1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
210 bfd_elf_mkobject (bfd
*abfd
)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
215 if (elf_tdata (abfd
) == 0)
217 /* Since everything is done at close time, do we need any
224 bfd_elf_mkcorefile (bfd
*abfd
)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd
);
231 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
233 Elf_Internal_Shdr
**i_shdrp
;
234 bfd_byte
*shstrtab
= NULL
;
236 bfd_size_type shstrtabsize
;
238 i_shdrp
= elf_elfsections (abfd
);
239 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
242 shstrtab
= i_shdrp
[shindex
]->contents
;
243 if (shstrtab
== NULL
)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset
= i_shdrp
[shindex
]->sh_offset
;
247 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize
+ 1 == 0
252 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
253 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
255 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
257 if (bfd_get_error () != bfd_error_system_call
)
258 bfd_set_error (bfd_error_file_truncated
);
262 shstrtab
[shstrtabsize
] = '\0';
263 i_shdrp
[shindex
]->contents
= shstrtab
;
265 return (char *) shstrtab
;
269 bfd_elf_string_from_elf_section (bfd
*abfd
,
270 unsigned int shindex
,
271 unsigned int strindex
)
273 Elf_Internal_Shdr
*hdr
;
278 hdr
= elf_elfsections (abfd
)[shindex
];
280 if (hdr
->contents
== NULL
281 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
284 if (strindex
>= hdr
->sh_size
)
286 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
287 (*_bfd_error_handler
)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
290 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
292 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
296 return ((char *) hdr
->contents
) + strindex
;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
306 bfd_elf_get_elf_syms (bfd
*ibfd
,
307 Elf_Internal_Shdr
*symtab_hdr
,
310 Elf_Internal_Sym
*intsym_buf
,
312 Elf_External_Sym_Shndx
*extshndx_buf
)
314 Elf_Internal_Shdr
*shndx_hdr
;
316 const bfd_byte
*esym
;
317 Elf_External_Sym_Shndx
*alloc_extshndx
;
318 Elf_External_Sym_Shndx
*shndx
;
319 Elf_Internal_Sym
*isym
;
320 Elf_Internal_Sym
*isymend
;
321 const struct elf_backend_data
*bed
;
329 /* Normal syms might have section extension entries. */
331 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
332 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
334 /* Read the symbols. */
336 alloc_extshndx
= NULL
;
337 bed
= get_elf_backend_data (ibfd
);
338 extsym_size
= bed
->s
->sizeof_sym
;
339 amt
= symcount
* extsym_size
;
340 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
341 if (extsym_buf
== NULL
)
343 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
344 extsym_buf
= alloc_ext
;
346 if (extsym_buf
== NULL
347 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
348 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
354 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
358 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
359 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
360 if (extshndx_buf
== NULL
)
362 alloc_extshndx
= bfd_malloc2 (symcount
,
363 sizeof (Elf_External_Sym_Shndx
));
364 extshndx_buf
= alloc_extshndx
;
366 if (extshndx_buf
== NULL
367 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
368 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
375 if (intsym_buf
== NULL
)
377 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
378 if (intsym_buf
== NULL
)
382 /* Convert the symbols to internal form. */
383 isymend
= intsym_buf
+ symcount
;
384 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
386 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
387 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
390 if (alloc_ext
!= NULL
)
392 if (alloc_extshndx
!= NULL
)
393 free (alloc_extshndx
);
398 /* Look up a symbol name. */
400 bfd_elf_sym_name (bfd
*abfd
,
401 Elf_Internal_Shdr
*symtab_hdr
,
402 Elf_Internal_Sym
*isym
,
406 unsigned int iname
= isym
->st_name
;
407 unsigned int shindex
= symtab_hdr
->sh_link
;
409 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym
->st_shndx
< elf_numsections (abfd
)
412 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 else if (sym_sec
&& *name
== '\0')
422 name
= bfd_section_name (abfd
, sym_sec
);
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
431 typedef union elf_internal_group
{
432 Elf_Internal_Shdr
*shdr
;
434 } Elf_Internal_Group
;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
440 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
442 Elf_Internal_Shdr
*hdr
;
443 unsigned char esym
[sizeof (Elf64_External_Sym
)];
444 Elf_External_Sym_Shndx eshndx
;
445 Elf_Internal_Sym isym
;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
450 if (hdr
->sh_type
!= SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
454 /* Go read the symbol. */
455 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
456 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
457 &isym
, esym
, &eshndx
) == NULL
)
460 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
466 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
468 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
474 unsigned int i
, shnum
;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum
= elf_numsections (abfd
);
480 for (i
= 0; i
< shnum
; i
++)
482 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
483 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
489 num_group
= (unsigned) -1;
490 elf_tdata (abfd
)->num_group
= num_group
;
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
498 elf_tdata (abfd
)->num_group
= num_group
;
499 elf_tdata (abfd
)->group_sect_ptr
500 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
501 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
505 for (i
= 0; i
< shnum
; i
++)
507 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
508 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
511 Elf_Internal_Group
*dest
;
513 /* Add to list of sections. */
514 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest
) >= 4);
519 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
520 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
522 if (shdr
->contents
== NULL
523 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
524 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
532 src
= shdr
->contents
+ shdr
->sh_size
;
533 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
540 idx
= H_GET_32 (abfd
, src
);
541 if (src
== shdr
->contents
)
544 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
545 shdr
->bfd_section
->flags
546 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
551 ((*_bfd_error_handler
)
552 (_("%B: invalid SHT_GROUP entry"), abfd
));
555 dest
->shdr
= elf_elfsections (abfd
)[idx
];
562 if (num_group
!= (unsigned) -1)
566 for (i
= 0; i
< num_group
; i
++)
568 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
569 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
570 unsigned int n_elt
= shdr
->sh_size
/ 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
575 if ((++idx
)->shdr
== hdr
)
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
582 idx
= (Elf_Internal_Group
*) shdr
->contents
;
583 n_elt
= shdr
->sh_size
/ 4;
585 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
586 && elf_next_in_group (s
) != NULL
)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect
) = elf_group_name (s
);
593 elf_next_in_group (newsect
) = elf_next_in_group (s
);
594 elf_next_in_group (s
) = newsect
;
600 gname
= group_signature (abfd
, shdr
);
603 elf_group_name (newsect
) = gname
;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect
) = newsect
;
609 /* If the group section has been created, point to the
611 if (shdr
->bfd_section
!= NULL
)
612 elf_next_in_group (shdr
->bfd_section
) = newsect
;
620 if (elf_group_name (newsect
) == NULL
)
622 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
629 _bfd_elf_setup_sections (bfd
*abfd
)
632 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
633 bfd_boolean result
= TRUE
;
636 /* Process SHF_LINK_ORDER. */
637 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
639 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
640 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
642 unsigned int elfsec
= this_hdr
->sh_link
;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
648 const struct elf_backend_data
*bed
649 = get_elf_backend_data (abfd
);
650 if (bed
->link_order_error_handler
)
651 bed
->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
659 this_hdr
= elf_elfsections (abfd
)[elfsec
];
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link
= this_hdr
->bfd_section
;
667 (*_bfd_error_handler
)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s
->owner
, s
, elfsec
);
673 elf_linked_to_section (s
) = link
;
678 /* Process section groups. */
679 if (num_group
== (unsigned) -1)
682 for (i
= 0; i
< num_group
; i
++)
684 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
685 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
686 unsigned int n_elt
= shdr
->sh_size
/ 4;
689 if ((++idx
)->shdr
->bfd_section
)
690 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
691 else if (idx
->shdr
->sh_type
== SHT_RELA
692 || idx
->shdr
->sh_type
== SHT_REL
)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
698 shdr
->bfd_section
->size
-= 4;
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler
)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
705 (unsigned int) idx
->shdr
->sh_type
,
706 bfd_elf_string_from_elf_section (abfd
,
707 (elf_elfheader (abfd
)
710 shdr
->bfd_section
->name
);
718 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
720 return elf_next_in_group (sec
) != NULL
;
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
727 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
728 Elf_Internal_Shdr
*hdr
,
734 const struct elf_backend_data
*bed
;
736 if (hdr
->bfd_section
!= NULL
)
738 BFD_ASSERT (strcmp (name
,
739 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
743 newsect
= bfd_make_section_anyway (abfd
, name
);
747 hdr
->bfd_section
= newsect
;
748 elf_section_data (newsect
)->this_hdr
= *hdr
;
749 elf_section_data (newsect
)->this_idx
= shindex
;
751 /* Always use the real type/flags. */
752 elf_section_type (newsect
) = hdr
->sh_type
;
753 elf_section_flags (newsect
) = hdr
->sh_flags
;
755 newsect
->filepos
= hdr
->sh_offset
;
757 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
758 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
759 || ! bfd_set_section_alignment (abfd
, newsect
,
760 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
763 flags
= SEC_NO_FLAGS
;
764 if (hdr
->sh_type
!= SHT_NOBITS
)
765 flags
|= SEC_HAS_CONTENTS
;
766 if (hdr
->sh_type
== SHT_GROUP
)
767 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
768 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
771 if (hdr
->sh_type
!= SHT_NOBITS
)
774 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
775 flags
|= SEC_READONLY
;
776 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
778 else if ((flags
& SEC_LOAD
) != 0)
780 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
783 newsect
->entsize
= hdr
->sh_entsize
;
784 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
785 flags
|= SEC_STRINGS
;
787 if (hdr
->sh_flags
& SHF_GROUP
)
788 if (!setup_group (abfd
, hdr
, newsect
))
790 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
791 flags
|= SEC_THREAD_LOCAL
;
793 if ((flags
& SEC_ALLOC
) == 0)
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
801 } debug_sections
[] =
803 { "debug", 5 }, /* 'd' */
804 { NULL
, 0 }, /* 'e' */
805 { NULL
, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL
, 0 }, /* 'h' */
808 { NULL
, 0 }, /* 'i' */
809 { NULL
, 0 }, /* 'j' */
810 { NULL
, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL
, 0 }, /* 'm' */
813 { NULL
, 0 }, /* 'n' */
814 { NULL
, 0 }, /* 'o' */
815 { NULL
, 0 }, /* 'p' */
816 { NULL
, 0 }, /* 'q' */
817 { NULL
, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
823 int i
= name
[1] - 'd';
825 && i
< (int) ARRAY_SIZE (debug_sections
)
826 && debug_sections
[i
].name
!= NULL
827 && strncmp (&name
[1], debug_sections
[i
].name
,
828 debug_sections
[i
].len
) == 0)
829 flags
|= SEC_DEBUGGING
;
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect
) == NULL
)
841 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
843 bed
= get_elf_backend_data (abfd
);
844 if (bed
->elf_backend_section_flags
)
845 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
848 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
851 if ((flags
& SEC_ALLOC
) != 0)
853 Elf_Internal_Phdr
*phdr
;
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr
= elf_tdata (abfd
)->phdr
;
860 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
862 if (phdr
->p_paddr
!= 0)
865 if (i
< elf_elfheader (abfd
)->e_phnum
)
867 phdr
= elf_tdata (abfd
)->phdr
;
868 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr
->p_type
== PT_LOAD
883 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
884 && (hdr
->sh_offset
+ hdr
->sh_size
885 <= phdr
->p_offset
+ phdr
->p_memsz
)
886 && ((flags
& SEC_LOAD
) == 0
887 || (hdr
->sh_offset
+ hdr
->sh_size
888 <= phdr
->p_offset
+ phdr
->p_filesz
)))
890 if ((flags
& SEC_LOAD
) == 0)
891 newsect
->lma
= (phdr
->p_paddr
892 + hdr
->sh_addr
- phdr
->p_vaddr
);
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect
->lma
= (phdr
->p_paddr
902 + hdr
->sh_offset
- phdr
->p_offset
);
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr
->sh_addr
>= phdr
->p_vaddr
909 && (hdr
->sh_addr
+ hdr
->sh_size
910 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
935 struct elf_internal_shdr
*
936 bfd_elf_find_section (bfd
*abfd
, char *name
)
938 Elf_Internal_Shdr
**i_shdrp
;
943 i_shdrp
= elf_elfsections (abfd
);
946 shstrtab
= bfd_elf_get_str_section (abfd
,
947 elf_elfheader (abfd
)->e_shstrndx
);
948 if (shstrtab
!= NULL
)
950 max
= elf_numsections (abfd
);
951 for (i
= 1; i
< max
; i
++)
952 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
959 const char *const bfd_elf_section_type_names
[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
977 arelent
*reloc_entry
,
979 void *data ATTRIBUTE_UNUSED
,
980 asection
*input_section
,
982 char **error_message ATTRIBUTE_UNUSED
)
984 if (output_bfd
!= NULL
985 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
986 && (! reloc_entry
->howto
->partial_inplace
987 || reloc_entry
->addend
== 0))
989 reloc_entry
->address
+= input_section
->output_offset
;
993 return bfd_reloc_continue
;
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
999 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1002 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1003 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1006 /* Finish SHF_MERGE section merging. */
1009 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1014 if (!is_elf_hash_table (info
->hash
))
1017 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1018 if ((ibfd
->flags
& DYNAMIC
) == 0)
1019 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1020 if ((sec
->flags
& SEC_MERGE
) != 0
1021 && !bfd_is_abs_section (sec
->output_section
))
1023 struct bfd_elf_section_data
*secdata
;
1025 secdata
= elf_section_data (sec
);
1026 if (! _bfd_add_merge_section (abfd
,
1027 &elf_hash_table (info
)->merge_info
,
1028 sec
, &secdata
->sec_info
))
1030 else if (secdata
->sec_info
)
1031 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1034 if (elf_hash_table (info
)->merge_info
!= NULL
)
1035 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1036 merge_sections_remove_hook
);
1041 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1043 sec
->output_section
= bfd_abs_section_ptr
;
1044 sec
->output_offset
= sec
->vma
;
1045 if (!is_elf_hash_table (info
->hash
))
1048 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1051 /* Copy the program header and other data from one object module to
1055 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1057 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1061 BFD_ASSERT (!elf_flags_init (obfd
)
1062 || (elf_elfheader (obfd
)->e_flags
1063 == elf_elfheader (ibfd
)->e_flags
));
1065 elf_gp (obfd
) = elf_gp (ibfd
);
1066 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1067 elf_flags_init (obfd
) = TRUE
;
1072 get_segment_type (unsigned int p_type
)
1077 case PT_NULL
: pt
= "NULL"; break;
1078 case PT_LOAD
: pt
= "LOAD"; break;
1079 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1080 case PT_INTERP
: pt
= "INTERP"; break;
1081 case PT_NOTE
: pt
= "NOTE"; break;
1082 case PT_SHLIB
: pt
= "SHLIB"; break;
1083 case PT_PHDR
: pt
= "PHDR"; break;
1084 case PT_TLS
: pt
= "TLS"; break;
1085 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1086 case PT_GNU_STACK
: pt
= "STACK"; break;
1087 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1088 default: pt
= NULL
; break;
1093 /* Print out the program headers. */
1096 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1099 Elf_Internal_Phdr
*p
;
1101 bfd_byte
*dynbuf
= NULL
;
1103 p
= elf_tdata (abfd
)->phdr
;
1108 fprintf (f
, _("\nProgram Header:\n"));
1109 c
= elf_elfheader (abfd
)->e_phnum
;
1110 for (i
= 0; i
< c
; i
++, p
++)
1112 const char *pt
= get_segment_type (p
->p_type
);
1117 sprintf (buf
, "0x%lx", p
->p_type
);
1120 fprintf (f
, "%8s off 0x", pt
);
1121 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1122 fprintf (f
, " vaddr 0x");
1123 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1124 fprintf (f
, " paddr 0x");
1125 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1126 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1127 fprintf (f
, " filesz 0x");
1128 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1129 fprintf (f
, " memsz 0x");
1130 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1131 fprintf (f
, " flags %c%c%c",
1132 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1133 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1134 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1135 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1136 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1141 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1145 unsigned long shlink
;
1146 bfd_byte
*extdyn
, *extdynend
;
1148 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1150 fprintf (f
, _("\nDynamic Section:\n"));
1152 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1155 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1158 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1160 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1161 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1164 extdynend
= extdyn
+ s
->size
;
1165 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1167 Elf_Internal_Dyn dyn
;
1170 bfd_boolean stringp
;
1172 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1174 if (dyn
.d_tag
== DT_NULL
)
1181 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1185 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1186 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1187 case DT_PLTGOT
: name
= "PLTGOT"; break;
1188 case DT_HASH
: name
= "HASH"; break;
1189 case DT_STRTAB
: name
= "STRTAB"; break;
1190 case DT_SYMTAB
: name
= "SYMTAB"; break;
1191 case DT_RELA
: name
= "RELA"; break;
1192 case DT_RELASZ
: name
= "RELASZ"; break;
1193 case DT_RELAENT
: name
= "RELAENT"; break;
1194 case DT_STRSZ
: name
= "STRSZ"; break;
1195 case DT_SYMENT
: name
= "SYMENT"; break;
1196 case DT_INIT
: name
= "INIT"; break;
1197 case DT_FINI
: name
= "FINI"; break;
1198 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1199 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1200 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1201 case DT_REL
: name
= "REL"; break;
1202 case DT_RELSZ
: name
= "RELSZ"; break;
1203 case DT_RELENT
: name
= "RELENT"; break;
1204 case DT_PLTREL
: name
= "PLTREL"; break;
1205 case DT_DEBUG
: name
= "DEBUG"; break;
1206 case DT_TEXTREL
: name
= "TEXTREL"; break;
1207 case DT_JMPREL
: name
= "JMPREL"; break;
1208 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1209 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1214 case DT_FLAGS
: name
= "FLAGS"; break;
1215 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1218 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1219 case DT_MOVEENT
: name
= "MOVEENT"; break;
1220 case DT_MOVESZ
: name
= "MOVESZ"; break;
1221 case DT_FEATURE
: name
= "FEATURE"; break;
1222 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1223 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1224 case DT_SYMINENT
: name
= "SYMINENT"; break;
1225 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1226 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1227 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1228 case DT_PLTPAD
: name
= "PLTPAD"; break;
1229 case DT_MOVETAB
: name
= "MOVETAB"; break;
1230 case DT_SYMINFO
: name
= "SYMINFO"; break;
1231 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1232 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1233 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1234 case DT_VERSYM
: name
= "VERSYM"; break;
1235 case DT_VERDEF
: name
= "VERDEF"; break;
1236 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1237 case DT_VERNEED
: name
= "VERNEED"; break;
1238 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1239 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1240 case DT_USED
: name
= "USED"; break;
1241 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1244 fprintf (f
, " %-11s ", name
);
1246 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1250 unsigned int tagv
= dyn
.d_un
.d_val
;
1252 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1255 fprintf (f
, "%s", string
);
1264 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1265 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1267 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1271 if (elf_dynverdef (abfd
) != 0)
1273 Elf_Internal_Verdef
*t
;
1275 fprintf (f
, _("\nVersion definitions:\n"));
1276 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1278 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1279 t
->vd_flags
, t
->vd_hash
,
1280 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1281 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1283 Elf_Internal_Verdaux
*a
;
1286 for (a
= t
->vd_auxptr
->vda_nextptr
;
1290 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1296 if (elf_dynverref (abfd
) != 0)
1298 Elf_Internal_Verneed
*t
;
1300 fprintf (f
, _("\nVersion References:\n"));
1301 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1303 Elf_Internal_Vernaux
*a
;
1305 fprintf (f
, _(" required from %s:\n"),
1306 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1307 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1308 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1309 a
->vna_flags
, a
->vna_other
,
1310 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1322 /* Display ELF-specific fields of a symbol. */
1325 bfd_elf_print_symbol (bfd
*abfd
,
1328 bfd_print_symbol_type how
)
1333 case bfd_print_symbol_name
:
1334 fprintf (file
, "%s", symbol
->name
);
1336 case bfd_print_symbol_more
:
1337 fprintf (file
, "elf ");
1338 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1339 fprintf (file
, " %lx", (long) symbol
->flags
);
1341 case bfd_print_symbol_all
:
1343 const char *section_name
;
1344 const char *name
= NULL
;
1345 const struct elf_backend_data
*bed
;
1346 unsigned char st_other
;
1349 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1351 bed
= get_elf_backend_data (abfd
);
1352 if (bed
->elf_backend_print_symbol_all
)
1353 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1357 name
= symbol
->name
;
1358 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1361 fprintf (file
, " %s\t", section_name
);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol
->section
))
1367 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1369 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1370 bfd_fprintf_vma (abfd
, file
, val
);
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd
)->dynversym_section
!= 0
1374 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1375 || elf_tdata (abfd
)->dynverref_section
!= 0))
1377 unsigned int vernum
;
1378 const char *version_string
;
1380 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1383 version_string
= "";
1384 else if (vernum
== 1)
1385 version_string
= "Base";
1386 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1388 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1391 Elf_Internal_Verneed
*t
;
1393 version_string
= "";
1394 for (t
= elf_tdata (abfd
)->verref
;
1398 Elf_Internal_Vernaux
*a
;
1400 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1402 if (a
->vna_other
== vernum
)
1404 version_string
= a
->vna_nodename
;
1411 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1412 fprintf (file
, " %-11s", version_string
);
1417 fprintf (file
, " (%s)", version_string
);
1418 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1423 /* If the st_other field is not zero, print it. */
1424 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1429 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1430 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1431 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1433 /* Some other non-defined flags are also present, so print
1435 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1438 fprintf (file
, " %s", name
);
1444 /* Create an entry in an ELF linker hash table. */
1446 struct bfd_hash_entry
*
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1448 struct bfd_hash_table
*table
,
1451 /* Allocate the structure if it has not already been allocated by a
1455 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1460 /* Call the allocation method of the superclass. */
1461 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1464 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1465 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1467 /* Set local fields. */
1470 ret
->got
= htab
->init_got_refcount
;
1471 ret
->plt
= htab
->init_plt_refcount
;
1472 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1473 - offsetof (struct elf_link_hash_entry
, size
)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1489 struct elf_link_hash_entry
*dir
,
1490 struct elf_link_hash_entry
*ind
)
1492 struct elf_link_hash_table
*htab
;
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1497 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1498 dir
->ref_regular
|= ind
->ref_regular
;
1499 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1500 dir
->non_got_ref
|= ind
->non_got_ref
;
1501 dir
->needs_plt
|= ind
->needs_plt
;
1502 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1504 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab
= elf_hash_table (info
);
1510 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1512 if (dir
->got
.refcount
< 0)
1513 dir
->got
.refcount
= 0;
1514 dir
->got
.refcount
+= ind
->got
.refcount
;
1515 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1518 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1520 if (dir
->plt
.refcount
< 0)
1521 dir
->plt
.refcount
= 0;
1522 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1523 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1526 if (ind
->dynindx
!= -1)
1528 if (dir
->dynindx
!= -1)
1529 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1530 dir
->dynindx
= ind
->dynindx
;
1531 dir
->dynstr_index
= ind
->dynstr_index
;
1533 ind
->dynstr_index
= 0;
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1539 struct elf_link_hash_entry
*h
,
1540 bfd_boolean force_local
)
1542 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1546 h
->forced_local
= 1;
1547 if (h
->dynindx
!= -1)
1550 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1556 /* Initialize an ELF linker hash table. */
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table
*table
,
1562 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1563 struct bfd_hash_table
*,
1565 unsigned int entsize
)
1568 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1570 table
->dynamic_sections_created
= FALSE
;
1571 table
->dynobj
= NULL
;
1572 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1573 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1574 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1575 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table
->dynsymcount
= 1;
1578 table
->dynstr
= NULL
;
1579 table
->bucketcount
= 0;
1580 table
->needed
= NULL
;
1582 table
->merge_info
= NULL
;
1583 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1584 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1585 table
->dynlocal
= NULL
;
1586 table
->runpath
= NULL
;
1587 table
->tls_sec
= NULL
;
1588 table
->tls_size
= 0;
1589 table
->loaded
= NULL
;
1590 table
->is_relocatable_executable
= FALSE
;
1592 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
1593 table
->root
.type
= bfd_link_elf_hash_table
;
1598 /* Create an ELF linker hash table. */
1600 struct bfd_link_hash_table
*
1601 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1603 struct elf_link_hash_table
*ret
;
1604 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1606 ret
= bfd_malloc (amt
);
1610 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
1611 sizeof (struct elf_link_hash_entry
)))
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1625 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1627 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd
) == bfd_object
)
1629 elf_dt_name (abfd
) = name
;
1633 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1636 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd
) == bfd_object
)
1638 lib_class
= elf_dyn_lib_class (abfd
);
1645 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1647 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd
) == bfd_object
)
1649 elf_dyn_lib_class (abfd
) = lib_class
;
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1655 struct bfd_link_needed_list
*
1656 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1657 struct bfd_link_info
*info
)
1659 if (! is_elf_hash_table (info
->hash
))
1661 return elf_hash_table (info
)->needed
;
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1667 struct bfd_link_needed_list
*
1668 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1669 struct bfd_link_info
*info
)
1671 if (! is_elf_hash_table (info
->hash
))
1673 return elf_hash_table (info
)->runpath
;
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1681 bfd_elf_get_dt_soname (bfd
*abfd
)
1683 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd
) == bfd_object
)
1685 return elf_dt_name (abfd
);
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1693 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1694 struct bfd_link_needed_list
**pneeded
)
1697 bfd_byte
*dynbuf
= NULL
;
1699 unsigned long shlink
;
1700 bfd_byte
*extdyn
, *extdynend
;
1702 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1706 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd
) != bfd_object
)
1710 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1711 if (s
== NULL
|| s
->size
== 0)
1714 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1717 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1721 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1723 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1724 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1727 extdynend
= extdyn
+ s
->size
;
1728 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1730 Elf_Internal_Dyn dyn
;
1732 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1734 if (dyn
.d_tag
== DT_NULL
)
1737 if (dyn
.d_tag
== DT_NEEDED
)
1740 struct bfd_link_needed_list
*l
;
1741 unsigned int tagv
= dyn
.d_un
.d_val
;
1744 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1749 l
= bfd_alloc (abfd
, amt
);
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1772 struct bfd_strtab_hash
*
1773 _bfd_elf_stringtab_init (void)
1775 struct bfd_strtab_hash
*ret
;
1777 ret
= _bfd_stringtab_init ();
1782 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1783 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1784 if (loc
== (bfd_size_type
) -1)
1786 _bfd_stringtab_free (ret
);
1793 /* ELF .o/exec file reading */
1795 /* Create a new bfd section from an ELF section header. */
1798 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1800 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1801 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1802 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1805 name
= bfd_elf_string_from_elf_section (abfd
,
1806 elf_elfheader (abfd
)->e_shstrndx
,
1811 switch (hdr
->sh_type
)
1814 /* Inactive section. Throw it away. */
1817 case SHT_PROGBITS
: /* Normal section with contents. */
1818 case SHT_NOBITS
: /* .bss section. */
1819 case SHT_HASH
: /* .hash section. */
1820 case SHT_NOTE
: /* .note section. */
1821 case SHT_INIT_ARRAY
: /* .init_array section. */
1822 case SHT_FINI_ARRAY
: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1827 case SHT_DYNAMIC
: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1830 if (hdr
->sh_link
> elf_numsections (abfd
)
1831 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1833 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1835 Elf_Internal_Shdr
*dynsymhdr
;
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd
) != 0)
1842 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1843 hdr
->sh_link
= dynsymhdr
->sh_link
;
1847 unsigned int i
, num_sec
;
1849 num_sec
= elf_numsections (abfd
);
1850 for (i
= 1; i
< num_sec
; i
++)
1852 dynsymhdr
= elf_elfsections (abfd
)[i
];
1853 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1855 hdr
->sh_link
= dynsymhdr
->sh_link
;
1863 case SHT_SYMTAB
: /* A symbol table */
1864 if (elf_onesymtab (abfd
) == shindex
)
1867 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1869 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1870 elf_onesymtab (abfd
) = shindex
;
1871 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1872 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1873 abfd
->flags
|= HAS_SYMS
;
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1881 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1882 && (abfd
->flags
& DYNAMIC
) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1892 unsigned int i
, num_sec
;
1894 num_sec
= elf_numsections (abfd
);
1895 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1897 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1898 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1899 && hdr2
->sh_link
== shindex
)
1903 for (i
= 1; i
< shindex
; i
++)
1905 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1906 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1907 && hdr2
->sh_link
== shindex
)
1911 return bfd_section_from_shdr (abfd
, i
);
1915 case SHT_DYNSYM
: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd
) == shindex
)
1919 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1921 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1922 elf_dynsymtab (abfd
) = shindex
;
1923 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1924 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1925 abfd
->flags
|= HAS_SYMS
;
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1931 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd
) == shindex
)
1935 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1936 elf_symtab_shndx (abfd
) = shindex
;
1937 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1938 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1941 case SHT_STRTAB
: /* A string table */
1942 if (hdr
->bfd_section
!= NULL
)
1944 if (ehdr
->e_shstrndx
== shindex
)
1946 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1947 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1950 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1953 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1954 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1957 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1960 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1961 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1962 elf_elfsections (abfd
)[shindex
] = hdr
;
1963 /* We also treat this as a regular section, so that objcopy
1965 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1974 unsigned int i
, num_sec
;
1976 num_sec
= elf_numsections (abfd
);
1977 for (i
= 1; i
< num_sec
; i
++)
1979 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1980 if (hdr2
->sh_link
== shindex
)
1982 /* Prevent endless recursion on broken objects. */
1985 if (! bfd_section_from_shdr (abfd
, i
))
1987 if (elf_onesymtab (abfd
) == i
)
1989 if (elf_dynsymtab (abfd
) == i
)
1990 goto dynsymtab_strtab
;
1994 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1998 /* *These* do a lot of work -- but build no sections! */
2000 asection
*target_sect
;
2001 Elf_Internal_Shdr
*hdr2
;
2002 unsigned int num_sec
= elf_numsections (abfd
);
2005 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
2006 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
2011 || hdr
->sh_link
>= num_sec
)
2013 ((*_bfd_error_handler
)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd
, hdr
->sh_link
, name
, shindex
));
2016 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2028 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2034 for (scan
= 1; scan
< num_sec
; scan
++)
2036 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2037 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2048 hdr
->sh_link
= found
;
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2053 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2054 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2064 || hdr
->sh_info
== SHN_UNDEF
2065 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2066 || hdr
->sh_info
>= num_sec
2067 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2068 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2069 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2072 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2074 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2075 if (target_sect
== NULL
)
2078 if ((target_sect
->flags
& SEC_RELOC
) == 0
2079 || target_sect
->reloc_count
== 0)
2080 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2084 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2085 amt
= sizeof (*hdr2
);
2086 hdr2
= bfd_alloc (abfd
, amt
);
2087 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2090 elf_elfsections (abfd
)[shindex
] = hdr2
;
2091 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2092 target_sect
->flags
|= SEC_RELOC
;
2093 target_sect
->relocation
= NULL
;
2094 target_sect
->rel_filepos
= hdr
->sh_offset
;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr
->sh_size
!= 0)
2098 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2099 abfd
->flags
|= HAS_RELOC
;
2104 case SHT_GNU_verdef
:
2105 elf_dynverdef (abfd
) = shindex
;
2106 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2107 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2110 case SHT_GNU_versym
:
2111 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2113 elf_dynversym (abfd
) = shindex
;
2114 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2115 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2118 case SHT_GNU_verneed
:
2119 elf_dynverref (abfd
) = shindex
;
2120 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2121 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2128 /* We need a BFD section for objcopy and relocatable linking,
2129 and it's handy to have the signature available as the section
2131 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2133 name
= group_signature (abfd
, hdr
);
2136 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2138 if (hdr
->contents
!= NULL
)
2140 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2141 unsigned int n_elt
= hdr
->sh_size
/ 4;
2144 if (idx
->flags
& GRP_COMDAT
)
2145 hdr
->bfd_section
->flags
2146 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2148 /* We try to keep the same section order as it comes in. */
2150 while (--n_elt
!= 0)
2151 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2152 && elf_next_in_group (s
) != NULL
)
2154 elf_next_in_group (hdr
->bfd_section
) = s
;
2161 /* Check for any processor-specific section types. */
2162 return bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
,
2169 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2170 Return SEC for sections that have no elf section, and NULL on error. */
2173 bfd_section_from_r_symndx (bfd
*abfd
,
2174 struct sym_sec_cache
*cache
,
2176 unsigned long r_symndx
)
2178 Elf_Internal_Shdr
*symtab_hdr
;
2179 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2180 Elf_External_Sym_Shndx eshndx
;
2181 Elf_Internal_Sym isym
;
2182 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2184 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2185 return cache
->sec
[ent
];
2187 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2188 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2189 &isym
, esym
, &eshndx
) == NULL
)
2192 if (cache
->abfd
!= abfd
)
2194 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2197 cache
->indx
[ent
] = r_symndx
;
2198 cache
->sec
[ent
] = sec
;
2199 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2200 || isym
.st_shndx
> SHN_HIRESERVE
)
2203 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2205 cache
->sec
[ent
] = s
;
2207 return cache
->sec
[ent
];
2210 /* Given an ELF section number, retrieve the corresponding BFD
2214 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2216 if (index
>= elf_numsections (abfd
))
2218 return elf_elfsections (abfd
)[index
]->bfd_section
;
2221 static const struct bfd_elf_special_section special_sections_b
[] =
2223 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2224 { NULL
, 0, 0, 0, 0 }
2227 static const struct bfd_elf_special_section special_sections_c
[] =
2229 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2230 { NULL
, 0, 0, 0, 0 }
2233 static const struct bfd_elf_special_section special_sections_d
[] =
2235 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2236 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2237 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2238 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2239 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2240 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2241 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2242 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2243 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2244 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2245 { NULL
, 0, 0, 0, 0 }
2248 static const struct bfd_elf_special_section special_sections_f
[] =
2250 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2251 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2252 { NULL
, 0, 0, 0, 0 }
2255 static const struct bfd_elf_special_section special_sections_g
[] =
2257 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2258 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2259 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2260 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2261 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2262 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2263 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2264 { NULL
, 0, 0, 0, 0 }
2267 static const struct bfd_elf_special_section special_sections_h
[] =
2269 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2270 { NULL
, 0, 0, 0, 0 }
2273 static const struct bfd_elf_special_section special_sections_i
[] =
2275 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2276 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2277 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2278 { NULL
, 0, 0, 0, 0 }
2281 static const struct bfd_elf_special_section special_sections_l
[] =
2283 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2284 { NULL
, 0, 0, 0, 0 }
2287 static const struct bfd_elf_special_section special_sections_n
[] =
2289 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2290 { ".note", 5, -1, SHT_NOTE
, 0 },
2291 { NULL
, 0, 0, 0, 0 }
2294 static const struct bfd_elf_special_section special_sections_p
[] =
2296 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2297 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2298 { NULL
, 0, 0, 0, 0 }
2301 static const struct bfd_elf_special_section special_sections_r
[] =
2303 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2304 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2305 { ".rela", 5, -1, SHT_RELA
, 0 },
2306 { ".rel", 4, -1, SHT_REL
, 0 },
2307 { NULL
, 0, 0, 0, 0 }
2310 static const struct bfd_elf_special_section special_sections_s
[] =
2312 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2313 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2314 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2315 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2316 { NULL
, 0, 0, 0, 0 }
2319 static const struct bfd_elf_special_section special_sections_t
[] =
2321 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2322 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2323 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2324 { NULL
, 0, 0, 0, 0 }
2327 static const struct bfd_elf_special_section
*special_sections
[] =
2329 special_sections_b
, /* 'b' */
2330 special_sections_c
, /* 'b' */
2331 special_sections_d
, /* 'd' */
2333 special_sections_f
, /* 'f' */
2334 special_sections_g
, /* 'g' */
2335 special_sections_h
, /* 'h' */
2336 special_sections_i
, /* 'i' */
2339 special_sections_l
, /* 'l' */
2341 special_sections_n
, /* 'n' */
2343 special_sections_p
, /* 'p' */
2345 special_sections_r
, /* 'r' */
2346 special_sections_s
, /* 's' */
2347 special_sections_t
, /* 't' */
2350 const struct bfd_elf_special_section
*
2351 _bfd_elf_get_special_section (const char *name
,
2352 const struct bfd_elf_special_section
*spec
,
2358 len
= strlen (name
);
2360 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2363 int prefix_len
= spec
[i
].prefix_length
;
2365 if (len
< prefix_len
)
2367 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2370 suffix_len
= spec
[i
].suffix_length
;
2371 if (suffix_len
<= 0)
2373 if (name
[prefix_len
] != 0)
2375 if (suffix_len
== 0)
2377 if (name
[prefix_len
] != '.'
2378 && (suffix_len
== -2
2379 || (rela
&& spec
[i
].type
== SHT_REL
)))
2385 if (len
< prefix_len
+ suffix_len
)
2387 if (memcmp (name
+ len
- suffix_len
,
2388 spec
[i
].prefix
+ prefix_len
,
2398 const struct bfd_elf_special_section
*
2399 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2402 const struct bfd_elf_special_section
*spec
;
2403 const struct elf_backend_data
*bed
;
2405 /* See if this is one of the special sections. */
2406 if (sec
->name
== NULL
)
2409 bed
= get_elf_backend_data (abfd
);
2410 spec
= bed
->special_sections
;
2413 spec
= _bfd_elf_get_special_section (sec
->name
,
2414 bed
->special_sections
,
2420 if (sec
->name
[0] != '.')
2423 i
= sec
->name
[1] - 'b';
2424 if (i
< 0 || i
> 't' - 'b')
2427 spec
= special_sections
[i
];
2432 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2436 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2438 struct bfd_elf_section_data
*sdata
;
2439 const struct elf_backend_data
*bed
;
2440 const struct bfd_elf_special_section
*ssect
;
2442 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2445 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2448 sec
->used_by_bfd
= sdata
;
2451 /* Indicate whether or not this section should use RELA relocations. */
2452 bed
= get_elf_backend_data (abfd
);
2453 sec
->use_rela_p
= bed
->default_use_rela_p
;
2455 /* When we read a file, we don't need section type and flags unless
2456 it is a linker created section. They will be overridden in
2457 _bfd_elf_make_section_from_shdr anyway. */
2458 if (abfd
->direction
!= read_direction
2459 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2461 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2464 elf_section_type (sec
) = ssect
->type
;
2465 elf_section_flags (sec
) = ssect
->attr
;
2472 /* Create a new bfd section from an ELF program header.
2474 Since program segments have no names, we generate a synthetic name
2475 of the form segment<NUM>, where NUM is generally the index in the
2476 program header table. For segments that are split (see below) we
2477 generate the names segment<NUM>a and segment<NUM>b.
2479 Note that some program segments may have a file size that is different than
2480 (less than) the memory size. All this means is that at execution the
2481 system must allocate the amount of memory specified by the memory size,
2482 but only initialize it with the first "file size" bytes read from the
2483 file. This would occur for example, with program segments consisting
2484 of combined data+bss.
2486 To handle the above situation, this routine generates TWO bfd sections
2487 for the single program segment. The first has the length specified by
2488 the file size of the segment, and the second has the length specified
2489 by the difference between the two sizes. In effect, the segment is split
2490 into it's initialized and uninitialized parts.
2495 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2496 Elf_Internal_Phdr
*hdr
,
2498 const char *typename
)
2506 split
= ((hdr
->p_memsz
> 0)
2507 && (hdr
->p_filesz
> 0)
2508 && (hdr
->p_memsz
> hdr
->p_filesz
));
2509 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2510 len
= strlen (namebuf
) + 1;
2511 name
= bfd_alloc (abfd
, len
);
2514 memcpy (name
, namebuf
, len
);
2515 newsect
= bfd_make_section (abfd
, name
);
2516 if (newsect
== NULL
)
2518 newsect
->vma
= hdr
->p_vaddr
;
2519 newsect
->lma
= hdr
->p_paddr
;
2520 newsect
->size
= hdr
->p_filesz
;
2521 newsect
->filepos
= hdr
->p_offset
;
2522 newsect
->flags
|= SEC_HAS_CONTENTS
;
2523 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2524 if (hdr
->p_type
== PT_LOAD
)
2526 newsect
->flags
|= SEC_ALLOC
;
2527 newsect
->flags
|= SEC_LOAD
;
2528 if (hdr
->p_flags
& PF_X
)
2530 /* FIXME: all we known is that it has execute PERMISSION,
2532 newsect
->flags
|= SEC_CODE
;
2535 if (!(hdr
->p_flags
& PF_W
))
2537 newsect
->flags
|= SEC_READONLY
;
2542 sprintf (namebuf
, "%s%db", typename
, index
);
2543 len
= strlen (namebuf
) + 1;
2544 name
= bfd_alloc (abfd
, len
);
2547 memcpy (name
, namebuf
, len
);
2548 newsect
= bfd_make_section (abfd
, name
);
2549 if (newsect
== NULL
)
2551 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2552 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2553 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2554 if (hdr
->p_type
== PT_LOAD
)
2556 newsect
->flags
|= SEC_ALLOC
;
2557 if (hdr
->p_flags
& PF_X
)
2558 newsect
->flags
|= SEC_CODE
;
2560 if (!(hdr
->p_flags
& PF_W
))
2561 newsect
->flags
|= SEC_READONLY
;
2568 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2570 const struct elf_backend_data
*bed
;
2572 switch (hdr
->p_type
)
2575 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2578 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2581 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2584 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2587 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2589 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2594 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2597 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2599 case PT_GNU_EH_FRAME
:
2600 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2604 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2607 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2610 /* Check for any processor-specific program segment types. */
2611 bed
= get_elf_backend_data (abfd
);
2612 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2616 /* Initialize REL_HDR, the section-header for new section, containing
2617 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2618 relocations; otherwise, we use REL relocations. */
2621 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2622 Elf_Internal_Shdr
*rel_hdr
,
2624 bfd_boolean use_rela_p
)
2627 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2628 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2630 name
= bfd_alloc (abfd
, amt
);
2633 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2635 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2637 if (rel_hdr
->sh_name
== (unsigned int) -1)
2639 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2640 rel_hdr
->sh_entsize
= (use_rela_p
2641 ? bed
->s
->sizeof_rela
2642 : bed
->s
->sizeof_rel
);
2643 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2644 rel_hdr
->sh_flags
= 0;
2645 rel_hdr
->sh_addr
= 0;
2646 rel_hdr
->sh_size
= 0;
2647 rel_hdr
->sh_offset
= 0;
2652 /* Set up an ELF internal section header for a section. */
2655 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2657 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2658 bfd_boolean
*failedptr
= failedptrarg
;
2659 Elf_Internal_Shdr
*this_hdr
;
2663 /* We already failed; just get out of the bfd_map_over_sections
2668 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2670 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2671 asect
->name
, FALSE
);
2672 if (this_hdr
->sh_name
== (unsigned int) -1)
2678 /* Don't clear sh_flags. Assembler may set additional bits. */
2680 if ((asect
->flags
& SEC_ALLOC
) != 0
2681 || asect
->user_set_vma
)
2682 this_hdr
->sh_addr
= asect
->vma
;
2684 this_hdr
->sh_addr
= 0;
2686 this_hdr
->sh_offset
= 0;
2687 this_hdr
->sh_size
= asect
->size
;
2688 this_hdr
->sh_link
= 0;
2689 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2690 /* The sh_entsize and sh_info fields may have been set already by
2691 copy_private_section_data. */
2693 this_hdr
->bfd_section
= asect
;
2694 this_hdr
->contents
= NULL
;
2696 /* If the section type is unspecified, we set it based on
2698 if (this_hdr
->sh_type
== SHT_NULL
)
2700 if ((asect
->flags
& SEC_GROUP
) != 0)
2701 this_hdr
->sh_type
= SHT_GROUP
;
2702 else if ((asect
->flags
& SEC_ALLOC
) != 0
2703 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2704 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2705 this_hdr
->sh_type
= SHT_NOBITS
;
2707 this_hdr
->sh_type
= SHT_PROGBITS
;
2710 switch (this_hdr
->sh_type
)
2716 case SHT_INIT_ARRAY
:
2717 case SHT_FINI_ARRAY
:
2718 case SHT_PREINIT_ARRAY
:
2725 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2729 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2733 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2737 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2738 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2742 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2743 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2746 case SHT_GNU_versym
:
2747 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2750 case SHT_GNU_verdef
:
2751 this_hdr
->sh_entsize
= 0;
2752 /* objcopy or strip will copy over sh_info, but may not set
2753 cverdefs. The linker will set cverdefs, but sh_info will be
2755 if (this_hdr
->sh_info
== 0)
2756 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2758 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2759 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2762 case SHT_GNU_verneed
:
2763 this_hdr
->sh_entsize
= 0;
2764 /* objcopy or strip will copy over sh_info, but may not set
2765 cverrefs. The linker will set cverrefs, but sh_info will be
2767 if (this_hdr
->sh_info
== 0)
2768 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2770 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2771 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2775 this_hdr
->sh_entsize
= 4;
2779 if ((asect
->flags
& SEC_ALLOC
) != 0)
2780 this_hdr
->sh_flags
|= SHF_ALLOC
;
2781 if ((asect
->flags
& SEC_READONLY
) == 0)
2782 this_hdr
->sh_flags
|= SHF_WRITE
;
2783 if ((asect
->flags
& SEC_CODE
) != 0)
2784 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2785 if ((asect
->flags
& SEC_MERGE
) != 0)
2787 this_hdr
->sh_flags
|= SHF_MERGE
;
2788 this_hdr
->sh_entsize
= asect
->entsize
;
2789 if ((asect
->flags
& SEC_STRINGS
) != 0)
2790 this_hdr
->sh_flags
|= SHF_STRINGS
;
2792 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2793 this_hdr
->sh_flags
|= SHF_GROUP
;
2794 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2796 this_hdr
->sh_flags
|= SHF_TLS
;
2797 if (asect
->size
== 0
2798 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2800 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2802 this_hdr
->sh_size
= 0;
2805 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2806 if (this_hdr
->sh_size
!= 0)
2807 this_hdr
->sh_type
= SHT_NOBITS
;
2812 /* Check for processor-specific section types. */
2813 if (bed
->elf_backend_fake_sections
2814 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2817 /* If the section has relocs, set up a section header for the
2818 SHT_REL[A] section. If two relocation sections are required for
2819 this section, it is up to the processor-specific back-end to
2820 create the other. */
2821 if ((asect
->flags
& SEC_RELOC
) != 0
2822 && !_bfd_elf_init_reloc_shdr (abfd
,
2823 &elf_section_data (asect
)->rel_hdr
,
2829 /* Fill in the contents of a SHT_GROUP section. */
2832 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2834 bfd_boolean
*failedptr
= failedptrarg
;
2835 unsigned long symindx
;
2836 asection
*elt
, *first
;
2840 /* Ignore linker created group section. See elfNN_ia64_object_p in
2842 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2847 if (elf_group_id (sec
) != NULL
)
2848 symindx
= elf_group_id (sec
)->udata
.i
;
2852 /* If called from the assembler, swap_out_syms will have set up
2853 elf_section_syms; If called for "ld -r", use target_index. */
2854 if (elf_section_syms (abfd
) != NULL
)
2855 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2857 symindx
= sec
->target_index
;
2859 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2861 /* The contents won't be allocated for "ld -r" or objcopy. */
2863 if (sec
->contents
== NULL
)
2866 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2868 /* Arrange for the section to be written out. */
2869 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2870 if (sec
->contents
== NULL
)
2877 loc
= sec
->contents
+ sec
->size
;
2879 /* Get the pointer to the first section in the group that gas
2880 squirreled away here. objcopy arranges for this to be set to the
2881 start of the input section group. */
2882 first
= elt
= elf_next_in_group (sec
);
2884 /* First element is a flag word. Rest of section is elf section
2885 indices for all the sections of the group. Write them backwards
2886 just to keep the group in the same order as given in .section
2887 directives, not that it matters. */
2896 s
= s
->output_section
;
2899 idx
= elf_section_data (s
)->this_idx
;
2900 H_PUT_32 (abfd
, idx
, loc
);
2901 elt
= elf_next_in_group (elt
);
2906 if ((loc
-= 4) != sec
->contents
)
2909 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2912 /* Assign all ELF section numbers. The dummy first section is handled here
2913 too. The link/info pointers for the standard section types are filled
2914 in here too, while we're at it. */
2917 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2919 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2921 unsigned int section_number
, secn
;
2922 Elf_Internal_Shdr
**i_shdrp
;
2923 struct bfd_elf_section_data
*d
;
2927 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2929 /* SHT_GROUP sections are in relocatable files only. */
2930 if (link_info
== NULL
|| link_info
->relocatable
)
2932 /* Put SHT_GROUP sections first. */
2933 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2935 d
= elf_section_data (sec
);
2937 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2939 if (sec
->flags
& SEC_LINKER_CREATED
)
2941 /* Remove the linker created SHT_GROUP sections. */
2942 bfd_section_list_remove (abfd
, sec
);
2943 abfd
->section_count
--;
2947 if (section_number
== SHN_LORESERVE
)
2948 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2949 d
->this_idx
= section_number
++;
2955 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2957 d
= elf_section_data (sec
);
2959 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2961 if (section_number
== SHN_LORESERVE
)
2962 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2963 d
->this_idx
= section_number
++;
2965 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2966 if ((sec
->flags
& SEC_RELOC
) == 0)
2970 if (section_number
== SHN_LORESERVE
)
2971 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2972 d
->rel_idx
= section_number
++;
2973 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2978 if (section_number
== SHN_LORESERVE
)
2979 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2980 d
->rel_idx2
= section_number
++;
2981 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2987 if (section_number
== SHN_LORESERVE
)
2988 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2989 t
->shstrtab_section
= section_number
++;
2990 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2991 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2993 if (bfd_get_symcount (abfd
) > 0)
2995 if (section_number
== SHN_LORESERVE
)
2996 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2997 t
->symtab_section
= section_number
++;
2998 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2999 if (section_number
> SHN_LORESERVE
- 2)
3001 if (section_number
== SHN_LORESERVE
)
3002 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3003 t
->symtab_shndx_section
= section_number
++;
3004 t
->symtab_shndx_hdr
.sh_name
3005 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
3006 ".symtab_shndx", FALSE
);
3007 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
3010 if (section_number
== SHN_LORESERVE
)
3011 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3012 t
->strtab_section
= section_number
++;
3013 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3016 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3017 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3019 elf_numsections (abfd
) = section_number
;
3020 elf_elfheader (abfd
)->e_shnum
= section_number
;
3021 if (section_number
> SHN_LORESERVE
)
3022 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3024 /* Set up the list of section header pointers, in agreement with the
3026 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3027 if (i_shdrp
== NULL
)
3030 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3031 if (i_shdrp
[0] == NULL
)
3033 bfd_release (abfd
, i_shdrp
);
3037 elf_elfsections (abfd
) = i_shdrp
;
3039 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3040 if (bfd_get_symcount (abfd
) > 0)
3042 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3043 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3045 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3046 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3048 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3049 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3052 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3054 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3058 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3059 if (d
->rel_idx
!= 0)
3060 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3061 if (d
->rel_idx2
!= 0)
3062 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3064 /* Fill in the sh_link and sh_info fields while we're at it. */
3066 /* sh_link of a reloc section is the section index of the symbol
3067 table. sh_info is the section index of the section to which
3068 the relocation entries apply. */
3069 if (d
->rel_idx
!= 0)
3071 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3072 d
->rel_hdr
.sh_info
= d
->this_idx
;
3074 if (d
->rel_idx2
!= 0)
3076 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3077 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3080 /* We need to set up sh_link for SHF_LINK_ORDER. */
3081 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3083 s
= elf_linked_to_section (sec
);
3086 /* elf_linked_to_section points to the input section. */
3087 if (link_info
!= NULL
)
3089 /* Check discarded linkonce section. */
3090 if (elf_discarded_section (s
))
3093 (*_bfd_error_handler
)
3094 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3095 abfd
, d
->this_hdr
.bfd_section
,
3097 /* Point to the kept section if it has the same
3098 size as the discarded one. */
3099 kept
= _bfd_elf_check_kept_section (s
);
3102 bfd_set_error (bfd_error_bad_value
);
3108 s
= s
->output_section
;
3109 BFD_ASSERT (s
!= NULL
);
3113 /* Handle objcopy. */
3114 if (s
->output_section
== NULL
)
3116 (*_bfd_error_handler
)
3117 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3118 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3119 bfd_set_error (bfd_error_bad_value
);
3122 s
= s
->output_section
;
3124 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3129 The Intel C compiler generates SHT_IA_64_UNWIND with
3130 SHF_LINK_ORDER. But it doesn't set the sh_link or
3131 sh_info fields. Hence we could get the situation
3133 const struct elf_backend_data
*bed
3134 = get_elf_backend_data (abfd
);
3135 if (bed
->link_order_error_handler
)
3136 bed
->link_order_error_handler
3137 (_("%B: warning: sh_link not set for section `%A'"),
3142 switch (d
->this_hdr
.sh_type
)
3146 /* A reloc section which we are treating as a normal BFD
3147 section. sh_link is the section index of the symbol
3148 table. sh_info is the section index of the section to
3149 which the relocation entries apply. We assume that an
3150 allocated reloc section uses the dynamic symbol table.
3151 FIXME: How can we be sure? */
3152 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3154 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3156 /* We look up the section the relocs apply to by name. */
3158 if (d
->this_hdr
.sh_type
== SHT_REL
)
3162 s
= bfd_get_section_by_name (abfd
, name
);
3164 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3168 /* We assume that a section named .stab*str is a stabs
3169 string section. We look for a section with the same name
3170 but without the trailing ``str'', and set its sh_link
3171 field to point to this section. */
3172 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3173 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3178 len
= strlen (sec
->name
);
3179 alc
= bfd_malloc (len
- 2);
3182 memcpy (alc
, sec
->name
, len
- 3);
3183 alc
[len
- 3] = '\0';
3184 s
= bfd_get_section_by_name (abfd
, alc
);
3188 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3190 /* This is a .stab section. */
3191 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3192 elf_section_data (s
)->this_hdr
.sh_entsize
3193 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3200 case SHT_GNU_verneed
:
3201 case SHT_GNU_verdef
:
3202 /* sh_link is the section header index of the string table
3203 used for the dynamic entries, or the symbol table, or the
3205 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3207 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3210 case SHT_GNU_LIBLIST
:
3211 /* sh_link is the section header index of the prelink library
3213 used for the dynamic entries, or the symbol table, or the
3215 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3216 ? ".dynstr" : ".gnu.libstr");
3218 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3222 case SHT_GNU_versym
:
3223 /* sh_link is the section header index of the symbol table
3224 this hash table or version table is for. */
3225 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3227 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3231 d
->this_hdr
.sh_link
= t
->symtab_section
;
3235 for (secn
= 1; secn
< section_number
; ++secn
)
3236 if (i_shdrp
[secn
] == NULL
)
3237 i_shdrp
[secn
] = i_shdrp
[0];
3239 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3240 i_shdrp
[secn
]->sh_name
);
3244 /* Map symbol from it's internal number to the external number, moving
3245 all local symbols to be at the head of the list. */
3248 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3250 /* If the backend has a special mapping, use it. */
3251 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3252 if (bed
->elf_backend_sym_is_global
)
3253 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3255 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3256 || bfd_is_und_section (bfd_get_section (sym
))
3257 || bfd_is_com_section (bfd_get_section (sym
)));
3260 /* Don't output section symbols for sections that are not going to be
3261 output. Also, don't output section symbols for reloc and other
3262 special sections. */
3265 ignore_section_sym (bfd
*abfd
, asymbol
*sym
)
3267 return ((sym
->flags
& BSF_SECTION_SYM
) != 0
3269 || (sym
->section
->owner
!= abfd
3270 && (sym
->section
->output_section
->owner
!= abfd
3271 || sym
->section
->output_offset
!= 0))));
3275 elf_map_symbols (bfd
*abfd
)
3277 unsigned int symcount
= bfd_get_symcount (abfd
);
3278 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3279 asymbol
**sect_syms
;
3280 unsigned int num_locals
= 0;
3281 unsigned int num_globals
= 0;
3282 unsigned int num_locals2
= 0;
3283 unsigned int num_globals2
= 0;
3290 fprintf (stderr
, "elf_map_symbols\n");
3294 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3296 if (max_index
< asect
->index
)
3297 max_index
= asect
->index
;
3301 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3302 if (sect_syms
== NULL
)
3304 elf_section_syms (abfd
) = sect_syms
;
3305 elf_num_section_syms (abfd
) = max_index
;
3307 /* Init sect_syms entries for any section symbols we have already
3308 decided to output. */
3309 for (idx
= 0; idx
< symcount
; idx
++)
3311 asymbol
*sym
= syms
[idx
];
3313 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3314 && !ignore_section_sym (abfd
, sym
))
3316 asection
*sec
= sym
->section
;
3318 if (sec
->owner
!= abfd
)
3319 sec
= sec
->output_section
;
3321 sect_syms
[sec
->index
] = syms
[idx
];
3325 /* Classify all of the symbols. */
3326 for (idx
= 0; idx
< symcount
; idx
++)
3328 if (ignore_section_sym (abfd
, syms
[idx
]))
3330 if (!sym_is_global (abfd
, syms
[idx
]))
3336 /* We will be adding a section symbol for each normal BFD section. Most
3337 sections will already have a section symbol in outsymbols, but
3338 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3339 at least in that case. */
3340 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3342 if (sect_syms
[asect
->index
] == NULL
)
3344 if (!sym_is_global (abfd
, asect
->symbol
))
3351 /* Now sort the symbols so the local symbols are first. */
3352 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3354 if (new_syms
== NULL
)
3357 for (idx
= 0; idx
< symcount
; idx
++)
3359 asymbol
*sym
= syms
[idx
];
3362 if (ignore_section_sym (abfd
, sym
))
3364 if (!sym_is_global (abfd
, sym
))
3367 i
= num_locals
+ num_globals2
++;
3369 sym
->udata
.i
= i
+ 1;
3371 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3373 if (sect_syms
[asect
->index
] == NULL
)
3375 asymbol
*sym
= asect
->symbol
;
3378 sect_syms
[asect
->index
] = sym
;
3379 if (!sym_is_global (abfd
, sym
))
3382 i
= num_locals
+ num_globals2
++;
3384 sym
->udata
.i
= i
+ 1;
3388 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3390 elf_num_locals (abfd
) = num_locals
;
3391 elf_num_globals (abfd
) = num_globals
;
3395 /* Align to the maximum file alignment that could be required for any
3396 ELF data structure. */
3398 static inline file_ptr
3399 align_file_position (file_ptr off
, int align
)
3401 return (off
+ align
- 1) & ~(align
- 1);
3404 /* Assign a file position to a section, optionally aligning to the
3405 required section alignment. */
3408 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3416 al
= i_shdrp
->sh_addralign
;
3418 offset
= BFD_ALIGN (offset
, al
);
3420 i_shdrp
->sh_offset
= offset
;
3421 if (i_shdrp
->bfd_section
!= NULL
)
3422 i_shdrp
->bfd_section
->filepos
= offset
;
3423 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3424 offset
+= i_shdrp
->sh_size
;
3428 /* Compute the file positions we are going to put the sections at, and
3429 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3430 is not NULL, this is being called by the ELF backend linker. */
3433 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3434 struct bfd_link_info
*link_info
)
3436 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3438 struct bfd_strtab_hash
*strtab
= NULL
;
3439 Elf_Internal_Shdr
*shstrtab_hdr
;
3441 if (abfd
->output_has_begun
)
3444 /* Do any elf backend specific processing first. */
3445 if (bed
->elf_backend_begin_write_processing
)
3446 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3448 if (! prep_headers (abfd
))
3451 /* Post process the headers if necessary. */
3452 if (bed
->elf_backend_post_process_headers
)
3453 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3456 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3460 if (!assign_section_numbers (abfd
, link_info
))
3463 /* The backend linker builds symbol table information itself. */
3464 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3466 /* Non-zero if doing a relocatable link. */
3467 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3469 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3473 if (link_info
== NULL
)
3475 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3480 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3481 /* sh_name was set in prep_headers. */
3482 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3483 shstrtab_hdr
->sh_flags
= 0;
3484 shstrtab_hdr
->sh_addr
= 0;
3485 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3486 shstrtab_hdr
->sh_entsize
= 0;
3487 shstrtab_hdr
->sh_link
= 0;
3488 shstrtab_hdr
->sh_info
= 0;
3489 /* sh_offset is set in assign_file_positions_except_relocs. */
3490 shstrtab_hdr
->sh_addralign
= 1;
3492 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3495 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3498 Elf_Internal_Shdr
*hdr
;
3500 off
= elf_tdata (abfd
)->next_file_pos
;
3502 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3503 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3505 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3506 if (hdr
->sh_size
!= 0)
3507 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3509 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3510 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3512 elf_tdata (abfd
)->next_file_pos
= off
;
3514 /* Now that we know where the .strtab section goes, write it
3516 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3517 || ! _bfd_stringtab_emit (abfd
, strtab
))
3519 _bfd_stringtab_free (strtab
);
3522 abfd
->output_has_begun
= TRUE
;
3527 /* Create a mapping from a set of sections to a program segment. */
3529 static struct elf_segment_map
*
3530 make_mapping (bfd
*abfd
,
3531 asection
**sections
,
3536 struct elf_segment_map
*m
;
3541 amt
= sizeof (struct elf_segment_map
);
3542 amt
+= (to
- from
- 1) * sizeof (asection
*);
3543 m
= bfd_zalloc (abfd
, amt
);
3547 m
->p_type
= PT_LOAD
;
3548 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3549 m
->sections
[i
- from
] = *hdrpp
;
3550 m
->count
= to
- from
;
3552 if (from
== 0 && phdr
)
3554 /* Include the headers in the first PT_LOAD segment. */
3555 m
->includes_filehdr
= 1;
3556 m
->includes_phdrs
= 1;
3562 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3565 struct elf_segment_map
*
3566 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3568 struct elf_segment_map
*m
;
3570 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3574 m
->p_type
= PT_DYNAMIC
;
3576 m
->sections
[0] = dynsec
;
3581 /* Set up a mapping from BFD sections to program segments. */
3584 map_sections_to_segments (bfd
*abfd
)
3586 asection
**sections
= NULL
;
3590 struct elf_segment_map
*mfirst
;
3591 struct elf_segment_map
**pm
;
3592 struct elf_segment_map
*m
;
3595 unsigned int phdr_index
;
3596 bfd_vma maxpagesize
;
3598 bfd_boolean phdr_in_segment
= TRUE
;
3599 bfd_boolean writable
;
3601 asection
*first_tls
= NULL
;
3602 asection
*dynsec
, *eh_frame_hdr
;
3605 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3608 if (bfd_count_sections (abfd
) == 0)
3611 /* Select the allocated sections, and sort them. */
3613 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3614 if (sections
== NULL
)
3618 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3620 if ((s
->flags
& SEC_ALLOC
) != 0)
3626 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3629 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3631 /* Build the mapping. */
3636 /* If we have a .interp section, then create a PT_PHDR segment for
3637 the program headers and a PT_INTERP segment for the .interp
3639 s
= bfd_get_section_by_name (abfd
, ".interp");
3640 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3642 amt
= sizeof (struct elf_segment_map
);
3643 m
= bfd_zalloc (abfd
, amt
);
3647 m
->p_type
= PT_PHDR
;
3648 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3649 m
->p_flags
= PF_R
| PF_X
;
3650 m
->p_flags_valid
= 1;
3651 m
->includes_phdrs
= 1;
3656 amt
= sizeof (struct elf_segment_map
);
3657 m
= bfd_zalloc (abfd
, amt
);
3661 m
->p_type
= PT_INTERP
;
3669 /* Look through the sections. We put sections in the same program
3670 segment when the start of the second section can be placed within
3671 a few bytes of the end of the first section. */
3675 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3677 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3679 && (dynsec
->flags
& SEC_LOAD
) == 0)
3682 /* Deal with -Ttext or something similar such that the first section
3683 is not adjacent to the program headers. This is an
3684 approximation, since at this point we don't know exactly how many
3685 program headers we will need. */
3688 bfd_size_type phdr_size
;
3690 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3692 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3693 if ((abfd
->flags
& D_PAGED
) == 0
3694 || sections
[0]->lma
< phdr_size
3695 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3696 phdr_in_segment
= FALSE
;
3699 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3702 bfd_boolean new_segment
;
3706 /* See if this section and the last one will fit in the same
3709 if (last_hdr
== NULL
)
3711 /* If we don't have a segment yet, then we don't need a new
3712 one (we build the last one after this loop). */
3713 new_segment
= FALSE
;
3715 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3717 /* If this section has a different relation between the
3718 virtual address and the load address, then we need a new
3722 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3723 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3725 /* If putting this section in this segment would force us to
3726 skip a page in the segment, then we need a new segment. */
3729 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3730 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3732 /* We don't want to put a loadable section after a
3733 nonloadable section in the same segment.
3734 Consider .tbss sections as loadable for this purpose. */
3737 else if ((abfd
->flags
& D_PAGED
) == 0)
3739 /* If the file is not demand paged, which means that we
3740 don't require the sections to be correctly aligned in the
3741 file, then there is no other reason for a new segment. */
3742 new_segment
= FALSE
;
3745 && (hdr
->flags
& SEC_READONLY
) == 0
3746 && (((last_hdr
->lma
+ last_size
- 1)
3747 & ~(maxpagesize
- 1))
3748 != (hdr
->lma
& ~(maxpagesize
- 1))))
3750 /* We don't want to put a writable section in a read only
3751 segment, unless they are on the same page in memory
3752 anyhow. We already know that the last section does not
3753 bring us past the current section on the page, so the
3754 only case in which the new section is not on the same
3755 page as the previous section is when the previous section
3756 ends precisely on a page boundary. */
3761 /* Otherwise, we can use the same segment. */
3762 new_segment
= FALSE
;
3767 if ((hdr
->flags
& SEC_READONLY
) == 0)
3770 /* .tbss sections effectively have zero size. */
3771 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3772 last_size
= hdr
->size
;
3778 /* We need a new program segment. We must create a new program
3779 header holding all the sections from phdr_index until hdr. */
3781 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3788 if ((hdr
->flags
& SEC_READONLY
) == 0)
3794 /* .tbss sections effectively have zero size. */
3795 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3796 last_size
= hdr
->size
;
3800 phdr_in_segment
= FALSE
;
3803 /* Create a final PT_LOAD program segment. */
3804 if (last_hdr
!= NULL
)
3806 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3814 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3817 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3824 /* For each loadable .note section, add a PT_NOTE segment. We don't
3825 use bfd_get_section_by_name, because if we link together
3826 nonloadable .note sections and loadable .note sections, we will
3827 generate two .note sections in the output file. FIXME: Using
3828 names for section types is bogus anyhow. */
3829 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3831 if ((s
->flags
& SEC_LOAD
) != 0
3832 && strncmp (s
->name
, ".note", 5) == 0)
3834 amt
= sizeof (struct elf_segment_map
);
3835 m
= bfd_zalloc (abfd
, amt
);
3839 m
->p_type
= PT_NOTE
;
3846 if (s
->flags
& SEC_THREAD_LOCAL
)
3854 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3859 amt
= sizeof (struct elf_segment_map
);
3860 amt
+= (tls_count
- 1) * sizeof (asection
*);
3861 m
= bfd_zalloc (abfd
, amt
);
3866 m
->count
= tls_count
;
3867 /* Mandated PF_R. */
3869 m
->p_flags_valid
= 1;
3870 for (i
= 0; i
< tls_count
; ++i
)
3872 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3873 m
->sections
[i
] = first_tls
;
3874 first_tls
= first_tls
->next
;
3881 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3883 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3884 if (eh_frame_hdr
!= NULL
3885 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3887 amt
= sizeof (struct elf_segment_map
);
3888 m
= bfd_zalloc (abfd
, amt
);
3892 m
->p_type
= PT_GNU_EH_FRAME
;
3894 m
->sections
[0] = eh_frame_hdr
->output_section
;
3900 if (elf_tdata (abfd
)->stack_flags
)
3902 amt
= sizeof (struct elf_segment_map
);
3903 m
= bfd_zalloc (abfd
, amt
);
3907 m
->p_type
= PT_GNU_STACK
;
3908 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3909 m
->p_flags_valid
= 1;
3915 if (elf_tdata (abfd
)->relro
)
3917 amt
= sizeof (struct elf_segment_map
);
3918 m
= bfd_zalloc (abfd
, amt
);
3922 m
->p_type
= PT_GNU_RELRO
;
3924 m
->p_flags_valid
= 1;
3933 elf_tdata (abfd
)->segment_map
= mfirst
;
3937 if (sections
!= NULL
)
3942 /* Sort sections by address. */
3945 elf_sort_sections (const void *arg1
, const void *arg2
)
3947 const asection
*sec1
= *(const asection
**) arg1
;
3948 const asection
*sec2
= *(const asection
**) arg2
;
3949 bfd_size_type size1
, size2
;
3951 /* Sort by LMA first, since this is the address used to
3952 place the section into a segment. */
3953 if (sec1
->lma
< sec2
->lma
)
3955 else if (sec1
->lma
> sec2
->lma
)
3958 /* Then sort by VMA. Normally the LMA and the VMA will be
3959 the same, and this will do nothing. */
3960 if (sec1
->vma
< sec2
->vma
)
3962 else if (sec1
->vma
> sec2
->vma
)
3965 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3967 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3973 /* If the indicies are the same, do not return 0
3974 here, but continue to try the next comparison. */
3975 if (sec1
->target_index
- sec2
->target_index
!= 0)
3976 return sec1
->target_index
- sec2
->target_index
;
3981 else if (TOEND (sec2
))
3986 /* Sort by size, to put zero sized sections
3987 before others at the same address. */
3989 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3990 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3997 return sec1
->target_index
- sec2
->target_index
;
4000 /* Ian Lance Taylor writes:
4002 We shouldn't be using % with a negative signed number. That's just
4003 not good. We have to make sure either that the number is not
4004 negative, or that the number has an unsigned type. When the types
4005 are all the same size they wind up as unsigned. When file_ptr is a
4006 larger signed type, the arithmetic winds up as signed long long,
4009 What we're trying to say here is something like ``increase OFF by
4010 the least amount that will cause it to be equal to the VMA modulo
4012 /* In other words, something like:
4014 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4015 off_offset = off % bed->maxpagesize;
4016 if (vma_offset < off_offset)
4017 adjustment = vma_offset + bed->maxpagesize - off_offset;
4019 adjustment = vma_offset - off_offset;
4021 which can can be collapsed into the expression below. */
4024 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4026 return ((vma
- off
) % maxpagesize
);
4030 print_segment_map (bfd
*abfd
)
4032 struct elf_segment_map
*m
;
4035 fprintf (stderr
, _(" Section to Segment mapping:\n"));
4036 fprintf (stderr
, _(" Segment Sections...\n"));
4038 for (i
= 0, m
= elf_tdata (abfd
)->segment_map
;
4042 const char *pt
= get_segment_type (m
->p_type
);
4047 if (m
->p_type
>= PT_LOPROC
&& m
->p_type
<= PT_HIPROC
)
4048 sprintf (buf
, "LOPROC+%7.7x",
4049 (unsigned int) (m
->p_type
- PT_LOPROC
));
4050 else if (m
->p_type
>= PT_LOOS
&& m
->p_type
<= PT_HIOS
)
4051 sprintf (buf
, "LOOS+%7.7x",
4052 (unsigned int) (m
->p_type
- PT_LOOS
));
4054 snprintf (buf
, sizeof (buf
), "%8.8x",
4055 (unsigned int) m
->p_type
);
4058 fprintf (stderr
, " %2.2d: %14.14s: ", i
, pt
);
4059 for (j
= 0; j
< m
->count
; j
++)
4060 fprintf (stderr
, "%s ", m
->sections
[j
]->name
);
4065 /* Assign file positions to the sections based on the mapping from
4066 sections to segments. This function also sets up some fields in
4067 the file header, and writes out the program headers. */
4070 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
4072 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4074 struct elf_segment_map
*m
;
4076 Elf_Internal_Phdr
*phdrs
;
4078 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4079 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4080 Elf_Internal_Phdr
*p
;
4082 if (elf_tdata (abfd
)->segment_map
== NULL
)
4084 if (! map_sections_to_segments (abfd
))
4089 /* The placement algorithm assumes that non allocated sections are
4090 not in PT_LOAD segments. We ensure this here by removing such
4091 sections from the segment map. We also remove excluded
4093 for (m
= elf_tdata (abfd
)->segment_map
;
4097 unsigned int new_count
;
4101 for (i
= 0; i
< m
->count
; i
++)
4103 if ((m
->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
4104 && ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0
4105 || m
->p_type
!= PT_LOAD
))
4108 m
->sections
[new_count
] = m
->sections
[i
];
4114 if (new_count
!= m
->count
)
4115 m
->count
= new_count
;
4119 if (bed
->elf_backend_modify_segment_map
)
4121 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
4126 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4129 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4130 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4131 elf_elfheader (abfd
)->e_phnum
= count
;
4135 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4139 /* If we already counted the number of program segments, make sure
4140 that we allocated enough space. This happens when SIZEOF_HEADERS
4141 is used in a linker script. */
4142 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
4143 if (alloc
!= 0 && count
> alloc
)
4145 ((*_bfd_error_handler
)
4146 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4147 abfd
, alloc
, count
));
4148 print_segment_map (abfd
);
4149 bfd_set_error (bfd_error_bad_value
);
4156 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4160 off
= bed
->s
->sizeof_ehdr
;
4161 off
+= alloc
* bed
->s
->sizeof_phdr
;
4168 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4175 /* If elf_segment_map is not from map_sections_to_segments, the
4176 sections may not be correctly ordered. NOTE: sorting should
4177 not be done to the PT_NOTE section of a corefile, which may
4178 contain several pseudo-sections artificially created by bfd.
4179 Sorting these pseudo-sections breaks things badly. */
4181 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4182 && m
->p_type
== PT_NOTE
))
4183 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4186 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4187 number of sections with contents contributing to both p_filesz
4188 and p_memsz, followed by a number of sections with no contents
4189 that just contribute to p_memsz. In this loop, OFF tracks next
4190 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4191 an adjustment we use for segments that have no file contents
4192 but need zero filled memory allocation. */
4194 p
->p_type
= m
->p_type
;
4195 p
->p_flags
= m
->p_flags
;
4197 if (p
->p_type
== PT_LOAD
4200 bfd_size_type align
;
4202 unsigned int align_power
= 0;
4204 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4206 unsigned int secalign
;
4208 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4209 if (secalign
> align_power
)
4210 align_power
= secalign
;
4212 align
= (bfd_size_type
) 1 << align_power
;
4214 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> align
)
4215 align
= bed
->maxpagesize
;
4217 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4220 && !m
->includes_filehdr
4221 && !m
->includes_phdrs
4222 && (ufile_ptr
) off
>= align
)
4224 /* If the first section isn't loadable, the same holds for
4225 any other sections. Since the segment won't need file
4226 space, we can make p_offset overlap some prior segment.
4227 However, .tbss is special. If a segment starts with
4228 .tbss, we need to look at the next section to decide
4229 whether the segment has any loadable sections. */
4231 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4233 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4237 voff
= adjust
- align
;
4243 /* Make sure the .dynamic section is the first section in the
4244 PT_DYNAMIC segment. */
4245 else if (p
->p_type
== PT_DYNAMIC
4247 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4250 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4252 bfd_set_error (bfd_error_bad_value
);
4259 p
->p_vaddr
= m
->sections
[0]->vma
;
4261 if (m
->p_paddr_valid
)
4262 p
->p_paddr
= m
->p_paddr
;
4263 else if (m
->count
== 0)
4266 p
->p_paddr
= m
->sections
[0]->lma
;
4268 if (p
->p_type
== PT_LOAD
4269 && (abfd
->flags
& D_PAGED
) != 0)
4270 p
->p_align
= bed
->maxpagesize
;
4271 else if (m
->count
== 0)
4272 p
->p_align
= 1 << bed
->s
->log_file_align
;
4280 if (m
->includes_filehdr
)
4282 if (! m
->p_flags_valid
)
4285 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4286 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4289 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4291 if (p
->p_vaddr
< (bfd_vma
) off
)
4293 (*_bfd_error_handler
)
4294 (_("%B: Not enough room for program headers, try linking with -N"),
4296 bfd_set_error (bfd_error_bad_value
);
4301 if (! m
->p_paddr_valid
)
4304 if (p
->p_type
== PT_LOAD
)
4306 filehdr_vaddr
= p
->p_vaddr
;
4307 filehdr_paddr
= p
->p_paddr
;
4311 if (m
->includes_phdrs
)
4313 if (! m
->p_flags_valid
)
4316 if (m
->includes_filehdr
)
4318 if (p
->p_type
== PT_LOAD
)
4320 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4321 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4326 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4330 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4331 p
->p_vaddr
-= off
- p
->p_offset
;
4332 if (! m
->p_paddr_valid
)
4333 p
->p_paddr
-= off
- p
->p_offset
;
4336 if (p
->p_type
== PT_LOAD
)
4338 phdrs_vaddr
= p
->p_vaddr
;
4339 phdrs_paddr
= p
->p_paddr
;
4342 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4345 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4346 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4349 if (p
->p_type
== PT_LOAD
4350 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4352 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4353 p
->p_offset
= off
+ voff
;
4358 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4359 p
->p_filesz
+= adjust
;
4360 p
->p_memsz
+= adjust
;
4364 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4368 bfd_size_type align
;
4372 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4374 if (p
->p_type
== PT_LOAD
4375 || p
->p_type
== PT_TLS
)
4377 bfd_signed_vma adjust
;
4379 if ((flags
& SEC_LOAD
) != 0)
4381 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4384 (*_bfd_error_handler
)
4385 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4386 abfd
, sec
, (unsigned long) sec
->lma
);
4390 p
->p_filesz
+= adjust
;
4391 p
->p_memsz
+= adjust
;
4393 /* .tbss is special. It doesn't contribute to p_memsz of
4395 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4396 || p
->p_type
== PT_TLS
)
4398 /* The section VMA must equal the file position
4399 modulo the page size. */
4400 bfd_size_type page
= align
;
4401 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> page
)
4402 page
= bed
->maxpagesize
;
4403 adjust
= vma_page_aligned_bias (sec
->vma
,
4404 p
->p_vaddr
+ p
->p_memsz
,
4406 p
->p_memsz
+= adjust
;
4410 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4412 /* The section at i == 0 is the one that actually contains
4418 p
->p_filesz
= sec
->size
;
4424 /* The rest are fake sections that shouldn't be written. */
4433 if (p
->p_type
== PT_LOAD
)
4436 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4437 1997, and the exact reason for it isn't clear. One
4438 plausible explanation is that it is to work around
4439 a problem we have with linker scripts using data
4440 statements in NOLOAD sections. I don't think it
4441 makes a great deal of sense to have such a section
4442 assigned to a PT_LOAD segment, but apparently
4443 people do this. The data statement results in a
4444 bfd_data_link_order being built, and these need
4445 section contents to write into. Eventually, we get
4446 to _bfd_elf_write_object_contents which writes any
4447 section with contents to the output. Make room
4448 here for the write, so that following segments are
4450 if ((flags
& SEC_LOAD
) != 0
4451 || (flags
& SEC_HAS_CONTENTS
) != 0)
4455 if ((flags
& SEC_LOAD
) != 0)
4457 p
->p_filesz
+= sec
->size
;
4458 p
->p_memsz
+= sec
->size
;
4460 /* PR ld/594: Sections in note segments which are not loaded
4461 contribute to the file size but not the in-memory size. */
4462 else if (p
->p_type
== PT_NOTE
4463 && (flags
& SEC_HAS_CONTENTS
) != 0)
4464 p
->p_filesz
+= sec
->size
;
4466 /* .tbss is special. It doesn't contribute to p_memsz of
4468 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4469 || p
->p_type
== PT_TLS
)
4470 p
->p_memsz
+= sec
->size
;
4472 if (p
->p_type
== PT_TLS
4474 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4476 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4478 p
->p_memsz
+= o
->offset
+ o
->size
;
4481 if (align
> p
->p_align
4482 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4486 if (! m
->p_flags_valid
)
4489 if ((flags
& SEC_CODE
) != 0)
4491 if ((flags
& SEC_READONLY
) == 0)
4497 /* Now that we have set the section file positions, we can set up
4498 the file positions for the non PT_LOAD segments. */
4499 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4503 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4505 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4506 /* If the section has not yet been assigned a file position,
4507 do so now. The ARM BPABI requires that .dynamic section
4508 not be marked SEC_ALLOC because it is not part of any
4509 PT_LOAD segment, so it will not be processed above. */
4510 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4513 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4516 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4518 off
= (_bfd_elf_assign_file_position_for_section
4519 (i_shdrpp
[i
], off
, TRUE
));
4520 p
->p_filesz
= m
->sections
[0]->size
;
4522 p
->p_offset
= m
->sections
[0]->filepos
;
4526 if (m
->includes_filehdr
)
4528 p
->p_vaddr
= filehdr_vaddr
;
4529 if (! m
->p_paddr_valid
)
4530 p
->p_paddr
= filehdr_paddr
;
4532 else if (m
->includes_phdrs
)
4534 p
->p_vaddr
= phdrs_vaddr
;
4535 if (! m
->p_paddr_valid
)
4536 p
->p_paddr
= phdrs_paddr
;
4538 else if (p
->p_type
== PT_GNU_RELRO
)
4540 Elf_Internal_Phdr
*lp
;
4542 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4544 if (lp
->p_type
== PT_LOAD
4545 && lp
->p_vaddr
<= link_info
->relro_end
4546 && lp
->p_vaddr
>= link_info
->relro_start
4547 && lp
->p_vaddr
+ lp
->p_filesz
4548 >= link_info
->relro_end
)
4552 if (lp
< phdrs
+ count
4553 && link_info
->relro_end
> lp
->p_vaddr
)
4555 p
->p_vaddr
= lp
->p_vaddr
;
4556 p
->p_paddr
= lp
->p_paddr
;
4557 p
->p_offset
= lp
->p_offset
;
4558 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4559 p
->p_memsz
= p
->p_filesz
;
4561 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4565 memset (p
, 0, sizeof *p
);
4566 p
->p_type
= PT_NULL
;
4572 /* Clear out any program headers we allocated but did not use. */
4573 for (; count
< alloc
; count
++, p
++)
4575 memset (p
, 0, sizeof *p
);
4576 p
->p_type
= PT_NULL
;
4579 elf_tdata (abfd
)->phdr
= phdrs
;
4581 elf_tdata (abfd
)->next_file_pos
= off
;
4583 /* Write out the program headers. */
4584 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4585 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4591 /* Get the size of the program header.
4593 If this is called by the linker before any of the section VMA's are set, it
4594 can't calculate the correct value for a strange memory layout. This only
4595 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4596 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4597 data segment (exclusive of .interp and .dynamic).
4599 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4600 will be two segments. */
4602 static bfd_size_type
4603 get_program_header_size (bfd
*abfd
)
4607 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4609 /* We can't return a different result each time we're called. */
4610 if (elf_tdata (abfd
)->program_header_size
!= 0)
4611 return elf_tdata (abfd
)->program_header_size
;
4613 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4615 struct elf_segment_map
*m
;
4618 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4620 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4621 return elf_tdata (abfd
)->program_header_size
;
4624 /* Assume we will need exactly two PT_LOAD segments: one for text
4625 and one for data. */
4628 s
= bfd_get_section_by_name (abfd
, ".interp");
4629 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4631 /* If we have a loadable interpreter section, we need a
4632 PT_INTERP segment. In this case, assume we also need a
4633 PT_PHDR segment, although that may not be true for all
4638 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4640 /* We need a PT_DYNAMIC segment. */
4644 if (elf_tdata (abfd
)->eh_frame_hdr
)
4646 /* We need a PT_GNU_EH_FRAME segment. */
4650 if (elf_tdata (abfd
)->stack_flags
)
4652 /* We need a PT_GNU_STACK segment. */
4656 if (elf_tdata (abfd
)->relro
)
4658 /* We need a PT_GNU_RELRO segment. */
4662 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4664 if ((s
->flags
& SEC_LOAD
) != 0
4665 && strncmp (s
->name
, ".note", 5) == 0)
4667 /* We need a PT_NOTE segment. */
4672 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4674 if (s
->flags
& SEC_THREAD_LOCAL
)
4676 /* We need a PT_TLS segment. */
4682 /* Let the backend count up any program headers it might need. */
4683 if (bed
->elf_backend_additional_program_headers
)
4687 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4693 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4694 return elf_tdata (abfd
)->program_header_size
;
4697 /* Work out the file positions of all the sections. This is called by
4698 _bfd_elf_compute_section_file_positions. All the section sizes and
4699 VMAs must be known before this is called.
4701 Reloc sections come in two flavours: Those processed specially as
4702 "side-channel" data attached to a section to which they apply, and
4703 those that bfd doesn't process as relocations. The latter sort are
4704 stored in a normal bfd section by bfd_section_from_shdr. We don't
4705 consider the former sort here, unless they form part of the loadable
4706 image. Reloc sections not assigned here will be handled later by
4707 assign_file_positions_for_relocs.
4709 We also don't set the positions of the .symtab and .strtab here. */
4712 assign_file_positions_except_relocs (bfd
*abfd
,
4713 struct bfd_link_info
*link_info
)
4715 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4716 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4717 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4718 unsigned int num_sec
= elf_numsections (abfd
);
4720 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4722 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4723 && bfd_get_format (abfd
) != bfd_core
)
4725 Elf_Internal_Shdr
**hdrpp
;
4728 /* Start after the ELF header. */
4729 off
= i_ehdrp
->e_ehsize
;
4731 /* We are not creating an executable, which means that we are
4732 not creating a program header, and that the actual order of
4733 the sections in the file is unimportant. */
4734 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4736 Elf_Internal_Shdr
*hdr
;
4739 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4740 && hdr
->bfd_section
== NULL
)
4741 || i
== tdata
->symtab_section
4742 || i
== tdata
->symtab_shndx_section
4743 || i
== tdata
->strtab_section
)
4745 hdr
->sh_offset
= -1;
4748 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4750 if (i
== SHN_LORESERVE
- 1)
4752 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4753 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4760 Elf_Internal_Shdr
**hdrpp
;
4762 /* Assign file positions for the loaded sections based on the
4763 assignment of sections to segments. */
4764 if (! assign_file_positions_for_segments (abfd
, link_info
))
4767 /* Assign file positions for the other sections. */
4769 off
= elf_tdata (abfd
)->next_file_pos
;
4770 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4772 Elf_Internal_Shdr
*hdr
;
4775 if (hdr
->bfd_section
!= NULL
4776 && hdr
->bfd_section
->filepos
!= 0)
4777 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4778 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4780 ((*_bfd_error_handler
)
4781 (_("%B: warning: allocated section `%s' not in segment"),
4783 (hdr
->bfd_section
== NULL
4785 : hdr
->bfd_section
->name
)));
4786 if ((abfd
->flags
& D_PAGED
) != 0)
4787 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4790 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4792 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4795 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4796 && hdr
->bfd_section
== NULL
)
4797 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4798 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4799 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4800 hdr
->sh_offset
= -1;
4802 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4804 if (i
== SHN_LORESERVE
- 1)
4806 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4807 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4812 /* Place the section headers. */
4813 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4814 i_ehdrp
->e_shoff
= off
;
4815 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4817 elf_tdata (abfd
)->next_file_pos
= off
;
4823 prep_headers (bfd
*abfd
)
4825 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4826 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4827 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4828 struct elf_strtab_hash
*shstrtab
;
4829 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4831 i_ehdrp
= elf_elfheader (abfd
);
4832 i_shdrp
= elf_elfsections (abfd
);
4834 shstrtab
= _bfd_elf_strtab_init ();
4835 if (shstrtab
== NULL
)
4838 elf_shstrtab (abfd
) = shstrtab
;
4840 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4841 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4842 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4843 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4845 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4846 i_ehdrp
->e_ident
[EI_DATA
] =
4847 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4848 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4850 if ((abfd
->flags
& DYNAMIC
) != 0)
4851 i_ehdrp
->e_type
= ET_DYN
;
4852 else if ((abfd
->flags
& EXEC_P
) != 0)
4853 i_ehdrp
->e_type
= ET_EXEC
;
4854 else if (bfd_get_format (abfd
) == bfd_core
)
4855 i_ehdrp
->e_type
= ET_CORE
;
4857 i_ehdrp
->e_type
= ET_REL
;
4859 switch (bfd_get_arch (abfd
))
4861 case bfd_arch_unknown
:
4862 i_ehdrp
->e_machine
= EM_NONE
;
4865 /* There used to be a long list of cases here, each one setting
4866 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4867 in the corresponding bfd definition. To avoid duplication,
4868 the switch was removed. Machines that need special handling
4869 can generally do it in elf_backend_final_write_processing(),
4870 unless they need the information earlier than the final write.
4871 Such need can generally be supplied by replacing the tests for
4872 e_machine with the conditions used to determine it. */
4874 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4877 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4878 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4880 /* No program header, for now. */
4881 i_ehdrp
->e_phoff
= 0;
4882 i_ehdrp
->e_phentsize
= 0;
4883 i_ehdrp
->e_phnum
= 0;
4885 /* Each bfd section is section header entry. */
4886 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4887 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4889 /* If we're building an executable, we'll need a program header table. */
4890 if (abfd
->flags
& EXEC_P
)
4891 /* It all happens later. */
4895 i_ehdrp
->e_phentsize
= 0;
4897 i_ehdrp
->e_phoff
= 0;
4900 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4901 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4902 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4903 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4904 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4905 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4906 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4907 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4908 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4914 /* Assign file positions for all the reloc sections which are not part
4915 of the loadable file image. */
4918 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4921 unsigned int i
, num_sec
;
4922 Elf_Internal_Shdr
**shdrpp
;
4924 off
= elf_tdata (abfd
)->next_file_pos
;
4926 num_sec
= elf_numsections (abfd
);
4927 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4929 Elf_Internal_Shdr
*shdrp
;
4932 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4933 && shdrp
->sh_offset
== -1)
4934 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4937 elf_tdata (abfd
)->next_file_pos
= off
;
4941 _bfd_elf_write_object_contents (bfd
*abfd
)
4943 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4944 Elf_Internal_Ehdr
*i_ehdrp
;
4945 Elf_Internal_Shdr
**i_shdrp
;
4947 unsigned int count
, num_sec
;
4949 if (! abfd
->output_has_begun
4950 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4953 i_shdrp
= elf_elfsections (abfd
);
4954 i_ehdrp
= elf_elfheader (abfd
);
4957 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4961 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4963 /* After writing the headers, we need to write the sections too... */
4964 num_sec
= elf_numsections (abfd
);
4965 for (count
= 1; count
< num_sec
; count
++)
4967 if (bed
->elf_backend_section_processing
)
4968 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4969 if (i_shdrp
[count
]->contents
)
4971 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4973 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4974 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4977 if (count
== SHN_LORESERVE
- 1)
4978 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4981 /* Write out the section header names. */
4982 if (elf_shstrtab (abfd
) != NULL
4983 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4984 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4987 if (bed
->elf_backend_final_write_processing
)
4988 (*bed
->elf_backend_final_write_processing
) (abfd
,
4989 elf_tdata (abfd
)->linker
);
4991 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4995 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4997 /* Hopefully this can be done just like an object file. */
4998 return _bfd_elf_write_object_contents (abfd
);
5001 /* Given a section, search the header to find them. */
5004 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
5006 const struct elf_backend_data
*bed
;
5009 if (elf_section_data (asect
) != NULL
5010 && elf_section_data (asect
)->this_idx
!= 0)
5011 return elf_section_data (asect
)->this_idx
;
5013 if (bfd_is_abs_section (asect
))
5015 else if (bfd_is_com_section (asect
))
5017 else if (bfd_is_und_section (asect
))
5022 bed
= get_elf_backend_data (abfd
);
5023 if (bed
->elf_backend_section_from_bfd_section
)
5027 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
5032 bfd_set_error (bfd_error_nonrepresentable_section
);
5037 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5041 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
5043 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5045 flagword flags
= asym_ptr
->flags
;
5047 /* When gas creates relocations against local labels, it creates its
5048 own symbol for the section, but does put the symbol into the
5049 symbol chain, so udata is 0. When the linker is generating
5050 relocatable output, this section symbol may be for one of the
5051 input sections rather than the output section. */
5052 if (asym_ptr
->udata
.i
== 0
5053 && (flags
& BSF_SECTION_SYM
)
5054 && asym_ptr
->section
)
5059 sec
= asym_ptr
->section
;
5060 if (sec
->owner
!= abfd
&& sec
->output_section
!= NULL
)
5061 sec
= sec
->output_section
;
5062 if (sec
->owner
== abfd
5063 && (indx
= sec
->index
) < elf_num_section_syms (abfd
)
5064 && elf_section_syms (abfd
)[indx
] != NULL
)
5065 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5068 idx
= asym_ptr
->udata
.i
;
5072 /* This case can occur when using --strip-symbol on a symbol
5073 which is used in a relocation entry. */
5074 (*_bfd_error_handler
)
5075 (_("%B: symbol `%s' required but not present"),
5076 abfd
, bfd_asymbol_name (asym_ptr
));
5077 bfd_set_error (bfd_error_no_symbols
);
5084 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5085 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5086 elf_symbol_flags (flags
));
5094 /* Rewrite program header information. */
5097 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5099 Elf_Internal_Ehdr
*iehdr
;
5100 struct elf_segment_map
*map
;
5101 struct elf_segment_map
*map_first
;
5102 struct elf_segment_map
**pointer_to_map
;
5103 Elf_Internal_Phdr
*segment
;
5106 unsigned int num_segments
;
5107 bfd_boolean phdr_included
= FALSE
;
5108 bfd_vma maxpagesize
;
5109 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5110 unsigned int phdr_adjust_num
= 0;
5111 const struct elf_backend_data
*bed
;
5113 bed
= get_elf_backend_data (ibfd
);
5114 iehdr
= elf_elfheader (ibfd
);
5117 pointer_to_map
= &map_first
;
5119 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5120 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5122 /* Returns the end address of the segment + 1. */
5123 #define SEGMENT_END(segment, start) \
5124 (start + (segment->p_memsz > segment->p_filesz \
5125 ? segment->p_memsz : segment->p_filesz))
5127 #define SECTION_SIZE(section, segment) \
5128 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5129 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5130 ? section->size : 0)
5132 /* Returns TRUE if the given section is contained within
5133 the given segment. VMA addresses are compared. */
5134 #define IS_CONTAINED_BY_VMA(section, segment) \
5135 (section->vma >= segment->p_vaddr \
5136 && (section->vma + SECTION_SIZE (section, segment) \
5137 <= (SEGMENT_END (segment, segment->p_vaddr))))
5139 /* Returns TRUE if the given section is contained within
5140 the given segment. LMA addresses are compared. */
5141 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5142 (section->lma >= base \
5143 && (section->lma + SECTION_SIZE (section, segment) \
5144 <= SEGMENT_END (segment, base)))
5146 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5147 #define IS_COREFILE_NOTE(p, s) \
5148 (p->p_type == PT_NOTE \
5149 && bfd_get_format (ibfd) == bfd_core \
5150 && s->vma == 0 && s->lma == 0 \
5151 && (bfd_vma) s->filepos >= p->p_offset \
5152 && ((bfd_vma) s->filepos + s->size \
5153 <= p->p_offset + p->p_filesz))
5155 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5156 linker, which generates a PT_INTERP section with p_vaddr and
5157 p_memsz set to 0. */
5158 #define IS_SOLARIS_PT_INTERP(p, s) \
5160 && p->p_paddr == 0 \
5161 && p->p_memsz == 0 \
5162 && p->p_filesz > 0 \
5163 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5165 && (bfd_vma) s->filepos >= p->p_offset \
5166 && ((bfd_vma) s->filepos + s->size \
5167 <= p->p_offset + p->p_filesz))
5169 /* Decide if the given section should be included in the given segment.
5170 A section will be included if:
5171 1. It is within the address space of the segment -- we use the LMA
5172 if that is set for the segment and the VMA otherwise,
5173 2. It is an allocated segment,
5174 3. There is an output section associated with it,
5175 4. The section has not already been allocated to a previous segment.
5176 5. PT_GNU_STACK segments do not include any sections.
5177 6. PT_TLS segment includes only SHF_TLS sections.
5178 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5179 8. PT_DYNAMIC should not contain empty sections at the beginning
5180 (with the possible exception of .dynamic). */
5181 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5182 ((((segment->p_paddr \
5183 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5184 : IS_CONTAINED_BY_VMA (section, segment)) \
5185 && (section->flags & SEC_ALLOC) != 0) \
5186 || IS_COREFILE_NOTE (segment, section)) \
5187 && section->output_section != NULL \
5188 && segment->p_type != PT_GNU_STACK \
5189 && (segment->p_type != PT_TLS \
5190 || (section->flags & SEC_THREAD_LOCAL)) \
5191 && (segment->p_type == PT_LOAD \
5192 || segment->p_type == PT_TLS \
5193 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5194 && (segment->p_type != PT_DYNAMIC \
5195 || SECTION_SIZE (section, segment) > 0 \
5196 || (segment->p_paddr \
5197 ? segment->p_paddr != section->lma \
5198 : segment->p_vaddr != section->vma) \
5199 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5201 && ! section->segment_mark)
5203 /* Returns TRUE iff seg1 starts after the end of seg2. */
5204 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5205 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5207 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5208 their VMA address ranges and their LMA address ranges overlap.
5209 It is possible to have overlapping VMA ranges without overlapping LMA
5210 ranges. RedBoot images for example can have both .data and .bss mapped
5211 to the same VMA range, but with the .data section mapped to a different
5213 #define SEGMENT_OVERLAPS(seg1, seg2) \
5214 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5215 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5216 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5217 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5219 /* Initialise the segment mark field. */
5220 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5221 section
->segment_mark
= FALSE
;
5223 /* Scan through the segments specified in the program header
5224 of the input BFD. For this first scan we look for overlaps
5225 in the loadable segments. These can be created by weird
5226 parameters to objcopy. Also, fix some solaris weirdness. */
5227 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5232 Elf_Internal_Phdr
*segment2
;
5234 if (segment
->p_type
== PT_INTERP
)
5235 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5236 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5238 /* Mininal change so that the normal section to segment
5239 assignment code will work. */
5240 segment
->p_vaddr
= section
->vma
;
5244 if (segment
->p_type
!= PT_LOAD
)
5247 /* Determine if this segment overlaps any previous segments. */
5248 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5250 bfd_signed_vma extra_length
;
5252 if (segment2
->p_type
!= PT_LOAD
5253 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5256 /* Merge the two segments together. */
5257 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5259 /* Extend SEGMENT2 to include SEGMENT and then delete
5262 SEGMENT_END (segment
, segment
->p_vaddr
)
5263 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5265 if (extra_length
> 0)
5267 segment2
->p_memsz
+= extra_length
;
5268 segment2
->p_filesz
+= extra_length
;
5271 segment
->p_type
= PT_NULL
;
5273 /* Since we have deleted P we must restart the outer loop. */
5275 segment
= elf_tdata (ibfd
)->phdr
;
5280 /* Extend SEGMENT to include SEGMENT2 and then delete
5283 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5284 - SEGMENT_END (segment
, segment
->p_vaddr
);
5286 if (extra_length
> 0)
5288 segment
->p_memsz
+= extra_length
;
5289 segment
->p_filesz
+= extra_length
;
5292 segment2
->p_type
= PT_NULL
;
5297 /* The second scan attempts to assign sections to segments. */
5298 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5302 unsigned int section_count
;
5303 asection
** sections
;
5304 asection
* output_section
;
5306 bfd_vma matching_lma
;
5307 bfd_vma suggested_lma
;
5311 if (segment
->p_type
== PT_NULL
)
5314 /* Compute how many sections might be placed into this segment. */
5315 for (section
= ibfd
->sections
, section_count
= 0;
5317 section
= section
->next
)
5318 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5321 /* Allocate a segment map big enough to contain
5322 all of the sections we have selected. */
5323 amt
= sizeof (struct elf_segment_map
);
5324 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5325 map
= bfd_alloc (obfd
, amt
);
5329 /* Initialise the fields of the segment map. Default to
5330 using the physical address of the segment in the input BFD. */
5332 map
->p_type
= segment
->p_type
;
5333 map
->p_flags
= segment
->p_flags
;
5334 map
->p_flags_valid
= 1;
5335 map
->p_paddr
= segment
->p_paddr
;
5336 map
->p_paddr_valid
= 1;
5338 /* Determine if this segment contains the ELF file header
5339 and if it contains the program headers themselves. */
5340 map
->includes_filehdr
= (segment
->p_offset
== 0
5341 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5343 map
->includes_phdrs
= 0;
5345 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5347 map
->includes_phdrs
=
5348 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5349 && (segment
->p_offset
+ segment
->p_filesz
5350 >= ((bfd_vma
) iehdr
->e_phoff
5351 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5353 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5354 phdr_included
= TRUE
;
5357 if (section_count
== 0)
5359 /* Special segments, such as the PT_PHDR segment, may contain
5360 no sections, but ordinary, loadable segments should contain
5361 something. They are allowed by the ELF spec however, so only
5362 a warning is produced. */
5363 if (segment
->p_type
== PT_LOAD
)
5364 (*_bfd_error_handler
)
5365 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5369 *pointer_to_map
= map
;
5370 pointer_to_map
= &map
->next
;
5375 /* Now scan the sections in the input BFD again and attempt
5376 to add their corresponding output sections to the segment map.
5377 The problem here is how to handle an output section which has
5378 been moved (ie had its LMA changed). There are four possibilities:
5380 1. None of the sections have been moved.
5381 In this case we can continue to use the segment LMA from the
5384 2. All of the sections have been moved by the same amount.
5385 In this case we can change the segment's LMA to match the LMA
5386 of the first section.
5388 3. Some of the sections have been moved, others have not.
5389 In this case those sections which have not been moved can be
5390 placed in the current segment which will have to have its size,
5391 and possibly its LMA changed, and a new segment or segments will
5392 have to be created to contain the other sections.
5394 4. The sections have been moved, but not by the same amount.
5395 In this case we can change the segment's LMA to match the LMA
5396 of the first section and we will have to create a new segment
5397 or segments to contain the other sections.
5399 In order to save time, we allocate an array to hold the section
5400 pointers that we are interested in. As these sections get assigned
5401 to a segment, they are removed from this array. */
5403 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5404 to work around this long long bug. */
5405 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5406 if (sections
== NULL
)
5409 /* Step One: Scan for segment vs section LMA conflicts.
5410 Also add the sections to the section array allocated above.
5411 Also add the sections to the current segment. In the common
5412 case, where the sections have not been moved, this means that
5413 we have completely filled the segment, and there is nothing
5419 for (j
= 0, section
= ibfd
->sections
;
5421 section
= section
->next
)
5423 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5425 output_section
= section
->output_section
;
5427 sections
[j
++] = section
;
5429 /* The Solaris native linker always sets p_paddr to 0.
5430 We try to catch that case here, and set it to the
5431 correct value. Note - some backends require that
5432 p_paddr be left as zero. */
5433 if (segment
->p_paddr
== 0
5434 && segment
->p_vaddr
!= 0
5435 && (! bed
->want_p_paddr_set_to_zero
)
5437 && output_section
->lma
!= 0
5438 && (output_section
->vma
== (segment
->p_vaddr
5439 + (map
->includes_filehdr
5442 + (map
->includes_phdrs
5444 * iehdr
->e_phentsize
)
5446 map
->p_paddr
= segment
->p_vaddr
;
5448 /* Match up the physical address of the segment with the
5449 LMA address of the output section. */
5450 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5451 || IS_COREFILE_NOTE (segment
, section
)
5452 || (bed
->want_p_paddr_set_to_zero
&&
5453 IS_CONTAINED_BY_VMA (output_section
, segment
))
5456 if (matching_lma
== 0)
5457 matching_lma
= output_section
->lma
;
5459 /* We assume that if the section fits within the segment
5460 then it does not overlap any other section within that
5462 map
->sections
[isec
++] = output_section
;
5464 else if (suggested_lma
== 0)
5465 suggested_lma
= output_section
->lma
;
5469 BFD_ASSERT (j
== section_count
);
5471 /* Step Two: Adjust the physical address of the current segment,
5473 if (isec
== section_count
)
5475 /* All of the sections fitted within the segment as currently
5476 specified. This is the default case. Add the segment to
5477 the list of built segments and carry on to process the next
5478 program header in the input BFD. */
5479 map
->count
= section_count
;
5480 *pointer_to_map
= map
;
5481 pointer_to_map
= &map
->next
;
5488 if (matching_lma
!= 0)
5490 /* At least one section fits inside the current segment.
5491 Keep it, but modify its physical address to match the
5492 LMA of the first section that fitted. */
5493 map
->p_paddr
= matching_lma
;
5497 /* None of the sections fitted inside the current segment.
5498 Change the current segment's physical address to match
5499 the LMA of the first section. */
5500 map
->p_paddr
= suggested_lma
;
5503 /* Offset the segment physical address from the lma
5504 to allow for space taken up by elf headers. */
5505 if (map
->includes_filehdr
)
5506 map
->p_paddr
-= iehdr
->e_ehsize
;
5508 if (map
->includes_phdrs
)
5510 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5512 /* iehdr->e_phnum is just an estimate of the number
5513 of program headers that we will need. Make a note
5514 here of the number we used and the segment we chose
5515 to hold these headers, so that we can adjust the
5516 offset when we know the correct value. */
5517 phdr_adjust_num
= iehdr
->e_phnum
;
5518 phdr_adjust_seg
= map
;
5522 /* Step Three: Loop over the sections again, this time assigning
5523 those that fit to the current segment and removing them from the
5524 sections array; but making sure not to leave large gaps. Once all
5525 possible sections have been assigned to the current segment it is
5526 added to the list of built segments and if sections still remain
5527 to be assigned, a new segment is constructed before repeating
5535 /* Fill the current segment with sections that fit. */
5536 for (j
= 0; j
< section_count
; j
++)
5538 section
= sections
[j
];
5540 if (section
== NULL
)
5543 output_section
= section
->output_section
;
5545 BFD_ASSERT (output_section
!= NULL
);
5547 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5548 || IS_COREFILE_NOTE (segment
, section
))
5550 if (map
->count
== 0)
5552 /* If the first section in a segment does not start at
5553 the beginning of the segment, then something is
5555 if (output_section
->lma
!=
5557 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5558 + (map
->includes_phdrs
5559 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5565 asection
* prev_sec
;
5567 prev_sec
= map
->sections
[map
->count
- 1];
5569 /* If the gap between the end of the previous section
5570 and the start of this section is more than
5571 maxpagesize then we need to start a new segment. */
5572 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5574 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5575 || ((prev_sec
->lma
+ prev_sec
->size
)
5576 > output_section
->lma
))
5578 if (suggested_lma
== 0)
5579 suggested_lma
= output_section
->lma
;
5585 map
->sections
[map
->count
++] = output_section
;
5588 section
->segment_mark
= TRUE
;
5590 else if (suggested_lma
== 0)
5591 suggested_lma
= output_section
->lma
;
5594 BFD_ASSERT (map
->count
> 0);
5596 /* Add the current segment to the list of built segments. */
5597 *pointer_to_map
= map
;
5598 pointer_to_map
= &map
->next
;
5600 if (isec
< section_count
)
5602 /* We still have not allocated all of the sections to
5603 segments. Create a new segment here, initialise it
5604 and carry on looping. */
5605 amt
= sizeof (struct elf_segment_map
);
5606 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5607 map
= bfd_alloc (obfd
, amt
);
5614 /* Initialise the fields of the segment map. Set the physical
5615 physical address to the LMA of the first section that has
5616 not yet been assigned. */
5618 map
->p_type
= segment
->p_type
;
5619 map
->p_flags
= segment
->p_flags
;
5620 map
->p_flags_valid
= 1;
5621 map
->p_paddr
= suggested_lma
;
5622 map
->p_paddr_valid
= 1;
5623 map
->includes_filehdr
= 0;
5624 map
->includes_phdrs
= 0;
5627 while (isec
< section_count
);
5632 /* The Solaris linker creates program headers in which all the
5633 p_paddr fields are zero. When we try to objcopy or strip such a
5634 file, we get confused. Check for this case, and if we find it
5635 reset the p_paddr_valid fields. */
5636 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5637 if (map
->p_paddr
!= 0)
5640 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5641 map
->p_paddr_valid
= 0;
5643 elf_tdata (obfd
)->segment_map
= map_first
;
5645 /* If we had to estimate the number of program headers that were
5646 going to be needed, then check our estimate now and adjust
5647 the offset if necessary. */
5648 if (phdr_adjust_seg
!= NULL
)
5652 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5655 if (count
> phdr_adjust_num
)
5656 phdr_adjust_seg
->p_paddr
5657 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5662 #undef IS_CONTAINED_BY_VMA
5663 #undef IS_CONTAINED_BY_LMA
5664 #undef IS_COREFILE_NOTE
5665 #undef IS_SOLARIS_PT_INTERP
5666 #undef INCLUDE_SECTION_IN_SEGMENT
5667 #undef SEGMENT_AFTER_SEGMENT
5668 #undef SEGMENT_OVERLAPS
5672 /* Copy ELF program header information. */
5675 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5677 Elf_Internal_Ehdr
*iehdr
;
5678 struct elf_segment_map
*map
;
5679 struct elf_segment_map
*map_first
;
5680 struct elf_segment_map
**pointer_to_map
;
5681 Elf_Internal_Phdr
*segment
;
5683 unsigned int num_segments
;
5684 bfd_boolean phdr_included
= FALSE
;
5686 iehdr
= elf_elfheader (ibfd
);
5689 pointer_to_map
= &map_first
;
5691 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5692 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5697 unsigned int section_count
;
5699 Elf_Internal_Shdr
*this_hdr
;
5701 /* FIXME: Do we need to copy PT_NULL segment? */
5702 if (segment
->p_type
== PT_NULL
)
5705 /* Compute how many sections are in this segment. */
5706 for (section
= ibfd
->sections
, section_count
= 0;
5708 section
= section
->next
)
5710 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5711 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5715 /* Allocate a segment map big enough to contain
5716 all of the sections we have selected. */
5717 amt
= sizeof (struct elf_segment_map
);
5718 if (section_count
!= 0)
5719 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5720 map
= bfd_alloc (obfd
, amt
);
5724 /* Initialize the fields of the output segment map with the
5727 map
->p_type
= segment
->p_type
;
5728 map
->p_flags
= segment
->p_flags
;
5729 map
->p_flags_valid
= 1;
5730 map
->p_paddr
= segment
->p_paddr
;
5731 map
->p_paddr_valid
= 1;
5733 /* Determine if this segment contains the ELF file header
5734 and if it contains the program headers themselves. */
5735 map
->includes_filehdr
= (segment
->p_offset
== 0
5736 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5738 map
->includes_phdrs
= 0;
5739 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5741 map
->includes_phdrs
=
5742 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5743 && (segment
->p_offset
+ segment
->p_filesz
5744 >= ((bfd_vma
) iehdr
->e_phoff
5745 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5747 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5748 phdr_included
= TRUE
;
5751 if (section_count
!= 0)
5753 unsigned int isec
= 0;
5755 for (section
= ibfd
->sections
;
5757 section
= section
->next
)
5759 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5760 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5761 map
->sections
[isec
++] = section
->output_section
;
5765 map
->count
= section_count
;
5766 *pointer_to_map
= map
;
5767 pointer_to_map
= &map
->next
;
5770 elf_tdata (obfd
)->segment_map
= map_first
;
5774 /* Copy private BFD data. This copies or rewrites ELF program header
5778 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5780 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5781 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5784 if (elf_tdata (ibfd
)->phdr
== NULL
)
5787 if (ibfd
->xvec
== obfd
->xvec
)
5789 /* Check if any sections in the input BFD covered by ELF program
5790 header are changed. */
5791 Elf_Internal_Phdr
*segment
;
5792 asection
*section
, *osec
;
5793 unsigned int i
, num_segments
;
5794 Elf_Internal_Shdr
*this_hdr
;
5796 /* Initialize the segment mark field. */
5797 for (section
= obfd
->sections
; section
!= NULL
;
5798 section
= section
->next
)
5799 section
->segment_mark
= FALSE
;
5801 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5802 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5806 for (section
= ibfd
->sections
;
5807 section
!= NULL
; section
= section
->next
)
5809 /* We mark the output section so that we know it comes
5810 from the input BFD. */
5811 osec
= section
->output_section
;
5813 osec
->segment_mark
= TRUE
;
5815 /* Check if this section is covered by the segment. */
5816 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5817 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5819 /* FIXME: Check if its output section is changed or
5820 removed. What else do we need to check? */
5822 || section
->flags
!= osec
->flags
5823 || section
->lma
!= osec
->lma
5824 || section
->vma
!= osec
->vma
5825 || section
->size
!= osec
->size
5826 || section
->rawsize
!= osec
->rawsize
5827 || section
->alignment_power
!= osec
->alignment_power
)
5833 /* Check to see if any output section doesn't come from the
5835 for (section
= obfd
->sections
; section
!= NULL
;
5836 section
= section
->next
)
5838 if (section
->segment_mark
== FALSE
)
5841 section
->segment_mark
= FALSE
;
5844 return copy_elf_program_header (ibfd
, obfd
);
5848 return rewrite_elf_program_header (ibfd
, obfd
);
5851 /* Initialize private output section information from input section. */
5854 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5858 struct bfd_link_info
*link_info
)
5861 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5862 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5864 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5865 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5868 /* FIXME: What if the output ELF section type has been set to
5869 something different? */
5870 if (elf_section_type (osec
) == SHT_NULL
)
5871 elf_section_type (osec
) = elf_section_type (isec
);
5873 /* Set things up for objcopy and relocatable link. The output
5874 SHT_GROUP section will have its elf_next_in_group pointing back
5875 to the input group members. Ignore linker created group section.
5876 See elfNN_ia64_object_p in elfxx-ia64.c. */
5880 if (elf_sec_group (isec
) == NULL
5881 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5883 if (elf_section_flags (isec
) & SHF_GROUP
)
5884 elf_section_flags (osec
) |= SHF_GROUP
;
5885 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5886 elf_group_name (osec
) = elf_group_name (isec
);
5890 ihdr
= &elf_section_data (isec
)->this_hdr
;
5892 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5893 don't use the output section of the linked-to section since it
5894 may be NULL at this point. */
5895 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
5897 ohdr
= &elf_section_data (osec
)->this_hdr
;
5898 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
5899 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
5902 osec
->use_rela_p
= isec
->use_rela_p
;
5907 /* Copy private section information. This copies over the entsize
5908 field, and sometimes the info field. */
5911 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5916 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5918 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5919 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5922 ihdr
= &elf_section_data (isec
)->this_hdr
;
5923 ohdr
= &elf_section_data (osec
)->this_hdr
;
5925 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5927 if (ihdr
->sh_type
== SHT_SYMTAB
5928 || ihdr
->sh_type
== SHT_DYNSYM
5929 || ihdr
->sh_type
== SHT_GNU_verneed
5930 || ihdr
->sh_type
== SHT_GNU_verdef
)
5931 ohdr
->sh_info
= ihdr
->sh_info
;
5933 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
5937 /* Copy private header information. */
5940 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5942 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5943 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5946 /* Copy over private BFD data if it has not already been copied.
5947 This must be done here, rather than in the copy_private_bfd_data
5948 entry point, because the latter is called after the section
5949 contents have been set, which means that the program headers have
5950 already been worked out. */
5951 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5953 if (! copy_private_bfd_data (ibfd
, obfd
))
5960 /* Copy private symbol information. If this symbol is in a section
5961 which we did not map into a BFD section, try to map the section
5962 index correctly. We use special macro definitions for the mapped
5963 section indices; these definitions are interpreted by the
5964 swap_out_syms function. */
5966 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5967 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5968 #define MAP_STRTAB (SHN_HIOS + 3)
5969 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5970 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5973 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5978 elf_symbol_type
*isym
, *osym
;
5980 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5981 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5984 isym
= elf_symbol_from (ibfd
, isymarg
);
5985 osym
= elf_symbol_from (obfd
, osymarg
);
5989 && bfd_is_abs_section (isym
->symbol
.section
))
5993 shndx
= isym
->internal_elf_sym
.st_shndx
;
5994 if (shndx
== elf_onesymtab (ibfd
))
5995 shndx
= MAP_ONESYMTAB
;
5996 else if (shndx
== elf_dynsymtab (ibfd
))
5997 shndx
= MAP_DYNSYMTAB
;
5998 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
6000 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
6001 shndx
= MAP_SHSTRTAB
;
6002 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
6003 shndx
= MAP_SYM_SHNDX
;
6004 osym
->internal_elf_sym
.st_shndx
= shndx
;
6010 /* Swap out the symbols. */
6013 swap_out_syms (bfd
*abfd
,
6014 struct bfd_strtab_hash
**sttp
,
6017 const struct elf_backend_data
*bed
;
6020 struct bfd_strtab_hash
*stt
;
6021 Elf_Internal_Shdr
*symtab_hdr
;
6022 Elf_Internal_Shdr
*symtab_shndx_hdr
;
6023 Elf_Internal_Shdr
*symstrtab_hdr
;
6024 bfd_byte
*outbound_syms
;
6025 bfd_byte
*outbound_shndx
;
6028 bfd_boolean name_local_sections
;
6030 if (!elf_map_symbols (abfd
))
6033 /* Dump out the symtabs. */
6034 stt
= _bfd_elf_stringtab_init ();
6038 bed
= get_elf_backend_data (abfd
);
6039 symcount
= bfd_get_symcount (abfd
);
6040 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6041 symtab_hdr
->sh_type
= SHT_SYMTAB
;
6042 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
6043 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
6044 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
6045 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6047 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6048 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6050 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6051 if (outbound_syms
== NULL
)
6053 _bfd_stringtab_free (stt
);
6056 symtab_hdr
->contents
= outbound_syms
;
6058 outbound_shndx
= NULL
;
6059 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6060 if (symtab_shndx_hdr
->sh_name
!= 0)
6062 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6063 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6064 sizeof (Elf_External_Sym_Shndx
));
6065 if (outbound_shndx
== NULL
)
6067 _bfd_stringtab_free (stt
);
6071 symtab_shndx_hdr
->contents
= outbound_shndx
;
6072 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6073 symtab_shndx_hdr
->sh_size
= amt
;
6074 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6075 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6078 /* Now generate the data (for "contents"). */
6080 /* Fill in zeroth symbol and swap it out. */
6081 Elf_Internal_Sym sym
;
6087 sym
.st_shndx
= SHN_UNDEF
;
6088 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6089 outbound_syms
+= bed
->s
->sizeof_sym
;
6090 if (outbound_shndx
!= NULL
)
6091 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6095 = (bed
->elf_backend_name_local_section_symbols
6096 && bed
->elf_backend_name_local_section_symbols (abfd
));
6098 syms
= bfd_get_outsymbols (abfd
);
6099 for (idx
= 0; idx
< symcount
; idx
++)
6101 Elf_Internal_Sym sym
;
6102 bfd_vma value
= syms
[idx
]->value
;
6103 elf_symbol_type
*type_ptr
;
6104 flagword flags
= syms
[idx
]->flags
;
6107 if (!name_local_sections
6108 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6110 /* Local section symbols have no name. */
6115 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6118 if (sym
.st_name
== (unsigned long) -1)
6120 _bfd_stringtab_free (stt
);
6125 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6127 if ((flags
& BSF_SECTION_SYM
) == 0
6128 && bfd_is_com_section (syms
[idx
]->section
))
6130 /* ELF common symbols put the alignment into the `value' field,
6131 and the size into the `size' field. This is backwards from
6132 how BFD handles it, so reverse it here. */
6133 sym
.st_size
= value
;
6134 if (type_ptr
== NULL
6135 || type_ptr
->internal_elf_sym
.st_value
== 0)
6136 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6138 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6139 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6140 (abfd
, syms
[idx
]->section
);
6144 asection
*sec
= syms
[idx
]->section
;
6147 if (sec
->output_section
)
6149 value
+= sec
->output_offset
;
6150 sec
= sec
->output_section
;
6153 /* Don't add in the section vma for relocatable output. */
6154 if (! relocatable_p
)
6156 sym
.st_value
= value
;
6157 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6159 if (bfd_is_abs_section (sec
)
6161 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6163 /* This symbol is in a real ELF section which we did
6164 not create as a BFD section. Undo the mapping done
6165 by copy_private_symbol_data. */
6166 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6170 shndx
= elf_onesymtab (abfd
);
6173 shndx
= elf_dynsymtab (abfd
);
6176 shndx
= elf_tdata (abfd
)->strtab_section
;
6179 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6182 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6190 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6196 /* Writing this would be a hell of a lot easier if
6197 we had some decent documentation on bfd, and
6198 knew what to expect of the library, and what to
6199 demand of applications. For example, it
6200 appears that `objcopy' might not set the
6201 section of a symbol to be a section that is
6202 actually in the output file. */
6203 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6206 _bfd_error_handler (_("\
6207 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6208 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6210 bfd_set_error (bfd_error_invalid_operation
);
6211 _bfd_stringtab_free (stt
);
6215 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6216 BFD_ASSERT (shndx
!= -1);
6220 sym
.st_shndx
= shndx
;
6223 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6225 else if ((flags
& BSF_FUNCTION
) != 0)
6227 else if ((flags
& BSF_OBJECT
) != 0)
6232 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6235 /* Processor-specific types. */
6236 if (type_ptr
!= NULL
6237 && bed
->elf_backend_get_symbol_type
)
6238 type
= ((*bed
->elf_backend_get_symbol_type
)
6239 (&type_ptr
->internal_elf_sym
, type
));
6241 if (flags
& BSF_SECTION_SYM
)
6243 if (flags
& BSF_GLOBAL
)
6244 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6246 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6248 else if (bfd_is_com_section (syms
[idx
]->section
))
6249 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6250 else if (bfd_is_und_section (syms
[idx
]->section
))
6251 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6255 else if (flags
& BSF_FILE
)
6256 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6259 int bind
= STB_LOCAL
;
6261 if (flags
& BSF_LOCAL
)
6263 else if (flags
& BSF_WEAK
)
6265 else if (flags
& BSF_GLOBAL
)
6268 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6271 if (type_ptr
!= NULL
)
6272 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6276 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6277 outbound_syms
+= bed
->s
->sizeof_sym
;
6278 if (outbound_shndx
!= NULL
)
6279 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6283 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6284 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6286 symstrtab_hdr
->sh_flags
= 0;
6287 symstrtab_hdr
->sh_addr
= 0;
6288 symstrtab_hdr
->sh_entsize
= 0;
6289 symstrtab_hdr
->sh_link
= 0;
6290 symstrtab_hdr
->sh_info
= 0;
6291 symstrtab_hdr
->sh_addralign
= 1;
6296 /* Return the number of bytes required to hold the symtab vector.
6298 Note that we base it on the count plus 1, since we will null terminate
6299 the vector allocated based on this size. However, the ELF symbol table
6300 always has a dummy entry as symbol #0, so it ends up even. */
6303 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6307 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6309 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6310 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6312 symtab_size
-= sizeof (asymbol
*);
6318 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6322 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6324 if (elf_dynsymtab (abfd
) == 0)
6326 bfd_set_error (bfd_error_invalid_operation
);
6330 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6331 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6333 symtab_size
-= sizeof (asymbol
*);
6339 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6342 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6345 /* Canonicalize the relocs. */
6348 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6355 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6357 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6360 tblptr
= section
->relocation
;
6361 for (i
= 0; i
< section
->reloc_count
; i
++)
6362 *relptr
++ = tblptr
++;
6366 return section
->reloc_count
;
6370 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6372 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6373 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6376 bfd_get_symcount (abfd
) = symcount
;
6381 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6382 asymbol
**allocation
)
6384 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6385 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6388 bfd_get_dynamic_symcount (abfd
) = symcount
;
6392 /* Return the size required for the dynamic reloc entries. Any loadable
6393 section that was actually installed in the BFD, and has type SHT_REL
6394 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6395 dynamic reloc section. */
6398 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6403 if (elf_dynsymtab (abfd
) == 0)
6405 bfd_set_error (bfd_error_invalid_operation
);
6409 ret
= sizeof (arelent
*);
6410 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6411 if ((s
->flags
& SEC_LOAD
) != 0
6412 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6413 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6414 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6415 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6416 * sizeof (arelent
*));
6421 /* Canonicalize the dynamic relocation entries. Note that we return the
6422 dynamic relocations as a single block, although they are actually
6423 associated with particular sections; the interface, which was
6424 designed for SunOS style shared libraries, expects that there is only
6425 one set of dynamic relocs. Any loadable section that was actually
6426 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6427 dynamic symbol table, is considered to be a dynamic reloc section. */
6430 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6434 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6438 if (elf_dynsymtab (abfd
) == 0)
6440 bfd_set_error (bfd_error_invalid_operation
);
6444 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6446 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6448 if ((s
->flags
& SEC_LOAD
) != 0
6449 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6450 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6451 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6456 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6458 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6460 for (i
= 0; i
< count
; i
++)
6471 /* Read in the version information. */
6474 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6476 bfd_byte
*contents
= NULL
;
6477 unsigned int freeidx
= 0;
6479 if (elf_dynverref (abfd
) != 0)
6481 Elf_Internal_Shdr
*hdr
;
6482 Elf_External_Verneed
*everneed
;
6483 Elf_Internal_Verneed
*iverneed
;
6485 bfd_byte
*contents_end
;
6487 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6489 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6490 sizeof (Elf_Internal_Verneed
));
6491 if (elf_tdata (abfd
)->verref
== NULL
)
6494 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6496 contents
= bfd_malloc (hdr
->sh_size
);
6497 if (contents
== NULL
)
6499 error_return_verref
:
6500 elf_tdata (abfd
)->verref
= NULL
;
6501 elf_tdata (abfd
)->cverrefs
= 0;
6504 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6505 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6506 goto error_return_verref
;
6508 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6509 goto error_return_verref
;
6511 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6512 == sizeof (Elf_External_Vernaux
));
6513 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6514 everneed
= (Elf_External_Verneed
*) contents
;
6515 iverneed
= elf_tdata (abfd
)->verref
;
6516 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6518 Elf_External_Vernaux
*evernaux
;
6519 Elf_Internal_Vernaux
*ivernaux
;
6522 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6524 iverneed
->vn_bfd
= abfd
;
6526 iverneed
->vn_filename
=
6527 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6529 if (iverneed
->vn_filename
== NULL
)
6530 goto error_return_verref
;
6532 if (iverneed
->vn_cnt
== 0)
6533 iverneed
->vn_auxptr
= NULL
;
6536 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6537 sizeof (Elf_Internal_Vernaux
));
6538 if (iverneed
->vn_auxptr
== NULL
)
6539 goto error_return_verref
;
6542 if (iverneed
->vn_aux
6543 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6544 goto error_return_verref
;
6546 evernaux
= ((Elf_External_Vernaux
*)
6547 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6548 ivernaux
= iverneed
->vn_auxptr
;
6549 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6551 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6553 ivernaux
->vna_nodename
=
6554 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6555 ivernaux
->vna_name
);
6556 if (ivernaux
->vna_nodename
== NULL
)
6557 goto error_return_verref
;
6559 if (j
+ 1 < iverneed
->vn_cnt
)
6560 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6562 ivernaux
->vna_nextptr
= NULL
;
6564 if (ivernaux
->vna_next
6565 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6566 goto error_return_verref
;
6568 evernaux
= ((Elf_External_Vernaux
*)
6569 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6571 if (ivernaux
->vna_other
> freeidx
)
6572 freeidx
= ivernaux
->vna_other
;
6575 if (i
+ 1 < hdr
->sh_info
)
6576 iverneed
->vn_nextref
= iverneed
+ 1;
6578 iverneed
->vn_nextref
= NULL
;
6580 if (iverneed
->vn_next
6581 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6582 goto error_return_verref
;
6584 everneed
= ((Elf_External_Verneed
*)
6585 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6592 if (elf_dynverdef (abfd
) != 0)
6594 Elf_Internal_Shdr
*hdr
;
6595 Elf_External_Verdef
*everdef
;
6596 Elf_Internal_Verdef
*iverdef
;
6597 Elf_Internal_Verdef
*iverdefarr
;
6598 Elf_Internal_Verdef iverdefmem
;
6600 unsigned int maxidx
;
6601 bfd_byte
*contents_end_def
, *contents_end_aux
;
6603 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6605 contents
= bfd_malloc (hdr
->sh_size
);
6606 if (contents
== NULL
)
6608 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6609 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6612 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6615 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6616 >= sizeof (Elf_External_Verdaux
));
6617 contents_end_def
= contents
+ hdr
->sh_size
6618 - sizeof (Elf_External_Verdef
);
6619 contents_end_aux
= contents
+ hdr
->sh_size
6620 - sizeof (Elf_External_Verdaux
);
6622 /* We know the number of entries in the section but not the maximum
6623 index. Therefore we have to run through all entries and find
6625 everdef
= (Elf_External_Verdef
*) contents
;
6627 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6629 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6631 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6632 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6634 if (iverdefmem
.vd_next
6635 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6638 everdef
= ((Elf_External_Verdef
*)
6639 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6642 if (default_imported_symver
)
6644 if (freeidx
> maxidx
)
6649 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6650 sizeof (Elf_Internal_Verdef
));
6651 if (elf_tdata (abfd
)->verdef
== NULL
)
6654 elf_tdata (abfd
)->cverdefs
= maxidx
;
6656 everdef
= (Elf_External_Verdef
*) contents
;
6657 iverdefarr
= elf_tdata (abfd
)->verdef
;
6658 for (i
= 0; i
< hdr
->sh_info
; i
++)
6660 Elf_External_Verdaux
*everdaux
;
6661 Elf_Internal_Verdaux
*iverdaux
;
6664 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6666 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6668 error_return_verdef
:
6669 elf_tdata (abfd
)->verdef
= NULL
;
6670 elf_tdata (abfd
)->cverdefs
= 0;
6674 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6675 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6677 iverdef
->vd_bfd
= abfd
;
6679 if (iverdef
->vd_cnt
== 0)
6680 iverdef
->vd_auxptr
= NULL
;
6683 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6684 sizeof (Elf_Internal_Verdaux
));
6685 if (iverdef
->vd_auxptr
== NULL
)
6686 goto error_return_verdef
;
6690 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6691 goto error_return_verdef
;
6693 everdaux
= ((Elf_External_Verdaux
*)
6694 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6695 iverdaux
= iverdef
->vd_auxptr
;
6696 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6698 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6700 iverdaux
->vda_nodename
=
6701 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6702 iverdaux
->vda_name
);
6703 if (iverdaux
->vda_nodename
== NULL
)
6704 goto error_return_verdef
;
6706 if (j
+ 1 < iverdef
->vd_cnt
)
6707 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6709 iverdaux
->vda_nextptr
= NULL
;
6711 if (iverdaux
->vda_next
6712 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6713 goto error_return_verdef
;
6715 everdaux
= ((Elf_External_Verdaux
*)
6716 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6719 if (iverdef
->vd_cnt
)
6720 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6722 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6723 iverdef
->vd_nextdef
= iverdef
+ 1;
6725 iverdef
->vd_nextdef
= NULL
;
6727 everdef
= ((Elf_External_Verdef
*)
6728 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6734 else if (default_imported_symver
)
6741 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6742 sizeof (Elf_Internal_Verdef
));
6743 if (elf_tdata (abfd
)->verdef
== NULL
)
6746 elf_tdata (abfd
)->cverdefs
= freeidx
;
6749 /* Create a default version based on the soname. */
6750 if (default_imported_symver
)
6752 Elf_Internal_Verdef
*iverdef
;
6753 Elf_Internal_Verdaux
*iverdaux
;
6755 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6757 iverdef
->vd_version
= VER_DEF_CURRENT
;
6758 iverdef
->vd_flags
= 0;
6759 iverdef
->vd_ndx
= freeidx
;
6760 iverdef
->vd_cnt
= 1;
6762 iverdef
->vd_bfd
= abfd
;
6764 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6765 if (iverdef
->vd_nodename
== NULL
)
6766 goto error_return_verdef
;
6767 iverdef
->vd_nextdef
= NULL
;
6768 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6769 if (iverdef
->vd_auxptr
== NULL
)
6770 goto error_return_verdef
;
6772 iverdaux
= iverdef
->vd_auxptr
;
6773 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6774 iverdaux
->vda_nextptr
= NULL
;
6780 if (contents
!= NULL
)
6786 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6788 elf_symbol_type
*newsym
;
6789 bfd_size_type amt
= sizeof (elf_symbol_type
);
6791 newsym
= bfd_zalloc (abfd
, amt
);
6796 newsym
->symbol
.the_bfd
= abfd
;
6797 return &newsym
->symbol
;
6802 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6806 bfd_symbol_info (symbol
, ret
);
6809 /* Return whether a symbol name implies a local symbol. Most targets
6810 use this function for the is_local_label_name entry point, but some
6814 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6817 /* Normal local symbols start with ``.L''. */
6818 if (name
[0] == '.' && name
[1] == 'L')
6821 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6822 DWARF debugging symbols starting with ``..''. */
6823 if (name
[0] == '.' && name
[1] == '.')
6826 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6827 emitting DWARF debugging output. I suspect this is actually a
6828 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6829 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6830 underscore to be emitted on some ELF targets). For ease of use,
6831 we treat such symbols as local. */
6832 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6839 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6840 asymbol
*symbol ATTRIBUTE_UNUSED
)
6847 _bfd_elf_set_arch_mach (bfd
*abfd
,
6848 enum bfd_architecture arch
,
6849 unsigned long machine
)
6851 /* If this isn't the right architecture for this backend, and this
6852 isn't the generic backend, fail. */
6853 if (arch
!= get_elf_backend_data (abfd
)->arch
6854 && arch
!= bfd_arch_unknown
6855 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6858 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6861 /* Find the function to a particular section and offset,
6862 for error reporting. */
6865 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6869 const char **filename_ptr
,
6870 const char **functionname_ptr
)
6872 const char *filename
;
6873 asymbol
*func
, *file
;
6876 /* ??? Given multiple file symbols, it is impossible to reliably
6877 choose the right file name for global symbols. File symbols are
6878 local symbols, and thus all file symbols must sort before any
6879 global symbols. The ELF spec may be interpreted to say that a
6880 file symbol must sort before other local symbols, but currently
6881 ld -r doesn't do this. So, for ld -r output, it is possible to
6882 make a better choice of file name for local symbols by ignoring
6883 file symbols appearing after a given local symbol. */
6884 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6890 state
= nothing_seen
;
6892 for (p
= symbols
; *p
!= NULL
; p
++)
6896 q
= (elf_symbol_type
*) *p
;
6898 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6904 if (state
== symbol_seen
)
6905 state
= file_after_symbol_seen
;
6909 if (bfd_get_section (&q
->symbol
) == section
6910 && q
->symbol
.value
>= low_func
6911 && q
->symbol
.value
<= offset
)
6913 func
= (asymbol
*) q
;
6914 low_func
= q
->symbol
.value
;
6917 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
6918 || state
!= file_after_symbol_seen
))
6919 filename
= bfd_asymbol_name (file
);
6923 if (state
== nothing_seen
)
6924 state
= symbol_seen
;
6931 *filename_ptr
= filename
;
6932 if (functionname_ptr
)
6933 *functionname_ptr
= bfd_asymbol_name (func
);
6938 /* Find the nearest line to a particular section and offset,
6939 for error reporting. */
6942 _bfd_elf_find_nearest_line (bfd
*abfd
,
6946 const char **filename_ptr
,
6947 const char **functionname_ptr
,
6948 unsigned int *line_ptr
)
6952 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6953 filename_ptr
, functionname_ptr
,
6956 if (!*functionname_ptr
)
6957 elf_find_function (abfd
, section
, symbols
, offset
,
6958 *filename_ptr
? NULL
: filename_ptr
,
6964 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6965 filename_ptr
, functionname_ptr
,
6967 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6969 if (!*functionname_ptr
)
6970 elf_find_function (abfd
, section
, symbols
, offset
,
6971 *filename_ptr
? NULL
: filename_ptr
,
6977 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6978 &found
, filename_ptr
,
6979 functionname_ptr
, line_ptr
,
6980 &elf_tdata (abfd
)->line_info
))
6982 if (found
&& (*functionname_ptr
|| *line_ptr
))
6985 if (symbols
== NULL
)
6988 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6989 filename_ptr
, functionname_ptr
))
6996 /* Find the line for a symbol. */
6999 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
7000 const char **filename_ptr
, unsigned int *line_ptr
)
7002 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
7003 filename_ptr
, line_ptr
, 0,
7004 &elf_tdata (abfd
)->dwarf2_find_line_info
);
7007 /* After a call to bfd_find_nearest_line, successive calls to
7008 bfd_find_inliner_info can be used to get source information about
7009 each level of function inlining that terminated at the address
7010 passed to bfd_find_nearest_line. Currently this is only supported
7011 for DWARF2 with appropriate DWARF3 extensions. */
7014 _bfd_elf_find_inliner_info (bfd
*abfd
,
7015 const char **filename_ptr
,
7016 const char **functionname_ptr
,
7017 unsigned int *line_ptr
)
7020 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
7021 functionname_ptr
, line_ptr
,
7022 & elf_tdata (abfd
)->dwarf2_find_line_info
);
7027 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
7031 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
7033 ret
+= get_program_header_size (abfd
);
7038 _bfd_elf_set_section_contents (bfd
*abfd
,
7040 const void *location
,
7042 bfd_size_type count
)
7044 Elf_Internal_Shdr
*hdr
;
7047 if (! abfd
->output_has_begun
7048 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7051 hdr
= &elf_section_data (section
)->this_hdr
;
7052 pos
= hdr
->sh_offset
+ offset
;
7053 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7054 || bfd_bwrite (location
, count
, abfd
) != count
)
7061 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7062 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7063 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7068 /* Try to convert a non-ELF reloc into an ELF one. */
7071 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7073 /* Check whether we really have an ELF howto. */
7075 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7077 bfd_reloc_code_real_type code
;
7078 reloc_howto_type
*howto
;
7080 /* Alien reloc: Try to determine its type to replace it with an
7081 equivalent ELF reloc. */
7083 if (areloc
->howto
->pc_relative
)
7085 switch (areloc
->howto
->bitsize
)
7088 code
= BFD_RELOC_8_PCREL
;
7091 code
= BFD_RELOC_12_PCREL
;
7094 code
= BFD_RELOC_16_PCREL
;
7097 code
= BFD_RELOC_24_PCREL
;
7100 code
= BFD_RELOC_32_PCREL
;
7103 code
= BFD_RELOC_64_PCREL
;
7109 howto
= bfd_reloc_type_lookup (abfd
, code
);
7111 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7113 if (howto
->pcrel_offset
)
7114 areloc
->addend
+= areloc
->address
;
7116 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7121 switch (areloc
->howto
->bitsize
)
7127 code
= BFD_RELOC_14
;
7130 code
= BFD_RELOC_16
;
7133 code
= BFD_RELOC_26
;
7136 code
= BFD_RELOC_32
;
7139 code
= BFD_RELOC_64
;
7145 howto
= bfd_reloc_type_lookup (abfd
, code
);
7149 areloc
->howto
= howto
;
7157 (*_bfd_error_handler
)
7158 (_("%B: unsupported relocation type %s"),
7159 abfd
, areloc
->howto
->name
);
7160 bfd_set_error (bfd_error_bad_value
);
7165 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7167 if (bfd_get_format (abfd
) == bfd_object
)
7169 if (elf_shstrtab (abfd
) != NULL
)
7170 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7171 _bfd_dwarf2_cleanup_debug_info (abfd
);
7174 return _bfd_generic_close_and_cleanup (abfd
);
7177 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7178 in the relocation's offset. Thus we cannot allow any sort of sanity
7179 range-checking to interfere. There is nothing else to do in processing
7182 bfd_reloc_status_type
7183 _bfd_elf_rel_vtable_reloc_fn
7184 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7185 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7186 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7187 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7189 return bfd_reloc_ok
;
7192 /* Elf core file support. Much of this only works on native
7193 toolchains, since we rely on knowing the
7194 machine-dependent procfs structure in order to pick
7195 out details about the corefile. */
7197 #ifdef HAVE_SYS_PROCFS_H
7198 # include <sys/procfs.h>
7201 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7204 elfcore_make_pid (bfd
*abfd
)
7206 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7207 + (elf_tdata (abfd
)->core_pid
));
7210 /* If there isn't a section called NAME, make one, using
7211 data from SECT. Note, this function will generate a
7212 reference to NAME, so you shouldn't deallocate or
7216 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7220 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7223 sect2
= bfd_make_section (abfd
, name
);
7227 sect2
->size
= sect
->size
;
7228 sect2
->filepos
= sect
->filepos
;
7229 sect2
->flags
= sect
->flags
;
7230 sect2
->alignment_power
= sect
->alignment_power
;
7234 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7235 actually creates up to two pseudosections:
7236 - For the single-threaded case, a section named NAME, unless
7237 such a section already exists.
7238 - For the multi-threaded case, a section named "NAME/PID", where
7239 PID is elfcore_make_pid (abfd).
7240 Both pseudosections have identical contents. */
7242 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7248 char *threaded_name
;
7252 /* Build the section name. */
7254 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7255 len
= strlen (buf
) + 1;
7256 threaded_name
= bfd_alloc (abfd
, len
);
7257 if (threaded_name
== NULL
)
7259 memcpy (threaded_name
, buf
, len
);
7261 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
7265 sect
->filepos
= filepos
;
7266 sect
->flags
= SEC_HAS_CONTENTS
;
7267 sect
->alignment_power
= 2;
7269 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7272 /* prstatus_t exists on:
7274 linux 2.[01] + glibc
7278 #if defined (HAVE_PRSTATUS_T)
7281 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7286 if (note
->descsz
== sizeof (prstatus_t
))
7290 size
= sizeof (prstat
.pr_reg
);
7291 offset
= offsetof (prstatus_t
, pr_reg
);
7292 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7294 /* Do not overwrite the core signal if it
7295 has already been set by another thread. */
7296 if (elf_tdata (abfd
)->core_signal
== 0)
7297 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7298 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7300 /* pr_who exists on:
7303 pr_who doesn't exist on:
7306 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7307 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7310 #if defined (HAVE_PRSTATUS32_T)
7311 else if (note
->descsz
== sizeof (prstatus32_t
))
7313 /* 64-bit host, 32-bit corefile */
7314 prstatus32_t prstat
;
7316 size
= sizeof (prstat
.pr_reg
);
7317 offset
= offsetof (prstatus32_t
, pr_reg
);
7318 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7320 /* Do not overwrite the core signal if it
7321 has already been set by another thread. */
7322 if (elf_tdata (abfd
)->core_signal
== 0)
7323 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7324 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7326 /* pr_who exists on:
7329 pr_who doesn't exist on:
7332 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7333 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7336 #endif /* HAVE_PRSTATUS32_T */
7339 /* Fail - we don't know how to handle any other
7340 note size (ie. data object type). */
7344 /* Make a ".reg/999" section and a ".reg" section. */
7345 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7346 size
, note
->descpos
+ offset
);
7348 #endif /* defined (HAVE_PRSTATUS_T) */
7350 /* Create a pseudosection containing the exact contents of NOTE. */
7352 elfcore_make_note_pseudosection (bfd
*abfd
,
7354 Elf_Internal_Note
*note
)
7356 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7357 note
->descsz
, note
->descpos
);
7360 /* There isn't a consistent prfpregset_t across platforms,
7361 but it doesn't matter, because we don't have to pick this
7362 data structure apart. */
7365 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7367 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7370 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7371 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7375 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7377 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7380 #if defined (HAVE_PRPSINFO_T)
7381 typedef prpsinfo_t elfcore_psinfo_t
;
7382 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7383 typedef prpsinfo32_t elfcore_psinfo32_t
;
7387 #if defined (HAVE_PSINFO_T)
7388 typedef psinfo_t elfcore_psinfo_t
;
7389 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7390 typedef psinfo32_t elfcore_psinfo32_t
;
7394 /* return a malloc'ed copy of a string at START which is at
7395 most MAX bytes long, possibly without a terminating '\0'.
7396 the copy will always have a terminating '\0'. */
7399 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7402 char *end
= memchr (start
, '\0', max
);
7410 dups
= bfd_alloc (abfd
, len
+ 1);
7414 memcpy (dups
, start
, len
);
7420 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7422 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7424 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7426 elfcore_psinfo_t psinfo
;
7428 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7430 elf_tdata (abfd
)->core_program
7431 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7432 sizeof (psinfo
.pr_fname
));
7434 elf_tdata (abfd
)->core_command
7435 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7436 sizeof (psinfo
.pr_psargs
));
7438 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7439 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7441 /* 64-bit host, 32-bit corefile */
7442 elfcore_psinfo32_t psinfo
;
7444 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7446 elf_tdata (abfd
)->core_program
7447 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7448 sizeof (psinfo
.pr_fname
));
7450 elf_tdata (abfd
)->core_command
7451 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7452 sizeof (psinfo
.pr_psargs
));
7458 /* Fail - we don't know how to handle any other
7459 note size (ie. data object type). */
7463 /* Note that for some reason, a spurious space is tacked
7464 onto the end of the args in some (at least one anyway)
7465 implementations, so strip it off if it exists. */
7468 char *command
= elf_tdata (abfd
)->core_command
;
7469 int n
= strlen (command
);
7471 if (0 < n
&& command
[n
- 1] == ' ')
7472 command
[n
- 1] = '\0';
7477 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7479 #if defined (HAVE_PSTATUS_T)
7481 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7483 if (note
->descsz
== sizeof (pstatus_t
)
7484 #if defined (HAVE_PXSTATUS_T)
7485 || note
->descsz
== sizeof (pxstatus_t
)
7491 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7493 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7495 #if defined (HAVE_PSTATUS32_T)
7496 else if (note
->descsz
== sizeof (pstatus32_t
))
7498 /* 64-bit host, 32-bit corefile */
7501 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7503 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7506 /* Could grab some more details from the "representative"
7507 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7508 NT_LWPSTATUS note, presumably. */
7512 #endif /* defined (HAVE_PSTATUS_T) */
7514 #if defined (HAVE_LWPSTATUS_T)
7516 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7518 lwpstatus_t lwpstat
;
7524 if (note
->descsz
!= sizeof (lwpstat
)
7525 #if defined (HAVE_LWPXSTATUS_T)
7526 && note
->descsz
!= sizeof (lwpxstatus_t
)
7531 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7533 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7534 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7536 /* Make a ".reg/999" section. */
7538 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7539 len
= strlen (buf
) + 1;
7540 name
= bfd_alloc (abfd
, len
);
7543 memcpy (name
, buf
, len
);
7545 sect
= bfd_make_section_anyway (abfd
, name
);
7549 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7550 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7551 sect
->filepos
= note
->descpos
7552 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7555 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7556 sect
->size
= sizeof (lwpstat
.pr_reg
);
7557 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7560 sect
->flags
= SEC_HAS_CONTENTS
;
7561 sect
->alignment_power
= 2;
7563 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7566 /* Make a ".reg2/999" section */
7568 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7569 len
= strlen (buf
) + 1;
7570 name
= bfd_alloc (abfd
, len
);
7573 memcpy (name
, buf
, len
);
7575 sect
= bfd_make_section_anyway (abfd
, name
);
7579 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7580 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7581 sect
->filepos
= note
->descpos
7582 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7585 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7586 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7587 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7590 sect
->flags
= SEC_HAS_CONTENTS
;
7591 sect
->alignment_power
= 2;
7593 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7595 #endif /* defined (HAVE_LWPSTATUS_T) */
7597 #if defined (HAVE_WIN32_PSTATUS_T)
7599 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7605 win32_pstatus_t pstatus
;
7607 if (note
->descsz
< sizeof (pstatus
))
7610 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7612 switch (pstatus
.data_type
)
7614 case NOTE_INFO_PROCESS
:
7615 /* FIXME: need to add ->core_command. */
7616 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7617 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7620 case NOTE_INFO_THREAD
:
7621 /* Make a ".reg/999" section. */
7622 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7624 len
= strlen (buf
) + 1;
7625 name
= bfd_alloc (abfd
, len
);
7629 memcpy (name
, buf
, len
);
7631 sect
= bfd_make_section_anyway (abfd
, name
);
7635 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7636 sect
->filepos
= (note
->descpos
7637 + offsetof (struct win32_pstatus
,
7638 data
.thread_info
.thread_context
));
7639 sect
->flags
= SEC_HAS_CONTENTS
;
7640 sect
->alignment_power
= 2;
7642 if (pstatus
.data
.thread_info
.is_active_thread
)
7643 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7647 case NOTE_INFO_MODULE
:
7648 /* Make a ".module/xxxxxxxx" section. */
7649 sprintf (buf
, ".module/%08lx",
7650 (long) pstatus
.data
.module_info
.base_address
);
7652 len
= strlen (buf
) + 1;
7653 name
= bfd_alloc (abfd
, len
);
7657 memcpy (name
, buf
, len
);
7659 sect
= bfd_make_section_anyway (abfd
, name
);
7664 sect
->size
= note
->descsz
;
7665 sect
->filepos
= note
->descpos
;
7666 sect
->flags
= SEC_HAS_CONTENTS
;
7667 sect
->alignment_power
= 2;
7676 #endif /* HAVE_WIN32_PSTATUS_T */
7679 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7681 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7689 if (bed
->elf_backend_grok_prstatus
)
7690 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7692 #if defined (HAVE_PRSTATUS_T)
7693 return elfcore_grok_prstatus (abfd
, note
);
7698 #if defined (HAVE_PSTATUS_T)
7700 return elfcore_grok_pstatus (abfd
, note
);
7703 #if defined (HAVE_LWPSTATUS_T)
7705 return elfcore_grok_lwpstatus (abfd
, note
);
7708 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7709 return elfcore_grok_prfpreg (abfd
, note
);
7711 #if defined (HAVE_WIN32_PSTATUS_T)
7712 case NT_WIN32PSTATUS
:
7713 return elfcore_grok_win32pstatus (abfd
, note
);
7716 case NT_PRXFPREG
: /* Linux SSE extension */
7717 if (note
->namesz
== 6
7718 && strcmp (note
->namedata
, "LINUX") == 0)
7719 return elfcore_grok_prxfpreg (abfd
, note
);
7725 if (bed
->elf_backend_grok_psinfo
)
7726 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7728 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7729 return elfcore_grok_psinfo (abfd
, note
);
7736 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7740 sect
->size
= note
->descsz
;
7741 sect
->filepos
= note
->descpos
;
7742 sect
->flags
= SEC_HAS_CONTENTS
;
7743 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7751 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7755 cp
= strchr (note
->namedata
, '@');
7758 *lwpidp
= atoi(cp
+ 1);
7765 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7768 /* Signal number at offset 0x08. */
7769 elf_tdata (abfd
)->core_signal
7770 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7772 /* Process ID at offset 0x50. */
7773 elf_tdata (abfd
)->core_pid
7774 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7776 /* Command name at 0x7c (max 32 bytes, including nul). */
7777 elf_tdata (abfd
)->core_command
7778 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7780 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7785 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7789 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7790 elf_tdata (abfd
)->core_lwpid
= lwp
;
7792 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7794 /* NetBSD-specific core "procinfo". Note that we expect to
7795 find this note before any of the others, which is fine,
7796 since the kernel writes this note out first when it
7797 creates a core file. */
7799 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7802 /* As of Jan 2002 there are no other machine-independent notes
7803 defined for NetBSD core files. If the note type is less
7804 than the start of the machine-dependent note types, we don't
7807 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7811 switch (bfd_get_arch (abfd
))
7813 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7814 PT_GETFPREGS == mach+2. */
7816 case bfd_arch_alpha
:
7817 case bfd_arch_sparc
:
7820 case NT_NETBSDCORE_FIRSTMACH
+0:
7821 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7823 case NT_NETBSDCORE_FIRSTMACH
+2:
7824 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7830 /* On all other arch's, PT_GETREGS == mach+1 and
7831 PT_GETFPREGS == mach+3. */
7836 case NT_NETBSDCORE_FIRSTMACH
+1:
7837 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7839 case NT_NETBSDCORE_FIRSTMACH
+3:
7840 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7850 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7852 void *ddata
= note
->descdata
;
7859 /* nto_procfs_status 'pid' field is at offset 0. */
7860 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7862 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7863 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7865 /* nto_procfs_status 'flags' field is at offset 8. */
7866 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7868 /* nto_procfs_status 'what' field is at offset 14. */
7869 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7871 elf_tdata (abfd
)->core_signal
= sig
;
7872 elf_tdata (abfd
)->core_lwpid
= *tid
;
7875 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7876 do not come from signals so we make sure we set the current
7877 thread just in case. */
7878 if (flags
& 0x00000080)
7879 elf_tdata (abfd
)->core_lwpid
= *tid
;
7881 /* Make a ".qnx_core_status/%d" section. */
7882 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7884 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7889 sect
= bfd_make_section_anyway (abfd
, name
);
7893 sect
->size
= note
->descsz
;
7894 sect
->filepos
= note
->descpos
;
7895 sect
->flags
= SEC_HAS_CONTENTS
;
7896 sect
->alignment_power
= 2;
7898 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7902 elfcore_grok_nto_regs (bfd
*abfd
,
7903 Elf_Internal_Note
*note
,
7911 /* Make a "(base)/%d" section. */
7912 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7914 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7919 sect
= bfd_make_section_anyway (abfd
, name
);
7923 sect
->size
= note
->descsz
;
7924 sect
->filepos
= note
->descpos
;
7925 sect
->flags
= SEC_HAS_CONTENTS
;
7926 sect
->alignment_power
= 2;
7928 /* This is the current thread. */
7929 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7930 return elfcore_maybe_make_sect (abfd
, base
, sect
);
7935 #define BFD_QNT_CORE_INFO 7
7936 #define BFD_QNT_CORE_STATUS 8
7937 #define BFD_QNT_CORE_GREG 9
7938 #define BFD_QNT_CORE_FPREG 10
7941 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7943 /* Every GREG section has a STATUS section before it. Store the
7944 tid from the previous call to pass down to the next gregs
7946 static pid_t tid
= 1;
7950 case BFD_QNT_CORE_INFO
:
7951 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7952 case BFD_QNT_CORE_STATUS
:
7953 return elfcore_grok_nto_status (abfd
, note
, &tid
);
7954 case BFD_QNT_CORE_GREG
:
7955 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
7956 case BFD_QNT_CORE_FPREG
:
7957 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
7963 /* Function: elfcore_write_note
7970 size of data for note
7973 End of buffer containing note. */
7976 elfcore_write_note (bfd
*abfd
,
7984 Elf_External_Note
*xnp
;
7994 const struct elf_backend_data
*bed
;
7996 namesz
= strlen (name
) + 1;
7997 bed
= get_elf_backend_data (abfd
);
7998 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
8001 newspace
= 12 + namesz
+ pad
+ size
;
8003 p
= realloc (buf
, *bufsiz
+ newspace
);
8005 *bufsiz
+= newspace
;
8006 xnp
= (Elf_External_Note
*) dest
;
8007 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
8008 H_PUT_32 (abfd
, size
, xnp
->descsz
);
8009 H_PUT_32 (abfd
, type
, xnp
->type
);
8013 memcpy (dest
, name
, namesz
);
8021 memcpy (dest
, input
, size
);
8025 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8027 elfcore_write_prpsinfo (bfd
*abfd
,
8034 char *note_name
= "CORE";
8036 #if defined (HAVE_PSINFO_T)
8038 note_type
= NT_PSINFO
;
8041 note_type
= NT_PRPSINFO
;
8044 memset (&data
, 0, sizeof (data
));
8045 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8046 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8047 return elfcore_write_note (abfd
, buf
, bufsiz
,
8048 note_name
, note_type
, &data
, sizeof (data
));
8050 #endif /* PSINFO_T or PRPSINFO_T */
8052 #if defined (HAVE_PRSTATUS_T)
8054 elfcore_write_prstatus (bfd
*abfd
,
8062 char *note_name
= "CORE";
8064 memset (&prstat
, 0, sizeof (prstat
));
8065 prstat
.pr_pid
= pid
;
8066 prstat
.pr_cursig
= cursig
;
8067 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8068 return elfcore_write_note (abfd
, buf
, bufsiz
,
8069 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8071 #endif /* HAVE_PRSTATUS_T */
8073 #if defined (HAVE_LWPSTATUS_T)
8075 elfcore_write_lwpstatus (bfd
*abfd
,
8082 lwpstatus_t lwpstat
;
8083 char *note_name
= "CORE";
8085 memset (&lwpstat
, 0, sizeof (lwpstat
));
8086 lwpstat
.pr_lwpid
= pid
>> 16;
8087 lwpstat
.pr_cursig
= cursig
;
8088 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8089 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8090 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8092 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8093 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8095 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8096 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8099 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8100 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8102 #endif /* HAVE_LWPSTATUS_T */
8104 #if defined (HAVE_PSTATUS_T)
8106 elfcore_write_pstatus (bfd
*abfd
,
8110 int cursig ATTRIBUTE_UNUSED
,
8111 const void *gregs ATTRIBUTE_UNUSED
)
8114 char *note_name
= "CORE";
8116 memset (&pstat
, 0, sizeof (pstat
));
8117 pstat
.pr_pid
= pid
& 0xffff;
8118 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8119 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8122 #endif /* HAVE_PSTATUS_T */
8125 elfcore_write_prfpreg (bfd
*abfd
,
8131 char *note_name
= "CORE";
8132 return elfcore_write_note (abfd
, buf
, bufsiz
,
8133 note_name
, NT_FPREGSET
, fpregs
, size
);
8137 elfcore_write_prxfpreg (bfd
*abfd
,
8140 const void *xfpregs
,
8143 char *note_name
= "LINUX";
8144 return elfcore_write_note (abfd
, buf
, bufsiz
,
8145 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8149 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8157 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8160 buf
= bfd_malloc (size
);
8164 if (bfd_bread (buf
, size
, abfd
) != size
)
8172 while (p
< buf
+ size
)
8174 /* FIXME: bad alignment assumption. */
8175 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8176 Elf_Internal_Note in
;
8178 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8180 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8181 in
.namedata
= xnp
->name
;
8183 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8184 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8185 in
.descpos
= offset
+ (in
.descdata
- buf
);
8187 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
8189 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8192 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
8194 if (! elfcore_grok_nto_note (abfd
, &in
))
8199 if (! elfcore_grok_note (abfd
, &in
))
8203 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8210 /* Providing external access to the ELF program header table. */
8212 /* Return an upper bound on the number of bytes required to store a
8213 copy of ABFD's program header table entries. Return -1 if an error
8214 occurs; bfd_get_error will return an appropriate code. */
8217 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8219 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8221 bfd_set_error (bfd_error_wrong_format
);
8225 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8228 /* Copy ABFD's program header table entries to *PHDRS. The entries
8229 will be stored as an array of Elf_Internal_Phdr structures, as
8230 defined in include/elf/internal.h. To find out how large the
8231 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8233 Return the number of program header table entries read, or -1 if an
8234 error occurs; bfd_get_error will return an appropriate code. */
8237 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8241 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8243 bfd_set_error (bfd_error_wrong_format
);
8247 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8248 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8249 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8255 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8258 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8260 i_ehdrp
= elf_elfheader (abfd
);
8261 if (i_ehdrp
== NULL
)
8262 sprintf_vma (buf
, value
);
8265 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8267 #if BFD_HOST_64BIT_LONG
8268 sprintf (buf
, "%016lx", value
);
8270 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8271 _bfd_int64_low (value
));
8275 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8278 sprintf_vma (buf
, value
);
8283 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8286 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8288 i_ehdrp
= elf_elfheader (abfd
);
8289 if (i_ehdrp
== NULL
)
8290 fprintf_vma ((FILE *) stream
, value
);
8293 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8295 #if BFD_HOST_64BIT_LONG
8296 fprintf ((FILE *) stream
, "%016lx", value
);
8298 fprintf ((FILE *) stream
, "%08lx%08lx",
8299 _bfd_int64_high (value
), _bfd_int64_low (value
));
8303 fprintf ((FILE *) stream
, "%08lx",
8304 (unsigned long) (value
& 0xffffffff));
8307 fprintf_vma ((FILE *) stream
, value
);
8311 enum elf_reloc_type_class
8312 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8314 return reloc_class_normal
;
8317 /* For RELA architectures, return the relocation value for a
8318 relocation against a local symbol. */
8321 _bfd_elf_rela_local_sym (bfd
*abfd
,
8322 Elf_Internal_Sym
*sym
,
8324 Elf_Internal_Rela
*rel
)
8326 asection
*sec
= *psec
;
8329 relocation
= (sec
->output_section
->vma
8330 + sec
->output_offset
8332 if ((sec
->flags
& SEC_MERGE
)
8333 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8334 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8337 _bfd_merged_section_offset (abfd
, psec
,
8338 elf_section_data (sec
)->sec_info
,
8339 sym
->st_value
+ rel
->r_addend
);
8342 /* If we have changed the section, and our original section is
8343 marked with SEC_EXCLUDE, it means that the original
8344 SEC_MERGE section has been completely subsumed in some
8345 other SEC_MERGE section. In this case, we need to leave
8346 some info around for --emit-relocs. */
8347 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8348 sec
->kept_section
= *psec
;
8351 rel
->r_addend
-= relocation
;
8352 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8358 _bfd_elf_rel_local_sym (bfd
*abfd
,
8359 Elf_Internal_Sym
*sym
,
8363 asection
*sec
= *psec
;
8365 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8366 return sym
->st_value
+ addend
;
8368 return _bfd_merged_section_offset (abfd
, psec
,
8369 elf_section_data (sec
)->sec_info
,
8370 sym
->st_value
+ addend
);
8374 _bfd_elf_section_offset (bfd
*abfd
,
8375 struct bfd_link_info
*info
,
8379 switch (sec
->sec_info_type
)
8381 case ELF_INFO_TYPE_STABS
:
8382 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8384 case ELF_INFO_TYPE_EH_FRAME
:
8385 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8391 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8392 reconstruct an ELF file by reading the segments out of remote memory
8393 based on the ELF file header at EHDR_VMA and the ELF program headers it
8394 points to. If not null, *LOADBASEP is filled in with the difference
8395 between the VMAs from which the segments were read, and the VMAs the
8396 file headers (and hence BFD's idea of each section's VMA) put them at.
8398 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8399 remote memory at target address VMA into the local buffer at MYADDR; it
8400 should return zero on success or an `errno' code on failure. TEMPL must
8401 be a BFD for an ELF target with the word size and byte order found in
8402 the remote memory. */
8405 bfd_elf_bfd_from_remote_memory
8409 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8411 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8412 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8416 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8417 long symcount ATTRIBUTE_UNUSED
,
8418 asymbol
**syms ATTRIBUTE_UNUSED
,
8423 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8426 const char *relplt_name
;
8427 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8431 Elf_Internal_Shdr
*hdr
;
8437 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8440 if (dynsymcount
<= 0)
8443 if (!bed
->plt_sym_val
)
8446 relplt_name
= bed
->relplt_name
;
8447 if (relplt_name
== NULL
)
8448 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8449 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8453 hdr
= &elf_section_data (relplt
)->this_hdr
;
8454 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8455 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8458 plt
= bfd_get_section_by_name (abfd
, ".plt");
8462 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8463 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8466 count
= relplt
->size
/ hdr
->sh_entsize
;
8467 size
= count
* sizeof (asymbol
);
8468 p
= relplt
->relocation
;
8469 for (i
= 0; i
< count
; i
++, s
++, p
++)
8470 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8472 s
= *ret
= bfd_malloc (size
);
8476 names
= (char *) (s
+ count
);
8477 p
= relplt
->relocation
;
8479 for (i
= 0; i
< count
; i
++, s
++, p
++)
8484 addr
= bed
->plt_sym_val (i
, plt
, p
);
8485 if (addr
== (bfd_vma
) -1)
8488 *s
= **p
->sym_ptr_ptr
;
8489 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8490 we are defining a symbol, ensure one of them is set. */
8491 if ((s
->flags
& BSF_LOCAL
) == 0)
8492 s
->flags
|= BSF_GLOBAL
;
8494 s
->value
= addr
- plt
->vma
;
8496 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8497 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8499 memcpy (names
, "@plt", sizeof ("@plt"));
8500 names
+= sizeof ("@plt");
8507 /* Sort symbol by binding and section. We want to put definitions
8508 sorted by section at the beginning. */
8511 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8513 const Elf_Internal_Sym
*s1
;
8514 const Elf_Internal_Sym
*s2
;
8517 /* Make sure that undefined symbols are at the end. */
8518 s1
= (const Elf_Internal_Sym
*) arg1
;
8519 if (s1
->st_shndx
== SHN_UNDEF
)
8521 s2
= (const Elf_Internal_Sym
*) arg2
;
8522 if (s2
->st_shndx
== SHN_UNDEF
)
8525 /* Sorted by section index. */
8526 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8530 /* Sorted by binding. */
8531 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8536 Elf_Internal_Sym
*sym
;
8541 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8543 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8544 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8545 return strcmp (s1
->name
, s2
->name
);
8548 /* Check if 2 sections define the same set of local and global
8552 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8555 const struct elf_backend_data
*bed1
, *bed2
;
8556 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8557 bfd_size_type symcount1
, symcount2
;
8558 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8559 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8560 Elf_Internal_Sym
*isymend
;
8561 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8562 bfd_size_type count1
, count2
, i
;
8569 /* If both are .gnu.linkonce sections, they have to have the same
8571 if (strncmp (sec1
->name
, ".gnu.linkonce",
8572 sizeof ".gnu.linkonce" - 1) == 0
8573 && strncmp (sec2
->name
, ".gnu.linkonce",
8574 sizeof ".gnu.linkonce" - 1) == 0)
8575 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8576 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8578 /* Both sections have to be in ELF. */
8579 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8580 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8583 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8586 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8587 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8589 /* If both are members of section groups, they have to have the
8591 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8595 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8596 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8597 if (shndx1
== -1 || shndx2
== -1)
8600 bed1
= get_elf_backend_data (bfd1
);
8601 bed2
= get_elf_backend_data (bfd2
);
8602 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8603 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8604 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8605 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8607 if (symcount1
== 0 || symcount2
== 0)
8610 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8612 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8616 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8619 /* Sort symbols by binding and section. Global definitions are at
8621 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8622 elf_sort_elf_symbol
);
8623 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8624 elf_sort_elf_symbol
);
8626 /* Count definitions in the section. */
8628 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8629 isym
< isymend
; isym
++)
8631 if (isym
->st_shndx
== (unsigned int) shndx1
)
8638 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8643 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8644 isym
< isymend
; isym
++)
8646 if (isym
->st_shndx
== (unsigned int) shndx2
)
8653 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8657 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8660 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8661 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8663 if (symtable1
== NULL
|| symtable2
== NULL
)
8667 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8668 isym
< isymend
; isym
++)
8671 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8678 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8679 isym
< isymend
; isym
++)
8682 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8688 /* Sort symbol by name. */
8689 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8690 elf_sym_name_compare
);
8691 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8692 elf_sym_name_compare
);
8694 for (i
= 0; i
< count1
; i
++)
8695 /* Two symbols must have the same binding, type and name. */
8696 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8697 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8698 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8716 /* It is only used by x86-64 so far. */
8717 asection _bfd_elf_large_com_section
8718 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8719 SEC_IS_COMMON
, NULL
, NULL
, "LARGE_COMMON",
8722 /* Return TRUE if 2 section types are compatible. */
8725 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8726 bfd
*bbfd
, const asection
*bsec
)
8730 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8731 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8734 return elf_section_type (asec
) == elf_section_type (bsec
);