1 // output.cc -- manage the output file for gold
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h" // for unlink_if_ordinary()
34 #include "parameters.h"
41 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
43 # define MAP_ANONYMOUS MAP_ANON
49 // Output_data variables.
51 bool Output_data::allocated_sizes_are_fixed
;
53 // Output_data methods.
55 Output_data::~Output_data()
59 // Return the default alignment for the target size.
62 Output_data::default_alignment()
64 return Output_data::default_alignment_for_size(parameters
->get_size());
67 // Return the default alignment for a size--32 or 64.
70 Output_data::default_alignment_for_size(int size
)
80 // Output_section_header methods. This currently assumes that the
81 // segment and section lists are complete at construction time.
83 Output_section_headers::Output_section_headers(
85 const Layout::Segment_list
* segment_list
,
86 const Layout::Section_list
* section_list
,
87 const Layout::Section_list
* unattached_section_list
,
88 const Stringpool
* secnamepool
)
90 segment_list_(segment_list
),
91 section_list_(section_list
),
92 unattached_section_list_(unattached_section_list
),
93 secnamepool_(secnamepool
)
95 // Count all the sections. Start with 1 for the null section.
97 if (!parameters
->output_is_object())
99 for (Layout::Segment_list::const_iterator p
= segment_list
->begin();
100 p
!= segment_list
->end();
102 if ((*p
)->type() == elfcpp::PT_LOAD
)
103 count
+= (*p
)->output_section_count();
107 for (Layout::Section_list::const_iterator p
= section_list
->begin();
108 p
!= section_list
->end();
110 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
113 count
+= unattached_section_list
->size();
115 const int size
= parameters
->get_size();
118 shdr_size
= elfcpp::Elf_sizes
<32>::shdr_size
;
120 shdr_size
= elfcpp::Elf_sizes
<64>::shdr_size
;
124 this->set_data_size(count
* shdr_size
);
127 // Write out the section headers.
130 Output_section_headers::do_write(Output_file
* of
)
132 if (parameters
->get_size() == 32)
134 if (parameters
->is_big_endian())
136 #ifdef HAVE_TARGET_32_BIG
137 this->do_sized_write
<32, true>(of
);
144 #ifdef HAVE_TARGET_32_LITTLE
145 this->do_sized_write
<32, false>(of
);
151 else if (parameters
->get_size() == 64)
153 if (parameters
->is_big_endian())
155 #ifdef HAVE_TARGET_64_BIG
156 this->do_sized_write
<64, true>(of
);
163 #ifdef HAVE_TARGET_64_LITTLE
164 this->do_sized_write
<64, false>(of
);
174 template<int size
, bool big_endian
>
176 Output_section_headers::do_sized_write(Output_file
* of
)
178 off_t all_shdrs_size
= this->data_size();
179 unsigned char* view
= of
->get_output_view(this->offset(), all_shdrs_size
);
181 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
182 unsigned char* v
= view
;
185 typename
elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
186 oshdr
.put_sh_name(0);
187 oshdr
.put_sh_type(elfcpp::SHT_NULL
);
188 oshdr
.put_sh_flags(0);
189 oshdr
.put_sh_addr(0);
190 oshdr
.put_sh_offset(0);
191 oshdr
.put_sh_size(0);
192 oshdr
.put_sh_link(0);
193 oshdr
.put_sh_info(0);
194 oshdr
.put_sh_addralign(0);
195 oshdr
.put_sh_entsize(0);
200 unsigned int shndx
= 1;
201 if (!parameters
->output_is_object())
203 for (Layout::Segment_list::const_iterator p
=
204 this->segment_list_
->begin();
205 p
!= this->segment_list_
->end();
207 v
= (*p
)->write_section_headers
<size
, big_endian
>(this->layout_
,
214 for (Layout::Section_list::const_iterator p
=
215 this->section_list_
->begin();
216 p
!= this->section_list_
->end();
219 // We do unallocated sections below, except that group
220 // sections have to come first.
221 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
222 && (*p
)->type() != elfcpp::SHT_GROUP
)
224 gold_assert(shndx
== (*p
)->out_shndx());
225 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
226 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
232 for (Layout::Section_list::const_iterator p
=
233 this->unattached_section_list_
->begin();
234 p
!= this->unattached_section_list_
->end();
237 // For a relocatable link, we did unallocated group sections
238 // above, since they have to come first.
239 if ((*p
)->type() == elfcpp::SHT_GROUP
240 && parameters
->output_is_object())
242 gold_assert(shndx
== (*p
)->out_shndx());
243 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
244 (*p
)->write_header(this->layout_
, this->secnamepool_
, &oshdr
);
249 of
->write_output_view(this->offset(), all_shdrs_size
, view
);
252 // Output_segment_header methods.
254 Output_segment_headers::Output_segment_headers(
255 const Layout::Segment_list
& segment_list
)
256 : segment_list_(segment_list
)
258 const int size
= parameters
->get_size();
261 phdr_size
= elfcpp::Elf_sizes
<32>::phdr_size
;
263 phdr_size
= elfcpp::Elf_sizes
<64>::phdr_size
;
267 this->set_data_size(segment_list
.size() * phdr_size
);
271 Output_segment_headers::do_write(Output_file
* of
)
273 if (parameters
->get_size() == 32)
275 if (parameters
->is_big_endian())
277 #ifdef HAVE_TARGET_32_BIG
278 this->do_sized_write
<32, true>(of
);
285 #ifdef HAVE_TARGET_32_LITTLE
286 this->do_sized_write
<32, false>(of
);
292 else if (parameters
->get_size() == 64)
294 if (parameters
->is_big_endian())
296 #ifdef HAVE_TARGET_64_BIG
297 this->do_sized_write
<64, true>(of
);
304 #ifdef HAVE_TARGET_64_LITTLE
305 this->do_sized_write
<64, false>(of
);
315 template<int size
, bool big_endian
>
317 Output_segment_headers::do_sized_write(Output_file
* of
)
319 const int phdr_size
= elfcpp::Elf_sizes
<size
>::phdr_size
;
320 off_t all_phdrs_size
= this->segment_list_
.size() * phdr_size
;
321 gold_assert(all_phdrs_size
== this->data_size());
322 unsigned char* view
= of
->get_output_view(this->offset(),
324 unsigned char* v
= view
;
325 for (Layout::Segment_list::const_iterator p
= this->segment_list_
.begin();
326 p
!= this->segment_list_
.end();
329 elfcpp::Phdr_write
<size
, big_endian
> ophdr(v
);
330 (*p
)->write_header(&ophdr
);
334 gold_assert(v
- view
== all_phdrs_size
);
336 of
->write_output_view(this->offset(), all_phdrs_size
, view
);
339 // Output_file_header methods.
341 Output_file_header::Output_file_header(const Target
* target
,
342 const Symbol_table
* symtab
,
343 const Output_segment_headers
* osh
,
347 segment_header_(osh
),
348 section_header_(NULL
),
352 const int size
= parameters
->get_size();
355 ehdr_size
= elfcpp::Elf_sizes
<32>::ehdr_size
;
357 ehdr_size
= elfcpp::Elf_sizes
<64>::ehdr_size
;
361 this->set_data_size(ehdr_size
);
364 // Set the section table information for a file header.
367 Output_file_header::set_section_info(const Output_section_headers
* shdrs
,
368 const Output_section
* shstrtab
)
370 this->section_header_
= shdrs
;
371 this->shstrtab_
= shstrtab
;
374 // Write out the file header.
377 Output_file_header::do_write(Output_file
* of
)
379 gold_assert(this->offset() == 0);
381 if (parameters
->get_size() == 32)
383 if (parameters
->is_big_endian())
385 #ifdef HAVE_TARGET_32_BIG
386 this->do_sized_write
<32, true>(of
);
393 #ifdef HAVE_TARGET_32_LITTLE
394 this->do_sized_write
<32, false>(of
);
400 else if (parameters
->get_size() == 64)
402 if (parameters
->is_big_endian())
404 #ifdef HAVE_TARGET_64_BIG
405 this->do_sized_write
<64, true>(of
);
412 #ifdef HAVE_TARGET_64_LITTLE
413 this->do_sized_write
<64, false>(of
);
423 // Write out the file header with appropriate size and endianess.
425 template<int size
, bool big_endian
>
427 Output_file_header::do_sized_write(Output_file
* of
)
429 gold_assert(this->offset() == 0);
431 int ehdr_size
= elfcpp::Elf_sizes
<size
>::ehdr_size
;
432 unsigned char* view
= of
->get_output_view(0, ehdr_size
);
433 elfcpp::Ehdr_write
<size
, big_endian
> oehdr(view
);
435 unsigned char e_ident
[elfcpp::EI_NIDENT
];
436 memset(e_ident
, 0, elfcpp::EI_NIDENT
);
437 e_ident
[elfcpp::EI_MAG0
] = elfcpp::ELFMAG0
;
438 e_ident
[elfcpp::EI_MAG1
] = elfcpp::ELFMAG1
;
439 e_ident
[elfcpp::EI_MAG2
] = elfcpp::ELFMAG2
;
440 e_ident
[elfcpp::EI_MAG3
] = elfcpp::ELFMAG3
;
442 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS32
;
444 e_ident
[elfcpp::EI_CLASS
] = elfcpp::ELFCLASS64
;
447 e_ident
[elfcpp::EI_DATA
] = (big_endian
448 ? elfcpp::ELFDATA2MSB
449 : elfcpp::ELFDATA2LSB
);
450 e_ident
[elfcpp::EI_VERSION
] = elfcpp::EV_CURRENT
;
451 // FIXME: Some targets may need to set EI_OSABI and EI_ABIVERSION.
452 oehdr
.put_e_ident(e_ident
);
455 if (parameters
->output_is_object())
456 e_type
= elfcpp::ET_REL
;
457 else if (parameters
->output_is_shared())
458 e_type
= elfcpp::ET_DYN
;
460 e_type
= elfcpp::ET_EXEC
;
461 oehdr
.put_e_type(e_type
);
463 oehdr
.put_e_machine(this->target_
->machine_code());
464 oehdr
.put_e_version(elfcpp::EV_CURRENT
);
466 oehdr
.put_e_entry(this->entry
<size
>());
468 if (this->segment_header_
== NULL
)
469 oehdr
.put_e_phoff(0);
471 oehdr
.put_e_phoff(this->segment_header_
->offset());
473 oehdr
.put_e_shoff(this->section_header_
->offset());
475 // FIXME: The target needs to set the flags.
476 oehdr
.put_e_flags(0);
478 oehdr
.put_e_ehsize(elfcpp::Elf_sizes
<size
>::ehdr_size
);
480 if (this->segment_header_
== NULL
)
482 oehdr
.put_e_phentsize(0);
483 oehdr
.put_e_phnum(0);
487 oehdr
.put_e_phentsize(elfcpp::Elf_sizes
<size
>::phdr_size
);
488 oehdr
.put_e_phnum(this->segment_header_
->data_size()
489 / elfcpp::Elf_sizes
<size
>::phdr_size
);
492 oehdr
.put_e_shentsize(elfcpp::Elf_sizes
<size
>::shdr_size
);
493 oehdr
.put_e_shnum(this->section_header_
->data_size()
494 / elfcpp::Elf_sizes
<size
>::shdr_size
);
495 oehdr
.put_e_shstrndx(this->shstrtab_
->out_shndx());
497 of
->write_output_view(0, ehdr_size
, view
);
500 // Return the value to use for the entry address. THIS->ENTRY_ is the
501 // symbol specified on the command line, if any.
504 typename
elfcpp::Elf_types
<size
>::Elf_Addr
505 Output_file_header::entry()
507 const bool should_issue_warning
= (this->entry_
!= NULL
508 && parameters
->output_is_executable());
510 // FIXME: Need to support target specific entry symbol.
511 const char* entry
= this->entry_
;
515 Symbol
* sym
= this->symtab_
->lookup(entry
);
517 typename Sized_symbol
<size
>::Value_type v
;
520 Sized_symbol
<size
>* ssym
;
521 ssym
= this->symtab_
->get_sized_symbol
<size
>(sym
);
522 if (!ssym
->is_defined() && should_issue_warning
)
523 gold_warning("entry symbol '%s' exists but is not defined", entry
);
528 // We couldn't find the entry symbol. See if we can parse it as
529 // a number. This supports, e.g., -e 0x1000.
531 v
= strtoull(entry
, &endptr
, 0);
534 if (should_issue_warning
)
535 gold_warning("cannot find entry symbol '%s'", entry
);
543 // Output_data_const methods.
546 Output_data_const::do_write(Output_file
* of
)
548 of
->write(this->offset(), this->data_
.data(), this->data_
.size());
551 // Output_data_const_buffer methods.
554 Output_data_const_buffer::do_write(Output_file
* of
)
556 of
->write(this->offset(), this->p_
, this->data_size());
559 // Output_section_data methods.
561 // Record the output section, and set the entry size and such.
564 Output_section_data::set_output_section(Output_section
* os
)
566 gold_assert(this->output_section_
== NULL
);
567 this->output_section_
= os
;
568 this->do_adjust_output_section(os
);
571 // Return the section index of the output section.
574 Output_section_data::do_out_shndx() const
576 gold_assert(this->output_section_
!= NULL
);
577 return this->output_section_
->out_shndx();
580 // Output_data_strtab methods.
582 // Set the final data size.
585 Output_data_strtab::set_final_data_size()
587 this->strtab_
->set_string_offsets();
588 this->set_data_size(this->strtab_
->get_strtab_size());
591 // Write out a string table.
594 Output_data_strtab::do_write(Output_file
* of
)
596 this->strtab_
->write(of
, this->offset());
599 // Output_reloc methods.
601 // A reloc against a global symbol.
603 template<bool dynamic
, int size
, bool big_endian
>
604 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
610 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
611 is_relative_(is_relative
), is_section_symbol_(false), shndx_(INVALID_CODE
)
613 // this->type_ is a bitfield; make sure TYPE fits.
614 gold_assert(this->type_
== type
);
615 this->u1_
.gsym
= gsym
;
618 this->set_needs_dynsym_index();
621 template<bool dynamic
, int size
, bool big_endian
>
622 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
629 : address_(address
), local_sym_index_(GSYM_CODE
), type_(type
),
630 is_relative_(is_relative
), is_section_symbol_(false), shndx_(shndx
)
632 gold_assert(shndx
!= INVALID_CODE
);
633 // this->type_ is a bitfield; make sure TYPE fits.
634 gold_assert(this->type_
== type
);
635 this->u1_
.gsym
= gsym
;
636 this->u2_
.relobj
= relobj
;
638 this->set_needs_dynsym_index();
641 // A reloc against a local symbol.
643 template<bool dynamic
, int size
, bool big_endian
>
644 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
645 Sized_relobj
<size
, big_endian
>* relobj
,
646 unsigned int local_sym_index
,
651 bool is_section_symbol
)
652 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
653 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
656 gold_assert(local_sym_index
!= GSYM_CODE
657 && local_sym_index
!= INVALID_CODE
);
658 // this->type_ is a bitfield; make sure TYPE fits.
659 gold_assert(this->type_
== type
);
660 this->u1_
.relobj
= relobj
;
663 this->set_needs_dynsym_index();
666 template<bool dynamic
, int size
, bool big_endian
>
667 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
668 Sized_relobj
<size
, big_endian
>* relobj
,
669 unsigned int local_sym_index
,
674 bool is_section_symbol
)
675 : address_(address
), local_sym_index_(local_sym_index
), type_(type
),
676 is_relative_(is_relative
), is_section_symbol_(is_section_symbol
),
679 gold_assert(local_sym_index
!= GSYM_CODE
680 && local_sym_index
!= INVALID_CODE
);
681 gold_assert(shndx
!= INVALID_CODE
);
682 // this->type_ is a bitfield; make sure TYPE fits.
683 gold_assert(this->type_
== type
);
684 this->u1_
.relobj
= relobj
;
685 this->u2_
.relobj
= relobj
;
687 this->set_needs_dynsym_index();
690 // A reloc against the STT_SECTION symbol of an output section.
692 template<bool dynamic
, int size
, bool big_endian
>
693 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
698 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
699 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE
)
701 // this->type_ is a bitfield; make sure TYPE fits.
702 gold_assert(this->type_
== type
);
706 this->set_needs_dynsym_index();
708 os
->set_needs_symtab_index();
711 template<bool dynamic
, int size
, bool big_endian
>
712 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::Output_reloc(
718 : address_(address
), local_sym_index_(SECTION_CODE
), type_(type
),
719 is_relative_(false), is_section_symbol_(true), shndx_(shndx
)
721 gold_assert(shndx
!= INVALID_CODE
);
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_
== type
);
725 this->u2_
.relobj
= relobj
;
727 this->set_needs_dynsym_index();
729 os
->set_needs_symtab_index();
732 // Record that we need a dynamic symbol index for this relocation.
734 template<bool dynamic
, int size
, bool big_endian
>
736 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
737 set_needs_dynsym_index()
739 if (this->is_relative_
)
741 switch (this->local_sym_index_
)
747 this->u1_
.gsym
->set_needs_dynsym_entry();
751 this->u1_
.os
->set_needs_dynsym_index();
759 const unsigned int lsi
= this->local_sym_index_
;
760 if (!this->is_section_symbol_
)
761 this->u1_
.relobj
->set_needs_output_dynsym_entry(lsi
);
764 section_offset_type dummy
;
765 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &dummy
);
766 gold_assert(os
!= NULL
);
767 os
->set_needs_dynsym_index();
774 // Get the symbol index of a relocation.
776 template<bool dynamic
, int size
, bool big_endian
>
778 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::get_symbol_index()
782 switch (this->local_sym_index_
)
788 if (this->u1_
.gsym
== NULL
)
791 index
= this->u1_
.gsym
->dynsym_index();
793 index
= this->u1_
.gsym
->symtab_index();
798 index
= this->u1_
.os
->dynsym_index();
800 index
= this->u1_
.os
->symtab_index();
804 // Relocations without symbols use a symbol index of 0.
810 const unsigned int lsi
= this->local_sym_index_
;
811 if (!this->is_section_symbol_
)
814 index
= this->u1_
.relobj
->dynsym_index(lsi
);
816 index
= this->u1_
.relobj
->symtab_index(lsi
);
820 section_offset_type dummy
;
821 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &dummy
);
822 gold_assert(os
!= NULL
);
824 index
= os
->dynsym_index();
826 index
= os
->symtab_index();
831 gold_assert(index
!= -1U);
835 // For a local section symbol, get the section offset of the input
836 // section within the output section.
838 template<bool dynamic
, int size
, bool big_endian
>
840 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::
841 local_section_offset() const
843 const unsigned int lsi
= this->local_sym_index_
;
844 section_offset_type offset
;
845 Output_section
* os
= this->u1_
.relobj
->output_section(lsi
, &offset
);
846 gold_assert(os
!= NULL
);
850 // Write out the offset and info fields of a Rel or Rela relocation
853 template<bool dynamic
, int size
, bool big_endian
>
854 template<typename Write_rel
>
856 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write_rel(
859 Address address
= this->address_
;
860 if (this->shndx_
!= INVALID_CODE
)
862 section_offset_type off
;
863 Output_section
* os
= this->u2_
.relobj
->output_section(this->shndx_
,
865 gold_assert(os
!= NULL
);
867 address
+= os
->address() + off
;
870 address
= os
->output_address(this->u2_
.relobj
, this->shndx_
,
872 gold_assert(address
!= -1U);
875 else if (this->u2_
.od
!= NULL
)
876 address
+= this->u2_
.od
->address();
877 wr
->put_r_offset(address
);
878 unsigned int sym_index
= this->is_relative_
? 0 : this->get_symbol_index();
879 wr
->put_r_info(elfcpp::elf_r_info
<size
>(sym_index
, this->type_
));
882 // Write out a Rel relocation.
884 template<bool dynamic
, int size
, bool big_endian
>
886 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::write(
887 unsigned char* pov
) const
889 elfcpp::Rel_write
<size
, big_endian
> orel(pov
);
890 this->write_rel(&orel
);
893 // Get the value of the symbol referred to by a Rel relocation.
895 template<bool dynamic
, int size
, bool big_endian
>
896 typename
elfcpp::Elf_types
<size
>::Elf_Addr
897 Output_reloc
<elfcpp::SHT_REL
, dynamic
, size
, big_endian
>::symbol_value() const
899 if (this->local_sym_index_
== GSYM_CODE
)
901 const Sized_symbol
<size
>* sym
;
902 sym
= static_cast<const Sized_symbol
<size
>*>(this->u1_
.gsym
);
905 gold_assert(this->local_sym_index_
!= SECTION_CODE
906 && this->local_sym_index_
!= INVALID_CODE
);
907 const Sized_relobj
<size
, big_endian
>* relobj
= this->u1_
.relobj
;
908 return relobj
->local_symbol_value(this->local_sym_index_
);
911 // Write out a Rela relocation.
913 template<bool dynamic
, int size
, bool big_endian
>
915 Output_reloc
<elfcpp::SHT_RELA
, dynamic
, size
, big_endian
>::write(
916 unsigned char* pov
) const
918 elfcpp::Rela_write
<size
, big_endian
> orel(pov
);
919 this->rel_
.write_rel(&orel
);
920 Addend addend
= this->addend_
;
921 if (this->rel_
.is_relative())
922 addend
+= this->rel_
.symbol_value();
923 if (this->rel_
.is_local_section_symbol())
924 addend
+= this->rel_
.local_section_offset();
925 orel
.put_r_addend(addend
);
928 // Output_data_reloc_base methods.
930 // Adjust the output section.
932 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
934 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>
935 ::do_adjust_output_section(Output_section
* os
)
937 if (sh_type
== elfcpp::SHT_REL
)
938 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
939 else if (sh_type
== elfcpp::SHT_RELA
)
940 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
944 os
->set_should_link_to_dynsym();
946 os
->set_should_link_to_symtab();
949 // Write out relocation data.
951 template<int sh_type
, bool dynamic
, int size
, bool big_endian
>
953 Output_data_reloc_base
<sh_type
, dynamic
, size
, big_endian
>::do_write(
956 const off_t off
= this->offset();
957 const off_t oview_size
= this->data_size();
958 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
960 unsigned char* pov
= oview
;
961 for (typename
Relocs::const_iterator p
= this->relocs_
.begin();
962 p
!= this->relocs_
.end();
969 gold_assert(pov
- oview
== oview_size
);
971 of
->write_output_view(off
, oview_size
, oview
);
973 // We no longer need the relocation entries.
974 this->relocs_
.clear();
977 // Class Output_relocatable_relocs.
979 template<int sh_type
, int size
, bool big_endian
>
981 Output_relocatable_relocs
<sh_type
, size
, big_endian
>::set_final_data_size()
983 this->set_data_size(this->rr_
->output_reloc_count()
984 * Reloc_types
<sh_type
, size
, big_endian
>::reloc_size
);
987 // class Output_data_group.
989 template<int size
, bool big_endian
>
990 Output_data_group
<size
, big_endian
>::Output_data_group(
991 Sized_relobj
<size
, big_endian
>* relobj
,
992 section_size_type entry_count
,
993 const elfcpp::Elf_Word
* contents
)
994 : Output_section_data(entry_count
* 4, 4),
997 this->flags_
= elfcpp::Swap
<32, big_endian
>::readval(contents
);
998 for (section_size_type i
= 1; i
< entry_count
; ++i
)
1000 unsigned int shndx
= elfcpp::Swap
<32, big_endian
>::readval(contents
+ i
);
1001 this->input_sections_
.push_back(shndx
);
1005 // Write out the section group, which means translating the section
1006 // indexes to apply to the output file.
1008 template<int size
, bool big_endian
>
1010 Output_data_group
<size
, big_endian
>::do_write(Output_file
* of
)
1012 const off_t off
= this->offset();
1013 const section_size_type oview_size
=
1014 convert_to_section_size_type(this->data_size());
1015 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1017 elfcpp::Elf_Word
* contents
= reinterpret_cast<elfcpp::Elf_Word
*>(oview
);
1018 elfcpp::Swap
<32, big_endian
>::writeval(contents
, this->flags_
);
1021 for (std::vector
<unsigned int>::const_iterator p
=
1022 this->input_sections_
.begin();
1023 p
!= this->input_sections_
.end();
1026 section_offset_type dummy
;
1027 Output_section
* os
= this->relobj_
->output_section(*p
, &dummy
);
1029 unsigned int output_shndx
;
1031 output_shndx
= os
->out_shndx();
1034 this->relobj_
->error(_("section group retained but "
1035 "group element discarded"));
1039 elfcpp::Swap
<32, big_endian
>::writeval(contents
, output_shndx
);
1042 size_t wrote
= reinterpret_cast<unsigned char*>(contents
) - oview
;
1043 gold_assert(wrote
== oview_size
);
1045 of
->write_output_view(off
, oview_size
, oview
);
1047 // We no longer need this information.
1048 this->input_sections_
.clear();
1051 // Output_data_got::Got_entry methods.
1053 // Write out the entry.
1055 template<int size
, bool big_endian
>
1057 Output_data_got
<size
, big_endian
>::Got_entry::write(unsigned char* pov
) const
1061 switch (this->local_sym_index_
)
1065 // If the symbol is resolved locally, we need to write out the
1066 // link-time value, which will be relocated dynamically by a
1067 // RELATIVE relocation.
1068 Symbol
* gsym
= this->u_
.gsym
;
1069 Sized_symbol
<size
>* sgsym
;
1070 // This cast is a bit ugly. We don't want to put a
1071 // virtual method in Symbol, because we want Symbol to be
1072 // as small as possible.
1073 sgsym
= static_cast<Sized_symbol
<size
>*>(gsym
);
1074 val
= sgsym
->value();
1079 val
= this->u_
.constant
;
1083 val
= this->u_
.object
->local_symbol_value(this->local_sym_index_
);
1087 elfcpp::Swap
<size
, big_endian
>::writeval(pov
, val
);
1090 // Output_data_got methods.
1092 // Add an entry for a global symbol to the GOT. This returns true if
1093 // this is a new GOT entry, false if the symbol already had a GOT
1096 template<int size
, bool big_endian
>
1098 Output_data_got
<size
, big_endian
>::add_global(Symbol
* gsym
)
1100 if (gsym
->has_got_offset())
1103 this->entries_
.push_back(Got_entry(gsym
));
1104 this->set_got_size();
1105 gsym
->set_got_offset(this->last_got_offset());
1109 // Add an entry for a global symbol to the GOT, and add a dynamic
1110 // relocation of type R_TYPE for the GOT entry.
1111 template<int size
, bool big_endian
>
1113 Output_data_got
<size
, big_endian
>::add_global_with_rel(
1116 unsigned int r_type
)
1118 if (gsym
->has_got_offset())
1121 this->entries_
.push_back(Got_entry());
1122 this->set_got_size();
1123 unsigned int got_offset
= this->last_got_offset();
1124 gsym
->set_got_offset(got_offset
);
1125 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1128 template<int size
, bool big_endian
>
1130 Output_data_got
<size
, big_endian
>::add_global_with_rela(
1133 unsigned int r_type
)
1135 if (gsym
->has_got_offset())
1138 this->entries_
.push_back(Got_entry());
1139 this->set_got_size();
1140 unsigned int got_offset
= this->last_got_offset();
1141 gsym
->set_got_offset(got_offset
);
1142 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1145 // Add an entry for a local symbol to the GOT. This returns true if
1146 // this is a new GOT entry, false if the symbol already has a GOT
1149 template<int size
, bool big_endian
>
1151 Output_data_got
<size
, big_endian
>::add_local(
1152 Sized_relobj
<size
, big_endian
>* object
,
1153 unsigned int symndx
)
1155 if (object
->local_has_got_offset(symndx
))
1158 this->entries_
.push_back(Got_entry(object
, symndx
));
1159 this->set_got_size();
1160 object
->set_local_got_offset(symndx
, this->last_got_offset());
1164 // Add an entry for a local symbol to the GOT, and add a dynamic
1165 // relocation of type R_TYPE for the GOT entry.
1166 template<int size
, bool big_endian
>
1168 Output_data_got
<size
, big_endian
>::add_local_with_rel(
1169 Sized_relobj
<size
, big_endian
>* object
,
1170 unsigned int symndx
,
1172 unsigned int r_type
)
1174 if (object
->local_has_got_offset(symndx
))
1177 this->entries_
.push_back(Got_entry());
1178 this->set_got_size();
1179 unsigned int got_offset
= this->last_got_offset();
1180 object
->set_local_got_offset(symndx
, got_offset
);
1181 rel_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
);
1184 template<int size
, bool big_endian
>
1186 Output_data_got
<size
, big_endian
>::add_local_with_rela(
1187 Sized_relobj
<size
, big_endian
>* object
,
1188 unsigned int symndx
,
1190 unsigned int r_type
)
1192 if (object
->local_has_got_offset(symndx
))
1195 this->entries_
.push_back(Got_entry());
1196 this->set_got_size();
1197 unsigned int got_offset
= this->last_got_offset();
1198 object
->set_local_got_offset(symndx
, got_offset
);
1199 rela_dyn
->add_local(object
, symndx
, r_type
, this, got_offset
, 0);
1202 // Add an entry (or a pair of entries) for a global TLS symbol to the GOT.
1203 // In a pair of entries, the first value in the pair will be used for the
1204 // module index, and the second value will be used for the dtv-relative
1205 // offset. This returns true if this is a new GOT entry, false if the symbol
1206 // already has a GOT entry.
1208 template<int size
, bool big_endian
>
1210 Output_data_got
<size
, big_endian
>::add_global_tls(Symbol
* gsym
, bool need_pair
)
1212 if (gsym
->has_tls_got_offset(need_pair
))
1215 this->entries_
.push_back(Got_entry(gsym
));
1216 gsym
->set_tls_got_offset(this->last_got_offset(), need_pair
);
1218 this->entries_
.push_back(Got_entry(gsym
));
1219 this->set_got_size();
1223 // Add an entry for a global TLS symbol to the GOT, and add a dynamic
1224 // relocation of type R_TYPE.
1225 template<int size
, bool big_endian
>
1227 Output_data_got
<size
, big_endian
>::add_global_tls_with_rel(
1230 unsigned int r_type
)
1232 if (gsym
->has_tls_got_offset(false))
1235 this->entries_
.push_back(Got_entry());
1236 this->set_got_size();
1237 unsigned int got_offset
= this->last_got_offset();
1238 gsym
->set_tls_got_offset(got_offset
, false);
1239 rel_dyn
->add_global(gsym
, r_type
, this, got_offset
);
1242 template<int size
, bool big_endian
>
1244 Output_data_got
<size
, big_endian
>::add_global_tls_with_rela(
1247 unsigned int r_type
)
1249 if (gsym
->has_tls_got_offset(false))
1252 this->entries_
.push_back(Got_entry());
1253 this->set_got_size();
1254 unsigned int got_offset
= this->last_got_offset();
1255 gsym
->set_tls_got_offset(got_offset
, false);
1256 rela_dyn
->add_global(gsym
, r_type
, this, got_offset
, 0);
1259 // Add a pair of entries for a global TLS symbol to the GOT, and add
1260 // dynamic relocations of type MOD_R_TYPE and DTV_R_TYPE, respectively.
1261 template<int size
, bool big_endian
>
1263 Output_data_got
<size
, big_endian
>::add_global_tls_with_rel(
1266 unsigned int mod_r_type
,
1267 unsigned int dtv_r_type
)
1269 if (gsym
->has_tls_got_offset(true))
1272 this->entries_
.push_back(Got_entry());
1273 unsigned int got_offset
= this->last_got_offset();
1274 gsym
->set_tls_got_offset(got_offset
, true);
1275 rel_dyn
->add_global(gsym
, mod_r_type
, this, got_offset
);
1277 this->entries_
.push_back(Got_entry());
1278 this->set_got_size();
1279 got_offset
= this->last_got_offset();
1280 rel_dyn
->add_global(gsym
, dtv_r_type
, this, got_offset
);
1283 template<int size
, bool big_endian
>
1285 Output_data_got
<size
, big_endian
>::add_global_tls_with_rela(
1288 unsigned int mod_r_type
,
1289 unsigned int dtv_r_type
)
1291 if (gsym
->has_tls_got_offset(true))
1294 this->entries_
.push_back(Got_entry());
1295 unsigned int got_offset
= this->last_got_offset();
1296 gsym
->set_tls_got_offset(got_offset
, true);
1297 rela_dyn
->add_global(gsym
, mod_r_type
, this, got_offset
, 0);
1299 this->entries_
.push_back(Got_entry());
1300 this->set_got_size();
1301 got_offset
= this->last_got_offset();
1302 rela_dyn
->add_global(gsym
, dtv_r_type
, this, got_offset
, 0);
1305 // Add an entry (or a pair of entries) for a local TLS symbol to the GOT.
1306 // In a pair of entries, the first value in the pair will be used for the
1307 // module index, and the second value will be used for the dtv-relative
1308 // offset. This returns true if this is a new GOT entry, false if the symbol
1309 // already has a GOT entry.
1311 template<int size
, bool big_endian
>
1313 Output_data_got
<size
, big_endian
>::add_local_tls(
1314 Sized_relobj
<size
, big_endian
>* object
,
1315 unsigned int symndx
,
1318 if (object
->local_has_tls_got_offset(symndx
, need_pair
))
1321 this->entries_
.push_back(Got_entry(object
, symndx
));
1322 object
->set_local_tls_got_offset(symndx
, this->last_got_offset(), need_pair
);
1324 this->entries_
.push_back(Got_entry(object
, symndx
));
1325 this->set_got_size();
1329 // Add an entry (or pair of entries) for a local TLS symbol to the GOT,
1330 // and add a dynamic relocation of type R_TYPE for the first GOT entry.
1331 // Because this is a local symbol, the first GOT entry can be relocated
1332 // relative to a section symbol, and the second GOT entry will have an
1333 // dtv-relative value that can be computed at link time.
1334 template<int size
, bool big_endian
>
1336 Output_data_got
<size
, big_endian
>::add_local_tls_with_rel(
1337 Sized_relobj
<size
, big_endian
>* object
,
1338 unsigned int symndx
,
1342 unsigned int r_type
)
1344 if (object
->local_has_tls_got_offset(symndx
, need_pair
))
1347 this->entries_
.push_back(Got_entry());
1348 unsigned int got_offset
= this->last_got_offset();
1349 object
->set_local_tls_got_offset(symndx
, got_offset
, need_pair
);
1350 section_offset_type off
;
1351 Output_section
* os
= object
->output_section(shndx
, &off
);
1352 rel_dyn
->add_output_section(os
, r_type
, this, got_offset
);
1354 // The second entry of the pair will be statically initialized
1355 // with the TLS offset of the symbol.
1357 this->entries_
.push_back(Got_entry(object
, symndx
));
1359 this->set_got_size();
1362 template<int size
, bool big_endian
>
1364 Output_data_got
<size
, big_endian
>::add_local_tls_with_rela(
1365 Sized_relobj
<size
, big_endian
>* object
,
1366 unsigned int symndx
,
1370 unsigned int r_type
)
1372 if (object
->local_has_tls_got_offset(symndx
, need_pair
))
1375 this->entries_
.push_back(Got_entry());
1376 unsigned int got_offset
= this->last_got_offset();
1377 object
->set_local_tls_got_offset(symndx
, got_offset
, need_pair
);
1378 section_offset_type off
;
1379 Output_section
* os
= object
->output_section(shndx
, &off
);
1380 rela_dyn
->add_output_section(os
, r_type
, this, got_offset
, 0);
1382 // The second entry of the pair will be statically initialized
1383 // with the TLS offset of the symbol.
1385 this->entries_
.push_back(Got_entry(object
, symndx
));
1387 this->set_got_size();
1390 // Write out the GOT.
1392 template<int size
, bool big_endian
>
1394 Output_data_got
<size
, big_endian
>::do_write(Output_file
* of
)
1396 const int add
= size
/ 8;
1398 const off_t off
= this->offset();
1399 const off_t oview_size
= this->data_size();
1400 unsigned char* const oview
= of
->get_output_view(off
, oview_size
);
1402 unsigned char* pov
= oview
;
1403 for (typename
Got_entries::const_iterator p
= this->entries_
.begin();
1404 p
!= this->entries_
.end();
1411 gold_assert(pov
- oview
== oview_size
);
1413 of
->write_output_view(off
, oview_size
, oview
);
1415 // We no longer need the GOT entries.
1416 this->entries_
.clear();
1419 // Output_data_dynamic::Dynamic_entry methods.
1421 // Write out the entry.
1423 template<int size
, bool big_endian
>
1425 Output_data_dynamic::Dynamic_entry::write(
1427 const Stringpool
* pool
1428 ACCEPT_SIZE_ENDIAN
) const
1430 typename
elfcpp::Elf_types
<size
>::Elf_WXword val
;
1431 switch (this->classification_
)
1433 case DYNAMIC_NUMBER
:
1437 case DYNAMIC_SECTION_ADDRESS
:
1438 val
= this->u_
.od
->address();
1441 case DYNAMIC_SECTION_SIZE
:
1442 val
= this->u_
.od
->data_size();
1445 case DYNAMIC_SYMBOL
:
1447 const Sized_symbol
<size
>* s
=
1448 static_cast<const Sized_symbol
<size
>*>(this->u_
.sym
);
1453 case DYNAMIC_STRING
:
1454 val
= pool
->get_offset(this->u_
.str
);
1461 elfcpp::Dyn_write
<size
, big_endian
> dw(pov
);
1462 dw
.put_d_tag(this->tag_
);
1466 // Output_data_dynamic methods.
1468 // Adjust the output section to set the entry size.
1471 Output_data_dynamic::do_adjust_output_section(Output_section
* os
)
1473 if (parameters
->get_size() == 32)
1474 os
->set_entsize(elfcpp::Elf_sizes
<32>::dyn_size
);
1475 else if (parameters
->get_size() == 64)
1476 os
->set_entsize(elfcpp::Elf_sizes
<64>::dyn_size
);
1481 // Set the final data size.
1484 Output_data_dynamic::set_final_data_size()
1486 // Add the terminating entry.
1487 this->add_constant(elfcpp::DT_NULL
, 0);
1490 if (parameters
->get_size() == 32)
1491 dyn_size
= elfcpp::Elf_sizes
<32>::dyn_size
;
1492 else if (parameters
->get_size() == 64)
1493 dyn_size
= elfcpp::Elf_sizes
<64>::dyn_size
;
1496 this->set_data_size(this->entries_
.size() * dyn_size
);
1499 // Write out the dynamic entries.
1502 Output_data_dynamic::do_write(Output_file
* of
)
1504 if (parameters
->get_size() == 32)
1506 if (parameters
->is_big_endian())
1508 #ifdef HAVE_TARGET_32_BIG
1509 this->sized_write
<32, true>(of
);
1516 #ifdef HAVE_TARGET_32_LITTLE
1517 this->sized_write
<32, false>(of
);
1523 else if (parameters
->get_size() == 64)
1525 if (parameters
->is_big_endian())
1527 #ifdef HAVE_TARGET_64_BIG
1528 this->sized_write
<64, true>(of
);
1535 #ifdef HAVE_TARGET_64_LITTLE
1536 this->sized_write
<64, false>(of
);
1546 template<int size
, bool big_endian
>
1548 Output_data_dynamic::sized_write(Output_file
* of
)
1550 const int dyn_size
= elfcpp::Elf_sizes
<size
>::dyn_size
;
1552 const off_t offset
= this->offset();
1553 const off_t oview_size
= this->data_size();
1554 unsigned char* const oview
= of
->get_output_view(offset
, oview_size
);
1556 unsigned char* pov
= oview
;
1557 for (typename
Dynamic_entries::const_iterator p
= this->entries_
.begin();
1558 p
!= this->entries_
.end();
1561 p
->write
SELECT_SIZE_ENDIAN_NAME(size
, big_endian
)(
1562 pov
, this->pool_
SELECT_SIZE_ENDIAN(size
, big_endian
));
1566 gold_assert(pov
- oview
== oview_size
);
1568 of
->write_output_view(offset
, oview_size
, oview
);
1570 // We no longer need the dynamic entries.
1571 this->entries_
.clear();
1574 // Output_section::Input_section methods.
1576 // Return the data size. For an input section we store the size here.
1577 // For an Output_section_data, we have to ask it for the size.
1580 Output_section::Input_section::data_size() const
1582 if (this->is_input_section())
1583 return this->u1_
.data_size
;
1585 return this->u2_
.posd
->data_size();
1588 // Set the address and file offset.
1591 Output_section::Input_section::set_address_and_file_offset(
1594 off_t section_file_offset
)
1596 if (this->is_input_section())
1597 this->u2_
.object
->set_section_offset(this->shndx_
,
1598 file_offset
- section_file_offset
);
1600 this->u2_
.posd
->set_address_and_file_offset(address
, file_offset
);
1603 // Reset the address and file offset.
1606 Output_section::Input_section::reset_address_and_file_offset()
1608 if (!this->is_input_section())
1609 this->u2_
.posd
->reset_address_and_file_offset();
1612 // Finalize the data size.
1615 Output_section::Input_section::finalize_data_size()
1617 if (!this->is_input_section())
1618 this->u2_
.posd
->finalize_data_size();
1621 // Try to turn an input offset into an output offset. We want to
1622 // return the output offset relative to the start of this
1623 // Input_section in the output section.
1626 Output_section::Input_section::output_offset(
1627 const Relobj
* object
,
1629 section_offset_type offset
,
1630 section_offset_type
*poutput
) const
1632 if (!this->is_input_section())
1633 return this->u2_
.posd
->output_offset(object
, shndx
, offset
, poutput
);
1636 if (this->shndx_
!= shndx
|| this->u2_
.object
!= object
)
1643 // Return whether this is the merge section for the input section
1647 Output_section::Input_section::is_merge_section_for(const Relobj
* object
,
1648 unsigned int shndx
) const
1650 if (this->is_input_section())
1652 return this->u2_
.posd
->is_merge_section_for(object
, shndx
);
1655 // Write out the data. We don't have to do anything for an input
1656 // section--they are handled via Object::relocate--but this is where
1657 // we write out the data for an Output_section_data.
1660 Output_section::Input_section::write(Output_file
* of
)
1662 if (!this->is_input_section())
1663 this->u2_
.posd
->write(of
);
1666 // Write the data to a buffer. As for write(), we don't have to do
1667 // anything for an input section.
1670 Output_section::Input_section::write_to_buffer(unsigned char* buffer
)
1672 if (!this->is_input_section())
1673 this->u2_
.posd
->write_to_buffer(buffer
);
1676 // Output_section methods.
1678 // Construct an Output_section. NAME will point into a Stringpool.
1680 Output_section::Output_section(const char* name
, elfcpp::Elf_Word type
,
1681 elfcpp::Elf_Xword flags
)
1686 link_section_(NULL
),
1688 info_section_(NULL
),
1697 first_input_offset_(0),
1699 postprocessing_buffer_(NULL
),
1700 needs_symtab_index_(false),
1701 needs_dynsym_index_(false),
1702 should_link_to_symtab_(false),
1703 should_link_to_dynsym_(false),
1704 after_input_sections_(false),
1705 requires_postprocessing_(false),
1706 found_in_sections_clause_(false),
1707 has_load_address_(false),
1708 info_uses_section_index_(false),
1711 // An unallocated section has no address. Forcing this means that
1712 // we don't need special treatment for symbols defined in debug
1714 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
1715 this->set_address(0);
1718 Output_section::~Output_section()
1722 // Set the entry size.
1725 Output_section::set_entsize(uint64_t v
)
1727 if (this->entsize_
== 0)
1730 gold_assert(this->entsize_
== v
);
1733 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1734 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1735 // relocation section which applies to this section, or 0 if none, or
1736 // -1U if more than one. Return the offset of the input section
1737 // within the output section. Return -1 if the input section will
1738 // receive special handling. In the normal case we don't always keep
1739 // track of input sections for an Output_section. Instead, each
1740 // Object keeps track of the Output_section for each of its input
1741 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1742 // track of input sections here; this is used when SECTIONS appears in
1745 template<int size
, bool big_endian
>
1747 Output_section::add_input_section(Sized_relobj
<size
, big_endian
>* object
,
1749 const char* secname
,
1750 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1751 unsigned int reloc_shndx
,
1752 bool have_sections_script
)
1754 elfcpp::Elf_Xword addralign
= shdr
.get_sh_addralign();
1755 if ((addralign
& (addralign
- 1)) != 0)
1757 object
->error(_("invalid alignment %lu for section \"%s\""),
1758 static_cast<unsigned long>(addralign
), secname
);
1762 if (addralign
> this->addralign_
)
1763 this->addralign_
= addralign
;
1765 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
1766 this->flags_
|= (sh_flags
1767 & (elfcpp::SHF_WRITE
1769 | elfcpp::SHF_EXECINSTR
));
1771 uint64_t entsize
= shdr
.get_sh_entsize();
1773 // .debug_str is a mergeable string section, but is not always so
1774 // marked by compilers. Mark manually here so we can optimize.
1775 if (strcmp(secname
, ".debug_str") == 0)
1777 sh_flags
|= (elfcpp::SHF_MERGE
| elfcpp::SHF_STRINGS
);
1781 // If this is a SHF_MERGE section, we pass all the input sections to
1782 // a Output_data_merge. We don't try to handle relocations for such
1784 if ((sh_flags
& elfcpp::SHF_MERGE
) != 0
1785 && reloc_shndx
== 0)
1787 if (this->add_merge_input_section(object
, shndx
, sh_flags
,
1788 entsize
, addralign
))
1790 // Tell the relocation routines that they need to call the
1791 // output_offset method to determine the final address.
1796 off_t offset_in_section
= this->current_data_size_for_child();
1797 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1800 if (aligned_offset_in_section
> offset_in_section
1801 && !have_sections_script
1802 && (sh_flags
& elfcpp::SHF_EXECINSTR
) != 0
1803 && object
->target()->has_code_fill())
1805 // We need to add some fill data. Using fill_list_ when
1806 // possible is an optimization, since we will often have fill
1807 // sections without input sections.
1808 off_t fill_len
= aligned_offset_in_section
- offset_in_section
;
1809 if (this->input_sections_
.empty())
1810 this->fills_
.push_back(Fill(offset_in_section
, fill_len
));
1813 // FIXME: When relaxing, the size needs to adjust to
1814 // maintain a constant alignment.
1815 std::string
fill_data(object
->target()->code_fill(fill_len
));
1816 Output_data_const
* odc
= new Output_data_const(fill_data
, 1);
1817 this->input_sections_
.push_back(Input_section(odc
));
1821 this->set_current_data_size_for_child(aligned_offset_in_section
1822 + shdr
.get_sh_size());
1824 // We need to keep track of this section if we are already keeping
1825 // track of sections, or if we are relaxing. FIXME: Add test for
1827 if (have_sections_script
|| !this->input_sections_
.empty())
1828 this->input_sections_
.push_back(Input_section(object
, shndx
,
1832 return aligned_offset_in_section
;
1835 // Add arbitrary data to an output section.
1838 Output_section::add_output_section_data(Output_section_data
* posd
)
1840 Input_section
inp(posd
);
1841 this->add_output_section_data(&inp
);
1843 if (posd
->is_data_size_valid())
1845 off_t offset_in_section
= this->current_data_size_for_child();
1846 off_t aligned_offset_in_section
= align_address(offset_in_section
,
1848 this->set_current_data_size_for_child(aligned_offset_in_section
1849 + posd
->data_size());
1853 // Add arbitrary data to an output section by Input_section.
1856 Output_section::add_output_section_data(Input_section
* inp
)
1858 if (this->input_sections_
.empty())
1859 this->first_input_offset_
= this->current_data_size_for_child();
1861 this->input_sections_
.push_back(*inp
);
1863 uint64_t addralign
= inp
->addralign();
1864 if (addralign
> this->addralign_
)
1865 this->addralign_
= addralign
;
1867 inp
->set_output_section(this);
1870 // Add a merge section to an output section.
1873 Output_section::add_output_merge_section(Output_section_data
* posd
,
1874 bool is_string
, uint64_t entsize
)
1876 Input_section
inp(posd
, is_string
, entsize
);
1877 this->add_output_section_data(&inp
);
1880 // Add an input section to a SHF_MERGE section.
1883 Output_section::add_merge_input_section(Relobj
* object
, unsigned int shndx
,
1884 uint64_t flags
, uint64_t entsize
,
1887 bool is_string
= (flags
& elfcpp::SHF_STRINGS
) != 0;
1889 // We only merge strings if the alignment is not more than the
1890 // character size. This could be handled, but it's unusual.
1891 if (is_string
&& addralign
> entsize
)
1894 Input_section_list::iterator p
;
1895 for (p
= this->input_sections_
.begin();
1896 p
!= this->input_sections_
.end();
1898 if (p
->is_merge_section(is_string
, entsize
, addralign
))
1900 p
->add_input_section(object
, shndx
);
1904 // We handle the actual constant merging in Output_merge_data or
1905 // Output_merge_string_data.
1906 Output_section_data
* posd
;
1908 posd
= new Output_merge_data(entsize
, addralign
);
1914 posd
= new Output_merge_string
<char>(addralign
);
1917 posd
= new Output_merge_string
<uint16_t>(addralign
);
1920 posd
= new Output_merge_string
<uint32_t>(addralign
);
1927 this->add_output_merge_section(posd
, is_string
, entsize
);
1928 posd
->add_input_section(object
, shndx
);
1933 // Given an address OFFSET relative to the start of input section
1934 // SHNDX in OBJECT, return whether this address is being included in
1935 // the final link. This should only be called if SHNDX in OBJECT has
1936 // a special mapping.
1939 Output_section::is_input_address_mapped(const Relobj
* object
,
1943 gold_assert(object
->is_section_specially_mapped(shndx
));
1945 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
1946 p
!= this->input_sections_
.end();
1949 section_offset_type output_offset
;
1950 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
1951 return output_offset
!= -1;
1954 // By default we assume that the address is mapped. This should
1955 // only be called after we have passed all sections to Layout. At
1956 // that point we should know what we are discarding.
1960 // Given an address OFFSET relative to the start of input section
1961 // SHNDX in object OBJECT, return the output offset relative to the
1962 // start of the input section in the output section. This should only
1963 // be called if SHNDX in OBJECT has a special mapping.
1966 Output_section::output_offset(const Relobj
* object
, unsigned int shndx
,
1967 section_offset_type offset
) const
1969 gold_assert(object
->is_section_specially_mapped(shndx
));
1970 // This can only be called meaningfully when layout is complete.
1971 gold_assert(Output_data::is_layout_complete());
1973 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
1974 p
!= this->input_sections_
.end();
1977 section_offset_type output_offset
;
1978 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
1979 return output_offset
;
1984 // Return the output virtual address of OFFSET relative to the start
1985 // of input section SHNDX in object OBJECT.
1988 Output_section::output_address(const Relobj
* object
, unsigned int shndx
,
1991 gold_assert(object
->is_section_specially_mapped(shndx
));
1993 uint64_t addr
= this->address() + this->first_input_offset_
;
1994 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
1995 p
!= this->input_sections_
.end();
1998 addr
= align_address(addr
, p
->addralign());
1999 section_offset_type output_offset
;
2000 if (p
->output_offset(object
, shndx
, offset
, &output_offset
))
2002 if (output_offset
== -1)
2004 return addr
+ output_offset
;
2006 addr
+= p
->data_size();
2009 // If we get here, it means that we don't know the mapping for this
2010 // input section. This might happen in principle if
2011 // add_input_section were called before add_output_section_data.
2012 // But it should never actually happen.
2017 // Return the output address of the start of the merged section for
2018 // input section SHNDX in object OBJECT.
2021 Output_section::starting_output_address(const Relobj
* object
,
2022 unsigned int shndx
) const
2024 gold_assert(object
->is_section_specially_mapped(shndx
));
2026 uint64_t addr
= this->address() + this->first_input_offset_
;
2027 for (Input_section_list::const_iterator p
= this->input_sections_
.begin();
2028 p
!= this->input_sections_
.end();
2031 addr
= align_address(addr
, p
->addralign());
2033 // It would be nice if we could use the existing output_offset
2034 // method to get the output offset of input offset 0.
2035 // Unfortunately we don't know for sure that input offset 0 is
2037 if (p
->is_merge_section_for(object
, shndx
))
2040 addr
+= p
->data_size();
2045 // Set the data size of an Output_section. This is where we handle
2046 // setting the addresses of any Output_section_data objects.
2049 Output_section::set_final_data_size()
2051 if (this->input_sections_
.empty())
2053 this->set_data_size(this->current_data_size_for_child());
2057 uint64_t address
= this->address();
2058 off_t startoff
= this->offset();
2059 off_t off
= startoff
+ this->first_input_offset_
;
2060 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2061 p
!= this->input_sections_
.end();
2064 off
= align_address(off
, p
->addralign());
2065 p
->set_address_and_file_offset(address
+ (off
- startoff
), off
,
2067 off
+= p
->data_size();
2070 this->set_data_size(off
- startoff
);
2073 // Reset the address and file offset.
2076 Output_section::do_reset_address_and_file_offset()
2078 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2079 p
!= this->input_sections_
.end();
2081 p
->reset_address_and_file_offset();
2084 // Set the TLS offset. Called only for SHT_TLS sections.
2087 Output_section::do_set_tls_offset(uint64_t tls_base
)
2089 this->tls_offset_
= this->address() - tls_base
;
2092 // Write the section header to *OSHDR.
2094 template<int size
, bool big_endian
>
2096 Output_section::write_header(const Layout
* layout
,
2097 const Stringpool
* secnamepool
,
2098 elfcpp::Shdr_write
<size
, big_endian
>* oshdr
) const
2100 oshdr
->put_sh_name(secnamepool
->get_offset(this->name_
));
2101 oshdr
->put_sh_type(this->type_
);
2103 elfcpp::Elf_Xword flags
= this->flags_
;
2104 if (this->info_section_
!= NULL
&& this->info_uses_section_index_
)
2105 flags
|= elfcpp::SHF_INFO_LINK
;
2106 oshdr
->put_sh_flags(flags
);
2108 oshdr
->put_sh_addr(this->address());
2109 oshdr
->put_sh_offset(this->offset());
2110 oshdr
->put_sh_size(this->data_size());
2111 if (this->link_section_
!= NULL
)
2112 oshdr
->put_sh_link(this->link_section_
->out_shndx());
2113 else if (this->should_link_to_symtab_
)
2114 oshdr
->put_sh_link(layout
->symtab_section()->out_shndx());
2115 else if (this->should_link_to_dynsym_
)
2116 oshdr
->put_sh_link(layout
->dynsym_section()->out_shndx());
2118 oshdr
->put_sh_link(this->link_
);
2120 elfcpp::Elf_Word info
;
2121 if (this->info_section_
!= NULL
)
2123 if (this->info_uses_section_index_
)
2124 info
= this->info_section_
->out_shndx();
2126 info
= this->info_section_
->symtab_index();
2128 else if (this->info_symndx_
!= NULL
)
2129 info
= this->info_symndx_
->symtab_index();
2132 oshdr
->put_sh_info(info
);
2134 oshdr
->put_sh_addralign(this->addralign_
);
2135 oshdr
->put_sh_entsize(this->entsize_
);
2138 // Write out the data. For input sections the data is written out by
2139 // Object::relocate, but we have to handle Output_section_data objects
2143 Output_section::do_write(Output_file
* of
)
2145 gold_assert(!this->requires_postprocessing());
2147 off_t output_section_file_offset
= this->offset();
2148 for (Fill_list::iterator p
= this->fills_
.begin();
2149 p
!= this->fills_
.end();
2152 std::string
fill_data(parameters
->target()->code_fill(p
->length()));
2153 of
->write(output_section_file_offset
+ p
->section_offset(),
2154 fill_data
.data(), fill_data
.size());
2157 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2158 p
!= this->input_sections_
.end();
2163 // If a section requires postprocessing, create the buffer to use.
2166 Output_section::create_postprocessing_buffer()
2168 gold_assert(this->requires_postprocessing());
2170 if (this->postprocessing_buffer_
!= NULL
)
2173 if (!this->input_sections_
.empty())
2175 off_t off
= this->first_input_offset_
;
2176 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2177 p
!= this->input_sections_
.end();
2180 off
= align_address(off
, p
->addralign());
2181 p
->finalize_data_size();
2182 off
+= p
->data_size();
2184 this->set_current_data_size_for_child(off
);
2187 off_t buffer_size
= this->current_data_size_for_child();
2188 this->postprocessing_buffer_
= new unsigned char[buffer_size
];
2191 // Write all the data of an Output_section into the postprocessing
2192 // buffer. This is used for sections which require postprocessing,
2193 // such as compression. Input sections are handled by
2194 // Object::Relocate.
2197 Output_section::write_to_postprocessing_buffer()
2199 gold_assert(this->requires_postprocessing());
2201 Target
* target
= parameters
->target();
2202 unsigned char* buffer
= this->postprocessing_buffer();
2203 for (Fill_list::iterator p
= this->fills_
.begin();
2204 p
!= this->fills_
.end();
2207 std::string
fill_data(target
->code_fill(p
->length()));
2208 memcpy(buffer
+ p
->section_offset(), fill_data
.data(),
2212 off_t off
= this->first_input_offset_
;
2213 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2214 p
!= this->input_sections_
.end();
2217 off
= align_address(off
, p
->addralign());
2218 p
->write_to_buffer(buffer
+ off
);
2219 off
+= p
->data_size();
2223 // Get the input sections for linker script processing. We leave
2224 // behind the Output_section_data entries. Note that this may be
2225 // slightly incorrect for merge sections. We will leave them behind,
2226 // but it is possible that the script says that they should follow
2227 // some other input sections, as in:
2228 // .rodata { *(.rodata) *(.rodata.cst*) }
2229 // For that matter, we don't handle this correctly:
2230 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2231 // With luck this will never matter.
2234 Output_section::get_input_sections(
2236 const std::string
& fill
,
2237 std::list
<std::pair
<Relobj
*, unsigned int> >* input_sections
)
2239 uint64_t orig_address
= address
;
2241 address
= align_address(address
, this->addralign());
2243 Input_section_list remaining
;
2244 for (Input_section_list::iterator p
= this->input_sections_
.begin();
2245 p
!= this->input_sections_
.end();
2248 if (p
->is_input_section())
2249 input_sections
->push_back(std::make_pair(p
->relobj(), p
->shndx()));
2252 uint64_t aligned_address
= align_address(address
, p
->addralign());
2253 if (aligned_address
!= address
&& !fill
.empty())
2255 section_size_type length
=
2256 convert_to_section_size_type(aligned_address
- address
);
2257 std::string this_fill
;
2258 this_fill
.reserve(length
);
2259 while (this_fill
.length() + fill
.length() <= length
)
2261 if (this_fill
.length() < length
)
2262 this_fill
.append(fill
, 0, length
- this_fill
.length());
2264 Output_section_data
* posd
= new Output_data_const(this_fill
, 0);
2265 remaining
.push_back(Input_section(posd
));
2267 address
= aligned_address
;
2269 remaining
.push_back(*p
);
2271 p
->finalize_data_size();
2272 address
+= p
->data_size();
2276 this->input_sections_
.swap(remaining
);
2277 this->first_input_offset_
= 0;
2279 uint64_t data_size
= address
- orig_address
;
2280 this->set_current_data_size_for_child(data_size
);
2284 // Add an input section from a script.
2287 Output_section::add_input_section_for_script(Relobj
* object
,
2292 if (addralign
> this->addralign_
)
2293 this->addralign_
= addralign
;
2295 off_t offset_in_section
= this->current_data_size_for_child();
2296 off_t aligned_offset_in_section
= align_address(offset_in_section
,
2299 this->set_current_data_size_for_child(aligned_offset_in_section
2302 this->input_sections_
.push_back(Input_section(object
, shndx
,
2303 data_size
, addralign
));
2306 // Print stats for merge sections to stderr.
2309 Output_section::print_merge_stats()
2311 Input_section_list::iterator p
;
2312 for (p
= this->input_sections_
.begin();
2313 p
!= this->input_sections_
.end();
2315 p
->print_merge_stats(this->name_
);
2318 // Output segment methods.
2320 Output_segment::Output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2332 is_max_align_known_(false),
2333 are_addresses_set_(false)
2337 // Add an Output_section to an Output_segment.
2340 Output_segment::add_output_section(Output_section
* os
,
2341 elfcpp::Elf_Word seg_flags
,
2344 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
2345 gold_assert(!this->is_max_align_known_
);
2347 // Update the segment flags.
2348 this->flags_
|= seg_flags
;
2350 Output_segment::Output_data_list
* pdl
;
2351 if (os
->type() == elfcpp::SHT_NOBITS
)
2352 pdl
= &this->output_bss_
;
2354 pdl
= &this->output_data_
;
2356 // So that PT_NOTE segments will work correctly, we need to ensure
2357 // that all SHT_NOTE sections are adjacent. This will normally
2358 // happen automatically, because all the SHT_NOTE input sections
2359 // will wind up in the same output section. However, it is possible
2360 // for multiple SHT_NOTE input sections to have different section
2361 // flags, and thus be in different output sections, but for the
2362 // different section flags to map into the same segment flags and
2363 // thus the same output segment.
2365 // Note that while there may be many input sections in an output
2366 // section, there are normally only a few output sections in an
2367 // output segment. This loop is expected to be fast.
2369 if (os
->type() == elfcpp::SHT_NOTE
&& !pdl
->empty())
2371 Output_segment::Output_data_list::iterator p
= pdl
->end();
2375 if ((*p
)->is_section_type(elfcpp::SHT_NOTE
))
2377 // We don't worry about the FRONT parameter.
2383 while (p
!= pdl
->begin());
2386 // Similarly, so that PT_TLS segments will work, we need to group
2387 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
2388 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
2389 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
2390 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
2391 // and the PT_TLS segment -- we do this grouping only for the
2393 if (this->type_
!= elfcpp::PT_TLS
2394 && (os
->flags() & elfcpp::SHF_TLS
) != 0
2395 && !this->output_data_
.empty())
2397 pdl
= &this->output_data_
;
2398 bool nobits
= os
->type() == elfcpp::SHT_NOBITS
;
2399 bool sawtls
= false;
2400 Output_segment::Output_data_list::iterator p
= pdl
->end();
2405 if ((*p
)->is_section_flag_set(elfcpp::SHF_TLS
))
2408 // Put a NOBITS section after the first TLS section.
2409 // But a PROGBITS section after the first TLS/PROGBITS
2411 insert
= nobits
|| !(*p
)->is_section_type(elfcpp::SHT_NOBITS
);
2415 // If we've gone past the TLS sections, but we've seen a
2416 // TLS section, then we need to insert this section now.
2422 // We don't worry about the FRONT parameter.
2428 while (p
!= pdl
->begin());
2430 // There are no TLS sections yet; put this one at the requested
2431 // location in the section list.
2435 pdl
->push_front(os
);
2440 // Add an Output_data (which is not an Output_section) to the start of
2444 Output_segment::add_initial_output_data(Output_data
* od
)
2446 gold_assert(!this->is_max_align_known_
);
2447 this->output_data_
.push_front(od
);
2450 // Return the maximum alignment of the Output_data in Output_segment.
2453 Output_segment::maximum_alignment()
2455 if (!this->is_max_align_known_
)
2459 addralign
= Output_segment::maximum_alignment_list(&this->output_data_
);
2460 if (addralign
> this->max_align_
)
2461 this->max_align_
= addralign
;
2463 addralign
= Output_segment::maximum_alignment_list(&this->output_bss_
);
2464 if (addralign
> this->max_align_
)
2465 this->max_align_
= addralign
;
2467 this->is_max_align_known_
= true;
2470 return this->max_align_
;
2473 // Return the maximum alignment of a list of Output_data.
2476 Output_segment::maximum_alignment_list(const Output_data_list
* pdl
)
2479 for (Output_data_list::const_iterator p
= pdl
->begin();
2483 uint64_t addralign
= (*p
)->addralign();
2484 if (addralign
> ret
)
2490 // Return the number of dynamic relocs applied to this segment.
2493 Output_segment::dynamic_reloc_count() const
2495 return (this->dynamic_reloc_count_list(&this->output_data_
)
2496 + this->dynamic_reloc_count_list(&this->output_bss_
));
2499 // Return the number of dynamic relocs applied to an Output_data_list.
2502 Output_segment::dynamic_reloc_count_list(const Output_data_list
* pdl
) const
2504 unsigned int count
= 0;
2505 for (Output_data_list::const_iterator p
= pdl
->begin();
2508 count
+= (*p
)->dynamic_reloc_count();
2512 // Set the section addresses for an Output_segment. If RESET is true,
2513 // reset the addresses first. ADDR is the address and *POFF is the
2514 // file offset. Set the section indexes starting with *PSHNDX.
2515 // Return the address of the immediately following segment. Update
2516 // *POFF and *PSHNDX.
2519 Output_segment::set_section_addresses(bool reset
, uint64_t addr
, off_t
* poff
,
2520 unsigned int* pshndx
)
2522 gold_assert(this->type_
== elfcpp::PT_LOAD
);
2524 if (!reset
&& this->are_addresses_set_
)
2526 gold_assert(this->paddr_
== addr
);
2527 addr
= this->vaddr_
;
2531 this->vaddr_
= addr
;
2532 this->paddr_
= addr
;
2533 this->are_addresses_set_
= true;
2536 off_t orig_off
= *poff
;
2537 this->offset_
= orig_off
;
2539 addr
= this->set_section_list_addresses(reset
, &this->output_data_
,
2540 addr
, poff
, pshndx
);
2541 this->filesz_
= *poff
- orig_off
;
2545 uint64_t ret
= this->set_section_list_addresses(reset
, &this->output_bss_
,
2546 addr
, poff
, pshndx
);
2547 this->memsz_
= *poff
- orig_off
;
2549 // Ignore the file offset adjustments made by the BSS Output_data
2556 // Set the addresses and file offsets in a list of Output_data
2560 Output_segment::set_section_list_addresses(bool reset
, Output_data_list
* pdl
,
2561 uint64_t addr
, off_t
* poff
,
2562 unsigned int* pshndx
)
2564 off_t startoff
= *poff
;
2566 off_t off
= startoff
;
2567 for (Output_data_list::iterator p
= pdl
->begin();
2572 (*p
)->reset_address_and_file_offset();
2574 // When using a linker script the section will most likely
2575 // already have an address.
2576 if (!(*p
)->is_address_valid())
2578 off
= align_address(off
, (*p
)->addralign());
2579 (*p
)->set_address_and_file_offset(addr
+ (off
- startoff
), off
);
2583 // The script may have inserted a skip forward, but it
2584 // better not have moved backward.
2585 gold_assert((*p
)->address() >= addr
+ (off
- startoff
));
2586 off
+= (*p
)->address() - (addr
+ (off
- startoff
));
2587 (*p
)->set_file_offset(off
);
2588 (*p
)->finalize_data_size();
2591 // Unless this is a PT_TLS segment, we want to ignore the size
2592 // of a SHF_TLS/SHT_NOBITS section. Such a section does not
2593 // affect the size of a PT_LOAD segment.
2594 if (this->type_
== elfcpp::PT_TLS
2595 || !(*p
)->is_section_flag_set(elfcpp::SHF_TLS
)
2596 || !(*p
)->is_section_type(elfcpp::SHT_NOBITS
))
2597 off
+= (*p
)->data_size();
2599 if ((*p
)->is_section())
2601 (*p
)->set_out_shndx(*pshndx
);
2607 return addr
+ (off
- startoff
);
2610 // For a non-PT_LOAD segment, set the offset from the sections, if
2614 Output_segment::set_offset()
2616 gold_assert(this->type_
!= elfcpp::PT_LOAD
);
2618 gold_assert(!this->are_addresses_set_
);
2620 if (this->output_data_
.empty() && this->output_bss_
.empty())
2624 this->are_addresses_set_
= true;
2626 this->min_p_align_
= 0;
2632 const Output_data
* first
;
2633 if (this->output_data_
.empty())
2634 first
= this->output_bss_
.front();
2636 first
= this->output_data_
.front();
2637 this->vaddr_
= first
->address();
2638 this->paddr_
= (first
->has_load_address()
2639 ? first
->load_address()
2641 this->are_addresses_set_
= true;
2642 this->offset_
= first
->offset();
2644 if (this->output_data_
.empty())
2648 const Output_data
* last_data
= this->output_data_
.back();
2649 this->filesz_
= (last_data
->address()
2650 + last_data
->data_size()
2654 const Output_data
* last
;
2655 if (this->output_bss_
.empty())
2656 last
= this->output_data_
.back();
2658 last
= this->output_bss_
.back();
2659 this->memsz_
= (last
->address()
2664 // Set the TLS offsets of the sections in the PT_TLS segment.
2667 Output_segment::set_tls_offsets()
2669 gold_assert(this->type_
== elfcpp::PT_TLS
);
2671 for (Output_data_list::iterator p
= this->output_data_
.begin();
2672 p
!= this->output_data_
.end();
2674 (*p
)->set_tls_offset(this->vaddr_
);
2676 for (Output_data_list::iterator p
= this->output_bss_
.begin();
2677 p
!= this->output_bss_
.end();
2679 (*p
)->set_tls_offset(this->vaddr_
);
2682 // Return the address of the first section.
2685 Output_segment::first_section_load_address() const
2687 for (Output_data_list::const_iterator p
= this->output_data_
.begin();
2688 p
!= this->output_data_
.end();
2690 if ((*p
)->is_section())
2691 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
2693 for (Output_data_list::const_iterator p
= this->output_bss_
.begin();
2694 p
!= this->output_bss_
.end();
2696 if ((*p
)->is_section())
2697 return (*p
)->has_load_address() ? (*p
)->load_address() : (*p
)->address();
2702 // Return the number of Output_sections in an Output_segment.
2705 Output_segment::output_section_count() const
2707 return (this->output_section_count_list(&this->output_data_
)
2708 + this->output_section_count_list(&this->output_bss_
));
2711 // Return the number of Output_sections in an Output_data_list.
2714 Output_segment::output_section_count_list(const Output_data_list
* pdl
) const
2716 unsigned int count
= 0;
2717 for (Output_data_list::const_iterator p
= pdl
->begin();
2721 if ((*p
)->is_section())
2727 // Return the section attached to the list segment with the lowest
2728 // load address. This is used when handling a PHDRS clause in a
2732 Output_segment::section_with_lowest_load_address() const
2734 Output_section
* found
= NULL
;
2735 uint64_t found_lma
= 0;
2736 this->lowest_load_address_in_list(&this->output_data_
, &found
, &found_lma
);
2738 Output_section
* found_data
= found
;
2739 this->lowest_load_address_in_list(&this->output_bss_
, &found
, &found_lma
);
2740 if (found
!= found_data
&& found_data
!= NULL
)
2742 gold_error(_("nobits section %s may not precede progbits section %s "
2744 found
->name(), found_data
->name());
2751 // Look through a list for a section with a lower load address.
2754 Output_segment::lowest_load_address_in_list(const Output_data_list
* pdl
,
2755 Output_section
** found
,
2756 uint64_t* found_lma
) const
2758 for (Output_data_list::const_iterator p
= pdl
->begin();
2762 if (!(*p
)->is_section())
2764 Output_section
* os
= static_cast<Output_section
*>(*p
);
2765 uint64_t lma
= (os
->has_load_address()
2766 ? os
->load_address()
2768 if (*found
== NULL
|| lma
< *found_lma
)
2776 // Write the segment data into *OPHDR.
2778 template<int size
, bool big_endian
>
2780 Output_segment::write_header(elfcpp::Phdr_write
<size
, big_endian
>* ophdr
)
2782 ophdr
->put_p_type(this->type_
);
2783 ophdr
->put_p_offset(this->offset_
);
2784 ophdr
->put_p_vaddr(this->vaddr_
);
2785 ophdr
->put_p_paddr(this->paddr_
);
2786 ophdr
->put_p_filesz(this->filesz_
);
2787 ophdr
->put_p_memsz(this->memsz_
);
2788 ophdr
->put_p_flags(this->flags_
);
2789 ophdr
->put_p_align(std::max(this->min_p_align_
, this->maximum_alignment()));
2792 // Write the section headers into V.
2794 template<int size
, bool big_endian
>
2796 Output_segment::write_section_headers(const Layout
* layout
,
2797 const Stringpool
* secnamepool
,
2799 unsigned int *pshndx
2800 ACCEPT_SIZE_ENDIAN
) const
2802 // Every section that is attached to a segment must be attached to a
2803 // PT_LOAD segment, so we only write out section headers for PT_LOAD
2805 if (this->type_
!= elfcpp::PT_LOAD
)
2808 v
= this->write_section_headers_list
2809 SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
2810 layout
, secnamepool
, &this->output_data_
, v
, pshndx
2811 SELECT_SIZE_ENDIAN(size
, big_endian
));
2812 v
= this->write_section_headers_list
2813 SELECT_SIZE_ENDIAN_NAME(size
, big_endian
) (
2814 layout
, secnamepool
, &this->output_bss_
, v
, pshndx
2815 SELECT_SIZE_ENDIAN(size
, big_endian
));
2819 template<int size
, bool big_endian
>
2821 Output_segment::write_section_headers_list(const Layout
* layout
,
2822 const Stringpool
* secnamepool
,
2823 const Output_data_list
* pdl
,
2825 unsigned int* pshndx
2826 ACCEPT_SIZE_ENDIAN
) const
2828 const int shdr_size
= elfcpp::Elf_sizes
<size
>::shdr_size
;
2829 for (Output_data_list::const_iterator p
= pdl
->begin();
2833 if ((*p
)->is_section())
2835 const Output_section
* ps
= static_cast<const Output_section
*>(*p
);
2836 gold_assert(*pshndx
== ps
->out_shndx());
2837 elfcpp::Shdr_write
<size
, big_endian
> oshdr(v
);
2838 ps
->write_header(layout
, secnamepool
, &oshdr
);
2846 // Output_file methods.
2848 Output_file::Output_file(const char* name
)
2853 map_is_anonymous_(false),
2854 is_temporary_(false)
2858 // Open the output file.
2861 Output_file::open(off_t file_size
)
2863 this->file_size_
= file_size
;
2865 // Unlink the file first; otherwise the open() may fail if the file
2866 // is busy (e.g. it's an executable that's currently being executed).
2868 // However, the linker may be part of a system where a zero-length
2869 // file is created for it to write to, with tight permissions (gcc
2870 // 2.95 did something like this). Unlinking the file would work
2871 // around those permission controls, so we only unlink if the file
2872 // has a non-zero size. We also unlink only regular files to avoid
2873 // trouble with directories/etc.
2875 // If we fail, continue; this command is merely a best-effort attempt
2876 // to improve the odds for open().
2878 // We let the name "-" mean "stdout"
2879 if (!this->is_temporary_
)
2881 if (strcmp(this->name_
, "-") == 0)
2882 this->o_
= STDOUT_FILENO
;
2886 if (::stat(this->name_
, &s
) == 0 && s
.st_size
!= 0)
2887 unlink_if_ordinary(this->name_
);
2889 int mode
= parameters
->output_is_object() ? 0666 : 0777;
2890 int o
= ::open(this->name_
, O_RDWR
| O_CREAT
| O_TRUNC
, mode
);
2892 gold_fatal(_("%s: open: %s"), this->name_
, strerror(errno
));
2900 // Resize the output file.
2903 Output_file::resize(off_t file_size
)
2905 // If the mmap is mapping an anonymous memory buffer, this is easy:
2906 // just mremap to the new size. If it's mapping to a file, we want
2907 // to unmap to flush to the file, then remap after growing the file.
2908 if (this->map_is_anonymous_
)
2910 void* base
= ::mremap(this->base_
, this->file_size_
, file_size
,
2912 if (base
== MAP_FAILED
)
2913 gold_fatal(_("%s: mremap: %s"), this->name_
, strerror(errno
));
2914 this->base_
= static_cast<unsigned char*>(base
);
2915 this->file_size_
= file_size
;
2920 this->file_size_
= file_size
;
2925 // Map the file into memory.
2930 const int o
= this->o_
;
2932 // If the output file is not a regular file, don't try to mmap it;
2933 // instead, we'll mmap a block of memory (an anonymous buffer), and
2934 // then later write the buffer to the file.
2936 struct stat statbuf
;
2937 if (o
== STDOUT_FILENO
|| o
== STDERR_FILENO
2938 || ::fstat(o
, &statbuf
) != 0
2939 || !S_ISREG(statbuf
.st_mode
)
2940 || this->is_temporary_
)
2942 this->map_is_anonymous_
= true;
2943 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
2944 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2948 // Write out one byte to make the file the right size.
2949 if (::lseek(o
, this->file_size_
- 1, SEEK_SET
) < 0)
2950 gold_fatal(_("%s: lseek: %s"), this->name_
, strerror(errno
));
2952 if (::write(o
, &b
, 1) != 1)
2953 gold_fatal(_("%s: write: %s"), this->name_
, strerror(errno
));
2955 // Map the file into memory.
2956 this->map_is_anonymous_
= false;
2957 base
= ::mmap(NULL
, this->file_size_
, PROT_READ
| PROT_WRITE
,
2960 if (base
== MAP_FAILED
)
2961 gold_fatal(_("%s: mmap: %s"), this->name_
, strerror(errno
));
2962 this->base_
= static_cast<unsigned char*>(base
);
2965 // Unmap the file from memory.
2968 Output_file::unmap()
2970 if (::munmap(this->base_
, this->file_size_
) < 0)
2971 gold_error(_("%s: munmap: %s"), this->name_
, strerror(errno
));
2975 // Close the output file.
2978 Output_file::close()
2980 // If the map isn't file-backed, we need to write it now.
2981 if (this->map_is_anonymous_
&& !this->is_temporary_
)
2983 size_t bytes_to_write
= this->file_size_
;
2984 while (bytes_to_write
> 0)
2986 ssize_t bytes_written
= ::write(this->o_
, this->base_
, bytes_to_write
);
2987 if (bytes_written
== 0)
2988 gold_error(_("%s: write: unexpected 0 return-value"), this->name_
);
2989 else if (bytes_written
< 0)
2990 gold_error(_("%s: write: %s"), this->name_
, strerror(errno
));
2992 bytes_to_write
-= bytes_written
;
2997 // We don't close stdout or stderr
2998 if (this->o_
!= STDOUT_FILENO
2999 && this->o_
!= STDERR_FILENO
3000 && !this->is_temporary_
)
3001 if (::close(this->o_
) < 0)
3002 gold_error(_("%s: close: %s"), this->name_
, strerror(errno
));
3006 // Instantiate the templates we need. We could use the configure
3007 // script to restrict this to only the ones for implemented targets.
3009 #ifdef HAVE_TARGET_32_LITTLE
3012 Output_section::add_input_section
<32, false>(
3013 Sized_relobj
<32, false>* object
,
3015 const char* secname
,
3016 const elfcpp::Shdr
<32, false>& shdr
,
3017 unsigned int reloc_shndx
,
3018 bool have_sections_script
);
3021 #ifdef HAVE_TARGET_32_BIG
3024 Output_section::add_input_section
<32, true>(
3025 Sized_relobj
<32, true>* object
,
3027 const char* secname
,
3028 const elfcpp::Shdr
<32, true>& shdr
,
3029 unsigned int reloc_shndx
,
3030 bool have_sections_script
);
3033 #ifdef HAVE_TARGET_64_LITTLE
3036 Output_section::add_input_section
<64, false>(
3037 Sized_relobj
<64, false>* object
,
3039 const char* secname
,
3040 const elfcpp::Shdr
<64, false>& shdr
,
3041 unsigned int reloc_shndx
,
3042 bool have_sections_script
);
3045 #ifdef HAVE_TARGET_64_BIG
3048 Output_section::add_input_section
<64, true>(
3049 Sized_relobj
<64, true>* object
,
3051 const char* secname
,
3052 const elfcpp::Shdr
<64, true>& shdr
,
3053 unsigned int reloc_shndx
,
3054 bool have_sections_script
);
3057 #ifdef HAVE_TARGET_32_LITTLE
3059 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, false>;
3062 #ifdef HAVE_TARGET_32_BIG
3064 class Output_data_reloc
<elfcpp::SHT_REL
, false, 32, true>;
3067 #ifdef HAVE_TARGET_64_LITTLE
3069 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, false>;
3072 #ifdef HAVE_TARGET_64_BIG
3074 class Output_data_reloc
<elfcpp::SHT_REL
, false, 64, true>;
3077 #ifdef HAVE_TARGET_32_LITTLE
3079 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, false>;
3082 #ifdef HAVE_TARGET_32_BIG
3084 class Output_data_reloc
<elfcpp::SHT_REL
, true, 32, true>;
3087 #ifdef HAVE_TARGET_64_LITTLE
3089 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, false>;
3092 #ifdef HAVE_TARGET_64_BIG
3094 class Output_data_reloc
<elfcpp::SHT_REL
, true, 64, true>;
3097 #ifdef HAVE_TARGET_32_LITTLE
3099 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, false>;
3102 #ifdef HAVE_TARGET_32_BIG
3104 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 32, true>;
3107 #ifdef HAVE_TARGET_64_LITTLE
3109 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, false>;
3112 #ifdef HAVE_TARGET_64_BIG
3114 class Output_data_reloc
<elfcpp::SHT_RELA
, false, 64, true>;
3117 #ifdef HAVE_TARGET_32_LITTLE
3119 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, false>;
3122 #ifdef HAVE_TARGET_32_BIG
3124 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 32, true>;
3127 #ifdef HAVE_TARGET_64_LITTLE
3129 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, false>;
3132 #ifdef HAVE_TARGET_64_BIG
3134 class Output_data_reloc
<elfcpp::SHT_RELA
, true, 64, true>;
3137 #ifdef HAVE_TARGET_32_LITTLE
3139 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, false>;
3142 #ifdef HAVE_TARGET_32_BIG
3144 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 32, true>;
3147 #ifdef HAVE_TARGET_64_LITTLE
3149 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, false>;
3152 #ifdef HAVE_TARGET_64_BIG
3154 class Output_relocatable_relocs
<elfcpp::SHT_REL
, 64, true>;
3157 #ifdef HAVE_TARGET_32_LITTLE
3159 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, false>;
3162 #ifdef HAVE_TARGET_32_BIG
3164 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 32, true>;
3167 #ifdef HAVE_TARGET_64_LITTLE
3169 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, false>;
3172 #ifdef HAVE_TARGET_64_BIG
3174 class Output_relocatable_relocs
<elfcpp::SHT_RELA
, 64, true>;
3177 #ifdef HAVE_TARGET_32_LITTLE
3179 class Output_data_group
<32, false>;
3182 #ifdef HAVE_TARGET_32_BIG
3184 class Output_data_group
<32, true>;
3187 #ifdef HAVE_TARGET_64_LITTLE
3189 class Output_data_group
<64, false>;
3192 #ifdef HAVE_TARGET_64_BIG
3194 class Output_data_group
<64, true>;
3197 #ifdef HAVE_TARGET_32_LITTLE
3199 class Output_data_got
<32, false>;
3202 #ifdef HAVE_TARGET_32_BIG
3204 class Output_data_got
<32, true>;
3207 #ifdef HAVE_TARGET_64_LITTLE
3209 class Output_data_got
<64, false>;
3212 #ifdef HAVE_TARGET_64_BIG
3214 class Output_data_got
<64, true>;
3217 } // End namespace gold.