* elf.c (sym_is_global): Return a bfd_boolean.
[binutils.git] / bfd / hash.c
blobce9ba5c6297fb436274b828939bde37f27dbc7c2
1 /* hash.c -- hash table routines for BFD
2 Copyright 1993, 1994, 1995, 1997, 1999, 2001, 2002, 2003, 2004, 2005,
3 2006 Free Software Foundation, Inc.
4 Written by Steve Chamberlain <sac@cygnus.com>
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
29 SECTION
30 Hash Tables
32 @cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
50 The basic hash table code is in <<hash.c>>.
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 Creating and freeing a hash table
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 To create a hash table, create an instance of a <<struct
67 bfd_hash_table>> (defined in <<bfd.h>>) and call
68 <<bfd_hash_table_init>> (if you know approximately how many
69 entries you will need, the function <<bfd_hash_table_init_n>>,
70 which takes a @var{size} argument, may be used).
71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 error occurs.
74 @findex bfd_hash_newfunc
75 The function <<bfd_hash_table_init>> take as an argument a
76 function to use to create new entries. For a basic hash
77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
78 a New Hash Table Type}, for why you would want to use a
79 different value for this argument.
81 @findex bfd_hash_allocate
82 <<bfd_hash_table_init>> will create an objalloc which will be
83 used to allocate new entries. You may allocate memory on this
84 objalloc using <<bfd_hash_allocate>>.
86 @findex bfd_hash_table_free
87 Use <<bfd_hash_table_free>> to free up all the memory that has
88 been allocated for a hash table. This will not free up the
89 <<struct bfd_hash_table>> itself, which you must provide.
91 @findex bfd_hash_set_default_size
92 Use <<bfd_hash_set_default_size>> to set the default size of
93 hash table to use.
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 Looking up or entering a string
100 @findex bfd_hash_lookup
101 The function <<bfd_hash_lookup>> is used both to look up a
102 string in the hash table and to create a new entry.
104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 will look up a string. If the string is found, it will
106 returns a pointer to a <<struct bfd_hash_entry>>. If the
107 string is not found in the table <<bfd_hash_lookup>> will
108 return <<NULL>>. You should not modify any of the fields in
109 the returns <<struct bfd_hash_entry>>.
111 If the @var{create} argument is <<TRUE>>, the string will be
112 entered into the hash table if it is not already there.
113 Either way a pointer to a <<struct bfd_hash_entry>> will be
114 returned, either to the existing structure or to a newly
115 created one. In this case, a <<NULL>> return means that an
116 error occurred.
118 If the @var{create} argument is <<TRUE>>, and a new entry is
119 created, the @var{copy} argument is used to decide whether to
120 copy the string onto the hash table objalloc or not. If
121 @var{copy} is passed as <<FALSE>>, you must be careful not to
122 deallocate or modify the string as long as the hash table
123 exists.
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 Traversing a hash table
130 @findex bfd_hash_traverse
131 The function <<bfd_hash_traverse>> may be used to traverse a
132 hash table, calling a function on each element. The traversal
133 is done in a random order.
135 <<bfd_hash_traverse>> takes as arguments a function and a
136 generic <<void *>> pointer. The function is called with a
137 hash table entry (a <<struct bfd_hash_entry *>>) and the
138 generic pointer passed to <<bfd_hash_traverse>>. The function
139 must return a <<boolean>> value, which indicates whether to
140 continue traversing the hash table. If the function returns
141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 return immediately.
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 Deriving a new hash table type
149 Many uses of hash tables want to store additional information
150 which each entry in the hash table. Some also find it
151 convenient to store additional information with the hash table
152 itself. This may be done using a derived hash table.
154 Since C is not an object oriented language, creating a derived
155 hash table requires sticking together some boilerplate
156 routines with a few differences specific to the type of hash
157 table you want to create.
159 An example of a derived hash table is the linker hash table.
160 The structures for this are defined in <<bfdlink.h>>. The
161 functions are in <<linker.c>>.
163 You may also derive a hash table from an already derived hash
164 table. For example, the a.out linker backend code uses a hash
165 table derived from the linker hash table.
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 Define the derived structures
178 You must define a structure for an entry in the hash table,
179 and a structure for the hash table itself.
181 The first field in the structure for an entry in the hash
182 table must be of the type used for an entry in the hash table
183 you are deriving from. If you are deriving from a basic hash
184 table this is <<struct bfd_hash_entry>>, which is defined in
185 <<bfd.h>>. The first field in the structure for the hash
186 table itself must be of the type of the hash table you are
187 deriving from itself. If you are deriving from a basic hash
188 table, this is <<struct bfd_hash_table>>.
190 For example, the linker hash table defines <<struct
191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
193 the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 is of type <<struct bfd_hash_table>>.
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 Write the derived creation routine
201 You must write a routine which will create and initialize an
202 entry in the hash table. This routine is passed as the
203 function argument to <<bfd_hash_table_init>>.
205 In order to permit other hash tables to be derived from the
206 hash table you are creating, this routine must be written in a
207 standard way.
209 The first argument to the creation routine is a pointer to a
210 hash table entry. This may be <<NULL>>, in which case the
211 routine should allocate the right amount of space. Otherwise
212 the space has already been allocated by a hash table type
213 derived from this one.
215 After allocating space, the creation routine must call the
216 creation routine of the hash table type it is derived from,
217 passing in a pointer to the space it just allocated. This
218 will initialize any fields used by the base hash table.
220 Finally the creation routine must initialize any local fields
221 for the new hash table type.
223 Here is a boilerplate example of a creation routine.
224 @var{function_name} is the name of the routine.
225 @var{entry_type} is the type of an entry in the hash table you
226 are creating. @var{base_newfunc} is the name of the creation
227 routine of the hash table type your hash table is derived
228 from.
230 EXAMPLE
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 . struct bfd_hash_table *table,
235 . const char *string)
237 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
239 . {* Allocate the structure if it has not already been allocated by a
240 . derived class. *}
241 . if (ret == NULL)
243 . ret = bfd_hash_allocate (table, sizeof (* ret));
244 . if (ret == NULL)
245 . return NULL;
248 . {* Call the allocation method of the base class. *}
249 . ret = ((@var{entry_type} *)
250 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
252 . {* Initialize the local fields here. *}
254 . return (struct bfd_hash_entry *) ret;
257 DESCRIPTION
258 The creation routine for the linker hash table, which is in
259 <<linker.c>>, looks just like this example.
260 @var{function_name} is <<_bfd_link_hash_newfunc>>.
261 @var{entry_type} is <<struct bfd_link_hash_entry>>.
262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 routine for a basic hash table.
265 <<_bfd_link_hash_newfunc>> also initializes the local fields
266 in a linker hash table entry: <<type>>, <<written>> and
267 <<next>>.
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 Write other derived routines
274 You will want to write other routines for your new hash table,
275 as well.
277 You will want an initialization routine which calls the
278 initialization routine of the hash table you are deriving from
279 and initializes any other local fields. For the linker hash
280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
282 You will want a lookup routine which calls the lookup routine
283 of the hash table you are deriving from and casts the result.
284 The linker hash table uses <<bfd_link_hash_lookup>> in
285 <<linker.c>> (this actually takes an additional argument which
286 it uses to decide how to return the looked up value).
288 You may want a traversal routine. This should just call the
289 traversal routine of the hash table you are deriving from with
290 appropriate casts. The linker hash table uses
291 <<bfd_link_hash_traverse>> in <<linker.c>>.
293 These routines may simply be defined as macros. For example,
294 the a.out backend linker hash table, which is derived from the
295 linker hash table, uses macros for the lookup and traversal
296 routines. These are <<aout_link_hash_lookup>> and
297 <<aout_link_hash_traverse>> in aoutx.h.
300 /* The default number of entries to use when creating a hash table. */
301 #define DEFAULT_SIZE 4051
302 static size_t bfd_default_hash_table_size = DEFAULT_SIZE;
304 /* Create a new hash table, given a number of entries. */
306 bfd_boolean
307 bfd_hash_table_init_n (struct bfd_hash_table *table,
308 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
309 struct bfd_hash_table *,
310 const char *),
311 unsigned int entsize,
312 unsigned int size)
314 unsigned int alloc;
316 alloc = size * sizeof (struct bfd_hash_entry *);
318 table->memory = (void *) objalloc_create ();
319 if (table->memory == NULL)
321 bfd_set_error (bfd_error_no_memory);
322 return FALSE;
324 table->table = objalloc_alloc ((struct objalloc *) table->memory, alloc);
325 if (table->table == NULL)
327 bfd_set_error (bfd_error_no_memory);
328 return FALSE;
330 memset ((void *) table->table, 0, alloc);
331 table->size = size;
332 table->entsize = entsize;
333 table->newfunc = newfunc;
334 return TRUE;
337 /* Create a new hash table with the default number of entries. */
339 bfd_boolean
340 bfd_hash_table_init (struct bfd_hash_table *table,
341 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
342 struct bfd_hash_table *,
343 const char *),
344 unsigned int entsize)
346 return bfd_hash_table_init_n (table, newfunc, entsize,
347 bfd_default_hash_table_size);
350 /* Free a hash table. */
352 void
353 bfd_hash_table_free (struct bfd_hash_table *table)
355 objalloc_free (table->memory);
356 table->memory = NULL;
359 /* Look up a string in a hash table. */
361 struct bfd_hash_entry *
362 bfd_hash_lookup (struct bfd_hash_table *table,
363 const char *string,
364 bfd_boolean create,
365 bfd_boolean copy)
367 const unsigned char *s;
368 unsigned long hash;
369 unsigned int c;
370 struct bfd_hash_entry *hashp;
371 unsigned int len;
372 unsigned int index;
374 hash = 0;
375 len = 0;
376 s = (const unsigned char *) string;
377 while ((c = *s++) != '\0')
379 hash += c + (c << 17);
380 hash ^= hash >> 2;
382 len = (s - (const unsigned char *) string) - 1;
383 hash += len + (len << 17);
384 hash ^= hash >> 2;
386 index = hash % table->size;
387 for (hashp = table->table[index];
388 hashp != NULL;
389 hashp = hashp->next)
391 if (hashp->hash == hash
392 && strcmp (hashp->string, string) == 0)
393 return hashp;
396 if (! create)
397 return NULL;
399 hashp = (*table->newfunc) (NULL, table, string);
400 if (hashp == NULL)
401 return NULL;
402 if (copy)
404 char *new;
406 new = objalloc_alloc ((struct objalloc *) table->memory, len + 1);
407 if (!new)
409 bfd_set_error (bfd_error_no_memory);
410 return NULL;
412 memcpy (new, string, len + 1);
413 string = new;
415 hashp->string = string;
416 hashp->hash = hash;
417 hashp->next = table->table[index];
418 table->table[index] = hashp;
420 return hashp;
423 /* Replace an entry in a hash table. */
425 void
426 bfd_hash_replace (struct bfd_hash_table *table,
427 struct bfd_hash_entry *old,
428 struct bfd_hash_entry *nw)
430 unsigned int index;
431 struct bfd_hash_entry **pph;
433 index = old->hash % table->size;
434 for (pph = &table->table[index];
435 (*pph) != NULL;
436 pph = &(*pph)->next)
438 if (*pph == old)
440 *pph = nw;
441 return;
445 abort ();
448 /* Allocate space in a hash table. */
450 void *
451 bfd_hash_allocate (struct bfd_hash_table *table,
452 unsigned int size)
454 void * ret;
456 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
457 if (ret == NULL && size != 0)
458 bfd_set_error (bfd_error_no_memory);
459 return ret;
462 /* Base method for creating a new hash table entry. */
464 struct bfd_hash_entry *
465 bfd_hash_newfunc (struct bfd_hash_entry *entry,
466 struct bfd_hash_table *table,
467 const char *string ATTRIBUTE_UNUSED)
469 if (entry == NULL)
470 entry = bfd_hash_allocate (table, sizeof (* entry));
471 return entry;
474 /* Traverse a hash table. */
476 void
477 bfd_hash_traverse (struct bfd_hash_table *table,
478 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
479 void * info)
481 unsigned int i;
483 for (i = 0; i < table->size; i++)
485 struct bfd_hash_entry *p;
487 for (p = table->table[i]; p != NULL; p = p->next)
488 if (! (*func) (p, info))
489 return;
493 void
494 bfd_hash_set_default_size (bfd_size_type hash_size)
496 /* Extend this prime list if you want more granularity of hash table size. */
497 static const bfd_size_type hash_size_primes[] =
499 251, 509, 1021, 2039, 4051, 8599, 16699, 32749
501 size_t index;
503 /* Work out best prime number near the hash_size. */
504 for (index = 0; index < ARRAY_SIZE (hash_size_primes) - 1; ++index)
505 if (hash_size <= hash_size_primes[index])
506 break;
508 bfd_default_hash_table_size = hash_size_primes[index];
511 /* A few different object file formats (a.out, COFF, ELF) use a string
512 table. These functions support adding strings to a string table,
513 returning the byte offset, and writing out the table.
515 Possible improvements:
516 + look for strings matching trailing substrings of other strings
517 + better data structures? balanced trees?
518 + look at reducing memory use elsewhere -- maybe if we didn't have
519 to construct the entire symbol table at once, we could get by
520 with smaller amounts of VM? (What effect does that have on the
521 string table reductions?) */
523 /* An entry in the strtab hash table. */
525 struct strtab_hash_entry
527 struct bfd_hash_entry root;
528 /* Index in string table. */
529 bfd_size_type index;
530 /* Next string in strtab. */
531 struct strtab_hash_entry *next;
534 /* The strtab hash table. */
536 struct bfd_strtab_hash
538 struct bfd_hash_table table;
539 /* Size of strtab--also next available index. */
540 bfd_size_type size;
541 /* First string in strtab. */
542 struct strtab_hash_entry *first;
543 /* Last string in strtab. */
544 struct strtab_hash_entry *last;
545 /* Whether to precede strings with a two byte length, as in the
546 XCOFF .debug section. */
547 bfd_boolean xcoff;
550 /* Routine to create an entry in a strtab. */
552 static struct bfd_hash_entry *
553 strtab_hash_newfunc (struct bfd_hash_entry *entry,
554 struct bfd_hash_table *table,
555 const char *string)
557 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
559 /* Allocate the structure if it has not already been allocated by a
560 subclass. */
561 if (ret == NULL)
562 ret = bfd_hash_allocate (table, sizeof (* ret));
563 if (ret == NULL)
564 return NULL;
566 /* Call the allocation method of the superclass. */
567 ret = (struct strtab_hash_entry *)
568 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
570 if (ret)
572 /* Initialize the local fields. */
573 ret->index = (bfd_size_type) -1;
574 ret->next = NULL;
577 return (struct bfd_hash_entry *) ret;
580 /* Look up an entry in an strtab. */
582 #define strtab_hash_lookup(t, string, create, copy) \
583 ((struct strtab_hash_entry *) \
584 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
586 /* Create a new strtab. */
588 struct bfd_strtab_hash *
589 _bfd_stringtab_init (void)
591 struct bfd_strtab_hash *table;
592 bfd_size_type amt = sizeof (* table);
594 table = bfd_malloc (amt);
595 if (table == NULL)
596 return NULL;
598 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
599 sizeof (struct strtab_hash_entry)))
601 free (table);
602 return NULL;
605 table->size = 0;
606 table->first = NULL;
607 table->last = NULL;
608 table->xcoff = FALSE;
610 return table;
613 /* Create a new strtab in which the strings are output in the format
614 used in the XCOFF .debug section: a two byte length precedes each
615 string. */
617 struct bfd_strtab_hash *
618 _bfd_xcoff_stringtab_init (void)
620 struct bfd_strtab_hash *ret;
622 ret = _bfd_stringtab_init ();
623 if (ret != NULL)
624 ret->xcoff = TRUE;
625 return ret;
628 /* Free a strtab. */
630 void
631 _bfd_stringtab_free (struct bfd_strtab_hash *table)
633 bfd_hash_table_free (&table->table);
634 free (table);
637 /* Get the index of a string in a strtab, adding it if it is not
638 already present. If HASH is FALSE, we don't really use the hash
639 table, and we don't eliminate duplicate strings. */
641 bfd_size_type
642 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
643 const char *str,
644 bfd_boolean hash,
645 bfd_boolean copy)
647 struct strtab_hash_entry *entry;
649 if (hash)
651 entry = strtab_hash_lookup (tab, str, TRUE, copy);
652 if (entry == NULL)
653 return (bfd_size_type) -1;
655 else
657 entry = bfd_hash_allocate (&tab->table, sizeof (* entry));
658 if (entry == NULL)
659 return (bfd_size_type) -1;
660 if (! copy)
661 entry->root.string = str;
662 else
664 char *n;
666 n = bfd_hash_allocate (&tab->table, strlen (str) + 1);
667 if (n == NULL)
668 return (bfd_size_type) -1;
669 entry->root.string = n;
671 entry->index = (bfd_size_type) -1;
672 entry->next = NULL;
675 if (entry->index == (bfd_size_type) -1)
677 entry->index = tab->size;
678 tab->size += strlen (str) + 1;
679 if (tab->xcoff)
681 entry->index += 2;
682 tab->size += 2;
684 if (tab->first == NULL)
685 tab->first = entry;
686 else
687 tab->last->next = entry;
688 tab->last = entry;
691 return entry->index;
694 /* Get the number of bytes in a strtab. */
696 bfd_size_type
697 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
699 return tab->size;
702 /* Write out a strtab. ABFD must already be at the right location in
703 the file. */
705 bfd_boolean
706 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
708 bfd_boolean xcoff;
709 struct strtab_hash_entry *entry;
711 xcoff = tab->xcoff;
713 for (entry = tab->first; entry != NULL; entry = entry->next)
715 const char *str;
716 size_t len;
718 str = entry->root.string;
719 len = strlen (str) + 1;
721 if (xcoff)
723 bfd_byte buf[2];
725 /* The output length includes the null byte. */
726 bfd_put_16 (abfd, (bfd_vma) len, buf);
727 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
728 return FALSE;
731 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
732 return FALSE;
735 return TRUE;