1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
7 Center for Software Science
8 Department of Computer Science
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
14 This file is part of BFD, the Binary File Descriptor library.
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
37 #include "elf32-hppa.h"
39 #include "elf32-hppa.h"
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
53 /* We use two hash tables to hold information for linking PA ELF objects.
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
63 There are a number of different stubs generated by the linker.
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
115 : ldw -24(%sp),%rp ; restore the original rp
118 : be,n 0(%sr0,%rp) ; inter-space return. */
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
131 bfd_hash_table "btab"
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
137 elf32_hppa_dyn_reloc_entry "hdh"
139 Always remember to use GNU Coding Style. */
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
145 static const bfd_byte plt_stub
[] =
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
157 /* Section name for stubs is the associated section name plus this
159 #define STUB_SUFFIX ".stub"
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
173 #define ELIMINATE_COPY_RELOCS 1
175 enum elf32_hppa_stub_type
177 hppa_stub_long_branch
,
178 hppa_stub_long_branch_shared
,
180 hppa_stub_import_shared
,
185 struct elf32_hppa_stub_hash_entry
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root
;
190 /* The stub section. */
193 /* Offset within stub_sec of the beginning of this stub. */
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value
;
199 asection
*target_section
;
201 enum elf32_hppa_stub_type stub_type
;
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry
*hh
;
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
211 struct elf32_hppa_link_hash_entry
213 struct elf_link_hash_entry eh
;
215 /* A pointer to the most recently used stub hash entry against this
217 struct elf32_hppa_stub_hash_entry
*hsh_cache
;
219 /* Used to count relocations for delayed sizing of relocation
221 struct elf32_hppa_dyn_reloc_entry
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry
*hdh_next
;
226 /* The input section of the reloc. */
229 /* Number of relocs copied in this section. */
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count
;
240 GOT_UNKNOWN
= 0, GOT_NORMAL
= 1, GOT_TLS_GD
= 2, GOT_TLS_LDM
= 4, GOT_TLS_IE
= 8
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel
:1;
247 struct elf32_hppa_link_hash_table
249 /* The main hash table. */
250 struct elf_link_hash_table etab
;
252 /* The stub hash table. */
253 struct bfd_hash_table bstab
;
255 /* Linker stub bfd. */
258 /* Linker call-backs. */
259 asection
* (*add_stub_section
) (const char *, asection
*);
260 void (*layout_sections_again
) (void);
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
266 /* This is the section to which stubs in the group will be
269 /* The stub section. */
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count
;
276 asection
**input_list
;
277 Elf_Internal_Sym
**all_local_syms
;
279 /* Short-cuts to get to dynamic linker sections. */
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base
;
290 bfd_vma data_segment_base
;
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace
:1;
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch
:1;
298 unsigned int has_17bit_branch
:1;
299 unsigned int has_22bit_branch
:1;
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub
:1;
304 /* Small local sym cache. */
305 struct sym_cache sym_cache
;
307 /* Data for LDM relocations. */
310 bfd_signed_vma refcount
;
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
320 #define hppa_elf_hash_entry(ent) \
321 ((struct elf32_hppa_link_hash_entry *)(ent))
323 #define hppa_stub_hash_entry(ent) \
324 ((struct elf32_hppa_stub_hash_entry *)(ent))
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327 ((struct elf32_hppa_stub_hash_entry *) \
328 bfd_hash_lookup ((table), (string), (create), (copy)))
330 #define hppa_elf_local_got_tls_type(abfd) \
331 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
333 #define hh_name(hh) \
334 (hh ? hh->eh.root.root.string : "<undef>")
336 #define eh_name(eh) \
337 (eh ? eh->root.root.string : "<undef>")
339 /* Assorted hash table functions. */
341 /* Initialize an entry in the stub hash table. */
343 static struct bfd_hash_entry
*
344 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
345 struct bfd_hash_table
*table
,
348 /* Allocate the structure if it has not already been allocated by a
352 entry
= bfd_hash_allocate (table
,
353 sizeof (struct elf32_hppa_stub_hash_entry
));
358 /* Call the allocation method of the superclass. */
359 entry
= bfd_hash_newfunc (entry
, table
, string
);
362 struct elf32_hppa_stub_hash_entry
*hsh
;
364 /* Initialize the local fields. */
365 hsh
= hppa_stub_hash_entry (entry
);
366 hsh
->stub_sec
= NULL
;
367 hsh
->stub_offset
= 0;
368 hsh
->target_value
= 0;
369 hsh
->target_section
= NULL
;
370 hsh
->stub_type
= hppa_stub_long_branch
;
378 /* Initialize an entry in the link hash table. */
380 static struct bfd_hash_entry
*
381 hppa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
382 struct bfd_hash_table
*table
,
385 /* Allocate the structure if it has not already been allocated by a
389 entry
= bfd_hash_allocate (table
,
390 sizeof (struct elf32_hppa_link_hash_entry
));
395 /* Call the allocation method of the superclass. */
396 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
399 struct elf32_hppa_link_hash_entry
*hh
;
401 /* Initialize the local fields. */
402 hh
= hppa_elf_hash_entry (entry
);
403 hh
->hsh_cache
= NULL
;
404 hh
->dyn_relocs
= NULL
;
406 hh
->tls_type
= GOT_UNKNOWN
;
412 /* Create the derived linker hash table. The PA ELF port uses the derived
413 hash table to keep information specific to the PA ELF linker (without
414 using static variables). */
416 static struct bfd_link_hash_table
*
417 elf32_hppa_link_hash_table_create (bfd
*abfd
)
419 struct elf32_hppa_link_hash_table
*htab
;
420 bfd_size_type amt
= sizeof (*htab
);
422 htab
= bfd_malloc (amt
);
426 if (!_bfd_elf_link_hash_table_init (&htab
->etab
, abfd
, hppa_link_hash_newfunc
,
427 sizeof (struct elf32_hppa_link_hash_entry
),
434 /* Init the stub hash table too. */
435 if (!bfd_hash_table_init (&htab
->bstab
, stub_hash_newfunc
,
436 sizeof (struct elf32_hppa_stub_hash_entry
)))
439 htab
->stub_bfd
= NULL
;
440 htab
->add_stub_section
= NULL
;
441 htab
->layout_sections_again
= NULL
;
442 htab
->stub_group
= NULL
;
444 htab
->srelgot
= NULL
;
446 htab
->srelplt
= NULL
;
447 htab
->sdynbss
= NULL
;
448 htab
->srelbss
= NULL
;
449 htab
->text_segment_base
= (bfd_vma
) -1;
450 htab
->data_segment_base
= (bfd_vma
) -1;
451 htab
->multi_subspace
= 0;
452 htab
->has_12bit_branch
= 0;
453 htab
->has_17bit_branch
= 0;
454 htab
->has_22bit_branch
= 0;
455 htab
->need_plt_stub
= 0;
456 htab
->sym_cache
.abfd
= NULL
;
457 htab
->tls_ldm_got
.refcount
= 0;
459 return &htab
->etab
.root
;
462 /* Free the derived linker hash table. */
465 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table
*btab
)
467 struct elf32_hppa_link_hash_table
*htab
468 = (struct elf32_hppa_link_hash_table
*) btab
;
470 bfd_hash_table_free (&htab
->bstab
);
471 _bfd_generic_link_hash_table_free (btab
);
474 /* Build a name for an entry in the stub hash table. */
477 hppa_stub_name (const asection
*input_section
,
478 const asection
*sym_sec
,
479 const struct elf32_hppa_link_hash_entry
*hh
,
480 const Elf_Internal_Rela
*rela
)
487 len
= 8 + 1 + strlen (hh_name (hh
)) + 1 + 8 + 1;
488 stub_name
= bfd_malloc (len
);
489 if (stub_name
!= NULL
)
490 sprintf (stub_name
, "%08x_%s+%x",
491 input_section
->id
& 0xffffffff,
493 (int) rela
->r_addend
& 0xffffffff);
497 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
498 stub_name
= bfd_malloc (len
);
499 if (stub_name
!= NULL
)
500 sprintf (stub_name
, "%08x_%x:%x+%x",
501 input_section
->id
& 0xffffffff,
502 sym_sec
->id
& 0xffffffff,
503 (int) ELF32_R_SYM (rela
->r_info
) & 0xffffffff,
504 (int) rela
->r_addend
& 0xffffffff);
509 /* Look up an entry in the stub hash. Stub entries are cached because
510 creating the stub name takes a bit of time. */
512 static struct elf32_hppa_stub_hash_entry
*
513 hppa_get_stub_entry (const asection
*input_section
,
514 const asection
*sym_sec
,
515 struct elf32_hppa_link_hash_entry
*hh
,
516 const Elf_Internal_Rela
*rela
,
517 struct elf32_hppa_link_hash_table
*htab
)
519 struct elf32_hppa_stub_hash_entry
*hsh_entry
;
520 const asection
*id_sec
;
522 /* If this input section is part of a group of sections sharing one
523 stub section, then use the id of the first section in the group.
524 Stub names need to include a section id, as there may well be
525 more than one stub used to reach say, printf, and we need to
526 distinguish between them. */
527 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
529 if (hh
!= NULL
&& hh
->hsh_cache
!= NULL
530 && hh
->hsh_cache
->hh
== hh
531 && hh
->hsh_cache
->id_sec
== id_sec
)
533 hsh_entry
= hh
->hsh_cache
;
539 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hh
, rela
);
540 if (stub_name
== NULL
)
543 hsh_entry
= hppa_stub_hash_lookup (&htab
->bstab
,
544 stub_name
, FALSE
, FALSE
);
546 hh
->hsh_cache
= hsh_entry
;
554 /* Add a new stub entry to the stub hash. Not all fields of the new
555 stub entry are initialised. */
557 static struct elf32_hppa_stub_hash_entry
*
558 hppa_add_stub (const char *stub_name
,
560 struct elf32_hppa_link_hash_table
*htab
)
564 struct elf32_hppa_stub_hash_entry
*hsh
;
566 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
567 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
568 if (stub_sec
== NULL
)
570 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
571 if (stub_sec
== NULL
)
577 namelen
= strlen (link_sec
->name
);
578 len
= namelen
+ sizeof (STUB_SUFFIX
);
579 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
583 memcpy (s_name
, link_sec
->name
, namelen
);
584 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
585 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
586 if (stub_sec
== NULL
)
588 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
590 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
593 /* Enter this entry into the linker stub hash table. */
594 hsh
= hppa_stub_hash_lookup (&htab
->bstab
, stub_name
,
598 (*_bfd_error_handler
) (_("%B: cannot create stub entry %s"),
604 hsh
->stub_sec
= stub_sec
;
605 hsh
->stub_offset
= 0;
606 hsh
->id_sec
= link_sec
;
610 /* Determine the type of stub needed, if any, for a call. */
612 static enum elf32_hppa_stub_type
613 hppa_type_of_stub (asection
*input_sec
,
614 const Elf_Internal_Rela
*rela
,
615 struct elf32_hppa_link_hash_entry
*hh
,
617 struct bfd_link_info
*info
)
620 bfd_vma branch_offset
;
621 bfd_vma max_branch_offset
;
625 && hh
->eh
.plt
.offset
!= (bfd_vma
) -1
626 && hh
->eh
.dynindx
!= -1
629 || !hh
->eh
.def_regular
630 || hh
->eh
.root
.type
== bfd_link_hash_defweak
))
632 /* We need an import stub. Decide between hppa_stub_import
633 and hppa_stub_import_shared later. */
634 return hppa_stub_import
;
637 /* Determine where the call point is. */
638 location
= (input_sec
->output_offset
639 + input_sec
->output_section
->vma
642 branch_offset
= destination
- location
- 8;
643 r_type
= ELF32_R_TYPE (rela
->r_info
);
645 /* Determine if a long branch stub is needed. parisc branch offsets
646 are relative to the second instruction past the branch, ie. +8
647 bytes on from the branch instruction location. The offset is
648 signed and counts in units of 4 bytes. */
649 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
650 max_branch_offset
= (1 << (17 - 1)) << 2;
652 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
653 max_branch_offset
= (1 << (12 - 1)) << 2;
655 else /* R_PARISC_PCREL22F. */
656 max_branch_offset
= (1 << (22 - 1)) << 2;
658 if (branch_offset
+ max_branch_offset
>= 2*max_branch_offset
)
659 return hppa_stub_long_branch
;
661 return hppa_stub_none
;
664 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
665 IN_ARG contains the link info pointer. */
667 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
668 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
670 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
671 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
672 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
674 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
675 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
676 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
677 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
679 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
680 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
682 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
683 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
684 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
685 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
687 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
688 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
689 #define NOP 0x08000240 /* nop */
690 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
691 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
692 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
699 #define LDW_R1_DLT LDW_R1_R19
701 #define LDW_R1_DLT LDW_R1_DP
705 hppa_build_one_stub (struct bfd_hash_entry
*bh
, void *in_arg
)
707 struct elf32_hppa_stub_hash_entry
*hsh
;
708 struct bfd_link_info
*info
;
709 struct elf32_hppa_link_hash_table
*htab
;
719 /* Massage our args to the form they really have. */
720 hsh
= hppa_stub_hash_entry (bh
);
721 info
= (struct bfd_link_info
*)in_arg
;
723 htab
= hppa_link_hash_table (info
);
727 stub_sec
= hsh
->stub_sec
;
729 /* Make a note of the offset within the stubs for this entry. */
730 hsh
->stub_offset
= stub_sec
->size
;
731 loc
= stub_sec
->contents
+ hsh
->stub_offset
;
733 stub_bfd
= stub_sec
->owner
;
735 switch (hsh
->stub_type
)
737 case hppa_stub_long_branch
:
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value
= (hsh
->target_value
743 + hsh
->target_section
->output_offset
744 + hsh
->target_section
->output_section
->vma
);
746 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
);
747 insn
= hppa_rebuild_insn ((int) LDIL_R1
, val
, 21);
748 bfd_put_32 (stub_bfd
, insn
, loc
);
750 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
) >> 2;
751 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
752 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
757 case hppa_stub_long_branch_shared
:
758 /* Branches are relative. This is where we are going to. */
759 sym_value
= (hsh
->target_value
760 + hsh
->target_section
->output_offset
761 + hsh
->target_section
->output_section
->vma
);
763 /* And this is where we are coming from, more or less. */
764 sym_value
-= (hsh
->stub_offset
765 + stub_sec
->output_offset
766 + stub_sec
->output_section
->vma
);
768 bfd_put_32 (stub_bfd
, (bfd_vma
) BL_R1
, loc
);
769 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_lrsel
);
770 insn
= hppa_rebuild_insn ((int) ADDIL_R1
, val
, 21);
771 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
773 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_rrsel
) >> 2;
774 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
775 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
779 case hppa_stub_import
:
780 case hppa_stub_import_shared
:
781 off
= hsh
->hh
->eh
.plt
.offset
;
782 if (off
>= (bfd_vma
) -2)
785 off
&= ~ (bfd_vma
) 1;
787 + htab
->splt
->output_offset
788 + htab
->splt
->output_section
->vma
789 - elf_gp (htab
->splt
->output_section
->owner
));
793 if (hsh
->stub_type
== hppa_stub_import_shared
)
796 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
),
797 insn
= hppa_rebuild_insn ((int) insn
, val
, 21);
798 bfd_put_32 (stub_bfd
, insn
, loc
);
800 /* It is critical to use lrsel/rrsel here because we are using
801 two different offsets (+0 and +4) from sym_value. If we use
802 lsel/rsel then with unfortunate sym_values we will round
803 sym_value+4 up to the next 2k block leading to a mis-match
804 between the lsel and rsel value. */
805 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
);
806 insn
= hppa_rebuild_insn ((int) LDW_R1_R21
, val
, 14);
807 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
809 if (htab
->multi_subspace
)
811 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
812 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
813 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
815 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_R21_R1
, loc
+ 12);
816 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
817 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_R21
, loc
+ 20);
818 bfd_put_32 (stub_bfd
, (bfd_vma
) STW_RP
, loc
+ 24);
824 bfd_put_32 (stub_bfd
, (bfd_vma
) BV_R0_R21
, loc
+ 8);
825 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
826 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
827 bfd_put_32 (stub_bfd
, insn
, loc
+ 12);
834 case hppa_stub_export
:
835 /* Branches are relative. This is where we are going to. */
836 sym_value
= (hsh
->target_value
837 + hsh
->target_section
->output_offset
838 + hsh
->target_section
->output_section
->vma
);
840 /* And this is where we are coming from. */
841 sym_value
-= (hsh
->stub_offset
842 + stub_sec
->output_offset
843 + stub_sec
->output_section
->vma
);
845 if (sym_value
- 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
846 && (!htab
->has_22bit_branch
847 || sym_value
- 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
849 (*_bfd_error_handler
)
850 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
851 hsh
->target_section
->owner
,
853 (long) hsh
->stub_offset
,
854 hsh
->bh_root
.string
);
855 bfd_set_error (bfd_error_bad_value
);
859 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_fsel
) >> 2;
860 if (!htab
->has_22bit_branch
)
861 insn
= hppa_rebuild_insn ((int) BL_RP
, val
, 17);
863 insn
= hppa_rebuild_insn ((int) BL22_RP
, val
, 22);
864 bfd_put_32 (stub_bfd
, insn
, loc
);
866 bfd_put_32 (stub_bfd
, (bfd_vma
) NOP
, loc
+ 4);
867 bfd_put_32 (stub_bfd
, (bfd_vma
) LDW_RP
, loc
+ 8);
868 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_RP_R1
, loc
+ 12);
869 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
870 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_RP
, loc
+ 20);
872 /* Point the function symbol at the stub. */
873 hsh
->hh
->eh
.root
.u
.def
.section
= stub_sec
;
874 hsh
->hh
->eh
.root
.u
.def
.value
= stub_sec
->size
;
884 stub_sec
->size
+= size
;
909 /* As above, but don't actually build the stub. Just bump offset so
910 we know stub section sizes. */
913 hppa_size_one_stub (struct bfd_hash_entry
*bh
, void *in_arg
)
915 struct elf32_hppa_stub_hash_entry
*hsh
;
916 struct elf32_hppa_link_hash_table
*htab
;
919 /* Massage our args to the form they really have. */
920 hsh
= hppa_stub_hash_entry (bh
);
923 if (hsh
->stub_type
== hppa_stub_long_branch
)
925 else if (hsh
->stub_type
== hppa_stub_long_branch_shared
)
927 else if (hsh
->stub_type
== hppa_stub_export
)
929 else /* hppa_stub_import or hppa_stub_import_shared. */
931 if (htab
->multi_subspace
)
937 hsh
->stub_sec
->size
+= size
;
941 /* Return nonzero if ABFD represents an HPPA ELF32 file.
942 Additionally we set the default architecture and machine. */
945 elf32_hppa_object_p (bfd
*abfd
)
947 Elf_Internal_Ehdr
* i_ehdrp
;
950 i_ehdrp
= elf_elfheader (abfd
);
951 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
953 /* GCC on hppa-linux produces binaries with OSABI=GNU,
954 but the kernel produces corefiles with OSABI=SysV. */
955 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_GNU
&&
956 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
959 else if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0)
961 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
962 but the kernel produces corefiles with OSABI=SysV. */
963 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NETBSD
&&
964 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
969 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
973 flags
= i_ehdrp
->e_flags
;
974 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
977 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
979 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
981 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
982 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
983 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
988 /* Create the .plt and .got sections, and set up our hash table
989 short-cuts to various dynamic sections. */
992 elf32_hppa_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
994 struct elf32_hppa_link_hash_table
*htab
;
995 struct elf_link_hash_entry
*eh
;
997 /* Don't try to create the .plt and .got twice. */
998 htab
= hppa_link_hash_table (info
);
1001 if (htab
->splt
!= NULL
)
1004 /* Call the generic code to do most of the work. */
1005 if (! _bfd_elf_create_dynamic_sections (abfd
, info
))
1008 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
1009 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
1011 htab
->sgot
= bfd_get_section_by_name (abfd
, ".got");
1012 htab
->srelgot
= bfd_get_section_by_name (abfd
, ".rela.got");
1014 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
1015 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh
= elf_hash_table (info
)->hgot
;
1020 eh
->forced_local
= 0;
1021 eh
->other
= STV_DEFAULT
;
1022 return bfd_elf_link_record_dynamic_symbol (info
, eh
);
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info
*info
,
1029 struct elf_link_hash_entry
*eh_dir
,
1030 struct elf_link_hash_entry
*eh_ind
)
1032 struct elf32_hppa_link_hash_entry
*hh_dir
, *hh_ind
;
1034 hh_dir
= hppa_elf_hash_entry (eh_dir
);
1035 hh_ind
= hppa_elf_hash_entry (eh_ind
);
1037 if (hh_ind
->dyn_relocs
!= NULL
)
1039 if (hh_dir
->dyn_relocs
!= NULL
)
1041 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
1042 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp
= &hh_ind
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; )
1048 struct elf32_hppa_dyn_reloc_entry
*hdh_q
;
1050 for (hdh_q
= hh_dir
->dyn_relocs
;
1052 hdh_q
= hdh_q
->hdh_next
)
1053 if (hdh_q
->sec
== hdh_p
->sec
)
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q
->relative_count
+= hdh_p
->relative_count
;
1058 hdh_q
->count
+= hdh_p
->count
;
1059 *hdh_pp
= hdh_p
->hdh_next
;
1063 hdh_pp
= &hdh_p
->hdh_next
;
1065 *hdh_pp
= hh_dir
->dyn_relocs
;
1068 hh_dir
->dyn_relocs
= hh_ind
->dyn_relocs
;
1069 hh_ind
->dyn_relocs
= NULL
;
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind
->root
.type
!= bfd_link_hash_indirect
1074 && eh_dir
->dynamic_adjusted
)
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir
->ref_dynamic
|= eh_ind
->ref_dynamic
;
1080 eh_dir
->ref_regular
|= eh_ind
->ref_regular
;
1081 eh_dir
->ref_regular_nonweak
|= eh_ind
->ref_regular_nonweak
;
1082 eh_dir
->needs_plt
|= eh_ind
->needs_plt
;
1086 if (eh_ind
->root
.type
== bfd_link_hash_indirect
1087 && eh_dir
->got
.refcount
<= 0)
1089 hh_dir
->tls_type
= hh_ind
->tls_type
;
1090 hh_ind
->tls_type
= GOT_UNKNOWN
;
1093 _bfd_elf_link_hash_copy_indirect (info
, eh_dir
, eh_ind
);
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1099 int r_type
, int is_local ATTRIBUTE_UNUSED
)
1101 /* For now we don't support linker optimizations. */
1105 /* Return a pointer to the local GOT, PLT and TLS reference counts
1106 for ABFD. Returns NULL if the storage allocation fails. */
1108 static bfd_signed_vma
*
1109 hppa32_elf_local_refcounts (bfd
*abfd
)
1111 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1112 bfd_signed_vma
*local_refcounts
;
1114 local_refcounts
= elf_local_got_refcounts (abfd
);
1115 if (local_refcounts
== NULL
)
1119 /* Allocate space for local GOT and PLT reference
1120 counts. Done this way to save polluting elf_obj_tdata
1121 with another target specific pointer. */
1122 size
= symtab_hdr
->sh_info
;
1123 size
*= 2 * sizeof (bfd_signed_vma
);
1124 /* Add in space to store the local GOT TLS types. */
1125 size
+= symtab_hdr
->sh_info
;
1126 local_refcounts
= bfd_zalloc (abfd
, size
);
1127 if (local_refcounts
== NULL
)
1129 elf_local_got_refcounts (abfd
) = local_refcounts
;
1130 memset (hppa_elf_local_got_tls_type (abfd
), GOT_UNKNOWN
,
1131 symtab_hdr
->sh_info
);
1133 return local_refcounts
;
1137 /* Look through the relocs for a section during the first phase, and
1138 calculate needed space in the global offset table, procedure linkage
1139 table, and dynamic reloc sections. At this point we haven't
1140 necessarily read all the input files. */
1143 elf32_hppa_check_relocs (bfd
*abfd
,
1144 struct bfd_link_info
*info
,
1146 const Elf_Internal_Rela
*relocs
)
1148 Elf_Internal_Shdr
*symtab_hdr
;
1149 struct elf_link_hash_entry
**eh_syms
;
1150 const Elf_Internal_Rela
*rela
;
1151 const Elf_Internal_Rela
*rela_end
;
1152 struct elf32_hppa_link_hash_table
*htab
;
1154 int tls_type
= GOT_UNKNOWN
, old_tls_type
= GOT_UNKNOWN
;
1156 if (info
->relocatable
)
1159 htab
= hppa_link_hash_table (info
);
1162 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1163 eh_syms
= elf_sym_hashes (abfd
);
1166 rela_end
= relocs
+ sec
->reloc_count
;
1167 for (rela
= relocs
; rela
< rela_end
; rela
++)
1176 unsigned int r_symndx
, r_type
;
1177 struct elf32_hppa_link_hash_entry
*hh
;
1180 r_symndx
= ELF32_R_SYM (rela
->r_info
);
1182 if (r_symndx
< symtab_hdr
->sh_info
)
1186 hh
= hppa_elf_hash_entry (eh_syms
[r_symndx
- symtab_hdr
->sh_info
]);
1187 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
1188 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
1189 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
1192 r_type
= ELF32_R_TYPE (rela
->r_info
);
1193 r_type
= elf32_hppa_optimized_tls_reloc (info
, r_type
, hh
== NULL
);
1197 case R_PARISC_DLTIND14F
:
1198 case R_PARISC_DLTIND14R
:
1199 case R_PARISC_DLTIND21L
:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry
= NEED_GOT
;
1204 case R_PARISC_PLABEL14R
: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L
:
1206 case R_PARISC_PLABEL32
:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela
->r_addend
!= 0)
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry
= PLT_PLABEL
| NEED_PLT
| NEED_DYNREL
;
1231 case R_PARISC_PCREL12F
:
1232 htab
->has_12bit_branch
= 1;
1235 case R_PARISC_PCREL17C
:
1236 case R_PARISC_PCREL17F
:
1237 htab
->has_17bit_branch
= 1;
1240 case R_PARISC_PCREL22F
:
1241 htab
->has_22bit_branch
= 1;
1243 /* Function calls might need to go through the .plt, and
1244 might require long branch stubs. */
1247 /* We know local syms won't need a .plt entry, and if
1248 they need a long branch stub we can't guarantee that
1249 we can reach the stub. So just flag an error later
1250 if we're doing a shared link and find we need a long
1256 /* Global symbols will need a .plt entry if they remain
1257 global, and in most cases won't need a long branch
1258 stub. Unfortunately, we have to cater for the case
1259 where a symbol is forced local by versioning, or due
1260 to symbolic linking, and we lose the .plt entry. */
1261 need_entry
= NEED_PLT
;
1262 if (hh
->eh
.type
== STT_PARISC_MILLI
)
1267 case R_PARISC_SEGBASE
: /* Used to set segment base. */
1268 case R_PARISC_SEGREL32
: /* Relative reloc, used for unwind. */
1269 case R_PARISC_PCREL14F
: /* PC relative load/store. */
1270 case R_PARISC_PCREL14R
:
1271 case R_PARISC_PCREL17R
: /* External branches. */
1272 case R_PARISC_PCREL21L
: /* As above, and for load/store too. */
1273 case R_PARISC_PCREL32
:
1274 /* We don't need to propagate the relocation if linking a
1275 shared object since these are section relative. */
1278 case R_PARISC_DPREL14F
: /* Used for gp rel data load/store. */
1279 case R_PARISC_DPREL14R
:
1280 case R_PARISC_DPREL21L
:
1283 (*_bfd_error_handler
)
1284 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1286 elf_hppa_howto_table
[r_type
].name
);
1287 bfd_set_error (bfd_error_bad_value
);
1292 case R_PARISC_DIR17F
: /* Used for external branches. */
1293 case R_PARISC_DIR17R
:
1294 case R_PARISC_DIR14F
: /* Used for load/store from absolute locn. */
1295 case R_PARISC_DIR14R
:
1296 case R_PARISC_DIR21L
: /* As above, and for ext branches too. */
1297 case R_PARISC_DIR32
: /* .word relocs. */
1298 /* We may want to output a dynamic relocation later. */
1299 need_entry
= NEED_DYNREL
;
1302 /* This relocation describes the C++ object vtable hierarchy.
1303 Reconstruct it for later use during GC. */
1304 case R_PARISC_GNU_VTINHERIT
:
1305 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, &hh
->eh
, rela
->r_offset
))
1309 /* This relocation describes which C++ vtable entries are actually
1310 used. Record for later use during GC. */
1311 case R_PARISC_GNU_VTENTRY
:
1312 BFD_ASSERT (hh
!= NULL
);
1314 && !bfd_elf_gc_record_vtentry (abfd
, sec
, &hh
->eh
, rela
->r_addend
))
1318 case R_PARISC_TLS_GD21L
:
1319 case R_PARISC_TLS_GD14R
:
1320 case R_PARISC_TLS_LDM21L
:
1321 case R_PARISC_TLS_LDM14R
:
1322 need_entry
= NEED_GOT
;
1325 case R_PARISC_TLS_IE21L
:
1326 case R_PARISC_TLS_IE14R
:
1328 info
->flags
|= DF_STATIC_TLS
;
1329 need_entry
= NEED_GOT
;
1336 /* Now carry out our orders. */
1337 if (need_entry
& NEED_GOT
)
1342 tls_type
= GOT_NORMAL
;
1344 case R_PARISC_TLS_GD21L
:
1345 case R_PARISC_TLS_GD14R
:
1346 tls_type
|= GOT_TLS_GD
;
1348 case R_PARISC_TLS_LDM21L
:
1349 case R_PARISC_TLS_LDM14R
:
1350 tls_type
|= GOT_TLS_LDM
;
1352 case R_PARISC_TLS_IE21L
:
1353 case R_PARISC_TLS_IE14R
:
1354 tls_type
|= GOT_TLS_IE
;
1358 /* Allocate space for a GOT entry, as well as a dynamic
1359 relocation for this entry. */
1360 if (htab
->sgot
== NULL
)
1362 if (htab
->etab
.dynobj
== NULL
)
1363 htab
->etab
.dynobj
= abfd
;
1364 if (!elf32_hppa_create_dynamic_sections (htab
->etab
.dynobj
, info
))
1368 if (r_type
== R_PARISC_TLS_LDM21L
1369 || r_type
== R_PARISC_TLS_LDM14R
)
1370 htab
->tls_ldm_got
.refcount
+= 1;
1375 hh
->eh
.got
.refcount
+= 1;
1376 old_tls_type
= hh
->tls_type
;
1380 bfd_signed_vma
*local_got_refcounts
;
1382 /* This is a global offset table entry for a local symbol. */
1383 local_got_refcounts
= hppa32_elf_local_refcounts (abfd
);
1384 if (local_got_refcounts
== NULL
)
1386 local_got_refcounts
[r_symndx
] += 1;
1388 old_tls_type
= hppa_elf_local_got_tls_type (abfd
) [r_symndx
];
1391 tls_type
|= old_tls_type
;
1393 if (old_tls_type
!= tls_type
)
1396 hh
->tls_type
= tls_type
;
1398 hppa_elf_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1404 if (need_entry
& NEED_PLT
)
1406 /* If we are creating a shared library, and this is a reloc
1407 against a weak symbol or a global symbol in a dynamic
1408 object, then we will be creating an import stub and a
1409 .plt entry for the symbol. Similarly, on a normal link
1410 to symbols defined in a dynamic object we'll need the
1411 import stub and a .plt entry. We don't know yet whether
1412 the symbol is defined or not, so make an entry anyway and
1413 clean up later in adjust_dynamic_symbol. */
1414 if ((sec
->flags
& SEC_ALLOC
) != 0)
1418 hh
->eh
.needs_plt
= 1;
1419 hh
->eh
.plt
.refcount
+= 1;
1421 /* If this .plt entry is for a plabel, mark it so
1422 that adjust_dynamic_symbol will keep the entry
1423 even if it appears to be local. */
1424 if (need_entry
& PLT_PLABEL
)
1427 else if (need_entry
& PLT_PLABEL
)
1429 bfd_signed_vma
*local_got_refcounts
;
1430 bfd_signed_vma
*local_plt_refcounts
;
1432 local_got_refcounts
= hppa32_elf_local_refcounts (abfd
);
1433 if (local_got_refcounts
== NULL
)
1435 local_plt_refcounts
= (local_got_refcounts
1436 + symtab_hdr
->sh_info
);
1437 local_plt_refcounts
[r_symndx
] += 1;
1442 if (need_entry
& NEED_DYNREL
)
1444 /* Flag this symbol as having a non-got, non-plt reference
1445 so that we generate copy relocs if it turns out to be
1447 if (hh
!= NULL
&& !info
->shared
)
1448 hh
->eh
.non_got_ref
= 1;
1450 /* If we are creating a shared library then we need to copy
1451 the reloc into the shared library. However, if we are
1452 linking with -Bsymbolic, we need only copy absolute
1453 relocs or relocs against symbols that are not defined in
1454 an object we are including in the link. PC- or DP- or
1455 DLT-relative relocs against any local sym or global sym
1456 with DEF_REGULAR set, can be discarded. At this point we
1457 have not seen all the input files, so it is possible that
1458 DEF_REGULAR is not set now but will be set later (it is
1459 never cleared). We account for that possibility below by
1460 storing information in the dyn_relocs field of the
1463 A similar situation to the -Bsymbolic case occurs when
1464 creating shared libraries and symbol visibility changes
1465 render the symbol local.
1467 As it turns out, all the relocs we will be creating here
1468 are absolute, so we cannot remove them on -Bsymbolic
1469 links or visibility changes anyway. A STUB_REL reloc
1470 is absolute too, as in that case it is the reloc in the
1471 stub we will be creating, rather than copying the PCREL
1472 reloc in the branch.
1474 If on the other hand, we are creating an executable, we
1475 may need to keep relocations for symbols satisfied by a
1476 dynamic library if we manage to avoid copy relocs for the
1479 && (sec
->flags
& SEC_ALLOC
) != 0
1480 && (IS_ABSOLUTE_RELOC (r_type
)
1483 || hh
->eh
.root
.type
== bfd_link_hash_defweak
1484 || !hh
->eh
.def_regular
))))
1485 || (ELIMINATE_COPY_RELOCS
1487 && (sec
->flags
& SEC_ALLOC
) != 0
1489 && (hh
->eh
.root
.type
== bfd_link_hash_defweak
1490 || !hh
->eh
.def_regular
)))
1492 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1493 struct elf32_hppa_dyn_reloc_entry
**hdh_head
;
1495 /* Create a reloc section in dynobj and make room for
1499 if (htab
->etab
.dynobj
== NULL
)
1500 htab
->etab
.dynobj
= abfd
;
1502 sreloc
= _bfd_elf_make_dynamic_reloc_section
1503 (sec
, htab
->etab
.dynobj
, 2, abfd
, /*rela?*/ TRUE
);
1507 bfd_set_error (bfd_error_bad_value
);
1512 /* If this is a global symbol, we count the number of
1513 relocations we need for this symbol. */
1516 hdh_head
= &hh
->dyn_relocs
;
1520 /* Track dynamic relocs needed for local syms too.
1521 We really need local syms available to do this
1525 Elf_Internal_Sym
*isym
;
1527 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1532 sr
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
1536 vpp
= &elf_section_data (sr
)->local_dynrel
;
1537 hdh_head
= (struct elf32_hppa_dyn_reloc_entry
**) vpp
;
1541 if (hdh_p
== NULL
|| hdh_p
->sec
!= sec
)
1543 hdh_p
= bfd_alloc (htab
->etab
.dynobj
, sizeof *hdh_p
);
1546 hdh_p
->hdh_next
= *hdh_head
;
1550 #if RELATIVE_DYNRELOCS
1551 hdh_p
->relative_count
= 0;
1556 #if RELATIVE_DYNRELOCS
1557 if (!IS_ABSOLUTE_RELOC (rtype
))
1558 hdh_p
->relative_count
+= 1;
1567 /* Return the section that should be marked against garbage collection
1568 for a given relocation. */
1571 elf32_hppa_gc_mark_hook (asection
*sec
,
1572 struct bfd_link_info
*info
,
1573 Elf_Internal_Rela
*rela
,
1574 struct elf_link_hash_entry
*hh
,
1575 Elf_Internal_Sym
*sym
)
1578 switch ((unsigned int) ELF32_R_TYPE (rela
->r_info
))
1580 case R_PARISC_GNU_VTINHERIT
:
1581 case R_PARISC_GNU_VTENTRY
:
1585 return _bfd_elf_gc_mark_hook (sec
, info
, rela
, hh
, sym
);
1588 /* Update the got and plt entry reference counts for the section being
1592 elf32_hppa_gc_sweep_hook (bfd
*abfd
,
1593 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1595 const Elf_Internal_Rela
*relocs
)
1597 Elf_Internal_Shdr
*symtab_hdr
;
1598 struct elf_link_hash_entry
**eh_syms
;
1599 bfd_signed_vma
*local_got_refcounts
;
1600 bfd_signed_vma
*local_plt_refcounts
;
1601 const Elf_Internal_Rela
*rela
, *relend
;
1602 struct elf32_hppa_link_hash_table
*htab
;
1604 if (info
->relocatable
)
1607 htab
= hppa_link_hash_table (info
);
1611 elf_section_data (sec
)->local_dynrel
= NULL
;
1613 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1614 eh_syms
= elf_sym_hashes (abfd
);
1615 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1616 local_plt_refcounts
= local_got_refcounts
;
1617 if (local_plt_refcounts
!= NULL
)
1618 local_plt_refcounts
+= symtab_hdr
->sh_info
;
1620 relend
= relocs
+ sec
->reloc_count
;
1621 for (rela
= relocs
; rela
< relend
; rela
++)
1623 unsigned long r_symndx
;
1624 unsigned int r_type
;
1625 struct elf_link_hash_entry
*eh
= NULL
;
1627 r_symndx
= ELF32_R_SYM (rela
->r_info
);
1628 if (r_symndx
>= symtab_hdr
->sh_info
)
1630 struct elf32_hppa_link_hash_entry
*hh
;
1631 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
1632 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1634 eh
= eh_syms
[r_symndx
- symtab_hdr
->sh_info
];
1635 while (eh
->root
.type
== bfd_link_hash_indirect
1636 || eh
->root
.type
== bfd_link_hash_warning
)
1637 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
1638 hh
= hppa_elf_hash_entry (eh
);
1640 for (hdh_pp
= &hh
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; hdh_pp
= &hdh_p
->hdh_next
)
1641 if (hdh_p
->sec
== sec
)
1643 /* Everything must go for SEC. */
1644 *hdh_pp
= hdh_p
->hdh_next
;
1649 r_type
= ELF32_R_TYPE (rela
->r_info
);
1650 r_type
= elf32_hppa_optimized_tls_reloc (info
, r_type
, eh
!= NULL
);
1654 case R_PARISC_DLTIND14F
:
1655 case R_PARISC_DLTIND14R
:
1656 case R_PARISC_DLTIND21L
:
1657 case R_PARISC_TLS_GD21L
:
1658 case R_PARISC_TLS_GD14R
:
1659 case R_PARISC_TLS_IE21L
:
1660 case R_PARISC_TLS_IE14R
:
1663 if (eh
->got
.refcount
> 0)
1664 eh
->got
.refcount
-= 1;
1666 else if (local_got_refcounts
!= NULL
)
1668 if (local_got_refcounts
[r_symndx
] > 0)
1669 local_got_refcounts
[r_symndx
] -= 1;
1673 case R_PARISC_TLS_LDM21L
:
1674 case R_PARISC_TLS_LDM14R
:
1675 htab
->tls_ldm_got
.refcount
-= 1;
1678 case R_PARISC_PCREL12F
:
1679 case R_PARISC_PCREL17C
:
1680 case R_PARISC_PCREL17F
:
1681 case R_PARISC_PCREL22F
:
1684 if (eh
->plt
.refcount
> 0)
1685 eh
->plt
.refcount
-= 1;
1689 case R_PARISC_PLABEL14R
:
1690 case R_PARISC_PLABEL21L
:
1691 case R_PARISC_PLABEL32
:
1694 if (eh
->plt
.refcount
> 0)
1695 eh
->plt
.refcount
-= 1;
1697 else if (local_plt_refcounts
!= NULL
)
1699 if (local_plt_refcounts
[r_symndx
] > 0)
1700 local_plt_refcounts
[r_symndx
] -= 1;
1712 /* Support for core dump NOTE sections. */
1715 elf32_hppa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1720 switch (note
->descsz
)
1725 case 396: /* Linux/hppa */
1727 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1730 elf_tdata (abfd
)->core_lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1739 /* Make a ".reg/999" section. */
1740 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1741 size
, note
->descpos
+ offset
);
1745 elf32_hppa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1747 switch (note
->descsz
)
1752 case 124: /* Linux/hppa elf_prpsinfo. */
1753 elf_tdata (abfd
)->core_program
1754 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1755 elf_tdata (abfd
)->core_command
1756 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1759 /* Note that for some reason, a spurious space is tacked
1760 onto the end of the args in some (at least one anyway)
1761 implementations, so strip it off if it exists. */
1763 char *command
= elf_tdata (abfd
)->core_command
;
1764 int n
= strlen (command
);
1766 if (0 < n
&& command
[n
- 1] == ' ')
1767 command
[n
- 1] = '\0';
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1777 elf32_hppa_hide_symbol (struct bfd_link_info
*info
,
1778 struct elf_link_hash_entry
*eh
,
1779 bfd_boolean force_local
)
1783 eh
->forced_local
= 1;
1784 if (eh
->dynindx
!= -1)
1787 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1792 if (! hppa_elf_hash_entry (eh
)->plabel
)
1795 eh
->plt
= elf_hash_table (info
)->init_plt_refcount
;
1799 /* Adjust a symbol defined by a dynamic object and referenced by a
1800 regular object. The current definition is in some section of the
1801 dynamic object, but we're not including those sections. We have to
1802 change the definition to something the rest of the link can
1806 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1807 struct elf_link_hash_entry
*eh
)
1809 struct elf32_hppa_link_hash_table
*htab
;
1812 /* If this is a function, put it in the procedure linkage table. We
1813 will fill in the contents of the procedure linkage table later. */
1814 if (eh
->type
== STT_FUNC
1817 if (eh
->plt
.refcount
<= 0
1819 && eh
->root
.type
!= bfd_link_hash_defweak
1820 && ! hppa_elf_hash_entry (eh
)->plabel
1821 && (!info
->shared
|| info
->symbolic
)))
1823 /* The .plt entry is not needed when:
1824 a) Garbage collection has removed all references to the
1826 b) We know for certain the symbol is defined in this
1827 object, and it's not a weak definition, nor is the symbol
1828 used by a plabel relocation. Either this object is the
1829 application or we are doing a shared symbolic link. */
1831 eh
->plt
.offset
= (bfd_vma
) -1;
1838 eh
->plt
.offset
= (bfd_vma
) -1;
1840 /* If this is a weak symbol, and there is a real definition, the
1841 processor independent code will have arranged for us to see the
1842 real definition first, and we can just use the same value. */
1843 if (eh
->u
.weakdef
!= NULL
)
1845 if (eh
->u
.weakdef
->root
.type
!= bfd_link_hash_defined
1846 && eh
->u
.weakdef
->root
.type
!= bfd_link_hash_defweak
)
1848 eh
->root
.u
.def
.section
= eh
->u
.weakdef
->root
.u
.def
.section
;
1849 eh
->root
.u
.def
.value
= eh
->u
.weakdef
->root
.u
.def
.value
;
1850 if (ELIMINATE_COPY_RELOCS
)
1851 eh
->non_got_ref
= eh
->u
.weakdef
->non_got_ref
;
1855 /* This is a reference to a symbol defined by a dynamic object which
1856 is not a function. */
1858 /* If we are creating a shared library, we must presume that the
1859 only references to the symbol are via the global offset table.
1860 For such cases we need not do anything here; the relocations will
1861 be handled correctly by relocate_section. */
1865 /* If there are no references to this symbol that do not use the
1866 GOT, we don't need to generate a copy reloc. */
1867 if (!eh
->non_got_ref
)
1870 if (ELIMINATE_COPY_RELOCS
)
1872 struct elf32_hppa_link_hash_entry
*hh
;
1873 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1875 hh
= hppa_elf_hash_entry (eh
);
1876 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
1878 sec
= hdh_p
->sec
->output_section
;
1879 if (sec
!= NULL
&& (sec
->flags
& SEC_READONLY
) != 0)
1883 /* If we didn't find any dynamic relocs in read-only sections, then
1884 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1887 eh
->non_got_ref
= 0;
1894 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1895 eh
->root
.root
.string
);
1899 /* We must allocate the symbol in our .dynbss section, which will
1900 become part of the .bss section of the executable. There will be
1901 an entry for this symbol in the .dynsym section. The dynamic
1902 object will contain position independent code, so all references
1903 from the dynamic object to this symbol will go through the global
1904 offset table. The dynamic linker will use the .dynsym entry to
1905 determine the address it must put in the global offset table, so
1906 both the dynamic object and the regular object will refer to the
1907 same memory location for the variable. */
1909 htab
= hppa_link_hash_table (info
);
1913 /* We must generate a COPY reloc to tell the dynamic linker to
1914 copy the initial value out of the dynamic object and into the
1915 runtime process image. */
1916 if ((eh
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1918 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
1922 sec
= htab
->sdynbss
;
1924 return _bfd_elf_adjust_dynamic_copy (eh
, sec
);
1927 /* Allocate space in the .plt for entries that won't have relocations.
1928 ie. plabel entries. */
1931 allocate_plt_static (struct elf_link_hash_entry
*eh
, void *inf
)
1933 struct bfd_link_info
*info
;
1934 struct elf32_hppa_link_hash_table
*htab
;
1935 struct elf32_hppa_link_hash_entry
*hh
;
1938 if (eh
->root
.type
== bfd_link_hash_indirect
)
1941 info
= (struct bfd_link_info
*) inf
;
1942 hh
= hppa_elf_hash_entry (eh
);
1943 htab
= hppa_link_hash_table (info
);
1947 if (htab
->etab
.dynamic_sections_created
1948 && eh
->plt
.refcount
> 0)
1950 /* Make sure this symbol is output as a dynamic symbol.
1951 Undefined weak syms won't yet be marked as dynamic. */
1952 if (eh
->dynindx
== -1
1953 && !eh
->forced_local
1954 && eh
->type
!= STT_PARISC_MILLI
)
1956 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
1960 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
, eh
))
1962 /* Allocate these later. From this point on, h->plabel
1963 means that the plt entry is only used by a plabel.
1964 We'll be using a normal plt entry for this symbol, so
1965 clear the plabel indicator. */
1969 else if (hh
->plabel
)
1971 /* Make an entry in the .plt section for plabel references
1972 that won't have a .plt entry for other reasons. */
1974 eh
->plt
.offset
= sec
->size
;
1975 sec
->size
+= PLT_ENTRY_SIZE
;
1979 /* No .plt entry needed. */
1980 eh
->plt
.offset
= (bfd_vma
) -1;
1986 eh
->plt
.offset
= (bfd_vma
) -1;
1993 /* Allocate space in .plt, .got and associated reloc sections for
1997 allocate_dynrelocs (struct elf_link_hash_entry
*eh
, void *inf
)
1999 struct bfd_link_info
*info
;
2000 struct elf32_hppa_link_hash_table
*htab
;
2002 struct elf32_hppa_link_hash_entry
*hh
;
2003 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2005 if (eh
->root
.type
== bfd_link_hash_indirect
)
2009 htab
= hppa_link_hash_table (info
);
2013 hh
= hppa_elf_hash_entry (eh
);
2015 if (htab
->etab
.dynamic_sections_created
2016 && eh
->plt
.offset
!= (bfd_vma
) -1
2018 && eh
->plt
.refcount
> 0)
2020 /* Make an entry in the .plt section. */
2022 eh
->plt
.offset
= sec
->size
;
2023 sec
->size
+= PLT_ENTRY_SIZE
;
2025 /* We also need to make an entry in the .rela.plt section. */
2026 htab
->srelplt
->size
+= sizeof (Elf32_External_Rela
);
2027 htab
->need_plt_stub
= 1;
2030 if (eh
->got
.refcount
> 0)
2032 /* Make sure this symbol is output as a dynamic symbol.
2033 Undefined weak syms won't yet be marked as dynamic. */
2034 if (eh
->dynindx
== -1
2035 && !eh
->forced_local
2036 && eh
->type
!= STT_PARISC_MILLI
)
2038 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2043 eh
->got
.offset
= sec
->size
;
2044 sec
->size
+= GOT_ENTRY_SIZE
;
2045 /* R_PARISC_TLS_GD* needs two GOT entries */
2046 if ((hh
->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2047 sec
->size
+= GOT_ENTRY_SIZE
* 2;
2048 else if ((hh
->tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2049 sec
->size
+= GOT_ENTRY_SIZE
;
2050 if (htab
->etab
.dynamic_sections_created
2052 || (eh
->dynindx
!= -1
2053 && !eh
->forced_local
)))
2055 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2056 if ((hh
->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2057 htab
->srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
2058 else if ((hh
->tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2059 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2063 eh
->got
.offset
= (bfd_vma
) -1;
2065 if (hh
->dyn_relocs
== NULL
)
2068 /* If this is a -Bsymbolic shared link, then we need to discard all
2069 space allocated for dynamic pc-relative relocs against symbols
2070 defined in a regular object. For the normal shared case, discard
2071 space for relocs that have become local due to symbol visibility
2075 #if RELATIVE_DYNRELOCS
2076 if (SYMBOL_CALLS_LOCAL (info
, eh
))
2078 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
2080 for (hdh_pp
= &hh
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; )
2082 hdh_p
->count
-= hdh_p
->relative_count
;
2083 hdh_p
->relative_count
= 0;
2084 if (hdh_p
->count
== 0)
2085 *hdh_pp
= hdh_p
->hdh_next
;
2087 hdh_pp
= &hdh_p
->hdh_next
;
2092 /* Also discard relocs on undefined weak syms with non-default
2094 if (hh
->dyn_relocs
!= NULL
2095 && eh
->root
.type
== bfd_link_hash_undefweak
)
2097 if (ELF_ST_VISIBILITY (eh
->other
) != STV_DEFAULT
)
2098 hh
->dyn_relocs
= NULL
;
2100 /* Make sure undefined weak symbols are output as a dynamic
2102 else if (eh
->dynindx
== -1
2103 && !eh
->forced_local
)
2105 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2112 /* For the non-shared case, discard space for relocs against
2113 symbols which turn out to need copy relocs or are not
2116 if (!eh
->non_got_ref
2117 && ((ELIMINATE_COPY_RELOCS
2119 && !eh
->def_regular
)
2120 || (htab
->etab
.dynamic_sections_created
2121 && (eh
->root
.type
== bfd_link_hash_undefweak
2122 || eh
->root
.type
== bfd_link_hash_undefined
))))
2124 /* Make sure this symbol is output as a dynamic symbol.
2125 Undefined weak syms won't yet be marked as dynamic. */
2126 if (eh
->dynindx
== -1
2127 && !eh
->forced_local
2128 && eh
->type
!= STT_PARISC_MILLI
)
2130 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2134 /* If that succeeded, we know we'll be keeping all the
2136 if (eh
->dynindx
!= -1)
2140 hh
->dyn_relocs
= NULL
;
2146 /* Finally, allocate space. */
2147 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
2149 asection
*sreloc
= elf_section_data (hdh_p
->sec
)->sreloc
;
2150 sreloc
->size
+= hdh_p
->count
* sizeof (Elf32_External_Rela
);
2156 /* This function is called via elf_link_hash_traverse to force
2157 millicode symbols local so they do not end up as globals in the
2158 dynamic symbol table. We ought to be able to do this in
2159 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2160 for all dynamic symbols. Arguably, this is a bug in
2161 elf_adjust_dynamic_symbol. */
2164 clobber_millicode_symbols (struct elf_link_hash_entry
*eh
,
2165 struct bfd_link_info
*info
)
2167 if (eh
->type
== STT_PARISC_MILLI
2168 && !eh
->forced_local
)
2170 elf32_hppa_hide_symbol (info
, eh
, TRUE
);
2175 /* Find any dynamic relocs that apply to read-only sections. */
2178 readonly_dynrelocs (struct elf_link_hash_entry
*eh
, void *inf
)
2180 struct elf32_hppa_link_hash_entry
*hh
;
2181 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2183 hh
= hppa_elf_hash_entry (eh
);
2184 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
2186 asection
*sec
= hdh_p
->sec
->output_section
;
2188 if (sec
!= NULL
&& (sec
->flags
& SEC_READONLY
) != 0)
2190 struct bfd_link_info
*info
= inf
;
2192 info
->flags
|= DF_TEXTREL
;
2194 /* Not an error, just cut short the traversal. */
2201 /* Set the sizes of the dynamic sections. */
2204 elf32_hppa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2205 struct bfd_link_info
*info
)
2207 struct elf32_hppa_link_hash_table
*htab
;
2213 htab
= hppa_link_hash_table (info
);
2217 dynobj
= htab
->etab
.dynobj
;
2221 if (htab
->etab
.dynamic_sections_created
)
2223 /* Set the contents of the .interp section to the interpreter. */
2224 if (info
->executable
)
2226 sec
= bfd_get_section_by_name (dynobj
, ".interp");
2229 sec
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2230 sec
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2233 /* Force millicode symbols local. */
2234 elf_link_hash_traverse (&htab
->etab
,
2235 clobber_millicode_symbols
,
2239 /* Set up .got and .plt offsets for local syms, and space for local
2241 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2243 bfd_signed_vma
*local_got
;
2244 bfd_signed_vma
*end_local_got
;
2245 bfd_signed_vma
*local_plt
;
2246 bfd_signed_vma
*end_local_plt
;
2247 bfd_size_type locsymcount
;
2248 Elf_Internal_Shdr
*symtab_hdr
;
2250 char *local_tls_type
;
2252 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
2255 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2257 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2259 for (hdh_p
= ((struct elf32_hppa_dyn_reloc_entry
*)
2260 elf_section_data (sec
)->local_dynrel
);
2262 hdh_p
= hdh_p
->hdh_next
)
2264 if (!bfd_is_abs_section (hdh_p
->sec
)
2265 && bfd_is_abs_section (hdh_p
->sec
->output_section
))
2267 /* Input section has been discarded, either because
2268 it is a copy of a linkonce section or due to
2269 linker script /DISCARD/, so we'll be discarding
2272 else if (hdh_p
->count
!= 0)
2274 srel
= elf_section_data (hdh_p
->sec
)->sreloc
;
2275 srel
->size
+= hdh_p
->count
* sizeof (Elf32_External_Rela
);
2276 if ((hdh_p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2277 info
->flags
|= DF_TEXTREL
;
2282 local_got
= elf_local_got_refcounts (ibfd
);
2286 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2287 locsymcount
= symtab_hdr
->sh_info
;
2288 end_local_got
= local_got
+ locsymcount
;
2289 local_tls_type
= hppa_elf_local_got_tls_type (ibfd
);
2291 srel
= htab
->srelgot
;
2292 for (; local_got
< end_local_got
; ++local_got
)
2296 *local_got
= sec
->size
;
2297 sec
->size
+= GOT_ENTRY_SIZE
;
2298 if ((*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2299 sec
->size
+= 2 * GOT_ENTRY_SIZE
;
2300 else if ((*local_tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2301 sec
->size
+= GOT_ENTRY_SIZE
;
2304 srel
->size
+= sizeof (Elf32_External_Rela
);
2305 if ((*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2306 srel
->size
+= 2 * sizeof (Elf32_External_Rela
);
2307 else if ((*local_tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2308 srel
->size
+= sizeof (Elf32_External_Rela
);
2312 *local_got
= (bfd_vma
) -1;
2317 local_plt
= end_local_got
;
2318 end_local_plt
= local_plt
+ locsymcount
;
2319 if (! htab
->etab
.dynamic_sections_created
)
2321 /* Won't be used, but be safe. */
2322 for (; local_plt
< end_local_plt
; ++local_plt
)
2323 *local_plt
= (bfd_vma
) -1;
2328 srel
= htab
->srelplt
;
2329 for (; local_plt
< end_local_plt
; ++local_plt
)
2333 *local_plt
= sec
->size
;
2334 sec
->size
+= PLT_ENTRY_SIZE
;
2336 srel
->size
+= sizeof (Elf32_External_Rela
);
2339 *local_plt
= (bfd_vma
) -1;
2344 if (htab
->tls_ldm_got
.refcount
> 0)
2346 /* Allocate 2 got entries and 1 dynamic reloc for
2347 R_PARISC_TLS_DTPMOD32 relocs. */
2348 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
2349 htab
->sgot
->size
+= (GOT_ENTRY_SIZE
* 2);
2350 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2353 htab
->tls_ldm_got
.offset
= -1;
2355 /* Do all the .plt entries without relocs first. The dynamic linker
2356 uses the last .plt reloc to find the end of the .plt (and hence
2357 the start of the .got) for lazy linking. */
2358 elf_link_hash_traverse (&htab
->etab
, allocate_plt_static
, info
);
2360 /* Allocate global sym .plt and .got entries, and space for global
2361 sym dynamic relocs. */
2362 elf_link_hash_traverse (&htab
->etab
, allocate_dynrelocs
, info
);
2364 /* The check_relocs and adjust_dynamic_symbol entry points have
2365 determined the sizes of the various dynamic sections. Allocate
2368 for (sec
= dynobj
->sections
; sec
!= NULL
; sec
= sec
->next
)
2370 if ((sec
->flags
& SEC_LINKER_CREATED
) == 0)
2373 if (sec
== htab
->splt
)
2375 if (htab
->need_plt_stub
)
2377 /* Make space for the plt stub at the end of the .plt
2378 section. We want this stub right at the end, up
2379 against the .got section. */
2380 int gotalign
= bfd_section_alignment (dynobj
, htab
->sgot
);
2381 int pltalign
= bfd_section_alignment (dynobj
, sec
);
2384 if (gotalign
> pltalign
)
2385 bfd_set_section_alignment (dynobj
, sec
, gotalign
);
2386 mask
= ((bfd_size_type
) 1 << gotalign
) - 1;
2387 sec
->size
= (sec
->size
+ sizeof (plt_stub
) + mask
) & ~mask
;
2390 else if (sec
== htab
->sgot
2391 || sec
== htab
->sdynbss
)
2393 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, sec
), ".rela"))
2397 /* Remember whether there are any reloc sections other
2399 if (sec
!= htab
->srelplt
)
2402 /* We use the reloc_count field as a counter if we need
2403 to copy relocs into the output file. */
2404 sec
->reloc_count
= 0;
2409 /* It's not one of our sections, so don't allocate space. */
2415 /* If we don't need this section, strip it from the
2416 output file. This is mostly to handle .rela.bss and
2417 .rela.plt. We must create both sections in
2418 create_dynamic_sections, because they must be created
2419 before the linker maps input sections to output
2420 sections. The linker does that before
2421 adjust_dynamic_symbol is called, and it is that
2422 function which decides whether anything needs to go
2423 into these sections. */
2424 sec
->flags
|= SEC_EXCLUDE
;
2428 if ((sec
->flags
& SEC_HAS_CONTENTS
) == 0)
2431 /* Allocate memory for the section contents. Zero it, because
2432 we may not fill in all the reloc sections. */
2433 sec
->contents
= bfd_zalloc (dynobj
, sec
->size
);
2434 if (sec
->contents
== NULL
)
2438 if (htab
->etab
.dynamic_sections_created
)
2440 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2441 actually has nothing to do with the PLT, it is how we
2442 communicate the LTP value of a load module to the dynamic
2444 #define add_dynamic_entry(TAG, VAL) \
2445 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2447 if (!add_dynamic_entry (DT_PLTGOT
, 0))
2450 /* Add some entries to the .dynamic section. We fill in the
2451 values later, in elf32_hppa_finish_dynamic_sections, but we
2452 must add the entries now so that we get the correct size for
2453 the .dynamic section. The DT_DEBUG entry is filled in by the
2454 dynamic linker and used by the debugger. */
2455 if (info
->executable
)
2457 if (!add_dynamic_entry (DT_DEBUG
, 0))
2461 if (htab
->srelplt
->size
!= 0)
2463 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
2464 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2465 || !add_dynamic_entry (DT_JMPREL
, 0))
2471 if (!add_dynamic_entry (DT_RELA
, 0)
2472 || !add_dynamic_entry (DT_RELASZ
, 0)
2473 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
2476 /* If any dynamic relocs apply to a read-only section,
2477 then we need a DT_TEXTREL entry. */
2478 if ((info
->flags
& DF_TEXTREL
) == 0)
2479 elf_link_hash_traverse (&htab
->etab
, readonly_dynrelocs
, info
);
2481 if ((info
->flags
& DF_TEXTREL
) != 0)
2483 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2488 #undef add_dynamic_entry
2493 /* External entry points for sizing and building linker stubs. */
2495 /* Set up various things so that we can make a list of input sections
2496 for each output section included in the link. Returns -1 on error,
2497 0 when no stubs will be needed, and 1 on success. */
2500 elf32_hppa_setup_section_lists (bfd
*output_bfd
, struct bfd_link_info
*info
)
2503 unsigned int bfd_count
;
2504 int top_id
, top_index
;
2506 asection
**input_list
, **list
;
2508 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2513 /* Count the number of input BFDs and find the top input section id. */
2514 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2516 input_bfd
= input_bfd
->link_next
)
2519 for (section
= input_bfd
->sections
;
2521 section
= section
->next
)
2523 if (top_id
< section
->id
)
2524 top_id
= section
->id
;
2527 htab
->bfd_count
= bfd_count
;
2529 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2530 htab
->stub_group
= bfd_zmalloc (amt
);
2531 if (htab
->stub_group
== NULL
)
2534 /* We can't use output_bfd->section_count here to find the top output
2535 section index as some sections may have been removed, and
2536 strip_excluded_output_sections doesn't renumber the indices. */
2537 for (section
= output_bfd
->sections
, top_index
= 0;
2539 section
= section
->next
)
2541 if (top_index
< section
->index
)
2542 top_index
= section
->index
;
2545 htab
->top_index
= top_index
;
2546 amt
= sizeof (asection
*) * (top_index
+ 1);
2547 input_list
= bfd_malloc (amt
);
2548 htab
->input_list
= input_list
;
2549 if (input_list
== NULL
)
2552 /* For sections we aren't interested in, mark their entries with a
2553 value we can check later. */
2554 list
= input_list
+ top_index
;
2556 *list
= bfd_abs_section_ptr
;
2557 while (list
-- != input_list
);
2559 for (section
= output_bfd
->sections
;
2561 section
= section
->next
)
2563 if ((section
->flags
& SEC_CODE
) != 0)
2564 input_list
[section
->index
] = NULL
;
2570 /* The linker repeatedly calls this function for each input section,
2571 in the order that input sections are linked into output sections.
2572 Build lists of input sections to determine groupings between which
2573 we may insert linker stubs. */
2576 elf32_hppa_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
2578 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2583 if (isec
->output_section
->index
<= htab
->top_index
)
2585 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
2586 if (*list
!= bfd_abs_section_ptr
)
2588 /* Steal the link_sec pointer for our list. */
2589 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2590 /* This happens to make the list in reverse order,
2591 which is what we want. */
2592 PREV_SEC (isec
) = *list
;
2598 /* See whether we can group stub sections together. Grouping stub
2599 sections may result in fewer stubs. More importantly, we need to
2600 put all .init* and .fini* stubs at the beginning of the .init or
2601 .fini output sections respectively, because glibc splits the
2602 _init and _fini functions into multiple parts. Putting a stub in
2603 the middle of a function is not a good idea. */
2606 group_sections (struct elf32_hppa_link_hash_table
*htab
,
2607 bfd_size_type stub_group_size
,
2608 bfd_boolean stubs_always_before_branch
)
2610 asection
**list
= htab
->input_list
+ htab
->top_index
;
2613 asection
*tail
= *list
;
2614 if (tail
== bfd_abs_section_ptr
)
2616 while (tail
!= NULL
)
2620 bfd_size_type total
;
2621 bfd_boolean big_sec
;
2625 big_sec
= total
>= stub_group_size
;
2627 while ((prev
= PREV_SEC (curr
)) != NULL
2628 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2632 /* OK, the size from the start of CURR to the end is less
2633 than 240000 bytes and thus can be handled by one stub
2634 section. (or the tail section is itself larger than
2635 240000 bytes, in which case we may be toast.)
2636 We should really be keeping track of the total size of
2637 stubs added here, as stubs contribute to the final output
2638 section size. That's a little tricky, and this way will
2639 only break if stubs added total more than 22144 bytes, or
2640 2768 long branch stubs. It seems unlikely for more than
2641 2768 different functions to be called, especially from
2642 code only 240000 bytes long. This limit used to be
2643 250000, but c++ code tends to generate lots of little
2644 functions, and sometimes violated the assumption. */
2647 prev
= PREV_SEC (tail
);
2648 /* Set up this stub group. */
2649 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2651 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2653 /* But wait, there's more! Input sections up to 240000
2654 bytes before the stub section can be handled by it too.
2655 Don't do this if we have a really large section after the
2656 stubs, as adding more stubs increases the chance that
2657 branches may not reach into the stub section. */
2658 if (!stubs_always_before_branch
&& !big_sec
)
2662 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2666 prev
= PREV_SEC (tail
);
2667 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2673 while (list
-- != htab
->input_list
);
2674 free (htab
->input_list
);
2678 /* Read in all local syms for all input bfds, and create hash entries
2679 for export stubs if we are building a multi-subspace shared lib.
2680 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2683 get_local_syms (bfd
*output_bfd
, bfd
*input_bfd
, struct bfd_link_info
*info
)
2685 unsigned int bfd_indx
;
2686 Elf_Internal_Sym
*local_syms
, **all_local_syms
;
2687 int stub_changed
= 0;
2688 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2693 /* We want to read in symbol extension records only once. To do this
2694 we need to read in the local symbols in parallel and save them for
2695 later use; so hold pointers to the local symbols in an array. */
2696 bfd_size_type amt
= sizeof (Elf_Internal_Sym
*) * htab
->bfd_count
;
2697 all_local_syms
= bfd_zmalloc (amt
);
2698 htab
->all_local_syms
= all_local_syms
;
2699 if (all_local_syms
== NULL
)
2702 /* Walk over all the input BFDs, swapping in local symbols.
2703 If we are creating a shared library, create hash entries for the
2707 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2709 Elf_Internal_Shdr
*symtab_hdr
;
2711 /* We'll need the symbol table in a second. */
2712 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2713 if (symtab_hdr
->sh_info
== 0)
2716 /* We need an array of the local symbols attached to the input bfd. */
2717 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2718 if (local_syms
== NULL
)
2720 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
2721 symtab_hdr
->sh_info
, 0,
2723 /* Cache them for elf_link_input_bfd. */
2724 symtab_hdr
->contents
= (unsigned char *) local_syms
;
2726 if (local_syms
== NULL
)
2729 all_local_syms
[bfd_indx
] = local_syms
;
2731 if (info
->shared
&& htab
->multi_subspace
)
2733 struct elf_link_hash_entry
**eh_syms
;
2734 struct elf_link_hash_entry
**eh_symend
;
2735 unsigned int symcount
;
2737 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
2738 - symtab_hdr
->sh_info
);
2739 eh_syms
= (struct elf_link_hash_entry
**) elf_sym_hashes (input_bfd
);
2740 eh_symend
= (struct elf_link_hash_entry
**) (eh_syms
+ symcount
);
2742 /* Look through the global syms for functions; We need to
2743 build export stubs for all globally visible functions. */
2744 for (; eh_syms
< eh_symend
; eh_syms
++)
2746 struct elf32_hppa_link_hash_entry
*hh
;
2748 hh
= hppa_elf_hash_entry (*eh_syms
);
2750 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
2751 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
2752 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
2754 /* At this point in the link, undefined syms have been
2755 resolved, so we need to check that the symbol was
2756 defined in this BFD. */
2757 if ((hh
->eh
.root
.type
== bfd_link_hash_defined
2758 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)
2759 && hh
->eh
.type
== STT_FUNC
2760 && hh
->eh
.root
.u
.def
.section
->output_section
!= NULL
2761 && (hh
->eh
.root
.u
.def
.section
->output_section
->owner
2763 && hh
->eh
.root
.u
.def
.section
->owner
== input_bfd
2764 && hh
->eh
.def_regular
2765 && !hh
->eh
.forced_local
2766 && ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
)
2769 const char *stub_name
;
2770 struct elf32_hppa_stub_hash_entry
*hsh
;
2772 sec
= hh
->eh
.root
.u
.def
.section
;
2773 stub_name
= hh_name (hh
);
2774 hsh
= hppa_stub_hash_lookup (&htab
->bstab
,
2779 hsh
= hppa_add_stub (stub_name
, sec
, htab
);
2783 hsh
->target_value
= hh
->eh
.root
.u
.def
.value
;
2784 hsh
->target_section
= hh
->eh
.root
.u
.def
.section
;
2785 hsh
->stub_type
= hppa_stub_export
;
2791 (*_bfd_error_handler
) (_("%B: duplicate export stub %s"),
2800 return stub_changed
;
2803 /* Determine and set the size of the stub section for a final link.
2805 The basic idea here is to examine all the relocations looking for
2806 PC-relative calls to a target that is unreachable with a "bl"
2810 elf32_hppa_size_stubs
2811 (bfd
*output_bfd
, bfd
*stub_bfd
, struct bfd_link_info
*info
,
2812 bfd_boolean multi_subspace
, bfd_signed_vma group_size
,
2813 asection
* (*add_stub_section
) (const char *, asection
*),
2814 void (*layout_sections_again
) (void))
2816 bfd_size_type stub_group_size
;
2817 bfd_boolean stubs_always_before_branch
;
2818 bfd_boolean stub_changed
;
2819 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2824 /* Stash our params away. */
2825 htab
->stub_bfd
= stub_bfd
;
2826 htab
->multi_subspace
= multi_subspace
;
2827 htab
->add_stub_section
= add_stub_section
;
2828 htab
->layout_sections_again
= layout_sections_again
;
2829 stubs_always_before_branch
= group_size
< 0;
2831 stub_group_size
= -group_size
;
2833 stub_group_size
= group_size
;
2834 if (stub_group_size
== 1)
2836 /* Default values. */
2837 if (stubs_always_before_branch
)
2839 stub_group_size
= 7680000;
2840 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2841 stub_group_size
= 240000;
2842 if (htab
->has_12bit_branch
)
2843 stub_group_size
= 7500;
2847 stub_group_size
= 6971392;
2848 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2849 stub_group_size
= 217856;
2850 if (htab
->has_12bit_branch
)
2851 stub_group_size
= 6808;
2855 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
2857 switch (get_local_syms (output_bfd
, info
->input_bfds
, info
))
2860 if (htab
->all_local_syms
)
2861 goto error_ret_free_local
;
2865 stub_changed
= FALSE
;
2869 stub_changed
= TRUE
;
2876 unsigned int bfd_indx
;
2879 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2881 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2883 Elf_Internal_Shdr
*symtab_hdr
;
2885 Elf_Internal_Sym
*local_syms
;
2887 /* We'll need the symbol table in a second. */
2888 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2889 if (symtab_hdr
->sh_info
== 0)
2892 local_syms
= htab
->all_local_syms
[bfd_indx
];
2894 /* Walk over each section attached to the input bfd. */
2895 for (section
= input_bfd
->sections
;
2897 section
= section
->next
)
2899 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2901 /* If there aren't any relocs, then there's nothing more
2903 if ((section
->flags
& SEC_RELOC
) == 0
2904 || section
->reloc_count
== 0)
2907 /* If this section is a link-once section that will be
2908 discarded, then don't create any stubs. */
2909 if (section
->output_section
== NULL
2910 || section
->output_section
->owner
!= output_bfd
)
2913 /* Get the relocs. */
2915 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
, NULL
,
2917 if (internal_relocs
== NULL
)
2918 goto error_ret_free_local
;
2920 /* Now examine each relocation. */
2921 irela
= internal_relocs
;
2922 irelaend
= irela
+ section
->reloc_count
;
2923 for (; irela
< irelaend
; irela
++)
2925 unsigned int r_type
, r_indx
;
2926 enum elf32_hppa_stub_type stub_type
;
2927 struct elf32_hppa_stub_hash_entry
*hsh
;
2930 bfd_vma destination
;
2931 struct elf32_hppa_link_hash_entry
*hh
;
2933 const asection
*id_sec
;
2935 r_type
= ELF32_R_TYPE (irela
->r_info
);
2936 r_indx
= ELF32_R_SYM (irela
->r_info
);
2938 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
2940 bfd_set_error (bfd_error_bad_value
);
2941 error_ret_free_internal
:
2942 if (elf_section_data (section
)->relocs
== NULL
)
2943 free (internal_relocs
);
2944 goto error_ret_free_local
;
2947 /* Only look for stubs on call instructions. */
2948 if (r_type
!= (unsigned int) R_PARISC_PCREL12F
2949 && r_type
!= (unsigned int) R_PARISC_PCREL17F
2950 && r_type
!= (unsigned int) R_PARISC_PCREL22F
)
2953 /* Now determine the call target, its name, value,
2959 if (r_indx
< symtab_hdr
->sh_info
)
2961 /* It's a local symbol. */
2962 Elf_Internal_Sym
*sym
;
2963 Elf_Internal_Shdr
*hdr
;
2966 sym
= local_syms
+ r_indx
;
2967 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
2968 sym_value
= sym
->st_value
;
2969 shndx
= sym
->st_shndx
;
2970 if (shndx
< elf_numsections (input_bfd
))
2972 hdr
= elf_elfsections (input_bfd
)[shndx
];
2973 sym_sec
= hdr
->bfd_section
;
2974 destination
= (sym_value
+ irela
->r_addend
2975 + sym_sec
->output_offset
2976 + sym_sec
->output_section
->vma
);
2981 /* It's an external symbol. */
2984 e_indx
= r_indx
- symtab_hdr
->sh_info
;
2985 hh
= hppa_elf_hash_entry (elf_sym_hashes (input_bfd
)[e_indx
]);
2987 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
2988 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
2989 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
2991 if (hh
->eh
.root
.type
== bfd_link_hash_defined
2992 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)
2994 sym_sec
= hh
->eh
.root
.u
.def
.section
;
2995 sym_value
= hh
->eh
.root
.u
.def
.value
;
2996 if (sym_sec
->output_section
!= NULL
)
2997 destination
= (sym_value
+ irela
->r_addend
2998 + sym_sec
->output_offset
2999 + sym_sec
->output_section
->vma
);
3001 else if (hh
->eh
.root
.type
== bfd_link_hash_undefweak
)
3006 else if (hh
->eh
.root
.type
== bfd_link_hash_undefined
)
3008 if (! (info
->unresolved_syms_in_objects
== RM_IGNORE
3009 && (ELF_ST_VISIBILITY (hh
->eh
.other
)
3011 && hh
->eh
.type
!= STT_PARISC_MILLI
))
3016 bfd_set_error (bfd_error_bad_value
);
3017 goto error_ret_free_internal
;
3021 /* Determine what (if any) linker stub is needed. */
3022 stub_type
= hppa_type_of_stub (section
, irela
, hh
,
3024 if (stub_type
== hppa_stub_none
)
3027 /* Support for grouping stub sections. */
3028 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3030 /* Get the name of this stub. */
3031 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hh
, irela
);
3033 goto error_ret_free_internal
;
3035 hsh
= hppa_stub_hash_lookup (&htab
->bstab
,
3040 /* The proper stub has already been created. */
3045 hsh
= hppa_add_stub (stub_name
, section
, htab
);
3049 goto error_ret_free_internal
;
3052 hsh
->target_value
= sym_value
;
3053 hsh
->target_section
= sym_sec
;
3054 hsh
->stub_type
= stub_type
;
3057 if (stub_type
== hppa_stub_import
)
3058 hsh
->stub_type
= hppa_stub_import_shared
;
3059 else if (stub_type
== hppa_stub_long_branch
)
3060 hsh
->stub_type
= hppa_stub_long_branch_shared
;
3063 stub_changed
= TRUE
;
3066 /* We're done with the internal relocs, free them. */
3067 if (elf_section_data (section
)->relocs
== NULL
)
3068 free (internal_relocs
);
3075 /* OK, we've added some stubs. Find out the new size of the
3077 for (stub_sec
= htab
->stub_bfd
->sections
;
3079 stub_sec
= stub_sec
->next
)
3082 bfd_hash_traverse (&htab
->bstab
, hppa_size_one_stub
, htab
);
3084 /* Ask the linker to do its stuff. */
3085 (*htab
->layout_sections_again
) ();
3086 stub_changed
= FALSE
;
3089 free (htab
->all_local_syms
);
3092 error_ret_free_local
:
3093 free (htab
->all_local_syms
);
3097 /* For a final link, this function is called after we have sized the
3098 stubs to provide a value for __gp. */
3101 elf32_hppa_set_gp (bfd
*abfd
, struct bfd_link_info
*info
)
3103 struct bfd_link_hash_entry
*h
;
3104 asection
*sec
= NULL
;
3106 struct elf32_hppa_link_hash_table
*htab
;
3108 htab
= hppa_link_hash_table (info
);
3112 h
= bfd_link_hash_lookup (&htab
->etab
.root
, "$global$", FALSE
, FALSE
, FALSE
);
3115 && (h
->type
== bfd_link_hash_defined
3116 || h
->type
== bfd_link_hash_defweak
))
3118 gp_val
= h
->u
.def
.value
;
3119 sec
= h
->u
.def
.section
;
3123 asection
*splt
= bfd_get_section_by_name (abfd
, ".plt");
3124 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
3126 /* Choose to point our LTP at, in this order, one of .plt, .got,
3127 or .data, if these sections exist. In the case of choosing
3128 .plt try to make the LTP ideal for addressing anywhere in the
3129 .plt or .got with a 14 bit signed offset. Typically, the end
3130 of the .plt is the start of the .got, so choose .plt + 0x2000
3131 if either the .plt or .got is larger than 0x2000. If both
3132 the .plt and .got are smaller than 0x2000, choose the end of
3133 the .plt section. */
3134 sec
= strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0
3139 if (gp_val
> 0x2000 || (sgot
&& sgot
->size
> 0x2000))
3149 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") != 0)
3151 /* We know we don't have a .plt. If .got is large,
3153 if (sec
->size
> 0x2000)
3159 /* No .plt or .got. Who cares what the LTP is? */
3160 sec
= bfd_get_section_by_name (abfd
, ".data");
3166 h
->type
= bfd_link_hash_defined
;
3167 h
->u
.def
.value
= gp_val
;
3169 h
->u
.def
.section
= sec
;
3171 h
->u
.def
.section
= bfd_abs_section_ptr
;
3175 if (sec
!= NULL
&& sec
->output_section
!= NULL
)
3176 gp_val
+= sec
->output_section
->vma
+ sec
->output_offset
;
3178 elf_gp (abfd
) = gp_val
;
3182 /* Build all the stubs associated with the current output file. The
3183 stubs are kept in a hash table attached to the main linker hash
3184 table. We also set up the .plt entries for statically linked PIC
3185 functions here. This function is called via hppaelf_finish in the
3189 elf32_hppa_build_stubs (struct bfd_link_info
*info
)
3192 struct bfd_hash_table
*table
;
3193 struct elf32_hppa_link_hash_table
*htab
;
3195 htab
= hppa_link_hash_table (info
);
3199 for (stub_sec
= htab
->stub_bfd
->sections
;
3201 stub_sec
= stub_sec
->next
)
3205 /* Allocate memory to hold the linker stubs. */
3206 size
= stub_sec
->size
;
3207 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
3208 if (stub_sec
->contents
== NULL
&& size
!= 0)
3213 /* Build the stubs as directed by the stub hash table. */
3214 table
= &htab
->bstab
;
3215 bfd_hash_traverse (table
, hppa_build_one_stub
, info
);
3220 /* Return the base vma address which should be subtracted from the real
3221 address when resolving a dtpoff relocation.
3222 This is PT_TLS segment p_vaddr. */
3225 dtpoff_base (struct bfd_link_info
*info
)
3227 /* If tls_sec is NULL, we should have signalled an error already. */
3228 if (elf_hash_table (info
)->tls_sec
== NULL
)
3230 return elf_hash_table (info
)->tls_sec
->vma
;
3233 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3236 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
3238 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3240 /* If tls_sec is NULL, we should have signalled an error already. */
3241 if (htab
->tls_sec
== NULL
)
3243 /* hppa TLS ABI is variant I and static TLS block start just after
3244 tcbhead structure which has 2 pointer fields. */
3245 return (address
- htab
->tls_sec
->vma
3246 + align_power ((bfd_vma
) 8, htab
->tls_sec
->alignment_power
));
3249 /* Perform a final link. */
3252 elf32_hppa_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
3254 /* Invoke the regular ELF linker to do all the work. */
3255 if (!bfd_elf_final_link (abfd
, info
))
3258 /* If we're producing a final executable, sort the contents of the
3260 if (info
->relocatable
)
3263 return elf_hppa_sort_unwind (abfd
);
3266 /* Record the lowest address for the data and text segments. */
3269 hppa_record_segment_addr (bfd
*abfd
, asection
*section
, void *data
)
3271 struct elf32_hppa_link_hash_table
*htab
;
3273 htab
= (struct elf32_hppa_link_hash_table
*) data
;
3277 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
3280 Elf_Internal_Phdr
*p
;
3282 p
= _bfd_elf_find_segment_containing_section (abfd
, section
->output_section
);
3283 BFD_ASSERT (p
!= NULL
);
3286 if ((section
->flags
& SEC_READONLY
) != 0)
3288 if (value
< htab
->text_segment_base
)
3289 htab
->text_segment_base
= value
;
3293 if (value
< htab
->data_segment_base
)
3294 htab
->data_segment_base
= value
;
3299 /* Perform a relocation as part of a final link. */
3301 static bfd_reloc_status_type
3302 final_link_relocate (asection
*input_section
,
3304 const Elf_Internal_Rela
*rela
,
3306 struct elf32_hppa_link_hash_table
*htab
,
3308 struct elf32_hppa_link_hash_entry
*hh
,
3309 struct bfd_link_info
*info
)
3312 unsigned int r_type
= ELF32_R_TYPE (rela
->r_info
);
3313 unsigned int orig_r_type
= r_type
;
3314 reloc_howto_type
*howto
= elf_hppa_howto_table
+ r_type
;
3315 int r_format
= howto
->bitsize
;
3316 enum hppa_reloc_field_selector_type_alt r_field
;
3317 bfd
*input_bfd
= input_section
->owner
;
3318 bfd_vma offset
= rela
->r_offset
;
3319 bfd_vma max_branch_offset
= 0;
3320 bfd_byte
*hit_data
= contents
+ offset
;
3321 bfd_signed_vma addend
= rela
->r_addend
;
3323 struct elf32_hppa_stub_hash_entry
*hsh
= NULL
;
3326 if (r_type
== R_PARISC_NONE
)
3327 return bfd_reloc_ok
;
3329 insn
= bfd_get_32 (input_bfd
, hit_data
);
3331 /* Find out where we are and where we're going. */
3332 location
= (offset
+
3333 input_section
->output_offset
+
3334 input_section
->output_section
->vma
);
3336 /* If we are not building a shared library, convert DLTIND relocs to
3342 case R_PARISC_DLTIND21L
:
3343 r_type
= R_PARISC_DPREL21L
;
3346 case R_PARISC_DLTIND14R
:
3347 r_type
= R_PARISC_DPREL14R
;
3350 case R_PARISC_DLTIND14F
:
3351 r_type
= R_PARISC_DPREL14F
;
3358 case R_PARISC_PCREL12F
:
3359 case R_PARISC_PCREL17F
:
3360 case R_PARISC_PCREL22F
:
3361 /* If this call should go via the plt, find the import stub in
3364 || sym_sec
->output_section
== NULL
3366 && hh
->eh
.plt
.offset
!= (bfd_vma
) -1
3367 && hh
->eh
.dynindx
!= -1
3370 || !hh
->eh
.def_regular
3371 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)))
3373 hsh
= hppa_get_stub_entry (input_section
, sym_sec
,
3377 value
= (hsh
->stub_offset
3378 + hsh
->stub_sec
->output_offset
3379 + hsh
->stub_sec
->output_section
->vma
);
3382 else if (sym_sec
== NULL
&& hh
!= NULL
3383 && hh
->eh
.root
.type
== bfd_link_hash_undefweak
)
3385 /* It's OK if undefined weak. Calls to undefined weak
3386 symbols behave as if the "called" function
3387 immediately returns. We can thus call to a weak
3388 function without first checking whether the function
3394 return bfd_reloc_undefined
;
3398 case R_PARISC_PCREL21L
:
3399 case R_PARISC_PCREL17C
:
3400 case R_PARISC_PCREL17R
:
3401 case R_PARISC_PCREL14R
:
3402 case R_PARISC_PCREL14F
:
3403 case R_PARISC_PCREL32
:
3404 /* Make it a pc relative offset. */
3409 case R_PARISC_DPREL21L
:
3410 case R_PARISC_DPREL14R
:
3411 case R_PARISC_DPREL14F
:
3412 case R_PARISC_TLS_GD21L
:
3413 case R_PARISC_TLS_LDM21L
:
3414 case R_PARISC_TLS_IE21L
:
3415 /* Convert instructions that use the linkage table pointer (r19) to
3416 instructions that use the global data pointer (dp). This is the
3417 most efficient way of using PIC code in an incomplete executable,
3418 but the user must follow the standard runtime conventions for
3419 accessing data for this to work. */
3420 if (orig_r_type
== R_PARISC_DLTIND21L
3422 && (r_type
== R_PARISC_TLS_GD21L
3423 || r_type
== R_PARISC_TLS_LDM21L
3424 || r_type
== R_PARISC_TLS_IE21L
)))
3426 /* Convert addil instructions if the original reloc was a
3427 DLTIND21L. GCC sometimes uses a register other than r19 for
3428 the operation, so we must convert any addil instruction
3429 that uses this relocation. */
3430 if ((insn
& 0xfc000000) == ((int) OP_ADDIL
<< 26))
3433 /* We must have a ldil instruction. It's too hard to find
3434 and convert the associated add instruction, so issue an
3436 (*_bfd_error_handler
)
3437 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3444 else if (orig_r_type
== R_PARISC_DLTIND14F
)
3446 /* This must be a format 1 load/store. Change the base
3448 insn
= (insn
& 0xfc1ffff) | (27 << 21);
3451 /* For all the DP relative relocations, we need to examine the symbol's
3452 section. If it has no section or if it's a code section, then
3453 "data pointer relative" makes no sense. In that case we don't
3454 adjust the "value", and for 21 bit addil instructions, we change the
3455 source addend register from %dp to %r0. This situation commonly
3456 arises for undefined weak symbols and when a variable's "constness"
3457 is declared differently from the way the variable is defined. For
3458 instance: "extern int foo" with foo defined as "const int foo". */
3459 if (sym_sec
== NULL
|| (sym_sec
->flags
& SEC_CODE
) != 0)
3461 if ((insn
& ((0x3f << 26) | (0x1f << 21)))
3462 == (((int) OP_ADDIL
<< 26) | (27 << 21)))
3464 insn
&= ~ (0x1f << 21);
3466 /* Now try to make things easy for the dynamic linker. */
3472 case R_PARISC_DLTIND21L
:
3473 case R_PARISC_DLTIND14R
:
3474 case R_PARISC_DLTIND14F
:
3475 case R_PARISC_TLS_GD14R
:
3476 case R_PARISC_TLS_LDM14R
:
3477 case R_PARISC_TLS_IE14R
:
3478 value
-= elf_gp (input_section
->output_section
->owner
);
3481 case R_PARISC_SEGREL32
:
3482 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3483 value
-= htab
->text_segment_base
;
3485 value
-= htab
->data_segment_base
;
3494 case R_PARISC_DIR32
:
3495 case R_PARISC_DIR14F
:
3496 case R_PARISC_DIR17F
:
3497 case R_PARISC_PCREL17C
:
3498 case R_PARISC_PCREL14F
:
3499 case R_PARISC_PCREL32
:
3500 case R_PARISC_DPREL14F
:
3501 case R_PARISC_PLABEL32
:
3502 case R_PARISC_DLTIND14F
:
3503 case R_PARISC_SEGBASE
:
3504 case R_PARISC_SEGREL32
:
3505 case R_PARISC_TLS_DTPMOD32
:
3506 case R_PARISC_TLS_DTPOFF32
:
3507 case R_PARISC_TLS_TPREL32
:
3511 case R_PARISC_DLTIND21L
:
3512 case R_PARISC_PCREL21L
:
3513 case R_PARISC_PLABEL21L
:
3517 case R_PARISC_DIR21L
:
3518 case R_PARISC_DPREL21L
:
3519 case R_PARISC_TLS_GD21L
:
3520 case R_PARISC_TLS_LDM21L
:
3521 case R_PARISC_TLS_LDO21L
:
3522 case R_PARISC_TLS_IE21L
:
3523 case R_PARISC_TLS_LE21L
:
3527 case R_PARISC_PCREL17R
:
3528 case R_PARISC_PCREL14R
:
3529 case R_PARISC_PLABEL14R
:
3530 case R_PARISC_DLTIND14R
:
3534 case R_PARISC_DIR17R
:
3535 case R_PARISC_DIR14R
:
3536 case R_PARISC_DPREL14R
:
3537 case R_PARISC_TLS_GD14R
:
3538 case R_PARISC_TLS_LDM14R
:
3539 case R_PARISC_TLS_LDO14R
:
3540 case R_PARISC_TLS_IE14R
:
3541 case R_PARISC_TLS_LE14R
:
3545 case R_PARISC_PCREL12F
:
3546 case R_PARISC_PCREL17F
:
3547 case R_PARISC_PCREL22F
:
3550 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3552 max_branch_offset
= (1 << (17-1)) << 2;
3554 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3556 max_branch_offset
= (1 << (12-1)) << 2;
3560 max_branch_offset
= (1 << (22-1)) << 2;
3563 /* sym_sec is NULL on undefined weak syms or when shared on
3564 undefined syms. We've already checked for a stub for the
3565 shared undefined case. */
3566 if (sym_sec
== NULL
)
3569 /* If the branch is out of reach, then redirect the
3570 call to the local stub for this function. */
3571 if (value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3573 hsh
= hppa_get_stub_entry (input_section
, sym_sec
,
3576 return bfd_reloc_undefined
;
3578 /* Munge up the value and addend so that we call the stub
3579 rather than the procedure directly. */
3580 value
= (hsh
->stub_offset
3581 + hsh
->stub_sec
->output_offset
3582 + hsh
->stub_sec
->output_section
->vma
3588 /* Something we don't know how to handle. */
3590 return bfd_reloc_notsupported
;
3593 /* Make sure we can reach the stub. */
3594 if (max_branch_offset
!= 0
3595 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3597 (*_bfd_error_handler
)
3598 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3602 hsh
->bh_root
.string
);
3603 bfd_set_error (bfd_error_bad_value
);
3604 return bfd_reloc_notsupported
;
3607 val
= hppa_field_adjust (value
, addend
, r_field
);
3611 case R_PARISC_PCREL12F
:
3612 case R_PARISC_PCREL17C
:
3613 case R_PARISC_PCREL17F
:
3614 case R_PARISC_PCREL17R
:
3615 case R_PARISC_PCREL22F
:
3616 case R_PARISC_DIR17F
:
3617 case R_PARISC_DIR17R
:
3618 /* This is a branch. Divide the offset by four.
3619 Note that we need to decide whether it's a branch or
3620 otherwise by inspecting the reloc. Inspecting insn won't
3621 work as insn might be from a .word directive. */
3629 insn
= hppa_rebuild_insn (insn
, val
, r_format
);
3631 /* Update the instruction word. */
3632 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3633 return bfd_reloc_ok
;
3636 /* Relocate an HPPA ELF section. */
3639 elf32_hppa_relocate_section (bfd
*output_bfd
,
3640 struct bfd_link_info
*info
,
3642 asection
*input_section
,
3644 Elf_Internal_Rela
*relocs
,
3645 Elf_Internal_Sym
*local_syms
,
3646 asection
**local_sections
)
3648 bfd_vma
*local_got_offsets
;
3649 struct elf32_hppa_link_hash_table
*htab
;
3650 Elf_Internal_Shdr
*symtab_hdr
;
3651 Elf_Internal_Rela
*rela
;
3652 Elf_Internal_Rela
*relend
;
3654 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3656 htab
= hppa_link_hash_table (info
);
3660 local_got_offsets
= elf_local_got_offsets (input_bfd
);
3663 relend
= relocs
+ input_section
->reloc_count
;
3664 for (; rela
< relend
; rela
++)
3666 unsigned int r_type
;
3667 reloc_howto_type
*howto
;
3668 unsigned int r_symndx
;
3669 struct elf32_hppa_link_hash_entry
*hh
;
3670 Elf_Internal_Sym
*sym
;
3673 bfd_reloc_status_type rstatus
;
3674 const char *sym_name
;
3676 bfd_boolean warned_undef
;
3678 r_type
= ELF32_R_TYPE (rela
->r_info
);
3679 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
3681 bfd_set_error (bfd_error_bad_value
);
3684 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3685 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3688 r_symndx
= ELF32_R_SYM (rela
->r_info
);
3692 warned_undef
= FALSE
;
3693 if (r_symndx
< symtab_hdr
->sh_info
)
3695 /* This is a local symbol, h defaults to NULL. */
3696 sym
= local_syms
+ r_symndx
;
3697 sym_sec
= local_sections
[r_symndx
];
3698 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sym_sec
, rela
);
3702 struct elf_link_hash_entry
*eh
;
3703 bfd_boolean unresolved_reloc
;
3704 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
3706 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rela
,
3707 r_symndx
, symtab_hdr
, sym_hashes
,
3708 eh
, sym_sec
, relocation
,
3709 unresolved_reloc
, warned_undef
);
3711 if (!info
->relocatable
3713 && eh
->root
.type
!= bfd_link_hash_defined
3714 && eh
->root
.type
!= bfd_link_hash_defweak
3715 && eh
->root
.type
!= bfd_link_hash_undefweak
)
3717 if (info
->unresolved_syms_in_objects
== RM_IGNORE
3718 && ELF_ST_VISIBILITY (eh
->other
) == STV_DEFAULT
3719 && eh
->type
== STT_PARISC_MILLI
)
3721 if (! info
->callbacks
->undefined_symbol
3722 (info
, eh_name (eh
), input_bfd
,
3723 input_section
, rela
->r_offset
, FALSE
))
3725 warned_undef
= TRUE
;
3728 hh
= hppa_elf_hash_entry (eh
);
3731 if (sym_sec
!= NULL
&& elf_discarded_section (sym_sec
))
3732 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
3734 elf_hppa_howto_table
+ r_type
,
3737 if (info
->relocatable
)
3740 /* Do any required modifications to the relocation value, and
3741 determine what types of dynamic info we need to output, if
3746 case R_PARISC_DLTIND14F
:
3747 case R_PARISC_DLTIND14R
:
3748 case R_PARISC_DLTIND21L
:
3751 bfd_boolean do_got
= 0;
3753 /* Relocation is to the entry for this symbol in the
3754 global offset table. */
3759 off
= hh
->eh
.got
.offset
;
3760 dyn
= htab
->etab
.dynamic_sections_created
;
3761 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
,
3764 /* If we aren't going to call finish_dynamic_symbol,
3765 then we need to handle initialisation of the .got
3766 entry and create needed relocs here. Since the
3767 offset must always be a multiple of 4, we use the
3768 least significant bit to record whether we have
3769 initialised it already. */
3774 hh
->eh
.got
.offset
|= 1;
3781 /* Local symbol case. */
3782 if (local_got_offsets
== NULL
)
3785 off
= local_got_offsets
[r_symndx
];
3787 /* The offset must always be a multiple of 4. We use
3788 the least significant bit to record whether we have
3789 already generated the necessary reloc. */
3794 local_got_offsets
[r_symndx
] |= 1;
3803 /* Output a dynamic relocation for this GOT entry.
3804 In this case it is relative to the base of the
3805 object because the symbol index is zero. */
3806 Elf_Internal_Rela outrel
;
3808 asection
*sec
= htab
->srelgot
;
3810 outrel
.r_offset
= (off
3811 + htab
->sgot
->output_offset
3812 + htab
->sgot
->output_section
->vma
);
3813 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
3814 outrel
.r_addend
= relocation
;
3815 loc
= sec
->contents
;
3816 loc
+= sec
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3817 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3820 bfd_put_32 (output_bfd
, relocation
,
3821 htab
->sgot
->contents
+ off
);
3824 if (off
>= (bfd_vma
) -2)
3827 /* Add the base of the GOT to the relocation value. */
3829 + htab
->sgot
->output_offset
3830 + htab
->sgot
->output_section
->vma
);
3834 case R_PARISC_SEGREL32
:
3835 /* If this is the first SEGREL relocation, then initialize
3836 the segment base values. */
3837 if (htab
->text_segment_base
== (bfd_vma
) -1)
3838 bfd_map_over_sections (output_bfd
, hppa_record_segment_addr
, htab
);
3841 case R_PARISC_PLABEL14R
:
3842 case R_PARISC_PLABEL21L
:
3843 case R_PARISC_PLABEL32
:
3844 if (htab
->etab
.dynamic_sections_created
)
3847 bfd_boolean do_plt
= 0;
3848 /* If we have a global symbol with a PLT slot, then
3849 redirect this relocation to it. */
3852 off
= hh
->eh
.plt
.offset
;
3853 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
,
3856 /* In a non-shared link, adjust_dynamic_symbols
3857 isn't called for symbols forced local. We
3858 need to write out the plt entry here. */
3863 hh
->eh
.plt
.offset
|= 1;
3870 bfd_vma
*local_plt_offsets
;
3872 if (local_got_offsets
== NULL
)
3875 local_plt_offsets
= local_got_offsets
+ symtab_hdr
->sh_info
;
3876 off
= local_plt_offsets
[r_symndx
];
3878 /* As for the local .got entry case, we use the last
3879 bit to record whether we've already initialised
3880 this local .plt entry. */
3885 local_plt_offsets
[r_symndx
] |= 1;
3894 /* Output a dynamic IPLT relocation for this
3896 Elf_Internal_Rela outrel
;
3898 asection
*s
= htab
->srelplt
;
3900 outrel
.r_offset
= (off
3901 + htab
->splt
->output_offset
3902 + htab
->splt
->output_section
->vma
);
3903 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
3904 outrel
.r_addend
= relocation
;
3906 loc
+= s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3907 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3911 bfd_put_32 (output_bfd
,
3913 htab
->splt
->contents
+ off
);
3914 bfd_put_32 (output_bfd
,
3915 elf_gp (htab
->splt
->output_section
->owner
),
3916 htab
->splt
->contents
+ off
+ 4);
3920 if (off
>= (bfd_vma
) -2)
3923 /* PLABELs contain function pointers. Relocation is to
3924 the entry for the function in the .plt. The magic +2
3925 offset signals to $$dyncall that the function pointer
3926 is in the .plt and thus has a gp pointer too.
3927 Exception: Undefined PLABELs should have a value of
3930 || (hh
->eh
.root
.type
!= bfd_link_hash_undefweak
3931 && hh
->eh
.root
.type
!= bfd_link_hash_undefined
))
3934 + htab
->splt
->output_offset
3935 + htab
->splt
->output_section
->vma
3940 /* Fall through and possibly emit a dynamic relocation. */
3942 case R_PARISC_DIR17F
:
3943 case R_PARISC_DIR17R
:
3944 case R_PARISC_DIR14F
:
3945 case R_PARISC_DIR14R
:
3946 case R_PARISC_DIR21L
:
3947 case R_PARISC_DPREL14F
:
3948 case R_PARISC_DPREL14R
:
3949 case R_PARISC_DPREL21L
:
3950 case R_PARISC_DIR32
:
3951 if ((input_section
->flags
& SEC_ALLOC
) == 0)
3954 /* The reloc types handled here and this conditional
3955 expression must match the code in ..check_relocs and
3956 allocate_dynrelocs. ie. We need exactly the same condition
3957 as in ..check_relocs, with some extra conditions (dynindx
3958 test in this case) to cater for relocs removed by
3959 allocate_dynrelocs. If you squint, the non-shared test
3960 here does indeed match the one in ..check_relocs, the
3961 difference being that here we test DEF_DYNAMIC as well as
3962 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3963 which is why we can't use just that test here.
3964 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3965 there all files have not been loaded. */
3968 || ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
3969 || hh
->eh
.root
.type
!= bfd_link_hash_undefweak
)
3970 && (IS_ABSOLUTE_RELOC (r_type
)
3971 || !SYMBOL_CALLS_LOCAL (info
, &hh
->eh
)))
3974 && hh
->eh
.dynindx
!= -1
3975 && !hh
->eh
.non_got_ref
3976 && ((ELIMINATE_COPY_RELOCS
3977 && hh
->eh
.def_dynamic
3978 && !hh
->eh
.def_regular
)
3979 || hh
->eh
.root
.type
== bfd_link_hash_undefweak
3980 || hh
->eh
.root
.type
== bfd_link_hash_undefined
)))
3982 Elf_Internal_Rela outrel
;
3987 /* When generating a shared object, these relocations
3988 are copied into the output file to be resolved at run
3991 outrel
.r_addend
= rela
->r_addend
;
3993 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3995 skip
= (outrel
.r_offset
== (bfd_vma
) -1
3996 || outrel
.r_offset
== (bfd_vma
) -2);
3997 outrel
.r_offset
+= (input_section
->output_offset
3998 + input_section
->output_section
->vma
);
4002 memset (&outrel
, 0, sizeof (outrel
));
4005 && hh
->eh
.dynindx
!= -1
4007 || !IS_ABSOLUTE_RELOC (r_type
)
4010 || !hh
->eh
.def_regular
))
4012 outrel
.r_info
= ELF32_R_INFO (hh
->eh
.dynindx
, r_type
);
4014 else /* It's a local symbol, or one marked to become local. */
4018 /* Add the absolute offset of the symbol. */
4019 outrel
.r_addend
+= relocation
;
4021 /* Global plabels need to be processed by the
4022 dynamic linker so that functions have at most one
4023 fptr. For this reason, we need to differentiate
4024 between global and local plabels, which we do by
4025 providing the function symbol for a global plabel
4026 reloc, and no symbol for local plabels. */
4029 && sym_sec
->output_section
!= NULL
4030 && ! bfd_is_abs_section (sym_sec
))
4034 osec
= sym_sec
->output_section
;
4035 indx
= elf_section_data (osec
)->dynindx
;
4038 osec
= htab
->etab
.text_index_section
;
4039 indx
= elf_section_data (osec
)->dynindx
;
4041 BFD_ASSERT (indx
!= 0);
4043 /* We are turning this relocation into one
4044 against a section symbol, so subtract out the
4045 output section's address but not the offset
4046 of the input section in the output section. */
4047 outrel
.r_addend
-= osec
->vma
;
4050 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
4052 sreloc
= elf_section_data (input_section
)->sreloc
;
4056 loc
= sreloc
->contents
;
4057 loc
+= sreloc
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4058 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4062 case R_PARISC_TLS_LDM21L
:
4063 case R_PARISC_TLS_LDM14R
:
4067 off
= htab
->tls_ldm_got
.offset
;
4072 Elf_Internal_Rela outrel
;
4075 outrel
.r_offset
= (off
4076 + htab
->sgot
->output_section
->vma
4077 + htab
->sgot
->output_offset
);
4078 outrel
.r_addend
= 0;
4079 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32
);
4080 loc
= htab
->srelgot
->contents
;
4081 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4083 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4084 htab
->tls_ldm_got
.offset
|= 1;
4087 /* Add the base of the GOT to the relocation value. */
4089 + htab
->sgot
->output_offset
4090 + htab
->sgot
->output_section
->vma
);
4095 case R_PARISC_TLS_LDO21L
:
4096 case R_PARISC_TLS_LDO14R
:
4097 relocation
-= dtpoff_base (info
);
4100 case R_PARISC_TLS_GD21L
:
4101 case R_PARISC_TLS_GD14R
:
4102 case R_PARISC_TLS_IE21L
:
4103 case R_PARISC_TLS_IE14R
:
4113 dyn
= htab
->etab
.dynamic_sections_created
;
4115 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &hh
->eh
)
4117 || !SYMBOL_REFERENCES_LOCAL (info
, &hh
->eh
)))
4119 indx
= hh
->eh
.dynindx
;
4121 off
= hh
->eh
.got
.offset
;
4122 tls_type
= hh
->tls_type
;
4126 off
= local_got_offsets
[r_symndx
];
4127 tls_type
= hppa_elf_local_got_tls_type (input_bfd
)[r_symndx
];
4130 if (tls_type
== GOT_UNKNOWN
)
4137 bfd_boolean need_relocs
= FALSE
;
4138 Elf_Internal_Rela outrel
;
4139 bfd_byte
*loc
= NULL
;
4142 /* The GOT entries have not been initialized yet. Do it
4143 now, and emit any relocations. If both an IE GOT and a
4144 GD GOT are necessary, we emit the GD first. */
4146 if ((info
->shared
|| indx
!= 0)
4148 || ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
4149 || hh
->eh
.root
.type
!= bfd_link_hash_undefweak
))
4152 loc
= htab
->srelgot
->contents
;
4153 /* FIXME (CAO): Should this be reloc_count++ ? */
4154 loc
+= htab
->srelgot
->reloc_count
* sizeof (Elf32_External_Rela
);
4157 if (tls_type
& GOT_TLS_GD
)
4161 outrel
.r_offset
= (cur_off
4162 + htab
->sgot
->output_section
->vma
4163 + htab
->sgot
->output_offset
);
4164 outrel
.r_info
= ELF32_R_INFO (indx
,R_PARISC_TLS_DTPMOD32
);
4165 outrel
.r_addend
= 0;
4166 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ cur_off
);
4167 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4168 htab
->srelgot
->reloc_count
++;
4169 loc
+= sizeof (Elf32_External_Rela
);
4172 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
4173 htab
->sgot
->contents
+ cur_off
+ 4);
4176 bfd_put_32 (output_bfd
, 0,
4177 htab
->sgot
->contents
+ cur_off
+ 4);
4178 outrel
.r_info
= ELF32_R_INFO (indx
, R_PARISC_TLS_DTPOFF32
);
4179 outrel
.r_offset
+= 4;
4180 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
,loc
);
4181 htab
->srelgot
->reloc_count
++;
4182 loc
+= sizeof (Elf32_External_Rela
);
4187 /* If we are not emitting relocations for a
4188 general dynamic reference, then we must be in a
4189 static link or an executable link with the
4190 symbol binding locally. Mark it as belonging
4191 to module 1, the executable. */
4192 bfd_put_32 (output_bfd
, 1,
4193 htab
->sgot
->contents
+ cur_off
);
4194 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
4195 htab
->sgot
->contents
+ cur_off
+ 4);
4202 if (tls_type
& GOT_TLS_IE
)
4206 outrel
.r_offset
= (cur_off
4207 + htab
->sgot
->output_section
->vma
4208 + htab
->sgot
->output_offset
);
4209 outrel
.r_info
= ELF32_R_INFO (indx
, R_PARISC_TLS_TPREL32
);
4212 outrel
.r_addend
= relocation
- dtpoff_base (info
);
4214 outrel
.r_addend
= 0;
4216 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4217 htab
->srelgot
->reloc_count
++;
4218 loc
+= sizeof (Elf32_External_Rela
);
4221 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
4222 htab
->sgot
->contents
+ cur_off
);
4228 hh
->eh
.got
.offset
|= 1;
4230 local_got_offsets
[r_symndx
] |= 1;
4233 if ((tls_type
& GOT_TLS_GD
)
4234 && r_type
!= R_PARISC_TLS_GD21L
4235 && r_type
!= R_PARISC_TLS_GD14R
)
4236 off
+= 2 * GOT_ENTRY_SIZE
;
4238 /* Add the base of the GOT to the relocation value. */
4240 + htab
->sgot
->output_offset
4241 + htab
->sgot
->output_section
->vma
);
4246 case R_PARISC_TLS_LE21L
:
4247 case R_PARISC_TLS_LE14R
:
4249 relocation
= tpoff (info
, relocation
);
4258 rstatus
= final_link_relocate (input_section
, contents
, rela
, relocation
,
4259 htab
, sym_sec
, hh
, info
);
4261 if (rstatus
== bfd_reloc_ok
)
4265 sym_name
= hh_name (hh
);
4268 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
4269 symtab_hdr
->sh_link
,
4271 if (sym_name
== NULL
)
4273 if (*sym_name
== '\0')
4274 sym_name
= bfd_section_name (input_bfd
, sym_sec
);
4277 howto
= elf_hppa_howto_table
+ r_type
;
4279 if (rstatus
== bfd_reloc_undefined
|| rstatus
== bfd_reloc_notsupported
)
4281 if (rstatus
== bfd_reloc_notsupported
|| !warned_undef
)
4283 (*_bfd_error_handler
)
4284 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4287 (long) rela
->r_offset
,
4290 bfd_set_error (bfd_error_bad_value
);
4296 if (!((*info
->callbacks
->reloc_overflow
)
4297 (info
, (hh
? &hh
->eh
.root
: NULL
), sym_name
, howto
->name
,
4298 (bfd_vma
) 0, input_bfd
, input_section
, rela
->r_offset
)))
4306 /* Finish up dynamic symbol handling. We set the contents of various
4307 dynamic sections here. */
4310 elf32_hppa_finish_dynamic_symbol (bfd
*output_bfd
,
4311 struct bfd_link_info
*info
,
4312 struct elf_link_hash_entry
*eh
,
4313 Elf_Internal_Sym
*sym
)
4315 struct elf32_hppa_link_hash_table
*htab
;
4316 Elf_Internal_Rela rela
;
4319 htab
= hppa_link_hash_table (info
);
4323 if (eh
->plt
.offset
!= (bfd_vma
) -1)
4327 if (eh
->plt
.offset
& 1)
4330 /* This symbol has an entry in the procedure linkage table. Set
4333 The format of a plt entry is
4338 if (eh
->root
.type
== bfd_link_hash_defined
4339 || eh
->root
.type
== bfd_link_hash_defweak
)
4341 value
= eh
->root
.u
.def
.value
;
4342 if (eh
->root
.u
.def
.section
->output_section
!= NULL
)
4343 value
+= (eh
->root
.u
.def
.section
->output_offset
4344 + eh
->root
.u
.def
.section
->output_section
->vma
);
4347 /* Create a dynamic IPLT relocation for this entry. */
4348 rela
.r_offset
= (eh
->plt
.offset
4349 + htab
->splt
->output_offset
4350 + htab
->splt
->output_section
->vma
);
4351 if (eh
->dynindx
!= -1)
4353 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_IPLT
);
4358 /* This symbol has been marked to become local, and is
4359 used by a plabel so must be kept in the .plt. */
4360 rela
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
4361 rela
.r_addend
= value
;
4364 loc
= htab
->srelplt
->contents
;
4365 loc
+= htab
->srelplt
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4366 bfd_elf32_swap_reloca_out (htab
->splt
->output_section
->owner
, &rela
, loc
);
4368 if (!eh
->def_regular
)
4370 /* Mark the symbol as undefined, rather than as defined in
4371 the .plt section. Leave the value alone. */
4372 sym
->st_shndx
= SHN_UNDEF
;
4376 if (eh
->got
.offset
!= (bfd_vma
) -1
4377 && (hppa_elf_hash_entry (eh
)->tls_type
& GOT_TLS_GD
) == 0
4378 && (hppa_elf_hash_entry (eh
)->tls_type
& GOT_TLS_IE
) == 0)
4380 /* This symbol has an entry in the global offset table. Set it
4383 rela
.r_offset
= ((eh
->got
.offset
&~ (bfd_vma
) 1)
4384 + htab
->sgot
->output_offset
4385 + htab
->sgot
->output_section
->vma
);
4387 /* If this is a -Bsymbolic link and the symbol is defined
4388 locally or was forced to be local because of a version file,
4389 we just want to emit a RELATIVE reloc. The entry in the
4390 global offset table will already have been initialized in the
4391 relocate_section function. */
4393 && (info
->symbolic
|| eh
->dynindx
== -1)
4396 rela
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
4397 rela
.r_addend
= (eh
->root
.u
.def
.value
4398 + eh
->root
.u
.def
.section
->output_offset
4399 + eh
->root
.u
.def
.section
->output_section
->vma
);
4403 if ((eh
->got
.offset
& 1) != 0)
4406 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ (eh
->got
.offset
& ~1));
4407 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_DIR32
);
4411 loc
= htab
->srelgot
->contents
;
4412 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4413 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4420 /* This symbol needs a copy reloc. Set it up. */
4422 if (! (eh
->dynindx
!= -1
4423 && (eh
->root
.type
== bfd_link_hash_defined
4424 || eh
->root
.type
== bfd_link_hash_defweak
)))
4427 sec
= htab
->srelbss
;
4429 rela
.r_offset
= (eh
->root
.u
.def
.value
4430 + eh
->root
.u
.def
.section
->output_offset
4431 + eh
->root
.u
.def
.section
->output_section
->vma
);
4433 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_COPY
);
4434 loc
= sec
->contents
+ sec
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4435 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4438 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4439 if (eh_name (eh
)[0] == '_'
4440 && (strcmp (eh_name (eh
), "_DYNAMIC") == 0
4441 || eh
== htab
->etab
.hgot
))
4443 sym
->st_shndx
= SHN_ABS
;
4449 /* Used to decide how to sort relocs in an optimal manner for the
4450 dynamic linker, before writing them out. */
4452 static enum elf_reloc_type_class
4453 elf32_hppa_reloc_type_class (const Elf_Internal_Rela
*rela
)
4455 /* Handle TLS relocs first; we don't want them to be marked
4456 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4458 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4460 case R_PARISC_TLS_DTPMOD32
:
4461 case R_PARISC_TLS_DTPOFF32
:
4462 case R_PARISC_TLS_TPREL32
:
4463 return reloc_class_normal
;
4466 if (ELF32_R_SYM (rela
->r_info
) == STN_UNDEF
)
4467 return reloc_class_relative
;
4469 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4472 return reloc_class_plt
;
4474 return reloc_class_copy
;
4476 return reloc_class_normal
;
4480 /* Finish up the dynamic sections. */
4483 elf32_hppa_finish_dynamic_sections (bfd
*output_bfd
,
4484 struct bfd_link_info
*info
)
4487 struct elf32_hppa_link_hash_table
*htab
;
4491 htab
= hppa_link_hash_table (info
);
4495 dynobj
= htab
->etab
.dynobj
;
4498 /* A broken linker script might have discarded the dynamic sections.
4499 Catch this here so that we do not seg-fault later on. */
4500 if (sgot
!= NULL
&& bfd_is_abs_section (sgot
->output_section
))
4503 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4505 if (htab
->etab
.dynamic_sections_created
)
4507 Elf32_External_Dyn
*dyncon
, *dynconend
;
4512 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4513 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4514 for (; dyncon
< dynconend
; dyncon
++)
4516 Elf_Internal_Dyn dyn
;
4519 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4527 /* Use PLTGOT to set the GOT register. */
4528 dyn
.d_un
.d_ptr
= elf_gp (output_bfd
);
4533 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4538 dyn
.d_un
.d_val
= s
->size
;
4542 /* Don't count procedure linkage table relocs in the
4543 overall reloc count. */
4547 dyn
.d_un
.d_val
-= s
->size
;
4551 /* We may not be using the standard ELF linker script.
4552 If .rela.plt is the first .rela section, we adjust
4553 DT_RELA to not include it. */
4557 if (dyn
.d_un
.d_ptr
!= s
->output_section
->vma
+ s
->output_offset
)
4559 dyn
.d_un
.d_ptr
+= s
->size
;
4563 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4567 if (sgot
!= NULL
&& sgot
->size
!= 0)
4569 /* Fill in the first entry in the global offset table.
4570 We use it to point to our dynamic section, if we have one. */
4571 bfd_put_32 (output_bfd
,
4572 sdyn
? sdyn
->output_section
->vma
+ sdyn
->output_offset
: 0,
4575 /* The second entry is reserved for use by the dynamic linker. */
4576 memset (sgot
->contents
+ GOT_ENTRY_SIZE
, 0, GOT_ENTRY_SIZE
);
4578 /* Set .got entry size. */
4579 elf_section_data (sgot
->output_section
)
4580 ->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
4583 if (htab
->splt
!= NULL
&& htab
->splt
->size
!= 0)
4585 /* Set plt entry size. */
4586 elf_section_data (htab
->splt
->output_section
)
4587 ->this_hdr
.sh_entsize
= PLT_ENTRY_SIZE
;
4589 if (htab
->need_plt_stub
)
4591 /* Set up the .plt stub. */
4592 memcpy (htab
->splt
->contents
4593 + htab
->splt
->size
- sizeof (plt_stub
),
4594 plt_stub
, sizeof (plt_stub
));
4596 if ((htab
->splt
->output_offset
4597 + htab
->splt
->output_section
->vma
4599 != (sgot
->output_offset
4600 + sgot
->output_section
->vma
))
4602 (*_bfd_error_handler
)
4603 (_(".got section not immediately after .plt section"));
4612 /* Called when writing out an object file to decide the type of a
4615 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym
*elf_sym
, int type
)
4617 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
4618 return STT_PARISC_MILLI
;
4623 /* Misc BFD support code. */
4624 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4625 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4626 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4627 #define elf_info_to_howto elf_hppa_info_to_howto
4628 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4630 /* Stuff for the BFD linker. */
4631 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4632 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4633 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4634 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4635 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4636 #define elf_backend_check_relocs elf32_hppa_check_relocs
4637 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4638 #define elf_backend_fake_sections elf_hppa_fake_sections
4639 #define elf_backend_relocate_section elf32_hppa_relocate_section
4640 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4641 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4642 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4643 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4644 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4645 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4646 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4647 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4648 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4649 #define elf_backend_object_p elf32_hppa_object_p
4650 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4651 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4652 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4653 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4654 #define elf_backend_action_discarded elf_hppa_action_discarded
4656 #define elf_backend_can_gc_sections 1
4657 #define elf_backend_can_refcount 1
4658 #define elf_backend_plt_alignment 2
4659 #define elf_backend_want_got_plt 0
4660 #define elf_backend_plt_readonly 0
4661 #define elf_backend_want_plt_sym 0
4662 #define elf_backend_got_header_size 8
4663 #define elf_backend_rela_normal 1
4665 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4666 #define TARGET_BIG_NAME "elf32-hppa"
4667 #define ELF_ARCH bfd_arch_hppa
4668 #define ELF_TARGET_ID HPPA32_ELF_DATA
4669 #define ELF_MACHINE_CODE EM_PARISC
4670 #define ELF_MAXPAGESIZE 0x1000
4671 #define ELF_OSABI ELFOSABI_HPUX
4672 #define elf32_bed elf32_hppa_hpux_bed
4674 #include "elf32-target.h"
4676 #undef TARGET_BIG_SYM
4677 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4678 #undef TARGET_BIG_NAME
4679 #define TARGET_BIG_NAME "elf32-hppa-linux"
4681 #define ELF_OSABI ELFOSABI_GNU
4683 #define elf32_bed elf32_hppa_linux_bed
4685 #include "elf32-target.h"
4687 #undef TARGET_BIG_SYM
4688 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4689 #undef TARGET_BIG_NAME
4690 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4692 #define ELF_OSABI ELFOSABI_NETBSD
4694 #define elf32_bed elf32_hppa_netbsd_bed
4696 #include "elf32-target.h"