
+= (to
- from
- 1) * sizeof (asection
*);
3585 m
= bfd_zalloc (abfd
, amt
);
3589 m
->p_type
= PT_LOAD
;
3590 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3591 m
->sections
[i
- from
] = *hdrpp
;
3592 m
->count
= to
- from
;
3594 if (from
== 0 && phdr
)
3596 /* Include the headers in the first PT_LOAD segment. */
3597 m
->includes_filehdr
= 1;
3598 m
->includes_phdrs
= 1;
3604 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3607 struct elf_segment_map
*
3608 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3610 struct elf_segment_map
*m
;
3612 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3616 m
->p_type
= PT_DYNAMIC
;
3618 m
->sections
[0] = dynsec
;
3623 /* Set up a mapping from BFD sections to program segments. */
3626 map_sections_to_segments (bfd
*abfd
)
3628 asection
**sections
= NULL
;
3632 struct elf_segment_map
*mfirst
;
3633 struct elf_segment_map
**pm
;
3634 struct elf_segment_map
*m
;
3637 unsigned int phdr_index
;
3638 bfd_vma maxpagesize
;
3640 bfd_boolean phdr_in_segment
= TRUE
;
3641 bfd_boolean writable
;
3643 asection
*first_tls
= NULL
;
3644 asection
*dynsec
, *eh_frame_hdr
;
3647 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3650 if (bfd_count_sections (abfd
) == 0)
3653 /* Select the allocated sections, and sort them. */
3655 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3656 if (sections
== NULL
)
3660 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3662 if ((s
->flags
& SEC_ALLOC
) != 0)
3668 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3671 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3673 /* Build the mapping. */
3678 /* If we have a .interp section, then create a PT_PHDR segment for
3679 the program headers and a PT_INTERP segment for the .interp
3681 s
= bfd_get_section_by_name (abfd
, ".interp");
3682 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3684 amt
= sizeof (struct elf_segment_map
);
3685 m
= bfd_zalloc (abfd
, amt
);
3689 m
->p_type
= PT_PHDR
;
3690 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3691 m
->p_flags
= PF_R
| PF_X
;
3692 m
->p_flags_valid
= 1;
3693 m
->includes_phdrs
= 1;
3698 amt
= sizeof (struct elf_segment_map
);
3699 m
= bfd_zalloc (abfd
, amt
);
3703 m
->p_type
= PT_INTERP
;
3711 /* Look through the sections. We put sections in the same program
3712 segment when the start of the second section can be placed within
3713 a few bytes of the end of the first section. */
3717 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3719 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3721 && (dynsec
->flags
& SEC_LOAD
) == 0)
3724 /* Deal with -Ttext or something similar such that the first section
3725 is not adjacent to the program headers. This is an
3726 approximation, since at this point we don't know exactly how many
3727 program headers we will need. */
3730 bfd_size_type phdr_size
;
3732 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3734 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3735 if ((abfd
->flags
& D_PAGED
) == 0
3736 || sections
[0]->lma
< phdr_size
3737 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3738 phdr_in_segment
= FALSE
;
3741 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3744 bfd_boolean new_segment
;
3748 /* See if this section and the last one will fit in the same
3751 if (last_hdr
== NULL
)
3753 /* If we don't have a segment yet, then we don't need a new
3754 one (we build the last one after this loop). */
3755 new_segment
= FALSE
;
3757 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3759 /* If this section has a different relation between the
3760 virtual address and the load address, then we need a new
3764 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3765 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3767 /* If putting this section in this segment would force us to
3768 skip a page in the segment, then we need a new segment. */
3771 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3772 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3774 /* We don't want to put a loadable section after a
3775 nonloadable section in the same segment.
3776 Consider .tbss sections as loadable for this purpose. */
3779 else if ((abfd
->flags
& D_PAGED
) == 0)
3781 /* If the file is not demand paged, which means that we
3782 don't require the sections to be correctly aligned in the
3783 file, then there is no other reason for a new segment. */
3784 new_segment
= FALSE
;
3787 && (hdr
->flags
& SEC_READONLY
) == 0
3788 && (((last_hdr
->lma
+ last_size
- 1)
3789 & ~(maxpagesize
- 1))
3790 != (hdr
->lma
& ~(maxpagesize
- 1))))
3792 /* We don't want to put a writable section in a read only
3793 segment, unless they are on the same page in memory
3794 anyhow. We already know that the last section does not
3795 bring us past the current section on the page, so the
3796 only case in which the new section is not on the same
3797 page as the previous section is when the previous section
3798 ends precisely on a page boundary. */
3803 /* Otherwise, we can use the same segment. */
3804 new_segment
= FALSE
;
3809 if ((hdr
->flags
& SEC_READONLY
) == 0)
3812 /* .tbss sections effectively have zero size. */
3813 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3814 last_size
= hdr
->size
;
3820 /* We need a new program segment. We must create a new program
3821 header holding all the sections from phdr_index until hdr. */
3823 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3830 if ((hdr
->flags
& SEC_READONLY
) == 0)
3836 /* .tbss sections effectively have zero size. */
3837 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3838 last_size
= hdr
->size
;
3842 phdr_in_segment
= FALSE
;
3845 /* Create a final PT_LOAD program segment. */
3846 if (last_hdr
!= NULL
)
3848 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3856 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3859 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3866 /* For each loadable .note section, add a PT_NOTE segment. We don't
3867 use bfd_get_section_by_name, because if we link together
3868 nonloadable .note sections and loadable .note sections, we will
3869 generate two .note sections in the output file. FIXME: Using
3870 names for section types is bogus anyhow. */
3871 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3873 if ((s
->flags
& SEC_LOAD
) != 0
3874 && strncmp (s
->name
, ".note", 5) == 0)
3876 amt
= sizeof (struct elf_segment_map
);
3877 m
= bfd_zalloc (abfd
, amt
);
3881 m
->p_type
= PT_NOTE
;
3888 if (s
->flags
& SEC_THREAD_LOCAL
)
3896 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3901 amt
= sizeof (struct elf_segment_map
);
3902 amt
+= (tls_count
- 1) * sizeof (asection
*);
3903 m
= bfd_zalloc (abfd
, amt
);
3908 m
->count
= tls_count
;
3909 /* Mandated PF_R. */
3911 m
->p_flags_valid
= 1;
3912 for (i
= 0; i
< tls_count
; ++i
)
3914 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3915 m
->sections
[i
] = first_tls
;
3916 first_tls
= first_tls
->next
;
3923 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3925 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3926 if (eh_frame_hdr
!= NULL
3927 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3929 amt
= sizeof (struct elf_segment_map
);
3930 m
= bfd_zalloc (abfd
, amt
);
3934 m
->p_type
= PT_GNU_EH_FRAME
;
3936 m
->sections
[0] = eh_frame_hdr
->output_section
;
3942 if (elf_tdata (abfd
)->stack_flags
)
3944 amt
= sizeof (struct elf_segment_map
);
3945 m
= bfd_zalloc (abfd
, amt
);
3949 m
->p_type
= PT_GNU_STACK
;
3950 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3951 m
->p_flags_valid
= 1;
3957 if (elf_tdata (abfd
)->relro
)
3959 amt
= sizeof (struct elf_segment_map
);
3960 m
= bfd_zalloc (abfd
, amt
);
3964 m
->p_type
= PT_GNU_RELRO
;
3966 m
->p_flags_valid
= 1;
3975 elf_tdata (abfd
)->segment_map
= mfirst
;
3979 if (sections
!= NULL
)
3984 /* Sort sections by address. */
3987 elf_sort_sections (const void *arg1
, const void *arg2
)
3989 const asection
*sec1
= *(const asection
**) arg1
;
3990 const asection
*sec2
= *(const asection
**) arg2
;
3991 bfd_size_type size1
, size2
;
3993 /* Sort by LMA first, since this is the address used to
3994 place the section into a segment. */
3995 if (sec1
->lma
< sec2
->lma
)
3997 else if (sec1
->lma
> sec2
->lma
)
4000 /* Then sort by VMA. Normally the LMA and the VMA will be
4001 the same, and this will do nothing. */
4002 if (sec1
->vma
< sec2
->vma
)
4004 else if (sec1
->vma
> sec2
->vma
)
4007 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4009 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4015 /* If the indicies are the same, do not return 0
4016 here, but continue to try the next comparison. */
4017 if (sec1
->target_index
- sec2
->target_index
!= 0)
4018 return sec1
->target_index
- sec2
->target_index
;
4023 else if (TOEND (sec2
))
4028 /* Sort by size, to put zero sized sections
4029 before others at the same address. */
4031 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4032 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4039 return sec1
->target_index
- sec2
->target_index
;
4042 /* Ian Lance Taylor writes:
4044 We shouldn't be using % with a negative signed number. That's just
4045 not good. We have to make sure either that the number is not
4046 negative, or that the number has an unsigned type. When the types
4047 are all the same size they wind up as unsigned. When file_ptr is a
4048 larger signed type, the arithmetic winds up as signed long long,
4051 What we're trying to say here is something like ``increase OFF by
4052 the least amount that will cause it to be equal to the VMA modulo
4054 /* In other words, something like:
4056 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4057 off_offset = off % bed->maxpagesize;
4058 if (vma_offset < off_offset)
4059 adjustment = vma_offset + bed->maxpagesize - off_offset;
4061 adjustment = vma_offset - off_offset;
4063 which can can be collapsed into the expression below. */
4066 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4068 return ((vma
- off
) % maxpagesize
);
4072 print_segment_map (bfd
*abfd
)
4074 struct elf_segment_map
*m
;
4077 fprintf (stderr
, _(" Section to Segment mapping:\n"));
4078 fprintf (stderr
, _(" Segment Sections...\n"));
4080 for (i
= 0, m
= elf_tdata (abfd
)->segment_map
;
4084 const char *pt
= get_segment_type (m
->p_type
);
4089 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4090 sprintf (buf
, "LOPROC+%7.7x",
4091 (unsigned int) (m
->p_type
- PT_LOPROC
));
4092 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4093 sprintf (buf
, "LOOS+%7.7x",
4094 (unsigned int) (m
->p_type
- PT_LOOS
));
4096 snprintf (buf
, sizeof (buf
), "%8.8x",
4097 (unsigned int) m
->p_type
);
4100 fprintf (stderr
, " %2.2d: %14.14s: ", i
, pt
);
4101 for (j
= 0; j
< m
->count
; j
++)
4102 fprintf (stderr
, "%s ", m
->sections
[j
]->name
);
4107 /* Assign file positions to the sections based on the mapping from
4108 sections to segments. This function also sets up some fields in
4109 the file header, and writes out the program headers. */
4112 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
4114 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4116 struct elf_segment_map
*m
;
4118 Elf_Internal_Phdr
*phdrs
;
4120 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4121 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4122 Elf_Internal_Phdr
*p
;
4123 Elf_Internal_Shdr
**i_shdrpp
;
4124 Elf_Internal_Shdr
**hdrpp
;
4126 unsigned int num_sec
;
4128 if (elf_tdata (abfd
)->segment_map
== NULL
)
4130 if (! map_sections_to_segments (abfd
))
4135 /* The placement algorithm assumes that non allocated sections are
4136 not in PT_LOAD segments. We ensure this here by removing such
4137 sections from the segment map. We also remove excluded
4139 for (m
= elf_tdata (abfd
)->segment_map
;
4143 unsigned int new_count
;
4146 for (i
= 0; i
< m
->count
; i
++)
4148 if ((m
->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
4149 && ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0
4150 || m
->p_type
!= PT_LOAD
))
4153 m
->sections
[new_count
] = m
->sections
[i
];
4159 if (new_count
!= m
->count
)
4160 m
->count
= new_count
;
4164 if (bed
->elf_backend_modify_segment_map
)
4166 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
4171 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4174 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4175 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4176 elf_elfheader (abfd
)->e_phnum
= count
;
4180 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4184 /* If we already counted the number of program segments, make sure
4185 that we allocated enough space. This happens when SIZEOF_HEADERS
4186 is used in a linker script. */
4187 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
4188 if (alloc
!= 0 && count
> alloc
)
4190 ((*_bfd_error_handler
)
4191 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4192 abfd
, alloc
, count
));
4193 print_segment_map (abfd
);
4194 bfd_set_error (bfd_error_bad_value
);
4201 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4205 off
= bed
->s
->sizeof_ehdr
;
4206 off
+= alloc
* bed
->s
->sizeof_phdr
;
4213 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4219 /* If elf_segment_map is not from map_sections_to_segments, the
4220 sections may not be correctly ordered. NOTE: sorting should
4221 not be done to the PT_NOTE section of a corefile, which may
4222 contain several pseudo-sections artificially created by bfd.
4223 Sorting these pseudo-sections breaks things badly. */
4225 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4226 && m
->p_type
== PT_NOTE
))
4227 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4230 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4231 number of sections with contents contributing to both p_filesz
4232 and p_memsz, followed by a number of sections with no contents
4233 that just contribute to p_memsz. In this loop, OFF tracks next
4234 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4235 an adjustment we use for segments that have no file contents
4236 but need zero filled memory allocation. */
4238 p
->p_type
= m
->p_type
;
4239 p
->p_flags
= m
->p_flags
;
4241 if (p
->p_type
== PT_LOAD
4244 bfd_size_type align
;
4246 unsigned int align_power
= 0;
4248 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4250 unsigned int secalign
;
4252 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4253 if (secalign
> align_power
)
4254 align_power
= secalign
;
4256 align
= (bfd_size_type
) 1 << align_power
;
4258 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> align
)
4259 align
= bed
->maxpagesize
;
4261 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4264 && !m
->includes_filehdr
4265 && !m
->includes_phdrs
4266 && (ufile_ptr
) off
>= align
)
4268 /* If the first section isn't loadable, the same holds for
4269 any other sections. Since the segment won't need file
4270 space, we can make p_offset overlap some prior segment.
4271 However, .tbss is special. If a segment starts with
4272 .tbss, we need to look at the next section to decide
4273 whether the segment has any loadable sections. */
4275 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4277 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4281 voff
= adjust
- align
;
4287 /* Make sure the .dynamic section is the first section in the
4288 PT_DYNAMIC segment. */
4289 else if (p
->p_type
== PT_DYNAMIC
4291 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4294 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4296 bfd_set_error (bfd_error_bad_value
);
4303 p
->p_vaddr
= m
->sections
[0]->vma
;
4305 if (m
->p_paddr_valid
)
4306 p
->p_paddr
= m
->p_paddr
;
4307 else if (m
->count
== 0)
4310 p
->p_paddr
= m
->sections
[0]->lma
;
4312 if (p
->p_type
== PT_LOAD
4313 && (abfd
->flags
& D_PAGED
) != 0)
4314 p
->p_align
= bed
->maxpagesize
;
4315 else if (m
->count
== 0)
4316 p
->p_align
= 1 << bed
->s
->log_file_align
;
4324 if (m
->includes_filehdr
)
4326 if (! m
->p_flags_valid
)
4329 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4330 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4333 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4335 if (p
->p_vaddr
< (bfd_vma
) off
)
4337 (*_bfd_error_handler
)
4338 (_("%B: Not enough room for program headers, try linking with -N"),
4340 bfd_set_error (bfd_error_bad_value
);
4345 if (! m
->p_paddr_valid
)
4348 if (p
->p_type
== PT_LOAD
)
4350 filehdr_vaddr
= p
->p_vaddr
;
4351 filehdr_paddr
= p
->p_paddr
;
4355 if (m
->includes_phdrs
)
4357 if (! m
->p_flags_valid
)
4360 if (m
->includes_filehdr
)
4362 if (p
->p_type
== PT_LOAD
)
4364 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4365 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4370 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4374 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4375 p
->p_vaddr
-= off
- p
->p_offset
;
4376 if (! m
->p_paddr_valid
)
4377 p
->p_paddr
-= off
- p
->p_offset
;
4380 if (p
->p_type
== PT_LOAD
)
4382 phdrs_vaddr
= p
->p_vaddr
;
4383 phdrs_paddr
= p
->p_paddr
;
4386 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4389 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4390 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4393 if (p
->p_type
== PT_LOAD
4394 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4396 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4397 p
->p_offset
= off
+ voff
;
4402 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4403 p
->p_filesz
+= adjust
;
4404 p
->p_memsz
+= adjust
;
4408 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4412 bfd_size_type align
;
4416 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4418 if (p
->p_type
== PT_LOAD
4419 || p
->p_type
== PT_TLS
)
4421 bfd_signed_vma adjust
;
4423 if ((flags
& SEC_LOAD
) != 0)
4425 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4428 (*_bfd_error_handler
)
4429 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4430 abfd
, sec
, (unsigned long) sec
->lma
);
4434 p
->p_filesz
+= adjust
;
4435 p
->p_memsz
+= adjust
;
4437 /* .tbss is special. It doesn't contribute to p_memsz of
4439 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4440 || p
->p_type
== PT_TLS
)
4442 /* The section VMA must equal the file position
4443 modulo the page size. */
4444 bfd_size_type page
= align
;
4445 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> page
)
4446 page
= bed
->maxpagesize
;
4447 adjust
= vma_page_aligned_bias (sec
->vma
,
4448 p
->p_vaddr
+ p
->p_memsz
,
4450 p
->p_memsz
+= adjust
;
4454 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4456 /* The section at i == 0 is the one that actually contains
4462 p
->p_filesz
= sec
->size
;
4468 /* The rest are fake sections that shouldn't be written. */
4477 if (p
->p_type
== PT_LOAD
)
4480 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4481 1997, and the exact reason for it isn't clear. One
4482 plausible explanation is that it is to work around
4483 a problem we have with linker scripts using data
4484 statements in NOLOAD sections. I don't think it
4485 makes a great deal of sense to have such a section
4486 assigned to a PT_LOAD segment, but apparently
4487 people do this. The data statement results in a
4488 bfd_data_link_order being built, and these need
4489 section contents to write into. Eventually, we get
4490 to _bfd_elf_write_object_contents which writes any
4491 section with contents to the output. Make room
4492 here for the write, so that following segments are
4494 if ((flags
& SEC_LOAD
) != 0
4495 || (flags
& SEC_HAS_CONTENTS
) != 0)
4499 if ((flags
& SEC_LOAD
) != 0)
4501 p
->p_filesz
+= sec
->size
;
4502 p
->p_memsz
+= sec
->size
;
4504 /* PR ld/594: Sections in note segments which are not loaded
4505 contribute to the file size but not the in-memory size. */
4506 else if (p
->p_type
== PT_NOTE
4507 && (flags
& SEC_HAS_CONTENTS
) != 0)
4508 p
->p_filesz
+= sec
->size
;
4510 /* .tbss is special. It doesn't contribute to p_memsz of
4512 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4513 || p
->p_type
== PT_TLS
)
4514 p
->p_memsz
+= sec
->size
;
4516 if (p
->p_type
== PT_TLS
4518 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4520 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4522 p
->p_memsz
+= o
->offset
+ o
->size
;
4525 if (align
> p
->p_align
4526 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4530 if (! m
->p_flags_valid
)
4533 if ((flags
& SEC_CODE
) != 0)
4535 if ((flags
& SEC_READONLY
) == 0)
4541 /* Assign file positions for the other sections. */
4542 i_shdrpp
= elf_elfsections (abfd
);
4543 num_sec
= elf_numsections (abfd
);
4544 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4546 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4547 Elf_Internal_Shdr
*hdr
;
4550 if (hdr
->bfd_section
!= NULL
4551 && hdr
->bfd_section
->filepos
!= 0)
4552 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4553 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4555 ((*_bfd_error_handler
)
4556 (_("%B: warning: allocated section `%s' not in segment"),
4558 (hdr
->bfd_section
== NULL
4560 : hdr
->bfd_section
->name
)));
4561 if ((abfd
->flags
& D_PAGED
) != 0)
4562 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4565 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4567 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4570 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4571 && hdr
->bfd_section
== NULL
)
4572 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4573 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4574 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4575 hdr
->sh_offset
= -1;
4577 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4579 if (i
== SHN_LORESERVE
- 1)
4581 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4582 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4586 /* Now that we have set the section file positions, we can set up
4587 the file positions for the non PT_LOAD segments. */
4588 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4592 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4594 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4595 /* If the section has not yet been assigned a file position,
4596 do so now. The ARM BPABI requires that .dynamic section
4597 not be marked SEC_ALLOC because it is not part of any
4598 PT_LOAD segment, so it will not be processed above. */
4599 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4601 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4604 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4606 off
= (_bfd_elf_assign_file_position_for_section
4607 (i_shdrpp
[i
], off
, TRUE
));
4608 p
->p_filesz
= m
->sections
[0]->size
;
4610 p
->p_offset
= m
->sections
[0]->filepos
;
4614 if (m
->includes_filehdr
)
4616 p
->p_vaddr
= filehdr_vaddr
;
4617 if (! m
->p_paddr_valid
)
4618 p
->p_paddr
= filehdr_paddr
;
4620 else if (m
->includes_phdrs
)
4622 p
->p_vaddr
= phdrs_vaddr
;
4623 if (! m
->p_paddr_valid
)
4624 p
->p_paddr
= phdrs_paddr
;
4626 else if (p
->p_type
== PT_GNU_RELRO
)
4628 Elf_Internal_Phdr
*lp
;
4630 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4632 if (lp
->p_type
== PT_LOAD
4633 && lp
->p_vaddr
<= link_info
->relro_end
4634 && lp
->p_vaddr
>= link_info
->relro_start
4635 && lp
->p_vaddr
+ lp
->p_filesz
4636 >= link_info
->relro_end
)
4640 if (lp
< phdrs
+ count
4641 && link_info
->relro_end
> lp
->p_vaddr
)
4643 p
->p_vaddr
= lp
->p_vaddr
;
4644 p
->p_paddr
= lp
->p_paddr
;
4645 p
->p_offset
= lp
->p_offset
;
4646 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4647 p
->p_memsz
= p
->p_filesz
;
4649 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4653 memset (p
, 0, sizeof *p
);
4654 p
->p_type
= PT_NULL
;
4660 /* Clear out any program headers we allocated but did not use. */
4661 for (; count
< alloc
; count
++, p
++)
4663 memset (p
, 0, sizeof *p
);
4664 p
->p_type
= PT_NULL
;
4667 elf_tdata (abfd
)->phdr
= phdrs
;
4669 elf_tdata (abfd
)->next_file_pos
= off
;
4671 /* Write out the program headers. */
4672 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4673 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4679 /* Get the size of the program header.
4681 If this is called by the linker before any of the section VMA's are set, it
4682 can't calculate the correct value for a strange memory layout. This only
4683 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4684 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4685 data segment (exclusive of .interp and .dynamic).
4687 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4688 will be two segments. */
4690 static bfd_size_type
4691 get_program_header_size (bfd
*abfd
)
4695 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4697 /* We can't return a different result each time we're called. */
4698 if (elf_tdata (abfd
)->program_header_size
!= 0)
4699 return elf_tdata (abfd
)->program_header_size
;
4701 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4703 struct elf_segment_map
*m
;
4706 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4708 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4709 return elf_tdata (abfd
)->program_header_size
;
4712 /* Assume we will need exactly two PT_LOAD segments: one for text
4713 and one for data. */
4716 s
= bfd_get_section_by_name (abfd
, ".interp");
4717 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4719 /* If we have a loadable interpreter section, we need a
4720 PT_INTERP segment. In this case, assume we also need a
4721 PT_PHDR segment, although that may not be true for all
4726 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4728 /* We need a PT_DYNAMIC segment. */
4732 if (elf_tdata (abfd
)->eh_frame_hdr
)
4734 /* We need a PT_GNU_EH_FRAME segment. */
4738 if (elf_tdata (abfd
)->stack_flags
)
4740 /* We need a PT_GNU_STACK segment. */
4744 if (elf_tdata (abfd
)->relro
)
4746 /* We need a PT_GNU_RELRO segment. */
4750 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4752 if ((s
->flags
& SEC_LOAD
) != 0
4753 && strncmp (s
->name
, ".note", 5) == 0)
4755 /* We need a PT_NOTE segment. */
4760 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4762 if (s
->flags
& SEC_THREAD_LOCAL
)
4764 /* We need a PT_TLS segment. */
4770 /* Let the backend count up any program headers it might need. */
4771 if (bed
->elf_backend_additional_program_headers
)
4775 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4781 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4782 return elf_tdata (abfd
)->program_header_size
;
4785 /* Work out the file positions of all the sections. This is called by
4786 _bfd_elf_compute_section_file_positions. All the section sizes and
4787 VMAs must be known before this is called.
4789 Reloc sections come in two flavours: Those processed specially as
4790 "side-channel" data attached to a section to which they apply, and
4791 those that bfd doesn't process as relocations. The latter sort are
4792 stored in a normal bfd section by bfd_section_from_shdr. We don't
4793 consider the former sort here, unless they form part of the loadable
4794 image. Reloc sections not assigned here will be handled later by
4795 assign_file_positions_for_relocs.
4797 We also don't set the positions of the .symtab and .strtab here. */
4800 assign_file_positions_except_relocs (bfd
*abfd
,
4801 struct bfd_link_info
*link_info
)
4803 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4804 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4806 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4808 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4809 && bfd_get_format (abfd
) != bfd_core
)
4811 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4812 unsigned int num_sec
= elf_numsections (abfd
);
4813 Elf_Internal_Shdr
**hdrpp
;
4816 /* Start after the ELF header. */
4817 off
= i_ehdrp
->e_ehsize
;
4819 /* We are not creating an executable, which means that we are
4820 not creating a program header, and that the actual order of
4821 the sections in the file is unimportant. */
4822 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4824 Elf_Internal_Shdr
*hdr
;
4827 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4828 && hdr
->bfd_section
== NULL
)
4829 || i
== tdata
->symtab_section
4830 || i
== tdata
->symtab_shndx_section
4831 || i
== tdata
->strtab_section
)
4833 hdr
->sh_offset
= -1;
4836 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4838 if (i
== SHN_LORESERVE
- 1)
4840 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4841 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4847 /* Assign file positions for the loaded sections based on the
4848 assignment of sections to segments. */
4849 if (! assign_file_positions_for_segments (abfd
, link_info
))
4852 off
= tdata
->next_file_pos
;
4855 /* Place the section headers. */
4856 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4857 i_ehdrp
->e_shoff
= off
;
4858 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4860 tdata
->next_file_pos
= off
;
4866 prep_headers (bfd
*abfd
)
4868 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4869 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4870 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4871 struct elf_strtab_hash
*shstrtab
;
4872 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4874 i_ehdrp
= elf_elfheader (abfd
);
4875 i_shdrp
= elf_elfsections (abfd
);
4877 shstrtab
= _bfd_elf_strtab_init ();
4878 if (shstrtab
== NULL
)
4881 elf_shstrtab (abfd
) = shstrtab
;
4883 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4884 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4885 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4886 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4888 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4889 i_ehdrp
->e_ident
[EI_DATA
] =
4890 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4891 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4893 if ((abfd
->flags
& DYNAMIC
) != 0)
4894 i_ehdrp
->e_type
= ET_DYN
;
4895 else if ((abfd
->flags
& EXEC_P
) != 0)
4896 i_ehdrp
->e_type
= ET_EXEC
;
4897 else if (bfd_get_format (abfd
) == bfd_core
)
4898 i_ehdrp
->e_type
= ET_CORE
;
4900 i_ehdrp
->e_type
= ET_REL
;
4902 switch (bfd_get_arch (abfd
))
4904 case bfd_arch_unknown
:
4905 i_ehdrp
->e_machine
= EM_NONE
;
4908 /* There used to be a long list of cases here, each one setting
4909 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4910 in the corresponding bfd definition. To avoid duplication,
4911 the switch was removed. Machines that need special handling
4912 can generally do it in elf_backend_final_write_processing(),
4913 unless they need the information earlier than the final write.
4914 Such need can generally be supplied by replacing the tests for
4915 e_machine with the conditions used to determine it. */
4917 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4920 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4921 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4923 /* No program header, for now. */
4924 i_ehdrp
->e_phoff
= 0;
4925 i_ehdrp
->e_phentsize
= 0;
4926 i_ehdrp
->e_phnum
= 0;
4928 /* Each bfd section is section header entry. */
4929 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4930 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4932 /* If we're building an executable, we'll need a program header table. */
4933 if (abfd
->flags
& EXEC_P
)
4934 /* It all happens later. */
4938 i_ehdrp
->e_phentsize
= 0;
4940 i_ehdrp
->e_phoff
= 0;
4943 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4944 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4945 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4946 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4947 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4948 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4949 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4950 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4951 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4957 /* Assign file positions for all the reloc sections which are not part
4958 of the loadable file image. */
4961 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4964 unsigned int i
, num_sec
;
4965 Elf_Internal_Shdr
**shdrpp
;
4967 off
= elf_tdata (abfd
)->next_file_pos
;
4969 num_sec
= elf_numsections (abfd
);
4970 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4972 Elf_Internal_Shdr
*shdrp
;
4975 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4976 && shdrp
->sh_offset
== -1)
4977 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4980 elf_tdata (abfd
)->next_file_pos
= off
;
4984 _bfd_elf_write_object_contents (bfd
*abfd
)
4986 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4987 Elf_Internal_Ehdr
*i_ehdrp
;
4988 Elf_Internal_Shdr
**i_shdrp
;
4990 unsigned int count
, num_sec
;
4992 if (! abfd
->output_has_begun
4993 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4996 i_shdrp
= elf_elfsections (abfd
);
4997 i_ehdrp
= elf_elfheader (abfd
);
5000 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5004 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5006 /* After writing the headers, we need to write the sections too... */
5007 num_sec
= elf_numsections (abfd
);
5008 for (count
= 1; count
< num_sec
; count
++)
5010 if (bed
->elf_backend_section_processing
)
5011 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5012 if (i_shdrp
[count
]->contents
)
5014 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5016 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5017 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5020 if (count
== SHN_LORESERVE
- 1)
5021 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
5024 /* Write out the section header names. */
5025 if (elf_shstrtab (abfd
) != NULL
5026 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5027 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5030 if (bed
->elf_backend_final_write_processing
)
5031 (*bed
->elf_backend_final_write_processing
) (abfd
,
5032 elf_tdata (abfd
)->linker
);
5034 return bed
->s
->write_shdrs_and_ehdr (abfd
);
5038 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5040 /* Hopefully this can be done just like an object file. */
5041 return _bfd_elf_write_object_contents (abfd
);
5044 /* Given a section, search the header to find them. */
5047 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5049 const struct elf_backend_data
*bed
;
5052 if (elf_section_data (asect
) != NULL
5053 && elf_section_data (asect
)->this_idx
!= 0)
5054 return elf_section_data (asect
)->this_idx
;
5056 if (bfd_is_abs_section (asect
))
5058 else if (bfd_is_com_section (asect
))
5060 else if (bfd_is_und_section (asect
))
5065 bed
= get_elf_backend_data (abfd
);
5066 if (bed
->elf_backend_section_from_bfd_section
)
5070 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5075 bfd_set_error (bfd_error_nonrepresentable_section
);
5080 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5084 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5086 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5088 flagword flags
= asym_ptr
->flags
;
5090 /* When gas creates relocations against local labels, it creates its
5091 own symbol for the section, but does put the symbol into the
5092 symbol chain, so udata is 0. When the linker is generating
5093 relocatable output, this section symbol may be for one of the
5094 input sections rather than the output section. */
5095 if (asym_ptr
->udata
.i
== 0
5096 && (flags
& BSF_SECTION_SYM
)
5097 && asym_ptr
->section
)
5101 if (asym_ptr
->section
->output_section
!= NULL
)
5102 indx
= asym_ptr
->section
->output_section
->index
;
5104 indx
= asym_ptr
->section
->index
;
5105 if (indx
< elf_num_section_syms (abfd
)
5106 && elf_section_syms (abfd
)[indx
] != NULL
)
5107 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5110 idx
= asym_ptr
->udata
.i
;
5114 /* This case can occur when using --strip-symbol on a symbol
5115 which is used in a relocation entry. */
5116 (*_bfd_error_handler
)
5117 (_("%B: symbol `%s' required but not present"),
5118 abfd
, bfd_asymbol_name (asym_ptr
));
5119 bfd_set_error (bfd_error_no_symbols
);
5126 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5127 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5128 elf_symbol_flags (flags
));
5136 /* Rewrite program header information. */
5139 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5141 Elf_Internal_Ehdr
*iehdr
;
5142 struct elf_segment_map
*map
;
5143 struct elf_segment_map
*map_first
;
5144 struct elf_segment_map
**pointer_to_map
;
5145 Elf_Internal_Phdr
*segment
;
5148 unsigned int num_segments
;
5149 bfd_boolean phdr_included
= FALSE
;
5150 bfd_vma maxpagesize
;
5151 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5152 unsigned int phdr_adjust_num
= 0;
5153 const struct elf_backend_data
*bed
;
5155 bed
= get_elf_backend_data (ibfd
);
5156 iehdr
= elf_elfheader (ibfd
);
5159 pointer_to_map
= &map_first
;
5161 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5162 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5164 /* Returns the end address of the segment + 1. */
5165 #define SEGMENT_END(segment, start) \
5166 (start + (segment->p_memsz > segment->p_filesz \
5167 ? segment->p_memsz : segment->p_filesz))
5169 #define SECTION_SIZE(section, segment) \
5170 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5171 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5172 ? section->size : 0)
5174 /* Returns TRUE if the given section is contained within
5175 the given segment. VMA addresses are compared. */
5176 #define IS_CONTAINED_BY_VMA(section, segment) \
5177 (section->vma >= segment->p_vaddr \
5178 && (section->vma + SECTION_SIZE (section, segment) \
5179 <= (SEGMENT_END (segment, segment->p_vaddr))))
5181 /* Returns TRUE if the given section is contained within
5182 the given segment. LMA addresses are compared. */
5183 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5184 (section->lma >= base \
5185 && (section->lma + SECTION_SIZE (section, segment) \
5186 <= SEGMENT_END (segment, base)))
5188 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5189 #define IS_COREFILE_NOTE(p, s) \
5190 (p->p_type == PT_NOTE \
5191 && bfd_get_format (ibfd) == bfd_core \
5192 && s->vma == 0 && s->lma == 0 \
5193 && (bfd_vma) s->filepos >= p->p_offset \
5194 && ((bfd_vma) s->filepos + s->size \
5195 <= p->p_offset + p->p_filesz))
5197 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5198 linker, which generates a PT_INTERP section with p_vaddr and
5199 p_memsz set to 0. */
5200 #define IS_SOLARIS_PT_INTERP(p, s) \
5202 && p->p_paddr == 0 \
5203 && p->p_memsz == 0 \
5204 && p->p_filesz > 0 \
5205 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5207 && (bfd_vma) s->filepos >= p->p_offset \
5208 && ((bfd_vma) s->filepos + s->size \
5209 <= p->p_offset + p->p_filesz))
5211 /* Decide if the given section should be included in the given segment.
5212 A section will be included if:
5213 1. It is within the address space of the segment -- we use the LMA
5214 if that is set for the segment and the VMA otherwise,
5215 2. It is an allocated segment,
5216 3. There is an output section associated with it,
5217 4. The section has not already been allocated to a previous segment.
5218 5. PT_GNU_STACK segments do not include any sections.
5219 6. PT_TLS segment includes only SHF_TLS sections.
5220 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5221 8. PT_DYNAMIC should not contain empty sections at the beginning
5222 (with the possible exception of .dynamic). */
5223 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5224 ((((segment->p_paddr \
5225 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5226 : IS_CONTAINED_BY_VMA (section, segment)) \
5227 && (section->flags & SEC_ALLOC) != 0) \
5228 || IS_COREFILE_NOTE (segment, section)) \
5229 && section->output_section != NULL \
5230 && segment->p_type != PT_GNU_STACK \
5231 && (segment->p_type != PT_TLS \
5232 || (section->flags & SEC_THREAD_LOCAL)) \
5233 && (segment->p_type == PT_LOAD \
5234 || segment->p_type == PT_TLS \
5235 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5236 && (segment->p_type != PT_DYNAMIC \
5237 || SECTION_SIZE (section, segment) > 0 \
5238 || (segment->p_paddr \
5239 ? segment->p_paddr != section->lma \
5240 : segment->p_vaddr != section->vma) \
5241 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5243 && ! section->segment_mark)
5245 /* Returns TRUE iff seg1 starts after the end of seg2. */
5246 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5247 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5249 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5250 their VMA address ranges and their LMA address ranges overlap.
5251 It is possible to have overlapping VMA ranges without overlapping LMA
5252 ranges. RedBoot images for example can have both .data and .bss mapped
5253 to the same VMA range, but with the .data section mapped to a different
5255 #define SEGMENT_OVERLAPS(seg1, seg2) \
5256 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5257 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5258 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5259 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5261 /* Initialise the segment mark field. */
5262 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5263 section
->segment_mark
= FALSE
;
5265 /* Scan through the segments specified in the program header
5266 of the input BFD. For this first scan we look for overlaps
5267 in the loadable segments. These can be created by weird
5268 parameters to objcopy. Also, fix some solaris weirdness. */
5269 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5274 Elf_Internal_Phdr
*segment2
;
5276 if (segment
->p_type
== PT_INTERP
)
5277 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5278 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5280 /* Mininal change so that the normal section to segment
5281 assignment code will work. */
5282 segment
->p_vaddr
= section
->vma
;
5286 if (segment
->p_type
!= PT_LOAD
)
5289 /* Determine if this segment overlaps any previous segments. */
5290 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5292 bfd_signed_vma extra_length
;
5294 if (segment2
->p_type
!= PT_LOAD
5295 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5298 /* Merge the two segments together. */
5299 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5301 /* Extend SEGMENT2 to include SEGMENT and then delete
5304 SEGMENT_END (segment
, segment
->p_vaddr
)
5305 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5307 if (extra_length
> 0)
5309 segment2
->p_memsz
+= extra_length
;
5310 segment2
->p_filesz
+= extra_length
;
5313 segment
->p_type
= PT_NULL
;
5315 /* Since we have deleted P we must restart the outer loop. */
5317 segment
= elf_tdata (ibfd
)->phdr
;
5322 /* Extend SEGMENT to include SEGMENT2 and then delete
5325 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5326 - SEGMENT_END (segment
, segment
->p_vaddr
);
5328 if (extra_length
> 0)
5330 segment
->p_memsz
+= extra_length
;
5331 segment
->p_filesz
+= extra_length
;
5334 segment2
->p_type
= PT_NULL
;
5339 /* The second scan attempts to assign sections to segments. */
5340 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5344 unsigned int section_count
;
5345 asection
** sections
;
5346 asection
* output_section
;
5348 bfd_vma matching_lma
;
5349 bfd_vma suggested_lma
;
5353 if (segment
->p_type
== PT_NULL
)
5356 /* Compute how many sections might be placed into this segment. */
5357 for (section
= ibfd
->sections
, section_count
= 0;
5359 section
= section
->next
)
5360 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5363 /* Allocate a segment map big enough to contain
5364 all of the sections we have selected. */
5365 amt
= sizeof (struct elf_segment_map
);
5366 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5367 map
= bfd_alloc (obfd
, amt
);
5371 /* Initialise the fields of the segment map. Default to
5372 using the physical address of the segment in the input BFD. */
5374 map
->p_type
= segment
->p_type
;
5375 map
->p_flags
= segment
->p_flags
;
5376 map
->p_flags_valid
= 1;
5377 map
->p_paddr
= segment
->p_paddr
;
5378 map
->p_paddr_valid
= 1;
5380 /* Determine if this segment contains the ELF file header
5381 and if it contains the program headers themselves. */
5382 map
->includes_filehdr
= (segment
->p_offset
== 0
5383 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5385 map
->includes_phdrs
= 0;
5387 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5389 map
->includes_phdrs
=
5390 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5391 && (segment
->p_offset
+ segment
->p_filesz
5392 >= ((bfd_vma
) iehdr
->e_phoff
5393 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5395 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5396 phdr_included
= TRUE
;
5399 if (section_count
== 0)
5401 /* Special segments, such as the PT_PHDR segment, may contain
5402 no sections, but ordinary, loadable segments should contain
5403 something. They are allowed by the ELF spec however, so only
5404 a warning is produced. */
5405 if (segment
->p_type
== PT_LOAD
)
5406 (*_bfd_error_handler
)
5407 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5411 *pointer_to_map
= map
;
5412 pointer_to_map
= &map
->next
;
5417 /* Now scan the sections in the input BFD again and attempt
5418 to add their corresponding output sections to the segment map.
5419 The problem here is how to handle an output section which has
5420 been moved (ie had its LMA changed). There are four possibilities:
5422 1. None of the sections have been moved.
5423 In this case we can continue to use the segment LMA from the
5426 2. All of the sections have been moved by the same amount.
5427 In this case we can change the segment's LMA to match the LMA
5428 of the first section.
5430 3. Some of the sections have been moved, others have not.
5431 In this case those sections which have not been moved can be
5432 placed in the current segment which will have to have its size,
5433 and possibly its LMA changed, and a new segment or segments will
5434 have to be created to contain the other sections.
5436 4. The sections have been moved, but not by the same amount.
5437 In this case we can change the segment's LMA to match the LMA
5438 of the first section and we will have to create a new segment
5439 or segments to contain the other sections.
5441 In order to save time, we allocate an array to hold the section
5442 pointers that we are interested in. As these sections get assigned
5443 to a segment, they are removed from this array. */
5445 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5446 to work around this long long bug. */
5447 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5448 if (sections
== NULL
)
5451 /* Step One: Scan for segment vs section LMA conflicts.
5452 Also add the sections to the section array allocated above.
5453 Also add the sections to the current segment. In the common
5454 case, where the sections have not been moved, this means that
5455 we have completely filled the segment, and there is nothing
5461 for (j
= 0, section
= ibfd
->sections
;
5463 section
= section
->next
)
5465 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5467 output_section
= section
->output_section
;
5469 sections
[j
++] = section
;
5471 /* The Solaris native linker always sets p_paddr to 0.
5472 We try to catch that case here, and set it to the
5473 correct value. Note - some backends require that
5474 p_paddr be left as zero. */
5475 if (segment
->p_paddr
== 0
5476 && segment
->p_vaddr
!= 0
5477 && (! bed
->want_p_paddr_set_to_zero
)
5479 && output_section
->lma
!= 0
5480 && (output_section
->vma
== (segment
->p_vaddr
5481 + (map
->includes_filehdr
5484 + (map
->includes_phdrs
5486 * iehdr
->e_phentsize
)
5488 map
->p_paddr
= segment
->p_vaddr
;
5490 /* Match up the physical address of the segment with the
5491 LMA address of the output section. */
5492 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5493 || IS_COREFILE_NOTE (segment
, section
)
5494 || (bed
->want_p_paddr_set_to_zero
&&
5495 IS_CONTAINED_BY_VMA (output_section
, segment
))
5498 if (matching_lma
== 0)
5499 matching_lma
= output_section
->lma
;
5501 /* We assume that if the section fits within the segment
5502 then it does not overlap any other section within that
5504 map
->sections
[isec
++] = output_section
;
5506 else if (suggested_lma
== 0)
5507 suggested_lma
= output_section
->lma
;
5511 BFD_ASSERT (j
== section_count
);
5513 /* Step Two: Adjust the physical address of the current segment,
5515 if (isec
== section_count
)
5517 /* All of the sections fitted within the segment as currently
5518 specified. This is the default case. Add the segment to
5519 the list of built segments and carry on to process the next
5520 program header in the input BFD. */
5521 map
->count
= section_count
;
5522 *pointer_to_map
= map
;
5523 pointer_to_map
= &map
->next
;
5530 if (matching_lma
!= 0)
5532 /* At least one section fits inside the current segment.
5533 Keep it, but modify its physical address to match the
5534 LMA of the first section that fitted. */
5535 map
->p_paddr
= matching_lma
;
5539 /* None of the sections fitted inside the current segment.
5540 Change the current segment's physical address to match
5541 the LMA of the first section. */
5542 map
->p_paddr
= suggested_lma
;
5545 /* Offset the segment physical address from the lma
5546 to allow for space taken up by elf headers. */
5547 if (map
->includes_filehdr
)
5548 map
->p_paddr
-= iehdr
->e_ehsize
;
5550 if (map
->includes_phdrs
)
5552 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5554 /* iehdr->e_phnum is just an estimate of the number
5555 of program headers that we will need. Make a note
5556 here of the number we used and the segment we chose
5557 to hold these headers, so that we can adjust the
5558 offset when we know the correct value. */
5559 phdr_adjust_num
= iehdr
->e_phnum
;
5560 phdr_adjust_seg
= map
;
5564 /* Step Three: Loop over the sections again, this time assigning
5565 those that fit to the current segment and removing them from the
5566 sections array; but making sure not to leave large gaps. Once all
5567 possible sections have been assigned to the current segment it is
5568 added to the list of built segments and if sections still remain
5569 to be assigned, a new segment is constructed before repeating
5577 /* Fill the current segment with sections that fit. */
5578 for (j
= 0; j
< section_count
; j
++)
5580 section
= sections
[j
];
5582 if (section
== NULL
)
5585 output_section
= section
->output_section
;
5587 BFD_ASSERT (output_section
!= NULL
);
5589 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5590 || IS_COREFILE_NOTE (segment
, section
))
5592 if (map
->count
== 0)
5594 /* If the first section in a segment does not start at
5595 the beginning of the segment, then something is
5597 if (output_section
->lma
!=
5599 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5600 + (map
->includes_phdrs
5601 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5607 asection
* prev_sec
;
5609 prev_sec
= map
->sections
[map
->count
- 1];
5611 /* If the gap between the end of the previous section
5612 and the start of this section is more than
5613 maxpagesize then we need to start a new segment. */
5614 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5616 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5617 || ((prev_sec
->lma
+ prev_sec
->size
)
5618 > output_section
->lma
))
5620 if (suggested_lma
== 0)
5621 suggested_lma
= output_section
->lma
;
5627 map
->sections
[map
->count
++] = output_section
;
5630 section
->segment_mark
= TRUE
;
5632 else if (suggested_lma
== 0)
5633 suggested_lma
= output_section
->lma
;
5636 BFD_ASSERT (map
->count
> 0);
5638 /* Add the current segment to the list of built segments. */
5639 *pointer_to_map
= map
;
5640 pointer_to_map
= &map
->next
;
5642 if (isec
< section_count
)
5644 /* We still have not allocated all of the sections to
5645 segments. Create a new segment here, initialise it
5646 and carry on looping. */
5647 amt
= sizeof (struct elf_segment_map
);
5648 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5649 map
= bfd_alloc (obfd
, amt
);
5656 /* Initialise the fields of the segment map. Set the physical
5657 physical address to the LMA of the first section that has
5658 not yet been assigned. */
5660 map
->p_type
= segment
->p_type
;
5661 map
->p_flags
= segment
->p_flags
;
5662 map
->p_flags_valid
= 1;
5663 map
->p_paddr
= suggested_lma
;
5664 map
->p_paddr_valid
= 1;
5665 map
->includes_filehdr
= 0;
5666 map
->includes_phdrs
= 0;
5669 while (isec
< section_count
);
5674 /* The Solaris linker creates program headers in which all the
5675 p_paddr fields are zero. When we try to objcopy or strip such a
5676 file, we get confused. Check for this case, and if we find it
5677 reset the p_paddr_valid fields. */
5678 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5679 if (map
->p_paddr
!= 0)
5682 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5683 map
->p_paddr_valid
= 0;
5685 elf_tdata (obfd
)->segment_map
= map_first
;
5687 /* If we had to estimate the number of program headers that were
5688 going to be needed, then check our estimate now and adjust
5689 the offset if necessary. */
5690 if (phdr_adjust_seg
!= NULL
)
5694 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5697 if (count
> phdr_adjust_num
)
5698 phdr_adjust_seg
->p_paddr
5699 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5704 #undef IS_CONTAINED_BY_VMA
5705 #undef IS_CONTAINED_BY_LMA
5706 #undef IS_COREFILE_NOTE
5707 #undef IS_SOLARIS_PT_INTERP
5708 #undef INCLUDE_SECTION_IN_SEGMENT
5709 #undef SEGMENT_AFTER_SEGMENT
5710 #undef SEGMENT_OVERLAPS
5714 /* Copy ELF program header information. */
5717 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5719 Elf_Internal_Ehdr
*iehdr
;
5720 struct elf_segment_map
*map
;
5721 struct elf_segment_map
*map_first
;
5722 struct elf_segment_map
**pointer_to_map
;
5723 Elf_Internal_Phdr
*segment
;
5725 unsigned int num_segments
;
5726 bfd_boolean phdr_included
= FALSE
;
5728 iehdr
= elf_elfheader (ibfd
);
5731 pointer_to_map
= &map_first
;
5733 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5734 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5739 unsigned int section_count
;
5741 Elf_Internal_Shdr
*this_hdr
;
5743 /* FIXME: Do we need to copy PT_NULL segment? */
5744 if (segment
->p_type
== PT_NULL
)
5747 /* Compute how many sections are in this segment. */
5748 for (section
= ibfd
->sections
, section_count
= 0;
5750 section
= section
->next
)
5752 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5753 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5757 /* Allocate a segment map big enough to contain
5758 all of the sections we have selected. */
5759 amt
= sizeof (struct elf_segment_map
);
5760 if (section_count
!= 0)
5761 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5762 map
= bfd_alloc (obfd
, amt
);
5766 /* Initialize the fields of the output segment map with the
5769 map
->p_type
= segment
->p_type
;
5770 map
->p_flags
= segment
->p_flags
;
5771 map
->p_flags_valid
= 1;
5772 map
->p_paddr
= segment
->p_paddr
;
5773 map
->p_paddr_valid
= 1;
5775 /* Determine if this segment contains the ELF file header
5776 and if it contains the program headers themselves. */
5777 map
->includes_filehdr
= (segment
->p_offset
== 0
5778 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5780 map
->includes_phdrs
= 0;
5781 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5783 map
->includes_phdrs
=
5784 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5785 && (segment
->p_offset
+ segment
->p_filesz
5786 >= ((bfd_vma
) iehdr
->e_phoff
5787 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5789 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5790 phdr_included
= TRUE
;
5793 if (section_count
!= 0)
5795 unsigned int isec
= 0;
5797 for (section
= ibfd
->sections
;
5799 section
= section
->next
)
5801 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5802 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5803 map
->sections
[isec
++] = section
->output_section
;
5807 map
->count
= section_count
;
5808 *pointer_to_map
= map
;
5809 pointer_to_map
= &map
->next
;
5812 elf_tdata (obfd
)->segment_map
= map_first
;
5816 /* Copy private BFD data. This copies or rewrites ELF program header
5820 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5822 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5823 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5826 if (elf_tdata (ibfd
)->phdr
== NULL
)
5829 if (ibfd
->xvec
== obfd
->xvec
)
5831 /* Check if any sections in the input BFD covered by ELF program
5832 header are changed. */
5833 Elf_Internal_Phdr
*segment
;
5834 asection
*section
, *osec
;
5835 unsigned int i
, num_segments
;
5836 Elf_Internal_Shdr
*this_hdr
;
5838 /* Initialize the segment mark field. */
5839 for (section
= obfd
->sections
; section
!= NULL
;
5840 section
= section
->next
)
5841 section
->segment_mark
= FALSE
;
5843 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5844 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5848 for (section
= ibfd
->sections
;
5849 section
!= NULL
; section
= section
->next
)
5851 /* We mark the output section so that we know it comes
5852 from the input BFD. */
5853 osec
= section
->output_section
;
5855 osec
->segment_mark
= TRUE
;
5857 /* Check if this section is covered by the segment. */
5858 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5859 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5861 /* FIXME: Check if its output section is changed or
5862 removed. What else do we need to check? */
5864 || section
->flags
!= osec
->flags
5865 || section
->lma
!= osec
->lma
5866 || section
->vma
!= osec
->vma
5867 || section
->size
!= osec
->size
5868 || section
->rawsize
!= osec
->rawsize
5869 || section
->alignment_power
!= osec
->alignment_power
)
5875 /* Check to see if any output section doesn't come from the
5877 for (section
= obfd
->sections
; section
!= NULL
;
5878 section
= section
->next
)
5880 if (section
->segment_mark
== FALSE
)
5883 section
->segment_mark
= FALSE
;
5886 return copy_elf_program_header (ibfd
, obfd
);
5890 return rewrite_elf_program_header (ibfd
, obfd
);
5893 /* Initialize private output section information from input section. */
5896 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5900 struct bfd_link_info
*link_info
)
5903 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5904 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5906 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5907 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5910 /* Don't copy the output ELF section type from input if the
5911 output BFD section flags has been set to something different.
5912 elf_fake_sections will set ELF section type based on BFD
5914 if (osec
->flags
== isec
->flags
|| !osec
->flags
)
5915 elf_section_type (osec
) = elf_section_type (isec
);
5917 /* Set things up for objcopy and relocatable link. The output
5918 SHT_GROUP section will have its elf_next_in_group pointing back
5919 to the input group members. Ignore linker created group section.
5920 See elfNN_ia64_object_p in elfxx-ia64.c. */
5924 if (elf_sec_group (isec
) == NULL
5925 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5927 if (elf_section_flags (isec
) & SHF_GROUP
)
5928 elf_section_flags (osec
) |= SHF_GROUP
;
5929 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5930 elf_group_name (osec
) = elf_group_name (isec
);
5934 ihdr
= &elf_section_data (isec
)->this_hdr
;
5936 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5937 don't use the output section of the linked-to section since it
5938 may be NULL at this point. */
5939 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
5941 ohdr
= &elf_section_data (osec
)->this_hdr
;
5942 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
5943 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
5946 osec
->use_rela_p
= isec
->use_rela_p
;
5951 /* Copy private section information. This copies over the entsize
5952 field, and sometimes the info field. */
5955 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5960 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5962 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5963 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5966 ihdr
= &elf_section_data (isec
)->this_hdr
;
5967 ohdr
= &elf_section_data (osec
)->this_hdr
;
5969 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5971 if (ihdr
->sh_type
== SHT_SYMTAB
5972 || ihdr
->sh_type
== SHT_DYNSYM
5973 || ihdr
->sh_type
== SHT_GNU_verneed
5974 || ihdr
->sh_type
== SHT_GNU_verdef
)
5975 ohdr
->sh_info
= ihdr
->sh_info
;
5977 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
5981 /* Copy private header information. */
5984 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5986 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5987 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5990 /* Copy over private BFD data if it has not already been copied.
5991 This must be done here, rather than in the copy_private_bfd_data
5992 entry point, because the latter is called after the section
5993 contents have been set, which means that the program headers have
5994 already been worked out. */
5995 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5997 if (! copy_private_bfd_data (ibfd
, obfd
))
6004 /* Copy private symbol information. If this symbol is in a section
6005 which we did not map into a BFD section, try to map the section
6006 index correctly. We use special macro definitions for the mapped
6007 section indices; these definitions are interpreted by the
6008 swap_out_syms function. */
6010 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6011 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6012 #define MAP_STRTAB (SHN_HIOS + 3)
6013 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6014 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6017 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6022 elf_symbol_type
*isym
, *osym
;
6024 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6025 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6028 isym
= elf_symbol_from (ibfd
, isymarg
);
6029 osym
= elf_symbol_from (obfd
, osymarg
);
6033 && bfd_is_abs_section (isym
->symbol
.section
))
6037 shndx
= isym
->internal_elf_sym
.st_shndx
;
6038 if (shndx
== elf_onesymtab (ibfd
))
6039 shndx
= MAP_ONESYMTAB
;
6040 else if (shndx
== elf_dynsymtab (ibfd
))
6041 shndx
= MAP_DYNSYMTAB
;
6042 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6044 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6045 shndx
= MAP_SHSTRTAB
;
6046 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6047 shndx
= MAP_SYM_SHNDX
;
6048 osym
->internal_elf_sym
.st_shndx
= shndx
;
6054 /* Swap out the symbols. */
6057 swap_out_syms (bfd
*abfd
,
6058 struct bfd_strtab_hash
**sttp
,
6061 const struct elf_backend_data
*bed
;
6064 struct bfd_strtab_hash
*stt
;
6065 Elf_Internal_Shdr
*symtab_hdr
;
6066 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6067 Elf_Internal_Shdr
*symstrtab_hdr
;
6068 bfd_byte
*outbound_syms
;
6069 bfd_byte
*outbound_shndx
;
6072 bfd_boolean name_local_sections
;
6074 if (!elf_map_symbols (abfd
))
6077 /* Dump out the symtabs. */
6078 stt
= _bfd_elf_stringtab_init ();
6082 bed
= get_elf_backend_data (abfd
);
6083 symcount
= bfd_get_symcount (abfd
);
6084 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6085 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6086 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6087 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6088 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6089 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6091 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6092 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6094 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6095 if (outbound_syms
== NULL
)
6097 _bfd_stringtab_free (stt
);
6100 symtab_hdr
->contents
= outbound_syms
;
6102 outbound_shndx
= NULL
;
6103 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6104 if (symtab_shndx_hdr
->sh_name
!= 0)
6106 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6107 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6108 sizeof (Elf_External_Sym_Shndx
));
6109 if (outbound_shndx
== NULL
)
6111 _bfd_stringtab_free (stt
);
6115 symtab_shndx_hdr
->contents
= outbound_shndx
;
6116 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6117 symtab_shndx_hdr
->sh_size
= amt
;
6118 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6119 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6122 /* Now generate the data (for "contents"). */
6124 /* Fill in zeroth symbol and swap it out. */
6125 Elf_Internal_Sym sym
;
6131 sym
.st_shndx
= SHN_UNDEF
;
6132 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6133 outbound_syms
+= bed
->s
->sizeof_sym
;
6134 if (outbound_shndx
!= NULL
)
6135 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6139 = (bed
->elf_backend_name_local_section_symbols
6140 && bed
->elf_backend_name_local_section_symbols (abfd
));
6142 syms
= bfd_get_outsymbols (abfd
);
6143 for (idx
= 0; idx
< symcount
; idx
++)
6145 Elf_Internal_Sym sym
;
6146 bfd_vma value
= syms
[idx
]->value
;
6147 elf_symbol_type
*type_ptr
;
6148 flagword flags
= syms
[idx
]->flags
;
6151 if (!name_local_sections
6152 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6154 /* Local section symbols have no name. */
6159 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6162 if (sym
.st_name
== (unsigned long) -1)
6164 _bfd_stringtab_free (stt
);
6169 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6171 if ((flags
& BSF_SECTION_SYM
) == 0
6172 && bfd_is_com_section (syms
[idx
]->section
))
6174 /* ELF common symbols put the alignment into the `value' field,
6175 and the size into the `size' field. This is backwards from
6176 how BFD handles it, so reverse it here. */
6177 sym
.st_size
= value
;
6178 if (type_ptr
== NULL
6179 || type_ptr
->internal_elf_sym
.st_value
== 0)
6180 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6182 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6183 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6184 (abfd
, syms
[idx
]->section
);
6188 asection
*sec
= syms
[idx
]->section
;
6191 if (sec
->output_section
)
6193 value
+= sec
->output_offset
;
6194 sec
= sec
->output_section
;
6197 /* Don't add in the section vma for relocatable output. */
6198 if (! relocatable_p
)
6200 sym
.st_value
= value
;
6201 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6203 if (bfd_is_abs_section (sec
)
6205 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6207 /* This symbol is in a real ELF section which we did
6208 not create as a BFD section. Undo the mapping done
6209 by copy_private_symbol_data. */
6210 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6214 shndx
= elf_onesymtab (abfd
);
6217 shndx
= elf_dynsymtab (abfd
);
6220 shndx
= elf_tdata (abfd
)->strtab_section
;
6223 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6226 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6234 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6240 /* Writing this would be a hell of a lot easier if
6241 we had some decent documentation on bfd, and
6242 knew what to expect of the library, and what to
6243 demand of applications. For example, it
6244 appears that `objcopy' might not set the
6245 section of a symbol to be a section that is
6246 actually in the output file. */
6247 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6250 _bfd_error_handler (_("\
6251 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6252 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6254 bfd_set_error (bfd_error_invalid_operation
);
6255 _bfd_stringtab_free (stt
);
6259 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6260 BFD_ASSERT (shndx
!= -1);
6264 sym
.st_shndx
= shndx
;
6267 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6269 else if ((flags
& BSF_FUNCTION
) != 0)
6271 else if ((flags
& BSF_OBJECT
) != 0)
6276 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6279 /* Processor-specific types. */
6280 if (type_ptr
!= NULL
6281 && bed
->elf_backend_get_symbol_type
)
6282 type
= ((*bed
->elf_backend_get_symbol_type
)
6283 (&type_ptr
->internal_elf_sym
, type
));
6285 if (flags
& BSF_SECTION_SYM
)
6287 if (flags
& BSF_GLOBAL
)
6288 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6290 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6292 else if (bfd_is_com_section (syms
[idx
]->section
))
6293 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6294 else if (bfd_is_und_section (syms
[idx
]->section
))
6295 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6299 else if (flags
& BSF_FILE
)
6300 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6303 int bind
= STB_LOCAL
;
6305 if (flags
& BSF_LOCAL
)
6307 else if (flags
& BSF_WEAK
)
6309 else if (flags
& BSF_GLOBAL
)
6312 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6315 if (type_ptr
!= NULL
)
6316 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6320 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6321 outbound_syms
+= bed
->s
->sizeof_sym
;
6322 if (outbound_shndx
!= NULL
)
6323 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6327 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6328 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6330 symstrtab_hdr
->sh_flags
= 0;
6331 symstrtab_hdr
->sh_addr
= 0;
6332 symstrtab_hdr
->sh_entsize
= 0;
6333 symstrtab_hdr
->sh_link
= 0;
6334 symstrtab_hdr
->sh_info
= 0;
6335 symstrtab_hdr
->sh_addralign
= 1;
6340 /* Return the number of bytes required to hold the symtab vector.
6342 Note that we base it on the count plus 1, since we will null terminate
6343 the vector allocated based on this size. However, the ELF symbol table
6344 always has a dummy entry as symbol #0, so it ends up even. */
6347 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6351 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6353 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6354 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6356 symtab_size
-= sizeof (asymbol
*);
6362 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6366 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6368 if (elf_dynsymtab (abfd
) == 0)
6370 bfd_set_error (bfd_error_invalid_operation
);
6374 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6375 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6377 symtab_size
-= sizeof (asymbol
*);
6383 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6386 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6389 /* Canonicalize the relocs. */
6392 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6399 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6401 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6404 tblptr
= section
->relocation
;
6405 for (i
= 0; i
< section
->reloc_count
; i
++)
6406 *relptr
++ = tblptr
++;
6410 return section
->reloc_count
;
6414 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6416 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6417 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6420 bfd_get_symcount (abfd
) = symcount
;
6425 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6426 asymbol
**allocation
)
6428 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6429 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6432 bfd_get_dynamic_symcount (abfd
) = symcount
;
6436 /* Return the size required for the dynamic reloc entries. Any loadable
6437 section that was actually installed in the BFD, and has type SHT_REL
6438 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6439 dynamic reloc section. */
6442 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6447 if (elf_dynsymtab (abfd
) == 0)
6449 bfd_set_error (bfd_error_invalid_operation
);
6453 ret
= sizeof (arelent
*);
6454 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6455 if ((s
->flags
& SEC_LOAD
) != 0
6456 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6457 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6458 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6459 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6460 * sizeof (arelent
*));
6465 /* Canonicalize the dynamic relocation entries. Note that we return the
6466 dynamic relocations as a single block, although they are actually
6467 associated with particular sections; the interface, which was
6468 designed for SunOS style shared libraries, expects that there is only
6469 one set of dynamic relocs. Any loadable section that was actually
6470 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6471 dynamic symbol table, is considered to be a dynamic reloc section. */
6474 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6478 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6482 if (elf_dynsymtab (abfd
) == 0)
6484 bfd_set_error (bfd_error_invalid_operation
);
6488 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6490 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6492 if ((s
->flags
& SEC_LOAD
) != 0
6493 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6494 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6495 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6500 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6502 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6504 for (i
= 0; i
< count
; i
++)
6515 /* Read in the version information. */
6518 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6520 bfd_byte
*contents
= NULL
;
6521 unsigned int freeidx
= 0;
6523 if (elf_dynverref (abfd
) != 0)
6525 Elf_Internal_Shdr
*hdr
;
6526 Elf_External_Verneed
*everneed
;
6527 Elf_Internal_Verneed
*iverneed
;
6529 bfd_byte
*contents_end
;
6531 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6533 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6534 sizeof (Elf_Internal_Verneed
));
6535 if (elf_tdata (abfd
)->verref
== NULL
)
6538 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6540 contents
= bfd_malloc (hdr
->sh_size
);
6541 if (contents
== NULL
)
6543 error_return_verref
:
6544 elf_tdata (abfd
)->verref
= NULL
;
6545 elf_tdata (abfd
)->cverrefs
= 0;
6548 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6549 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6550 goto error_return_verref
;
6552 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6553 goto error_return_verref
;
6555 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6556 == sizeof (Elf_External_Vernaux
));
6557 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6558 everneed
= (Elf_External_Verneed
*) contents
;
6559 iverneed
= elf_tdata (abfd
)->verref
;
6560 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6562 Elf_External_Vernaux
*evernaux
;
6563 Elf_Internal_Vernaux
*ivernaux
;
6566 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6568 iverneed
->vn_bfd
= abfd
;
6570 iverneed
->vn_filename
=
6571 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6573 if (iverneed
->vn_filename
== NULL
)
6574 goto error_return_verref
;
6576 if (iverneed
->vn_cnt
== 0)
6577 iverneed
->vn_auxptr
= NULL
;
6580 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6581 sizeof (Elf_Internal_Vernaux
));
6582 if (iverneed
->vn_auxptr
== NULL
)
6583 goto error_return_verref
;
6586 if (iverneed
->vn_aux
6587 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6588 goto error_return_verref
;
6590 evernaux
= ((Elf_External_Vernaux
*)
6591 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6592 ivernaux
= iverneed
->vn_auxptr
;
6593 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6595 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6597 ivernaux
->vna_nodename
=
6598 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6599 ivernaux
->vna_name
);
6600 if (ivernaux
->vna_nodename
== NULL
)
6601 goto error_return_verref
;
6603 if (j
+ 1 < iverneed
->vn_cnt
)
6604 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6606 ivernaux
->vna_nextptr
= NULL
;
6608 if (ivernaux
->vna_next
6609 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6610 goto error_return_verref
;
6612 evernaux
= ((Elf_External_Vernaux
*)
6613 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6615 if (ivernaux
->vna_other
> freeidx
)
6616 freeidx
= ivernaux
->vna_other
;
6619 if (i
+ 1 < hdr
->sh_info
)
6620 iverneed
->vn_nextref
= iverneed
+ 1;
6622 iverneed
->vn_nextref
= NULL
;
6624 if (iverneed
->vn_next
6625 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6626 goto error_return_verref
;
6628 everneed
= ((Elf_External_Verneed
*)
6629 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6636 if (elf_dynverdef (abfd
) != 0)
6638 Elf_Internal_Shdr
*hdr
;
6639 Elf_External_Verdef
*everdef
;
6640 Elf_Internal_Verdef
*iverdef
;
6641 Elf_Internal_Verdef
*iverdefarr
;
6642 Elf_Internal_Verdef iverdefmem
;
6644 unsigned int maxidx
;
6645 bfd_byte
*contents_end_def
, *contents_end_aux
;
6647 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6649 contents
= bfd_malloc (hdr
->sh_size
);
6650 if (contents
== NULL
)
6652 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6653 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6656 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6659 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6660 >= sizeof (Elf_External_Verdaux
));
6661 contents_end_def
= contents
+ hdr
->sh_size
6662 - sizeof (Elf_External_Verdef
);
6663 contents_end_aux
= contents
+ hdr
->sh_size
6664 - sizeof (Elf_External_Verdaux
);
6666 /* We know the number of entries in the section but not the maximum
6667 index. Therefore we have to run through all entries and find
6669 everdef
= (Elf_External_Verdef
*) contents
;
6671 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6673 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6675 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6676 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6678 if (iverdefmem
.vd_next
6679 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6682 everdef
= ((Elf_External_Verdef
*)
6683 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6686 if (default_imported_symver
)
6688 if (freeidx
> maxidx
)
6693 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6694 sizeof (Elf_Internal_Verdef
));
6695 if (elf_tdata (abfd
)->verdef
== NULL
)
6698 elf_tdata (abfd
)->cverdefs
= maxidx
;
6700 everdef
= (Elf_External_Verdef
*) contents
;
6701 iverdefarr
= elf_tdata (abfd
)->verdef
;
6702 for (i
= 0; i
< hdr
->sh_info
; i
++)
6704 Elf_External_Verdaux
*everdaux
;
6705 Elf_Internal_Verdaux
*iverdaux
;
6708 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6710 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6712 error_return_verdef
:
6713 elf_tdata (abfd
)->verdef
= NULL
;
6714 elf_tdata (abfd
)->cverdefs
= 0;
6718 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6719 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6721 iverdef
->vd_bfd
= abfd
;
6723 if (iverdef
->vd_cnt
== 0)
6724 iverdef
->vd_auxptr
= NULL
;
6727 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6728 sizeof (Elf_Internal_Verdaux
));
6729 if (iverdef
->vd_auxptr
== NULL
)
6730 goto error_return_verdef
;
6734 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6735 goto error_return_verdef
;
6737 everdaux
= ((Elf_External_Verdaux
*)
6738 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6739 iverdaux
= iverdef
->vd_auxptr
;
6740 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6742 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6744 iverdaux
->vda_nodename
=
6745 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6746 iverdaux
->vda_name
);
6747 if (iverdaux
->vda_nodename
== NULL
)
6748 goto error_return_verdef
;
6750 if (j
+ 1 < iverdef
->vd_cnt
)
6751 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6753 iverdaux
->vda_nextptr
= NULL
;
6755 if (iverdaux
->vda_next
6756 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6757 goto error_return_verdef
;
6759 everdaux
= ((Elf_External_Verdaux
*)
6760 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6763 if (iverdef
->vd_cnt
)
6764 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6766 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6767 iverdef
->vd_nextdef
= iverdef
+ 1;
6769 iverdef
->vd_nextdef
= NULL
;
6771 everdef
= ((Elf_External_Verdef
*)
6772 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6778 else if (default_imported_symver
)
6785 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6786 sizeof (Elf_Internal_Verdef
));
6787 if (elf_tdata (abfd
)->verdef
== NULL
)
6790 elf_tdata (abfd
)->cverdefs
= freeidx
;
6793 /* Create a default version based on the soname. */
6794 if (default_imported_symver
)
6796 Elf_Internal_Verdef
*iverdef
;
6797 Elf_Internal_Verdaux
*iverdaux
;
6799 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6801 iverdef
->vd_version
= VER_DEF_CURRENT
;
6802 iverdef
->vd_flags
= 0;
6803 iverdef
->vd_ndx
= freeidx
;
6804 iverdef
->vd_cnt
= 1;
6806 iverdef
->vd_bfd
= abfd
;
6808 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6809 if (iverdef
->vd_nodename
== NULL
)
6810 goto error_return_verdef
;
6811 iverdef
->vd_nextdef
= NULL
;
6812 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6813 if (iverdef
->vd_auxptr
== NULL
)
6814 goto error_return_verdef
;
6816 iverdaux
= iverdef
->vd_auxptr
;
6817 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6818 iverdaux
->vda_nextptr
= NULL
;
6824 if (contents
!= NULL
)
6830 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6832 elf_symbol_type
*newsym
;
6833 bfd_size_type amt
= sizeof (elf_symbol_type
);
6835 newsym
= bfd_zalloc (abfd
, amt
);
6840 newsym
->symbol
.the_bfd
= abfd
;
6841 return &newsym
->symbol
;
6846 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6850 bfd_symbol_info (symbol
, ret
);
6853 /* Return whether a symbol name implies a local symbol. Most targets
6854 use this function for the is_local_label_name entry point, but some
6858 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6861 /* Normal local symbols start with ``.L''. */
6862 if (name
[0] == '.' && name
[1] == 'L')
6865 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6866 DWARF debugging symbols starting with ``..''. */
6867 if (name
[0] == '.' && name
[1] == '.')
6870 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6871 emitting DWARF debugging output. I suspect this is actually a
6872 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6873 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6874 underscore to be emitted on some ELF targets). For ease of use,
6875 we treat such symbols as local. */
6876 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6883 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6884 asymbol
*symbol ATTRIBUTE_UNUSED
)
6891 _bfd_elf_set_arch_mach (bfd
*abfd
,
6892 enum bfd_architecture arch
,
6893 unsigned long machine
)
6895 /* If this isn't the right architecture for this backend, and this
6896 isn't the generic backend, fail. */
6897 if (arch
!= get_elf_backend_data (abfd
)->arch
6898 && arch
!= bfd_arch_unknown
6899 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6902 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6905 /* Find the function to a particular section and offset,
6906 for error reporting. */
6909 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6913 const char **filename_ptr
,
6914 const char **functionname_ptr
)
6916 const char *filename
;
6917 asymbol
*func
, *file
;
6920 /* ??? Given multiple file symbols, it is impossible to reliably
6921 choose the right file name for global symbols. File symbols are
6922 local symbols, and thus all file symbols must sort before any
6923 global symbols. The ELF spec may be interpreted to say that a
6924 file symbol must sort before other local symbols, but currently
6925 ld -r doesn't do this. So, for ld -r output, it is possible to
6926 make a better choice of file name for local symbols by ignoring
6927 file symbols appearing after a given local symbol. */
6928 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6934 state
= nothing_seen
;
6936 for (p
= symbols
; *p
!= NULL
; p
++)
6940 q
= (elf_symbol_type
*) *p
;
6942 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6948 if (state
== symbol_seen
)
6949 state
= file_after_symbol_seen
;
6953 if (bfd_get_section (&q
->symbol
) == section
6954 && q
->symbol
.value
>= low_func
6955 && q
->symbol
.value
<= offset
)
6957 func
= (asymbol
*) q
;
6958 low_func
= q
->symbol
.value
;
6961 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
6962 || state
!= file_after_symbol_seen
))
6963 filename
= bfd_asymbol_name (file
);
6967 if (state
== nothing_seen
)
6968 state
= symbol_seen
;
6975 *filename_ptr
= filename
;
6976 if (functionname_ptr
)
6977 *functionname_ptr
= bfd_asymbol_name (func
);
6982 /* Find the nearest line to a particular section and offset,
6983 for error reporting. */
6986 _bfd_elf_find_nearest_line (bfd
*abfd
,
6990 const char **filename_ptr
,
6991 const char **functionname_ptr
,
6992 unsigned int *line_ptr
)
6996 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6997 filename_ptr
, functionname_ptr
,
7000 if (!*functionname_ptr
)
7001 elf_find_function (abfd
, section
, symbols
, offset
,
7002 *filename_ptr
? NULL
: filename_ptr
,
7008 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7009 filename_ptr
, functionname_ptr
,
7011 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7013 if (!*functionname_ptr
)
7014 elf_find_function (abfd
, section
, symbols
, offset
,
7015 *filename_ptr
? NULL
: filename_ptr
,
7021 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7022 &found
, filename_ptr
,
7023 functionname_ptr
, line_ptr
,
7024 &elf_tdata (abfd
)->line_info
))
7026 if (found
&& (*functionname_ptr
|| *line_ptr
))
7029 if (symbols
== NULL
)
7032 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7033 filename_ptr
, functionname_ptr
))
7040 /* Find the line for a symbol. */
7043 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7044 const char **filename_ptr
, unsigned int *line_ptr
)
7046 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7047 filename_ptr
, line_ptr
, 0,
7048 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7051 /* After a call to bfd_find_nearest_line, successive calls to
7052 bfd_find_inliner_info can be used to get source information about
7053 each level of function inlining that terminated at the address
7054 passed to bfd_find_nearest_line. Currently this is only supported
7055 for DWARF2 with appropriate DWARF3 extensions. */
7058 _bfd_elf_find_inliner_info (bfd
*abfd
,
7059 const char **filename_ptr
,
7060 const char **functionname_ptr
,
7061 unsigned int *line_ptr
)
7064 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7065 functionname_ptr
, line_ptr
,
7066 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7071 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
7075 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
7077 ret
+= get_program_header_size (abfd
);
7082 _bfd_elf_set_section_contents (bfd
*abfd
,
7084 const void *location
,
7086 bfd_size_type count
)
7088 Elf_Internal_Shdr
*hdr
;
7091 if (! abfd
->output_has_begun
7092 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7095 hdr
= &elf_section_data (section
)->this_hdr
;
7096 pos
= hdr
->sh_offset
+ offset
;
7097 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7098 || bfd_bwrite (location
, count
, abfd
) != count
)
7105 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7106 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7107 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7112 /* Try to convert a non-ELF reloc into an ELF one. */
7115 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7117 /* Check whether we really have an ELF howto. */
7119 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7121 bfd_reloc_code_real_type code
;
7122 reloc_howto_type
*howto
;
7124 /* Alien reloc: Try to determine its type to replace it with an
7125 equivalent ELF reloc. */
7127 if (areloc
->howto
->pc_relative
)
7129 switch (areloc
->howto
->bitsize
)
7132 code
= BFD_RELOC_8_PCREL
;
7135 code
= BFD_RELOC_12_PCREL
;
7138 code
= BFD_RELOC_16_PCREL
;
7141 code
= BFD_RELOC_24_PCREL
;
7144 code
= BFD_RELOC_32_PCREL
;
7147 code
= BFD_RELOC_64_PCREL
;
7153 howto
= bfd_reloc_type_lookup (abfd
, code
);
7155 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7157 if (howto
->pcrel_offset
)
7158 areloc
->addend
+= areloc
->address
;
7160 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7165 switch (areloc
->howto
->bitsize
)
7171 code
= BFD_RELOC_14
;
7174 code
= BFD_RELOC_16
;
7177 code
= BFD_RELOC_26
;
7180 code
= BFD_RELOC_32
;
7183 code
= BFD_RELOC_64
;
7189 howto
= bfd_reloc_type_lookup (abfd
, code
);
7193 areloc
->howto
= howto
;
7201 (*_bfd_error_handler
)
7202 (_("%B: unsupported relocation type %s"),
7203 abfd
, areloc
->howto
->name
);
7204 bfd_set_error (bfd_error_bad_value
);
7209 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7211 if (bfd_get_format (abfd
) == bfd_object
)
7213 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7214 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7215 _bfd_dwarf2_cleanup_debug_info (abfd
);
7218 return _bfd_generic_close_and_cleanup (abfd
);
7221 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7222 in the relocation's offset. Thus we cannot allow any sort of sanity
7223 range-checking to interfere. There is nothing else to do in processing
7226 bfd_reloc_status_type
7227 _bfd_elf_rel_vtable_reloc_fn
7228 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7229 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7230 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7231 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7233 return bfd_reloc_ok
;
7236 /* Elf core file support. Much of this only works on native
7237 toolchains, since we rely on knowing the
7238 machine-dependent procfs structure in order to pick
7239 out details about the corefile. */
7241 #ifdef HAVE_SYS_PROCFS_H
7242 # include <sys/procfs.h>
7245 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7248 elfcore_make_pid (bfd
*abfd
)
7250 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7251 + (elf_tdata (abfd
)->core_pid
));
7254 /* If there isn't a section called NAME, make one, using
7255 data from SECT. Note, this function will generate a
7256 reference to NAME, so you shouldn't deallocate or
7260 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7264 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7267 sect2
= bfd_make_section (abfd
, name
);
7271 sect2
->size
= sect
->size
;
7272 sect2
->filepos
= sect
->filepos
;
7273 sect2
->flags
= sect
->flags
;
7274 sect2
->alignment_power
= sect
->alignment_power
;
7278 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7279 actually creates up to two pseudosections:
7280 - For the single-threaded case, a section named NAME, unless
7281 such a section already exists.
7282 - For the multi-threaded case, a section named "NAME/PID", where
7283 PID is elfcore_make_pid (abfd).
7284 Both pseudosections have identical contents. */
7286 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7292 char *threaded_name
;
7296 /* Build the section name. */
7298 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7299 len
= strlen (buf
) + 1;
7300 threaded_name
= bfd_alloc (abfd
, len
);
7301 if (threaded_name
== NULL
)
7303 memcpy (threaded_name
, buf
, len
);
7305 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
7309 sect
->filepos
= filepos
;
7310 sect
->flags
= SEC_HAS_CONTENTS
;
7311 sect
->alignment_power
= 2;
7313 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7316 /* prstatus_t exists on:
7318 linux 2.[01] + glibc
7322 #if defined (HAVE_PRSTATUS_T)
7325 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7330 if (note
->descsz
== sizeof (prstatus_t
))
7334 size
= sizeof (prstat
.pr_reg
);
7335 offset
= offsetof (prstatus_t
, pr_reg
);
7336 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7338 /* Do not overwrite the core signal if it
7339 has already been set by another thread. */
7340 if (elf_tdata (abfd
)->core_signal
== 0)
7341 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7342 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7344 /* pr_who exists on:
7347 pr_who doesn't exist on:
7350 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7351 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7354 #if defined (HAVE_PRSTATUS32_T)
7355 else if (note
->descsz
== sizeof (prstatus32_t
))
7357 /* 64-bit host, 32-bit corefile */
7358 prstatus32_t prstat
;
7360 size
= sizeof (prstat
.pr_reg
);
7361 offset
= offsetof (prstatus32_t
, pr_reg
);
7362 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7364 /* Do not overwrite the core signal if it
7365 has already been set by another thread. */
7366 if (elf_tdata (abfd
)->core_signal
== 0)
7367 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7368 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7370 /* pr_who exists on:
7373 pr_who doesn't exist on:
7376 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7377 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7380 #endif /* HAVE_PRSTATUS32_T */
7383 /* Fail - we don't know how to handle any other
7384 note size (ie. data object type). */
7388 /* Make a ".reg/999" section and a ".reg" section. */
7389 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7390 size
, note
->descpos
+ offset
);
7392 #endif /* defined (HAVE_PRSTATUS_T) */
7394 /* Create a pseudosection containing the exact contents of NOTE. */
7396 elfcore_make_note_pseudosection (bfd
*abfd
,
7398 Elf_Internal_Note
*note
)
7400 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7401 note
->descsz
, note
->descpos
);
7404 /* There isn't a consistent prfpregset_t across platforms,
7405 but it doesn't matter, because we don't have to pick this
7406 data structure apart. */
7409 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7411 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7414 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7415 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7419 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7421 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7424 #if defined (HAVE_PRPSINFO_T)
7425 typedef prpsinfo_t elfcore_psinfo_t
;
7426 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7427 typedef prpsinfo32_t elfcore_psinfo32_t
;
7431 #if defined (HAVE_PSINFO_T)
7432 typedef psinfo_t elfcore_psinfo_t
;
7433 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7434 typedef psinfo32_t elfcore_psinfo32_t
;
7438 /* return a malloc'ed copy of a string at START which is at
7439 most MAX bytes long, possibly without a terminating '\0'.
7440 the copy will always have a terminating '\0'. */
7443 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7446 char *end
= memchr (start
, '\0', max
);
7454 dups
= bfd_alloc (abfd
, len
+ 1);
7458 memcpy (dups
, start
, len
);
7464 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7466 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7468 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7470 elfcore_psinfo_t psinfo
;
7472 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7474 elf_tdata (abfd
)->core_program
7475 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7476 sizeof (psinfo
.pr_fname
));
7478 elf_tdata (abfd
)->core_command
7479 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7480 sizeof (psinfo
.pr_psargs
));
7482 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7483 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7485 /* 64-bit host, 32-bit corefile */
7486 elfcore_psinfo32_t psinfo
;
7488 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7490 elf_tdata (abfd
)->core_program
7491 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7492 sizeof (psinfo
.pr_fname
));
7494 elf_tdata (abfd
)->core_command
7495 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7496 sizeof (psinfo
.pr_psargs
));
7502 /* Fail - we don't know how to handle any other
7503 note size (ie. data object type). */
7507 /* Note that for some reason, a spurious space is tacked
7508 onto the end of the args in some (at least one anyway)
7509 implementations, so strip it off if it exists. */
7512 char *command
= elf_tdata (abfd
)->core_command
;
7513 int n
= strlen (command
);
7515 if (0 < n
&& command
[n
- 1] == ' ')
7516 command
[n
- 1] = '\0';
7521 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7523 #if defined (HAVE_PSTATUS_T)
7525 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7527 if (note
->descsz
== sizeof (pstatus_t
)
7528 #if defined (HAVE_PXSTATUS_T)
7529 || note
->descsz
== sizeof (pxstatus_t
)
7535 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7537 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7539 #if defined (HAVE_PSTATUS32_T)
7540 else if (note
->descsz
== sizeof (pstatus32_t
))
7542 /* 64-bit host, 32-bit corefile */
7545 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7547 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7550 /* Could grab some more details from the "representative"
7551 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7552 NT_LWPSTATUS note, presumably. */
7556 #endif /* defined (HAVE_PSTATUS_T) */
7558 #if defined (HAVE_LWPSTATUS_T)
7560 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7562 lwpstatus_t lwpstat
;
7568 if (note
->descsz
!= sizeof (lwpstat
)
7569 #if defined (HAVE_LWPXSTATUS_T)
7570 && note
->descsz
!= sizeof (lwpxstatus_t
)
7575 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7577 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7578 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7580 /* Make a ".reg/999" section. */
7582 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7583 len
= strlen (buf
) + 1;
7584 name
= bfd_alloc (abfd
, len
);
7587 memcpy (name
, buf
, len
);
7589 sect
= bfd_make_section_anyway (abfd
, name
);
7593 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7594 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7595 sect
->filepos
= note
->descpos
7596 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7599 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7600 sect
->size
= sizeof (lwpstat
.pr_reg
);
7601 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7604 sect
->flags
= SEC_HAS_CONTENTS
;
7605 sect
->alignment_power
= 2;
7607 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7610 /* Make a ".reg2/999" section */
7612 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7613 len
= strlen (buf
) + 1;
7614 name
= bfd_alloc (abfd
, len
);
7617 memcpy (name
, buf
, len
);
7619 sect
= bfd_make_section_anyway (abfd
, name
);
7623 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7624 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7625 sect
->filepos
= note
->descpos
7626 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7629 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7630 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7631 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7634 sect
->flags
= SEC_HAS_CONTENTS
;
7635 sect
->alignment_power
= 2;
7637 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7639 #endif /* defined (HAVE_LWPSTATUS_T) */
7641 #if defined (HAVE_WIN32_PSTATUS_T)
7643 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7649 win32_pstatus_t pstatus
;
7651 if (note
->descsz
< sizeof (pstatus
))
7654 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7656 switch (pstatus
.data_type
)
7658 case NOTE_INFO_PROCESS
:
7659 /* FIXME: need to add ->core_command. */
7660 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7661 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7664 case NOTE_INFO_THREAD
:
7665 /* Make a ".reg/999" section. */
7666 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7668 len
= strlen (buf
) + 1;
7669 name
= bfd_alloc (abfd
, len
);
7673 memcpy (name
, buf
, len
);
7675 sect
= bfd_make_section_anyway (abfd
, name
);
7679 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7680 sect
->filepos
= (note
->descpos
7681 + offsetof (struct win32_pstatus
,
7682 data
.thread_info
.thread_context
));
7683 sect
->flags
= SEC_HAS_CONTENTS
;
7684 sect
->alignment_power
= 2;
7686 if (pstatus
.data
.thread_info
.is_active_thread
)
7687 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7691 case NOTE_INFO_MODULE
:
7692 /* Make a ".module/xxxxxxxx" section. */
7693 sprintf (buf
, ".module/%08lx",
7694 (long) pstatus
.data
.module_info
.base_address
);
7696 len
= strlen (buf
) + 1;
7697 name
= bfd_alloc (abfd
, len
);
7701 memcpy (name
, buf
, len
);
7703 sect
= bfd_make_section_anyway (abfd
, name
);
7708 sect
->size
= note
->descsz
;
7709 sect
->filepos
= note
->descpos
;
7710 sect
->flags
= SEC_HAS_CONTENTS
;
7711 sect
->alignment_power
= 2;
7720 #endif /* HAVE_WIN32_PSTATUS_T */
7723 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7725 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7733 if (bed
->elf_backend_grok_prstatus
)
7734 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7736 #if defined (HAVE_PRSTATUS_T)
7737 return elfcore_grok_prstatus (abfd
, note
);
7742 #if defined (HAVE_PSTATUS_T)
7744 return elfcore_grok_pstatus (abfd
, note
);
7747 #if defined (HAVE_LWPSTATUS_T)
7749 return elfcore_grok_lwpstatus (abfd
, note
);
7752 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7753 return elfcore_grok_prfpreg (abfd
, note
);
7755 #if defined (HAVE_WIN32_PSTATUS_T)
7756 case NT_WIN32PSTATUS
:
7757 return elfcore_grok_win32pstatus (abfd
, note
);
7760 case NT_PRXFPREG
: /* Linux SSE extension */
7761 if (note
->namesz
== 6
7762 && strcmp (note
->namedata
, "LINUX") == 0)
7763 return elfcore_grok_prxfpreg (abfd
, note
);
7769 if (bed
->elf_backend_grok_psinfo
)
7770 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7772 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7773 return elfcore_grok_psinfo (abfd
, note
);
7780 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7784 sect
->size
= note
->descsz
;
7785 sect
->filepos
= note
->descpos
;
7786 sect
->flags
= SEC_HAS_CONTENTS
;
7787 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7795 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7799 cp
= strchr (note
->namedata
, '@');
7802 *lwpidp
= atoi(cp
+ 1);
7809 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7812 /* Signal number at offset 0x08. */
7813 elf_tdata (abfd
)->core_signal
7814 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7816 /* Process ID at offset 0x50. */
7817 elf_tdata (abfd
)->core_pid
7818 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7820 /* Command name at 0x7c (max 32 bytes, including nul). */
7821 elf_tdata (abfd
)->core_command
7822 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7824 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7829 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7833 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7834 elf_tdata (abfd
)->core_lwpid
= lwp
;
7836 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7838 /* NetBSD-specific core "procinfo". Note that we expect to
7839 find this note before any of the others, which is fine,
7840 since the kernel writes this note out first when it
7841 creates a core file. */
7843 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7846 /* As of Jan 2002 there are no other machine-independent notes
7847 defined for NetBSD core files. If the note type is less
7848 than the start of the machine-dependent note types, we don't
7851 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7855 switch (bfd_get_arch (abfd
))
7857 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7858 PT_GETFPREGS == mach+2. */
7860 case bfd_arch_alpha
:
7861 case bfd_arch_sparc
:
7864 case NT_NETBSDCORE_FIRSTMACH
+0:
7865 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7867 case NT_NETBSDCORE_FIRSTMACH
+2:
7868 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7874 /* On all other arch's, PT_GETREGS == mach+1 and
7875 PT_GETFPREGS == mach+3. */
7880 case NT_NETBSDCORE_FIRSTMACH
+1:
7881 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7883 case NT_NETBSDCORE_FIRSTMACH
+3:
7884 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7894 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7896 void *ddata
= note
->descdata
;
7903 /* nto_procfs_status 'pid' field is at offset 0. */
7904 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7906 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7907 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7909 /* nto_procfs_status 'flags' field is at offset 8. */
7910 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7912 /* nto_procfs_status 'what' field is at offset 14. */
7913 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7915 elf_tdata (abfd
)->core_signal
= sig
;
7916 elf_tdata (abfd
)->core_lwpid
= *tid
;
7919 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7920 do not come from signals so we make sure we set the current
7921 thread just in case. */
7922 if (flags
& 0x00000080)
7923 elf_tdata (abfd
)->core_lwpid
= *tid
;
7925 /* Make a ".qnx_core_status/%d" section. */
7926 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7928 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7933 sect
= bfd_make_section_anyway (abfd
, name
);
7937 sect
->size
= note
->descsz
;
7938 sect
->filepos
= note
->descpos
;
7939 sect
->flags
= SEC_HAS_CONTENTS
;
7940 sect
->alignment_power
= 2;
7942 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7946 elfcore_grok_nto_regs (bfd
*abfd
,
7947 Elf_Internal_Note
*note
,
7955 /* Make a "(base)/%d" section. */
7956 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7958 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7963 sect
= bfd_make_section_anyway (abfd
, name
);
7967 sect
->size
= note
->descsz
;
7968 sect
->filepos
= note
->descpos
;
7969 sect
->flags
= SEC_HAS_CONTENTS
;
7970 sect
->alignment_power
= 2;
7972 /* This is the current thread. */
7973 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7974 return elfcore_maybe_make_sect (abfd
, base
, sect
);
7979 #define BFD_QNT_CORE_INFO 7
7980 #define BFD_QNT_CORE_STATUS 8
7981 #define BFD_QNT_CORE_GREG 9
7982 #define BFD_QNT_CORE_FPREG 10
7985 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7987 /* Every GREG section has a STATUS section before it. Store the
7988 tid from the previous call to pass down to the next gregs
7990 static pid_t tid
= 1;
7994 case BFD_QNT_CORE_INFO
:
7995 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7996 case BFD_QNT_CORE_STATUS
:
7997 return elfcore_grok_nto_status (abfd
, note
, &tid
);
7998 case BFD_QNT_CORE_GREG
:
7999 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8000 case BFD_QNT_CORE_FPREG
:
8001 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8007 /* Function: elfcore_write_note
8014 size of data for note
8017 End of buffer containing note. */
8020 elfcore_write_note (bfd
*abfd
,
8028 Elf_External_Note
*xnp
;
8038 const struct elf_backend_data
*bed
;
8040 namesz
= strlen (name
) + 1;
8041 bed
= get_elf_backend_data (abfd
);
8042 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
8045 newspace
= 12 + namesz
+ pad
+ size
;
8047 p
= realloc (buf
, *bufsiz
+ newspace
);
8049 *bufsiz
+= newspace
;
8050 xnp
= (Elf_External_Note
*) dest
;
8051 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8052 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8053 H_PUT_32 (abfd
, type
, xnp
->type
);
8057 memcpy (dest
, name
, namesz
);
8065 memcpy (dest
, input
, size
);
8069 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8071 elfcore_write_prpsinfo (bfd
*abfd
,
8078 char *note_name
= "CORE";
8080 #if defined (HAVE_PSINFO_T)
8082 note_type
= NT_PSINFO
;
8085 note_type
= NT_PRPSINFO
;
8088 memset (&data
, 0, sizeof (data
));
8089 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8090 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8091 return elfcore_write_note (abfd
, buf
, bufsiz
,
8092 note_name
, note_type
, &data
, sizeof (data
));
8094 #endif /* PSINFO_T or PRPSINFO_T */
8096 #if defined (HAVE_PRSTATUS_T)
8098 elfcore_write_prstatus (bfd
*abfd
,
8106 char *note_name
= "CORE";
8108 memset (&prstat
, 0, sizeof (prstat
));
8109 prstat
.pr_pid
= pid
;
8110 prstat
.pr_cursig
= cursig
;
8111 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8112 return elfcore_write_note (abfd
, buf
, bufsiz
,
8113 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8115 #endif /* HAVE_PRSTATUS_T */
8117 #if defined (HAVE_LWPSTATUS_T)
8119 elfcore_write_lwpstatus (bfd
*abfd
,
8126 lwpstatus_t lwpstat
;
8127 char *note_name
= "CORE";
8129 memset (&lwpstat
, 0, sizeof (lwpstat
));
8130 lwpstat
.pr_lwpid
= pid
>> 16;
8131 lwpstat
.pr_cursig
= cursig
;
8132 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8133 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8134 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8136 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8137 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8139 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8140 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8143 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8144 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8146 #endif /* HAVE_LWPSTATUS_T */
8148 #if defined (HAVE_PSTATUS_T)
8150 elfcore_write_pstatus (bfd
*abfd
,
8154 int cursig ATTRIBUTE_UNUSED
,
8155 const void *gregs ATTRIBUTE_UNUSED
)
8158 char *note_name
= "CORE";
8160 memset (&pstat
, 0, sizeof (pstat
));
8161 pstat
.pr_pid
= pid
& 0xffff;
8162 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8163 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8166 #endif /* HAVE_PSTATUS_T */
8169 elfcore_write_prfpreg (bfd
*abfd
,
8175 char *note_name
= "CORE";
8176 return elfcore_write_note (abfd
, buf
, bufsiz
,
8177 note_name
, NT_FPREGSET
, fpregs
, size
);
8181 elfcore_write_prxfpreg (bfd
*abfd
,
8184 const void *xfpregs
,
8187 char *note_name
= "LINUX";
8188 return elfcore_write_note (abfd
, buf
, bufsiz
,
8189 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8193 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8201 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8204 buf
= bfd_malloc (size
);
8208 if (bfd_bread (buf
, size
, abfd
) != size
)
8216 while (p
< buf
+ size
)
8218 /* FIXME: bad alignment assumption. */
8219 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8220 Elf_Internal_Note in
;
8222 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8224 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8225 in
.namedata
= xnp
->name
;
8227 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8228 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8229 in
.descpos
= offset
+ (in
.descdata
- buf
);
8231 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
8233 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8236 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
8238 if (! elfcore_grok_nto_note (abfd
, &in
))
8243 if (! elfcore_grok_note (abfd
, &in
))
8247 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8254 /* Providing external access to the ELF program header table. */
8256 /* Return an upper bound on the number of bytes required to store a
8257 copy of ABFD's program header table entries. Return -1 if an error
8258 occurs; bfd_get_error will return an appropriate code. */
8261 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8263 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8265 bfd_set_error (bfd_error_wrong_format
);
8269 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8272 /* Copy ABFD's program header table entries to *PHDRS. The entries
8273 will be stored as an array of Elf_Internal_Phdr structures, as
8274 defined in include/elf/internal.h. To find out how large the
8275 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8277 Return the number of program header table entries read, or -1 if an
8278 error occurs; bfd_get_error will return an appropriate code. */
8281 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8285 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8287 bfd_set_error (bfd_error_wrong_format
);
8291 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8292 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8293 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8299 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8302 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8304 i_ehdrp
= elf_elfheader (abfd
);
8305 if (i_ehdrp
== NULL
)
8306 sprintf_vma (buf
, value
);
8309 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8311 #if BFD_HOST_64BIT_LONG
8312 sprintf (buf
, "%016lx", value
);
8314 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8315 _bfd_int64_low (value
));
8319 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8322 sprintf_vma (buf
, value
);
8327 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8330 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8332 i_ehdrp
= elf_elfheader (abfd
);
8333 if (i_ehdrp
== NULL
)
8334 fprintf_vma ((FILE *) stream
, value
);
8337 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8339 #if BFD_HOST_64BIT_LONG
8340 fprintf ((FILE *) stream
, "%016lx", value
);
8342 fprintf ((FILE *) stream
, "%08lx%08lx",
8343 _bfd_int64_high (value
), _bfd_int64_low (value
));
8347 fprintf ((FILE *) stream
, "%08lx",
8348 (unsigned long) (value
& 0xffffffff));
8351 fprintf_vma ((FILE *) stream
, value
);
8355 enum elf_reloc_type_class
8356 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8358 return reloc_class_normal
;
8361 /* For RELA architectures, return the relocation value for a
8362 relocation against a local symbol. */
8365 _bfd_elf_rela_local_sym (bfd
*abfd
,
8366 Elf_Internal_Sym
*sym
,
8368 Elf_Internal_Rela
*rel
)
8370 asection
*sec
= *psec
;
8373 relocation
= (sec
->output_section
->vma
8374 + sec
->output_offset
8376 if ((sec
->flags
& SEC_MERGE
)
8377 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8378 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8381 _bfd_merged_section_offset (abfd
, psec
,
8382 elf_section_data (sec
)->sec_info
,
8383 sym
->st_value
+ rel
->r_addend
);
8386 /* If we have changed the section, and our original section is
8387 marked with SEC_EXCLUDE, it means that the original
8388 SEC_MERGE section has been completely subsumed in some
8389 other SEC_MERGE section. In this case, we need to leave
8390 some info around for --emit-relocs. */
8391 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8392 sec
->kept_section
= *psec
;
8395 rel
->r_addend
-= relocation
;
8396 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8402 _bfd_elf_rel_local_sym (bfd
*abfd
,
8403 Elf_Internal_Sym
*sym
,
8407 asection
*sec
= *psec
;
8409 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8410 return sym
->st_value
+ addend
;
8412 return _bfd_merged_section_offset (abfd
, psec
,
8413 elf_section_data (sec
)->sec_info
,
8414 sym
->st_value
+ addend
);
8418 _bfd_elf_section_offset (bfd
*abfd
,
8419 struct bfd_link_info
*info
,
8423 switch (sec
->sec_info_type
)
8425 case ELF_INFO_TYPE_STABS
:
8426 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8428 case ELF_INFO_TYPE_EH_FRAME
:
8429 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8435 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8436 reconstruct an ELF file by reading the segments out of remote memory
8437 based on the ELF file header at EHDR_VMA and the ELF program headers it
8438 points to. If not null, *LOADBASEP is filled in with the difference
8439 between the VMAs from which the segments were read, and the VMAs the
8440 file headers (and hence BFD's idea of each section's VMA) put them at.
8442 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8443 remote memory at target address VMA into the local buffer at MYADDR; it
8444 should return zero on success or an `errno' code on failure. TEMPL must
8445 be a BFD for an ELF target with the word size and byte order found in
8446 the remote memory. */
8449 bfd_elf_bfd_from_remote_memory
8453 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8455 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8456 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8460 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8461 long symcount ATTRIBUTE_UNUSED
,
8462 asymbol
**syms ATTRIBUTE_UNUSED
,
8467 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8470 const char *relplt_name
;
8471 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8475 Elf_Internal_Shdr
*hdr
;
8481 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8484 if (dynsymcount
<= 0)
8487 if (!bed
->plt_sym_val
)
8490 relplt_name
= bed
->relplt_name
;
8491 if (relplt_name
== NULL
)
8492 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8493 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8497 hdr
= &elf_section_data (relplt
)->this_hdr
;
8498 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8499 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8502 plt
= bfd_get_section_by_name (abfd
, ".plt");
8506 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8507 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8510 count
= relplt
->size
/ hdr
->sh_entsize
;
8511 size
= count
* sizeof (asymbol
);
8512 p
= relplt
->relocation
;
8513 for (i
= 0; i
< count
; i
++, s
++, p
++)
8514 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8516 s
= *ret
= bfd_malloc (size
);
8520 names
= (char *) (s
+ count
);
8521 p
= relplt
->relocation
;
8523 for (i
= 0; i
< count
; i
++, s
++, p
++)
8528 addr
= bed
->plt_sym_val (i
, plt
, p
);
8529 if (addr
== (bfd_vma
) -1)
8532 *s
= **p
->sym_ptr_ptr
;
8533 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8534 we are defining a symbol, ensure one of them is set. */
8535 if ((s
->flags
& BSF_LOCAL
) == 0)
8536 s
->flags
|= BSF_GLOBAL
;
8538 s
->value
= addr
- plt
->vma
;
8540 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8541 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8543 memcpy (names
, "@plt", sizeof ("@plt"));
8544 names
+= sizeof ("@plt");
8551 /* Sort symbol by binding and section. We want to put definitions
8552 sorted by section at the beginning. */
8555 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8557 const Elf_Internal_Sym
*s1
;
8558 const Elf_Internal_Sym
*s2
;
8561 /* Make sure that undefined symbols are at the end. */
8562 s1
= (const Elf_Internal_Sym
*) arg1
;
8563 if (s1
->st_shndx
== SHN_UNDEF
)
8565 s2
= (const Elf_Internal_Sym
*) arg2
;
8566 if (s2
->st_shndx
== SHN_UNDEF
)
8569 /* Sorted by section index. */
8570 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8574 /* Sorted by binding. */
8575 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8580 Elf_Internal_Sym
*sym
;
8585 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8587 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8588 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8589 return strcmp (s1
->name
, s2
->name
);
8592 /* Check if 2 sections define the same set of local and global
8596 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8599 const struct elf_backend_data
*bed1
, *bed2
;
8600 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8601 bfd_size_type symcount1
, symcount2
;
8602 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8603 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8604 Elf_Internal_Sym
*isymend
;
8605 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8606 bfd_size_type count1
, count2
, i
;
8613 /* If both are .gnu.linkonce sections, they have to have the same
8615 if (strncmp (sec1
->name
, ".gnu.linkonce",
8616 sizeof ".gnu.linkonce" - 1) == 0
8617 && strncmp (sec2
->name
, ".gnu.linkonce",
8618 sizeof ".gnu.linkonce" - 1) == 0)
8619 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8620 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8622 /* Both sections have to be in ELF. */
8623 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8624 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8627 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8630 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8631 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8633 /* If both are members of section groups, they have to have the
8635 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8639 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8640 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8641 if (shndx1
== -1 || shndx2
== -1)
8644 bed1
= get_elf_backend_data (bfd1
);
8645 bed2
= get_elf_backend_data (bfd2
);
8646 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8647 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8648 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8649 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8651 if (symcount1
== 0 || symcount2
== 0)
8654 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8656 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8660 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8663 /* Sort symbols by binding and section. Global definitions are at
8665 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8666 elf_sort_elf_symbol
);
8667 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8668 elf_sort_elf_symbol
);
8670 /* Count definitions in the section. */
8672 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8673 isym
< isymend
; isym
++)
8675 if (isym
->st_shndx
== (unsigned int) shndx1
)
8682 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8687 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8688 isym
< isymend
; isym
++)
8690 if (isym
->st_shndx
== (unsigned int) shndx2
)
8697 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8701 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8704 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8705 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8707 if (symtable1
== NULL
|| symtable2
== NULL
)
8711 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8712 isym
< isymend
; isym
++)
8715 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8722 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8723 isym
< isymend
; isym
++)
8726 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8732 /* Sort symbol by name. */
8733 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8734 elf_sym_name_compare
);
8735 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8736 elf_sym_name_compare
);
8738 for (i
= 0; i
< count1
; i
++)
8739 /* Two symbols must have the same binding, type and name. */
8740 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8741 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8742 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8760 /* It is only used by x86-64 so far. */
8761 asection _bfd_elf_large_com_section
8762 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8763 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
8765 /* Return TRUE if 2 section types are compatible. */
8768 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8769 bfd
*bbfd
, const asection
*bsec
)
8773 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8774 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8777 return elf_section_type (asec
) == elf_section_type (bsec
);