1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
37 /* For sparc64-cross-sparc32. */
45 #include "libiberty.h"
46 #include "safe-ctype.h"
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
54 static bfd_boolean
prep_headers (bfd
*);
55 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
56 static bfd_boolean
elf_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
57 static bfd_boolean
elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
,
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
64 /* Swap in a Verdef structure. */
67 _bfd_elf_swap_verdef_in (bfd
*abfd
,
68 const Elf_External_Verdef
*src
,
69 Elf_Internal_Verdef
*dst
)
71 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
72 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
73 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
74 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
75 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
76 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
77 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
80 /* Swap out a Verdef structure. */
83 _bfd_elf_swap_verdef_out (bfd
*abfd
,
84 const Elf_Internal_Verdef
*src
,
85 Elf_External_Verdef
*dst
)
87 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
88 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
89 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
90 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
91 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
92 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
93 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
96 /* Swap in a Verdaux structure. */
99 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
100 const Elf_External_Verdaux
*src
,
101 Elf_Internal_Verdaux
*dst
)
103 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
104 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
107 /* Swap out a Verdaux structure. */
110 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
111 const Elf_Internal_Verdaux
*src
,
112 Elf_External_Verdaux
*dst
)
114 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
115 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
118 /* Swap in a Verneed structure. */
121 _bfd_elf_swap_verneed_in (bfd
*abfd
,
122 const Elf_External_Verneed
*src
,
123 Elf_Internal_Verneed
*dst
)
125 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
126 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
127 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
128 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
129 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
132 /* Swap out a Verneed structure. */
135 _bfd_elf_swap_verneed_out (bfd
*abfd
,
136 const Elf_Internal_Verneed
*src
,
137 Elf_External_Verneed
*dst
)
139 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
140 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
141 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
142 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
143 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
146 /* Swap in a Vernaux structure. */
149 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
150 const Elf_External_Vernaux
*src
,
151 Elf_Internal_Vernaux
*dst
)
153 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
154 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
155 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
156 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
157 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
160 /* Swap out a Vernaux structure. */
163 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
164 const Elf_Internal_Vernaux
*src
,
165 Elf_External_Vernaux
*dst
)
167 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
168 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
169 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
170 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
171 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
174 /* Swap in a Versym structure. */
177 _bfd_elf_swap_versym_in (bfd
*abfd
,
178 const Elf_External_Versym
*src
,
179 Elf_Internal_Versym
*dst
)
181 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
184 /* Swap out a Versym structure. */
187 _bfd_elf_swap_versym_out (bfd
*abfd
,
188 const Elf_Internal_Versym
*src
,
189 Elf_External_Versym
*dst
)
191 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
198 bfd_elf_hash (const char *namearg
)
200 const unsigned char *name
= (const unsigned char *) namearg
;
205 while ((ch
= *name
++) != '\0')
208 if ((g
= (h
& 0xf0000000)) != 0)
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
216 return h
& 0xffffffff;
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
223 bfd_elf_gnu_hash (const char *namearg
)
225 const unsigned char *name
= (const unsigned char *) namearg
;
226 unsigned long h
= 5381;
229 while ((ch
= *name
++) != '\0')
230 h
= (h
<< 5) + h
+ ch
;
231 return h
& 0xffffffff;
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
237 bfd_elf_allocate_object (bfd
*abfd
,
239 enum elf_target_id object_id
)
241 BFD_ASSERT (object_size
>= sizeof (struct elf_obj_tdata
));
242 abfd
->tdata
.any
= bfd_zalloc (abfd
, object_size
);
243 if (abfd
->tdata
.any
== NULL
)
246 elf_object_id (abfd
) = object_id
;
247 elf_program_header_size (abfd
) = (bfd_size_type
) -1;
253 bfd_elf_make_object (bfd
*abfd
)
255 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
256 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_obj_tdata
),
261 bfd_elf_mkcorefile (bfd
*abfd
)
263 /* I think this can be done just like an object file. */
264 return abfd
->xvec
->_bfd_set_format
[(int) bfd_object
] (abfd
);
268 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
270 Elf_Internal_Shdr
**i_shdrp
;
271 bfd_byte
*shstrtab
= NULL
;
273 bfd_size_type shstrtabsize
;
275 i_shdrp
= elf_elfsections (abfd
);
277 || shindex
>= elf_numsections (abfd
)
278 || i_shdrp
[shindex
] == 0)
281 shstrtab
= i_shdrp
[shindex
]->contents
;
282 if (shstrtab
== NULL
)
284 /* No cached one, attempt to read, and cache what we read. */
285 offset
= i_shdrp
[shindex
]->sh_offset
;
286 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize
+ 1 <= 1
291 || (shstrtab
= (bfd_byte
*) bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
292 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
294 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
296 if (bfd_get_error () != bfd_error_system_call
)
297 bfd_set_error (bfd_error_file_truncated
);
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp
[shindex
]->sh_size
= 0;
305 shstrtab
[shstrtabsize
] = '\0';
306 i_shdrp
[shindex
]->contents
= shstrtab
;
308 return (char *) shstrtab
;
312 bfd_elf_string_from_elf_section (bfd
*abfd
,
313 unsigned int shindex
,
314 unsigned int strindex
)
316 Elf_Internal_Shdr
*hdr
;
321 if (elf_elfsections (abfd
) == NULL
|| shindex
>= elf_numsections (abfd
))
324 hdr
= elf_elfsections (abfd
)[shindex
];
326 if (hdr
->contents
== NULL
327 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
330 if (strindex
>= hdr
->sh_size
)
332 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
333 (*_bfd_error_handler
)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
336 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
338 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
342 return ((char *) hdr
->contents
) + strindex
;
345 /* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
354 bfd_elf_get_elf_syms (bfd
*ibfd
,
355 Elf_Internal_Shdr
*symtab_hdr
,
358 Elf_Internal_Sym
*intsym_buf
,
360 Elf_External_Sym_Shndx
*extshndx_buf
)
362 Elf_Internal_Shdr
*shndx_hdr
;
364 const bfd_byte
*esym
;
365 Elf_External_Sym_Shndx
*alloc_extshndx
;
366 Elf_External_Sym_Shndx
*shndx
;
367 Elf_Internal_Sym
*alloc_intsym
;
368 Elf_Internal_Sym
*isym
;
369 Elf_Internal_Sym
*isymend
;
370 const struct elf_backend_data
*bed
;
375 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
381 /* Normal syms might have section extension entries. */
383 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
384 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
386 /* Read the symbols. */
388 alloc_extshndx
= NULL
;
390 bed
= get_elf_backend_data (ibfd
);
391 extsym_size
= bed
->s
->sizeof_sym
;
392 amt
= symcount
* extsym_size
;
393 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
394 if (extsym_buf
== NULL
)
396 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
397 extsym_buf
= alloc_ext
;
399 if (extsym_buf
== NULL
400 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
401 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
407 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
411 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
412 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
413 if (extshndx_buf
== NULL
)
415 alloc_extshndx
= (Elf_External_Sym_Shndx
*)
416 bfd_malloc2 (symcount
, sizeof (Elf_External_Sym_Shndx
));
417 extshndx_buf
= alloc_extshndx
;
419 if (extshndx_buf
== NULL
420 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
421 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
428 if (intsym_buf
== NULL
)
430 alloc_intsym
= (Elf_Internal_Sym
*)
431 bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
432 intsym_buf
= alloc_intsym
;
433 if (intsym_buf
== NULL
)
437 /* Convert the symbols to internal form. */
438 isymend
= intsym_buf
+ symcount
;
439 for (esym
= (const bfd_byte
*) extsym_buf
, isym
= intsym_buf
,
440 shndx
= extshndx_buf
;
442 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
443 if (!(*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
))
445 symoffset
+= (esym
- (bfd_byte
*) extsym_buf
) / extsym_size
;
446 (*_bfd_error_handler
) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd
, (unsigned long) symoffset
);
449 if (alloc_intsym
!= NULL
)
456 if (alloc_ext
!= NULL
)
458 if (alloc_extshndx
!= NULL
)
459 free (alloc_extshndx
);
464 /* Look up a symbol name. */
466 bfd_elf_sym_name (bfd
*abfd
,
467 Elf_Internal_Shdr
*symtab_hdr
,
468 Elf_Internal_Sym
*isym
,
472 unsigned int iname
= isym
->st_name
;
473 unsigned int shindex
= symtab_hdr
->sh_link
;
475 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym
->st_shndx
< elf_numsections (abfd
))
479 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
480 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
483 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
486 else if (sym_sec
&& *name
== '\0')
487 name
= bfd_section_name (abfd
, sym_sec
);
492 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
496 typedef union elf_internal_group
{
497 Elf_Internal_Shdr
*shdr
;
499 } Elf_Internal_Group
;
501 /* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
505 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
507 Elf_Internal_Shdr
*hdr
;
508 unsigned char esym
[sizeof (Elf64_External_Sym
)];
509 Elf_External_Sym_Shndx eshndx
;
510 Elf_Internal_Sym isym
;
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr
->sh_link
>= elf_numsections (abfd
))
516 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
517 if (hdr
->sh_type
!= SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
521 /* Go read the symbol. */
522 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
523 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
524 &isym
, esym
, &eshndx
) == NULL
)
527 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
530 /* Set next_in_group list pointer, and group name for NEWSECT. */
533 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
535 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
541 unsigned int i
, shnum
;
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum
= elf_numsections (abfd
);
548 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
554 for (i
= 0; i
< shnum
; i
++)
556 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
564 num_group
= (unsigned) -1;
565 elf_tdata (abfd
)->num_group
= num_group
;
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
573 elf_tdata (abfd
)->num_group
= num_group
;
574 elf_tdata (abfd
)->group_sect_ptr
= (Elf_Internal_Shdr
**)
575 bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
576 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
580 for (i
= 0; i
< shnum
; i
++)
582 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr
))
587 Elf_Internal_Group
*dest
;
589 /* Add to list of sections. */
590 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest
) >= 4);
595 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
596 shdr
->contents
= (unsigned char *)
597 bfd_alloc2 (abfd
, shdr
->sh_size
, sizeof (*dest
) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr
->contents
== NULL
)
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd
, shdr
->sh_size
);
603 bfd_set_error (bfd_error_bad_value
);
607 memset (shdr
->contents
, 0, amt
);
609 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
610 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
618 src
= shdr
->contents
+ shdr
->sh_size
;
619 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
626 idx
= H_GET_32 (abfd
, src
);
627 if (src
== shdr
->contents
)
630 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
631 shdr
->bfd_section
->flags
632 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
637 ((*_bfd_error_handler
)
638 (_("%B: invalid SHT_GROUP entry"), abfd
));
641 dest
->shdr
= elf_elfsections (abfd
)[idx
];
648 if (num_group
!= (unsigned) -1)
652 for (i
= 0; i
< num_group
; i
++)
654 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
655 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
656 unsigned int n_elt
= shdr
->sh_size
/ 4;
658 /* Look through this group's sections to see if current
659 section is a member. */
661 if ((++idx
)->shdr
== hdr
)
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
668 idx
= (Elf_Internal_Group
*) shdr
->contents
;
669 n_elt
= shdr
->sh_size
/ 4;
671 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
672 && elf_next_in_group (s
) != NULL
)
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect
) = elf_group_name (s
);
679 elf_next_in_group (newsect
) = elf_next_in_group (s
);
680 elf_next_in_group (s
) = newsect
;
686 gname
= group_signature (abfd
, shdr
);
689 elf_group_name (newsect
) = gname
;
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect
) = newsect
;
695 /* If the group section has been created, point to the
697 if (shdr
->bfd_section
!= NULL
)
698 elf_next_in_group (shdr
->bfd_section
) = newsect
;
706 if (elf_group_name (newsect
) == NULL
)
708 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
715 _bfd_elf_setup_sections (bfd
*abfd
)
718 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
719 bfd_boolean result
= TRUE
;
722 /* Process SHF_LINK_ORDER. */
723 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
725 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
726 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
728 unsigned int elfsec
= this_hdr
->sh_link
;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
734 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
735 if (bed
->link_order_error_handler
)
736 bed
->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
742 asection
*linksec
= NULL
;
744 if (elfsec
< elf_numsections (abfd
))
746 this_hdr
= elf_elfsections (abfd
)[elfsec
];
747 linksec
= this_hdr
->bfd_section
;
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
755 (*_bfd_error_handler
)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s
->owner
, s
, elfsec
);
761 elf_linked_to_section (s
) = linksec
;
766 /* Process section groups. */
767 if (num_group
== (unsigned) -1)
770 for (i
= 0; i
< num_group
; i
++)
772 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
773 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
774 unsigned int n_elt
= shdr
->sh_size
/ 4;
777 if ((++idx
)->shdr
->bfd_section
)
778 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
779 else if (idx
->shdr
->sh_type
== SHT_RELA
780 || idx
->shdr
->sh_type
== SHT_REL
)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
786 shdr
->bfd_section
->size
-= 4;
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler
)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
793 (unsigned int) idx
->shdr
->sh_type
,
794 bfd_elf_string_from_elf_section (abfd
,
795 (elf_elfheader (abfd
)
798 shdr
->bfd_section
->name
);
806 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
808 return elf_next_in_group (sec
) != NULL
;
811 /* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
815 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
816 Elf_Internal_Shdr
*hdr
,
822 const struct elf_backend_data
*bed
;
824 if (hdr
->bfd_section
!= NULL
)
827 newsect
= bfd_make_section_anyway (abfd
, name
);
831 hdr
->bfd_section
= newsect
;
832 elf_section_data (newsect
)->this_hdr
= *hdr
;
833 elf_section_data (newsect
)->this_idx
= shindex
;
835 /* Always use the real type/flags. */
836 elf_section_type (newsect
) = hdr
->sh_type
;
837 elf_section_flags (newsect
) = hdr
->sh_flags
;
839 newsect
->filepos
= hdr
->sh_offset
;
841 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
842 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
843 || ! bfd_set_section_alignment (abfd
, newsect
,
844 bfd_log2 (hdr
->sh_addralign
)))
847 flags
= SEC_NO_FLAGS
;
848 if (hdr
->sh_type
!= SHT_NOBITS
)
849 flags
|= SEC_HAS_CONTENTS
;
850 if (hdr
->sh_type
== SHT_GROUP
)
851 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
852 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
855 if (hdr
->sh_type
!= SHT_NOBITS
)
858 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
859 flags
|= SEC_READONLY
;
860 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
862 else if ((flags
& SEC_LOAD
) != 0)
864 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
867 newsect
->entsize
= hdr
->sh_entsize
;
868 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
869 flags
|= SEC_STRINGS
;
871 if (hdr
->sh_flags
& SHF_GROUP
)
872 if (!setup_group (abfd
, hdr
, newsect
))
874 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
875 flags
|= SEC_THREAD_LOCAL
;
876 if ((hdr
->sh_flags
& SHF_EXCLUDE
) != 0)
877 flags
|= SEC_EXCLUDE
;
879 if ((flags
& SEC_ALLOC
) == 0)
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
887 } debug_sections
[] =
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL
, 0 }, /* 'e' */
891 { NULL
, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL
, 0 }, /* 'h' */
894 { NULL
, 0 }, /* 'i' */
895 { NULL
, 0 }, /* 'j' */
896 { NULL
, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL
, 0 }, /* 'm' */
899 { NULL
, 0 }, /* 'n' */
900 { NULL
, 0 }, /* 'o' */
901 { NULL
, 0 }, /* 'p' */
902 { NULL
, 0 }, /* 'q' */
903 { NULL
, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL
, 0 }, /* 't' */
906 { NULL
, 0 }, /* 'u' */
907 { NULL
, 0 }, /* 'v' */
908 { NULL
, 0 }, /* 'w' */
909 { NULL
, 0 }, /* 'x' */
910 { NULL
, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
916 int i
= name
[1] - 'd';
918 && i
< (int) ARRAY_SIZE (debug_sections
)
919 && debug_sections
[i
].name
!= NULL
920 && strncmp (&name
[1], debug_sections
[i
].name
,
921 debug_sections
[i
].len
) == 0)
922 flags
|= SEC_DEBUGGING
;
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name
, ".gnu.linkonce")
933 && elf_next_in_group (newsect
) == NULL
)
934 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
936 bed
= get_elf_backend_data (abfd
);
937 if (bed
->elf_backend_section_flags
)
938 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
941 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr
->sh_type
== SHT_NOTE
)
951 if (!bfd_malloc_and_get_section (abfd
, newsect
, &contents
))
954 elf_parse_notes (abfd
, (char *) contents
, hdr
->sh_size
, -1);
958 if ((flags
& SEC_ALLOC
) != 0)
960 Elf_Internal_Phdr
*phdr
;
961 unsigned int i
, nload
;
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr
= elf_tdata (abfd
)->phdr
;
968 for (nload
= 0, i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
969 if (phdr
->p_paddr
!= 0)
971 else if (phdr
->p_type
== PT_LOAD
&& phdr
->p_memsz
!= 0)
973 if (i
>= elf_elfheader (abfd
)->e_phnum
&& nload
> 1)
976 phdr
= elf_tdata (abfd
)->phdr
;
977 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
979 if (((phdr
->p_type
== PT_LOAD
980 && (hdr
->sh_flags
& SHF_TLS
) == 0)
981 || phdr
->p_type
== PT_TLS
)
982 && ELF_SECTION_IN_SEGMENT (hdr
, phdr
))
984 if ((flags
& SEC_LOAD
) == 0)
985 newsect
->lma
= (phdr
->p_paddr
986 + hdr
->sh_addr
- phdr
->p_vaddr
);
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect
->lma
= (phdr
->p_paddr
996 + hdr
->sh_offset
- phdr
->p_offset
);
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr
->sh_addr
>= phdr
->p_vaddr
1003 && (hdr
->sh_addr
+ hdr
->sh_size
1004 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags
& SEC_DEBUGGING
)
1013 && ((name
[1] == 'd' && name
[6] == '_')
1014 || (name
[1] == 'z' && name
[7] == '_')))
1016 enum { nothing
, compress
, decompress
} action
= nothing
;
1019 if (bfd_is_section_compressed (abfd
, newsect
))
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd
->flags
& BFD_DECOMPRESS
))
1023 action
= decompress
;
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd
->flags
& BFD_COMPRESS
))
1038 if (!bfd_init_section_compress_status (abfd
, newsect
))
1040 (*_bfd_error_handler
)
1041 (_("%B: unable to initialize commpress status for section %s"),
1047 unsigned int len
= strlen (name
);
1049 new_name
= bfd_alloc (abfd
, len
+ 2);
1050 if (new_name
== NULL
)
1054 memcpy (new_name
+ 2, name
+ 1, len
);
1058 if (!bfd_init_section_decompress_status (abfd
, newsect
))
1060 (*_bfd_error_handler
)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1067 unsigned int len
= strlen (name
);
1069 new_name
= bfd_alloc (abfd
, len
);
1070 if (new_name
== NULL
)
1073 memcpy (new_name
+ 1, name
+ 2, len
- 1);
1077 if (new_name
!= NULL
)
1078 bfd_rename_section (abfd
, newsect
, new_name
);
1084 const char *const bfd_elf_section_type_names
[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1090 /* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1100 bfd_reloc_status_type
1101 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
1102 arelent
*reloc_entry
,
1104 void *data ATTRIBUTE_UNUSED
,
1105 asection
*input_section
,
1107 char **error_message ATTRIBUTE_UNUSED
)
1109 if (output_bfd
!= NULL
1110 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
1111 && (! reloc_entry
->howto
->partial_inplace
1112 || reloc_entry
->addend
== 0))
1114 reloc_entry
->address
+= input_section
->output_offset
;
1115 return bfd_reloc_ok
;
1118 return bfd_reloc_continue
;
1121 /* Copy the program header and other data from one object module to
1125 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1127 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1131 BFD_ASSERT (!elf_flags_init (obfd
)
1132 || (elf_elfheader (obfd
)->e_flags
1133 == elf_elfheader (ibfd
)->e_flags
));
1135 elf_gp (obfd
) = elf_gp (ibfd
);
1136 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1137 elf_flags_init (obfd
) = TRUE
;
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
1145 get_segment_type (unsigned int p_type
)
1150 case PT_NULL
: pt
= "NULL"; break;
1151 case PT_LOAD
: pt
= "LOAD"; break;
1152 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1153 case PT_INTERP
: pt
= "INTERP"; break;
1154 case PT_NOTE
: pt
= "NOTE"; break;
1155 case PT_SHLIB
: pt
= "SHLIB"; break;
1156 case PT_PHDR
: pt
= "PHDR"; break;
1157 case PT_TLS
: pt
= "TLS"; break;
1158 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1159 case PT_GNU_STACK
: pt
= "STACK"; break;
1160 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1161 default: pt
= NULL
; break;
1166 /* Print out the program headers. */
1169 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1171 FILE *f
= (FILE *) farg
;
1172 Elf_Internal_Phdr
*p
;
1174 bfd_byte
*dynbuf
= NULL
;
1176 p
= elf_tdata (abfd
)->phdr
;
1181 fprintf (f
, _("\nProgram Header:\n"));
1182 c
= elf_elfheader (abfd
)->e_phnum
;
1183 for (i
= 0; i
< c
; i
++, p
++)
1185 const char *pt
= get_segment_type (p
->p_type
);
1190 sprintf (buf
, "0x%lx", p
->p_type
);
1193 fprintf (f
, "%8s off 0x", pt
);
1194 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1195 fprintf (f
, " vaddr 0x");
1196 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1197 fprintf (f
, " paddr 0x");
1198 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1199 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1200 fprintf (f
, " filesz 0x");
1201 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1202 fprintf (f
, " memsz 0x");
1203 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1204 fprintf (f
, " flags %c%c%c",
1205 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1206 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1207 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1208 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1209 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1214 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1217 unsigned int elfsec
;
1218 unsigned long shlink
;
1219 bfd_byte
*extdyn
, *extdynend
;
1221 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1223 fprintf (f
, _("\nDynamic Section:\n"));
1225 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1228 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1229 if (elfsec
== SHN_BAD
)
1231 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1233 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1234 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1237 extdynend
= extdyn
+ s
->size
;
1238 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1240 Elf_Internal_Dyn dyn
;
1241 const char *name
= "";
1243 bfd_boolean stringp
;
1244 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1246 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1248 if (dyn
.d_tag
== DT_NULL
)
1255 if (bed
->elf_backend_get_target_dtag
)
1256 name
= (*bed
->elf_backend_get_target_dtag
) (dyn
.d_tag
);
1258 if (!strcmp (name
, ""))
1260 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1265 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1266 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1267 case DT_PLTGOT
: name
= "PLTGOT"; break;
1268 case DT_HASH
: name
= "HASH"; break;
1269 case DT_STRTAB
: name
= "STRTAB"; break;
1270 case DT_SYMTAB
: name
= "SYMTAB"; break;
1271 case DT_RELA
: name
= "RELA"; break;
1272 case DT_RELASZ
: name
= "RELASZ"; break;
1273 case DT_RELAENT
: name
= "RELAENT"; break;
1274 case DT_STRSZ
: name
= "STRSZ"; break;
1275 case DT_SYMENT
: name
= "SYMENT"; break;
1276 case DT_INIT
: name
= "INIT"; break;
1277 case DT_FINI
: name
= "FINI"; break;
1278 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1279 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1280 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1281 case DT_REL
: name
= "REL"; break;
1282 case DT_RELSZ
: name
= "RELSZ"; break;
1283 case DT_RELENT
: name
= "RELENT"; break;
1284 case DT_PLTREL
: name
= "PLTREL"; break;
1285 case DT_DEBUG
: name
= "DEBUG"; break;
1286 case DT_TEXTREL
: name
= "TEXTREL"; break;
1287 case DT_JMPREL
: name
= "JMPREL"; break;
1288 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1289 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1294 case DT_FLAGS
: name
= "FLAGS"; break;
1295 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1298 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1299 case DT_MOVEENT
: name
= "MOVEENT"; break;
1300 case DT_MOVESZ
: name
= "MOVESZ"; break;
1301 case DT_FEATURE
: name
= "FEATURE"; break;
1302 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1303 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1304 case DT_SYMINENT
: name
= "SYMINENT"; break;
1305 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1306 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1307 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1308 case DT_PLTPAD
: name
= "PLTPAD"; break;
1309 case DT_MOVETAB
: name
= "MOVETAB"; break;
1310 case DT_SYMINFO
: name
= "SYMINFO"; break;
1311 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1312 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1313 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1314 case DT_VERSYM
: name
= "VERSYM"; break;
1315 case DT_VERDEF
: name
= "VERDEF"; break;
1316 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1317 case DT_VERNEED
: name
= "VERNEED"; break;
1318 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1319 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1320 case DT_USED
: name
= "USED"; break;
1321 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1322 case DT_GNU_HASH
: name
= "GNU_HASH"; break;
1325 fprintf (f
, " %-20s ", name
);
1329 bfd_fprintf_vma (abfd
, f
, dyn
.d_un
.d_val
);
1334 unsigned int tagv
= dyn
.d_un
.d_val
;
1336 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1339 fprintf (f
, "%s", string
);
1348 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1349 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1351 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1355 if (elf_dynverdef (abfd
) != 0)
1357 Elf_Internal_Verdef
*t
;
1359 fprintf (f
, _("\nVersion definitions:\n"));
1360 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1362 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1363 t
->vd_flags
, t
->vd_hash
,
1364 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1365 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1367 Elf_Internal_Verdaux
*a
;
1370 for (a
= t
->vd_auxptr
->vda_nextptr
;
1374 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1380 if (elf_dynverref (abfd
) != 0)
1382 Elf_Internal_Verneed
*t
;
1384 fprintf (f
, _("\nVersion References:\n"));
1385 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1387 Elf_Internal_Vernaux
*a
;
1389 fprintf (f
, _(" required from %s:\n"),
1390 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1391 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1392 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1393 a
->vna_flags
, a
->vna_other
,
1394 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1406 /* Display ELF-specific fields of a symbol. */
1409 bfd_elf_print_symbol (bfd
*abfd
,
1412 bfd_print_symbol_type how
)
1414 FILE *file
= (FILE *) filep
;
1417 case bfd_print_symbol_name
:
1418 fprintf (file
, "%s", symbol
->name
);
1420 case bfd_print_symbol_more
:
1421 fprintf (file
, "elf ");
1422 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1423 fprintf (file
, " %lx", (unsigned long) symbol
->flags
);
1425 case bfd_print_symbol_all
:
1427 const char *section_name
;
1428 const char *name
= NULL
;
1429 const struct elf_backend_data
*bed
;
1430 unsigned char st_other
;
1433 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1435 bed
= get_elf_backend_data (abfd
);
1436 if (bed
->elf_backend_print_symbol_all
)
1437 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1441 name
= symbol
->name
;
1442 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1445 fprintf (file
, " %s\t", section_name
);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol
->section
&& bfd_is_com_section (symbol
->section
))
1451 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1453 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1454 bfd_fprintf_vma (abfd
, file
, val
);
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd
)->dynversym_section
!= 0
1458 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1459 || elf_tdata (abfd
)->dynverref_section
!= 0))
1461 unsigned int vernum
;
1462 const char *version_string
;
1464 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1467 version_string
= "";
1468 else if (vernum
== 1)
1469 version_string
= "Base";
1470 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1472 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1475 Elf_Internal_Verneed
*t
;
1477 version_string
= "";
1478 for (t
= elf_tdata (abfd
)->verref
;
1482 Elf_Internal_Vernaux
*a
;
1484 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1486 if (a
->vna_other
== vernum
)
1488 version_string
= a
->vna_nodename
;
1495 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1496 fprintf (file
, " %-11s", version_string
);
1501 fprintf (file
, " (%s)", version_string
);
1502 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1507 /* If the st_other field is not zero, print it. */
1508 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1513 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1514 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1515 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1517 /* Some other non-defined flags are also present, so print
1519 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1522 fprintf (file
, " %s", name
);
1528 /* Allocate an ELF string table--force the first byte to be zero. */
1530 struct bfd_strtab_hash
*
1531 _bfd_elf_stringtab_init (void)
1533 struct bfd_strtab_hash
*ret
;
1535 ret
= _bfd_stringtab_init ();
1540 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1541 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1542 if (loc
== (bfd_size_type
) -1)
1544 _bfd_stringtab_free (ret
);
1551 /* ELF .o/exec file reading */
1553 /* Create a new bfd section from an ELF section header. */
1556 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1558 Elf_Internal_Shdr
*hdr
;
1559 Elf_Internal_Ehdr
*ehdr
;
1560 const struct elf_backend_data
*bed
;
1563 if (shindex
>= elf_numsections (abfd
))
1566 hdr
= elf_elfsections (abfd
)[shindex
];
1567 ehdr
= elf_elfheader (abfd
);
1568 name
= bfd_elf_string_from_elf_section (abfd
, ehdr
->e_shstrndx
,
1573 bed
= get_elf_backend_data (abfd
);
1574 switch (hdr
->sh_type
)
1577 /* Inactive section. Throw it away. */
1580 case SHT_PROGBITS
: /* Normal section with contents. */
1581 case SHT_NOBITS
: /* .bss section. */
1582 case SHT_HASH
: /* .hash section. */
1583 case SHT_NOTE
: /* .note section. */
1584 case SHT_INIT_ARRAY
: /* .init_array section. */
1585 case SHT_FINI_ARRAY
: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH
: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1591 case SHT_DYNAMIC
: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1594 if (hdr
->sh_link
> elf_numsections (abfd
))
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd
))
1601 case bfd_arch_sparc
:
1602 if (hdr
->sh_link
== (SHN_LORESERVE
& 0xffff) /* SHN_BEFORE */
1603 || hdr
->sh_link
== ((SHN_LORESERVE
+ 1) & 0xffff) /* SHN_AFTER */)
1605 /* Otherwise fall through. */
1610 else if (elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1612 else if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1614 Elf_Internal_Shdr
*dynsymhdr
;
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd
) != 0)
1621 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1622 hdr
->sh_link
= dynsymhdr
->sh_link
;
1626 unsigned int i
, num_sec
;
1628 num_sec
= elf_numsections (abfd
);
1629 for (i
= 1; i
< num_sec
; i
++)
1631 dynsymhdr
= elf_elfsections (abfd
)[i
];
1632 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1634 hdr
->sh_link
= dynsymhdr
->sh_link
;
1642 case SHT_SYMTAB
: /* A symbol table */
1643 if (elf_onesymtab (abfd
) == shindex
)
1646 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1648 if (hdr
->sh_info
* hdr
->sh_entsize
> hdr
->sh_size
)
1650 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1651 elf_onesymtab (abfd
) = shindex
;
1652 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1653 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1654 abfd
->flags
|= HAS_SYMS
;
1656 /* Sometimes a shared object will map in the symbol table. If
1657 SHF_ALLOC is set, and this is a shared object, then we also
1658 treat this section as a BFD section. We can not base the
1659 decision purely on SHF_ALLOC, because that flag is sometimes
1660 set in a relocatable object file, which would confuse the
1662 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1663 && (abfd
->flags
& DYNAMIC
) != 0
1664 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1668 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1669 can't read symbols without that section loaded as well. It
1670 is most likely specified by the next section header. */
1671 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1673 unsigned int i
, num_sec
;
1675 num_sec
= elf_numsections (abfd
);
1676 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1678 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1679 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1680 && hdr2
->sh_link
== shindex
)
1684 for (i
= 1; i
< shindex
; i
++)
1686 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1687 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1688 && hdr2
->sh_link
== shindex
)
1692 return bfd_section_from_shdr (abfd
, i
);
1696 case SHT_DYNSYM
: /* A dynamic symbol table */
1697 if (elf_dynsymtab (abfd
) == shindex
)
1700 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1702 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1703 elf_dynsymtab (abfd
) = shindex
;
1704 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1705 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1706 abfd
->flags
|= HAS_SYMS
;
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1712 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd
) == shindex
)
1716 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1717 elf_symtab_shndx (abfd
) = shindex
;
1718 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1719 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1722 case SHT_STRTAB
: /* A string table */
1723 if (hdr
->bfd_section
!= NULL
)
1725 if (ehdr
->e_shstrndx
== shindex
)
1727 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1728 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1731 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1734 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1735 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1738 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1741 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1742 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1743 elf_elfsections (abfd
)[shindex
] = hdr
;
1744 /* We also treat this as a regular section, so that objcopy
1746 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1755 unsigned int i
, num_sec
;
1757 num_sec
= elf_numsections (abfd
);
1758 for (i
= 1; i
< num_sec
; i
++)
1760 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1761 if (hdr2
->sh_link
== shindex
)
1763 /* Prevent endless recursion on broken objects. */
1766 if (! bfd_section_from_shdr (abfd
, i
))
1768 if (elf_onesymtab (abfd
) == i
)
1770 if (elf_dynsymtab (abfd
) == i
)
1771 goto dynsymtab_strtab
;
1775 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1779 /* *These* do a lot of work -- but build no sections! */
1781 asection
*target_sect
;
1782 Elf_Internal_Shdr
*hdr2
, **p_hdr
;
1783 unsigned int num_sec
= elf_numsections (abfd
);
1784 struct bfd_elf_section_data
*esdt
;
1788 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1789 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr
->sh_link
>= num_sec
)
1795 ((*_bfd_error_handler
)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd
, hdr
->sh_link
, name
, shindex
));
1798 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1810 Don't do it on executable nor shared library. */
1811 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0
1812 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1813 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1819 for (scan
= 1; scan
< num_sec
; scan
++)
1821 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1822 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1833 hdr
->sh_link
= found
;
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1838 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
1839 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
1850 || hdr
->sh_link
== SHN_UNDEF
1851 || hdr
->sh_info
== SHN_UNDEF
1852 || hdr
->sh_info
>= num_sec
1853 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
1854 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
1855 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1858 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1860 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1861 if (target_sect
== NULL
)
1864 esdt
= elf_section_data (target_sect
);
1865 if (hdr
->sh_type
== SHT_RELA
)
1866 p_hdr
= &esdt
->rela
.hdr
;
1868 p_hdr
= &esdt
->rel
.hdr
;
1870 BFD_ASSERT (*p_hdr
== NULL
);
1871 amt
= sizeof (*hdr2
);
1872 hdr2
= (Elf_Internal_Shdr
*) bfd_alloc (abfd
, amt
);
1877 elf_elfsections (abfd
)[shindex
] = hdr2
;
1878 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1879 target_sect
->flags
|= SEC_RELOC
;
1880 target_sect
->relocation
= NULL
;
1881 target_sect
->rel_filepos
= hdr
->sh_offset
;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr
->sh_size
!= 0)
1886 if (hdr
->sh_type
== SHT_RELA
)
1887 target_sect
->use_rela_p
= 1;
1889 abfd
->flags
|= HAS_RELOC
;
1893 case SHT_GNU_verdef
:
1894 elf_dynverdef (abfd
) = shindex
;
1895 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1896 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1898 case SHT_GNU_versym
:
1899 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
1901 elf_dynversym (abfd
) = shindex
;
1902 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1903 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1905 case SHT_GNU_verneed
:
1906 elf_dynverref (abfd
) = shindex
;
1907 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
1908 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr
))
1916 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1918 if (hdr
->contents
!= NULL
)
1920 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
1921 unsigned int n_elt
= hdr
->sh_size
/ GRP_ENTRY_SIZE
;
1924 if (idx
->flags
& GRP_COMDAT
)
1925 hdr
->bfd_section
->flags
1926 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
1928 /* We try to keep the same section order as it comes in. */
1930 while (--n_elt
!= 0)
1934 if (idx
->shdr
!= NULL
1935 && (s
= idx
->shdr
->bfd_section
) != NULL
1936 && elf_next_in_group (s
) != NULL
)
1938 elf_next_in_group (hdr
->bfd_section
) = s
;
1946 /* Possibly an attributes section. */
1947 if (hdr
->sh_type
== SHT_GNU_ATTRIBUTES
1948 || hdr
->sh_type
== bed
->obj_attrs_section_type
)
1950 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1952 _bfd_elf_parse_attributes (abfd
, hdr
);
1956 /* Check for any processor-specific section types. */
1957 if (bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
, shindex
))
1960 if (hdr
->sh_type
>= SHT_LOUSER
&& hdr
->sh_type
<= SHT_HIUSER
)
1962 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler
)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd
, name
, hdr
->sh_type
);
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1974 else if (hdr
->sh_type
>= SHT_LOPROC
1975 && hdr
->sh_type
<= SHT_HIPROC
)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler
)
1978 (_("%B: don't know how to handle processor specific section "
1980 abfd
, name
, hdr
->sh_type
);
1981 else if (hdr
->sh_type
>= SHT_LOOS
&& hdr
->sh_type
<= SHT_HIOS
)
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr
->sh_flags
& SHF_OS_NONCONFORMING
) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler
)
1989 (_("%B: don't know how to handle OS specific section "
1991 abfd
, name
, hdr
->sh_type
);
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler
)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd
, name
, hdr
->sh_type
);
2008 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2011 bfd_sym_from_r_symndx (struct sym_cache
*cache
,
2013 unsigned long r_symndx
)
2015 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2017 if (cache
->abfd
!= abfd
|| cache
->indx
[ent
] != r_symndx
)
2019 Elf_Internal_Shdr
*symtab_hdr
;
2020 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2021 Elf_External_Sym_Shndx eshndx
;
2023 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2024 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2025 &cache
->sym
[ent
], esym
, &eshndx
) == NULL
)
2028 if (cache
->abfd
!= abfd
)
2030 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2033 cache
->indx
[ent
] = r_symndx
;
2036 return &cache
->sym
[ent
];
2039 /* Given an ELF section number, retrieve the corresponding BFD
2043 bfd_section_from_elf_index (bfd
*abfd
, unsigned int sec_index
)
2045 if (sec_index
>= elf_numsections (abfd
))
2047 return elf_elfsections (abfd
)[sec_index
]->bfd_section
;
2050 static const struct bfd_elf_special_section special_sections_b
[] =
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2053 { NULL
, 0, 0, 0, 0 }
2056 static const struct bfd_elf_special_section special_sections_c
[] =
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS
, 0 },
2059 { NULL
, 0, 0, 0, 0 }
2062 static const struct bfd_elf_special_section special_sections_d
[] =
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2066 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS
, 0 },
2067 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS
, 0 },
2068 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS
, 0 },
2069 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS
, 0 },
2070 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS
, 0 },
2071 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, SHF_ALLOC
},
2072 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, SHF_ALLOC
},
2073 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, SHF_ALLOC
},
2074 { NULL
, 0, 0, 0, 0 }
2077 static const struct bfd_elf_special_section special_sections_f
[] =
2079 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2080 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2081 { NULL
, 0, 0, 0, 0 }
2084 static const struct bfd_elf_special_section special_sections_g
[] =
2086 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2087 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS
, SHF_EXCLUDE
},
2088 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2089 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym
, 0 },
2090 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef
, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed
, 0 },
2092 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2093 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA
, SHF_ALLOC
},
2094 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH
, SHF_ALLOC
},
2095 { NULL
, 0, 0, 0, 0 }
2098 static const struct bfd_elf_special_section special_sections_h
[] =
2100 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, SHF_ALLOC
},
2101 { NULL
, 0, 0, 0, 0 }
2104 static const struct bfd_elf_special_section special_sections_i
[] =
2106 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2107 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2108 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS
, 0 },
2109 { NULL
, 0, 0, 0, 0 }
2112 static const struct bfd_elf_special_section special_sections_l
[] =
2114 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS
, 0 },
2115 { NULL
, 0, 0, 0, 0 }
2118 static const struct bfd_elf_special_section special_sections_n
[] =
2120 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS
, 0 },
2121 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE
, 0 },
2122 { NULL
, 0, 0, 0, 0 }
2125 static const struct bfd_elf_special_section special_sections_p
[] =
2127 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2128 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2129 { NULL
, 0, 0, 0, 0 }
2132 static const struct bfd_elf_special_section special_sections_r
[] =
2134 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS
, SHF_ALLOC
},
2135 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS
, SHF_ALLOC
},
2136 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA
, 0 },
2137 { STRING_COMMA_LEN (".rel"), -1, SHT_REL
, 0 },
2138 { NULL
, 0, 0, 0, 0 }
2141 static const struct bfd_elf_special_section special_sections_s
[] =
2143 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB
, 0 },
2144 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB
, 0 },
2145 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB
, 0 },
2146 /* See struct bfd_elf_special_section declaration for the semantics of
2147 this special case where .prefix_length != strlen (.prefix). */
2148 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2149 { NULL
, 0, 0, 0, 0 }
2152 static const struct bfd_elf_special_section special_sections_t
[] =
2154 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2155 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2156 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2157 { NULL
, 0, 0, 0, 0 }
2160 static const struct bfd_elf_special_section special_sections_z
[] =
2162 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS
, 0 },
2163 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS
, 0 },
2164 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS
, 0 },
2165 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS
, 0 },
2166 { NULL
, 0, 0, 0, 0 }
2169 static const struct bfd_elf_special_section
* const special_sections
[] =
2171 special_sections_b
, /* 'b' */
2172 special_sections_c
, /* 'c' */
2173 special_sections_d
, /* 'd' */
2175 special_sections_f
, /* 'f' */
2176 special_sections_g
, /* 'g' */
2177 special_sections_h
, /* 'h' */
2178 special_sections_i
, /* 'i' */
2181 special_sections_l
, /* 'l' */
2183 special_sections_n
, /* 'n' */
2185 special_sections_p
, /* 'p' */
2187 special_sections_r
, /* 'r' */
2188 special_sections_s
, /* 's' */
2189 special_sections_t
, /* 't' */
2195 special_sections_z
/* 'z' */
2198 const struct bfd_elf_special_section
*
2199 _bfd_elf_get_special_section (const char *name
,
2200 const struct bfd_elf_special_section
*spec
,
2206 len
= strlen (name
);
2208 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2211 int prefix_len
= spec
[i
].prefix_length
;
2213 if (len
< prefix_len
)
2215 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2218 suffix_len
= spec
[i
].suffix_length
;
2219 if (suffix_len
<= 0)
2221 if (name
[prefix_len
] != 0)
2223 if (suffix_len
== 0)
2225 if (name
[prefix_len
] != '.'
2226 && (suffix_len
== -2
2227 || (rela
&& spec
[i
].type
== SHT_REL
)))
2233 if (len
< prefix_len
+ suffix_len
)
2235 if (memcmp (name
+ len
- suffix_len
,
2236 spec
[i
].prefix
+ prefix_len
,
2246 const struct bfd_elf_special_section
*
2247 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2250 const struct bfd_elf_special_section
*spec
;
2251 const struct elf_backend_data
*bed
;
2253 /* See if this is one of the special sections. */
2254 if (sec
->name
== NULL
)
2257 bed
= get_elf_backend_data (abfd
);
2258 spec
= bed
->special_sections
;
2261 spec
= _bfd_elf_get_special_section (sec
->name
,
2262 bed
->special_sections
,
2268 if (sec
->name
[0] != '.')
2271 i
= sec
->name
[1] - 'b';
2272 if (i
< 0 || i
> 'z' - 'b')
2275 spec
= special_sections
[i
];
2280 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2284 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2286 struct bfd_elf_section_data
*sdata
;
2287 const struct elf_backend_data
*bed
;
2288 const struct bfd_elf_special_section
*ssect
;
2290 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2293 sdata
= (struct bfd_elf_section_data
*) bfd_zalloc (abfd
,
2297 sec
->used_by_bfd
= sdata
;
2300 /* Indicate whether or not this section should use RELA relocations. */
2301 bed
= get_elf_backend_data (abfd
);
2302 sec
->use_rela_p
= bed
->default_use_rela_p
;
2304 /* When we read a file, we don't need to set ELF section type and
2305 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2306 anyway. We will set ELF section type and flags for all linker
2307 created sections. If user specifies BFD section flags, we will
2308 set ELF section type and flags based on BFD section flags in
2309 elf_fake_sections. Special handling for .init_array/.fini_array
2310 output sections since they may contain .ctors/.dtors input
2311 sections. We don't want _bfd_elf_init_private_section_data to
2312 copy ELF section type from .ctors/.dtors input sections. */
2313 if (abfd
->direction
!= read_direction
2314 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2316 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2319 || (sec
->flags
& SEC_LINKER_CREATED
) != 0
2320 || ssect
->type
== SHT_INIT_ARRAY
2321 || ssect
->type
== SHT_FINI_ARRAY
))
2323 elf_section_type (sec
) = ssect
->type
;
2324 elf_section_flags (sec
) = ssect
->attr
;
2328 return _bfd_generic_new_section_hook (abfd
, sec
);
2331 /* Create a new bfd section from an ELF program header.
2333 Since program segments have no names, we generate a synthetic name
2334 of the form segment<NUM>, where NUM is generally the index in the
2335 program header table. For segments that are split (see below) we
2336 generate the names segment<NUM>a and segment<NUM>b.
2338 Note that some program segments may have a file size that is different than
2339 (less than) the memory size. All this means is that at execution the
2340 system must allocate the amount of memory specified by the memory size,
2341 but only initialize it with the first "file size" bytes read from the
2342 file. This would occur for example, with program segments consisting
2343 of combined data+bss.
2345 To handle the above situation, this routine generates TWO bfd sections
2346 for the single program segment. The first has the length specified by
2347 the file size of the segment, and the second has the length specified
2348 by the difference between the two sizes. In effect, the segment is split
2349 into its initialized and uninitialized parts.
2354 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2355 Elf_Internal_Phdr
*hdr
,
2357 const char *type_name
)
2365 split
= ((hdr
->p_memsz
> 0)
2366 && (hdr
->p_filesz
> 0)
2367 && (hdr
->p_memsz
> hdr
->p_filesz
));
2369 if (hdr
->p_filesz
> 0)
2371 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "a" : "");
2372 len
= strlen (namebuf
) + 1;
2373 name
= (char *) bfd_alloc (abfd
, len
);
2376 memcpy (name
, namebuf
, len
);
2377 newsect
= bfd_make_section (abfd
, name
);
2378 if (newsect
== NULL
)
2380 newsect
->vma
= hdr
->p_vaddr
;
2381 newsect
->lma
= hdr
->p_paddr
;
2382 newsect
->size
= hdr
->p_filesz
;
2383 newsect
->filepos
= hdr
->p_offset
;
2384 newsect
->flags
|= SEC_HAS_CONTENTS
;
2385 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2386 if (hdr
->p_type
== PT_LOAD
)
2388 newsect
->flags
|= SEC_ALLOC
;
2389 newsect
->flags
|= SEC_LOAD
;
2390 if (hdr
->p_flags
& PF_X
)
2392 /* FIXME: all we known is that it has execute PERMISSION,
2394 newsect
->flags
|= SEC_CODE
;
2397 if (!(hdr
->p_flags
& PF_W
))
2399 newsect
->flags
|= SEC_READONLY
;
2403 if (hdr
->p_memsz
> hdr
->p_filesz
)
2407 sprintf (namebuf
, "%s%d%s", type_name
, hdr_index
, split
? "b" : "");
2408 len
= strlen (namebuf
) + 1;
2409 name
= (char *) bfd_alloc (abfd
, len
);
2412 memcpy (name
, namebuf
, len
);
2413 newsect
= bfd_make_section (abfd
, name
);
2414 if (newsect
== NULL
)
2416 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2417 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2418 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2419 newsect
->filepos
= hdr
->p_offset
+ hdr
->p_filesz
;
2420 align
= newsect
->vma
& -newsect
->vma
;
2421 if (align
== 0 || align
> hdr
->p_align
)
2422 align
= hdr
->p_align
;
2423 newsect
->alignment_power
= bfd_log2 (align
);
2424 if (hdr
->p_type
== PT_LOAD
)
2426 /* Hack for gdb. Segments that have not been modified do
2427 not have their contents written to a core file, on the
2428 assumption that a debugger can find the contents in the
2429 executable. We flag this case by setting the fake
2430 section size to zero. Note that "real" bss sections will
2431 always have their contents dumped to the core file. */
2432 if (bfd_get_format (abfd
) == bfd_core
)
2434 newsect
->flags
|= SEC_ALLOC
;
2435 if (hdr
->p_flags
& PF_X
)
2436 newsect
->flags
|= SEC_CODE
;
2438 if (!(hdr
->p_flags
& PF_W
))
2439 newsect
->flags
|= SEC_READONLY
;
2446 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int hdr_index
)
2448 const struct elf_backend_data
*bed
;
2450 switch (hdr
->p_type
)
2453 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "null");
2456 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "load");
2459 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "dynamic");
2462 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "interp");
2465 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "note"))
2467 if (! elf_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2472 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "shlib");
2475 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "phdr");
2477 case PT_GNU_EH_FRAME
:
2478 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
,
2482 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "stack");
2485 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, hdr_index
, "relro");
2488 /* Check for any processor-specific program segment types. */
2489 bed
= get_elf_backend_data (abfd
);
2490 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, hdr_index
, "proc");
2494 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2498 _bfd_elf_single_rel_hdr (asection
*sec
)
2500 if (elf_section_data (sec
)->rel
.hdr
)
2502 BFD_ASSERT (elf_section_data (sec
)->rela
.hdr
== NULL
);
2503 return elf_section_data (sec
)->rel
.hdr
;
2506 return elf_section_data (sec
)->rela
.hdr
;
2509 /* Allocate and initialize a section-header for a new reloc section,
2510 containing relocations against ASECT. It is stored in RELDATA. If
2511 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2515 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2516 struct bfd_elf_section_reloc_data
*reldata
,
2518 bfd_boolean use_rela_p
)
2520 Elf_Internal_Shdr
*rel_hdr
;
2522 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2525 amt
= sizeof (Elf_Internal_Shdr
);
2526 BFD_ASSERT (reldata
->hdr
== NULL
);
2527 rel_hdr
= bfd_zalloc (abfd
, amt
);
2528 reldata
->hdr
= rel_hdr
;
2530 amt
= sizeof ".rela" + strlen (asect
->name
);
2531 name
= (char *) bfd_alloc (abfd
, amt
);
2534 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2536 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2538 if (rel_hdr
->sh_name
== (unsigned int) -1)
2540 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2541 rel_hdr
->sh_entsize
= (use_rela_p
2542 ? bed
->s
->sizeof_rela
2543 : bed
->s
->sizeof_rel
);
2544 rel_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
2545 rel_hdr
->sh_flags
= 0;
2546 rel_hdr
->sh_addr
= 0;
2547 rel_hdr
->sh_size
= 0;
2548 rel_hdr
->sh_offset
= 0;
2553 /* Return the default section type based on the passed in section flags. */
2556 bfd_elf_get_default_section_type (flagword flags
)
2558 if ((flags
& SEC_ALLOC
) != 0
2559 && (flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2561 return SHT_PROGBITS
;
2564 struct fake_section_arg
2566 struct bfd_link_info
*link_info
;
2570 /* Set up an ELF internal section header for a section. */
2573 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *fsarg
)
2575 struct fake_section_arg
*arg
= (struct fake_section_arg
*)fsarg
;
2576 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2577 struct bfd_elf_section_data
*esd
= elf_section_data (asect
);
2578 Elf_Internal_Shdr
*this_hdr
;
2579 unsigned int sh_type
;
2583 /* We already failed; just get out of the bfd_map_over_sections
2588 this_hdr
= &esd
->this_hdr
;
2590 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2591 asect
->name
, FALSE
);
2592 if (this_hdr
->sh_name
== (unsigned int) -1)
2598 /* Don't clear sh_flags. Assembler may set additional bits. */
2600 if ((asect
->flags
& SEC_ALLOC
) != 0
2601 || asect
->user_set_vma
)
2602 this_hdr
->sh_addr
= asect
->vma
;
2604 this_hdr
->sh_addr
= 0;
2606 this_hdr
->sh_offset
= 0;
2607 this_hdr
->sh_size
= asect
->size
;
2608 this_hdr
->sh_link
= 0;
2609 this_hdr
->sh_addralign
= (bfd_vma
) 1 << asect
->alignment_power
;
2610 /* The sh_entsize and sh_info fields may have been set already by
2611 copy_private_section_data. */
2613 this_hdr
->bfd_section
= asect
;
2614 this_hdr
->contents
= NULL
;
2616 /* If the section type is unspecified, we set it based on
2618 if ((asect
->flags
& SEC_GROUP
) != 0)
2619 sh_type
= SHT_GROUP
;
2621 sh_type
= bfd_elf_get_default_section_type (asect
->flags
);
2623 if (this_hdr
->sh_type
== SHT_NULL
)
2624 this_hdr
->sh_type
= sh_type
;
2625 else if (this_hdr
->sh_type
== SHT_NOBITS
2626 && sh_type
== SHT_PROGBITS
2627 && (asect
->flags
& SEC_ALLOC
) != 0)
2629 /* Warn if we are changing a NOBITS section to PROGBITS, but
2630 allow the link to proceed. This can happen when users link
2631 non-bss input sections to bss output sections, or emit data
2632 to a bss output section via a linker script. */
2633 (*_bfd_error_handler
)
2634 (_("warning: section `%A' type changed to PROGBITS"), asect
);
2635 this_hdr
->sh_type
= sh_type
;
2638 switch (this_hdr
->sh_type
)
2644 case SHT_INIT_ARRAY
:
2645 case SHT_FINI_ARRAY
:
2646 case SHT_PREINIT_ARRAY
:
2653 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2657 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2661 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2665 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2666 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2670 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2671 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2674 case SHT_GNU_versym
:
2675 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2678 case SHT_GNU_verdef
:
2679 this_hdr
->sh_entsize
= 0;
2680 /* objcopy or strip will copy over sh_info, but may not set
2681 cverdefs. The linker will set cverdefs, but sh_info will be
2683 if (this_hdr
->sh_info
== 0)
2684 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2686 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2687 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2690 case SHT_GNU_verneed
:
2691 this_hdr
->sh_entsize
= 0;
2692 /* objcopy or strip will copy over sh_info, but may not set
2693 cverrefs. The linker will set cverrefs, but sh_info will be
2695 if (this_hdr
->sh_info
== 0)
2696 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2698 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2699 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2703 this_hdr
->sh_entsize
= GRP_ENTRY_SIZE
;
2707 this_hdr
->sh_entsize
= bed
->s
->arch_size
== 64 ? 0 : 4;
2711 if ((asect
->flags
& SEC_ALLOC
) != 0)
2712 this_hdr
->sh_flags
|= SHF_ALLOC
;
2713 if ((asect
->flags
& SEC_READONLY
) == 0)
2714 this_hdr
->sh_flags
|= SHF_WRITE
;
2715 if ((asect
->flags
& SEC_CODE
) != 0)
2716 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2717 if ((asect
->flags
& SEC_MERGE
) != 0)
2719 this_hdr
->sh_flags
|= SHF_MERGE
;
2720 this_hdr
->sh_entsize
= asect
->entsize
;
2721 if ((asect
->flags
& SEC_STRINGS
) != 0)
2722 this_hdr
->sh_flags
|= SHF_STRINGS
;
2724 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2725 this_hdr
->sh_flags
|= SHF_GROUP
;
2726 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2728 this_hdr
->sh_flags
|= SHF_TLS
;
2729 if (asect
->size
== 0
2730 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2732 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2734 this_hdr
->sh_size
= 0;
2737 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2738 if (this_hdr
->sh_size
!= 0)
2739 this_hdr
->sh_type
= SHT_NOBITS
;
2743 if ((asect
->flags
& (SEC_GROUP
| SEC_EXCLUDE
)) == SEC_EXCLUDE
)
2744 this_hdr
->sh_flags
|= SHF_EXCLUDE
;
2746 /* If the section has relocs, set up a section header for the
2747 SHT_REL[A] section. If two relocation sections are required for
2748 this section, it is up to the processor-specific back-end to
2749 create the other. */
2750 if ((asect
->flags
& SEC_RELOC
) != 0)
2752 /* When doing a relocatable link, create both REL and RELA sections if
2755 /* Do the normal setup if we wouldn't create any sections here. */
2756 && esd
->rel
.count
+ esd
->rela
.count
> 0
2757 && (arg
->link_info
->relocatable
|| arg
->link_info
->emitrelocations
))
2759 if (esd
->rel
.count
&& esd
->rel
.hdr
== NULL
2760 && !_bfd_elf_init_reloc_shdr (abfd
, &esd
->rel
, asect
, FALSE
))
2765 if (esd
->rela
.count
&& esd
->rela
.hdr
== NULL
2766 && !_bfd_elf_init_reloc_shdr (abfd
, &esd
->rela
, asect
, TRUE
))
2772 else if (!_bfd_elf_init_reloc_shdr (abfd
,
2774 ? &esd
->rela
: &esd
->rel
),
2780 /* Check for processor-specific section types. */
2781 sh_type
= this_hdr
->sh_type
;
2782 if (bed
->elf_backend_fake_sections
2783 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2786 if (sh_type
== SHT_NOBITS
&& asect
->size
!= 0)
2788 /* Don't change the header type from NOBITS if we are being
2789 called for objcopy --only-keep-debug. */
2790 this_hdr
->sh_type
= sh_type
;
2794 /* Fill in the contents of a SHT_GROUP section. Called from
2795 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2796 when ELF targets use the generic linker, ld. Called for ld -r
2797 from bfd_elf_final_link. */
2800 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2802 bfd_boolean
*failedptr
= (bfd_boolean
*) failedptrarg
;
2803 asection
*elt
, *first
;
2807 /* Ignore linker created group section. See elfNN_ia64_object_p in
2809 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2813 if (elf_section_data (sec
)->this_hdr
.sh_info
== 0)
2815 unsigned long symindx
= 0;
2817 /* elf_group_id will have been set up by objcopy and the
2819 if (elf_group_id (sec
) != NULL
)
2820 symindx
= elf_group_id (sec
)->udata
.i
;
2824 /* If called from the assembler, swap_out_syms will have set up
2825 elf_section_syms. */
2826 BFD_ASSERT (elf_section_syms (abfd
) != NULL
);
2827 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2829 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2831 else if (elf_section_data (sec
)->this_hdr
.sh_info
== (unsigned int) -2)
2833 /* The ELF backend linker sets sh_info to -2 when the group
2834 signature symbol is global, and thus the index can't be
2835 set until all local symbols are output. */
2836 asection
*igroup
= elf_sec_group (elf_next_in_group (sec
));
2837 struct bfd_elf_section_data
*sec_data
= elf_section_data (igroup
);
2838 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
2839 unsigned long extsymoff
= 0;
2840 struct elf_link_hash_entry
*h
;
2842 if (!elf_bad_symtab (igroup
->owner
))
2844 Elf_Internal_Shdr
*symtab_hdr
;
2846 symtab_hdr
= &elf_tdata (igroup
->owner
)->symtab_hdr
;
2847 extsymoff
= symtab_hdr
->sh_info
;
2849 h
= elf_sym_hashes (igroup
->owner
)[symndx
- extsymoff
];
2850 while (h
->root
.type
== bfd_link_hash_indirect
2851 || h
->root
.type
== bfd_link_hash_warning
)
2852 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2854 elf_section_data (sec
)->this_hdr
.sh_info
= h
->indx
;
2857 /* The contents won't be allocated for "ld -r" or objcopy. */
2859 if (sec
->contents
== NULL
)
2862 sec
->contents
= (unsigned char *) bfd_alloc (abfd
, sec
->size
);
2864 /* Arrange for the section to be written out. */
2865 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2866 if (sec
->contents
== NULL
)
2873 loc
= sec
->contents
+ sec
->size
;
2875 /* Get the pointer to the first section in the group that gas
2876 squirreled away here. objcopy arranges for this to be set to the
2877 start of the input section group. */
2878 first
= elt
= elf_next_in_group (sec
);
2880 /* First element is a flag word. Rest of section is elf section
2881 indices for all the sections of the group. Write them backwards
2882 just to keep the group in the same order as given in .section
2883 directives, not that it matters. */
2890 s
= s
->output_section
;
2892 && !bfd_is_abs_section (s
))
2894 unsigned int idx
= elf_section_data (s
)->this_idx
;
2897 H_PUT_32 (abfd
, idx
, loc
);
2899 elt
= elf_next_in_group (elt
);
2904 if ((loc
-= 4) != sec
->contents
)
2907 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2910 /* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2915 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2917 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2919 unsigned int section_number
, secn
;
2920 Elf_Internal_Shdr
**i_shdrp
;
2921 struct bfd_elf_section_data
*d
;
2922 bfd_boolean need_symtab
;
2926 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2928 /* SHT_GROUP sections are in relocatable files only. */
2929 if (link_info
== NULL
|| link_info
->relocatable
)
2931 /* Put SHT_GROUP sections first. */
2932 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2934 d
= elf_section_data (sec
);
2936 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2938 if (sec
->flags
& SEC_LINKER_CREATED
)
2940 /* Remove the linker created SHT_GROUP sections. */
2941 bfd_section_list_remove (abfd
, sec
);
2942 abfd
->section_count
--;
2945 d
->this_idx
= section_number
++;
2950 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2952 d
= elf_section_data (sec
);
2954 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2955 d
->this_idx
= section_number
++;
2956 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2959 d
->rel
.idx
= section_number
++;
2960 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel
.hdr
->sh_name
);
2967 d
->rela
.idx
= section_number
++;
2968 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rela
.hdr
->sh_name
);
2974 t
->shstrtab_section
= section_number
++;
2975 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2976 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2978 need_symtab
= (bfd_get_symcount (abfd
) > 0
2979 || (link_info
== NULL
2980 && ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
2984 t
->symtab_section
= section_number
++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2986 if (section_number
> ((SHN_LORESERVE
- 2) & 0xFFFF))
2988 t
->symtab_shndx_section
= section_number
++;
2989 t
->symtab_shndx_hdr
.sh_name
2990 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2991 ".symtab_shndx", FALSE
);
2992 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2995 t
->strtab_section
= section_number
++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2999 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3000 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3002 elf_numsections (abfd
) = section_number
;
3003 elf_elfheader (abfd
)->e_shnum
= section_number
;
3005 /* Set up the list of section header pointers, in agreement with the
3007 i_shdrp
= (Elf_Internal_Shdr
**) bfd_zalloc2 (abfd
, section_number
,
3008 sizeof (Elf_Internal_Shdr
*));
3009 if (i_shdrp
== NULL
)
3012 i_shdrp
[0] = (Elf_Internal_Shdr
*) bfd_zalloc (abfd
,
3013 sizeof (Elf_Internal_Shdr
));
3014 if (i_shdrp
[0] == NULL
)
3016 bfd_release (abfd
, i_shdrp
);
3020 elf_elfsections (abfd
) = i_shdrp
;
3022 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3025 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3026 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
3028 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3029 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3031 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3032 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3035 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3040 d
= elf_section_data (sec
);
3042 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3043 if (d
->rel
.idx
!= 0)
3044 i_shdrp
[d
->rel
.idx
] = d
->rel
.hdr
;
3045 if (d
->rela
.idx
!= 0)
3046 i_shdrp
[d
->rela
.idx
] = d
->rela
.hdr
;
3048 /* Fill in the sh_link and sh_info fields while we're at it. */
3050 /* sh_link of a reloc section is the section index of the symbol
3051 table. sh_info is the section index of the section to which
3052 the relocation entries apply. */
3053 if (d
->rel
.idx
!= 0)
3055 d
->rel
.hdr
->sh_link
= t
->symtab_section
;
3056 d
->rel
.hdr
->sh_info
= d
->this_idx
;
3058 if (d
->rela
.idx
!= 0)
3060 d
->rela
.hdr
->sh_link
= t
->symtab_section
;
3061 d
->rela
.hdr
->sh_info
= d
->this_idx
;
3064 /* We need to set up sh_link for SHF_LINK_ORDER. */
3065 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3067 s
= elf_linked_to_section (sec
);
3070 /* elf_linked_to_section points to the input section. */
3071 if (link_info
!= NULL
)
3073 /* Check discarded linkonce section. */
3074 if (elf_discarded_section (s
))
3077 (*_bfd_error_handler
)
3078 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3079 abfd
, d
->this_hdr
.bfd_section
,
3081 /* Point to the kept section if it has the same
3082 size as the discarded one. */
3083 kept
= _bfd_elf_check_kept_section (s
, link_info
);
3086 bfd_set_error (bfd_error_bad_value
);
3092 s
= s
->output_section
;
3093 BFD_ASSERT (s
!= NULL
);
3097 /* Handle objcopy. */
3098 if (s
->output_section
== NULL
)
3100 (*_bfd_error_handler
)
3101 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3102 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3103 bfd_set_error (bfd_error_bad_value
);
3106 s
= s
->output_section
;
3108 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3113 The Intel C compiler generates SHT_IA_64_UNWIND with
3114 SHF_LINK_ORDER. But it doesn't set the sh_link or
3115 sh_info fields. Hence we could get the situation
3117 const struct elf_backend_data
*bed
3118 = get_elf_backend_data (abfd
);
3119 if (bed
->link_order_error_handler
)
3120 bed
->link_order_error_handler
3121 (_("%B: warning: sh_link not set for section `%A'"),
3126 switch (d
->this_hdr
.sh_type
)
3130 /* A reloc section which we are treating as a normal BFD
3131 section. sh_link is the section index of the symbol
3132 table. sh_info is the section index of the section to
3133 which the relocation entries apply. We assume that an
3134 allocated reloc section uses the dynamic symbol table.
3135 FIXME: How can we be sure? */
3136 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3138 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3140 /* We look up the section the relocs apply to by name. */
3142 if (d
->this_hdr
.sh_type
== SHT_REL
)
3146 s
= bfd_get_section_by_name (abfd
, name
);
3148 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3152 /* We assume that a section named .stab*str is a stabs
3153 string section. We look for a section with the same name
3154 but without the trailing ``str'', and set its sh_link
3155 field to point to this section. */
3156 if (CONST_STRNEQ (sec
->name
, ".stab")
3157 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3162 len
= strlen (sec
->name
);
3163 alc
= (char *) bfd_malloc (len
- 2);
3166 memcpy (alc
, sec
->name
, len
- 3);
3167 alc
[len
- 3] = '\0';
3168 s
= bfd_get_section_by_name (abfd
, alc
);
3172 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3174 /* This is a .stab section. */
3175 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3176 elf_section_data (s
)->this_hdr
.sh_entsize
3177 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3184 case SHT_GNU_verneed
:
3185 case SHT_GNU_verdef
:
3186 /* sh_link is the section header index of the string table
3187 used for the dynamic entries, or the symbol table, or the
3189 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3191 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3194 case SHT_GNU_LIBLIST
:
3195 /* sh_link is the section header index of the prelink library
3196 list used for the dynamic entries, or the symbol table, or
3197 the version strings. */
3198 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3199 ? ".dynstr" : ".gnu.libstr");
3201 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3206 case SHT_GNU_versym
:
3207 /* sh_link is the section header index of the symbol table
3208 this hash table or version table is for. */
3209 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3211 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3215 d
->this_hdr
.sh_link
= t
->symtab_section
;
3219 for (secn
= 1; secn
< section_number
; ++secn
)
3220 if (i_shdrp
[secn
] == NULL
)
3221 i_shdrp
[secn
] = i_shdrp
[0];
3223 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3224 i_shdrp
[secn
]->sh_name
);
3228 /* Map symbol from it's internal number to the external number, moving
3229 all local symbols to be at the head of the list. */
3232 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3234 /* If the backend has a special mapping, use it. */
3235 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3236 if (bed
->elf_backend_sym_is_global
)
3237 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3239 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
| BSF_GNU_UNIQUE
)) != 0
3240 || bfd_is_und_section (bfd_get_section (sym
))
3241 || bfd_is_com_section (bfd_get_section (sym
)));
3244 /* Don't output section symbols for sections that are not going to be
3248 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3250 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3251 && !(sym
->section
->owner
== abfd
3252 || (sym
->section
->output_section
->owner
== abfd
3253 && sym
->section
->output_offset
== 0)));
3257 elf_map_symbols (bfd
*abfd
)
3259 unsigned int symcount
= bfd_get_symcount (abfd
);
3260 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3261 asymbol
**sect_syms
;
3262 unsigned int num_locals
= 0;
3263 unsigned int num_globals
= 0;
3264 unsigned int num_locals2
= 0;
3265 unsigned int num_globals2
= 0;
3272 fprintf (stderr
, "elf_map_symbols\n");
3276 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3278 if (max_index
< asect
->index
)
3279 max_index
= asect
->index
;
3283 sect_syms
= (asymbol
**) bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3284 if (sect_syms
== NULL
)
3286 elf_section_syms (abfd
) = sect_syms
;
3287 elf_num_section_syms (abfd
) = max_index
;
3289 /* Init sect_syms entries for any section symbols we have already
3290 decided to output. */
3291 for (idx
= 0; idx
< symcount
; idx
++)
3293 asymbol
*sym
= syms
[idx
];
3295 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3297 && !ignore_section_sym (abfd
, sym
))
3299 asection
*sec
= sym
->section
;
3301 if (sec
->owner
!= abfd
)
3302 sec
= sec
->output_section
;
3304 sect_syms
[sec
->index
] = syms
[idx
];
3308 /* Classify all of the symbols. */
3309 for (idx
= 0; idx
< symcount
; idx
++)
3311 if (ignore_section_sym (abfd
, syms
[idx
]))
3313 if (!sym_is_global (abfd
, syms
[idx
]))
3319 /* We will be adding a section symbol for each normal BFD section. Most
3320 sections will already have a section symbol in outsymbols, but
3321 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3322 at least in that case. */
3323 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3325 if (sect_syms
[asect
->index
] == NULL
)
3327 if (!sym_is_global (abfd
, asect
->symbol
))
3334 /* Now sort the symbols so the local symbols are first. */
3335 new_syms
= (asymbol
**) bfd_alloc2 (abfd
, num_locals
+ num_globals
,
3336 sizeof (asymbol
*));
3338 if (new_syms
== NULL
)
3341 for (idx
= 0; idx
< symcount
; idx
++)
3343 asymbol
*sym
= syms
[idx
];
3346 if (ignore_section_sym (abfd
, sym
))
3348 if (!sym_is_global (abfd
, sym
))
3351 i
= num_locals
+ num_globals2
++;
3353 sym
->udata
.i
= i
+ 1;
3355 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3357 if (sect_syms
[asect
->index
] == NULL
)
3359 asymbol
*sym
= asect
->symbol
;
3362 sect_syms
[asect
->index
] = sym
;
3363 if (!sym_is_global (abfd
, sym
))
3366 i
= num_locals
+ num_globals2
++;
3368 sym
->udata
.i
= i
+ 1;
3372 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3374 elf_num_locals (abfd
) = num_locals
;
3375 elf_num_globals (abfd
) = num_globals
;
3379 /* Align to the maximum file alignment that could be required for any
3380 ELF data structure. */
3382 static inline file_ptr
3383 align_file_position (file_ptr off
, int align
)
3385 return (off
+ align
- 1) & ~(align
- 1);
3388 /* Assign a file position to a section, optionally aligning to the
3389 required section alignment. */
3392 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3396 if (align
&& i_shdrp
->sh_addralign
> 1)
3397 offset
= BFD_ALIGN (offset
, i_shdrp
->sh_addralign
);
3398 i_shdrp
->sh_offset
= offset
;
3399 if (i_shdrp
->bfd_section
!= NULL
)
3400 i_shdrp
->bfd_section
->filepos
= offset
;
3401 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3402 offset
+= i_shdrp
->sh_size
;
3406 /* Compute the file positions we are going to put the sections at, and
3407 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3408 is not NULL, this is being called by the ELF backend linker. */
3411 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3412 struct bfd_link_info
*link_info
)
3414 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3415 struct fake_section_arg fsargs
;
3417 struct bfd_strtab_hash
*strtab
= NULL
;
3418 Elf_Internal_Shdr
*shstrtab_hdr
;
3419 bfd_boolean need_symtab
;
3421 if (abfd
->output_has_begun
)
3424 /* Do any elf backend specific processing first. */
3425 if (bed
->elf_backend_begin_write_processing
)
3426 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3428 if (! prep_headers (abfd
))
3431 /* Post process the headers if necessary. */
3432 if (bed
->elf_backend_post_process_headers
)
3433 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3435 fsargs
.failed
= FALSE
;
3436 fsargs
.link_info
= link_info
;
3437 bfd_map_over_sections (abfd
, elf_fake_sections
, &fsargs
);
3441 if (!assign_section_numbers (abfd
, link_info
))
3444 /* The backend linker builds symbol table information itself. */
3445 need_symtab
= (link_info
== NULL
3446 && (bfd_get_symcount (abfd
) > 0
3447 || ((abfd
->flags
& (EXEC_P
| DYNAMIC
| HAS_RELOC
))
3451 /* Non-zero if doing a relocatable link. */
3452 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3454 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3459 if (link_info
== NULL
)
3461 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3466 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3467 /* sh_name was set in prep_headers. */
3468 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3469 shstrtab_hdr
->sh_flags
= 0;
3470 shstrtab_hdr
->sh_addr
= 0;
3471 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3472 shstrtab_hdr
->sh_entsize
= 0;
3473 shstrtab_hdr
->sh_link
= 0;
3474 shstrtab_hdr
->sh_info
= 0;
3475 /* sh_offset is set in assign_file_positions_except_relocs. */
3476 shstrtab_hdr
->sh_addralign
= 1;
3478 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3484 Elf_Internal_Shdr
*hdr
;
3486 off
= elf_tdata (abfd
)->next_file_pos
;
3488 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3489 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3491 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3492 if (hdr
->sh_size
!= 0)
3493 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3495 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3496 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3498 elf_tdata (abfd
)->next_file_pos
= off
;
3500 /* Now that we know where the .strtab section goes, write it
3502 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3503 || ! _bfd_stringtab_emit (abfd
, strtab
))
3505 _bfd_stringtab_free (strtab
);
3508 abfd
->output_has_begun
= TRUE
;
3513 /* Make an initial estimate of the size of the program header. If we
3514 get the number wrong here, we'll redo section placement. */
3516 static bfd_size_type
3517 get_program_header_size (bfd
*abfd
, struct bfd_link_info
*info
)
3521 const struct elf_backend_data
*bed
;
3523 /* Assume we will need exactly two PT_LOAD segments: one for text
3524 and one for data. */
3527 s
= bfd_get_section_by_name (abfd
, ".interp");
3528 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3530 /* If we have a loadable interpreter section, we need a
3531 PT_INTERP segment. In this case, assume we also need a
3532 PT_PHDR segment, although that may not be true for all
3537 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
3539 /* We need a PT_DYNAMIC segment. */
3543 if (info
!= NULL
&& info
->relro
)
3545 /* We need a PT_GNU_RELRO segment. */
3549 if (elf_tdata (abfd
)->eh_frame_hdr
)
3551 /* We need a PT_GNU_EH_FRAME segment. */
3555 if (elf_tdata (abfd
)->stack_flags
)
3557 /* We need a PT_GNU_STACK segment. */
3561 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3563 if ((s
->flags
& SEC_LOAD
) != 0
3564 && CONST_STRNEQ (s
->name
, ".note"))
3566 /* We need a PT_NOTE segment. */
3568 /* Try to create just one PT_NOTE segment
3569 for all adjacent loadable .note* sections.
3570 gABI requires that within a PT_NOTE segment
3571 (and also inside of each SHT_NOTE section)
3572 each note is padded to a multiple of 4 size,
3573 so we check whether the sections are correctly
3575 if (s
->alignment_power
== 2)
3576 while (s
->next
!= NULL
3577 && s
->next
->alignment_power
== 2
3578 && (s
->next
->flags
& SEC_LOAD
) != 0
3579 && CONST_STRNEQ (s
->next
->name
, ".note"))
3584 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3586 if (s
->flags
& SEC_THREAD_LOCAL
)
3588 /* We need a PT_TLS segment. */
3594 /* Let the backend count up any program headers it might need. */
3595 bed
= get_elf_backend_data (abfd
);
3596 if (bed
->elf_backend_additional_program_headers
)
3600 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
, info
);
3606 return segs
* bed
->s
->sizeof_phdr
;
3609 /* Find the segment that contains the output_section of section. */
3612 _bfd_elf_find_segment_containing_section (bfd
* abfd
, asection
* section
)
3614 struct elf_segment_map
*m
;
3615 Elf_Internal_Phdr
*p
;
3617 for (m
= elf_tdata (abfd
)->segment_map
,
3618 p
= elf_tdata (abfd
)->phdr
;
3624 for (i
= m
->count
- 1; i
>= 0; i
--)
3625 if (m
->sections
[i
] == section
)
3632 /* Create a mapping from a set of sections to a program segment. */
3634 static struct elf_segment_map
*
3635 make_mapping (bfd
*abfd
,
3636 asection
**sections
,
3641 struct elf_segment_map
*m
;
3646 amt
= sizeof (struct elf_segment_map
);
3647 amt
+= (to
- from
- 1) * sizeof (asection
*);
3648 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3652 m
->p_type
= PT_LOAD
;
3653 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3654 m
->sections
[i
- from
] = *hdrpp
;
3655 m
->count
= to
- from
;
3657 if (from
== 0 && phdr
)
3659 /* Include the headers in the first PT_LOAD segment. */
3660 m
->includes_filehdr
= 1;
3661 m
->includes_phdrs
= 1;
3667 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3670 struct elf_segment_map
*
3671 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3673 struct elf_segment_map
*m
;
3675 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
,
3676 sizeof (struct elf_segment_map
));
3680 m
->p_type
= PT_DYNAMIC
;
3682 m
->sections
[0] = dynsec
;
3687 /* Possibly add or remove segments from the segment map. */
3690 elf_modify_segment_map (bfd
*abfd
,
3691 struct bfd_link_info
*info
,
3692 bfd_boolean remove_empty_load
)
3694 struct elf_segment_map
**m
;
3695 const struct elf_backend_data
*bed
;
3697 /* The placement algorithm assumes that non allocated sections are
3698 not in PT_LOAD segments. We ensure this here by removing such
3699 sections from the segment map. We also remove excluded
3700 sections. Finally, any PT_LOAD segment without sections is
3702 m
= &elf_tdata (abfd
)->segment_map
;
3705 unsigned int i
, new_count
;
3707 for (new_count
= 0, i
= 0; i
< (*m
)->count
; i
++)
3709 if (((*m
)->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
3710 && (((*m
)->sections
[i
]->flags
& SEC_ALLOC
) != 0
3711 || (*m
)->p_type
!= PT_LOAD
))
3713 (*m
)->sections
[new_count
] = (*m
)->sections
[i
];
3717 (*m
)->count
= new_count
;
3719 if (remove_empty_load
&& (*m
)->p_type
== PT_LOAD
&& (*m
)->count
== 0)
3725 bed
= get_elf_backend_data (abfd
);
3726 if (bed
->elf_backend_modify_segment_map
!= NULL
)
3728 if (!(*bed
->elf_backend_modify_segment_map
) (abfd
, info
))
3735 /* Set up a mapping from BFD sections to program segments. */
3738 _bfd_elf_map_sections_to_segments (bfd
*abfd
, struct bfd_link_info
*info
)
3741 struct elf_segment_map
*m
;
3742 asection
**sections
= NULL
;
3743 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3744 bfd_boolean no_user_phdrs
;
3746 no_user_phdrs
= elf_tdata (abfd
)->segment_map
== NULL
;
3747 if (no_user_phdrs
&& bfd_count_sections (abfd
) != 0)
3751 struct elf_segment_map
*mfirst
;
3752 struct elf_segment_map
**pm
;
3755 unsigned int phdr_index
;
3756 bfd_vma maxpagesize
;
3758 bfd_boolean phdr_in_segment
= TRUE
;
3759 bfd_boolean writable
;
3761 asection
*first_tls
= NULL
;
3762 asection
*dynsec
, *eh_frame_hdr
;
3764 bfd_vma addr_mask
, wrap_to
= 0;
3766 /* Select the allocated sections, and sort them. */
3768 sections
= (asection
**) bfd_malloc2 (bfd_count_sections (abfd
),
3769 sizeof (asection
*));
3770 if (sections
== NULL
)
3773 /* Calculate top address, avoiding undefined behaviour of shift
3774 left operator when shift count is equal to size of type
3776 addr_mask
= ((bfd_vma
) 1 << (bfd_arch_bits_per_address (abfd
) - 1)) - 1;
3777 addr_mask
= (addr_mask
<< 1) + 1;
3780 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3782 if ((s
->flags
& SEC_ALLOC
) != 0)
3786 /* A wrapping section potentially clashes with header. */
3787 if (((s
->lma
+ s
->size
) & addr_mask
) < (s
->lma
& addr_mask
))
3788 wrap_to
= (s
->lma
+ s
->size
) & addr_mask
;
3791 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3794 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3796 /* Build the mapping. */
3801 /* If we have a .interp section, then create a PT_PHDR segment for
3802 the program headers and a PT_INTERP segment for the .interp
3804 s
= bfd_get_section_by_name (abfd
, ".interp");
3805 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3807 amt
= sizeof (struct elf_segment_map
);
3808 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3812 m
->p_type
= PT_PHDR
;
3813 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3814 m
->p_flags
= PF_R
| PF_X
;
3815 m
->p_flags_valid
= 1;
3816 m
->includes_phdrs
= 1;
3821 amt
= sizeof (struct elf_segment_map
);
3822 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
3826 m
->p_type
= PT_INTERP
;
3834 /* Look through the sections. We put sections in the same program
3835 segment when the start of the second section can be placed within
3836 a few bytes of the end of the first section. */
3840 maxpagesize
= bed
->maxpagesize
;
3842 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3844 && (dynsec
->flags
& SEC_LOAD
) == 0)
3847 /* Deal with -Ttext or something similar such that the first section
3848 is not adjacent to the program headers. This is an
3849 approximation, since at this point we don't know exactly how many
3850 program headers we will need. */
3853 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
3855 if (phdr_size
== (bfd_size_type
) -1)
3856 phdr_size
= get_program_header_size (abfd
, info
);
3857 if ((abfd
->flags
& D_PAGED
) == 0
3858 || (sections
[0]->lma
& addr_mask
) < phdr_size
3859 || ((sections
[0]->lma
& addr_mask
) % maxpagesize
3860 < phdr_size
% maxpagesize
)
3861 || (sections
[0]->lma
& addr_mask
& -maxpagesize
) < wrap_to
)
3862 phdr_in_segment
= FALSE
;
3865 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3868 bfd_boolean new_segment
;
3872 /* See if this section and the last one will fit in the same
3875 if (last_hdr
== NULL
)
3877 /* If we don't have a segment yet, then we don't need a new
3878 one (we build the last one after this loop). */
3879 new_segment
= FALSE
;
3881 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3883 /* If this section has a different relation between the
3884 virtual address and the load address, then we need a new
3888 else if (hdr
->lma
< last_hdr
->lma
+ last_size
3889 || last_hdr
->lma
+ last_size
< last_hdr
->lma
)
3891 /* If this section has a load address that makes it overlap
3892 the previous section, then we need a new segment. */
3895 /* In the next test we have to be careful when last_hdr->lma is close
3896 to the end of the address space. If the aligned address wraps
3897 around to the start of the address space, then there are no more
3898 pages left in memory and it is OK to assume that the current
3899 section can be included in the current segment. */
3900 else if ((BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3902 && (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
) + maxpagesize
3905 /* If putting this section in this segment would force us to
3906 skip a page in the segment, then we need a new segment. */
3909 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3910 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3912 /* We don't want to put a loadable section after a
3913 nonloadable section in the same segment.
3914 Consider .tbss sections as loadable for this purpose. */
3917 else if ((abfd
->flags
& D_PAGED
) == 0)
3919 /* If the file is not demand paged, which means that we
3920 don't require the sections to be correctly aligned in the
3921 file, then there is no other reason for a new segment. */
3922 new_segment
= FALSE
;
3925 && (hdr
->flags
& SEC_READONLY
) == 0
3926 && (((last_hdr
->lma
+ last_size
- 1) & -maxpagesize
)
3927 != (hdr
->lma
& -maxpagesize
)))
3929 /* We don't want to put a writable section in a read only
3930 segment, unless they are on the same page in memory
3931 anyhow. We already know that the last section does not
3932 bring us past the current section on the page, so the
3933 only case in which the new section is not on the same
3934 page as the previous section is when the previous section
3935 ends precisely on a page boundary. */
3940 /* Otherwise, we can use the same segment. */
3941 new_segment
= FALSE
;
3944 /* Allow interested parties a chance to override our decision. */
3945 if (last_hdr
!= NULL
3947 && info
->callbacks
->override_segment_assignment
!= NULL
)
3949 = info
->callbacks
->override_segment_assignment (info
, abfd
, hdr
,
3955 if ((hdr
->flags
& SEC_READONLY
) == 0)
3958 /* .tbss sections effectively have zero size. */
3959 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3960 != SEC_THREAD_LOCAL
)
3961 last_size
= hdr
->size
;
3967 /* We need a new program segment. We must create a new program
3968 header holding all the sections from phdr_index until hdr. */
3970 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3977 if ((hdr
->flags
& SEC_READONLY
) == 0)
3983 /* .tbss sections effectively have zero size. */
3984 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3985 last_size
= hdr
->size
;
3989 phdr_in_segment
= FALSE
;
3992 /* Create a final PT_LOAD program segment, but not if it's just
3994 if (last_hdr
!= NULL
3995 && (i
- phdr_index
!= 1
3996 || ((last_hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
))
3997 != SEC_THREAD_LOCAL
)))
3999 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
4007 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4010 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
4017 /* For each batch of consecutive loadable .note sections,
4018 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4019 because if we link together nonloadable .note sections and
4020 loadable .note sections, we will generate two .note sections
4021 in the output file. FIXME: Using names for section types is
4023 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4025 if ((s
->flags
& SEC_LOAD
) != 0
4026 && CONST_STRNEQ (s
->name
, ".note"))
4031 amt
= sizeof (struct elf_segment_map
);
4032 if (s
->alignment_power
== 2)
4033 for (s2
= s
; s2
->next
!= NULL
; s2
= s2
->next
)
4035 if (s2
->next
->alignment_power
== 2
4036 && (s2
->next
->flags
& SEC_LOAD
) != 0
4037 && CONST_STRNEQ (s2
->next
->name
, ".note")
4038 && align_power (s2
->lma
+ s2
->size
, 2)
4044 amt
+= (count
- 1) * sizeof (asection
*);
4045 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4049 m
->p_type
= PT_NOTE
;
4053 m
->sections
[m
->count
- count
--] = s
;
4054 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
4057 m
->sections
[m
->count
- 1] = s
;
4058 BFD_ASSERT ((s
->flags
& SEC_THREAD_LOCAL
) == 0);
4062 if (s
->flags
& SEC_THREAD_LOCAL
)
4070 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4073 amt
= sizeof (struct elf_segment_map
);
4074 amt
+= (tls_count
- 1) * sizeof (asection
*);
4075 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4080 m
->count
= tls_count
;
4081 /* Mandated PF_R. */
4083 m
->p_flags_valid
= 1;
4084 for (i
= 0; i
< (unsigned int) tls_count
; ++i
)
4086 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
4087 m
->sections
[i
] = first_tls
;
4088 first_tls
= first_tls
->next
;
4095 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4097 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
4098 if (eh_frame_hdr
!= NULL
4099 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
4101 amt
= sizeof (struct elf_segment_map
);
4102 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4106 m
->p_type
= PT_GNU_EH_FRAME
;
4108 m
->sections
[0] = eh_frame_hdr
->output_section
;
4114 if (elf_tdata (abfd
)->stack_flags
)
4116 amt
= sizeof (struct elf_segment_map
);
4117 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4121 m
->p_type
= PT_GNU_STACK
;
4122 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
4123 m
->p_flags_valid
= 1;
4129 if (info
!= NULL
&& info
->relro
)
4131 for (m
= mfirst
; m
!= NULL
; m
= m
->next
)
4133 if (m
->p_type
== PT_LOAD
)
4135 asection
*last
= m
->sections
[m
->count
- 1];
4136 bfd_vma vaddr
= m
->sections
[0]->vma
;
4137 bfd_vma filesz
= last
->vma
- vaddr
+ last
->size
;
4139 if (vaddr
< info
->relro_end
4140 && vaddr
>= info
->relro_start
4141 && (vaddr
+ filesz
) >= info
->relro_end
)
4146 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4149 amt
= sizeof (struct elf_segment_map
);
4150 m
= (struct elf_segment_map
*) bfd_zalloc (abfd
, amt
);
4154 m
->p_type
= PT_GNU_RELRO
;
4156 m
->p_flags_valid
= 1;
4164 elf_tdata (abfd
)->segment_map
= mfirst
;
4167 if (!elf_modify_segment_map (abfd
, info
, no_user_phdrs
))
4170 for (count
= 0, m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4172 elf_tdata (abfd
)->program_header_size
= count
* bed
->s
->sizeof_phdr
;
4177 if (sections
!= NULL
)
4182 /* Sort sections by address. */
4185 elf_sort_sections (const void *arg1
, const void *arg2
)
4187 const asection
*sec1
= *(const asection
**) arg1
;
4188 const asection
*sec2
= *(const asection
**) arg2
;
4189 bfd_size_type size1
, size2
;
4191 /* Sort by LMA first, since this is the address used to
4192 place the section into a segment. */
4193 if (sec1
->lma
< sec2
->lma
)
4195 else if (sec1
->lma
> sec2
->lma
)
4198 /* Then sort by VMA. Normally the LMA and the VMA will be
4199 the same, and this will do nothing. */
4200 if (sec1
->vma
< sec2
->vma
)
4202 else if (sec1
->vma
> sec2
->vma
)
4205 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4207 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4213 /* If the indicies are the same, do not return 0
4214 here, but continue to try the next comparison. */
4215 if (sec1
->target_index
- sec2
->target_index
!= 0)
4216 return sec1
->target_index
- sec2
->target_index
;
4221 else if (TOEND (sec2
))
4226 /* Sort by size, to put zero sized sections
4227 before others at the same address. */
4229 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
4230 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
4237 return sec1
->target_index
- sec2
->target_index
;
4240 /* Ian Lance Taylor writes:
4242 We shouldn't be using % with a negative signed number. That's just
4243 not good. We have to make sure either that the number is not
4244 negative, or that the number has an unsigned type. When the types
4245 are all the same size they wind up as unsigned. When file_ptr is a
4246 larger signed type, the arithmetic winds up as signed long long,
4249 What we're trying to say here is something like ``increase OFF by
4250 the least amount that will cause it to be equal to the VMA modulo
4252 /* In other words, something like:
4254 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4255 off_offset = off % bed->maxpagesize;
4256 if (vma_offset < off_offset)
4257 adjustment = vma_offset + bed->maxpagesize - off_offset;
4259 adjustment = vma_offset - off_offset;
4261 which can can be collapsed into the expression below. */
4264 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4266 return ((vma
- off
) % maxpagesize
);
4270 print_segment_map (const struct elf_segment_map
*m
)
4273 const char *pt
= get_segment_type (m
->p_type
);
4278 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4279 sprintf (buf
, "LOPROC+%7.7x",
4280 (unsigned int) (m
->p_type
- PT_LOPROC
));
4281 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4282 sprintf (buf
, "LOOS+%7.7x",
4283 (unsigned int) (m
->p_type
- PT_LOOS
));
4285 snprintf (buf
, sizeof (buf
), "%8.8x",
4286 (unsigned int) m
->p_type
);
4290 fprintf (stderr
, "%s:", pt
);
4291 for (j
= 0; j
< m
->count
; j
++)
4292 fprintf (stderr
, " %s", m
->sections
[j
]->name
);
4298 write_zeros (bfd
*abfd
, file_ptr pos
, bfd_size_type len
)
4303 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0)
4305 buf
= bfd_zmalloc (len
);
4308 ret
= bfd_bwrite (buf
, len
, abfd
) == len
;
4313 /* Assign file positions to the sections based on the mapping from
4314 sections to segments. This function also sets up some fields in
4318 assign_file_positions_for_load_sections (bfd
*abfd
,
4319 struct bfd_link_info
*link_info
)
4321 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4322 struct elf_segment_map
*m
;
4323 Elf_Internal_Phdr
*phdrs
;
4324 Elf_Internal_Phdr
*p
;
4326 bfd_size_type maxpagesize
;
4329 bfd_vma header_pad
= 0;
4331 if (link_info
== NULL
4332 && !_bfd_elf_map_sections_to_segments (abfd
, link_info
))
4336 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4340 header_pad
= m
->header_size
;
4345 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4346 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4350 /* PR binutils/12467. */
4351 elf_elfheader (abfd
)->e_phoff
= 0;
4352 elf_elfheader (abfd
)->e_phentsize
= 0;
4355 elf_elfheader (abfd
)->e_phnum
= alloc
;
4357 if (elf_tdata (abfd
)->program_header_size
== (bfd_size_type
) -1)
4358 elf_tdata (abfd
)->program_header_size
= alloc
* bed
->s
->sizeof_phdr
;
4360 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
4361 >= alloc
* bed
->s
->sizeof_phdr
);
4365 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4369 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4370 see assign_file_positions_except_relocs, so make sure we have
4371 that amount allocated, with trailing space cleared.
4372 The variable alloc contains the computed need, while elf_tdata
4373 (abfd)->program_header_size contains the size used for the
4375 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4376 where the layout is forced to according to a larger size in the
4377 last iterations for the testcase ld-elf/header. */
4378 BFD_ASSERT (elf_tdata (abfd
)->program_header_size
% bed
->s
->sizeof_phdr
4380 phdrs
= (Elf_Internal_Phdr
*)
4382 (elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
),
4383 sizeof (Elf_Internal_Phdr
));
4384 elf_tdata (abfd
)->phdr
= phdrs
;
4389 if ((abfd
->flags
& D_PAGED
) != 0)
4390 maxpagesize
= bed
->maxpagesize
;
4392 off
= bed
->s
->sizeof_ehdr
;
4393 off
+= alloc
* bed
->s
->sizeof_phdr
;
4394 if (header_pad
< (bfd_vma
) off
)
4400 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
, j
= 0;
4402 m
= m
->next
, p
++, j
++)
4406 bfd_boolean no_contents
;
4408 /* If elf_segment_map is not from map_sections_to_segments, the
4409 sections may not be correctly ordered. NOTE: sorting should
4410 not be done to the PT_NOTE section of a corefile, which may
4411 contain several pseudo-sections artificially created by bfd.
4412 Sorting these pseudo-sections breaks things badly. */
4414 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4415 && m
->p_type
== PT_NOTE
))
4416 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4419 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4420 number of sections with contents contributing to both p_filesz
4421 and p_memsz, followed by a number of sections with no contents
4422 that just contribute to p_memsz. In this loop, OFF tracks next
4423 available file offset for PT_LOAD and PT_NOTE segments. */
4424 p
->p_type
= m
->p_type
;
4425 p
->p_flags
= m
->p_flags
;
4430 p
->p_vaddr
= m
->sections
[0]->vma
- m
->p_vaddr_offset
;
4432 if (m
->p_paddr_valid
)
4433 p
->p_paddr
= m
->p_paddr
;
4434 else if (m
->count
== 0)
4437 p
->p_paddr
= m
->sections
[0]->lma
- m
->p_vaddr_offset
;
4439 if (p
->p_type
== PT_LOAD
4440 && (abfd
->flags
& D_PAGED
) != 0)
4442 /* p_align in demand paged PT_LOAD segments effectively stores
4443 the maximum page size. When copying an executable with
4444 objcopy, we set m->p_align from the input file. Use this
4445 value for maxpagesize rather than bed->maxpagesize, which
4446 may be different. Note that we use maxpagesize for PT_TLS
4447 segment alignment later in this function, so we are relying
4448 on at least one PT_LOAD segment appearing before a PT_TLS
4450 if (m
->p_align_valid
)
4451 maxpagesize
= m
->p_align
;
4453 p
->p_align
= maxpagesize
;
4455 else if (m
->p_align_valid
)
4456 p
->p_align
= m
->p_align
;
4457 else if (m
->count
== 0)
4458 p
->p_align
= 1 << bed
->s
->log_file_align
;
4462 no_contents
= FALSE
;
4464 if (p
->p_type
== PT_LOAD
4467 bfd_size_type align
;
4468 unsigned int align_power
= 0;
4470 if (m
->p_align_valid
)
4474 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4476 unsigned int secalign
;
4478 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4479 if (secalign
> align_power
)
4480 align_power
= secalign
;
4482 align
= (bfd_size_type
) 1 << align_power
;
4483 if (align
< maxpagesize
)
4484 align
= maxpagesize
;
4487 for (i
= 0; i
< m
->count
; i
++)
4488 if ((m
->sections
[i
]->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
4489 /* If we aren't making room for this section, then
4490 it must be SHT_NOBITS regardless of what we've
4491 set via struct bfd_elf_special_section. */
4492 elf_section_type (m
->sections
[i
]) = SHT_NOBITS
;
4494 /* Find out whether this segment contains any loadable
4497 for (i
= 0; i
< m
->count
; i
++)
4498 if (elf_section_type (m
->sections
[i
]) != SHT_NOBITS
)
4500 no_contents
= FALSE
;
4504 off_adjust
= vma_page_aligned_bias (p
->p_vaddr
, off
, align
);
4508 /* We shouldn't need to align the segment on disk since
4509 the segment doesn't need file space, but the gABI
4510 arguably requires the alignment and glibc ld.so
4511 checks it. So to comply with the alignment
4512 requirement but not waste file space, we adjust
4513 p_offset for just this segment. (OFF_ADJUST is
4514 subtracted from OFF later.) This may put p_offset
4515 past the end of file, but that shouldn't matter. */
4520 /* Make sure the .dynamic section is the first section in the
4521 PT_DYNAMIC segment. */
4522 else if (p
->p_type
== PT_DYNAMIC
4524 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4527 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4529 bfd_set_error (bfd_error_bad_value
);
4532 /* Set the note section type to SHT_NOTE. */
4533 else if (p
->p_type
== PT_NOTE
)
4534 for (i
= 0; i
< m
->count
; i
++)
4535 elf_section_type (m
->sections
[i
]) = SHT_NOTE
;
4541 if (m
->includes_filehdr
)
4543 if (!m
->p_flags_valid
)
4545 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4546 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4549 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4551 if (p
->p_vaddr
< (bfd_vma
) off
)
4553 (*_bfd_error_handler
)
4554 (_("%B: Not enough room for program headers, try linking with -N"),
4556 bfd_set_error (bfd_error_bad_value
);
4561 if (!m
->p_paddr_valid
)
4566 if (m
->includes_phdrs
)
4568 if (!m
->p_flags_valid
)
4571 if (!m
->includes_filehdr
)
4573 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4577 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4578 p
->p_vaddr
-= off
- p
->p_offset
;
4579 if (!m
->p_paddr_valid
)
4580 p
->p_paddr
-= off
- p
->p_offset
;
4584 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4585 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4588 p
->p_filesz
+= header_pad
;
4589 p
->p_memsz
+= header_pad
;
4593 if (p
->p_type
== PT_LOAD
4594 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4596 if (!m
->includes_filehdr
&& !m
->includes_phdrs
)
4602 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4604 p
->p_filesz
+= adjust
;
4605 p
->p_memsz
+= adjust
;
4609 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4610 maps. Set filepos for sections in PT_LOAD segments, and in
4611 core files, for sections in PT_NOTE segments.
4612 assign_file_positions_for_non_load_sections will set filepos
4613 for other sections and update p_filesz for other segments. */
4614 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4617 bfd_size_type align
;
4618 Elf_Internal_Shdr
*this_hdr
;
4621 this_hdr
= &elf_section_data (sec
)->this_hdr
;
4622 align
= (bfd_size_type
) 1 << bfd_get_section_alignment (abfd
, sec
);
4624 if ((p
->p_type
== PT_LOAD
4625 || p
->p_type
== PT_TLS
)
4626 && (this_hdr
->sh_type
!= SHT_NOBITS
4627 || ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0
4628 && ((this_hdr
->sh_flags
& SHF_TLS
) == 0
4629 || p
->p_type
== PT_TLS
))))
4631 bfd_vma p_start
= p
->p_paddr
;
4632 bfd_vma p_end
= p_start
+ p
->p_memsz
;
4633 bfd_vma s_start
= sec
->lma
;
4634 bfd_vma adjust
= s_start
- p_end
;
4638 || p_end
< p_start
))
4640 (*_bfd_error_handler
)
4641 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd
, sec
,
4642 (unsigned long) s_start
, (unsigned long) p_end
);
4646 p
->p_memsz
+= adjust
;
4648 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4650 if (p
->p_filesz
+ adjust
< p
->p_memsz
)
4652 /* We have a PROGBITS section following NOBITS ones.
4653 Allocate file space for the NOBITS section(s) and
4655 adjust
= p
->p_memsz
- p
->p_filesz
;
4656 if (!write_zeros (abfd
, off
, adjust
))
4660 p
->p_filesz
+= adjust
;
4664 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4666 /* The section at i == 0 is the one that actually contains
4670 this_hdr
->sh_offset
= sec
->filepos
= off
;
4671 off
+= this_hdr
->sh_size
;
4672 p
->p_filesz
= this_hdr
->sh_size
;
4678 /* The rest are fake sections that shouldn't be written. */
4687 if (p
->p_type
== PT_LOAD
4688 || (this_hdr
->sh_type
== SHT_NOBITS
4689 && (this_hdr
->sh_flags
& SHF_TLS
) != 0
4690 && this_hdr
->sh_offset
== 0))
4692 if (this_hdr
->sh_type
== SHT_NOBITS
)
4694 /* These sections don't really need sh_offset,
4695 but give them one anyway. */
4696 bfd_vma adjust
= vma_page_aligned_bias (this_hdr
->sh_addr
,
4698 this_hdr
->sh_offset
= sec
->filepos
= off
+ adjust
;
4702 this_hdr
->sh_offset
= sec
->filepos
= off
;
4703 off
+= this_hdr
->sh_size
;
4707 if (this_hdr
->sh_type
!= SHT_NOBITS
)
4709 p
->p_filesz
+= this_hdr
->sh_size
;
4710 /* A load section without SHF_ALLOC is something like
4711 a note section in a PT_NOTE segment. These take
4712 file space but are not loaded into memory. */
4713 if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4714 p
->p_memsz
+= this_hdr
->sh_size
;
4716 else if ((this_hdr
->sh_flags
& SHF_ALLOC
) != 0)
4718 if (p
->p_type
== PT_TLS
)
4719 p
->p_memsz
+= this_hdr
->sh_size
;
4721 /* .tbss is special. It doesn't contribute to p_memsz of
4723 else if ((this_hdr
->sh_flags
& SHF_TLS
) == 0)
4724 p
->p_memsz
+= this_hdr
->sh_size
;
4727 if (align
> p
->p_align
4728 && !m
->p_align_valid
4729 && (p
->p_type
!= PT_LOAD
4730 || (abfd
->flags
& D_PAGED
) == 0))
4734 if (!m
->p_flags_valid
)
4737 if ((this_hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
4739 if ((this_hdr
->sh_flags
& SHF_WRITE
) != 0)
4745 /* Check that all sections are in a PT_LOAD segment.
4746 Don't check funky gdb generated core files. */
4747 if (p
->p_type
== PT_LOAD
&& bfd_get_format (abfd
) != bfd_core
)
4749 bfd_boolean check_vma
= TRUE
;
4751 for (i
= 1; i
< m
->count
; i
++)
4752 if (m
->sections
[i
]->vma
== m
->sections
[i
- 1]->vma
4753 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
])
4754 ->this_hdr
), p
) != 0
4755 && ELF_SECTION_SIZE (&(elf_section_data (m
->sections
[i
- 1])
4756 ->this_hdr
), p
) != 0)
4758 /* Looks like we have overlays packed into the segment. */
4763 for (i
= 0; i
< m
->count
; i
++)
4765 Elf_Internal_Shdr
*this_hdr
;
4768 sec
= m
->sections
[i
];
4769 this_hdr
= &(elf_section_data(sec
)->this_hdr
);
4770 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr
, p
, check_vma
, 0)
4771 && !ELF_TBSS_SPECIAL (this_hdr
, p
))
4773 (*_bfd_error_handler
)
4774 (_("%B: section `%A' can't be allocated in segment %d"),
4776 print_segment_map (m
);
4782 elf_tdata (abfd
)->next_file_pos
= off
;
4786 /* Assign file positions for the other sections. */
4789 assign_file_positions_for_non_load_sections (bfd
*abfd
,
4790 struct bfd_link_info
*link_info
)
4792 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4793 Elf_Internal_Shdr
**i_shdrpp
;
4794 Elf_Internal_Shdr
**hdrpp
;
4795 Elf_Internal_Phdr
*phdrs
;
4796 Elf_Internal_Phdr
*p
;
4797 struct elf_segment_map
*m
;
4798 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4799 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4801 unsigned int num_sec
;
4805 i_shdrpp
= elf_elfsections (abfd
);
4806 num_sec
= elf_numsections (abfd
);
4807 off
= elf_tdata (abfd
)->next_file_pos
;
4808 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4810 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4811 Elf_Internal_Shdr
*hdr
;
4814 if (hdr
->bfd_section
!= NULL
4815 && (hdr
->bfd_section
->filepos
!= 0
4816 || (hdr
->sh_type
== SHT_NOBITS
4817 && hdr
->contents
== NULL
)))
4818 BFD_ASSERT (hdr
->sh_offset
== hdr
->bfd_section
->filepos
);
4819 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4821 (*_bfd_error_handler
)
4822 (_("%B: warning: allocated section `%s' not in segment"),
4824 (hdr
->bfd_section
== NULL
4826 : hdr
->bfd_section
->name
));
4827 /* We don't need to page align empty sections. */
4828 if ((abfd
->flags
& D_PAGED
) != 0 && hdr
->sh_size
!= 0)
4829 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4832 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4834 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4837 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4838 && hdr
->bfd_section
== NULL
)
4839 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4840 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4841 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4842 hdr
->sh_offset
= -1;
4844 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4847 /* Now that we have set the section file positions, we can set up
4848 the file positions for the non PT_LOAD segments. */
4852 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4854 phdrs
= elf_tdata (abfd
)->phdr
;
4855 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4860 if (p
->p_type
!= PT_LOAD
)
4863 if (m
->includes_filehdr
)
4865 filehdr_vaddr
= p
->p_vaddr
;
4866 filehdr_paddr
= p
->p_paddr
;
4868 if (m
->includes_phdrs
)
4870 phdrs_vaddr
= p
->p_vaddr
;
4871 phdrs_paddr
= p
->p_paddr
;
4872 if (m
->includes_filehdr
)
4874 phdrs_vaddr
+= bed
->s
->sizeof_ehdr
;
4875 phdrs_paddr
+= bed
->s
->sizeof_ehdr
;
4880 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4884 if (p
->p_type
== PT_GNU_RELRO
)
4886 const Elf_Internal_Phdr
*lp
;
4888 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4890 if (link_info
!= NULL
)
4892 /* During linking the range of the RELRO segment is passed
4894 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4896 if (lp
->p_type
== PT_LOAD
4897 && lp
->p_vaddr
>= link_info
->relro_start
4898 && lp
->p_vaddr
< link_info
->relro_end
4899 && lp
->p_vaddr
+ lp
->p_filesz
>= link_info
->relro_end
)
4905 /* Otherwise we are copying an executable or shared
4906 library, but we need to use the same linker logic. */
4907 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4909 if (lp
->p_type
== PT_LOAD
4910 && lp
->p_paddr
== p
->p_paddr
)
4915 if (lp
< phdrs
+ count
)
4917 p
->p_vaddr
= lp
->p_vaddr
;
4918 p
->p_paddr
= lp
->p_paddr
;
4919 p
->p_offset
= lp
->p_offset
;
4920 if (link_info
!= NULL
)
4921 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4922 else if (m
->p_size_valid
)
4923 p
->p_filesz
= m
->p_size
;
4926 p
->p_memsz
= p
->p_filesz
;
4928 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4932 memset (p
, 0, sizeof *p
);
4933 p
->p_type
= PT_NULL
;
4936 else if (m
->count
!= 0)
4938 if (p
->p_type
!= PT_LOAD
4939 && (p
->p_type
!= PT_NOTE
4940 || bfd_get_format (abfd
) != bfd_core
))
4942 BFD_ASSERT (!m
->includes_filehdr
&& !m
->includes_phdrs
);
4945 p
->p_offset
= m
->sections
[0]->filepos
;
4946 for (i
= m
->count
; i
-- != 0;)
4948 asection
*sect
= m
->sections
[i
];
4949 Elf_Internal_Shdr
*hdr
= &elf_section_data (sect
)->this_hdr
;
4950 if (hdr
->sh_type
!= SHT_NOBITS
)
4952 p
->p_filesz
= (sect
->filepos
- m
->sections
[0]->filepos
4959 else if (m
->includes_filehdr
)
4961 p
->p_vaddr
= filehdr_vaddr
;
4962 if (! m
->p_paddr_valid
)
4963 p
->p_paddr
= filehdr_paddr
;
4965 else if (m
->includes_phdrs
)
4967 p
->p_vaddr
= phdrs_vaddr
;
4968 if (! m
->p_paddr_valid
)
4969 p
->p_paddr
= phdrs_paddr
;
4973 elf_tdata (abfd
)->next_file_pos
= off
;
4978 /* Work out the file positions of all the sections. This is called by
4979 _bfd_elf_compute_section_file_positions. All the section sizes and
4980 VMAs must be known before this is called.
4982 Reloc sections come in two flavours: Those processed specially as
4983 "side-channel" data attached to a section to which they apply, and
4984 those that bfd doesn't process as relocations. The latter sort are
4985 stored in a normal bfd section by bfd_section_from_shdr. We don't
4986 consider the former sort here, unless they form part of the loadable
4987 image. Reloc sections not assigned here will be handled later by
4988 assign_file_positions_for_relocs.
4990 We also don't set the positions of the .symtab and .strtab here. */
4993 assign_file_positions_except_relocs (bfd
*abfd
,
4994 struct bfd_link_info
*link_info
)
4996 struct elf_obj_tdata
*tdata
= elf_tdata (abfd
);
4997 Elf_Internal_Ehdr
*i_ehdrp
= elf_elfheader (abfd
);
4999 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5001 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
5002 && bfd_get_format (abfd
) != bfd_core
)
5004 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
5005 unsigned int num_sec
= elf_numsections (abfd
);
5006 Elf_Internal_Shdr
**hdrpp
;
5009 /* Start after the ELF header. */
5010 off
= i_ehdrp
->e_ehsize
;
5012 /* We are not creating an executable, which means that we are
5013 not creating a program header, and that the actual order of
5014 the sections in the file is unimportant. */
5015 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
5017 Elf_Internal_Shdr
*hdr
;
5020 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
5021 && hdr
->bfd_section
== NULL
)
5022 || i
== tdata
->symtab_section
5023 || i
== tdata
->symtab_shndx_section
5024 || i
== tdata
->strtab_section
)
5026 hdr
->sh_offset
= -1;
5029 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
5036 /* Assign file positions for the loaded sections based on the
5037 assignment of sections to segments. */
5038 if (!assign_file_positions_for_load_sections (abfd
, link_info
))
5041 /* And for non-load sections. */
5042 if (!assign_file_positions_for_non_load_sections (abfd
, link_info
))
5045 if (bed
->elf_backend_modify_program_headers
!= NULL
)
5047 if (!(*bed
->elf_backend_modify_program_headers
) (abfd
, link_info
))
5051 /* Write out the program headers. */
5052 alloc
= tdata
->program_header_size
/ bed
->s
->sizeof_phdr
;
5053 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
5054 || bed
->s
->write_out_phdrs (abfd
, tdata
->phdr
, alloc
) != 0)
5057 off
= tdata
->next_file_pos
;
5060 /* Place the section headers. */
5061 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
5062 i_ehdrp
->e_shoff
= off
;
5063 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
5065 tdata
->next_file_pos
= off
;
5071 prep_headers (bfd
*abfd
)
5073 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form. */
5074 struct elf_strtab_hash
*shstrtab
;
5075 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5077 i_ehdrp
= elf_elfheader (abfd
);
5079 shstrtab
= _bfd_elf_strtab_init ();
5080 if (shstrtab
== NULL
)
5083 elf_shstrtab (abfd
) = shstrtab
;
5085 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
5086 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
5087 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
5088 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
5090 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
5091 i_ehdrp
->e_ident
[EI_DATA
] =
5092 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
5093 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
5095 if ((abfd
->flags
& DYNAMIC
) != 0)
5096 i_ehdrp
->e_type
= ET_DYN
;
5097 else if ((abfd
->flags
& EXEC_P
) != 0)
5098 i_ehdrp
->e_type
= ET_EXEC
;
5099 else if (bfd_get_format (abfd
) == bfd_core
)
5100 i_ehdrp
->e_type
= ET_CORE
;
5102 i_ehdrp
->e_type
= ET_REL
;
5104 switch (bfd_get_arch (abfd
))
5106 case bfd_arch_unknown
:
5107 i_ehdrp
->e_machine
= EM_NONE
;
5110 /* There used to be a long list of cases here, each one setting
5111 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5112 in the corresponding bfd definition. To avoid duplication,
5113 the switch was removed. Machines that need special handling
5114 can generally do it in elf_backend_final_write_processing(),
5115 unless they need the information earlier than the final write.
5116 Such need can generally be supplied by replacing the tests for
5117 e_machine with the conditions used to determine it. */
5119 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
5122 i_ehdrp
->e_version
= bed
->s
->ev_current
;
5123 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
5125 /* No program header, for now. */
5126 i_ehdrp
->e_phoff
= 0;
5127 i_ehdrp
->e_phentsize
= 0;
5128 i_ehdrp
->e_phnum
= 0;
5130 /* Each bfd section is section header entry. */
5131 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
5132 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
5134 /* If we're building an executable, we'll need a program header table. */
5135 if (abfd
->flags
& EXEC_P
)
5136 /* It all happens later. */
5140 i_ehdrp
->e_phentsize
= 0;
5141 i_ehdrp
->e_phoff
= 0;
5144 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
5145 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
5146 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
5147 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
5148 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
5149 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
5150 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5151 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
5152 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
5158 /* Assign file positions for all the reloc sections which are not part
5159 of the loadable file image. */
5162 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
5165 unsigned int i
, num_sec
;
5166 Elf_Internal_Shdr
**shdrpp
;
5168 off
= elf_tdata (abfd
)->next_file_pos
;
5170 num_sec
= elf_numsections (abfd
);
5171 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
5173 Elf_Internal_Shdr
*shdrp
;
5176 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
5177 && shdrp
->sh_offset
== -1)
5178 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
5181 elf_tdata (abfd
)->next_file_pos
= off
;
5185 _bfd_elf_write_object_contents (bfd
*abfd
)
5187 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5188 Elf_Internal_Shdr
**i_shdrp
;
5190 unsigned int count
, num_sec
;
5192 if (! abfd
->output_has_begun
5193 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
5196 i_shdrp
= elf_elfsections (abfd
);
5199 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
5203 _bfd_elf_assign_file_positions_for_relocs (abfd
);
5205 /* After writing the headers, we need to write the sections too... */
5206 num_sec
= elf_numsections (abfd
);
5207 for (count
= 1; count
< num_sec
; count
++)
5209 if (bed
->elf_backend_section_processing
)
5210 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
5211 if (i_shdrp
[count
]->contents
)
5213 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
5215 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
5216 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
5221 /* Write out the section header names. */
5222 if (elf_shstrtab (abfd
) != NULL
5223 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
5224 || !_bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
5227 if (bed
->elf_backend_final_write_processing
)
5228 (*bed
->elf_backend_final_write_processing
) (abfd
,
5229 elf_tdata (abfd
)->linker
);
5231 if (!bed
->s
->write_shdrs_and_ehdr (abfd
))
5234 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5235 if (elf_tdata (abfd
)->after_write_object_contents
)
5236 return (*elf_tdata (abfd
)->after_write_object_contents
) (abfd
);
5242 _bfd_elf_write_corefile_contents (bfd
*abfd
)
5244 /* Hopefully this can be done just like an object file. */
5245 return _bfd_elf_write_object_contents (abfd
);
5248 /* Given a section, search the header to find them. */
5251 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5253 const struct elf_backend_data
*bed
;
5254 unsigned int sec_index
;
5256 if (elf_section_data (asect
) != NULL
5257 && elf_section_data (asect
)->this_idx
!= 0)
5258 return elf_section_data (asect
)->this_idx
;
5260 if (bfd_is_abs_section (asect
))
5261 sec_index
= SHN_ABS
;
5262 else if (bfd_is_com_section (asect
))
5263 sec_index
= SHN_COMMON
;
5264 else if (bfd_is_und_section (asect
))
5265 sec_index
= SHN_UNDEF
;
5267 sec_index
= SHN_BAD
;
5269 bed
= get_elf_backend_data (abfd
);
5270 if (bed
->elf_backend_section_from_bfd_section
)
5272 int retval
= sec_index
;
5274 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5278 if (sec_index
== SHN_BAD
)
5279 bfd_set_error (bfd_error_nonrepresentable_section
);
5284 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5288 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5290 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5292 flagword flags
= asym_ptr
->flags
;
5294 /* When gas creates relocations against local labels, it creates its
5295 own symbol for the section, but does put the symbol into the
5296 symbol chain, so udata is 0. When the linker is generating
5297 relocatable output, this section symbol may be for one of the
5298 input sections rather than the output section. */
5299 if (asym_ptr
->udata
.i
== 0
5300 && (flags
& BSF_SECTION_SYM
)
5301 && asym_ptr
->section
)
5306 sec
= asym_ptr
->section
;
5307 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5308 sec
= sec
->output_section
;
5309 if (sec
->owner
== abfd
5310 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5311 && elf_section_syms (abfd
)[indx
] != NULL
)
5312 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5315 idx
= asym_ptr
->udata
.i
;
5319 /* This case can occur when using --strip-symbol on a symbol
5320 which is used in a relocation entry. */
5321 (*_bfd_error_handler
)
5322 (_("%B: symbol `%s' required but not present"),
5323 abfd
, bfd_asymbol_name (asym_ptr
));
5324 bfd_set_error (bfd_error_no_symbols
);
5331 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5332 (long) asym_ptr
, asym_ptr
->name
, idx
, (long) flags
);
5340 /* Rewrite program header information. */
5343 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5345 Elf_Internal_Ehdr
*iehdr
;
5346 struct elf_segment_map
*map
;
5347 struct elf_segment_map
*map_first
;
5348 struct elf_segment_map
**pointer_to_map
;
5349 Elf_Internal_Phdr
*segment
;
5352 unsigned int num_segments
;
5353 bfd_boolean phdr_included
= FALSE
;
5354 bfd_boolean p_paddr_valid
;
5355 bfd_vma maxpagesize
;
5356 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5357 unsigned int phdr_adjust_num
= 0;
5358 const struct elf_backend_data
*bed
;
5360 bed
= get_elf_backend_data (ibfd
);
5361 iehdr
= elf_elfheader (ibfd
);
5364 pointer_to_map
= &map_first
;
5366 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5367 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5369 /* Returns the end address of the segment + 1. */
5370 #define SEGMENT_END(segment, start) \
5371 (start + (segment->p_memsz > segment->p_filesz \
5372 ? segment->p_memsz : segment->p_filesz))
5374 #define SECTION_SIZE(section, segment) \
5375 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5376 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5377 ? section->size : 0)
5379 /* Returns TRUE if the given section is contained within
5380 the given segment. VMA addresses are compared. */
5381 #define IS_CONTAINED_BY_VMA(section, segment) \
5382 (section->vma >= segment->p_vaddr \
5383 && (section->vma + SECTION_SIZE (section, segment) \
5384 <= (SEGMENT_END (segment, segment->p_vaddr))))
5386 /* Returns TRUE if the given section is contained within
5387 the given segment. LMA addresses are compared. */
5388 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5389 (section->lma >= base \
5390 && (section->lma + SECTION_SIZE (section, segment) \
5391 <= SEGMENT_END (segment, base)))
5393 /* Handle PT_NOTE segment. */
5394 #define IS_NOTE(p, s) \
5395 (p->p_type == PT_NOTE \
5396 && elf_section_type (s) == SHT_NOTE \
5397 && (bfd_vma) s->filepos >= p->p_offset \
5398 && ((bfd_vma) s->filepos + s->size \
5399 <= p->p_offset + p->p_filesz))
5401 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5403 #define IS_COREFILE_NOTE(p, s) \
5405 && bfd_get_format (ibfd) == bfd_core \
5409 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5410 linker, which generates a PT_INTERP section with p_vaddr and
5411 p_memsz set to 0. */
5412 #define IS_SOLARIS_PT_INTERP(p, s) \
5414 && p->p_paddr == 0 \
5415 && p->p_memsz == 0 \
5416 && p->p_filesz > 0 \
5417 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5419 && (bfd_vma) s->filepos >= p->p_offset \
5420 && ((bfd_vma) s->filepos + s->size \
5421 <= p->p_offset + p->p_filesz))
5423 /* Decide if the given section should be included in the given segment.
5424 A section will be included if:
5425 1. It is within the address space of the segment -- we use the LMA
5426 if that is set for the segment and the VMA otherwise,
5427 2. It is an allocated section or a NOTE section in a PT_NOTE
5429 3. There is an output section associated with it,
5430 4. The section has not already been allocated to a previous segment.
5431 5. PT_GNU_STACK segments do not include any sections.
5432 6. PT_TLS segment includes only SHF_TLS sections.
5433 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5434 8. PT_DYNAMIC should not contain empty sections at the beginning
5435 (with the possible exception of .dynamic). */
5436 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5437 ((((segment->p_paddr \
5438 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5439 : IS_CONTAINED_BY_VMA (section, segment)) \
5440 && (section->flags & SEC_ALLOC) != 0) \
5441 || IS_NOTE (segment, section)) \
5442 && segment->p_type != PT_GNU_STACK \
5443 && (segment->p_type != PT_TLS \
5444 || (section->flags & SEC_THREAD_LOCAL)) \
5445 && (segment->p_type == PT_LOAD \
5446 || segment->p_type == PT_TLS \
5447 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5448 && (segment->p_type != PT_DYNAMIC \
5449 || SECTION_SIZE (section, segment) > 0 \
5450 || (segment->p_paddr \
5451 ? segment->p_paddr != section->lma \
5452 : segment->p_vaddr != section->vma) \
5453 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5455 && !section->segment_mark)
5457 /* If the output section of a section in the input segment is NULL,
5458 it is removed from the corresponding output segment. */
5459 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5460 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5461 && section->output_section != NULL)
5463 /* Returns TRUE iff seg1 starts after the end of seg2. */
5464 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5465 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5467 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5468 their VMA address ranges and their LMA address ranges overlap.
5469 It is possible to have overlapping VMA ranges without overlapping LMA
5470 ranges. RedBoot images for example can have both .data and .bss mapped
5471 to the same VMA range, but with the .data section mapped to a different
5473 #define SEGMENT_OVERLAPS(seg1, seg2) \
5474 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5475 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5476 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5477 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5479 /* Initialise the segment mark field. */
5480 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5481 section
->segment_mark
= FALSE
;
5483 /* The Solaris linker creates program headers in which all the
5484 p_paddr fields are zero. When we try to objcopy or strip such a
5485 file, we get confused. Check for this case, and if we find it
5486 don't set the p_paddr_valid fields. */
5487 p_paddr_valid
= FALSE
;
5488 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5491 if (segment
->p_paddr
!= 0)
5493 p_paddr_valid
= TRUE
;
5497 /* Scan through the segments specified in the program header
5498 of the input BFD. For this first scan we look for overlaps
5499 in the loadable segments. These can be created by weird
5500 parameters to objcopy. Also, fix some solaris weirdness. */
5501 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5506 Elf_Internal_Phdr
*segment2
;
5508 if (segment
->p_type
== PT_INTERP
)
5509 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5510 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5512 /* Mininal change so that the normal section to segment
5513 assignment code will work. */
5514 segment
->p_vaddr
= section
->vma
;
5518 if (segment
->p_type
!= PT_LOAD
)
5520 /* Remove PT_GNU_RELRO segment. */
5521 if (segment
->p_type
== PT_GNU_RELRO
)
5522 segment
->p_type
= PT_NULL
;
5526 /* Determine if this segment overlaps any previous segments. */
5527 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5529 bfd_signed_vma extra_length
;
5531 if (segment2
->p_type
!= PT_LOAD
5532 || !SEGMENT_OVERLAPS (segment
, segment2
))
5535 /* Merge the two segments together. */
5536 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5538 /* Extend SEGMENT2 to include SEGMENT and then delete
5540 extra_length
= (SEGMENT_END (segment
, segment
->p_vaddr
)
5541 - SEGMENT_END (segment2
, segment2
->p_vaddr
));
5543 if (extra_length
> 0)
5545 segment2
->p_memsz
+= extra_length
;
5546 segment2
->p_filesz
+= extra_length
;
5549 segment
->p_type
= PT_NULL
;
5551 /* Since we have deleted P we must restart the outer loop. */
5553 segment
= elf_tdata (ibfd
)->phdr
;
5558 /* Extend SEGMENT to include SEGMENT2 and then delete
5560 extra_length
= (SEGMENT_END (segment2
, segment2
->p_vaddr
)
5561 - SEGMENT_END (segment
, segment
->p_vaddr
));
5563 if (extra_length
> 0)
5565 segment
->p_memsz
+= extra_length
;
5566 segment
->p_filesz
+= extra_length
;
5569 segment2
->p_type
= PT_NULL
;
5574 /* The second scan attempts to assign sections to segments. */
5575 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5579 unsigned int section_count
;
5580 asection
**sections
;
5581 asection
*output_section
;
5583 bfd_vma matching_lma
;
5584 bfd_vma suggested_lma
;
5587 asection
*first_section
;
5588 bfd_boolean first_matching_lma
;
5589 bfd_boolean first_suggested_lma
;
5591 if (segment
->p_type
== PT_NULL
)
5594 first_section
= NULL
;
5595 /* Compute how many sections might be placed into this segment. */
5596 for (section
= ibfd
->sections
, section_count
= 0;
5598 section
= section
->next
)
5600 /* Find the first section in the input segment, which may be
5601 removed from the corresponding output segment. */
5602 if (IS_SECTION_IN_INPUT_SEGMENT (section
, segment
, bed
))
5604 if (first_section
== NULL
)
5605 first_section
= section
;
5606 if (section
->output_section
!= NULL
)
5611 /* Allocate a segment map big enough to contain
5612 all of the sections we have selected. */
5613 amt
= sizeof (struct elf_segment_map
);
5614 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5615 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
5619 /* Initialise the fields of the segment map. Default to
5620 using the physical address of the segment in the input BFD. */
5622 map
->p_type
= segment
->p_type
;
5623 map
->p_flags
= segment
->p_flags
;
5624 map
->p_flags_valid
= 1;
5626 /* If the first section in the input segment is removed, there is
5627 no need to preserve segment physical address in the corresponding
5629 if (!first_section
|| first_section
->output_section
!= NULL
)
5631 map
->p_paddr
= segment
->p_paddr
;
5632 map
->p_paddr_valid
= p_paddr_valid
;
5635 /* Determine if this segment contains the ELF file header
5636 and if it contains the program headers themselves. */
5637 map
->includes_filehdr
= (segment
->p_offset
== 0
5638 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5639 map
->includes_phdrs
= 0;
5641 if (!phdr_included
|| segment
->p_type
!= PT_LOAD
)
5643 map
->includes_phdrs
=
5644 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5645 && (segment
->p_offset
+ segment
->p_filesz
5646 >= ((bfd_vma
) iehdr
->e_phoff
5647 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5649 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5650 phdr_included
= TRUE
;
5653 if (section_count
== 0)
5655 /* Special segments, such as the PT_PHDR segment, may contain
5656 no sections, but ordinary, loadable segments should contain
5657 something. They are allowed by the ELF spec however, so only
5658 a warning is produced. */
5659 if (segment
->p_type
== PT_LOAD
)
5660 (*_bfd_error_handler
) (_("%B: warning: Empty loadable segment"
5661 " detected, is this intentional ?\n"),
5665 *pointer_to_map
= map
;
5666 pointer_to_map
= &map
->next
;
5671 /* Now scan the sections in the input BFD again and attempt
5672 to add their corresponding output sections to the segment map.
5673 The problem here is how to handle an output section which has
5674 been moved (ie had its LMA changed). There are four possibilities:
5676 1. None of the sections have been moved.
5677 In this case we can continue to use the segment LMA from the
5680 2. All of the sections have been moved by the same amount.
5681 In this case we can change the segment's LMA to match the LMA
5682 of the first section.
5684 3. Some of the sections have been moved, others have not.
5685 In this case those sections which have not been moved can be
5686 placed in the current segment which will have to have its size,
5687 and possibly its LMA changed, and a new segment or segments will
5688 have to be created to contain the other sections.
5690 4. The sections have been moved, but not by the same amount.
5691 In this case we can change the segment's LMA to match the LMA
5692 of the first section and we will have to create a new segment
5693 or segments to contain the other sections.
5695 In order to save time, we allocate an array to hold the section
5696 pointers that we are interested in. As these sections get assigned
5697 to a segment, they are removed from this array. */
5699 sections
= (asection
**) bfd_malloc2 (section_count
, sizeof (asection
*));
5700 if (sections
== NULL
)
5703 /* Step One: Scan for segment vs section LMA conflicts.
5704 Also add the sections to the section array allocated above.
5705 Also add the sections to the current segment. In the common
5706 case, where the sections have not been moved, this means that
5707 we have completely filled the segment, and there is nothing
5712 first_matching_lma
= TRUE
;
5713 first_suggested_lma
= TRUE
;
5715 for (section
= ibfd
->sections
;
5717 section
= section
->next
)
5718 if (section
== first_section
)
5721 for (j
= 0; section
!= NULL
; section
= section
->next
)
5723 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5725 output_section
= section
->output_section
;
5727 sections
[j
++] = section
;
5729 /* The Solaris native linker always sets p_paddr to 0.
5730 We try to catch that case here, and set it to the
5731 correct value. Note - some backends require that
5732 p_paddr be left as zero. */
5734 && segment
->p_vaddr
!= 0
5735 && !bed
->want_p_paddr_set_to_zero
5737 && output_section
->lma
!= 0
5738 && output_section
->vma
== (segment
->p_vaddr
5739 + (map
->includes_filehdr
5742 + (map
->includes_phdrs
5744 * iehdr
->e_phentsize
)
5746 map
->p_paddr
= segment
->p_vaddr
;
5748 /* Match up the physical address of the segment with the
5749 LMA address of the output section. */
5750 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5751 || IS_COREFILE_NOTE (segment
, section
)
5752 || (bed
->want_p_paddr_set_to_zero
5753 && IS_CONTAINED_BY_VMA (output_section
, segment
)))
5755 if (first_matching_lma
|| output_section
->lma
< matching_lma
)
5757 matching_lma
= output_section
->lma
;
5758 first_matching_lma
= FALSE
;
5761 /* We assume that if the section fits within the segment
5762 then it does not overlap any other section within that
5764 map
->sections
[isec
++] = output_section
;
5766 else if (first_suggested_lma
)
5768 suggested_lma
= output_section
->lma
;
5769 first_suggested_lma
= FALSE
;
5772 if (j
== section_count
)
5777 BFD_ASSERT (j
== section_count
);
5779 /* Step Two: Adjust the physical address of the current segment,
5781 if (isec
== section_count
)
5783 /* All of the sections fitted within the segment as currently
5784 specified. This is the default case. Add the segment to
5785 the list of built segments and carry on to process the next
5786 program header in the input BFD. */
5787 map
->count
= section_count
;
5788 *pointer_to_map
= map
;
5789 pointer_to_map
= &map
->next
;
5792 && !bed
->want_p_paddr_set_to_zero
5793 && matching_lma
!= map
->p_paddr
5794 && !map
->includes_filehdr
5795 && !map
->includes_phdrs
)
5796 /* There is some padding before the first section in the
5797 segment. So, we must account for that in the output
5799 map
->p_vaddr_offset
= matching_lma
- map
->p_paddr
;
5806 if (!first_matching_lma
)
5808 /* At least one section fits inside the current segment.
5809 Keep it, but modify its physical address to match the
5810 LMA of the first section that fitted. */
5811 map
->p_paddr
= matching_lma
;
5815 /* None of the sections fitted inside the current segment.
5816 Change the current segment's physical address to match
5817 the LMA of the first section. */
5818 map
->p_paddr
= suggested_lma
;
5821 /* Offset the segment physical address from the lma
5822 to allow for space taken up by elf headers. */
5823 if (map
->includes_filehdr
)
5825 if (map
->p_paddr
>= iehdr
->e_ehsize
)
5826 map
->p_paddr
-= iehdr
->e_ehsize
;
5829 map
->includes_filehdr
= FALSE
;
5830 map
->includes_phdrs
= FALSE
;
5834 if (map
->includes_phdrs
)
5836 if (map
->p_paddr
>= iehdr
->e_phnum
* iehdr
->e_phentsize
)
5838 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5840 /* iehdr->e_phnum is just an estimate of the number
5841 of program headers that we will need. Make a note
5842 here of the number we used and the segment we chose
5843 to hold these headers, so that we can adjust the
5844 offset when we know the correct value. */
5845 phdr_adjust_num
= iehdr
->e_phnum
;
5846 phdr_adjust_seg
= map
;
5849 map
->includes_phdrs
= FALSE
;
5853 /* Step Three: Loop over the sections again, this time assigning
5854 those that fit to the current segment and removing them from the
5855 sections array; but making sure not to leave large gaps. Once all
5856 possible sections have been assigned to the current segment it is
5857 added to the list of built segments and if sections still remain
5858 to be assigned, a new segment is constructed before repeating
5865 first_suggested_lma
= TRUE
;
5867 /* Fill the current segment with sections that fit. */
5868 for (j
= 0; j
< section_count
; j
++)
5870 section
= sections
[j
];
5872 if (section
== NULL
)
5875 output_section
= section
->output_section
;
5877 BFD_ASSERT (output_section
!= NULL
);
5879 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5880 || IS_COREFILE_NOTE (segment
, section
))
5882 if (map
->count
== 0)
5884 /* If the first section in a segment does not start at
5885 the beginning of the segment, then something is
5887 if (output_section
->lma
5889 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5890 + (map
->includes_phdrs
5891 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5899 prev_sec
= map
->sections
[map
->count
- 1];
5901 /* If the gap between the end of the previous section
5902 and the start of this section is more than
5903 maxpagesize then we need to start a new segment. */
5904 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5906 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5907 || (prev_sec
->lma
+ prev_sec
->size
5908 > output_section
->lma
))
5910 if (first_suggested_lma
)
5912 suggested_lma
= output_section
->lma
;
5913 first_suggested_lma
= FALSE
;
5920 map
->sections
[map
->count
++] = output_section
;
5923 section
->segment_mark
= TRUE
;
5925 else if (first_suggested_lma
)
5927 suggested_lma
= output_section
->lma
;
5928 first_suggested_lma
= FALSE
;
5932 BFD_ASSERT (map
->count
> 0);
5934 /* Add the current segment to the list of built segments. */
5935 *pointer_to_map
= map
;
5936 pointer_to_map
= &map
->next
;
5938 if (isec
< section_count
)
5940 /* We still have not allocated all of the sections to
5941 segments. Create a new segment here, initialise it
5942 and carry on looping. */
5943 amt
= sizeof (struct elf_segment_map
);
5944 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5945 map
= (struct elf_segment_map
*) bfd_alloc (obfd
, amt
);
5952 /* Initialise the fields of the segment map. Set the physical
5953 physical address to the LMA of the first section that has
5954 not yet been assigned. */
5956 map
->p_type
= segment
->p_type
;
5957 map
->p_flags
= segment
->p_flags
;
5958 map
->p_flags_valid
= 1;
5959 map
->p_paddr
= suggested_lma
;
5960 map
->p_paddr_valid
= p_paddr_valid
;
5961 map
->includes_filehdr
= 0;
5962 map
->includes_phdrs
= 0;
5965 while (isec
< section_count
);
5970 elf_tdata (obfd
)->segment_map
= map_first
;
5972 /* If we had to estimate the number of program headers that were
5973 going to be needed, then check our estimate now and adjust
5974 the offset if necessary. */
5975 if (phdr_adjust_seg
!= NULL
)
5979 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5982 if (count
> phdr_adjust_num
)
5983 phdr_adjust_seg
->p_paddr
5984 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5989 #undef IS_CONTAINED_BY_VMA
5990 #undef IS_CONTAINED_BY_LMA
5992 #undef IS_COREFILE_NOTE
5993 #undef IS_SOLARIS_PT_INTERP
5994 #undef IS_SECTION_IN_INPUT_SEGMENT
5995 #undef INCLUDE_SECTION_IN_SEGMENT
5996 #undef SEGMENT_AFTER_SEGMENT
5997 #undef SEGMENT_OVERLAPS
6001 /* Copy ELF program header information. */
6004 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
6006 Elf_Internal_Ehdr
*iehdr
;
6007 struct elf_segment_map
*map
;
6008 struct elf_segment_map
*map_first
;
6009 struct elf_segment_map
**pointer_to_map
;
6010 Elf_Internal_Phdr
*segment
;
6012 unsigned int num_segments
;
6013 bfd_boolean phdr_included
= FALSE
;
6014 bfd_boolean p_paddr_valid
;
6016 iehdr
= elf_elfheader (ibfd
);
6019 pointer_to_map
= &map_first
;
6021 /* If all the segment p_paddr fields are zero, don't set
6022 map->p_paddr_valid. */
6023 p_paddr_valid
= FALSE
;
6024 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
6025 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6028 if (segment
->p_paddr
!= 0)
6030 p_paddr_valid
= TRUE
;
6034 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6039 unsigned int section_count
;
6041 Elf_Internal_Shdr
*this_hdr
;
6042 asection
*first_section
= NULL
;
6043 asection
*lowest_section
;
6045 /* Compute how many sections are in this segment. */
6046 for (section
= ibfd
->sections
, section_count
= 0;
6048 section
= section
->next
)
6050 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6051 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6053 if (first_section
== NULL
)
6054 first_section
= section
;
6059 /* Allocate a segment map big enough to contain
6060 all of the sections we have selected. */
6061 amt
= sizeof (struct elf_segment_map
);
6062 if (section_count
!= 0)
6063 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
6064 map
= (struct elf_segment_map
*) bfd_zalloc (obfd
, amt
);
6068 /* Initialize the fields of the output segment map with the
6071 map
->p_type
= segment
->p_type
;
6072 map
->p_flags
= segment
->p_flags
;
6073 map
->p_flags_valid
= 1;
6074 map
->p_paddr
= segment
->p_paddr
;
6075 map
->p_paddr_valid
= p_paddr_valid
;
6076 map
->p_align
= segment
->p_align
;
6077 map
->p_align_valid
= 1;
6078 map
->p_vaddr_offset
= 0;
6080 if (map
->p_type
== PT_GNU_RELRO
)
6082 /* The PT_GNU_RELRO segment may contain the first a few
6083 bytes in the .got.plt section even if the whole .got.plt
6084 section isn't in the PT_GNU_RELRO segment. We won't
6085 change the size of the PT_GNU_RELRO segment. */
6086 map
->p_size
= segment
->p_memsz
;
6087 map
->p_size_valid
= 1;
6090 /* Determine if this segment contains the ELF file header
6091 and if it contains the program headers themselves. */
6092 map
->includes_filehdr
= (segment
->p_offset
== 0
6093 && segment
->p_filesz
>= iehdr
->e_ehsize
);
6095 map
->includes_phdrs
= 0;
6096 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
6098 map
->includes_phdrs
=
6099 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
6100 && (segment
->p_offset
+ segment
->p_filesz
6101 >= ((bfd_vma
) iehdr
->e_phoff
6102 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
6104 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
6105 phdr_included
= TRUE
;
6108 lowest_section
= first_section
;
6109 if (section_count
!= 0)
6111 unsigned int isec
= 0;
6113 for (section
= first_section
;
6115 section
= section
->next
)
6117 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6118 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6120 map
->sections
[isec
++] = section
->output_section
;
6121 if (section
->lma
< lowest_section
->lma
)
6122 lowest_section
= section
;
6123 if ((section
->flags
& SEC_ALLOC
) != 0)
6127 /* Section lmas are set up from PT_LOAD header
6128 p_paddr in _bfd_elf_make_section_from_shdr.
6129 If this header has a p_paddr that disagrees
6130 with the section lma, flag the p_paddr as
6132 if ((section
->flags
& SEC_LOAD
) != 0)
6133 seg_off
= this_hdr
->sh_offset
- segment
->p_offset
;
6135 seg_off
= this_hdr
->sh_addr
- segment
->p_vaddr
;
6136 if (section
->lma
- segment
->p_paddr
!= seg_off
)
6137 map
->p_paddr_valid
= FALSE
;
6139 if (isec
== section_count
)
6145 if (map
->includes_filehdr
&& lowest_section
!= NULL
)
6146 /* We need to keep the space used by the headers fixed. */
6147 map
->header_size
= lowest_section
->vma
- segment
->p_vaddr
;
6149 if (!map
->includes_phdrs
6150 && !map
->includes_filehdr
6151 && map
->p_paddr_valid
)
6152 /* There is some other padding before the first section. */
6153 map
->p_vaddr_offset
= ((lowest_section
? lowest_section
->lma
: 0)
6154 - segment
->p_paddr
);
6156 map
->count
= section_count
;
6157 *pointer_to_map
= map
;
6158 pointer_to_map
= &map
->next
;
6161 elf_tdata (obfd
)->segment_map
= map_first
;
6165 /* Copy private BFD data. This copies or rewrites ELF program header
6169 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
6171 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6172 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6175 if (elf_tdata (ibfd
)->phdr
== NULL
)
6178 if (ibfd
->xvec
== obfd
->xvec
)
6180 /* Check to see if any sections in the input BFD
6181 covered by ELF program header have changed. */
6182 Elf_Internal_Phdr
*segment
;
6183 asection
*section
, *osec
;
6184 unsigned int i
, num_segments
;
6185 Elf_Internal_Shdr
*this_hdr
;
6186 const struct elf_backend_data
*bed
;
6188 bed
= get_elf_backend_data (ibfd
);
6190 /* Regenerate the segment map if p_paddr is set to 0. */
6191 if (bed
->want_p_paddr_set_to_zero
)
6194 /* Initialize the segment mark field. */
6195 for (section
= obfd
->sections
; section
!= NULL
;
6196 section
= section
->next
)
6197 section
->segment_mark
= FALSE
;
6199 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
6200 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
6204 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6205 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6206 which severly confuses things, so always regenerate the segment
6207 map in this case. */
6208 if (segment
->p_paddr
== 0
6209 && segment
->p_memsz
== 0
6210 && (segment
->p_type
== PT_INTERP
|| segment
->p_type
== PT_DYNAMIC
))
6213 for (section
= ibfd
->sections
;
6214 section
!= NULL
; section
= section
->next
)
6216 /* We mark the output section so that we know it comes
6217 from the input BFD. */
6218 osec
= section
->output_section
;
6220 osec
->segment_mark
= TRUE
;
6222 /* Check if this section is covered by the segment. */
6223 this_hdr
= &(elf_section_data(section
)->this_hdr
);
6224 if (ELF_SECTION_IN_SEGMENT (this_hdr
, segment
))
6226 /* FIXME: Check if its output section is changed or
6227 removed. What else do we need to check? */
6229 || section
->flags
!= osec
->flags
6230 || section
->lma
!= osec
->lma
6231 || section
->vma
!= osec
->vma
6232 || section
->size
!= osec
->size
6233 || section
->rawsize
!= osec
->rawsize
6234 || section
->alignment_power
!= osec
->alignment_power
)
6240 /* Check to see if any output section do not come from the
6242 for (section
= obfd
->sections
; section
!= NULL
;
6243 section
= section
->next
)
6245 if (section
->segment_mark
== FALSE
)
6248 section
->segment_mark
= FALSE
;
6251 return copy_elf_program_header (ibfd
, obfd
);
6255 return rewrite_elf_program_header (ibfd
, obfd
);
6258 /* Initialize private output section information from input section. */
6261 _bfd_elf_init_private_section_data (bfd
*ibfd
,
6265 struct bfd_link_info
*link_info
)
6268 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6269 bfd_boolean final_link
= link_info
!= NULL
&& !link_info
->relocatable
;
6271 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6272 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6275 BFD_ASSERT (elf_section_data (osec
) != NULL
);
6277 /* For objcopy and relocatable link, don't copy the output ELF
6278 section type from input if the output BFD section flags have been
6279 set to something different. For a final link allow some flags
6280 that the linker clears to differ. */
6281 if (elf_section_type (osec
) == SHT_NULL
6282 && (osec
->flags
== isec
->flags
6284 && ((osec
->flags
^ isec
->flags
)
6285 & ~(SEC_LINK_ONCE
| SEC_LINK_DUPLICATES
| SEC_RELOC
)) == 0)))
6286 elf_section_type (osec
) = elf_section_type (isec
);
6288 /* FIXME: Is this correct for all OS/PROC specific flags? */
6289 elf_section_flags (osec
) |= (elf_section_flags (isec
)
6290 & (SHF_MASKOS
| SHF_MASKPROC
));
6292 /* Set things up for objcopy and relocatable link. The output
6293 SHT_GROUP section will have its elf_next_in_group pointing back
6294 to the input group members. Ignore linker created group section.
6295 See elfNN_ia64_object_p in elfxx-ia64.c. */
6298 if (elf_sec_group (isec
) == NULL
6299 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
6301 if (elf_section_flags (isec
) & SHF_GROUP
)
6302 elf_section_flags (osec
) |= SHF_GROUP
;
6303 elf_next_in_group (osec
) = elf_next_in_group (isec
);
6304 elf_section_data (osec
)->group
= elf_section_data (isec
)->group
;
6308 ihdr
= &elf_section_data (isec
)->this_hdr
;
6310 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6311 don't use the output section of the linked-to section since it
6312 may be NULL at this point. */
6313 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
6315 ohdr
= &elf_section_data (osec
)->this_hdr
;
6316 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
6317 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
6320 osec
->use_rela_p
= isec
->use_rela_p
;
6325 /* Copy private section information. This copies over the entsize
6326 field, and sometimes the info field. */
6329 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
6334 Elf_Internal_Shdr
*ihdr
, *ohdr
;
6336 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
6337 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
6340 ihdr
= &elf_section_data (isec
)->this_hdr
;
6341 ohdr
= &elf_section_data (osec
)->this_hdr
;
6343 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
6345 if (ihdr
->sh_type
== SHT_SYMTAB
6346 || ihdr
->sh_type
== SHT_DYNSYM
6347 || ihdr
->sh_type
== SHT_GNU_verneed
6348 || ihdr
->sh_type
== SHT_GNU_verdef
)
6349 ohdr
->sh_info
= ihdr
->sh_info
;
6351 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
6355 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6356 necessary if we are removing either the SHT_GROUP section or any of
6357 the group member sections. DISCARDED is the value that a section's
6358 output_section has if the section will be discarded, NULL when this
6359 function is called from objcopy, bfd_abs_section_ptr when called
6363 _bfd_elf_fixup_group_sections (bfd
*ibfd
, asection
*discarded
)
6367 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
6368 if (elf_section_type (isec
) == SHT_GROUP
)
6370 asection
*first
= elf_next_in_group (isec
);
6371 asection
*s
= first
;
6372 bfd_size_type removed
= 0;
6376 /* If this member section is being output but the
6377 SHT_GROUP section is not, then clear the group info
6378 set up by _bfd_elf_copy_private_section_data. */
6379 if (s
->output_section
!= discarded
6380 && isec
->output_section
== discarded
)
6382 elf_section_flags (s
->output_section
) &= ~SHF_GROUP
;
6383 elf_group_name (s
->output_section
) = NULL
;
6385 /* Conversely, if the member section is not being output
6386 but the SHT_GROUP section is, then adjust its size. */
6387 else if (s
->output_section
== discarded
6388 && isec
->output_section
!= discarded
)
6390 s
= elf_next_in_group (s
);
6396 if (discarded
!= NULL
)
6398 /* If we've been called for ld -r, then we need to
6399 adjust the input section size. This function may
6400 be called multiple times, so save the original
6402 if (isec
->rawsize
== 0)
6403 isec
->rawsize
= isec
->size
;
6404 isec
->size
= isec
->rawsize
- removed
;
6408 /* Adjust the output section size when called from
6410 isec
->output_section
->size
-= removed
;
6418 /* Copy private header information. */
6421 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
6423 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6424 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6427 /* Copy over private BFD data if it has not already been copied.
6428 This must be done here, rather than in the copy_private_bfd_data
6429 entry point, because the latter is called after the section
6430 contents have been set, which means that the program headers have
6431 already been worked out. */
6432 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
6434 if (! copy_private_bfd_data (ibfd
, obfd
))
6438 return _bfd_elf_fixup_group_sections (ibfd
, NULL
);
6441 /* Copy private symbol information. If this symbol is in a section
6442 which we did not map into a BFD section, try to map the section
6443 index correctly. We use special macro definitions for the mapped
6444 section indices; these definitions are interpreted by the
6445 swap_out_syms function. */
6447 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6448 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6449 #define MAP_STRTAB (SHN_HIOS + 3)
6450 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6451 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6454 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
6459 elf_symbol_type
*isym
, *osym
;
6461 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
6462 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
6465 isym
= elf_symbol_from (ibfd
, isymarg
);
6466 osym
= elf_symbol_from (obfd
, osymarg
);
6469 && isym
->internal_elf_sym
.st_shndx
!= 0
6471 && bfd_is_abs_section (isym
->symbol
.section
))
6475 shndx
= isym
->internal_elf_sym
.st_shndx
;
6476 if (shndx
== elf_onesymtab (ibfd
))
6477 shndx
= MAP_ONESYMTAB
;
6478 else if (shndx
== elf_dynsymtab (ibfd
))
6479 shndx
= MAP_DYNSYMTAB
;
6480 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6482 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6483 shndx
= MAP_SHSTRTAB
;
6484 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6485 shndx
= MAP_SYM_SHNDX
;
6486 osym
->internal_elf_sym
.st_shndx
= shndx
;
6492 /* Swap out the symbols. */
6495 swap_out_syms (bfd
*abfd
,
6496 struct bfd_strtab_hash
**sttp
,
6499 const struct elf_backend_data
*bed
;
6502 struct bfd_strtab_hash
*stt
;
6503 Elf_Internal_Shdr
*symtab_hdr
;
6504 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6505 Elf_Internal_Shdr
*symstrtab_hdr
;
6506 bfd_byte
*outbound_syms
;
6507 bfd_byte
*outbound_shndx
;
6510 bfd_boolean name_local_sections
;
6512 if (!elf_map_symbols (abfd
))
6515 /* Dump out the symtabs. */
6516 stt
= _bfd_elf_stringtab_init ();
6520 bed
= get_elf_backend_data (abfd
);
6521 symcount
= bfd_get_symcount (abfd
);
6522 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6523 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6524 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6525 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6526 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6527 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
6529 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6530 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6532 outbound_syms
= (bfd_byte
*) bfd_alloc2 (abfd
, 1 + symcount
,
6533 bed
->s
->sizeof_sym
);
6534 if (outbound_syms
== NULL
)
6536 _bfd_stringtab_free (stt
);
6539 symtab_hdr
->contents
= outbound_syms
;
6541 outbound_shndx
= NULL
;
6542 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6543 if (symtab_shndx_hdr
->sh_name
!= 0)
6545 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6546 outbound_shndx
= (bfd_byte
*)
6547 bfd_zalloc2 (abfd
, 1 + symcount
, sizeof (Elf_External_Sym_Shndx
));
6548 if (outbound_shndx
== NULL
)
6550 _bfd_stringtab_free (stt
);
6554 symtab_shndx_hdr
->contents
= outbound_shndx
;
6555 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6556 symtab_shndx_hdr
->sh_size
= amt
;
6557 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6558 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6561 /* Now generate the data (for "contents"). */
6563 /* Fill in zeroth symbol and swap it out. */
6564 Elf_Internal_Sym sym
;
6570 sym
.st_shndx
= SHN_UNDEF
;
6571 sym
.st_target_internal
= 0;
6572 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6573 outbound_syms
+= bed
->s
->sizeof_sym
;
6574 if (outbound_shndx
!= NULL
)
6575 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6579 = (bed
->elf_backend_name_local_section_symbols
6580 && bed
->elf_backend_name_local_section_symbols (abfd
));
6582 syms
= bfd_get_outsymbols (abfd
);
6583 for (idx
= 0; idx
< symcount
; idx
++)
6585 Elf_Internal_Sym sym
;
6586 bfd_vma value
= syms
[idx
]->value
;
6587 elf_symbol_type
*type_ptr
;
6588 flagword flags
= syms
[idx
]->flags
;
6591 if (!name_local_sections
6592 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6594 /* Local section symbols have no name. */
6599 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6602 if (sym
.st_name
== (unsigned long) -1)
6604 _bfd_stringtab_free (stt
);
6609 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6611 if ((flags
& BSF_SECTION_SYM
) == 0
6612 && bfd_is_com_section (syms
[idx
]->section
))
6614 /* ELF common symbols put the alignment into the `value' field,
6615 and the size into the `size' field. This is backwards from
6616 how BFD handles it, so reverse it here. */
6617 sym
.st_size
= value
;
6618 if (type_ptr
== NULL
6619 || type_ptr
->internal_elf_sym
.st_value
== 0)
6620 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6622 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6623 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6624 (abfd
, syms
[idx
]->section
);
6628 asection
*sec
= syms
[idx
]->section
;
6631 if (sec
->output_section
)
6633 value
+= sec
->output_offset
;
6634 sec
= sec
->output_section
;
6637 /* Don't add in the section vma for relocatable output. */
6638 if (! relocatable_p
)
6640 sym
.st_value
= value
;
6641 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6643 if (bfd_is_abs_section (sec
)
6645 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6647 /* This symbol is in a real ELF section which we did
6648 not create as a BFD section. Undo the mapping done
6649 by copy_private_symbol_data. */
6650 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6654 shndx
= elf_onesymtab (abfd
);
6657 shndx
= elf_dynsymtab (abfd
);
6660 shndx
= elf_tdata (abfd
)->strtab_section
;
6663 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6666 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6674 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6676 if (shndx
== SHN_BAD
)
6680 /* Writing this would be a hell of a lot easier if
6681 we had some decent documentation on bfd, and
6682 knew what to expect of the library, and what to
6683 demand of applications. For example, it
6684 appears that `objcopy' might not set the
6685 section of a symbol to be a section that is
6686 actually in the output file. */
6687 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6690 _bfd_error_handler (_("\
6691 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6692 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6694 bfd_set_error (bfd_error_invalid_operation
);
6695 _bfd_stringtab_free (stt
);
6699 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6700 BFD_ASSERT (shndx
!= SHN_BAD
);
6704 sym
.st_shndx
= shndx
;
6707 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6709 else if ((flags
& BSF_GNU_INDIRECT_FUNCTION
) != 0)
6710 type
= STT_GNU_IFUNC
;
6711 else if ((flags
& BSF_FUNCTION
) != 0)
6713 else if ((flags
& BSF_OBJECT
) != 0)
6715 else if ((flags
& BSF_RELC
) != 0)
6717 else if ((flags
& BSF_SRELC
) != 0)
6722 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6725 /* Processor-specific types. */
6726 if (type_ptr
!= NULL
6727 && bed
->elf_backend_get_symbol_type
)
6728 type
= ((*bed
->elf_backend_get_symbol_type
)
6729 (&type_ptr
->internal_elf_sym
, type
));
6731 if (flags
& BSF_SECTION_SYM
)
6733 if (flags
& BSF_GLOBAL
)
6734 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6736 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6738 else if (bfd_is_com_section (syms
[idx
]->section
))
6740 #ifdef USE_STT_COMMON
6741 if (type
== STT_OBJECT
)
6742 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_COMMON
);
6745 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6747 else if (bfd_is_und_section (syms
[idx
]->section
))
6748 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6752 else if (flags
& BSF_FILE
)
6753 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6756 int bind
= STB_LOCAL
;
6758 if (flags
& BSF_LOCAL
)
6760 else if (flags
& BSF_GNU_UNIQUE
)
6761 bind
= STB_GNU_UNIQUE
;
6762 else if (flags
& BSF_WEAK
)
6764 else if (flags
& BSF_GLOBAL
)
6767 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6770 if (type_ptr
!= NULL
)
6772 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6773 sym
.st_target_internal
6774 = type_ptr
->internal_elf_sym
.st_target_internal
;
6779 sym
.st_target_internal
= 0;
6782 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6783 outbound_syms
+= bed
->s
->sizeof_sym
;
6784 if (outbound_shndx
!= NULL
)
6785 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6789 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6790 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6792 symstrtab_hdr
->sh_flags
= 0;
6793 symstrtab_hdr
->sh_addr
= 0;
6794 symstrtab_hdr
->sh_entsize
= 0;
6795 symstrtab_hdr
->sh_link
= 0;
6796 symstrtab_hdr
->sh_info
= 0;
6797 symstrtab_hdr
->sh_addralign
= 1;
6802 /* Return the number of bytes required to hold the symtab vector.
6804 Note that we base it on the count plus 1, since we will null terminate
6805 the vector allocated based on this size. However, the ELF symbol table
6806 always has a dummy entry as symbol #0, so it ends up even. */
6809 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6813 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6815 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6816 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6818 symtab_size
-= sizeof (asymbol
*);
6824 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6828 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6830 if (elf_dynsymtab (abfd
) == 0)
6832 bfd_set_error (bfd_error_invalid_operation
);
6836 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6837 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6839 symtab_size
-= sizeof (asymbol
*);
6845 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6848 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6851 /* Canonicalize the relocs. */
6854 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6861 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6863 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6866 tblptr
= section
->relocation
;
6867 for (i
= 0; i
< section
->reloc_count
; i
++)
6868 *relptr
++ = tblptr
++;
6872 return section
->reloc_count
;
6876 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6878 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6879 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6882 bfd_get_symcount (abfd
) = symcount
;
6887 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6888 asymbol
**allocation
)
6890 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6891 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6894 bfd_get_dynamic_symcount (abfd
) = symcount
;
6898 /* Return the size required for the dynamic reloc entries. Any loadable
6899 section that was actually installed in the BFD, and has type SHT_REL
6900 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6901 dynamic reloc section. */
6904 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6909 if (elf_dynsymtab (abfd
) == 0)
6911 bfd_set_error (bfd_error_invalid_operation
);
6915 ret
= sizeof (arelent
*);
6916 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6917 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6918 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6919 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6920 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6921 * sizeof (arelent
*));
6926 /* Canonicalize the dynamic relocation entries. Note that we return the
6927 dynamic relocations as a single block, although they are actually
6928 associated with particular sections; the interface, which was
6929 designed for SunOS style shared libraries, expects that there is only
6930 one set of dynamic relocs. Any loadable section that was actually
6931 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6932 dynamic symbol table, is considered to be a dynamic reloc section. */
6935 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6939 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6943 if (elf_dynsymtab (abfd
) == 0)
6945 bfd_set_error (bfd_error_invalid_operation
);
6949 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6951 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6953 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6954 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6955 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6960 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6962 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6964 for (i
= 0; i
< count
; i
++)
6975 /* Read in the version information. */
6978 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6980 bfd_byte
*contents
= NULL
;
6981 unsigned int freeidx
= 0;
6983 if (elf_dynverref (abfd
) != 0)
6985 Elf_Internal_Shdr
*hdr
;
6986 Elf_External_Verneed
*everneed
;
6987 Elf_Internal_Verneed
*iverneed
;
6989 bfd_byte
*contents_end
;
6991 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6993 elf_tdata (abfd
)->verref
= (Elf_Internal_Verneed
*)
6994 bfd_zalloc2 (abfd
, hdr
->sh_info
, sizeof (Elf_Internal_Verneed
));
6995 if (elf_tdata (abfd
)->verref
== NULL
)
6998 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
7000 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
7001 if (contents
== NULL
)
7003 error_return_verref
:
7004 elf_tdata (abfd
)->verref
= NULL
;
7005 elf_tdata (abfd
)->cverrefs
= 0;
7008 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
7009 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
7010 goto error_return_verref
;
7012 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
7013 goto error_return_verref
;
7015 BFD_ASSERT (sizeof (Elf_External_Verneed
)
7016 == sizeof (Elf_External_Vernaux
));
7017 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
7018 everneed
= (Elf_External_Verneed
*) contents
;
7019 iverneed
= elf_tdata (abfd
)->verref
;
7020 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
7022 Elf_External_Vernaux
*evernaux
;
7023 Elf_Internal_Vernaux
*ivernaux
;
7026 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
7028 iverneed
->vn_bfd
= abfd
;
7030 iverneed
->vn_filename
=
7031 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7033 if (iverneed
->vn_filename
== NULL
)
7034 goto error_return_verref
;
7036 if (iverneed
->vn_cnt
== 0)
7037 iverneed
->vn_auxptr
= NULL
;
7040 iverneed
->vn_auxptr
= (struct elf_internal_vernaux
*)
7041 bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
7042 sizeof (Elf_Internal_Vernaux
));
7043 if (iverneed
->vn_auxptr
== NULL
)
7044 goto error_return_verref
;
7047 if (iverneed
->vn_aux
7048 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
7049 goto error_return_verref
;
7051 evernaux
= ((Elf_External_Vernaux
*)
7052 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
7053 ivernaux
= iverneed
->vn_auxptr
;
7054 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
7056 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
7058 ivernaux
->vna_nodename
=
7059 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7060 ivernaux
->vna_name
);
7061 if (ivernaux
->vna_nodename
== NULL
)
7062 goto error_return_verref
;
7064 if (j
+ 1 < iverneed
->vn_cnt
)
7065 ivernaux
->vna_nextptr
= ivernaux
+ 1;
7067 ivernaux
->vna_nextptr
= NULL
;
7069 if (ivernaux
->vna_next
7070 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
7071 goto error_return_verref
;
7073 evernaux
= ((Elf_External_Vernaux
*)
7074 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
7076 if (ivernaux
->vna_other
> freeidx
)
7077 freeidx
= ivernaux
->vna_other
;
7080 if (i
+ 1 < hdr
->sh_info
)
7081 iverneed
->vn_nextref
= iverneed
+ 1;
7083 iverneed
->vn_nextref
= NULL
;
7085 if (iverneed
->vn_next
7086 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
7087 goto error_return_verref
;
7089 everneed
= ((Elf_External_Verneed
*)
7090 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
7097 if (elf_dynverdef (abfd
) != 0)
7099 Elf_Internal_Shdr
*hdr
;
7100 Elf_External_Verdef
*everdef
;
7101 Elf_Internal_Verdef
*iverdef
;
7102 Elf_Internal_Verdef
*iverdefarr
;
7103 Elf_Internal_Verdef iverdefmem
;
7105 unsigned int maxidx
;
7106 bfd_byte
*contents_end_def
, *contents_end_aux
;
7108 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
7110 contents
= (bfd_byte
*) bfd_malloc (hdr
->sh_size
);
7111 if (contents
== NULL
)
7113 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
7114 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
7117 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
7120 BFD_ASSERT (sizeof (Elf_External_Verdef
)
7121 >= sizeof (Elf_External_Verdaux
));
7122 contents_end_def
= contents
+ hdr
->sh_size
7123 - sizeof (Elf_External_Verdef
);
7124 contents_end_aux
= contents
+ hdr
->sh_size
7125 - sizeof (Elf_External_Verdaux
);
7127 /* We know the number of entries in the section but not the maximum
7128 index. Therefore we have to run through all entries and find
7130 everdef
= (Elf_External_Verdef
*) contents
;
7132 for (i
= 0; i
< hdr
->sh_info
; ++i
)
7134 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
7136 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
7137 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
7139 if (iverdefmem
.vd_next
7140 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
7143 everdef
= ((Elf_External_Verdef
*)
7144 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
7147 if (default_imported_symver
)
7149 if (freeidx
> maxidx
)
7154 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7155 bfd_zalloc2 (abfd
, maxidx
, sizeof (Elf_Internal_Verdef
));
7156 if (elf_tdata (abfd
)->verdef
== NULL
)
7159 elf_tdata (abfd
)->cverdefs
= maxidx
;
7161 everdef
= (Elf_External_Verdef
*) contents
;
7162 iverdefarr
= elf_tdata (abfd
)->verdef
;
7163 for (i
= 0; i
< hdr
->sh_info
; i
++)
7165 Elf_External_Verdaux
*everdaux
;
7166 Elf_Internal_Verdaux
*iverdaux
;
7169 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
7171 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
7173 error_return_verdef
:
7174 elf_tdata (abfd
)->verdef
= NULL
;
7175 elf_tdata (abfd
)->cverdefs
= 0;
7179 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
7180 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
7182 iverdef
->vd_bfd
= abfd
;
7184 if (iverdef
->vd_cnt
== 0)
7185 iverdef
->vd_auxptr
= NULL
;
7188 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7189 bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
7190 sizeof (Elf_Internal_Verdaux
));
7191 if (iverdef
->vd_auxptr
== NULL
)
7192 goto error_return_verdef
;
7196 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
7197 goto error_return_verdef
;
7199 everdaux
= ((Elf_External_Verdaux
*)
7200 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
7201 iverdaux
= iverdef
->vd_auxptr
;
7202 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
7204 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
7206 iverdaux
->vda_nodename
=
7207 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
7208 iverdaux
->vda_name
);
7209 if (iverdaux
->vda_nodename
== NULL
)
7210 goto error_return_verdef
;
7212 if (j
+ 1 < iverdef
->vd_cnt
)
7213 iverdaux
->vda_nextptr
= iverdaux
+ 1;
7215 iverdaux
->vda_nextptr
= NULL
;
7217 if (iverdaux
->vda_next
7218 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
7219 goto error_return_verdef
;
7221 everdaux
= ((Elf_External_Verdaux
*)
7222 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
7225 if (iverdef
->vd_cnt
)
7226 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
7228 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
7229 iverdef
->vd_nextdef
= iverdef
+ 1;
7231 iverdef
->vd_nextdef
= NULL
;
7233 everdef
= ((Elf_External_Verdef
*)
7234 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
7240 else if (default_imported_symver
)
7247 elf_tdata (abfd
)->verdef
= (Elf_Internal_Verdef
*)
7248 bfd_zalloc2 (abfd
, freeidx
, sizeof (Elf_Internal_Verdef
));
7249 if (elf_tdata (abfd
)->verdef
== NULL
)
7252 elf_tdata (abfd
)->cverdefs
= freeidx
;
7255 /* Create a default version based on the soname. */
7256 if (default_imported_symver
)
7258 Elf_Internal_Verdef
*iverdef
;
7259 Elf_Internal_Verdaux
*iverdaux
;
7261 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
7263 iverdef
->vd_version
= VER_DEF_CURRENT
;
7264 iverdef
->vd_flags
= 0;
7265 iverdef
->vd_ndx
= freeidx
;
7266 iverdef
->vd_cnt
= 1;
7268 iverdef
->vd_bfd
= abfd
;
7270 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
7271 if (iverdef
->vd_nodename
== NULL
)
7272 goto error_return_verdef
;
7273 iverdef
->vd_nextdef
= NULL
;
7274 iverdef
->vd_auxptr
= (struct elf_internal_verdaux
*)
7275 bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
7276 if (iverdef
->vd_auxptr
== NULL
)
7277 goto error_return_verdef
;
7279 iverdaux
= iverdef
->vd_auxptr
;
7280 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
7281 iverdaux
->vda_nextptr
= NULL
;
7287 if (contents
!= NULL
)
7293 _bfd_elf_make_empty_symbol (bfd
*abfd
)
7295 elf_symbol_type
*newsym
;
7296 bfd_size_type amt
= sizeof (elf_symbol_type
);
7298 newsym
= (elf_symbol_type
*) bfd_zalloc (abfd
, amt
);
7303 newsym
->symbol
.the_bfd
= abfd
;
7304 return &newsym
->symbol
;
7309 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
7313 bfd_symbol_info (symbol
, ret
);
7316 /* Return whether a symbol name implies a local symbol. Most targets
7317 use this function for the is_local_label_name entry point, but some
7321 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
7324 /* Normal local symbols start with ``.L''. */
7325 if (name
[0] == '.' && name
[1] == 'L')
7328 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7329 DWARF debugging symbols starting with ``..''. */
7330 if (name
[0] == '.' && name
[1] == '.')
7333 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7334 emitting DWARF debugging output. I suspect this is actually a
7335 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7336 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7337 underscore to be emitted on some ELF targets). For ease of use,
7338 we treat such symbols as local. */
7339 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
7346 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
7347 asymbol
*symbol ATTRIBUTE_UNUSED
)
7354 _bfd_elf_set_arch_mach (bfd
*abfd
,
7355 enum bfd_architecture arch
,
7356 unsigned long machine
)
7358 /* If this isn't the right architecture for this backend, and this
7359 isn't the generic backend, fail. */
7360 if (arch
!= get_elf_backend_data (abfd
)->arch
7361 && arch
!= bfd_arch_unknown
7362 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
7365 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
7368 /* Find the function to a particular section and offset,
7369 for error reporting. */
7372 elf_find_function (bfd
*abfd
,
7376 const char **filename_ptr
,
7377 const char **functionname_ptr
)
7379 const char *filename
;
7380 asymbol
*func
, *file
;
7383 /* ??? Given multiple file symbols, it is impossible to reliably
7384 choose the right file name for global symbols. File symbols are
7385 local symbols, and thus all file symbols must sort before any
7386 global symbols. The ELF spec may be interpreted to say that a
7387 file symbol must sort before other local symbols, but currently
7388 ld -r doesn't do this. So, for ld -r output, it is possible to
7389 make a better choice of file name for local symbols by ignoring
7390 file symbols appearing after a given local symbol. */
7391 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
7392 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7398 state
= nothing_seen
;
7400 for (p
= symbols
; *p
!= NULL
; p
++)
7405 q
= (elf_symbol_type
*) *p
;
7407 type
= ELF_ST_TYPE (q
->internal_elf_sym
.st_info
);
7412 if (state
== symbol_seen
)
7413 state
= file_after_symbol_seen
;
7416 if (!bed
->is_function_type (type
))
7419 if (bfd_get_section (&q
->symbol
) == section
7420 && q
->symbol
.value
>= low_func
7421 && q
->symbol
.value
<= offset
)
7423 func
= (asymbol
*) q
;
7424 low_func
= q
->symbol
.value
;
7427 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
7428 || state
!= file_after_symbol_seen
))
7429 filename
= bfd_asymbol_name (file
);
7433 if (state
== nothing_seen
)
7434 state
= symbol_seen
;
7441 *filename_ptr
= filename
;
7442 if (functionname_ptr
)
7443 *functionname_ptr
= bfd_asymbol_name (func
);
7448 /* Find the nearest line to a particular section and offset,
7449 for error reporting. */
7452 _bfd_elf_find_nearest_line (bfd
*abfd
,
7456 const char **filename_ptr
,
7457 const char **functionname_ptr
,
7458 unsigned int *line_ptr
)
7462 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
7463 filename_ptr
, functionname_ptr
,
7466 if (!*functionname_ptr
)
7467 elf_find_function (abfd
, section
, symbols
, offset
,
7468 *filename_ptr
? NULL
: filename_ptr
,
7474 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
7475 filename_ptr
, functionname_ptr
,
7477 &elf_tdata (abfd
)->dwarf2_find_line_info
))
7479 if (!*functionname_ptr
)
7480 elf_find_function (abfd
, section
, symbols
, offset
,
7481 *filename_ptr
? NULL
: filename_ptr
,
7487 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
7488 &found
, filename_ptr
,
7489 functionname_ptr
, line_ptr
,
7490 &elf_tdata (abfd
)->line_info
))
7492 if (found
&& (*functionname_ptr
|| *line_ptr
))
7495 if (symbols
== NULL
)
7498 if (! elf_find_function (abfd
, section
, symbols
, offset
,
7499 filename_ptr
, functionname_ptr
))
7506 /* Find the line for a symbol. */
7509 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7510 const char **filename_ptr
, unsigned int *line_ptr
)
7512 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7513 filename_ptr
, line_ptr
, 0,
7514 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7517 /* After a call to bfd_find_nearest_line, successive calls to
7518 bfd_find_inliner_info can be used to get source information about
7519 each level of function inlining that terminated at the address
7520 passed to bfd_find_nearest_line. Currently this is only supported
7521 for DWARF2 with appropriate DWARF3 extensions. */
7524 _bfd_elf_find_inliner_info (bfd
*abfd
,
7525 const char **filename_ptr
,
7526 const char **functionname_ptr
,
7527 unsigned int *line_ptr
)
7530 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7531 functionname_ptr
, line_ptr
,
7532 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7537 _bfd_elf_sizeof_headers (bfd
*abfd
, struct bfd_link_info
*info
)
7539 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7540 int ret
= bed
->s
->sizeof_ehdr
;
7542 if (!info
->relocatable
)
7544 bfd_size_type phdr_size
= elf_tdata (abfd
)->program_header_size
;
7546 if (phdr_size
== (bfd_size_type
) -1)
7548 struct elf_segment_map
*m
;
7551 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
7552 phdr_size
+= bed
->s
->sizeof_phdr
;
7555 phdr_size
= get_program_header_size (abfd
, info
);
7558 elf_tdata (abfd
)->program_header_size
= phdr_size
;
7566 _bfd_elf_set_section_contents (bfd
*abfd
,
7568 const void *location
,
7570 bfd_size_type count
)
7572 Elf_Internal_Shdr
*hdr
;
7575 if (! abfd
->output_has_begun
7576 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7579 hdr
= &elf_section_data (section
)->this_hdr
;
7580 pos
= hdr
->sh_offset
+ offset
;
7581 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7582 || bfd_bwrite (location
, count
, abfd
) != count
)
7589 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7590 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7591 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7596 /* Try to convert a non-ELF reloc into an ELF one. */
7599 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7601 /* Check whether we really have an ELF howto. */
7603 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7605 bfd_reloc_code_real_type code
;
7606 reloc_howto_type
*howto
;
7608 /* Alien reloc: Try to determine its type to replace it with an
7609 equivalent ELF reloc. */
7611 if (areloc
->howto
->pc_relative
)
7613 switch (areloc
->howto
->bitsize
)
7616 code
= BFD_RELOC_8_PCREL
;
7619 code
= BFD_RELOC_12_PCREL
;
7622 code
= BFD_RELOC_16_PCREL
;
7625 code
= BFD_RELOC_24_PCREL
;
7628 code
= BFD_RELOC_32_PCREL
;
7631 code
= BFD_RELOC_64_PCREL
;
7637 howto
= bfd_reloc_type_lookup (abfd
, code
);
7639 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7641 if (howto
->pcrel_offset
)
7642 areloc
->addend
+= areloc
->address
;
7644 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7649 switch (areloc
->howto
->bitsize
)
7655 code
= BFD_RELOC_14
;
7658 code
= BFD_RELOC_16
;
7661 code
= BFD_RELOC_26
;
7664 code
= BFD_RELOC_32
;
7667 code
= BFD_RELOC_64
;
7673 howto
= bfd_reloc_type_lookup (abfd
, code
);
7677 areloc
->howto
= howto
;
7685 (*_bfd_error_handler
)
7686 (_("%B: unsupported relocation type %s"),
7687 abfd
, areloc
->howto
->name
);
7688 bfd_set_error (bfd_error_bad_value
);
7693 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7695 if (bfd_get_format (abfd
) == bfd_object
)
7697 if (elf_tdata (abfd
) != NULL
&& elf_shstrtab (abfd
) != NULL
)
7698 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7699 _bfd_dwarf2_cleanup_debug_info (abfd
);
7702 return _bfd_generic_close_and_cleanup (abfd
);
7705 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7706 in the relocation's offset. Thus we cannot allow any sort of sanity
7707 range-checking to interfere. There is nothing else to do in processing
7710 bfd_reloc_status_type
7711 _bfd_elf_rel_vtable_reloc_fn
7712 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7713 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7714 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7715 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7717 return bfd_reloc_ok
;
7720 /* Elf core file support. Much of this only works on native
7721 toolchains, since we rely on knowing the
7722 machine-dependent procfs structure in order to pick
7723 out details about the corefile. */
7725 #ifdef HAVE_SYS_PROCFS_H
7726 /* Needed for new procfs interface on sparc-solaris. */
7727 # define _STRUCTURED_PROC 1
7728 # include <sys/procfs.h>
7731 /* Return a PID that identifies a "thread" for threaded cores, or the
7732 PID of the main process for non-threaded cores. */
7735 elfcore_make_pid (bfd
*abfd
)
7739 pid
= elf_tdata (abfd
)->core_lwpid
;
7741 pid
= elf_tdata (abfd
)->core_pid
;
7746 /* If there isn't a section called NAME, make one, using
7747 data from SECT. Note, this function will generate a
7748 reference to NAME, so you shouldn't deallocate or
7752 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7756 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7759 sect2
= bfd_make_section_with_flags (abfd
, name
, sect
->flags
);
7763 sect2
->size
= sect
->size
;
7764 sect2
->filepos
= sect
->filepos
;
7765 sect2
->alignment_power
= sect
->alignment_power
;
7769 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7770 actually creates up to two pseudosections:
7771 - For the single-threaded case, a section named NAME, unless
7772 such a section already exists.
7773 - For the multi-threaded case, a section named "NAME/PID", where
7774 PID is elfcore_make_pid (abfd).
7775 Both pseudosections have identical contents. */
7777 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7783 char *threaded_name
;
7787 /* Build the section name. */
7789 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7790 len
= strlen (buf
) + 1;
7791 threaded_name
= (char *) bfd_alloc (abfd
, len
);
7792 if (threaded_name
== NULL
)
7794 memcpy (threaded_name
, buf
, len
);
7796 sect
= bfd_make_section_anyway_with_flags (abfd
, threaded_name
,
7801 sect
->filepos
= filepos
;
7802 sect
->alignment_power
= 2;
7804 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7807 /* prstatus_t exists on:
7809 linux 2.[01] + glibc
7813 #if defined (HAVE_PRSTATUS_T)
7816 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7821 if (note
->descsz
== sizeof (prstatus_t
))
7825 size
= sizeof (prstat
.pr_reg
);
7826 offset
= offsetof (prstatus_t
, pr_reg
);
7827 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7829 /* Do not overwrite the core signal if it
7830 has already been set by another thread. */
7831 if (elf_tdata (abfd
)->core_signal
== 0)
7832 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7833 if (elf_tdata (abfd
)->core_pid
== 0)
7834 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7836 /* pr_who exists on:
7839 pr_who doesn't exist on:
7842 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7843 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7845 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_pid
;
7848 #if defined (HAVE_PRSTATUS32_T)
7849 else if (note
->descsz
== sizeof (prstatus32_t
))
7851 /* 64-bit host, 32-bit corefile */
7852 prstatus32_t prstat
;
7854 size
= sizeof (prstat
.pr_reg
);
7855 offset
= offsetof (prstatus32_t
, pr_reg
);
7856 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7858 /* Do not overwrite the core signal if it
7859 has already been set by another thread. */
7860 if (elf_tdata (abfd
)->core_signal
== 0)
7861 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7862 if (elf_tdata (abfd
)->core_pid
== 0)
7863 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7865 /* pr_who exists on:
7868 pr_who doesn't exist on:
7871 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7872 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7874 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_pid
;
7877 #endif /* HAVE_PRSTATUS32_T */
7880 /* Fail - we don't know how to handle any other
7881 note size (ie. data object type). */
7885 /* Make a ".reg/999" section and a ".reg" section. */
7886 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7887 size
, note
->descpos
+ offset
);
7889 #endif /* defined (HAVE_PRSTATUS_T) */
7891 /* Create a pseudosection containing the exact contents of NOTE. */
7893 elfcore_make_note_pseudosection (bfd
*abfd
,
7895 Elf_Internal_Note
*note
)
7897 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7898 note
->descsz
, note
->descpos
);
7901 /* There isn't a consistent prfpregset_t across platforms,
7902 but it doesn't matter, because we don't have to pick this
7903 data structure apart. */
7906 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7908 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7911 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7912 type of NT_PRXFPREG. Just include the whole note's contents
7916 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7918 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7921 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7922 with a note type of NT_X86_XSTATE. Just include the whole note's
7923 contents literally. */
7926 elfcore_grok_xstatereg (bfd
*abfd
, Elf_Internal_Note
*note
)
7928 return elfcore_make_note_pseudosection (abfd
, ".reg-xstate", note
);
7932 elfcore_grok_ppc_vmx (bfd
*abfd
, Elf_Internal_Note
*note
)
7934 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vmx", note
);
7938 elfcore_grok_ppc_vsx (bfd
*abfd
, Elf_Internal_Note
*note
)
7940 return elfcore_make_note_pseudosection (abfd
, ".reg-ppc-vsx", note
);
7944 elfcore_grok_s390_high_gprs (bfd
*abfd
, Elf_Internal_Note
*note
)
7946 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-high-gprs", note
);
7950 elfcore_grok_s390_timer (bfd
*abfd
, Elf_Internal_Note
*note
)
7952 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-timer", note
);
7956 elfcore_grok_s390_todcmp (bfd
*abfd
, Elf_Internal_Note
*note
)
7958 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todcmp", note
);
7962 elfcore_grok_s390_todpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7964 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-todpreg", note
);
7968 elfcore_grok_s390_ctrs (bfd
*abfd
, Elf_Internal_Note
*note
)
7970 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-ctrs", note
);
7974 elfcore_grok_s390_prefix (bfd
*abfd
, Elf_Internal_Note
*note
)
7976 return elfcore_make_note_pseudosection (abfd
, ".reg-s390-prefix", note
);
7979 #if defined (HAVE_PRPSINFO_T)
7980 typedef prpsinfo_t elfcore_psinfo_t
;
7981 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7982 typedef prpsinfo32_t elfcore_psinfo32_t
;
7986 #if defined (HAVE_PSINFO_T)
7987 typedef psinfo_t elfcore_psinfo_t
;
7988 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7989 typedef psinfo32_t elfcore_psinfo32_t
;
7993 /* return a malloc'ed copy of a string at START which is at
7994 most MAX bytes long, possibly without a terminating '\0'.
7995 the copy will always have a terminating '\0'. */
7998 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
8001 char *end
= (char *) memchr (start
, '\0', max
);
8009 dups
= (char *) bfd_alloc (abfd
, len
+ 1);
8013 memcpy (dups
, start
, len
);
8019 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8021 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8023 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
8025 elfcore_psinfo_t psinfo
;
8027 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
8029 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8030 elf_tdata (abfd
)->core_pid
= psinfo
.pr_pid
;
8032 elf_tdata (abfd
)->core_program
8033 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
8034 sizeof (psinfo
.pr_fname
));
8036 elf_tdata (abfd
)->core_command
8037 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
8038 sizeof (psinfo
.pr_psargs
));
8040 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8041 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
8043 /* 64-bit host, 32-bit corefile */
8044 elfcore_psinfo32_t psinfo
;
8046 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
8048 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8049 elf_tdata (abfd
)->core_pid
= psinfo
.pr_pid
;
8051 elf_tdata (abfd
)->core_program
8052 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
8053 sizeof (psinfo
.pr_fname
));
8055 elf_tdata (abfd
)->core_command
8056 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
8057 sizeof (psinfo
.pr_psargs
));
8063 /* Fail - we don't know how to handle any other
8064 note size (ie. data object type). */
8068 /* Note that for some reason, a spurious space is tacked
8069 onto the end of the args in some (at least one anyway)
8070 implementations, so strip it off if it exists. */
8073 char *command
= elf_tdata (abfd
)->core_command
;
8074 int n
= strlen (command
);
8076 if (0 < n
&& command
[n
- 1] == ' ')
8077 command
[n
- 1] = '\0';
8082 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8084 #if defined (HAVE_PSTATUS_T)
8086 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8088 if (note
->descsz
== sizeof (pstatus_t
)
8089 #if defined (HAVE_PXSTATUS_T)
8090 || note
->descsz
== sizeof (pxstatus_t
)
8096 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
8098 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
8100 #if defined (HAVE_PSTATUS32_T)
8101 else if (note
->descsz
== sizeof (pstatus32_t
))
8103 /* 64-bit host, 32-bit corefile */
8106 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
8108 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
8111 /* Could grab some more details from the "representative"
8112 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8113 NT_LWPSTATUS note, presumably. */
8117 #endif /* defined (HAVE_PSTATUS_T) */
8119 #if defined (HAVE_LWPSTATUS_T)
8121 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8123 lwpstatus_t lwpstat
;
8129 if (note
->descsz
!= sizeof (lwpstat
)
8130 #if defined (HAVE_LWPXSTATUS_T)
8131 && note
->descsz
!= sizeof (lwpxstatus_t
)
8136 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
8138 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
8139 /* Do not overwrite the core signal if it has already been set by
8141 if (elf_tdata (abfd
)->core_signal
== 0)
8142 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
8144 /* Make a ".reg/999" section. */
8146 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
8147 len
= strlen (buf
) + 1;
8148 name
= bfd_alloc (abfd
, len
);
8151 memcpy (name
, buf
, len
);
8153 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8157 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8158 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
8159 sect
->filepos
= note
->descpos
8160 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
8163 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8164 sect
->size
= sizeof (lwpstat
.pr_reg
);
8165 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
8168 sect
->alignment_power
= 2;
8170 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8173 /* Make a ".reg2/999" section */
8175 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
8176 len
= strlen (buf
) + 1;
8177 name
= bfd_alloc (abfd
, len
);
8180 memcpy (name
, buf
, len
);
8182 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8186 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8187 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
8188 sect
->filepos
= note
->descpos
8189 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
8192 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8193 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
8194 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
8197 sect
->alignment_power
= 2;
8199 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
8201 #endif /* defined (HAVE_LWPSTATUS_T) */
8204 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
8211 int is_active_thread
;
8214 if (note
->descsz
< 728)
8217 if (! CONST_STRNEQ (note
->namedata
, "win32"))
8220 type
= bfd_get_32 (abfd
, note
->descdata
);
8224 case 1 /* NOTE_INFO_PROCESS */:
8225 /* FIXME: need to add ->core_command. */
8226 /* process_info.pid */
8227 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8228 /* process_info.signal */
8229 elf_tdata (abfd
)->core_signal
= bfd_get_32 (abfd
, note
->descdata
+ 12);
8232 case 2 /* NOTE_INFO_THREAD */:
8233 /* Make a ".reg/999" section. */
8234 /* thread_info.tid */
8235 sprintf (buf
, ".reg/%ld", (long) bfd_get_32 (abfd
, note
->descdata
+ 8));
8237 len
= strlen (buf
) + 1;
8238 name
= (char *) bfd_alloc (abfd
, len
);
8242 memcpy (name
, buf
, len
);
8244 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8248 /* sizeof (thread_info.thread_context) */
8250 /* offsetof (thread_info.thread_context) */
8251 sect
->filepos
= note
->descpos
+ 12;
8252 sect
->alignment_power
= 2;
8254 /* thread_info.is_active_thread */
8255 is_active_thread
= bfd_get_32 (abfd
, note
->descdata
+ 8);
8257 if (is_active_thread
)
8258 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
8262 case 3 /* NOTE_INFO_MODULE */:
8263 /* Make a ".module/xxxxxxxx" section. */
8264 /* module_info.base_address */
8265 base_addr
= bfd_get_32 (abfd
, note
->descdata
+ 4);
8266 sprintf (buf
, ".module/%08lx", (unsigned long) base_addr
);
8268 len
= strlen (buf
) + 1;
8269 name
= (char *) bfd_alloc (abfd
, len
);
8273 memcpy (name
, buf
, len
);
8275 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8280 sect
->size
= note
->descsz
;
8281 sect
->filepos
= note
->descpos
;
8282 sect
->alignment_power
= 2;
8293 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8295 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8303 if (bed
->elf_backend_grok_prstatus
)
8304 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
8306 #if defined (HAVE_PRSTATUS_T)
8307 return elfcore_grok_prstatus (abfd
, note
);
8312 #if defined (HAVE_PSTATUS_T)
8314 return elfcore_grok_pstatus (abfd
, note
);
8317 #if defined (HAVE_LWPSTATUS_T)
8319 return elfcore_grok_lwpstatus (abfd
, note
);
8322 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
8323 return elfcore_grok_prfpreg (abfd
, note
);
8325 case NT_WIN32PSTATUS
:
8326 return elfcore_grok_win32pstatus (abfd
, note
);
8328 case NT_PRXFPREG
: /* Linux SSE extension */
8329 if (note
->namesz
== 6
8330 && strcmp (note
->namedata
, "LINUX") == 0)
8331 return elfcore_grok_prxfpreg (abfd
, note
);
8335 case NT_X86_XSTATE
: /* Linux XSAVE extension */
8336 if (note
->namesz
== 6
8337 && strcmp (note
->namedata
, "LINUX") == 0)
8338 return elfcore_grok_xstatereg (abfd
, note
);
8343 if (note
->namesz
== 6
8344 && strcmp (note
->namedata
, "LINUX") == 0)
8345 return elfcore_grok_ppc_vmx (abfd
, note
);
8350 if (note
->namesz
== 6
8351 && strcmp (note
->namedata
, "LINUX") == 0)
8352 return elfcore_grok_ppc_vsx (abfd
, note
);
8356 case NT_S390_HIGH_GPRS
:
8357 if (note
->namesz
== 6
8358 && strcmp (note
->namedata
, "LINUX") == 0)
8359 return elfcore_grok_s390_high_gprs (abfd
, note
);
8364 if (note
->namesz
== 6
8365 && strcmp (note
->namedata
, "LINUX") == 0)
8366 return elfcore_grok_s390_timer (abfd
, note
);
8370 case NT_S390_TODCMP
:
8371 if (note
->namesz
== 6
8372 && strcmp (note
->namedata
, "LINUX") == 0)
8373 return elfcore_grok_s390_todcmp (abfd
, note
);
8377 case NT_S390_TODPREG
:
8378 if (note
->namesz
== 6
8379 && strcmp (note
->namedata
, "LINUX") == 0)
8380 return elfcore_grok_s390_todpreg (abfd
, note
);
8385 if (note
->namesz
== 6
8386 && strcmp (note
->namedata
, "LINUX") == 0)
8387 return elfcore_grok_s390_ctrs (abfd
, note
);
8391 case NT_S390_PREFIX
:
8392 if (note
->namesz
== 6
8393 && strcmp (note
->namedata
, "LINUX") == 0)
8394 return elfcore_grok_s390_prefix (abfd
, note
);
8400 if (bed
->elf_backend_grok_psinfo
)
8401 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
8403 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8404 return elfcore_grok_psinfo (abfd
, note
);
8411 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8416 sect
->size
= note
->descsz
;
8417 sect
->filepos
= note
->descpos
;
8418 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8426 elfobj_grok_gnu_build_id (bfd
*abfd
, Elf_Internal_Note
*note
)
8428 elf_tdata (abfd
)->build_id_size
= note
->descsz
;
8429 elf_tdata (abfd
)->build_id
= (bfd_byte
*) bfd_alloc (abfd
, note
->descsz
);
8430 if (elf_tdata (abfd
)->build_id
== NULL
)
8433 memcpy (elf_tdata (abfd
)->build_id
, note
->descdata
, note
->descsz
);
8439 elfobj_grok_gnu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8446 case NT_GNU_BUILD_ID
:
8447 return elfobj_grok_gnu_build_id (abfd
, note
);
8452 elfobj_grok_stapsdt_note_1 (bfd
*abfd
, Elf_Internal_Note
*note
)
8454 struct sdt_note
*cur
=
8455 (struct sdt_note
*) bfd_alloc (abfd
, sizeof (struct sdt_note
)
8458 cur
->next
= (struct sdt_note
*) (elf_tdata (abfd
))->sdt_note_head
;
8459 cur
->size
= (bfd_size_type
) note
->descsz
;
8460 memcpy (cur
->data
, note
->descdata
, note
->descsz
);
8462 elf_tdata (abfd
)->sdt_note_head
= cur
;
8468 elfobj_grok_stapsdt_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8473 return elfobj_grok_stapsdt_note_1 (abfd
, note
);
8481 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
8485 cp
= strchr (note
->namedata
, '@');
8488 *lwpidp
= atoi(cp
+ 1);
8495 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8497 /* Signal number at offset 0x08. */
8498 elf_tdata (abfd
)->core_signal
8499 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8501 /* Process ID at offset 0x50. */
8502 elf_tdata (abfd
)->core_pid
8503 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
8505 /* Command name at 0x7c (max 32 bytes, including nul). */
8506 elf_tdata (abfd
)->core_command
8507 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
8509 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
8514 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8518 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
8519 elf_tdata (abfd
)->core_lwpid
= lwp
;
8521 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
8523 /* NetBSD-specific core "procinfo". Note that we expect to
8524 find this note before any of the others, which is fine,
8525 since the kernel writes this note out first when it
8526 creates a core file. */
8528 return elfcore_grok_netbsd_procinfo (abfd
, note
);
8531 /* As of Jan 2002 there are no other machine-independent notes
8532 defined for NetBSD core files. If the note type is less
8533 than the start of the machine-dependent note types, we don't
8536 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
8540 switch (bfd_get_arch (abfd
))
8542 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8543 PT_GETFPREGS == mach+2. */
8545 case bfd_arch_alpha
:
8546 case bfd_arch_sparc
:
8549 case NT_NETBSDCORE_FIRSTMACH
+0:
8550 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8552 case NT_NETBSDCORE_FIRSTMACH
+2:
8553 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8559 /* On all other arch's, PT_GETREGS == mach+1 and
8560 PT_GETFPREGS == mach+3. */
8565 case NT_NETBSDCORE_FIRSTMACH
+1:
8566 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8568 case NT_NETBSDCORE_FIRSTMACH
+3:
8569 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8579 elfcore_grok_openbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
8581 /* Signal number at offset 0x08. */
8582 elf_tdata (abfd
)->core_signal
8583 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
8585 /* Process ID at offset 0x20. */
8586 elf_tdata (abfd
)->core_pid
8587 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x20);
8589 /* Command name at 0x48 (max 32 bytes, including nul). */
8590 elf_tdata (abfd
)->core_command
8591 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x48, 31);
8597 elfcore_grok_openbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8599 if (note
->type
== NT_OPENBSD_PROCINFO
)
8600 return elfcore_grok_openbsd_procinfo (abfd
, note
);
8602 if (note
->type
== NT_OPENBSD_REGS
)
8603 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
8605 if (note
->type
== NT_OPENBSD_FPREGS
)
8606 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
8608 if (note
->type
== NT_OPENBSD_XFPREGS
)
8609 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
8611 if (note
->type
== NT_OPENBSD_AUXV
)
8613 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".auxv",
8618 sect
->size
= note
->descsz
;
8619 sect
->filepos
= note
->descpos
;
8620 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8625 if (note
->type
== NT_OPENBSD_WCOOKIE
)
8627 asection
*sect
= bfd_make_section_anyway_with_flags (abfd
, ".wcookie",
8632 sect
->size
= note
->descsz
;
8633 sect
->filepos
= note
->descpos
;
8634 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
8643 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, long *tid
)
8645 void *ddata
= note
->descdata
;
8652 /* nto_procfs_status 'pid' field is at offset 0. */
8653 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
8655 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8656 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
8658 /* nto_procfs_status 'flags' field is at offset 8. */
8659 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
8661 /* nto_procfs_status 'what' field is at offset 14. */
8662 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
8664 elf_tdata (abfd
)->core_signal
= sig
;
8665 elf_tdata (abfd
)->core_lwpid
= *tid
;
8668 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8669 do not come from signals so we make sure we set the current
8670 thread just in case. */
8671 if (flags
& 0x00000080)
8672 elf_tdata (abfd
)->core_lwpid
= *tid
;
8674 /* Make a ".qnx_core_status/%d" section. */
8675 sprintf (buf
, ".qnx_core_status/%ld", *tid
);
8677 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8682 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8686 sect
->size
= note
->descsz
;
8687 sect
->filepos
= note
->descpos
;
8688 sect
->alignment_power
= 2;
8690 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
8694 elfcore_grok_nto_regs (bfd
*abfd
,
8695 Elf_Internal_Note
*note
,
8703 /* Make a "(base)/%d" section. */
8704 sprintf (buf
, "%s/%ld", base
, tid
);
8706 name
= (char *) bfd_alloc (abfd
, strlen (buf
) + 1);
8711 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8715 sect
->size
= note
->descsz
;
8716 sect
->filepos
= note
->descpos
;
8717 sect
->alignment_power
= 2;
8719 /* This is the current thread. */
8720 if (elf_tdata (abfd
)->core_lwpid
== tid
)
8721 return elfcore_maybe_make_sect (abfd
, base
, sect
);
8726 #define BFD_QNT_CORE_INFO 7
8727 #define BFD_QNT_CORE_STATUS 8
8728 #define BFD_QNT_CORE_GREG 9
8729 #define BFD_QNT_CORE_FPREG 10
8732 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8734 /* Every GREG section has a STATUS section before it. Store the
8735 tid from the previous call to pass down to the next gregs
8737 static long tid
= 1;
8741 case BFD_QNT_CORE_INFO
:
8742 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
8743 case BFD_QNT_CORE_STATUS
:
8744 return elfcore_grok_nto_status (abfd
, note
, &tid
);
8745 case BFD_QNT_CORE_GREG
:
8746 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
8747 case BFD_QNT_CORE_FPREG
:
8748 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
8755 elfcore_grok_spu_note (bfd
*abfd
, Elf_Internal_Note
*note
)
8761 /* Use note name as section name. */
8763 name
= (char *) bfd_alloc (abfd
, len
);
8766 memcpy (name
, note
->namedata
, len
);
8767 name
[len
- 1] = '\0';
8769 sect
= bfd_make_section_anyway_with_flags (abfd
, name
, SEC_HAS_CONTENTS
);
8773 sect
->size
= note
->descsz
;
8774 sect
->filepos
= note
->descpos
;
8775 sect
->alignment_power
= 1;
8780 /* Function: elfcore_write_note
8783 buffer to hold note, and current size of buffer
8787 size of data for note
8789 Writes note to end of buffer. ELF64 notes are written exactly as
8790 for ELF32, despite the current (as of 2006) ELF gabi specifying
8791 that they ought to have 8-byte namesz and descsz field, and have
8792 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8795 Pointer to realloc'd buffer, *BUFSIZ updated. */
8798 elfcore_write_note (bfd
*abfd
,
8806 Elf_External_Note
*xnp
;
8813 namesz
= strlen (name
) + 1;
8815 newspace
= 12 + ((namesz
+ 3) & -4) + ((size
+ 3) & -4);
8817 buf
= (char *) realloc (buf
, *bufsiz
+ newspace
);
8820 dest
= buf
+ *bufsiz
;
8821 *bufsiz
+= newspace
;
8822 xnp
= (Elf_External_Note
*) dest
;
8823 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8824 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8825 H_PUT_32 (abfd
, type
, xnp
->type
);
8829 memcpy (dest
, name
, namesz
);
8837 memcpy (dest
, input
, size
);
8847 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8849 elfcore_write_prpsinfo (bfd
*abfd
,
8855 const char *note_name
= "CORE";
8856 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8858 if (bed
->elf_backend_write_core_note
!= NULL
)
8861 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8862 NT_PRPSINFO
, fname
, psargs
);
8867 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8868 if (bed
->s
->elfclass
== ELFCLASS32
)
8870 #if defined (HAVE_PSINFO32_T)
8872 int note_type
= NT_PSINFO
;
8875 int note_type
= NT_PRPSINFO
;
8878 memset (&data
, 0, sizeof (data
));
8879 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8880 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8881 return elfcore_write_note (abfd
, buf
, bufsiz
,
8882 note_name
, note_type
, &data
, sizeof (data
));
8887 #if defined (HAVE_PSINFO_T)
8889 int note_type
= NT_PSINFO
;
8892 int note_type
= NT_PRPSINFO
;
8895 memset (&data
, 0, sizeof (data
));
8896 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8897 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8898 return elfcore_write_note (abfd
, buf
, bufsiz
,
8899 note_name
, note_type
, &data
, sizeof (data
));
8902 #endif /* PSINFO_T or PRPSINFO_T */
8904 #if defined (HAVE_PRSTATUS_T)
8906 elfcore_write_prstatus (bfd
*abfd
,
8913 const char *note_name
= "CORE";
8914 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8916 if (bed
->elf_backend_write_core_note
!= NULL
)
8919 ret
= (*bed
->elf_backend_write_core_note
) (abfd
, buf
, bufsiz
,
8921 pid
, cursig
, gregs
);
8926 #if defined (HAVE_PRSTATUS32_T)
8927 if (bed
->s
->elfclass
== ELFCLASS32
)
8929 prstatus32_t prstat
;
8931 memset (&prstat
, 0, sizeof (prstat
));
8932 prstat
.pr_pid
= pid
;
8933 prstat
.pr_cursig
= cursig
;
8934 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8935 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8936 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8943 memset (&prstat
, 0, sizeof (prstat
));
8944 prstat
.pr_pid
= pid
;
8945 prstat
.pr_cursig
= cursig
;
8946 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8947 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8948 NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8951 #endif /* HAVE_PRSTATUS_T */
8953 #if defined (HAVE_LWPSTATUS_T)
8955 elfcore_write_lwpstatus (bfd
*abfd
,
8962 lwpstatus_t lwpstat
;
8963 const char *note_name
= "CORE";
8965 memset (&lwpstat
, 0, sizeof (lwpstat
));
8966 lwpstat
.pr_lwpid
= pid
>> 16;
8967 lwpstat
.pr_cursig
= cursig
;
8968 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8969 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8970 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8972 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8973 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8975 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8976 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8979 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8980 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8982 #endif /* HAVE_LWPSTATUS_T */
8984 #if defined (HAVE_PSTATUS_T)
8986 elfcore_write_pstatus (bfd
*abfd
,
8990 int cursig ATTRIBUTE_UNUSED
,
8991 const void *gregs ATTRIBUTE_UNUSED
)
8993 const char *note_name
= "CORE";
8994 #if defined (HAVE_PSTATUS32_T)
8995 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8997 if (bed
->s
->elfclass
== ELFCLASS32
)
9001 memset (&pstat
, 0, sizeof (pstat
));
9002 pstat
.pr_pid
= pid
& 0xffff;
9003 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
9004 NT_PSTATUS
, &pstat
, sizeof (pstat
));
9012 memset (&pstat
, 0, sizeof (pstat
));
9013 pstat
.pr_pid
= pid
& 0xffff;
9014 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
9015 NT_PSTATUS
, &pstat
, sizeof (pstat
));
9019 #endif /* HAVE_PSTATUS_T */
9022 elfcore_write_prfpreg (bfd
*abfd
,
9028 const char *note_name
= "CORE";
9029 return elfcore_write_note (abfd
, buf
, bufsiz
,
9030 note_name
, NT_FPREGSET
, fpregs
, size
);
9034 elfcore_write_prxfpreg (bfd
*abfd
,
9037 const void *xfpregs
,
9040 char *note_name
= "LINUX";
9041 return elfcore_write_note (abfd
, buf
, bufsiz
,
9042 note_name
, NT_PRXFPREG
, xfpregs
, size
);
9046 elfcore_write_xstatereg (bfd
*abfd
, char *buf
, int *bufsiz
,
9047 const void *xfpregs
, int size
)
9049 char *note_name
= "LINUX";
9050 return elfcore_write_note (abfd
, buf
, bufsiz
,
9051 note_name
, NT_X86_XSTATE
, xfpregs
, size
);
9055 elfcore_write_ppc_vmx (bfd
*abfd
,
9058 const void *ppc_vmx
,
9061 char *note_name
= "LINUX";
9062 return elfcore_write_note (abfd
, buf
, bufsiz
,
9063 note_name
, NT_PPC_VMX
, ppc_vmx
, size
);
9067 elfcore_write_ppc_vsx (bfd
*abfd
,
9070 const void *ppc_vsx
,
9073 char *note_name
= "LINUX";
9074 return elfcore_write_note (abfd
, buf
, bufsiz
,
9075 note_name
, NT_PPC_VSX
, ppc_vsx
, size
);
9079 elfcore_write_s390_high_gprs (bfd
*abfd
,
9082 const void *s390_high_gprs
,
9085 char *note_name
= "LINUX";
9086 return elfcore_write_note (abfd
, buf
, bufsiz
,
9087 note_name
, NT_S390_HIGH_GPRS
,
9088 s390_high_gprs
, size
);
9092 elfcore_write_s390_timer (bfd
*abfd
,
9095 const void *s390_timer
,
9098 char *note_name
= "LINUX";
9099 return elfcore_write_note (abfd
, buf
, bufsiz
,
9100 note_name
, NT_S390_TIMER
, s390_timer
, size
);
9104 elfcore_write_s390_todcmp (bfd
*abfd
,
9107 const void *s390_todcmp
,
9110 char *note_name
= "LINUX";
9111 return elfcore_write_note (abfd
, buf
, bufsiz
,
9112 note_name
, NT_S390_TODCMP
, s390_todcmp
, size
);
9116 elfcore_write_s390_todpreg (bfd
*abfd
,
9119 const void *s390_todpreg
,
9122 char *note_name
= "LINUX";
9123 return elfcore_write_note (abfd
, buf
, bufsiz
,
9124 note_name
, NT_S390_TODPREG
, s390_todpreg
, size
);
9128 elfcore_write_s390_ctrs (bfd
*abfd
,
9131 const void *s390_ctrs
,
9134 char *note_name
= "LINUX";
9135 return elfcore_write_note (abfd
, buf
, bufsiz
,
9136 note_name
, NT_S390_CTRS
, s390_ctrs
, size
);
9140 elfcore_write_s390_prefix (bfd
*abfd
,
9143 const void *s390_prefix
,
9146 char *note_name
= "LINUX";
9147 return elfcore_write_note (abfd
, buf
, bufsiz
,
9148 note_name
, NT_S390_PREFIX
, s390_prefix
, size
);
9152 elfcore_write_register_note (bfd
*abfd
,
9155 const char *section
,
9159 if (strcmp (section
, ".reg2") == 0)
9160 return elfcore_write_prfpreg (abfd
, buf
, bufsiz
, data
, size
);
9161 if (strcmp (section
, ".reg-xfp") == 0)
9162 return elfcore_write_prxfpreg (abfd
, buf
, bufsiz
, data
, size
);
9163 if (strcmp (section
, ".reg-xstate") == 0)
9164 return elfcore_write_xstatereg (abfd
, buf
, bufsiz
, data
, size
);
9165 if (strcmp (section
, ".reg-ppc-vmx") == 0)
9166 return elfcore_write_ppc_vmx (abfd
, buf
, bufsiz
, data
, size
);
9167 if (strcmp (section
, ".reg-ppc-vsx") == 0)
9168 return elfcore_write_ppc_vsx (abfd
, buf
, bufsiz
, data
, size
);
9169 if (strcmp (section
, ".reg-s390-high-gprs") == 0)
9170 return elfcore_write_s390_high_gprs (abfd
, buf
, bufsiz
, data
, size
);
9171 if (strcmp (section
, ".reg-s390-timer") == 0)
9172 return elfcore_write_s390_timer (abfd
, buf
, bufsiz
, data
, size
);
9173 if (strcmp (section
, ".reg-s390-todcmp") == 0)
9174 return elfcore_write_s390_todcmp (abfd
, buf
, bufsiz
, data
, size
);
9175 if (strcmp (section
, ".reg-s390-todpreg") == 0)
9176 return elfcore_write_s390_todpreg (abfd
, buf
, bufsiz
, data
, size
);
9177 if (strcmp (section
, ".reg-s390-ctrs") == 0)
9178 return elfcore_write_s390_ctrs (abfd
, buf
, bufsiz
, data
, size
);
9179 if (strcmp (section
, ".reg-s390-prefix") == 0)
9180 return elfcore_write_s390_prefix (abfd
, buf
, bufsiz
, data
, size
);
9185 elf_parse_notes (bfd
*abfd
, char *buf
, size_t size
, file_ptr offset
)
9190 while (p
< buf
+ size
)
9192 /* FIXME: bad alignment assumption. */
9193 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
9194 Elf_Internal_Note in
;
9196 if (offsetof (Elf_External_Note
, name
) > buf
- p
+ size
)
9199 in
.type
= H_GET_32 (abfd
, xnp
->type
);
9201 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
9202 in
.namedata
= xnp
->name
;
9203 if (in
.namesz
> buf
- in
.namedata
+ size
)
9206 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
9207 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
9208 in
.descpos
= offset
+ (in
.descdata
- buf
);
9210 && (in
.descdata
>= buf
+ size
9211 || in
.descsz
> buf
- in
.descdata
+ size
))
9214 switch (bfd_get_format (abfd
))
9220 if (CONST_STRNEQ (in
.namedata
, "NetBSD-CORE"))
9222 if (! elfcore_grok_netbsd_note (abfd
, &in
))
9225 else if (CONST_STRNEQ (in
.namedata
, "OpenBSD"))
9227 if (! elfcore_grok_openbsd_note (abfd
, &in
))
9230 else if (CONST_STRNEQ (in
.namedata
, "QNX"))
9232 if (! elfcore_grok_nto_note (abfd
, &in
))
9235 else if (CONST_STRNEQ (in
.namedata
, "SPU/"))
9237 if (! elfcore_grok_spu_note (abfd
, &in
))
9242 if (! elfcore_grok_note (abfd
, &in
))
9248 if (in
.namesz
== sizeof "GNU" && strcmp (in
.namedata
, "GNU") == 0)
9250 if (! elfobj_grok_gnu_note (abfd
, &in
))
9253 else if (in
.namesz
== sizeof "stapsdt"
9254 && strcmp (in
.namedata
, "stapsdt") == 0)
9256 if (! elfobj_grok_stapsdt_note (abfd
, &in
))
9262 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
9269 elf_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
9276 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
9279 buf
= (char *) bfd_malloc (size
);
9283 if (bfd_bread (buf
, size
, abfd
) != size
9284 || !elf_parse_notes (abfd
, buf
, size
, offset
))
9294 /* Providing external access to the ELF program header table. */
9296 /* Return an upper bound on the number of bytes required to store a
9297 copy of ABFD's program header table entries. Return -1 if an error
9298 occurs; bfd_get_error will return an appropriate code. */
9301 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
9303 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9305 bfd_set_error (bfd_error_wrong_format
);
9309 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
9312 /* Copy ABFD's program header table entries to *PHDRS. The entries
9313 will be stored as an array of Elf_Internal_Phdr structures, as
9314 defined in include/elf/internal.h. To find out how large the
9315 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9317 Return the number of program header table entries read, or -1 if an
9318 error occurs; bfd_get_error will return an appropriate code. */
9321 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
9325 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
9327 bfd_set_error (bfd_error_wrong_format
);
9331 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
9332 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
9333 num_phdrs
* sizeof (Elf_Internal_Phdr
));
9338 enum elf_reloc_type_class
9339 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
9341 return reloc_class_normal
;
9344 /* For RELA architectures, return the relocation value for a
9345 relocation against a local symbol. */
9348 _bfd_elf_rela_local_sym (bfd
*abfd
,
9349 Elf_Internal_Sym
*sym
,
9351 Elf_Internal_Rela
*rel
)
9353 asection
*sec
= *psec
;
9356 relocation
= (sec
->output_section
->vma
9357 + sec
->output_offset
9359 if ((sec
->flags
& SEC_MERGE
)
9360 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
9361 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
9364 _bfd_merged_section_offset (abfd
, psec
,
9365 elf_section_data (sec
)->sec_info
,
9366 sym
->st_value
+ rel
->r_addend
);
9369 /* If we have changed the section, and our original section is
9370 marked with SEC_EXCLUDE, it means that the original
9371 SEC_MERGE section has been completely subsumed in some
9372 other SEC_MERGE section. In this case, we need to leave
9373 some info around for --emit-relocs. */
9374 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
9375 sec
->kept_section
= *psec
;
9378 rel
->r_addend
-= relocation
;
9379 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
9385 _bfd_elf_rel_local_sym (bfd
*abfd
,
9386 Elf_Internal_Sym
*sym
,
9390 asection
*sec
= *psec
;
9392 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
9393 return sym
->st_value
+ addend
;
9395 return _bfd_merged_section_offset (abfd
, psec
,
9396 elf_section_data (sec
)->sec_info
,
9397 sym
->st_value
+ addend
);
9401 _bfd_elf_section_offset (bfd
*abfd
,
9402 struct bfd_link_info
*info
,
9406 switch (sec
->sec_info_type
)
9408 case ELF_INFO_TYPE_STABS
:
9409 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
9411 case ELF_INFO_TYPE_EH_FRAME
:
9412 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
9414 if ((sec
->flags
& SEC_ELF_REVERSE_COPY
) != 0)
9416 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9417 bfd_size_type address_size
= bed
->s
->arch_size
/ 8;
9418 offset
= sec
->size
- offset
- address_size
;
9424 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
9425 reconstruct an ELF file by reading the segments out of remote memory
9426 based on the ELF file header at EHDR_VMA and the ELF program headers it
9427 points to. If not null, *LOADBASEP is filled in with the difference
9428 between the VMAs from which the segments were read, and the VMAs the
9429 file headers (and hence BFD's idea of each section's VMA) put them at.
9431 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9432 remote memory at target address VMA into the local buffer at MYADDR; it
9433 should return zero on success or an `errno' code on failure. TEMPL must
9434 be a BFD for an ELF target with the word size and byte order found in
9435 the remote memory. */
9438 bfd_elf_bfd_from_remote_memory
9442 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
9444 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
9445 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
9449 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
9450 long symcount ATTRIBUTE_UNUSED
,
9451 asymbol
**syms ATTRIBUTE_UNUSED
,
9456 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
9459 const char *relplt_name
;
9460 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
9464 Elf_Internal_Shdr
*hdr
;
9470 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
9473 if (dynsymcount
<= 0)
9476 if (!bed
->plt_sym_val
)
9479 relplt_name
= bed
->relplt_name
;
9480 if (relplt_name
== NULL
)
9481 relplt_name
= bed
->rela_plts_and_copies_p
? ".rela.plt" : ".rel.plt";
9482 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
9486 hdr
= &elf_section_data (relplt
)->this_hdr
;
9487 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
9488 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
9491 plt
= bfd_get_section_by_name (abfd
, ".plt");
9495 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
9496 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
9499 count
= relplt
->size
/ hdr
->sh_entsize
;
9500 size
= count
* sizeof (asymbol
);
9501 p
= relplt
->relocation
;
9502 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9504 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
9508 size
+= sizeof ("+0x") - 1 + 8 + 8 * (bed
->s
->elfclass
== ELFCLASS64
);
9510 size
+= sizeof ("+0x") - 1 + 8;
9515 s
= *ret
= (asymbol
*) bfd_malloc (size
);
9519 names
= (char *) (s
+ count
);
9520 p
= relplt
->relocation
;
9522 for (i
= 0; i
< count
; i
++, p
+= bed
->s
->int_rels_per_ext_rel
)
9527 addr
= bed
->plt_sym_val (i
, plt
, p
);
9528 if (addr
== (bfd_vma
) -1)
9531 *s
= **p
->sym_ptr_ptr
;
9532 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9533 we are defining a symbol, ensure one of them is set. */
9534 if ((s
->flags
& BSF_LOCAL
) == 0)
9535 s
->flags
|= BSF_GLOBAL
;
9536 s
->flags
|= BSF_SYNTHETIC
;
9538 s
->value
= addr
- plt
->vma
;
9541 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
9542 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
9548 memcpy (names
, "+0x", sizeof ("+0x") - 1);
9549 names
+= sizeof ("+0x") - 1;
9550 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
9551 for (a
= buf
; *a
== '0'; ++a
)
9554 memcpy (names
, a
, len
);
9557 memcpy (names
, "@plt", sizeof ("@plt"));
9558 names
+= sizeof ("@plt");
9565 /* It is only used by x86-64 so far. */
9566 asection _bfd_elf_large_com_section
9567 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
9568 SEC_IS_COMMON
, NULL
, "LARGE_COMMON", 0);
9571 _bfd_elf_set_osabi (bfd
* abfd
,
9572 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
9574 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
9576 i_ehdrp
= elf_elfheader (abfd
);
9578 i_ehdrp
->e_ident
[EI_OSABI
] = get_elf_backend_data (abfd
)->elf_osabi
;
9580 /* To make things simpler for the loader on Linux systems we set the
9581 osabi field to ELFOSABI_LINUX if the binary contains symbols of
9582 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9583 if (i_ehdrp
->e_ident
[EI_OSABI
] == ELFOSABI_NONE
9584 && elf_tdata (abfd
)->has_gnu_symbols
)
9585 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
9589 /* Return TRUE for ELF symbol types that represent functions.
9590 This is the default version of this function, which is sufficient for
9591 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9594 _bfd_elf_is_function_type (unsigned int type
)
9596 return (type
== STT_FUNC
9597 || type
== STT_GNU_IFUNC
);