1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
214 elf_read (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
218 if ((buf
= bfd_alloc (abfd
, size
)) == NULL
)
220 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
222 if (bfd_bread (buf
, size
, abfd
) != size
)
224 if (bfd_get_error () != bfd_error_system_call
)
225 bfd_set_error (bfd_error_file_truncated
);
232 bfd_elf_mkobject (bfd
*abfd
)
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
237 if (elf_tdata (abfd
) == 0)
239 /* Since everything is done at close time, do we need any
246 bfd_elf_mkcorefile (bfd
*abfd
)
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd
);
253 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
255 Elf_Internal_Shdr
**i_shdrp
;
256 char *shstrtab
= NULL
;
258 bfd_size_type shstrtabsize
;
260 i_shdrp
= elf_elfsections (abfd
);
261 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
264 shstrtab
= (char *) i_shdrp
[shindex
]->contents
;
265 if (shstrtab
== NULL
)
267 /* No cached one, attempt to read, and cache what we read. */
268 offset
= i_shdrp
[shindex
]->sh_offset
;
269 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
270 shstrtab
= elf_read (abfd
, offset
, shstrtabsize
);
271 i_shdrp
[shindex
]->contents
= shstrtab
;
277 bfd_elf_string_from_elf_section (bfd
*abfd
,
278 unsigned int shindex
,
279 unsigned int strindex
)
281 Elf_Internal_Shdr
*hdr
;
286 hdr
= elf_elfsections (abfd
)[shindex
];
288 if (hdr
->contents
== NULL
289 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
292 if (strindex
>= hdr
->sh_size
)
294 (*_bfd_error_handler
)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
297 ((shindex
== elf_elfheader(abfd
)->e_shstrndx
298 && strindex
== hdr
->sh_name
)
300 : elf_string_from_elf_strtab (abfd
, hdr
->sh_name
)));
304 return ((char *) hdr
->contents
) + strindex
;
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
314 bfd_elf_get_elf_syms (bfd
*ibfd
,
315 Elf_Internal_Shdr
*symtab_hdr
,
318 Elf_Internal_Sym
*intsym_buf
,
320 Elf_External_Sym_Shndx
*extshndx_buf
)
322 Elf_Internal_Shdr
*shndx_hdr
;
324 const bfd_byte
*esym
;
325 Elf_External_Sym_Shndx
*alloc_extshndx
;
326 Elf_External_Sym_Shndx
*shndx
;
327 Elf_Internal_Sym
*isym
;
328 Elf_Internal_Sym
*isymend
;
329 const struct elf_backend_data
*bed
;
337 /* Normal syms might have section extension entries. */
339 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
340 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
342 /* Read the symbols. */
344 alloc_extshndx
= NULL
;
345 bed
= get_elf_backend_data (ibfd
);
346 extsym_size
= bed
->s
->sizeof_sym
;
347 amt
= symcount
* extsym_size
;
348 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
349 if (extsym_buf
== NULL
)
351 alloc_ext
= bfd_malloc (amt
);
352 extsym_buf
= alloc_ext
;
354 if (extsym_buf
== NULL
355 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
356 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
362 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
366 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
367 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
368 if (extshndx_buf
== NULL
)
370 alloc_extshndx
= bfd_malloc (amt
);
371 extshndx_buf
= alloc_extshndx
;
373 if (extshndx_buf
== NULL
374 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
375 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
382 if (intsym_buf
== NULL
)
384 bfd_size_type amt
= symcount
* sizeof (Elf_Internal_Sym
);
385 intsym_buf
= bfd_malloc (amt
);
386 if (intsym_buf
== NULL
)
390 /* Convert the symbols to internal form. */
391 isymend
= intsym_buf
+ symcount
;
392 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
394 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
395 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
398 if (alloc_ext
!= NULL
)
400 if (alloc_extshndx
!= NULL
)
401 free (alloc_extshndx
);
406 /* Look up a symbol name. */
408 bfd_elf_local_sym_name (bfd
*abfd
, Elf_Internal_Sym
*isym
)
410 unsigned int iname
= isym
->st_name
;
411 unsigned int shindex
= elf_tdata (abfd
)->symtab_hdr
.sh_link
;
412 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 return bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
425 typedef union elf_internal_group
{
426 Elf_Internal_Shdr
*shdr
;
428 } Elf_Internal_Group
;
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
434 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
436 Elf_Internal_Shdr
*hdr
;
437 unsigned char esym
[sizeof (Elf64_External_Sym
)];
438 Elf_External_Sym_Shndx eshndx
;
439 Elf_Internal_Sym isym
;
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
445 /* Go read the symbol. */
446 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
447 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
448 &isym
, esym
, &eshndx
) == NULL
)
451 return bfd_elf_local_sym_name (abfd
, &isym
);
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
457 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
459 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
465 unsigned int i
, shnum
;
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum
= elf_numsections (abfd
);
471 for (i
= 0; i
< shnum
; i
++)
473 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
474 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
479 num_group
= (unsigned) -1;
480 elf_tdata (abfd
)->num_group
= num_group
;
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt
= num_group
* sizeof (Elf_Internal_Shdr
*);
487 elf_tdata (abfd
)->group_sect_ptr
= bfd_alloc (abfd
, amt
);
488 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
492 for (i
= 0; i
< shnum
; i
++)
494 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
495 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
498 Elf_Internal_Group
*dest
;
500 /* Add to list of sections. */
501 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest
) >= 4);
506 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
507 shdr
->contents
= bfd_alloc (abfd
, amt
);
508 if (shdr
->contents
== NULL
509 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
510 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
518 src
= shdr
->contents
+ shdr
->sh_size
;
519 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
526 idx
= H_GET_32 (abfd
, src
);
527 if (src
== shdr
->contents
)
530 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
531 shdr
->bfd_section
->flags
532 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
537 ((*_bfd_error_handler
)
538 (_("%B: invalid SHT_GROUP entry"), abfd
));
541 dest
->shdr
= elf_elfsections (abfd
)[idx
];
548 if (num_group
!= (unsigned) -1)
552 for (i
= 0; i
< num_group
; i
++)
554 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
555 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
556 unsigned int n_elt
= shdr
->sh_size
/ 4;
558 /* Look through this group's sections to see if current
559 section is a member. */
561 if ((++idx
)->shdr
== hdr
)
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
568 idx
= (Elf_Internal_Group
*) shdr
->contents
;
569 n_elt
= shdr
->sh_size
/ 4;
571 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
572 && elf_next_in_group (s
) != NULL
)
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect
) = elf_group_name (s
);
579 elf_next_in_group (newsect
) = elf_next_in_group (s
);
580 elf_next_in_group (s
) = newsect
;
586 gname
= group_signature (abfd
, shdr
);
589 elf_group_name (newsect
) = gname
;
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect
) = newsect
;
595 /* If the group section has been created, point to the
597 if (shdr
->bfd_section
!= NULL
)
598 elf_next_in_group (shdr
->bfd_section
) = newsect
;
606 if (elf_group_name (newsect
) == NULL
)
608 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
615 _bfd_elf_setup_group_pointers (bfd
*abfd
)
618 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
619 bfd_boolean result
= TRUE
;
621 if (num_group
== (unsigned) -1)
624 for (i
= 0; i
< num_group
; i
++)
626 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
627 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
628 unsigned int n_elt
= shdr
->sh_size
/ 4;
631 if ((++idx
)->shdr
->bfd_section
)
632 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
633 else if (idx
->shdr
->sh_type
== SHT_RELA
634 || idx
->shdr
->sh_type
== SHT_REL
)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
640 shdr
->bfd_section
->size
-= 4;
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler
)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
647 (unsigned int) idx
->shdr
->sh_type
,
648 elf_string_from_elf_strtab (abfd
, idx
->shdr
->sh_name
),
649 shdr
->bfd_section
->name
);
657 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
659 return elf_next_in_group (sec
) != NULL
;
663 bfd_elf_discard_group (bfd
*abfd ATTRIBUTE_UNUSED
,
664 asection
*group ATTRIBUTE_UNUSED
)
667 asection
*first
= elf_next_in_group (group
);
672 s
->output_section
= bfd_abs_section_ptr
;
673 s
= elf_next_in_group (s
);
674 /* These lists are circular. */
679 /* FIXME: Never used. Remove it! */
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
689 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
690 Elf_Internal_Shdr
*hdr
,
695 const struct elf_backend_data
*bed
;
697 if (hdr
->bfd_section
!= NULL
)
699 BFD_ASSERT (strcmp (name
,
700 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
704 newsect
= bfd_make_section_anyway (abfd
, name
);
708 hdr
->bfd_section
= newsect
;
709 elf_section_data (newsect
)->this_hdr
= *hdr
;
711 /* Always use the real type/flags. */
712 elf_section_type (newsect
) = hdr
->sh_type
;
713 elf_section_flags (newsect
) = hdr
->sh_flags
;
715 newsect
->filepos
= hdr
->sh_offset
;
717 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
718 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
719 || ! bfd_set_section_alignment (abfd
, newsect
,
720 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
723 flags
= SEC_NO_FLAGS
;
724 if (hdr
->sh_type
!= SHT_NOBITS
)
725 flags
|= SEC_HAS_CONTENTS
;
726 if (hdr
->sh_type
== SHT_GROUP
)
727 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
728 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
731 if (hdr
->sh_type
!= SHT_NOBITS
)
734 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
735 flags
|= SEC_READONLY
;
736 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
738 else if ((flags
& SEC_LOAD
) != 0)
740 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
743 newsect
->entsize
= hdr
->sh_entsize
;
744 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
745 flags
|= SEC_STRINGS
;
747 if (hdr
->sh_flags
& SHF_GROUP
)
748 if (!setup_group (abfd
, hdr
, newsect
))
750 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
751 flags
|= SEC_THREAD_LOCAL
;
753 /* The debugging sections appear to be recognized only by name, not
756 static const char *debug_sec_names
[] =
765 for (i
= ARRAY_SIZE (debug_sec_names
); i
--;)
766 if (strncmp (name
, debug_sec_names
[i
], strlen (debug_sec_names
[i
])) == 0)
770 flags
|= SEC_DEBUGGING
;
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect
) == NULL
)
781 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
783 bed
= get_elf_backend_data (abfd
);
784 if (bed
->elf_backend_section_flags
)
785 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
788 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
791 if ((flags
& SEC_ALLOC
) != 0)
793 Elf_Internal_Phdr
*phdr
;
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr
= elf_tdata (abfd
)->phdr
;
800 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
802 if (phdr
->p_paddr
!= 0)
805 if (i
< elf_elfheader (abfd
)->e_phnum
)
807 phdr
= elf_tdata (abfd
)->phdr
;
808 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr
->p_type
== PT_LOAD
823 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
824 && (hdr
->sh_offset
+ hdr
->sh_size
825 <= phdr
->p_offset
+ phdr
->p_memsz
)
826 && ((flags
& SEC_LOAD
) == 0
827 || (hdr
->sh_offset
+ hdr
->sh_size
828 <= phdr
->p_offset
+ phdr
->p_filesz
)))
830 if ((flags
& SEC_LOAD
) == 0)
831 newsect
->lma
= (phdr
->p_paddr
832 + hdr
->sh_addr
- phdr
->p_vaddr
);
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect
->lma
= (phdr
->p_paddr
842 + hdr
->sh_offset
- phdr
->p_offset
);
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr
->sh_addr
>= phdr
->p_vaddr
849 && (hdr
->sh_addr
+ hdr
->sh_size
850 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
875 struct elf_internal_shdr
*
876 bfd_elf_find_section (bfd
*abfd
, char *name
)
878 Elf_Internal_Shdr
**i_shdrp
;
883 i_shdrp
= elf_elfsections (abfd
);
886 shstrtab
= bfd_elf_get_str_section (abfd
,
887 elf_elfheader (abfd
)->e_shstrndx
);
888 if (shstrtab
!= NULL
)
890 max
= elf_numsections (abfd
);
891 for (i
= 1; i
< max
; i
++)
892 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
899 const char *const bfd_elf_section_type_names
[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
917 arelent
*reloc_entry
,
919 void *data ATTRIBUTE_UNUSED
,
920 asection
*input_section
,
922 char **error_message ATTRIBUTE_UNUSED
)
924 if (output_bfd
!= NULL
925 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
926 && (! reloc_entry
->howto
->partial_inplace
927 || reloc_entry
->addend
== 0))
929 reloc_entry
->address
+= input_section
->output_offset
;
933 return bfd_reloc_continue
;
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
939 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
942 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
943 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
946 /* Finish SHF_MERGE section merging. */
949 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
954 if (!is_elf_hash_table (info
->hash
))
957 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
958 if ((ibfd
->flags
& DYNAMIC
) == 0)
959 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
960 if ((sec
->flags
& SEC_MERGE
) != 0
961 && !bfd_is_abs_section (sec
->output_section
))
963 struct bfd_elf_section_data
*secdata
;
965 secdata
= elf_section_data (sec
);
966 if (! _bfd_add_merge_section (abfd
,
967 &elf_hash_table (info
)->merge_info
,
968 sec
, &secdata
->sec_info
))
970 else if (secdata
->sec_info
)
971 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
974 if (elf_hash_table (info
)->merge_info
!= NULL
)
975 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
976 merge_sections_remove_hook
);
981 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
983 sec
->output_section
= bfd_abs_section_ptr
;
984 sec
->output_offset
= sec
->vma
;
985 if (!is_elf_hash_table (info
->hash
))
988 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
991 /* Copy the program header and other data from one object module to
995 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
997 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1001 BFD_ASSERT (!elf_flags_init (obfd
)
1002 || (elf_elfheader (obfd
)->e_flags
1003 == elf_elfheader (ibfd
)->e_flags
));
1005 elf_gp (obfd
) = elf_gp (ibfd
);
1006 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1007 elf_flags_init (obfd
) = TRUE
;
1011 /* Print out the program headers. */
1014 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1017 Elf_Internal_Phdr
*p
;
1019 bfd_byte
*dynbuf
= NULL
;
1021 p
= elf_tdata (abfd
)->phdr
;
1026 fprintf (f
, _("\nProgram Header:\n"));
1027 c
= elf_elfheader (abfd
)->e_phnum
;
1028 for (i
= 0; i
< c
; i
++, p
++)
1035 case PT_NULL
: pt
= "NULL"; break;
1036 case PT_LOAD
: pt
= "LOAD"; break;
1037 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1038 case PT_INTERP
: pt
= "INTERP"; break;
1039 case PT_NOTE
: pt
= "NOTE"; break;
1040 case PT_SHLIB
: pt
= "SHLIB"; break;
1041 case PT_PHDR
: pt
= "PHDR"; break;
1042 case PT_TLS
: pt
= "TLS"; break;
1043 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1044 case PT_GNU_STACK
: pt
= "STACK"; break;
1045 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1046 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
1048 fprintf (f
, "%8s off 0x", pt
);
1049 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1050 fprintf (f
, " vaddr 0x");
1051 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1052 fprintf (f
, " paddr 0x");
1053 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1054 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1055 fprintf (f
, " filesz 0x");
1056 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1057 fprintf (f
, " memsz 0x");
1058 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1059 fprintf (f
, " flags %c%c%c",
1060 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1061 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1062 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1063 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1064 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1069 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1073 unsigned long shlink
;
1074 bfd_byte
*extdyn
, *extdynend
;
1076 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1078 fprintf (f
, _("\nDynamic Section:\n"));
1080 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1083 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1086 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1088 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1089 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1092 extdynend
= extdyn
+ s
->size
;
1093 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1095 Elf_Internal_Dyn dyn
;
1098 bfd_boolean stringp
;
1100 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1102 if (dyn
.d_tag
== DT_NULL
)
1109 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1113 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1114 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1115 case DT_PLTGOT
: name
= "PLTGOT"; break;
1116 case DT_HASH
: name
= "HASH"; break;
1117 case DT_STRTAB
: name
= "STRTAB"; break;
1118 case DT_SYMTAB
: name
= "SYMTAB"; break;
1119 case DT_RELA
: name
= "RELA"; break;
1120 case DT_RELASZ
: name
= "RELASZ"; break;
1121 case DT_RELAENT
: name
= "RELAENT"; break;
1122 case DT_STRSZ
: name
= "STRSZ"; break;
1123 case DT_SYMENT
: name
= "SYMENT"; break;
1124 case DT_INIT
: name
= "INIT"; break;
1125 case DT_FINI
: name
= "FINI"; break;
1126 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1127 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1128 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1129 case DT_REL
: name
= "REL"; break;
1130 case DT_RELSZ
: name
= "RELSZ"; break;
1131 case DT_RELENT
: name
= "RELENT"; break;
1132 case DT_PLTREL
: name
= "PLTREL"; break;
1133 case DT_DEBUG
: name
= "DEBUG"; break;
1134 case DT_TEXTREL
: name
= "TEXTREL"; break;
1135 case DT_JMPREL
: name
= "JMPREL"; break;
1136 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1137 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1142 case DT_FLAGS
: name
= "FLAGS"; break;
1143 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1146 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1147 case DT_MOVEENT
: name
= "MOVEENT"; break;
1148 case DT_MOVESZ
: name
= "MOVESZ"; break;
1149 case DT_FEATURE
: name
= "FEATURE"; break;
1150 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1151 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1152 case DT_SYMINENT
: name
= "SYMINENT"; break;
1153 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1154 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1155 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1156 case DT_PLTPAD
: name
= "PLTPAD"; break;
1157 case DT_MOVETAB
: name
= "MOVETAB"; break;
1158 case DT_SYMINFO
: name
= "SYMINFO"; break;
1159 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1160 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1161 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1162 case DT_VERSYM
: name
= "VERSYM"; break;
1163 case DT_VERDEF
: name
= "VERDEF"; break;
1164 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1165 case DT_VERNEED
: name
= "VERNEED"; break;
1166 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1167 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1168 case DT_USED
: name
= "USED"; break;
1169 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1172 fprintf (f
, " %-11s ", name
);
1174 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1178 unsigned int tagv
= dyn
.d_un
.d_val
;
1180 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1183 fprintf (f
, "%s", string
);
1192 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1193 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1195 if (! _bfd_elf_slurp_version_tables (abfd
))
1199 if (elf_dynverdef (abfd
) != 0)
1201 Elf_Internal_Verdef
*t
;
1203 fprintf (f
, _("\nVersion definitions:\n"));
1204 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1206 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1207 t
->vd_flags
, t
->vd_hash
, t
->vd_nodename
);
1208 if (t
->vd_auxptr
->vda_nextptr
!= NULL
)
1210 Elf_Internal_Verdaux
*a
;
1213 for (a
= t
->vd_auxptr
->vda_nextptr
;
1216 fprintf (f
, "%s ", a
->vda_nodename
);
1222 if (elf_dynverref (abfd
) != 0)
1224 Elf_Internal_Verneed
*t
;
1226 fprintf (f
, _("\nVersion References:\n"));
1227 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1229 Elf_Internal_Vernaux
*a
;
1231 fprintf (f
, _(" required from %s:\n"), t
->vn_filename
);
1232 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1233 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1234 a
->vna_flags
, a
->vna_other
, a
->vna_nodename
);
1246 /* Display ELF-specific fields of a symbol. */
1249 bfd_elf_print_symbol (bfd
*abfd
,
1252 bfd_print_symbol_type how
)
1257 case bfd_print_symbol_name
:
1258 fprintf (file
, "%s", symbol
->name
);
1260 case bfd_print_symbol_more
:
1261 fprintf (file
, "elf ");
1262 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1263 fprintf (file
, " %lx", (long) symbol
->flags
);
1265 case bfd_print_symbol_all
:
1267 const char *section_name
;
1268 const char *name
= NULL
;
1269 const struct elf_backend_data
*bed
;
1270 unsigned char st_other
;
1273 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1275 bed
= get_elf_backend_data (abfd
);
1276 if (bed
->elf_backend_print_symbol_all
)
1277 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1281 name
= symbol
->name
;
1282 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1285 fprintf (file
, " %s\t", section_name
);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol
->section
))
1291 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1293 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1294 bfd_fprintf_vma (abfd
, file
, val
);
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd
)->dynversym_section
!= 0
1298 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1299 || elf_tdata (abfd
)->dynverref_section
!= 0))
1301 unsigned int vernum
;
1302 const char *version_string
;
1304 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1307 version_string
= "";
1308 else if (vernum
== 1)
1309 version_string
= "Base";
1310 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1312 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1315 Elf_Internal_Verneed
*t
;
1317 version_string
= "";
1318 for (t
= elf_tdata (abfd
)->verref
;
1322 Elf_Internal_Vernaux
*a
;
1324 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1326 if (a
->vna_other
== vernum
)
1328 version_string
= a
->vna_nodename
;
1335 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1336 fprintf (file
, " %-11s", version_string
);
1341 fprintf (file
, " (%s)", version_string
);
1342 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1347 /* If the st_other field is not zero, print it. */
1348 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1353 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1354 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1355 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1357 /* Some other non-defined flags are also present, so print
1359 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1362 fprintf (file
, " %s", name
);
1368 /* Create an entry in an ELF linker hash table. */
1370 struct bfd_hash_entry
*
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1372 struct bfd_hash_table
*table
,
1375 /* Allocate the structure if it has not already been allocated by a
1379 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1384 /* Call the allocation method of the superclass. */
1385 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1388 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1389 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1391 /* Set local fields. */
1394 ret
->dynstr_index
= 0;
1395 ret
->elf_hash_value
= 0;
1396 ret
->weakdef
= NULL
;
1397 ret
->verinfo
.verdef
= NULL
;
1398 ret
->vtable_entries_size
= 0;
1399 ret
->vtable_entries_used
= NULL
;
1400 ret
->vtable_parent
= NULL
;
1401 ret
->got
= htab
->init_refcount
;
1402 ret
->plt
= htab
->init_refcount
;
1404 ret
->type
= STT_NOTYPE
;
1406 /* Assume that we have been called by a non-ELF symbol reader.
1407 This flag is then reset by the code which reads an ELF input
1408 file. This ensures that a symbol created by a non-ELF symbol
1409 reader will have the flag set correctly. */
1410 ret
->elf_link_hash_flags
= ELF_LINK_NON_ELF
;
1416 /* Copy data from an indirect symbol to its direct symbol, hiding the
1417 old indirect symbol. Also used for copying flags to a weakdef. */
1420 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data
*bed
,
1421 struct elf_link_hash_entry
*dir
,
1422 struct elf_link_hash_entry
*ind
)
1425 bfd_signed_vma lowest_valid
= bed
->can_refcount
;
1427 /* Copy down any references that we may have already seen to the
1428 symbol which just became indirect. */
1430 dir
->elf_link_hash_flags
1431 |= ind
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_DYNAMIC
1432 | ELF_LINK_HASH_REF_REGULAR
1433 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1434 | ELF_LINK_NON_GOT_REF
1435 | ELF_LINK_HASH_NEEDS_PLT
1436 | ELF_LINK_POINTER_EQUALITY_NEEDED
);
1438 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1441 /* Copy over the global and procedure linkage table refcount entries.
1442 These may have been already set up by a check_relocs routine. */
1443 tmp
= dir
->got
.refcount
;
1444 if (tmp
< lowest_valid
)
1446 dir
->got
.refcount
= ind
->got
.refcount
;
1447 ind
->got
.refcount
= tmp
;
1450 BFD_ASSERT (ind
->got
.refcount
< lowest_valid
);
1452 tmp
= dir
->plt
.refcount
;
1453 if (tmp
< lowest_valid
)
1455 dir
->plt
.refcount
= ind
->plt
.refcount
;
1456 ind
->plt
.refcount
= tmp
;
1459 BFD_ASSERT (ind
->plt
.refcount
< lowest_valid
);
1461 if (dir
->dynindx
== -1)
1463 dir
->dynindx
= ind
->dynindx
;
1464 dir
->dynstr_index
= ind
->dynstr_index
;
1466 ind
->dynstr_index
= 0;
1469 BFD_ASSERT (ind
->dynindx
== -1);
1473 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1474 struct elf_link_hash_entry
*h
,
1475 bfd_boolean force_local
)
1477 h
->plt
= elf_hash_table (info
)->init_offset
;
1478 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1481 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
1482 if (h
->dynindx
!= -1)
1485 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1491 /* Initialize an ELF linker hash table. */
1494 _bfd_elf_link_hash_table_init
1495 (struct elf_link_hash_table
*table
,
1497 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1498 struct bfd_hash_table
*,
1503 table
->dynamic_sections_created
= FALSE
;
1504 table
->dynobj
= NULL
;
1505 /* Make sure can_refcount is extended to the width and signedness of
1506 init_refcount before we subtract one from it. */
1507 table
->init_refcount
.refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1508 table
->init_refcount
.refcount
-= 1;
1509 table
->init_offset
.offset
= -(bfd_vma
) 1;
1510 /* The first dynamic symbol is a dummy. */
1511 table
->dynsymcount
= 1;
1512 table
->dynstr
= NULL
;
1513 table
->bucketcount
= 0;
1514 table
->needed
= NULL
;
1516 table
->merge_info
= NULL
;
1517 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1518 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1519 table
->dynlocal
= NULL
;
1520 table
->runpath
= NULL
;
1521 table
->tls_sec
= NULL
;
1522 table
->tls_size
= 0;
1523 table
->loaded
= NULL
;
1525 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1526 table
->root
.type
= bfd_link_elf_hash_table
;
1531 /* Create an ELF linker hash table. */
1533 struct bfd_link_hash_table
*
1534 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1536 struct elf_link_hash_table
*ret
;
1537 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1539 ret
= bfd_malloc (amt
);
1543 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1552 /* This is a hook for the ELF emulation code in the generic linker to
1553 tell the backend linker what file name to use for the DT_NEEDED
1554 entry for a dynamic object. */
1557 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1559 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd
) == bfd_object
)
1561 elf_dt_name (abfd
) = name
;
1565 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1568 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1569 && bfd_get_format (abfd
) == bfd_object
)
1570 lib_class
= elf_dyn_lib_class (abfd
);
1577 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1579 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1580 && bfd_get_format (abfd
) == bfd_object
)
1581 elf_dyn_lib_class (abfd
) = lib_class
;
1584 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1585 the linker ELF emulation code. */
1587 struct bfd_link_needed_list
*
1588 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1589 struct bfd_link_info
*info
)
1591 if (! is_elf_hash_table (info
->hash
))
1593 return elf_hash_table (info
)->needed
;
1596 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1597 hook for the linker ELF emulation code. */
1599 struct bfd_link_needed_list
*
1600 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1601 struct bfd_link_info
*info
)
1603 if (! is_elf_hash_table (info
->hash
))
1605 return elf_hash_table (info
)->runpath
;
1608 /* Get the name actually used for a dynamic object for a link. This
1609 is the SONAME entry if there is one. Otherwise, it is the string
1610 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1613 bfd_elf_get_dt_soname (bfd
*abfd
)
1615 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1616 && bfd_get_format (abfd
) == bfd_object
)
1617 return elf_dt_name (abfd
);
1621 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1622 the ELF linker emulation code. */
1625 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1626 struct bfd_link_needed_list
**pneeded
)
1629 bfd_byte
*dynbuf
= NULL
;
1631 unsigned long shlink
;
1632 bfd_byte
*extdyn
, *extdynend
;
1634 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1638 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1639 || bfd_get_format (abfd
) != bfd_object
)
1642 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1643 if (s
== NULL
|| s
->size
== 0)
1646 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1649 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1653 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1655 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1656 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1659 extdynend
= extdyn
+ s
->size
;
1660 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1662 Elf_Internal_Dyn dyn
;
1664 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1666 if (dyn
.d_tag
== DT_NULL
)
1669 if (dyn
.d_tag
== DT_NEEDED
)
1672 struct bfd_link_needed_list
*l
;
1673 unsigned int tagv
= dyn
.d_un
.d_val
;
1676 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1681 l
= bfd_alloc (abfd
, amt
);
1702 /* Allocate an ELF string table--force the first byte to be zero. */
1704 struct bfd_strtab_hash
*
1705 _bfd_elf_stringtab_init (void)
1707 struct bfd_strtab_hash
*ret
;
1709 ret
= _bfd_stringtab_init ();
1714 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1715 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1716 if (loc
== (bfd_size_type
) -1)
1718 _bfd_stringtab_free (ret
);
1725 /* ELF .o/exec file reading */
1727 /* Create a new bfd section from an ELF section header. */
1730 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1732 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1733 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1734 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1737 name
= elf_string_from_elf_strtab (abfd
, hdr
->sh_name
);
1739 switch (hdr
->sh_type
)
1742 /* Inactive section. Throw it away. */
1745 case SHT_PROGBITS
: /* Normal section with contents. */
1746 case SHT_NOBITS
: /* .bss section. */
1747 case SHT_HASH
: /* .hash section. */
1748 case SHT_NOTE
: /* .note section. */
1749 case SHT_INIT_ARRAY
: /* .init_array section. */
1750 case SHT_FINI_ARRAY
: /* .fini_array section. */
1751 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1752 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1754 case SHT_DYNAMIC
: /* Dynamic linking information. */
1755 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1757 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1759 Elf_Internal_Shdr
*dynsymhdr
;
1761 /* The shared libraries distributed with hpux11 have a bogus
1762 sh_link field for the ".dynamic" section. Find the
1763 string table for the ".dynsym" section instead. */
1764 if (elf_dynsymtab (abfd
) != 0)
1766 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1767 hdr
->sh_link
= dynsymhdr
->sh_link
;
1771 unsigned int i
, num_sec
;
1773 num_sec
= elf_numsections (abfd
);
1774 for (i
= 1; i
< num_sec
; i
++)
1776 dynsymhdr
= elf_elfsections (abfd
)[i
];
1777 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1779 hdr
->sh_link
= dynsymhdr
->sh_link
;
1787 case SHT_SYMTAB
: /* A symbol table */
1788 if (elf_onesymtab (abfd
) == shindex
)
1791 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1792 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1793 elf_onesymtab (abfd
) = shindex
;
1794 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1795 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1796 abfd
->flags
|= HAS_SYMS
;
1798 /* Sometimes a shared object will map in the symbol table. If
1799 SHF_ALLOC is set, and this is a shared object, then we also
1800 treat this section as a BFD section. We can not base the
1801 decision purely on SHF_ALLOC, because that flag is sometimes
1802 set in a relocatable object file, which would confuse the
1804 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1805 && (abfd
->flags
& DYNAMIC
) != 0
1806 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
1811 case SHT_DYNSYM
: /* A dynamic symbol table */
1812 if (elf_dynsymtab (abfd
) == shindex
)
1815 BFD_ASSERT (hdr
->sh_entsize
== bed
->s
->sizeof_sym
);
1816 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1817 elf_dynsymtab (abfd
) = shindex
;
1818 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1819 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1820 abfd
->flags
|= HAS_SYMS
;
1822 /* Besides being a symbol table, we also treat this as a regular
1823 section, so that objcopy can handle it. */
1824 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1826 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1827 if (elf_symtab_shndx (abfd
) == shindex
)
1830 /* Get the associated symbol table. */
1831 if (! bfd_section_from_shdr (abfd
, hdr
->sh_link
)
1832 || hdr
->sh_link
!= elf_onesymtab (abfd
))
1835 elf_symtab_shndx (abfd
) = shindex
;
1836 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1837 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1840 case SHT_STRTAB
: /* A string table */
1841 if (hdr
->bfd_section
!= NULL
)
1843 if (ehdr
->e_shstrndx
== shindex
)
1845 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1846 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1850 unsigned int i
, num_sec
;
1852 num_sec
= elf_numsections (abfd
);
1853 for (i
= 1; i
< num_sec
; i
++)
1855 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1856 if (hdr2
->sh_link
== shindex
)
1858 if (! bfd_section_from_shdr (abfd
, i
))
1860 if (elf_onesymtab (abfd
) == i
)
1862 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1863 elf_elfsections (abfd
)[shindex
] =
1864 &elf_tdata (abfd
)->strtab_hdr
;
1867 if (elf_dynsymtab (abfd
) == i
)
1869 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1870 elf_elfsections (abfd
)[shindex
] = hdr
=
1871 &elf_tdata (abfd
)->dynstrtab_hdr
;
1872 /* We also treat this as a regular section, so
1873 that objcopy can handle it. */
1876 #if 0 /* Not handling other string tables specially right now. */
1877 hdr2
= elf_elfsections (abfd
)[i
]; /* in case it moved */
1878 /* We have a strtab for some random other section. */
1879 newsect
= (asection
*) hdr2
->bfd_section
;
1882 hdr
->bfd_section
= newsect
;
1883 hdr2
= &elf_section_data (newsect
)->str_hdr
;
1885 elf_elfsections (abfd
)[shindex
] = hdr2
;
1891 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1895 /* *These* do a lot of work -- but build no sections! */
1897 asection
*target_sect
;
1898 Elf_Internal_Shdr
*hdr2
;
1899 unsigned int num_sec
= elf_numsections (abfd
);
1901 /* Check for a bogus link to avoid crashing. */
1902 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1903 || hdr
->sh_link
>= num_sec
)
1905 ((*_bfd_error_handler
)
1906 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1907 abfd
, hdr
->sh_link
, name
, shindex
));
1908 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1911 /* For some incomprehensible reason Oracle distributes
1912 libraries for Solaris in which some of the objects have
1913 bogus sh_link fields. It would be nice if we could just
1914 reject them, but, unfortunately, some people need to use
1915 them. We scan through the section headers; if we find only
1916 one suitable symbol table, we clobber the sh_link to point
1917 to it. I hope this doesn't break anything. */
1918 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
1919 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
1925 for (scan
= 1; scan
< num_sec
; scan
++)
1927 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
1928 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
1939 hdr
->sh_link
= found
;
1942 /* Get the symbol table. */
1943 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
1944 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
1947 /* If this reloc section does not use the main symbol table we
1948 don't treat it as a reloc section. BFD can't adequately
1949 represent such a section, so at least for now, we don't
1950 try. We just present it as a normal section. We also
1951 can't use it as a reloc section if it points to the null
1953 if (hdr
->sh_link
!= elf_onesymtab (abfd
) || hdr
->sh_info
== SHN_UNDEF
)
1954 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1956 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
1958 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
1959 if (target_sect
== NULL
)
1962 if ((target_sect
->flags
& SEC_RELOC
) == 0
1963 || target_sect
->reloc_count
== 0)
1964 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
1968 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
1969 amt
= sizeof (*hdr2
);
1970 hdr2
= bfd_alloc (abfd
, amt
);
1971 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
1974 elf_elfsections (abfd
)[shindex
] = hdr2
;
1975 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
1976 target_sect
->flags
|= SEC_RELOC
;
1977 target_sect
->relocation
= NULL
;
1978 target_sect
->rel_filepos
= hdr
->sh_offset
;
1979 /* In the section to which the relocations apply, mark whether
1980 its relocations are of the REL or RELA variety. */
1981 if (hdr
->sh_size
!= 0)
1982 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
1983 abfd
->flags
|= HAS_RELOC
;
1988 case SHT_GNU_verdef
:
1989 elf_dynverdef (abfd
) = shindex
;
1990 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
1991 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
1994 case SHT_GNU_versym
:
1995 elf_dynversym (abfd
) = shindex
;
1996 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
1997 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
2000 case SHT_GNU_verneed
:
2001 elf_dynverref (abfd
) = shindex
;
2002 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2003 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
);
2010 /* We need a BFD section for objcopy and relocatable linking,
2011 and it's handy to have the signature available as the section
2013 name
= group_signature (abfd
, hdr
);
2016 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
))
2018 if (hdr
->contents
!= NULL
)
2020 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2021 unsigned int n_elt
= hdr
->sh_size
/ 4;
2024 if (idx
->flags
& GRP_COMDAT
)
2025 hdr
->bfd_section
->flags
2026 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2028 /* We try to keep the same section order as it comes in. */
2030 while (--n_elt
!= 0)
2031 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2032 && elf_next_in_group (s
) != NULL
)
2034 elf_next_in_group (hdr
->bfd_section
) = s
;
2041 /* Check for any processor-specific section types. */
2043 if (bed
->elf_backend_section_from_shdr
)
2044 (*bed
->elf_backend_section_from_shdr
) (abfd
, hdr
, name
);
2052 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2053 Return SEC for sections that have no elf section, and NULL on error. */
2056 bfd_section_from_r_symndx (bfd
*abfd
,
2057 struct sym_sec_cache
*cache
,
2059 unsigned long r_symndx
)
2061 Elf_Internal_Shdr
*symtab_hdr
;
2062 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2063 Elf_External_Sym_Shndx eshndx
;
2064 Elf_Internal_Sym isym
;
2065 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2067 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2068 return cache
->sec
[ent
];
2070 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2071 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2072 &isym
, esym
, &eshndx
) == NULL
)
2075 if (cache
->abfd
!= abfd
)
2077 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2080 cache
->indx
[ent
] = r_symndx
;
2081 cache
->sec
[ent
] = sec
;
2082 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2083 || isym
.st_shndx
> SHN_HIRESERVE
)
2086 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2088 cache
->sec
[ent
] = s
;
2090 return cache
->sec
[ent
];
2093 /* Given an ELF section number, retrieve the corresponding BFD
2097 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2099 if (index
>= elf_numsections (abfd
))
2101 return elf_elfsections (abfd
)[index
]->bfd_section
;
2104 static struct bfd_elf_special_section
const special_sections
[] =
2106 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2107 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2108 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2109 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2110 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2111 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2112 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2113 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2114 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2115 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2116 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2117 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2118 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2119 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2120 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2121 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2122 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2123 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2124 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2125 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2126 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2127 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2128 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2129 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2130 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2131 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2132 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2133 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2134 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2135 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2136 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2137 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2138 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2139 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2140 { ".note", 5, -1, SHT_NOTE
, 0 },
2141 { ".rela", 5, -1, SHT_RELA
, 0 },
2142 { ".rel", 4, -1, SHT_REL
, 0 },
2143 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2144 { NULL
, 0, 0, 0, 0 }
2147 static const struct bfd_elf_special_section
*
2148 get_special_section (const char *name
,
2149 const struct bfd_elf_special_section
*special_sections
,
2153 int len
= strlen (name
);
2155 for (i
= 0; special_sections
[i
].prefix
!= NULL
; i
++)
2158 int prefix_len
= special_sections
[i
].prefix_length
;
2160 if (len
< prefix_len
)
2162 if (memcmp (name
, special_sections
[i
].prefix
, prefix_len
) != 0)
2165 suffix_len
= special_sections
[i
].suffix_length
;
2166 if (suffix_len
<= 0)
2168 if (name
[prefix_len
] != 0)
2170 if (suffix_len
== 0)
2172 if (name
[prefix_len
] != '.'
2173 && (suffix_len
== -2
2174 || (rela
&& special_sections
[i
].type
== SHT_REL
)))
2180 if (len
< prefix_len
+ suffix_len
)
2182 if (memcmp (name
+ len
- suffix_len
,
2183 special_sections
[i
].prefix
+ prefix_len
,
2187 return &special_sections
[i
];
2193 const struct bfd_elf_special_section
*
2194 _bfd_elf_get_sec_type_attr (bfd
*abfd
, const char *name
)
2196 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2197 const struct bfd_elf_special_section
*ssect
= NULL
;
2199 /* See if this is one of the special sections. */
2202 unsigned int rela
= bed
->default_use_rela_p
;
2204 if (bed
->special_sections
)
2205 ssect
= get_special_section (name
, bed
->special_sections
, rela
);
2208 ssect
= get_special_section (name
, special_sections
, rela
);
2215 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2217 struct bfd_elf_section_data
*sdata
;
2218 const struct bfd_elf_special_section
*ssect
;
2220 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2223 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2226 sec
->used_by_bfd
= sdata
;
2229 elf_section_type (sec
) = SHT_NULL
;
2230 ssect
= _bfd_elf_get_sec_type_attr (abfd
, sec
->name
);
2233 elf_section_type (sec
) = ssect
->type
;
2234 elf_section_flags (sec
) = ssect
->attr
;
2237 /* Indicate whether or not this section should use RELA relocations. */
2238 sec
->use_rela_p
= get_elf_backend_data (abfd
)->default_use_rela_p
;
2243 /* Create a new bfd section from an ELF program header.
2245 Since program segments have no names, we generate a synthetic name
2246 of the form segment<NUM>, where NUM is generally the index in the
2247 program header table. For segments that are split (see below) we
2248 generate the names segment<NUM>a and segment<NUM>b.
2250 Note that some program segments may have a file size that is different than
2251 (less than) the memory size. All this means is that at execution the
2252 system must allocate the amount of memory specified by the memory size,
2253 but only initialize it with the first "file size" bytes read from the
2254 file. This would occur for example, with program segments consisting
2255 of combined data+bss.
2257 To handle the above situation, this routine generates TWO bfd sections
2258 for the single program segment. The first has the length specified by
2259 the file size of the segment, and the second has the length specified
2260 by the difference between the two sizes. In effect, the segment is split
2261 into it's initialized and uninitialized parts.
2266 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2267 Elf_Internal_Phdr
*hdr
,
2269 const char *typename
)
2277 split
= ((hdr
->p_memsz
> 0)
2278 && (hdr
->p_filesz
> 0)
2279 && (hdr
->p_memsz
> hdr
->p_filesz
));
2280 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2281 len
= strlen (namebuf
) + 1;
2282 name
= bfd_alloc (abfd
, len
);
2285 memcpy (name
, namebuf
, len
);
2286 newsect
= bfd_make_section (abfd
, name
);
2287 if (newsect
== NULL
)
2289 newsect
->vma
= hdr
->p_vaddr
;
2290 newsect
->lma
= hdr
->p_paddr
;
2291 newsect
->size
= hdr
->p_filesz
;
2292 newsect
->filepos
= hdr
->p_offset
;
2293 newsect
->flags
|= SEC_HAS_CONTENTS
;
2294 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2295 if (hdr
->p_type
== PT_LOAD
)
2297 newsect
->flags
|= SEC_ALLOC
;
2298 newsect
->flags
|= SEC_LOAD
;
2299 if (hdr
->p_flags
& PF_X
)
2301 /* FIXME: all we known is that it has execute PERMISSION,
2303 newsect
->flags
|= SEC_CODE
;
2306 if (!(hdr
->p_flags
& PF_W
))
2308 newsect
->flags
|= SEC_READONLY
;
2313 sprintf (namebuf
, "%s%db", typename
, index
);
2314 len
= strlen (namebuf
) + 1;
2315 name
= bfd_alloc (abfd
, len
);
2318 memcpy (name
, namebuf
, len
);
2319 newsect
= bfd_make_section (abfd
, name
);
2320 if (newsect
== NULL
)
2322 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2323 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2324 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2325 if (hdr
->p_type
== PT_LOAD
)
2327 newsect
->flags
|= SEC_ALLOC
;
2328 if (hdr
->p_flags
& PF_X
)
2329 newsect
->flags
|= SEC_CODE
;
2331 if (!(hdr
->p_flags
& PF_W
))
2332 newsect
->flags
|= SEC_READONLY
;
2339 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2341 const struct elf_backend_data
*bed
;
2343 switch (hdr
->p_type
)
2346 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2349 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2352 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2355 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2358 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2360 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2365 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2368 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2370 case PT_GNU_EH_FRAME
:
2371 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2375 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2378 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2381 /* Check for any processor-specific program segment types.
2382 If no handler for them, default to making "segment" sections. */
2383 bed
= get_elf_backend_data (abfd
);
2384 if (bed
->elf_backend_section_from_phdr
)
2385 return (*bed
->elf_backend_section_from_phdr
) (abfd
, hdr
, index
);
2387 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "segment");
2391 /* Initialize REL_HDR, the section-header for new section, containing
2392 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2393 relocations; otherwise, we use REL relocations. */
2396 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2397 Elf_Internal_Shdr
*rel_hdr
,
2399 bfd_boolean use_rela_p
)
2402 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2403 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2405 name
= bfd_alloc (abfd
, amt
);
2408 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2410 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2412 if (rel_hdr
->sh_name
== (unsigned int) -1)
2414 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2415 rel_hdr
->sh_entsize
= (use_rela_p
2416 ? bed
->s
->sizeof_rela
2417 : bed
->s
->sizeof_rel
);
2418 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2419 rel_hdr
->sh_flags
= 0;
2420 rel_hdr
->sh_addr
= 0;
2421 rel_hdr
->sh_size
= 0;
2422 rel_hdr
->sh_offset
= 0;
2427 /* Set up an ELF internal section header for a section. */
2430 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2432 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2433 bfd_boolean
*failedptr
= failedptrarg
;
2434 Elf_Internal_Shdr
*this_hdr
;
2438 /* We already failed; just get out of the bfd_map_over_sections
2443 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2445 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2446 asect
->name
, FALSE
);
2447 if (this_hdr
->sh_name
== (unsigned int) -1)
2453 this_hdr
->sh_flags
= 0;
2455 if ((asect
->flags
& SEC_ALLOC
) != 0
2456 || asect
->user_set_vma
)
2457 this_hdr
->sh_addr
= asect
->vma
;
2459 this_hdr
->sh_addr
= 0;
2461 this_hdr
->sh_offset
= 0;
2462 this_hdr
->sh_size
= asect
->size
;
2463 this_hdr
->sh_link
= 0;
2464 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2465 /* The sh_entsize and sh_info fields may have been set already by
2466 copy_private_section_data. */
2468 this_hdr
->bfd_section
= asect
;
2469 this_hdr
->contents
= NULL
;
2471 /* If the section type is unspecified, we set it based on
2473 if (this_hdr
->sh_type
== SHT_NULL
)
2475 if ((asect
->flags
& SEC_GROUP
) != 0)
2477 /* We also need to mark SHF_GROUP here for relocatable
2479 struct bfd_link_order
*l
;
2482 for (l
= asect
->link_order_head
; l
!= NULL
; l
= l
->next
)
2483 if (l
->type
== bfd_indirect_link_order
2484 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2487 /* The name is not important. Anything will do. */
2488 elf_group_name (elt
->output_section
) = "G";
2489 elf_section_flags (elt
->output_section
) |= SHF_GROUP
;
2491 elt
= elf_next_in_group (elt
);
2492 /* During a relocatable link, the lists are
2495 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2497 this_hdr
->sh_type
= SHT_GROUP
;
2499 else if ((asect
->flags
& SEC_ALLOC
) != 0
2500 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2501 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2502 this_hdr
->sh_type
= SHT_NOBITS
;
2504 this_hdr
->sh_type
= SHT_PROGBITS
;
2507 switch (this_hdr
->sh_type
)
2513 case SHT_INIT_ARRAY
:
2514 case SHT_FINI_ARRAY
:
2515 case SHT_PREINIT_ARRAY
:
2522 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2526 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2530 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2534 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2535 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2539 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2540 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2543 case SHT_GNU_versym
:
2544 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2547 case SHT_GNU_verdef
:
2548 this_hdr
->sh_entsize
= 0;
2549 /* objcopy or strip will copy over sh_info, but may not set
2550 cverdefs. The linker will set cverdefs, but sh_info will be
2552 if (this_hdr
->sh_info
== 0)
2553 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2555 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2556 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2559 case SHT_GNU_verneed
:
2560 this_hdr
->sh_entsize
= 0;
2561 /* objcopy or strip will copy over sh_info, but may not set
2562 cverrefs. The linker will set cverrefs, but sh_info will be
2564 if (this_hdr
->sh_info
== 0)
2565 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2567 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2568 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2572 this_hdr
->sh_entsize
= 4;
2576 if ((asect
->flags
& SEC_ALLOC
) != 0)
2577 this_hdr
->sh_flags
|= SHF_ALLOC
;
2578 if ((asect
->flags
& SEC_READONLY
) == 0)
2579 this_hdr
->sh_flags
|= SHF_WRITE
;
2580 if ((asect
->flags
& SEC_CODE
) != 0)
2581 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2582 if ((asect
->flags
& SEC_MERGE
) != 0)
2584 this_hdr
->sh_flags
|= SHF_MERGE
;
2585 this_hdr
->sh_entsize
= asect
->entsize
;
2586 if ((asect
->flags
& SEC_STRINGS
) != 0)
2587 this_hdr
->sh_flags
|= SHF_STRINGS
;
2589 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2590 this_hdr
->sh_flags
|= SHF_GROUP
;
2591 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2593 this_hdr
->sh_flags
|= SHF_TLS
;
2594 if (asect
->size
== 0 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2596 struct bfd_link_order
*o
;
2598 this_hdr
->sh_size
= 0;
2599 for (o
= asect
->link_order_head
; o
!= NULL
; o
= o
->next
)
2600 if (this_hdr
->sh_size
< o
->offset
+ o
->size
)
2601 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2602 if (this_hdr
->sh_size
)
2603 this_hdr
->sh_type
= SHT_NOBITS
;
2607 /* Check for processor-specific section types. */
2608 if (bed
->elf_backend_fake_sections
2609 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2612 /* If the section has relocs, set up a section header for the
2613 SHT_REL[A] section. If two relocation sections are required for
2614 this section, it is up to the processor-specific back-end to
2615 create the other. */
2616 if ((asect
->flags
& SEC_RELOC
) != 0
2617 && !_bfd_elf_init_reloc_shdr (abfd
,
2618 &elf_section_data (asect
)->rel_hdr
,
2624 /* Fill in the contents of a SHT_GROUP section. */
2627 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2629 bfd_boolean
*failedptr
= failedptrarg
;
2630 unsigned long symindx
;
2631 asection
*elt
, *first
;
2633 struct bfd_link_order
*l
;
2636 if (elf_section_data (sec
)->this_hdr
.sh_type
!= SHT_GROUP
2641 if (elf_group_id (sec
) != NULL
)
2642 symindx
= elf_group_id (sec
)->udata
.i
;
2646 /* If called from the assembler, swap_out_syms will have set up
2647 elf_section_syms; If called for "ld -r", use target_index. */
2648 if (elf_section_syms (abfd
) != NULL
)
2649 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2651 symindx
= sec
->target_index
;
2653 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2655 /* The contents won't be allocated for "ld -r" or objcopy. */
2657 if (sec
->contents
== NULL
)
2660 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2662 /* Arrange for the section to be written out. */
2663 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2664 if (sec
->contents
== NULL
)
2671 loc
= sec
->contents
+ sec
->size
;
2673 /* Get the pointer to the first section in the group that gas
2674 squirreled away here. objcopy arranges for this to be set to the
2675 start of the input section group. */
2676 first
= elt
= elf_next_in_group (sec
);
2678 /* First element is a flag word. Rest of section is elf section
2679 indices for all the sections of the group. Write them backwards
2680 just to keep the group in the same order as given in .section
2681 directives, not that it matters. */
2690 s
= s
->output_section
;
2693 idx
= elf_section_data (s
)->this_idx
;
2694 H_PUT_32 (abfd
, idx
, loc
);
2695 elt
= elf_next_in_group (elt
);
2700 /* If this is a relocatable link, then the above did nothing because
2701 SEC is the output section. Look through the input sections
2703 for (l
= sec
->link_order_head
; l
!= NULL
; l
= l
->next
)
2704 if (l
->type
== bfd_indirect_link_order
2705 && (elt
= elf_next_in_group (l
->u
.indirect
.section
)) != NULL
)
2710 elf_section_data (elt
->output_section
)->this_idx
, loc
);
2711 elt
= elf_next_in_group (elt
);
2712 /* During a relocatable link, the lists are circular. */
2714 while (elt
!= elf_next_in_group (l
->u
.indirect
.section
));
2716 if ((loc
-= 4) != sec
->contents
)
2719 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2722 /* Assign all ELF section numbers. The dummy first section is handled here
2723 too. The link/info pointers for the standard section types are filled
2724 in here too, while we're at it. */
2727 assign_section_numbers (bfd
*abfd
)
2729 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2731 unsigned int section_number
, secn
;
2732 Elf_Internal_Shdr
**i_shdrp
;
2737 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2739 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2741 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2743 if (section_number
== SHN_LORESERVE
)
2744 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2745 d
->this_idx
= section_number
++;
2746 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2747 if ((sec
->flags
& SEC_RELOC
) == 0)
2751 if (section_number
== SHN_LORESERVE
)
2752 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2753 d
->rel_idx
= section_number
++;
2754 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2759 if (section_number
== SHN_LORESERVE
)
2760 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2761 d
->rel_idx2
= section_number
++;
2762 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2768 if (section_number
== SHN_LORESERVE
)
2769 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2770 t
->shstrtab_section
= section_number
++;
2771 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2772 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2774 if (bfd_get_symcount (abfd
) > 0)
2776 if (section_number
== SHN_LORESERVE
)
2777 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2778 t
->symtab_section
= section_number
++;
2779 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2780 if (section_number
> SHN_LORESERVE
- 2)
2782 if (section_number
== SHN_LORESERVE
)
2783 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2784 t
->symtab_shndx_section
= section_number
++;
2785 t
->symtab_shndx_hdr
.sh_name
2786 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2787 ".symtab_shndx", FALSE
);
2788 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2791 if (section_number
== SHN_LORESERVE
)
2792 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2793 t
->strtab_section
= section_number
++;
2794 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
2797 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
2798 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
2800 elf_numsections (abfd
) = section_number
;
2801 elf_elfheader (abfd
)->e_shnum
= section_number
;
2802 if (section_number
> SHN_LORESERVE
)
2803 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2805 /* Set up the list of section header pointers, in agreement with the
2807 amt
= section_number
* sizeof (Elf_Internal_Shdr
*);
2808 i_shdrp
= bfd_zalloc (abfd
, amt
);
2809 if (i_shdrp
== NULL
)
2812 amt
= sizeof (Elf_Internal_Shdr
);
2813 i_shdrp
[0] = bfd_zalloc (abfd
, amt
);
2814 if (i_shdrp
[0] == NULL
)
2816 bfd_release (abfd
, i_shdrp
);
2820 elf_elfsections (abfd
) = i_shdrp
;
2822 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
2823 if (bfd_get_symcount (abfd
) > 0)
2825 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
2826 if (elf_numsections (abfd
) > SHN_LORESERVE
)
2828 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
2829 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
2831 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
2832 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
2835 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2837 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
2841 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
2842 if (d
->rel_idx
!= 0)
2843 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
2844 if (d
->rel_idx2
!= 0)
2845 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
2847 /* Fill in the sh_link and sh_info fields while we're at it. */
2849 /* sh_link of a reloc section is the section index of the symbol
2850 table. sh_info is the section index of the section to which
2851 the relocation entries apply. */
2852 if (d
->rel_idx
!= 0)
2854 d
->rel_hdr
.sh_link
= t
->symtab_section
;
2855 d
->rel_hdr
.sh_info
= d
->this_idx
;
2857 if (d
->rel_idx2
!= 0)
2859 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
2860 d
->rel_hdr2
->sh_info
= d
->this_idx
;
2863 /* We need to set up sh_link for SHF_LINK_ORDER. */
2864 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
2866 s
= elf_linked_to_section (sec
);
2868 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2871 struct bfd_link_order
*p
;
2873 /* Find out what the corresponding section in output
2875 for (p
= sec
->link_order_head
; p
!= NULL
; p
= p
->next
)
2877 s
= p
->u
.indirect
.section
;
2878 if (p
->type
== bfd_indirect_link_order
2879 && (bfd_get_flavour (s
->owner
)
2880 == bfd_target_elf_flavour
))
2882 Elf_Internal_Shdr
** const elf_shdrp
2883 = elf_elfsections (s
->owner
);
2885 = _bfd_elf_section_from_bfd_section (s
->owner
, s
);
2886 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
2888 The Intel C compiler generates SHT_IA_64_UNWIND with
2889 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2890 sh_info fields. Hence we could get the situation
2891 where elfsec is 0. */
2894 const struct elf_backend_data
*bed
2895 = get_elf_backend_data (abfd
);
2896 if (bed
->link_order_error_handler
)
2897 bed
->link_order_error_handler
2898 (_("%B: warning: sh_link not set for section `%S'"),
2903 s
= elf_shdrp
[elfsec
]->bfd_section
->output_section
;
2904 BFD_ASSERT (s
!= NULL
);
2905 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2913 switch (d
->this_hdr
.sh_type
)
2917 /* A reloc section which we are treating as a normal BFD
2918 section. sh_link is the section index of the symbol
2919 table. sh_info is the section index of the section to
2920 which the relocation entries apply. We assume that an
2921 allocated reloc section uses the dynamic symbol table.
2922 FIXME: How can we be sure? */
2923 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2925 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2927 /* We look up the section the relocs apply to by name. */
2929 if (d
->this_hdr
.sh_type
== SHT_REL
)
2933 s
= bfd_get_section_by_name (abfd
, name
);
2935 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
2939 /* We assume that a section named .stab*str is a stabs
2940 string section. We look for a section with the same name
2941 but without the trailing ``str'', and set its sh_link
2942 field to point to this section. */
2943 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
2944 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
2949 len
= strlen (sec
->name
);
2950 alc
= bfd_malloc (len
- 2);
2953 memcpy (alc
, sec
->name
, len
- 3);
2954 alc
[len
- 3] = '\0';
2955 s
= bfd_get_section_by_name (abfd
, alc
);
2959 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
2961 /* This is a .stab section. */
2962 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
2963 elf_section_data (s
)->this_hdr
.sh_entsize
2964 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
2971 case SHT_GNU_verneed
:
2972 case SHT_GNU_verdef
:
2973 /* sh_link is the section header index of the string table
2974 used for the dynamic entries, or the symbol table, or the
2976 s
= bfd_get_section_by_name (abfd
, ".dynstr");
2978 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2982 case SHT_GNU_versym
:
2983 /* sh_link is the section header index of the symbol table
2984 this hash table or version table is for. */
2985 s
= bfd_get_section_by_name (abfd
, ".dynsym");
2987 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
2991 d
->this_hdr
.sh_link
= t
->symtab_section
;
2995 for (secn
= 1; secn
< section_number
; ++secn
)
2996 if (i_shdrp
[secn
] == NULL
)
2997 i_shdrp
[secn
] = i_shdrp
[0];
2999 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3000 i_shdrp
[secn
]->sh_name
);
3004 /* Map symbol from it's internal number to the external number, moving
3005 all local symbols to be at the head of the list. */
3008 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3010 /* If the backend has a special mapping, use it. */
3011 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3012 if (bed
->elf_backend_sym_is_global
)
3013 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3015 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3016 || bfd_is_und_section (bfd_get_section (sym
))
3017 || bfd_is_com_section (bfd_get_section (sym
)));
3021 elf_map_symbols (bfd
*abfd
)
3023 unsigned int symcount
= bfd_get_symcount (abfd
);
3024 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3025 asymbol
**sect_syms
;
3026 unsigned int num_locals
= 0;
3027 unsigned int num_globals
= 0;
3028 unsigned int num_locals2
= 0;
3029 unsigned int num_globals2
= 0;
3037 fprintf (stderr
, "elf_map_symbols\n");
3041 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3043 if (max_index
< asect
->index
)
3044 max_index
= asect
->index
;
3048 amt
= max_index
* sizeof (asymbol
*);
3049 sect_syms
= bfd_zalloc (abfd
, amt
);
3050 if (sect_syms
== NULL
)
3052 elf_section_syms (abfd
) = sect_syms
;
3053 elf_num_section_syms (abfd
) = max_index
;
3055 /* Init sect_syms entries for any section symbols we have already
3056 decided to output. */
3057 for (idx
= 0; idx
< symcount
; idx
++)
3059 asymbol
*sym
= syms
[idx
];
3061 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3068 if (sec
->owner
!= NULL
)
3070 if (sec
->owner
!= abfd
)
3072 if (sec
->output_offset
!= 0)
3075 sec
= sec
->output_section
;
3077 /* Empty sections in the input files may have had a
3078 section symbol created for them. (See the comment
3079 near the end of _bfd_generic_link_output_symbols in
3080 linker.c). If the linker script discards such
3081 sections then we will reach this point. Since we know
3082 that we cannot avoid this case, we detect it and skip
3083 the abort and the assignment to the sect_syms array.
3084 To reproduce this particular case try running the
3085 linker testsuite test ld-scripts/weak.exp for an ELF
3086 port that uses the generic linker. */
3087 if (sec
->owner
== NULL
)
3090 BFD_ASSERT (sec
->owner
== abfd
);
3092 sect_syms
[sec
->index
] = syms
[idx
];
3097 /* Classify all of the symbols. */
3098 for (idx
= 0; idx
< symcount
; idx
++)
3100 if (!sym_is_global (abfd
, syms
[idx
]))
3106 /* We will be adding a section symbol for each BFD section. Most normal
3107 sections will already have a section symbol in outsymbols, but
3108 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3109 at least in that case. */
3110 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3112 if (sect_syms
[asect
->index
] == NULL
)
3114 if (!sym_is_global (abfd
, asect
->symbol
))
3121 /* Now sort the symbols so the local symbols are first. */
3122 amt
= (num_locals
+ num_globals
) * sizeof (asymbol
*);
3123 new_syms
= bfd_alloc (abfd
, amt
);
3125 if (new_syms
== NULL
)
3128 for (idx
= 0; idx
< symcount
; idx
++)
3130 asymbol
*sym
= syms
[idx
];
3133 if (!sym_is_global (abfd
, sym
))
3136 i
= num_locals
+ num_globals2
++;
3138 sym
->udata
.i
= i
+ 1;
3140 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3142 if (sect_syms
[asect
->index
] == NULL
)
3144 asymbol
*sym
= asect
->symbol
;
3147 sect_syms
[asect
->index
] = sym
;
3148 if (!sym_is_global (abfd
, sym
))
3151 i
= num_locals
+ num_globals2
++;
3153 sym
->udata
.i
= i
+ 1;
3157 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3159 elf_num_locals (abfd
) = num_locals
;
3160 elf_num_globals (abfd
) = num_globals
;
3164 /* Align to the maximum file alignment that could be required for any
3165 ELF data structure. */
3167 static inline file_ptr
3168 align_file_position (file_ptr off
, int align
)
3170 return (off
+ align
- 1) & ~(align
- 1);
3173 /* Assign a file position to a section, optionally aligning to the
3174 required section alignment. */
3177 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3185 al
= i_shdrp
->sh_addralign
;
3187 offset
= BFD_ALIGN (offset
, al
);
3189 i_shdrp
->sh_offset
= offset
;
3190 if (i_shdrp
->bfd_section
!= NULL
)
3191 i_shdrp
->bfd_section
->filepos
= offset
;
3192 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3193 offset
+= i_shdrp
->sh_size
;
3197 /* Compute the file positions we are going to put the sections at, and
3198 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3199 is not NULL, this is being called by the ELF backend linker. */
3202 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3203 struct bfd_link_info
*link_info
)
3205 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3207 struct bfd_strtab_hash
*strtab
;
3208 Elf_Internal_Shdr
*shstrtab_hdr
;
3210 if (abfd
->output_has_begun
)
3213 /* Do any elf backend specific processing first. */
3214 if (bed
->elf_backend_begin_write_processing
)
3215 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3217 if (! prep_headers (abfd
))
3220 /* Post process the headers if necessary. */
3221 if (bed
->elf_backend_post_process_headers
)
3222 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3225 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3229 if (!assign_section_numbers (abfd
))
3232 /* The backend linker builds symbol table information itself. */
3233 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3235 /* Non-zero if doing a relocatable link. */
3236 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3238 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3242 if (link_info
== NULL
)
3244 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3249 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3250 /* sh_name was set in prep_headers. */
3251 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3252 shstrtab_hdr
->sh_flags
= 0;
3253 shstrtab_hdr
->sh_addr
= 0;
3254 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3255 shstrtab_hdr
->sh_entsize
= 0;
3256 shstrtab_hdr
->sh_link
= 0;
3257 shstrtab_hdr
->sh_info
= 0;
3258 /* sh_offset is set in assign_file_positions_except_relocs. */
3259 shstrtab_hdr
->sh_addralign
= 1;
3261 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3264 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3267 Elf_Internal_Shdr
*hdr
;
3269 off
= elf_tdata (abfd
)->next_file_pos
;
3271 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3272 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3274 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3275 if (hdr
->sh_size
!= 0)
3276 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3278 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3279 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3281 elf_tdata (abfd
)->next_file_pos
= off
;
3283 /* Now that we know where the .strtab section goes, write it
3285 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3286 || ! _bfd_stringtab_emit (abfd
, strtab
))
3288 _bfd_stringtab_free (strtab
);
3291 abfd
->output_has_begun
= TRUE
;
3296 /* Create a mapping from a set of sections to a program segment. */
3298 static struct elf_segment_map
*
3299 make_mapping (bfd
*abfd
,
3300 asection
**sections
,
3305 struct elf_segment_map
*m
;
3310 amt
= sizeof (struct elf_segment_map
);
3311 amt
+= (to
- from
- 1) * sizeof (asection
*);
3312 m
= bfd_zalloc (abfd
, amt
);
3316 m
->p_type
= PT_LOAD
;
3317 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3318 m
->sections
[i
- from
] = *hdrpp
;
3319 m
->count
= to
- from
;
3321 if (from
== 0 && phdr
)
3323 /* Include the headers in the first PT_LOAD segment. */
3324 m
->includes_filehdr
= 1;
3325 m
->includes_phdrs
= 1;
3331 /* Set up a mapping from BFD sections to program segments. */
3334 map_sections_to_segments (bfd
*abfd
)
3336 asection
**sections
= NULL
;
3340 struct elf_segment_map
*mfirst
;
3341 struct elf_segment_map
**pm
;
3342 struct elf_segment_map
*m
;
3345 unsigned int phdr_index
;
3346 bfd_vma maxpagesize
;
3348 bfd_boolean phdr_in_segment
= TRUE
;
3349 bfd_boolean writable
;
3351 asection
*first_tls
= NULL
;
3352 asection
*dynsec
, *eh_frame_hdr
;
3355 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3358 if (bfd_count_sections (abfd
) == 0)
3361 /* Select the allocated sections, and sort them. */
3363 amt
= bfd_count_sections (abfd
) * sizeof (asection
*);
3364 sections
= bfd_malloc (amt
);
3365 if (sections
== NULL
)
3369 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3371 if ((s
->flags
& SEC_ALLOC
) != 0)
3377 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3380 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3382 /* Build the mapping. */
3387 /* If we have a .interp section, then create a PT_PHDR segment for
3388 the program headers and a PT_INTERP segment for the .interp
3390 s
= bfd_get_section_by_name (abfd
, ".interp");
3391 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3393 amt
= sizeof (struct elf_segment_map
);
3394 m
= bfd_zalloc (abfd
, amt
);
3398 m
->p_type
= PT_PHDR
;
3399 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3400 m
->p_flags
= PF_R
| PF_X
;
3401 m
->p_flags_valid
= 1;
3402 m
->includes_phdrs
= 1;
3407 amt
= sizeof (struct elf_segment_map
);
3408 m
= bfd_zalloc (abfd
, amt
);
3412 m
->p_type
= PT_INTERP
;
3420 /* Look through the sections. We put sections in the same program
3421 segment when the start of the second section can be placed within
3422 a few bytes of the end of the first section. */
3426 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3428 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3430 && (dynsec
->flags
& SEC_LOAD
) == 0)
3433 /* Deal with -Ttext or something similar such that the first section
3434 is not adjacent to the program headers. This is an
3435 approximation, since at this point we don't know exactly how many
3436 program headers we will need. */
3439 bfd_size_type phdr_size
;
3441 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3443 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3444 if ((abfd
->flags
& D_PAGED
) == 0
3445 || sections
[0]->lma
< phdr_size
3446 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3447 phdr_in_segment
= FALSE
;
3450 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3453 bfd_boolean new_segment
;
3457 /* See if this section and the last one will fit in the same
3460 if (last_hdr
== NULL
)
3462 /* If we don't have a segment yet, then we don't need a new
3463 one (we build the last one after this loop). */
3464 new_segment
= FALSE
;
3466 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3468 /* If this section has a different relation between the
3469 virtual address and the load address, then we need a new
3473 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3474 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3476 /* If putting this section in this segment would force us to
3477 skip a page in the segment, then we need a new segment. */
3480 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3481 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3483 /* We don't want to put a loadable section after a
3484 nonloadable section in the same segment.
3485 Consider .tbss sections as loadable for this purpose. */
3488 else if ((abfd
->flags
& D_PAGED
) == 0)
3490 /* If the file is not demand paged, which means that we
3491 don't require the sections to be correctly aligned in the
3492 file, then there is no other reason for a new segment. */
3493 new_segment
= FALSE
;
3496 && (hdr
->flags
& SEC_READONLY
) == 0
3497 && (((last_hdr
->lma
+ last_size
- 1)
3498 & ~(maxpagesize
- 1))
3499 != (hdr
->lma
& ~(maxpagesize
- 1))))
3501 /* We don't want to put a writable section in a read only
3502 segment, unless they are on the same page in memory
3503 anyhow. We already know that the last section does not
3504 bring us past the current section on the page, so the
3505 only case in which the new section is not on the same
3506 page as the previous section is when the previous section
3507 ends precisely on a page boundary. */
3512 /* Otherwise, we can use the same segment. */
3513 new_segment
= FALSE
;
3518 if ((hdr
->flags
& SEC_READONLY
) == 0)
3521 /* .tbss sections effectively have zero size. */
3522 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3523 last_size
= hdr
->size
;
3529 /* We need a new program segment. We must create a new program
3530 header holding all the sections from phdr_index until hdr. */
3532 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3539 if ((hdr
->flags
& SEC_READONLY
) == 0)
3545 /* .tbss sections effectively have zero size. */
3546 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3547 last_size
= hdr
->size
;
3551 phdr_in_segment
= FALSE
;
3554 /* Create a final PT_LOAD program segment. */
3555 if (last_hdr
!= NULL
)
3557 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3565 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3568 amt
= sizeof (struct elf_segment_map
);
3569 m
= bfd_zalloc (abfd
, amt
);
3573 m
->p_type
= PT_DYNAMIC
;
3575 m
->sections
[0] = dynsec
;
3581 /* For each loadable .note section, add a PT_NOTE segment. We don't
3582 use bfd_get_section_by_name, because if we link together
3583 nonloadable .note sections and loadable .note sections, we will
3584 generate two .note sections in the output file. FIXME: Using
3585 names for section types is bogus anyhow. */
3586 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3588 if ((s
->flags
& SEC_LOAD
) != 0
3589 && strncmp (s
->name
, ".note", 5) == 0)
3591 amt
= sizeof (struct elf_segment_map
);
3592 m
= bfd_zalloc (abfd
, amt
);
3596 m
->p_type
= PT_NOTE
;
3603 if (s
->flags
& SEC_THREAD_LOCAL
)
3611 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3616 amt
= sizeof (struct elf_segment_map
);
3617 amt
+= (tls_count
- 1) * sizeof (asection
*);
3618 m
= bfd_zalloc (abfd
, amt
);
3623 m
->count
= tls_count
;
3624 /* Mandated PF_R. */
3626 m
->p_flags_valid
= 1;
3627 for (i
= 0; i
< tls_count
; ++i
)
3629 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3630 m
->sections
[i
] = first_tls
;
3631 first_tls
= first_tls
->next
;
3638 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3640 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3641 if (eh_frame_hdr
!= NULL
3642 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3644 amt
= sizeof (struct elf_segment_map
);
3645 m
= bfd_zalloc (abfd
, amt
);
3649 m
->p_type
= PT_GNU_EH_FRAME
;
3651 m
->sections
[0] = eh_frame_hdr
->output_section
;
3657 if (elf_tdata (abfd
)->stack_flags
)
3659 amt
= sizeof (struct elf_segment_map
);
3660 m
= bfd_zalloc (abfd
, amt
);
3664 m
->p_type
= PT_GNU_STACK
;
3665 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3666 m
->p_flags_valid
= 1;
3672 if (elf_tdata (abfd
)->relro
)
3674 amt
= sizeof (struct elf_segment_map
);
3675 m
= bfd_zalloc (abfd
, amt
);
3679 m
->p_type
= PT_GNU_RELRO
;
3681 m
->p_flags_valid
= 1;
3690 elf_tdata (abfd
)->segment_map
= mfirst
;
3694 if (sections
!= NULL
)
3699 /* Sort sections by address. */
3702 elf_sort_sections (const void *arg1
, const void *arg2
)
3704 const asection
*sec1
= *(const asection
**) arg1
;
3705 const asection
*sec2
= *(const asection
**) arg2
;
3706 bfd_size_type size1
, size2
;
3708 /* Sort by LMA first, since this is the address used to
3709 place the section into a segment. */
3710 if (sec1
->lma
< sec2
->lma
)
3712 else if (sec1
->lma
> sec2
->lma
)
3715 /* Then sort by VMA. Normally the LMA and the VMA will be
3716 the same, and this will do nothing. */
3717 if (sec1
->vma
< sec2
->vma
)
3719 else if (sec1
->vma
> sec2
->vma
)
3722 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3724 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3730 /* If the indicies are the same, do not return 0
3731 here, but continue to try the next comparison. */
3732 if (sec1
->target_index
- sec2
->target_index
!= 0)
3733 return sec1
->target_index
- sec2
->target_index
;
3738 else if (TOEND (sec2
))
3743 /* Sort by size, to put zero sized sections
3744 before others at the same address. */
3746 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3747 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3754 return sec1
->target_index
- sec2
->target_index
;
3757 /* Ian Lance Taylor writes:
3759 We shouldn't be using % with a negative signed number. That's just
3760 not good. We have to make sure either that the number is not
3761 negative, or that the number has an unsigned type. When the types
3762 are all the same size they wind up as unsigned. When file_ptr is a
3763 larger signed type, the arithmetic winds up as signed long long,
3766 What we're trying to say here is something like ``increase OFF by
3767 the least amount that will cause it to be equal to the VMA modulo
3769 /* In other words, something like:
3771 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3772 off_offset = off % bed->maxpagesize;
3773 if (vma_offset < off_offset)
3774 adjustment = vma_offset + bed->maxpagesize - off_offset;
3776 adjustment = vma_offset - off_offset;
3778 which can can be collapsed into the expression below. */
3781 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
3783 return ((vma
- off
) % maxpagesize
);
3786 /* Assign file positions to the sections based on the mapping from
3787 sections to segments. This function also sets up some fields in
3788 the file header, and writes out the program headers. */
3791 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
3793 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3795 struct elf_segment_map
*m
;
3797 Elf_Internal_Phdr
*phdrs
;
3799 bfd_vma filehdr_vaddr
, filehdr_paddr
;
3800 bfd_vma phdrs_vaddr
, phdrs_paddr
;
3801 Elf_Internal_Phdr
*p
;
3804 if (elf_tdata (abfd
)->segment_map
== NULL
)
3806 if (! map_sections_to_segments (abfd
))
3811 /* The placement algorithm assumes that non allocated sections are
3812 not in PT_LOAD segments. We ensure this here by removing such
3813 sections from the segment map. */
3814 for (m
= elf_tdata (abfd
)->segment_map
;
3818 unsigned int new_count
;
3821 if (m
->p_type
!= PT_LOAD
)
3825 for (i
= 0; i
< m
->count
; i
++)
3827 if ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0)
3830 m
->sections
[new_count
] = m
->sections
[i
];
3836 if (new_count
!= m
->count
)
3837 m
->count
= new_count
;
3841 if (bed
->elf_backend_modify_segment_map
)
3843 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
3848 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
3851 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
3852 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
3853 elf_elfheader (abfd
)->e_phnum
= count
;
3858 /* If we already counted the number of program segments, make sure
3859 that we allocated enough space. This happens when SIZEOF_HEADERS
3860 is used in a linker script. */
3861 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
3862 if (alloc
!= 0 && count
> alloc
)
3864 ((*_bfd_error_handler
)
3865 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3866 bfd_get_filename (abfd
), alloc
, count
));
3867 bfd_set_error (bfd_error_bad_value
);
3874 amt
= alloc
* sizeof (Elf_Internal_Phdr
);
3875 phdrs
= bfd_alloc (abfd
, amt
);
3879 off
= bed
->s
->sizeof_ehdr
;
3880 off
+= alloc
* bed
->s
->sizeof_phdr
;
3887 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
3894 /* If elf_segment_map is not from map_sections_to_segments, the
3895 sections may not be correctly ordered. NOTE: sorting should
3896 not be done to the PT_NOTE section of a corefile, which may
3897 contain several pseudo-sections artificially created by bfd.
3898 Sorting these pseudo-sections breaks things badly. */
3900 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
3901 && m
->p_type
== PT_NOTE
))
3902 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
3905 p
->p_type
= m
->p_type
;
3906 p
->p_flags
= m
->p_flags
;
3908 if (p
->p_type
== PT_LOAD
3910 && (m
->sections
[0]->flags
& SEC_ALLOC
) != 0)
3912 if ((abfd
->flags
& D_PAGED
) != 0)
3913 off
+= vma_page_aligned_bias (m
->sections
[0]->vma
, off
,
3917 bfd_size_type align
;
3920 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
3922 bfd_size_type secalign
;
3924 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
3925 if (secalign
> align
)
3929 off
+= vma_page_aligned_bias (m
->sections
[0]->vma
, off
,
3933 /* Make sure the .dynamic section is the first section in the
3934 PT_DYNAMIC segment. */
3935 else if (p
->p_type
== PT_DYNAMIC
3937 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
3940 (_("%s: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3941 bfd_get_filename (abfd
));
3942 bfd_set_error (bfd_error_bad_value
);
3949 p
->p_vaddr
= m
->sections
[0]->vma
;
3951 if (m
->p_paddr_valid
)
3952 p
->p_paddr
= m
->p_paddr
;
3953 else if (m
->count
== 0)
3956 p
->p_paddr
= m
->sections
[0]->lma
;
3958 if (p
->p_type
== PT_LOAD
3959 && (abfd
->flags
& D_PAGED
) != 0)
3960 p
->p_align
= bed
->maxpagesize
;
3961 else if (m
->count
== 0)
3962 p
->p_align
= 1 << bed
->s
->log_file_align
;
3970 if (m
->includes_filehdr
)
3972 if (! m
->p_flags_valid
)
3975 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
3976 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
3979 BFD_ASSERT (p
->p_type
== PT_LOAD
);
3981 if (p
->p_vaddr
< (bfd_vma
) off
)
3983 (*_bfd_error_handler
)
3984 (_("%s: Not enough room for program headers, try linking with -N"),
3985 bfd_get_filename (abfd
));
3986 bfd_set_error (bfd_error_bad_value
);
3991 if (! m
->p_paddr_valid
)
3994 if (p
->p_type
== PT_LOAD
)
3996 filehdr_vaddr
= p
->p_vaddr
;
3997 filehdr_paddr
= p
->p_paddr
;
4001 if (m
->includes_phdrs
)
4003 if (! m
->p_flags_valid
)
4006 if (m
->includes_filehdr
)
4008 if (p
->p_type
== PT_LOAD
)
4010 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4011 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4016 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4020 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4021 p
->p_vaddr
-= off
- p
->p_offset
;
4022 if (! m
->p_paddr_valid
)
4023 p
->p_paddr
-= off
- p
->p_offset
;
4026 if (p
->p_type
== PT_LOAD
)
4028 phdrs_vaddr
= p
->p_vaddr
;
4029 phdrs_paddr
= p
->p_paddr
;
4032 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4035 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4036 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4039 if (p
->p_type
== PT_LOAD
4040 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4042 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4048 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4049 p
->p_filesz
+= adjust
;
4050 p
->p_memsz
+= adjust
;
4056 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4060 bfd_size_type align
;
4064 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4066 /* The section may have artificial alignment forced by a
4067 link script. Notice this case by the gap between the
4068 cumulative phdr lma and the section's lma. */
4069 if (p
->p_paddr
+ p
->p_memsz
< sec
->lma
)
4071 bfd_vma adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_memsz
);
4073 p
->p_memsz
+= adjust
;
4074 if (p
->p_type
== PT_LOAD
4075 || (p
->p_type
== PT_NOTE
4076 && bfd_get_format (abfd
) == bfd_core
))
4081 if ((flags
& SEC_LOAD
) != 0
4082 || (flags
& SEC_THREAD_LOCAL
) != 0)
4083 p
->p_filesz
+= adjust
;
4086 if (p
->p_type
== PT_LOAD
)
4088 bfd_signed_vma adjust
;
4090 if ((flags
& SEC_LOAD
) != 0)
4092 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_memsz
);
4096 else if ((flags
& SEC_ALLOC
) != 0)
4098 /* The section VMA must equal the file position
4099 modulo the page size. FIXME: I'm not sure if
4100 this adjustment is really necessary. We used to
4101 not have the SEC_LOAD case just above, and then
4102 this was necessary, but now I'm not sure. */
4103 if ((abfd
->flags
& D_PAGED
) != 0)
4104 adjust
= vma_page_aligned_bias (sec
->vma
, voff
,
4107 adjust
= vma_page_aligned_bias (sec
->vma
, voff
,
4117 (* _bfd_error_handler
) (_("\
4118 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
4119 bfd_section_name (abfd
, sec
),
4124 p
->p_memsz
+= adjust
;
4127 if ((flags
& SEC_LOAD
) != 0)
4128 p
->p_filesz
+= adjust
;
4133 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
4134 used in a linker script we may have a section with
4135 SEC_LOAD clear but which is supposed to have
4137 if ((flags
& SEC_LOAD
) != 0
4138 || (flags
& SEC_HAS_CONTENTS
) != 0)
4141 if ((flags
& SEC_ALLOC
) != 0
4142 && ((flags
& SEC_LOAD
) != 0
4143 || (flags
& SEC_THREAD_LOCAL
) == 0))
4147 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4149 /* The actual "note" segment has i == 0.
4150 This is the one that actually contains everything. */
4154 p
->p_filesz
= sec
->size
;
4160 /* Fake sections -- don't need to be written. */
4163 flags
= sec
->flags
= 0;
4170 if ((sec
->flags
& SEC_LOAD
) != 0
4171 || (sec
->flags
& SEC_THREAD_LOCAL
) == 0
4172 || p
->p_type
== PT_TLS
)
4173 p
->p_memsz
+= sec
->size
;
4175 if ((flags
& SEC_LOAD
) != 0)
4176 p
->p_filesz
+= sec
->size
;
4178 if (p
->p_type
== PT_TLS
4180 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4182 struct bfd_link_order
*o
;
4183 bfd_vma tbss_size
= 0;
4185 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
4186 if (tbss_size
< o
->offset
+ o
->size
)
4187 tbss_size
= o
->offset
+ o
->size
;
4189 p
->p_memsz
+= tbss_size
;
4192 if (align
> p
->p_align
4193 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4197 if (! m
->p_flags_valid
)
4200 if ((flags
& SEC_CODE
) != 0)
4202 if ((flags
& SEC_READONLY
) == 0)
4208 /* Now that we have set the section file positions, we can set up
4209 the file positions for the non PT_LOAD segments. */
4210 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4214 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4216 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4217 p
->p_offset
= m
->sections
[0]->filepos
;
4221 if (m
->includes_filehdr
)
4223 p
->p_vaddr
= filehdr_vaddr
;
4224 if (! m
->p_paddr_valid
)
4225 p
->p_paddr
= filehdr_paddr
;
4227 else if (m
->includes_phdrs
)
4229 p
->p_vaddr
= phdrs_vaddr
;
4230 if (! m
->p_paddr_valid
)
4231 p
->p_paddr
= phdrs_paddr
;
4233 else if (p
->p_type
== PT_GNU_RELRO
)
4235 Elf_Internal_Phdr
*lp
;
4237 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4239 if (lp
->p_type
== PT_LOAD
4240 && lp
->p_vaddr
<= link_info
->relro_end
4241 && lp
->p_vaddr
>= link_info
->relro_start
4242 && lp
->p_vaddr
+ lp
->p_filesz
4243 >= link_info
->relro_end
)
4247 if (lp
< phdrs
+ count
4248 && link_info
->relro_end
> lp
->p_vaddr
)
4250 p
->p_vaddr
= lp
->p_vaddr
;
4251 p
->p_paddr
= lp
->p_paddr
;
4252 p
->p_offset
= lp
->p_offset
;
4253 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4254 p
->p_memsz
= p
->p_filesz
;
4256 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4260 memset (p
, 0, sizeof *p
);
4261 p
->p_type
= PT_NULL
;
4267 /* Clear out any program headers we allocated but did not use. */
4268 for (; count
< alloc
; count
++, p
++)
4270 memset (p
, 0, sizeof *p
);
4271 p
->p_type
= PT_NULL
;
4274 elf_tdata (abfd
)->phdr
= phdrs
;
4276 elf_tdata (abfd
)->next_file_pos
= off
;
4278 /* Write out the program headers. */
4279 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4280 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4286 /* Get the size of the program header.
4288 If this is called by the linker before any of the section VMA's are set, it
4289 can't calculate the correct value for a strange memory layout. This only
4290 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4291 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4292 data segment (exclusive of .interp and .dynamic).
4294 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4295 will be two segments. */
4297 static bfd_size_type
4298 get_program_header_size (bfd
*abfd
)
4302 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4304 /* We can't return a different result each time we're called. */
4305 if (elf_tdata (abfd
)->program_header_size
!= 0)
4306 return elf_tdata (abfd
)->program_header_size
;
4308 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4310 struct elf_segment_map
*m
;
4313 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4315 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4316 return elf_tdata (abfd
)->program_header_size
;
4319 /* Assume we will need exactly two PT_LOAD segments: one for text
4320 and one for data. */
4323 s
= bfd_get_section_by_name (abfd
, ".interp");
4324 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4326 /* If we have a loadable interpreter section, we need a
4327 PT_INTERP segment. In this case, assume we also need a
4328 PT_PHDR segment, although that may not be true for all
4333 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4335 /* We need a PT_DYNAMIC segment. */
4339 if (elf_tdata (abfd
)->eh_frame_hdr
)
4341 /* We need a PT_GNU_EH_FRAME segment. */
4345 if (elf_tdata (abfd
)->stack_flags
)
4347 /* We need a PT_GNU_STACK segment. */
4351 if (elf_tdata (abfd
)->relro
)
4353 /* We need a PT_GNU_RELRO segment. */
4357 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4359 if ((s
->flags
& SEC_LOAD
) != 0
4360 && strncmp (s
->name
, ".note", 5) == 0)
4362 /* We need a PT_NOTE segment. */
4367 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4369 if (s
->flags
& SEC_THREAD_LOCAL
)
4371 /* We need a PT_TLS segment. */
4377 /* Let the backend count up any program headers it might need. */
4378 if (bed
->elf_backend_additional_program_headers
)
4382 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4388 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4389 return elf_tdata (abfd
)->program_header_size
;
4392 /* Work out the file positions of all the sections. This is called by
4393 _bfd_elf_compute_section_file_positions. All the section sizes and
4394 VMAs must be known before this is called.
4396 We do not consider reloc sections at this point, unless they form
4397 part of the loadable image. Reloc sections are assigned file
4398 positions in assign_file_positions_for_relocs, which is called by
4399 write_object_contents and final_link.
4401 We also don't set the positions of the .symtab and .strtab here. */
4404 assign_file_positions_except_relocs (bfd
*abfd
,
4405 struct bfd_link_info
*link_info
)
4407 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4408 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4409 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4410 unsigned int num_sec
= elf_numsections (abfd
);
4412 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4414 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4415 && bfd_get_format (abfd
) != bfd_core
)
4417 Elf_Internal_Shdr
**hdrpp
;
4420 /* Start after the ELF header. */
4421 off
= i_ehdrp
->e_ehsize
;
4423 /* We are not creating an executable, which means that we are
4424 not creating a program header, and that the actual order of
4425 the sections in the file is unimportant. */
4426 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4428 Elf_Internal_Shdr
*hdr
;
4431 if (hdr
->sh_type
== SHT_REL
4432 || hdr
->sh_type
== SHT_RELA
4433 || i
== tdata
->symtab_section
4434 || i
== tdata
->symtab_shndx_section
4435 || i
== tdata
->strtab_section
)
4437 hdr
->sh_offset
= -1;
4440 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4442 if (i
== SHN_LORESERVE
- 1)
4444 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4445 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4452 Elf_Internal_Shdr
**hdrpp
;
4454 /* Assign file positions for the loaded sections based on the
4455 assignment of sections to segments. */
4456 if (! assign_file_positions_for_segments (abfd
, link_info
))
4459 /* Assign file positions for the other sections. */
4461 off
= elf_tdata (abfd
)->next_file_pos
;
4462 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4464 Elf_Internal_Shdr
*hdr
;
4467 if (hdr
->bfd_section
!= NULL
4468 && hdr
->bfd_section
->filepos
!= 0)
4469 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4470 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4472 ((*_bfd_error_handler
)
4473 (_("%s: warning: allocated section `%s' not in segment"),
4474 bfd_get_filename (abfd
),
4475 (hdr
->bfd_section
== NULL
4477 : hdr
->bfd_section
->name
)));
4478 if ((abfd
->flags
& D_PAGED
) != 0)
4479 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4482 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4484 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4487 else if (hdr
->sh_type
== SHT_REL
4488 || hdr
->sh_type
== SHT_RELA
4489 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4490 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4491 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4492 hdr
->sh_offset
= -1;
4494 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4496 if (i
== SHN_LORESERVE
- 1)
4498 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4499 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4504 /* Place the section headers. */
4505 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4506 i_ehdrp
->e_shoff
= off
;
4507 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4509 elf_tdata (abfd
)->next_file_pos
= off
;
4515 prep_headers (bfd
*abfd
)
4517 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4518 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4519 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4520 struct elf_strtab_hash
*shstrtab
;
4521 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4523 i_ehdrp
= elf_elfheader (abfd
);
4524 i_shdrp
= elf_elfsections (abfd
);
4526 shstrtab
= _bfd_elf_strtab_init ();
4527 if (shstrtab
== NULL
)
4530 elf_shstrtab (abfd
) = shstrtab
;
4532 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4533 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4534 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4535 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4537 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4538 i_ehdrp
->e_ident
[EI_DATA
] =
4539 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4540 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4542 if ((abfd
->flags
& DYNAMIC
) != 0)
4543 i_ehdrp
->e_type
= ET_DYN
;
4544 else if ((abfd
->flags
& EXEC_P
) != 0)
4545 i_ehdrp
->e_type
= ET_EXEC
;
4546 else if (bfd_get_format (abfd
) == bfd_core
)
4547 i_ehdrp
->e_type
= ET_CORE
;
4549 i_ehdrp
->e_type
= ET_REL
;
4551 switch (bfd_get_arch (abfd
))
4553 case bfd_arch_unknown
:
4554 i_ehdrp
->e_machine
= EM_NONE
;
4557 /* There used to be a long list of cases here, each one setting
4558 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4559 in the corresponding bfd definition. To avoid duplication,
4560 the switch was removed. Machines that need special handling
4561 can generally do it in elf_backend_final_write_processing(),
4562 unless they need the information earlier than the final write.
4563 Such need can generally be supplied by replacing the tests for
4564 e_machine with the conditions used to determine it. */
4566 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4569 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4570 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4572 /* No program header, for now. */
4573 i_ehdrp
->e_phoff
= 0;
4574 i_ehdrp
->e_phentsize
= 0;
4575 i_ehdrp
->e_phnum
= 0;
4577 /* Each bfd section is section header entry. */
4578 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4579 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4581 /* If we're building an executable, we'll need a program header table. */
4582 if (abfd
->flags
& EXEC_P
)
4584 /* It all happens later. */
4586 i_ehdrp
->e_phentsize
= sizeof (Elf_External_Phdr
);
4588 /* elf_build_phdrs() returns a (NULL-terminated) array of
4589 Elf_Internal_Phdrs. */
4590 i_phdrp
= elf_build_phdrs (abfd
, i_ehdrp
, i_shdrp
, &i_ehdrp
->e_phnum
);
4591 i_ehdrp
->e_phoff
= outbase
;
4592 outbase
+= i_ehdrp
->e_phentsize
* i_ehdrp
->e_phnum
;
4597 i_ehdrp
->e_phentsize
= 0;
4599 i_ehdrp
->e_phoff
= 0;
4602 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4603 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4604 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4605 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4606 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4607 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4608 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4609 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4610 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4616 /* Assign file positions for all the reloc sections which are not part
4617 of the loadable file image. */
4620 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4623 unsigned int i
, num_sec
;
4624 Elf_Internal_Shdr
**shdrpp
;
4626 off
= elf_tdata (abfd
)->next_file_pos
;
4628 num_sec
= elf_numsections (abfd
);
4629 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4631 Elf_Internal_Shdr
*shdrp
;
4634 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4635 && shdrp
->sh_offset
== -1)
4636 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4639 elf_tdata (abfd
)->next_file_pos
= off
;
4643 _bfd_elf_write_object_contents (bfd
*abfd
)
4645 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4646 Elf_Internal_Ehdr
*i_ehdrp
;
4647 Elf_Internal_Shdr
**i_shdrp
;
4649 unsigned int count
, num_sec
;
4651 if (! abfd
->output_has_begun
4652 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4655 i_shdrp
= elf_elfsections (abfd
);
4656 i_ehdrp
= elf_elfheader (abfd
);
4659 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4663 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4665 /* After writing the headers, we need to write the sections too... */
4666 num_sec
= elf_numsections (abfd
);
4667 for (count
= 1; count
< num_sec
; count
++)
4669 if (bed
->elf_backend_section_processing
)
4670 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4671 if (i_shdrp
[count
]->contents
)
4673 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4675 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4676 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4679 if (count
== SHN_LORESERVE
- 1)
4680 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4683 /* Write out the section header names. */
4684 if (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4685 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
)))
4688 if (bed
->elf_backend_final_write_processing
)
4689 (*bed
->elf_backend_final_write_processing
) (abfd
,
4690 elf_tdata (abfd
)->linker
);
4692 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4696 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4698 /* Hopefully this can be done just like an object file. */
4699 return _bfd_elf_write_object_contents (abfd
);
4702 /* Given a section, search the header to find them. */
4705 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4707 const struct elf_backend_data
*bed
;
4710 if (elf_section_data (asect
) != NULL
4711 && elf_section_data (asect
)->this_idx
!= 0)
4712 return elf_section_data (asect
)->this_idx
;
4714 if (bfd_is_abs_section (asect
))
4716 else if (bfd_is_com_section (asect
))
4718 else if (bfd_is_und_section (asect
))
4722 Elf_Internal_Shdr
**i_shdrp
= elf_elfsections (abfd
);
4723 int maxindex
= elf_numsections (abfd
);
4725 for (index
= 1; index
< maxindex
; index
++)
4727 Elf_Internal_Shdr
*hdr
= i_shdrp
[index
];
4729 if (hdr
!= NULL
&& hdr
->bfd_section
== asect
)
4735 bed
= get_elf_backend_data (abfd
);
4736 if (bed
->elf_backend_section_from_bfd_section
)
4740 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4745 bfd_set_error (bfd_error_nonrepresentable_section
);
4750 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4754 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4756 asymbol
*asym_ptr
= *asym_ptr_ptr
;
4758 flagword flags
= asym_ptr
->flags
;
4760 /* When gas creates relocations against local labels, it creates its
4761 own symbol for the section, but does put the symbol into the
4762 symbol chain, so udata is 0. When the linker is generating
4763 relocatable output, this section symbol may be for one of the
4764 input sections rather than the output section. */
4765 if (asym_ptr
->udata
.i
== 0
4766 && (flags
& BSF_SECTION_SYM
)
4767 && asym_ptr
->section
)
4771 if (asym_ptr
->section
->output_section
!= NULL
)
4772 indx
= asym_ptr
->section
->output_section
->index
;
4774 indx
= asym_ptr
->section
->index
;
4775 if (indx
< elf_num_section_syms (abfd
)
4776 && elf_section_syms (abfd
)[indx
] != NULL
)
4777 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
4780 idx
= asym_ptr
->udata
.i
;
4784 /* This case can occur when using --strip-symbol on a symbol
4785 which is used in a relocation entry. */
4786 (*_bfd_error_handler
)
4787 (_("%B: symbol `%s' required but not present"),
4788 abfd
, bfd_asymbol_name (asym_ptr
));
4789 bfd_set_error (bfd_error_no_symbols
);
4796 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4797 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
4798 elf_symbol_flags (flags
));
4806 /* Copy private BFD data. This copies any program header information. */
4809 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
4811 Elf_Internal_Ehdr
*iehdr
;
4812 struct elf_segment_map
*map
;
4813 struct elf_segment_map
*map_first
;
4814 struct elf_segment_map
**pointer_to_map
;
4815 Elf_Internal_Phdr
*segment
;
4818 unsigned int num_segments
;
4819 bfd_boolean phdr_included
= FALSE
;
4820 bfd_vma maxpagesize
;
4821 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
4822 unsigned int phdr_adjust_num
= 0;
4823 const struct elf_backend_data
*bed
;
4825 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
4826 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
4829 if (elf_tdata (ibfd
)->phdr
== NULL
)
4832 bed
= get_elf_backend_data (ibfd
);
4833 iehdr
= elf_elfheader (ibfd
);
4836 pointer_to_map
= &map_first
;
4838 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
4839 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
4841 /* Returns the end address of the segment + 1. */
4842 #define SEGMENT_END(segment, start) \
4843 (start + (segment->p_memsz > segment->p_filesz \
4844 ? segment->p_memsz : segment->p_filesz))
4846 #define SECTION_SIZE(section, segment) \
4847 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4848 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4849 ? section->size : 0)
4851 /* Returns TRUE if the given section is contained within
4852 the given segment. VMA addresses are compared. */
4853 #define IS_CONTAINED_BY_VMA(section, segment) \
4854 (section->vma >= segment->p_vaddr \
4855 && (section->vma + SECTION_SIZE (section, segment) \
4856 <= (SEGMENT_END (segment, segment->p_vaddr))))
4858 /* Returns TRUE if the given section is contained within
4859 the given segment. LMA addresses are compared. */
4860 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4861 (section->lma >= base \
4862 && (section->lma + SECTION_SIZE (section, segment) \
4863 <= SEGMENT_END (segment, base)))
4865 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4866 #define IS_COREFILE_NOTE(p, s) \
4867 (p->p_type == PT_NOTE \
4868 && bfd_get_format (ibfd) == bfd_core \
4869 && s->vma == 0 && s->lma == 0 \
4870 && (bfd_vma) s->filepos >= p->p_offset \
4871 && ((bfd_vma) s->filepos + s->size \
4872 <= p->p_offset + p->p_filesz))
4874 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4875 linker, which generates a PT_INTERP section with p_vaddr and
4876 p_memsz set to 0. */
4877 #define IS_SOLARIS_PT_INTERP(p, s) \
4879 && p->p_paddr == 0 \
4880 && p->p_memsz == 0 \
4881 && p->p_filesz > 0 \
4882 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4884 && (bfd_vma) s->filepos >= p->p_offset \
4885 && ((bfd_vma) s->filepos + s->size \
4886 <= p->p_offset + p->p_filesz))
4888 /* Decide if the given section should be included in the given segment.
4889 A section will be included if:
4890 1. It is within the address space of the segment -- we use the LMA
4891 if that is set for the segment and the VMA otherwise,
4892 2. It is an allocated segment,
4893 3. There is an output section associated with it,
4894 4. The section has not already been allocated to a previous segment.
4895 5. PT_GNU_STACK segments do not include any sections.
4896 6. PT_TLS segment includes only SHF_TLS sections.
4897 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4898 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4899 ((((segment->p_paddr \
4900 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4901 : IS_CONTAINED_BY_VMA (section, segment)) \
4902 && (section->flags & SEC_ALLOC) != 0) \
4903 || IS_COREFILE_NOTE (segment, section)) \
4904 && section->output_section != NULL \
4905 && segment->p_type != PT_GNU_STACK \
4906 && (segment->p_type != PT_TLS \
4907 || (section->flags & SEC_THREAD_LOCAL)) \
4908 && (segment->p_type == PT_LOAD \
4909 || segment->p_type == PT_TLS \
4910 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4911 && ! section->segment_mark)
4913 /* Returns TRUE iff seg1 starts after the end of seg2. */
4914 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4915 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4917 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4918 their VMA address ranges and their LMA address ranges overlap.
4919 It is possible to have overlapping VMA ranges without overlapping LMA
4920 ranges. RedBoot images for example can have both .data and .bss mapped
4921 to the same VMA range, but with the .data section mapped to a different
4923 #define SEGMENT_OVERLAPS(seg1, seg2) \
4924 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4925 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4926 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4927 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4929 /* Initialise the segment mark field. */
4930 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
4931 section
->segment_mark
= FALSE
;
4933 /* Scan through the segments specified in the program header
4934 of the input BFD. For this first scan we look for overlaps
4935 in the loadable segments. These can be created by weird
4936 parameters to objcopy. Also, fix some solaris weirdness. */
4937 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
4942 Elf_Internal_Phdr
*segment2
;
4944 if (segment
->p_type
== PT_INTERP
)
4945 for (section
= ibfd
->sections
; section
; section
= section
->next
)
4946 if (IS_SOLARIS_PT_INTERP (segment
, section
))
4948 /* Mininal change so that the normal section to segment
4949 assignment code will work. */
4950 segment
->p_vaddr
= section
->vma
;
4954 if (segment
->p_type
!= PT_LOAD
)
4957 /* Determine if this segment overlaps any previous segments. */
4958 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
4960 bfd_signed_vma extra_length
;
4962 if (segment2
->p_type
!= PT_LOAD
4963 || ! SEGMENT_OVERLAPS (segment
, segment2
))
4966 /* Merge the two segments together. */
4967 if (segment2
->p_vaddr
< segment
->p_vaddr
)
4969 /* Extend SEGMENT2 to include SEGMENT and then delete
4972 SEGMENT_END (segment
, segment
->p_vaddr
)
4973 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
4975 if (extra_length
> 0)
4977 segment2
->p_memsz
+= extra_length
;
4978 segment2
->p_filesz
+= extra_length
;
4981 segment
->p_type
= PT_NULL
;
4983 /* Since we have deleted P we must restart the outer loop. */
4985 segment
= elf_tdata (ibfd
)->phdr
;
4990 /* Extend SEGMENT to include SEGMENT2 and then delete
4993 SEGMENT_END (segment2
, segment2
->p_vaddr
)
4994 - SEGMENT_END (segment
, segment
->p_vaddr
);
4996 if (extra_length
> 0)
4998 segment
->p_memsz
+= extra_length
;
4999 segment
->p_filesz
+= extra_length
;
5002 segment2
->p_type
= PT_NULL
;
5007 /* The second scan attempts to assign sections to segments. */
5008 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5012 unsigned int section_count
;
5013 asection
** sections
;
5014 asection
* output_section
;
5016 bfd_vma matching_lma
;
5017 bfd_vma suggested_lma
;
5021 if (segment
->p_type
== PT_NULL
)
5024 /* Compute how many sections might be placed into this segment. */
5025 for (section
= ibfd
->sections
, section_count
= 0;
5027 section
= section
->next
)
5028 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5031 /* Allocate a segment map big enough to contain
5032 all of the sections we have selected. */
5033 amt
= sizeof (struct elf_segment_map
);
5034 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5035 map
= bfd_alloc (obfd
, amt
);
5039 /* Initialise the fields of the segment map. Default to
5040 using the physical address of the segment in the input BFD. */
5042 map
->p_type
= segment
->p_type
;
5043 map
->p_flags
= segment
->p_flags
;
5044 map
->p_flags_valid
= 1;
5045 map
->p_paddr
= segment
->p_paddr
;
5046 map
->p_paddr_valid
= 1;
5048 /* Determine if this segment contains the ELF file header
5049 and if it contains the program headers themselves. */
5050 map
->includes_filehdr
= (segment
->p_offset
== 0
5051 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5053 map
->includes_phdrs
= 0;
5055 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5057 map
->includes_phdrs
=
5058 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5059 && (segment
->p_offset
+ segment
->p_filesz
5060 >= ((bfd_vma
) iehdr
->e_phoff
5061 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5063 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5064 phdr_included
= TRUE
;
5067 if (section_count
== 0)
5069 /* Special segments, such as the PT_PHDR segment, may contain
5070 no sections, but ordinary, loadable segments should contain
5071 something. They are allowed by the ELF spec however, so only
5072 a warning is produced. */
5073 if (segment
->p_type
== PT_LOAD
)
5074 (*_bfd_error_handler
)
5075 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5079 *pointer_to_map
= map
;
5080 pointer_to_map
= &map
->next
;
5085 /* Now scan the sections in the input BFD again and attempt
5086 to add their corresponding output sections to the segment map.
5087 The problem here is how to handle an output section which has
5088 been moved (ie had its LMA changed). There are four possibilities:
5090 1. None of the sections have been moved.
5091 In this case we can continue to use the segment LMA from the
5094 2. All of the sections have been moved by the same amount.
5095 In this case we can change the segment's LMA to match the LMA
5096 of the first section.
5098 3. Some of the sections have been moved, others have not.
5099 In this case those sections which have not been moved can be
5100 placed in the current segment which will have to have its size,
5101 and possibly its LMA changed, and a new segment or segments will
5102 have to be created to contain the other sections.
5104 4. The sections have been moved, but not by the same amount.
5105 In this case we can change the segment's LMA to match the LMA
5106 of the first section and we will have to create a new segment
5107 or segments to contain the other sections.
5109 In order to save time, we allocate an array to hold the section
5110 pointers that we are interested in. As these sections get assigned
5111 to a segment, they are removed from this array. */
5113 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5114 to work around this long long bug. */
5115 amt
= section_count
* sizeof (asection
*);
5116 sections
= bfd_malloc (amt
);
5117 if (sections
== NULL
)
5120 /* Step One: Scan for segment vs section LMA conflicts.
5121 Also add the sections to the section array allocated above.
5122 Also add the sections to the current segment. In the common
5123 case, where the sections have not been moved, this means that
5124 we have completely filled the segment, and there is nothing
5130 for (j
= 0, section
= ibfd
->sections
;
5132 section
= section
->next
)
5134 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5136 output_section
= section
->output_section
;
5138 sections
[j
++] = section
;
5140 /* The Solaris native linker always sets p_paddr to 0.
5141 We try to catch that case here, and set it to the
5142 correct value. Note - some backends require that
5143 p_paddr be left as zero. */
5144 if (segment
->p_paddr
== 0
5145 && segment
->p_vaddr
!= 0
5146 && (! bed
->want_p_paddr_set_to_zero
)
5148 && output_section
->lma
!= 0
5149 && (output_section
->vma
== (segment
->p_vaddr
5150 + (map
->includes_filehdr
5153 + (map
->includes_phdrs
5155 * iehdr
->e_phentsize
)
5157 map
->p_paddr
= segment
->p_vaddr
;
5159 /* Match up the physical address of the segment with the
5160 LMA address of the output section. */
5161 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5162 || IS_COREFILE_NOTE (segment
, section
)
5163 || (bed
->want_p_paddr_set_to_zero
&&
5164 IS_CONTAINED_BY_VMA (output_section
, segment
))
5167 if (matching_lma
== 0)
5168 matching_lma
= output_section
->lma
;
5170 /* We assume that if the section fits within the segment
5171 then it does not overlap any other section within that
5173 map
->sections
[isec
++] = output_section
;
5175 else if (suggested_lma
== 0)
5176 suggested_lma
= output_section
->lma
;
5180 BFD_ASSERT (j
== section_count
);
5182 /* Step Two: Adjust the physical address of the current segment,
5184 if (isec
== section_count
)
5186 /* All of the sections fitted within the segment as currently
5187 specified. This is the default case. Add the segment to
5188 the list of built segments and carry on to process the next
5189 program header in the input BFD. */
5190 map
->count
= section_count
;
5191 *pointer_to_map
= map
;
5192 pointer_to_map
= &map
->next
;
5199 if (matching_lma
!= 0)
5201 /* At least one section fits inside the current segment.
5202 Keep it, but modify its physical address to match the
5203 LMA of the first section that fitted. */
5204 map
->p_paddr
= matching_lma
;
5208 /* None of the sections fitted inside the current segment.
5209 Change the current segment's physical address to match
5210 the LMA of the first section. */
5211 map
->p_paddr
= suggested_lma
;
5214 /* Offset the segment physical address from the lma
5215 to allow for space taken up by elf headers. */
5216 if (map
->includes_filehdr
)
5217 map
->p_paddr
-= iehdr
->e_ehsize
;
5219 if (map
->includes_phdrs
)
5221 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5223 /* iehdr->e_phnum is just an estimate of the number
5224 of program headers that we will need. Make a note
5225 here of the number we used and the segment we chose
5226 to hold these headers, so that we can adjust the
5227 offset when we know the correct value. */
5228 phdr_adjust_num
= iehdr
->e_phnum
;
5229 phdr_adjust_seg
= map
;
5233 /* Step Three: Loop over the sections again, this time assigning
5234 those that fit to the current segment and removing them from the
5235 sections array; but making sure not to leave large gaps. Once all
5236 possible sections have been assigned to the current segment it is
5237 added to the list of built segments and if sections still remain
5238 to be assigned, a new segment is constructed before repeating
5246 /* Fill the current segment with sections that fit. */
5247 for (j
= 0; j
< section_count
; j
++)
5249 section
= sections
[j
];
5251 if (section
== NULL
)
5254 output_section
= section
->output_section
;
5256 BFD_ASSERT (output_section
!= NULL
);
5258 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5259 || IS_COREFILE_NOTE (segment
, section
))
5261 if (map
->count
== 0)
5263 /* If the first section in a segment does not start at
5264 the beginning of the segment, then something is
5266 if (output_section
->lma
!=
5268 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5269 + (map
->includes_phdrs
5270 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5276 asection
* prev_sec
;
5278 prev_sec
= map
->sections
[map
->count
- 1];
5280 /* If the gap between the end of the previous section
5281 and the start of this section is more than
5282 maxpagesize then we need to start a new segment. */
5283 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5285 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5286 || ((prev_sec
->lma
+ prev_sec
->size
)
5287 > output_section
->lma
))
5289 if (suggested_lma
== 0)
5290 suggested_lma
= output_section
->lma
;
5296 map
->sections
[map
->count
++] = output_section
;
5299 section
->segment_mark
= TRUE
;
5301 else if (suggested_lma
== 0)
5302 suggested_lma
= output_section
->lma
;
5305 BFD_ASSERT (map
->count
> 0);
5307 /* Add the current segment to the list of built segments. */
5308 *pointer_to_map
= map
;
5309 pointer_to_map
= &map
->next
;
5311 if (isec
< section_count
)
5313 /* We still have not allocated all of the sections to
5314 segments. Create a new segment here, initialise it
5315 and carry on looping. */
5316 amt
= sizeof (struct elf_segment_map
);
5317 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5318 map
= bfd_alloc (obfd
, amt
);
5325 /* Initialise the fields of the segment map. Set the physical
5326 physical address to the LMA of the first section that has
5327 not yet been assigned. */
5329 map
->p_type
= segment
->p_type
;
5330 map
->p_flags
= segment
->p_flags
;
5331 map
->p_flags_valid
= 1;
5332 map
->p_paddr
= suggested_lma
;
5333 map
->p_paddr_valid
= 1;
5334 map
->includes_filehdr
= 0;
5335 map
->includes_phdrs
= 0;
5338 while (isec
< section_count
);
5343 /* The Solaris linker creates program headers in which all the
5344 p_paddr fields are zero. When we try to objcopy or strip such a
5345 file, we get confused. Check for this case, and if we find it
5346 reset the p_paddr_valid fields. */
5347 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5348 if (map
->p_paddr
!= 0)
5351 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5352 map
->p_paddr_valid
= 0;
5354 elf_tdata (obfd
)->segment_map
= map_first
;
5356 /* If we had to estimate the number of program headers that were
5357 going to be needed, then check our estimate now and adjust
5358 the offset if necessary. */
5359 if (phdr_adjust_seg
!= NULL
)
5363 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5366 if (count
> phdr_adjust_num
)
5367 phdr_adjust_seg
->p_paddr
5368 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5372 /* Final Step: Sort the segments into ascending order of physical
5374 if (map_first
!= NULL
)
5376 struct elf_segment_map
*prev
;
5379 for (map
= map_first
->next
; map
!= NULL
; prev
= map
, map
= map
->next
)
5381 /* Yes I know - its a bubble sort.... */
5382 if (map
->next
!= NULL
&& (map
->next
->p_paddr
< map
->p_paddr
))
5384 /* Swap map and map->next. */
5385 prev
->next
= map
->next
;
5386 map
->next
= map
->next
->next
;
5387 prev
->next
->next
= map
;
5398 #undef IS_CONTAINED_BY_VMA
5399 #undef IS_CONTAINED_BY_LMA
5400 #undef IS_COREFILE_NOTE
5401 #undef IS_SOLARIS_PT_INTERP
5402 #undef INCLUDE_SECTION_IN_SEGMENT
5403 #undef SEGMENT_AFTER_SEGMENT
5404 #undef SEGMENT_OVERLAPS
5408 /* Copy private section information. This copies over the entsize
5409 field, and sometimes the info field. */
5412 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5417 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5419 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5420 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5423 ihdr
= &elf_section_data (isec
)->this_hdr
;
5424 ohdr
= &elf_section_data (osec
)->this_hdr
;
5426 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5428 if (ihdr
->sh_type
== SHT_SYMTAB
5429 || ihdr
->sh_type
== SHT_DYNSYM
5430 || ihdr
->sh_type
== SHT_GNU_verneed
5431 || ihdr
->sh_type
== SHT_GNU_verdef
)
5432 ohdr
->sh_info
= ihdr
->sh_info
;
5434 /* Set things up for objcopy. The output SHT_GROUP section will
5435 have its elf_next_in_group pointing back to the input group
5437 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5438 elf_group_name (osec
) = elf_group_name (isec
);
5440 osec
->use_rela_p
= isec
->use_rela_p
;
5445 /* Copy private header information. */
5448 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5450 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5451 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5454 /* Copy over private BFD data if it has not already been copied.
5455 This must be done here, rather than in the copy_private_bfd_data
5456 entry point, because the latter is called after the section
5457 contents have been set, which means that the program headers have
5458 already been worked out. */
5459 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5461 if (! copy_private_bfd_data (ibfd
, obfd
))
5468 /* Copy private symbol information. If this symbol is in a section
5469 which we did not map into a BFD section, try to map the section
5470 index correctly. We use special macro definitions for the mapped
5471 section indices; these definitions are interpreted by the
5472 swap_out_syms function. */
5474 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5475 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5476 #define MAP_STRTAB (SHN_HIOS + 3)
5477 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5478 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5481 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5486 elf_symbol_type
*isym
, *osym
;
5488 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5489 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5492 isym
= elf_symbol_from (ibfd
, isymarg
);
5493 osym
= elf_symbol_from (obfd
, osymarg
);
5497 && bfd_is_abs_section (isym
->symbol
.section
))
5501 shndx
= isym
->internal_elf_sym
.st_shndx
;
5502 if (shndx
== elf_onesymtab (ibfd
))
5503 shndx
= MAP_ONESYMTAB
;
5504 else if (shndx
== elf_dynsymtab (ibfd
))
5505 shndx
= MAP_DYNSYMTAB
;
5506 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5508 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5509 shndx
= MAP_SHSTRTAB
;
5510 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5511 shndx
= MAP_SYM_SHNDX
;
5512 osym
->internal_elf_sym
.st_shndx
= shndx
;
5518 /* Swap out the symbols. */
5521 swap_out_syms (bfd
*abfd
,
5522 struct bfd_strtab_hash
**sttp
,
5525 const struct elf_backend_data
*bed
;
5528 struct bfd_strtab_hash
*stt
;
5529 Elf_Internal_Shdr
*symtab_hdr
;
5530 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5531 Elf_Internal_Shdr
*symstrtab_hdr
;
5532 char *outbound_syms
;
5533 char *outbound_shndx
;
5536 bfd_boolean name_local_sections
;
5538 if (!elf_map_symbols (abfd
))
5541 /* Dump out the symtabs. */
5542 stt
= _bfd_elf_stringtab_init ();
5546 bed
= get_elf_backend_data (abfd
);
5547 symcount
= bfd_get_symcount (abfd
);
5548 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5549 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5550 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5551 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5552 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5553 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
5555 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
5556 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5558 amt
= (bfd_size_type
) (1 + symcount
) * bed
->s
->sizeof_sym
;
5559 outbound_syms
= bfd_alloc (abfd
, amt
);
5560 if (outbound_syms
== NULL
)
5562 _bfd_stringtab_free (stt
);
5565 symtab_hdr
->contents
= outbound_syms
;
5567 outbound_shndx
= NULL
;
5568 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
5569 if (symtab_shndx_hdr
->sh_name
!= 0)
5571 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
5572 outbound_shndx
= bfd_zalloc (abfd
, amt
);
5573 if (outbound_shndx
== NULL
)
5575 _bfd_stringtab_free (stt
);
5579 symtab_shndx_hdr
->contents
= outbound_shndx
;
5580 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
5581 symtab_shndx_hdr
->sh_size
= amt
;
5582 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
5583 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
5586 /* Now generate the data (for "contents"). */
5588 /* Fill in zeroth symbol and swap it out. */
5589 Elf_Internal_Sym sym
;
5595 sym
.st_shndx
= SHN_UNDEF
;
5596 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5597 outbound_syms
+= bed
->s
->sizeof_sym
;
5598 if (outbound_shndx
!= NULL
)
5599 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5603 = (bed
->elf_backend_name_local_section_symbols
5604 && bed
->elf_backend_name_local_section_symbols (abfd
));
5606 syms
= bfd_get_outsymbols (abfd
);
5607 for (idx
= 0; idx
< symcount
; idx
++)
5609 Elf_Internal_Sym sym
;
5610 bfd_vma value
= syms
[idx
]->value
;
5611 elf_symbol_type
*type_ptr
;
5612 flagword flags
= syms
[idx
]->flags
;
5615 if (!name_local_sections
5616 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
5618 /* Local section symbols have no name. */
5623 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
5626 if (sym
.st_name
== (unsigned long) -1)
5628 _bfd_stringtab_free (stt
);
5633 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
5635 if ((flags
& BSF_SECTION_SYM
) == 0
5636 && bfd_is_com_section (syms
[idx
]->section
))
5638 /* ELF common symbols put the alignment into the `value' field,
5639 and the size into the `size' field. This is backwards from
5640 how BFD handles it, so reverse it here. */
5641 sym
.st_size
= value
;
5642 if (type_ptr
== NULL
5643 || type_ptr
->internal_elf_sym
.st_value
== 0)
5644 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
5646 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
5647 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
5648 (abfd
, syms
[idx
]->section
);
5652 asection
*sec
= syms
[idx
]->section
;
5655 if (sec
->output_section
)
5657 value
+= sec
->output_offset
;
5658 sec
= sec
->output_section
;
5661 /* Don't add in the section vma for relocatable output. */
5662 if (! relocatable_p
)
5664 sym
.st_value
= value
;
5665 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
5667 if (bfd_is_abs_section (sec
)
5669 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
5671 /* This symbol is in a real ELF section which we did
5672 not create as a BFD section. Undo the mapping done
5673 by copy_private_symbol_data. */
5674 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
5678 shndx
= elf_onesymtab (abfd
);
5681 shndx
= elf_dynsymtab (abfd
);
5684 shndx
= elf_tdata (abfd
)->strtab_section
;
5687 shndx
= elf_tdata (abfd
)->shstrtab_section
;
5690 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
5698 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
5704 /* Writing this would be a hell of a lot easier if
5705 we had some decent documentation on bfd, and
5706 knew what to expect of the library, and what to
5707 demand of applications. For example, it
5708 appears that `objcopy' might not set the
5709 section of a symbol to be a section that is
5710 actually in the output file. */
5711 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
5714 _bfd_error_handler (_("\
5715 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5716 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
5718 bfd_set_error (bfd_error_invalid_operation
);
5719 _bfd_stringtab_free (stt
);
5723 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
5724 BFD_ASSERT (shndx
!= -1);
5728 sym
.st_shndx
= shndx
;
5731 if ((flags
& BSF_THREAD_LOCAL
) != 0)
5733 else if ((flags
& BSF_FUNCTION
) != 0)
5735 else if ((flags
& BSF_OBJECT
) != 0)
5740 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
5743 /* Processor-specific types. */
5744 if (type_ptr
!= NULL
5745 && bed
->elf_backend_get_symbol_type
)
5746 type
= ((*bed
->elf_backend_get_symbol_type
)
5747 (&type_ptr
->internal_elf_sym
, type
));
5749 if (flags
& BSF_SECTION_SYM
)
5751 if (flags
& BSF_GLOBAL
)
5752 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
5754 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
5756 else if (bfd_is_com_section (syms
[idx
]->section
))
5757 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
5758 else if (bfd_is_und_section (syms
[idx
]->section
))
5759 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
5763 else if (flags
& BSF_FILE
)
5764 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
5767 int bind
= STB_LOCAL
;
5769 if (flags
& BSF_LOCAL
)
5771 else if (flags
& BSF_WEAK
)
5773 else if (flags
& BSF_GLOBAL
)
5776 sym
.st_info
= ELF_ST_INFO (bind
, type
);
5779 if (type_ptr
!= NULL
)
5780 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
5784 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
5785 outbound_syms
+= bed
->s
->sizeof_sym
;
5786 if (outbound_shndx
!= NULL
)
5787 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
5791 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
5792 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
5794 symstrtab_hdr
->sh_flags
= 0;
5795 symstrtab_hdr
->sh_addr
= 0;
5796 symstrtab_hdr
->sh_entsize
= 0;
5797 symstrtab_hdr
->sh_link
= 0;
5798 symstrtab_hdr
->sh_info
= 0;
5799 symstrtab_hdr
->sh_addralign
= 1;
5804 /* Return the number of bytes required to hold the symtab vector.
5806 Note that we base it on the count plus 1, since we will null terminate
5807 the vector allocated based on this size. However, the ELF symbol table
5808 always has a dummy entry as symbol #0, so it ends up even. */
5811 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
5815 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5817 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5818 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5820 symtab_size
-= sizeof (asymbol
*);
5826 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
5830 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
5832 if (elf_dynsymtab (abfd
) == 0)
5834 bfd_set_error (bfd_error_invalid_operation
);
5838 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
5839 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
5841 symtab_size
-= sizeof (asymbol
*);
5847 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
5850 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
5853 /* Canonicalize the relocs. */
5856 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
5863 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5865 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
5868 tblptr
= section
->relocation
;
5869 for (i
= 0; i
< section
->reloc_count
; i
++)
5870 *relptr
++ = tblptr
++;
5874 return section
->reloc_count
;
5878 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
5880 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5881 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
5884 bfd_get_symcount (abfd
) = symcount
;
5889 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
5890 asymbol
**allocation
)
5892 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5893 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
5896 bfd_get_dynamic_symcount (abfd
) = symcount
;
5900 /* Return the size required for the dynamic reloc entries. Any
5901 section that was actually installed in the BFD, and has type
5902 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5903 considered to be a dynamic reloc section. */
5906 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
5911 if (elf_dynsymtab (abfd
) == 0)
5913 bfd_set_error (bfd_error_invalid_operation
);
5917 ret
= sizeof (arelent
*);
5918 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5919 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5920 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5921 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5922 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
5923 * sizeof (arelent
*));
5928 /* Canonicalize the dynamic relocation entries. Note that we return
5929 the dynamic relocations as a single block, although they are
5930 actually associated with particular sections; the interface, which
5931 was designed for SunOS style shared libraries, expects that there
5932 is only one set of dynamic relocs. Any section that was actually
5933 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5934 the dynamic symbol table, is considered to be a dynamic reloc
5938 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
5942 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
5946 if (elf_dynsymtab (abfd
) == 0)
5948 bfd_set_error (bfd_error_invalid_operation
);
5952 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
5954 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
5956 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
5957 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
5958 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
5963 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
5965 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
5967 for (i
= 0; i
< count
; i
++)
5978 /* Read in the version information. */
5981 _bfd_elf_slurp_version_tables (bfd
*abfd
)
5983 bfd_byte
*contents
= NULL
;
5986 if (elf_dynverdef (abfd
) != 0)
5988 Elf_Internal_Shdr
*hdr
;
5989 Elf_External_Verdef
*everdef
;
5990 Elf_Internal_Verdef
*iverdef
;
5991 Elf_Internal_Verdef
*iverdefarr
;
5992 Elf_Internal_Verdef iverdefmem
;
5994 unsigned int maxidx
;
5996 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
5998 contents
= bfd_malloc (hdr
->sh_size
);
5999 if (contents
== NULL
)
6001 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6002 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6005 /* We know the number of entries in the section but not the maximum
6006 index. Therefore we have to run through all entries and find
6008 everdef
= (Elf_External_Verdef
*) contents
;
6010 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6012 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6014 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6015 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6017 everdef
= ((Elf_External_Verdef
*)
6018 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6021 amt
= (bfd_size_type
) maxidx
* sizeof (Elf_Internal_Verdef
);
6022 elf_tdata (abfd
)->verdef
= bfd_zalloc (abfd
, amt
);
6023 if (elf_tdata (abfd
)->verdef
== NULL
)
6026 elf_tdata (abfd
)->cverdefs
= maxidx
;
6028 everdef
= (Elf_External_Verdef
*) contents
;
6029 iverdefarr
= elf_tdata (abfd
)->verdef
;
6030 for (i
= 0; i
< hdr
->sh_info
; i
++)
6032 Elf_External_Verdaux
*everdaux
;
6033 Elf_Internal_Verdaux
*iverdaux
;
6036 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6038 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6039 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6041 iverdef
->vd_bfd
= abfd
;
6043 amt
= (bfd_size_type
) iverdef
->vd_cnt
* sizeof (Elf_Internal_Verdaux
);
6044 iverdef
->vd_auxptr
= bfd_alloc (abfd
, amt
);
6045 if (iverdef
->vd_auxptr
== NULL
)
6048 everdaux
= ((Elf_External_Verdaux
*)
6049 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6050 iverdaux
= iverdef
->vd_auxptr
;
6051 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6053 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6055 iverdaux
->vda_nodename
=
6056 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6057 iverdaux
->vda_name
);
6058 if (iverdaux
->vda_nodename
== NULL
)
6061 if (j
+ 1 < iverdef
->vd_cnt
)
6062 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6064 iverdaux
->vda_nextptr
= NULL
;
6066 everdaux
= ((Elf_External_Verdaux
*)
6067 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6070 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6072 if (i
+ 1 < hdr
->sh_info
)
6073 iverdef
->vd_nextdef
= iverdef
+ 1;
6075 iverdef
->vd_nextdef
= NULL
;
6077 everdef
= ((Elf_External_Verdef
*)
6078 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6085 if (elf_dynverref (abfd
) != 0)
6087 Elf_Internal_Shdr
*hdr
;
6088 Elf_External_Verneed
*everneed
;
6089 Elf_Internal_Verneed
*iverneed
;
6092 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6094 amt
= (bfd_size_type
) hdr
->sh_info
* sizeof (Elf_Internal_Verneed
);
6095 elf_tdata (abfd
)->verref
= bfd_zalloc (abfd
, amt
);
6096 if (elf_tdata (abfd
)->verref
== NULL
)
6099 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6101 contents
= bfd_malloc (hdr
->sh_size
);
6102 if (contents
== NULL
)
6104 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6105 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6108 everneed
= (Elf_External_Verneed
*) contents
;
6109 iverneed
= elf_tdata (abfd
)->verref
;
6110 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6112 Elf_External_Vernaux
*evernaux
;
6113 Elf_Internal_Vernaux
*ivernaux
;
6116 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6118 iverneed
->vn_bfd
= abfd
;
6120 iverneed
->vn_filename
=
6121 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6123 if (iverneed
->vn_filename
== NULL
)
6126 amt
= iverneed
->vn_cnt
;
6127 amt
*= sizeof (Elf_Internal_Vernaux
);
6128 iverneed
->vn_auxptr
= bfd_alloc (abfd
, amt
);
6130 evernaux
= ((Elf_External_Vernaux
*)
6131 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6132 ivernaux
= iverneed
->vn_auxptr
;
6133 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6135 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6137 ivernaux
->vna_nodename
=
6138 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6139 ivernaux
->vna_name
);
6140 if (ivernaux
->vna_nodename
== NULL
)
6143 if (j
+ 1 < iverneed
->vn_cnt
)
6144 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6146 ivernaux
->vna_nextptr
= NULL
;
6148 evernaux
= ((Elf_External_Vernaux
*)
6149 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6152 if (i
+ 1 < hdr
->sh_info
)
6153 iverneed
->vn_nextref
= iverneed
+ 1;
6155 iverneed
->vn_nextref
= NULL
;
6157 everneed
= ((Elf_External_Verneed
*)
6158 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6168 if (contents
!= NULL
)
6174 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6176 elf_symbol_type
*newsym
;
6177 bfd_size_type amt
= sizeof (elf_symbol_type
);
6179 newsym
= bfd_zalloc (abfd
, amt
);
6184 newsym
->symbol
.the_bfd
= abfd
;
6185 return &newsym
->symbol
;
6190 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6194 bfd_symbol_info (symbol
, ret
);
6197 /* Return whether a symbol name implies a local symbol. Most targets
6198 use this function for the is_local_label_name entry point, but some
6202 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6205 /* Normal local symbols start with ``.L''. */
6206 if (name
[0] == '.' && name
[1] == 'L')
6209 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6210 DWARF debugging symbols starting with ``..''. */
6211 if (name
[0] == '.' && name
[1] == '.')
6214 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6215 emitting DWARF debugging output. I suspect this is actually a
6216 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6217 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6218 underscore to be emitted on some ELF targets). For ease of use,
6219 we treat such symbols as local. */
6220 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6227 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6228 asymbol
*symbol ATTRIBUTE_UNUSED
)
6235 _bfd_elf_set_arch_mach (bfd
*abfd
,
6236 enum bfd_architecture arch
,
6237 unsigned long machine
)
6239 /* If this isn't the right architecture for this backend, and this
6240 isn't the generic backend, fail. */
6241 if (arch
!= get_elf_backend_data (abfd
)->arch
6242 && arch
!= bfd_arch_unknown
6243 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6246 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6249 /* Find the function to a particular section and offset,
6250 for error reporting. */
6253 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6257 const char **filename_ptr
,
6258 const char **functionname_ptr
)
6260 const char *filename
;
6269 for (p
= symbols
; *p
!= NULL
; p
++)
6273 q
= (elf_symbol_type
*) *p
;
6275 if (bfd_get_section (&q
->symbol
) != section
)
6278 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6283 filename
= bfd_asymbol_name (&q
->symbol
);
6287 if (q
->symbol
.section
== section
6288 && q
->symbol
.value
>= low_func
6289 && q
->symbol
.value
<= offset
)
6291 func
= (asymbol
*) q
;
6292 low_func
= q
->symbol
.value
;
6302 *filename_ptr
= filename
;
6303 if (functionname_ptr
)
6304 *functionname_ptr
= bfd_asymbol_name (func
);
6309 /* Find the nearest line to a particular section and offset,
6310 for error reporting. */
6313 _bfd_elf_find_nearest_line (bfd
*abfd
,
6317 const char **filename_ptr
,
6318 const char **functionname_ptr
,
6319 unsigned int *line_ptr
)
6323 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6324 filename_ptr
, functionname_ptr
,
6327 if (!*functionname_ptr
)
6328 elf_find_function (abfd
, section
, symbols
, offset
,
6329 *filename_ptr
? NULL
: filename_ptr
,
6335 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6336 filename_ptr
, functionname_ptr
,
6338 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6340 if (!*functionname_ptr
)
6341 elf_find_function (abfd
, section
, symbols
, offset
,
6342 *filename_ptr
? NULL
: filename_ptr
,
6348 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6349 &found
, filename_ptr
,
6350 functionname_ptr
, line_ptr
,
6351 &elf_tdata (abfd
)->line_info
))
6353 if (found
&& (*functionname_ptr
|| *line_ptr
))
6356 if (symbols
== NULL
)
6359 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6360 filename_ptr
, functionname_ptr
))
6368 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6372 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6374 ret
+= get_program_header_size (abfd
);
6379 _bfd_elf_set_section_contents (bfd
*abfd
,
6381 const void *location
,
6383 bfd_size_type count
)
6385 Elf_Internal_Shdr
*hdr
;
6388 if (! abfd
->output_has_begun
6389 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
6392 hdr
= &elf_section_data (section
)->this_hdr
;
6393 pos
= hdr
->sh_offset
+ offset
;
6394 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
6395 || bfd_bwrite (location
, count
, abfd
) != count
)
6402 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
6403 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
6404 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
6409 /* Try to convert a non-ELF reloc into an ELF one. */
6412 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
6414 /* Check whether we really have an ELF howto. */
6416 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
6418 bfd_reloc_code_real_type code
;
6419 reloc_howto_type
*howto
;
6421 /* Alien reloc: Try to determine its type to replace it with an
6422 equivalent ELF reloc. */
6424 if (areloc
->howto
->pc_relative
)
6426 switch (areloc
->howto
->bitsize
)
6429 code
= BFD_RELOC_8_PCREL
;
6432 code
= BFD_RELOC_12_PCREL
;
6435 code
= BFD_RELOC_16_PCREL
;
6438 code
= BFD_RELOC_24_PCREL
;
6441 code
= BFD_RELOC_32_PCREL
;
6444 code
= BFD_RELOC_64_PCREL
;
6450 howto
= bfd_reloc_type_lookup (abfd
, code
);
6452 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
6454 if (howto
->pcrel_offset
)
6455 areloc
->addend
+= areloc
->address
;
6457 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
6462 switch (areloc
->howto
->bitsize
)
6468 code
= BFD_RELOC_14
;
6471 code
= BFD_RELOC_16
;
6474 code
= BFD_RELOC_26
;
6477 code
= BFD_RELOC_32
;
6480 code
= BFD_RELOC_64
;
6486 howto
= bfd_reloc_type_lookup (abfd
, code
);
6490 areloc
->howto
= howto
;
6498 (*_bfd_error_handler
)
6499 (_("%B: unsupported relocation type %s"),
6500 abfd
, areloc
->howto
->name
);
6501 bfd_set_error (bfd_error_bad_value
);
6506 _bfd_elf_close_and_cleanup (bfd
*abfd
)
6508 if (bfd_get_format (abfd
) == bfd_object
)
6510 if (elf_shstrtab (abfd
) != NULL
)
6511 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
6514 return _bfd_generic_close_and_cleanup (abfd
);
6517 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6518 in the relocation's offset. Thus we cannot allow any sort of sanity
6519 range-checking to interfere. There is nothing else to do in processing
6522 bfd_reloc_status_type
6523 _bfd_elf_rel_vtable_reloc_fn
6524 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
6525 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
6526 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
6527 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
6529 return bfd_reloc_ok
;
6532 /* Elf core file support. Much of this only works on native
6533 toolchains, since we rely on knowing the
6534 machine-dependent procfs structure in order to pick
6535 out details about the corefile. */
6537 #ifdef HAVE_SYS_PROCFS_H
6538 # include <sys/procfs.h>
6541 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6544 elfcore_make_pid (bfd
*abfd
)
6546 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
6547 + (elf_tdata (abfd
)->core_pid
));
6550 /* If there isn't a section called NAME, make one, using
6551 data from SECT. Note, this function will generate a
6552 reference to NAME, so you shouldn't deallocate or
6556 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
6560 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
6563 sect2
= bfd_make_section (abfd
, name
);
6567 sect2
->size
= sect
->size
;
6568 sect2
->filepos
= sect
->filepos
;
6569 sect2
->flags
= sect
->flags
;
6570 sect2
->alignment_power
= sect
->alignment_power
;
6574 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6575 actually creates up to two pseudosections:
6576 - For the single-threaded case, a section named NAME, unless
6577 such a section already exists.
6578 - For the multi-threaded case, a section named "NAME/PID", where
6579 PID is elfcore_make_pid (abfd).
6580 Both pseudosections have identical contents. */
6582 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
6588 char *threaded_name
;
6592 /* Build the section name. */
6594 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
6595 len
= strlen (buf
) + 1;
6596 threaded_name
= bfd_alloc (abfd
, len
);
6597 if (threaded_name
== NULL
)
6599 memcpy (threaded_name
, buf
, len
);
6601 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
6605 sect
->filepos
= filepos
;
6606 sect
->flags
= SEC_HAS_CONTENTS
;
6607 sect
->alignment_power
= 2;
6609 return elfcore_maybe_make_sect (abfd
, name
, sect
);
6612 /* prstatus_t exists on:
6614 linux 2.[01] + glibc
6618 #if defined (HAVE_PRSTATUS_T)
6621 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6626 if (note
->descsz
== sizeof (prstatus_t
))
6630 size
= sizeof (prstat
.pr_reg
);
6631 offset
= offsetof (prstatus_t
, pr_reg
);
6632 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6634 /* Do not overwrite the core signal if it
6635 has already been set by another thread. */
6636 if (elf_tdata (abfd
)->core_signal
== 0)
6637 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6638 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6640 /* pr_who exists on:
6643 pr_who doesn't exist on:
6646 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6647 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6650 #if defined (HAVE_PRSTATUS32_T)
6651 else if (note
->descsz
== sizeof (prstatus32_t
))
6653 /* 64-bit host, 32-bit corefile */
6654 prstatus32_t prstat
;
6656 size
= sizeof (prstat
.pr_reg
);
6657 offset
= offsetof (prstatus32_t
, pr_reg
);
6658 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
6660 /* Do not overwrite the core signal if it
6661 has already been set by another thread. */
6662 if (elf_tdata (abfd
)->core_signal
== 0)
6663 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
6664 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
6666 /* pr_who exists on:
6669 pr_who doesn't exist on:
6672 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6673 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
6676 #endif /* HAVE_PRSTATUS32_T */
6679 /* Fail - we don't know how to handle any other
6680 note size (ie. data object type). */
6684 /* Make a ".reg/999" section and a ".reg" section. */
6685 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
6686 size
, note
->descpos
+ offset
);
6688 #endif /* defined (HAVE_PRSTATUS_T) */
6690 /* Create a pseudosection containing the exact contents of NOTE. */
6692 elfcore_make_note_pseudosection (bfd
*abfd
,
6694 Elf_Internal_Note
*note
)
6696 return _bfd_elfcore_make_pseudosection (abfd
, name
,
6697 note
->descsz
, note
->descpos
);
6700 /* There isn't a consistent prfpregset_t across platforms,
6701 but it doesn't matter, because we don't have to pick this
6702 data structure apart. */
6705 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6707 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
6710 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6711 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6715 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
6717 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
6720 #if defined (HAVE_PRPSINFO_T)
6721 typedef prpsinfo_t elfcore_psinfo_t
;
6722 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6723 typedef prpsinfo32_t elfcore_psinfo32_t
;
6727 #if defined (HAVE_PSINFO_T)
6728 typedef psinfo_t elfcore_psinfo_t
;
6729 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6730 typedef psinfo32_t elfcore_psinfo32_t
;
6734 /* return a malloc'ed copy of a string at START which is at
6735 most MAX bytes long, possibly without a terminating '\0'.
6736 the copy will always have a terminating '\0'. */
6739 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
6742 char *end
= memchr (start
, '\0', max
);
6750 dups
= bfd_alloc (abfd
, len
+ 1);
6754 memcpy (dups
, start
, len
);
6760 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6762 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
6764 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
6766 elfcore_psinfo_t psinfo
;
6768 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6770 elf_tdata (abfd
)->core_program
6771 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6772 sizeof (psinfo
.pr_fname
));
6774 elf_tdata (abfd
)->core_command
6775 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6776 sizeof (psinfo
.pr_psargs
));
6778 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6779 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
6781 /* 64-bit host, 32-bit corefile */
6782 elfcore_psinfo32_t psinfo
;
6784 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
6786 elf_tdata (abfd
)->core_program
6787 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
6788 sizeof (psinfo
.pr_fname
));
6790 elf_tdata (abfd
)->core_command
6791 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
6792 sizeof (psinfo
.pr_psargs
));
6798 /* Fail - we don't know how to handle any other
6799 note size (ie. data object type). */
6803 /* Note that for some reason, a spurious space is tacked
6804 onto the end of the args in some (at least one anyway)
6805 implementations, so strip it off if it exists. */
6808 char *command
= elf_tdata (abfd
)->core_command
;
6809 int n
= strlen (command
);
6811 if (0 < n
&& command
[n
- 1] == ' ')
6812 command
[n
- 1] = '\0';
6817 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6819 #if defined (HAVE_PSTATUS_T)
6821 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6823 if (note
->descsz
== sizeof (pstatus_t
)
6824 #if defined (HAVE_PXSTATUS_T)
6825 || note
->descsz
== sizeof (pxstatus_t
)
6831 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6833 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6835 #if defined (HAVE_PSTATUS32_T)
6836 else if (note
->descsz
== sizeof (pstatus32_t
))
6838 /* 64-bit host, 32-bit corefile */
6841 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
6843 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
6846 /* Could grab some more details from the "representative"
6847 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6848 NT_LWPSTATUS note, presumably. */
6852 #endif /* defined (HAVE_PSTATUS_T) */
6854 #if defined (HAVE_LWPSTATUS_T)
6856 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6858 lwpstatus_t lwpstat
;
6864 if (note
->descsz
!= sizeof (lwpstat
)
6865 #if defined (HAVE_LWPXSTATUS_T)
6866 && note
->descsz
!= sizeof (lwpxstatus_t
)
6871 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
6873 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
6874 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
6876 /* Make a ".reg/999" section. */
6878 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
6879 len
= strlen (buf
) + 1;
6880 name
= bfd_alloc (abfd
, len
);
6883 memcpy (name
, buf
, len
);
6885 sect
= bfd_make_section_anyway (abfd
, name
);
6889 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6890 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
6891 sect
->filepos
= note
->descpos
6892 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
6895 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6896 sect
->size
= sizeof (lwpstat
.pr_reg
);
6897 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
6900 sect
->flags
= SEC_HAS_CONTENTS
;
6901 sect
->alignment_power
= 2;
6903 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
6906 /* Make a ".reg2/999" section */
6908 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
6909 len
= strlen (buf
) + 1;
6910 name
= bfd_alloc (abfd
, len
);
6913 memcpy (name
, buf
, len
);
6915 sect
= bfd_make_section_anyway (abfd
, name
);
6919 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6920 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
6921 sect
->filepos
= note
->descpos
6922 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
6925 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6926 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
6927 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
6930 sect
->flags
= SEC_HAS_CONTENTS
;
6931 sect
->alignment_power
= 2;
6933 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
6935 #endif /* defined (HAVE_LWPSTATUS_T) */
6937 #if defined (HAVE_WIN32_PSTATUS_T)
6939 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
6945 win32_pstatus_t pstatus
;
6947 if (note
->descsz
< sizeof (pstatus
))
6950 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
6952 switch (pstatus
.data_type
)
6954 case NOTE_INFO_PROCESS
:
6955 /* FIXME: need to add ->core_command. */
6956 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
6957 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
6960 case NOTE_INFO_THREAD
:
6961 /* Make a ".reg/999" section. */
6962 sprintf (buf
, ".reg/%d", pstatus
.data
.thread_info
.tid
);
6964 len
= strlen (buf
) + 1;
6965 name
= bfd_alloc (abfd
, len
);
6969 memcpy (name
, buf
, len
);
6971 sect
= bfd_make_section_anyway (abfd
, name
);
6975 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
6976 sect
->filepos
= (note
->descpos
6977 + offsetof (struct win32_pstatus
,
6978 data
.thread_info
.thread_context
));
6979 sect
->flags
= SEC_HAS_CONTENTS
;
6980 sect
->alignment_power
= 2;
6982 if (pstatus
.data
.thread_info
.is_active_thread
)
6983 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
6987 case NOTE_INFO_MODULE
:
6988 /* Make a ".module/xxxxxxxx" section. */
6989 sprintf (buf
, ".module/%08x", pstatus
.data
.module_info
.base_address
);
6991 len
= strlen (buf
) + 1;
6992 name
= bfd_alloc (abfd
, len
);
6996 memcpy (name
, buf
, len
);
6998 sect
= bfd_make_section_anyway (abfd
, name
);
7003 sect
->size
= note
->descsz
;
7004 sect
->filepos
= note
->descpos
;
7005 sect
->flags
= SEC_HAS_CONTENTS
;
7006 sect
->alignment_power
= 2;
7015 #endif /* HAVE_WIN32_PSTATUS_T */
7018 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7020 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7028 if (bed
->elf_backend_grok_prstatus
)
7029 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7031 #if defined (HAVE_PRSTATUS_T)
7032 return elfcore_grok_prstatus (abfd
, note
);
7037 #if defined (HAVE_PSTATUS_T)
7039 return elfcore_grok_pstatus (abfd
, note
);
7042 #if defined (HAVE_LWPSTATUS_T)
7044 return elfcore_grok_lwpstatus (abfd
, note
);
7047 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7048 return elfcore_grok_prfpreg (abfd
, note
);
7050 #if defined (HAVE_WIN32_PSTATUS_T)
7051 case NT_WIN32PSTATUS
:
7052 return elfcore_grok_win32pstatus (abfd
, note
);
7055 case NT_PRXFPREG
: /* Linux SSE extension */
7056 if (note
->namesz
== 6
7057 && strcmp (note
->namedata
, "LINUX") == 0)
7058 return elfcore_grok_prxfpreg (abfd
, note
);
7064 if (bed
->elf_backend_grok_psinfo
)
7065 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7067 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7068 return elfcore_grok_psinfo (abfd
, note
);
7075 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7079 sect
->size
= note
->descsz
;
7080 sect
->filepos
= note
->descpos
;
7081 sect
->flags
= SEC_HAS_CONTENTS
;
7082 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7090 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7094 cp
= strchr (note
->namedata
, '@');
7097 *lwpidp
= atoi(cp
+ 1);
7104 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7107 /* Signal number at offset 0x08. */
7108 elf_tdata (abfd
)->core_signal
7109 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7111 /* Process ID at offset 0x50. */
7112 elf_tdata (abfd
)->core_pid
7113 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7115 /* Command name at 0x7c (max 32 bytes, including nul). */
7116 elf_tdata (abfd
)->core_command
7117 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7119 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7124 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7128 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7129 elf_tdata (abfd
)->core_lwpid
= lwp
;
7131 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7133 /* NetBSD-specific core "procinfo". Note that we expect to
7134 find this note before any of the others, which is fine,
7135 since the kernel writes this note out first when it
7136 creates a core file. */
7138 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7141 /* As of Jan 2002 there are no other machine-independent notes
7142 defined for NetBSD core files. If the note type is less
7143 than the start of the machine-dependent note types, we don't
7146 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7150 switch (bfd_get_arch (abfd
))
7152 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7153 PT_GETFPREGS == mach+2. */
7155 case bfd_arch_alpha
:
7156 case bfd_arch_sparc
:
7159 case NT_NETBSDCORE_FIRSTMACH
+0:
7160 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7162 case NT_NETBSDCORE_FIRSTMACH
+2:
7163 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7169 /* On all other arch's, PT_GETREGS == mach+1 and
7170 PT_GETFPREGS == mach+3. */
7175 case NT_NETBSDCORE_FIRSTMACH
+1:
7176 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7178 case NT_NETBSDCORE_FIRSTMACH
+3:
7179 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7189 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7191 void *ddata
= note
->descdata
;
7198 /* nto_procfs_status 'pid' field is at offset 0. */
7199 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7201 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7202 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7204 /* nto_procfs_status 'flags' field is at offset 8. */
7205 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7207 /* nto_procfs_status 'what' field is at offset 14. */
7208 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7210 elf_tdata (abfd
)->core_signal
= sig
;
7211 elf_tdata (abfd
)->core_lwpid
= *tid
;
7214 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7215 do not come from signals so we make sure we set the current
7216 thread just in case. */
7217 if (flags
& 0x00000080)
7218 elf_tdata (abfd
)->core_lwpid
= *tid
;
7220 /* Make a ".qnx_core_status/%d" section. */
7221 sprintf (buf
, ".qnx_core_status/%d", *tid
);
7223 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7228 sect
= bfd_make_section_anyway (abfd
, name
);
7232 sect
->size
= note
->descsz
;
7233 sect
->filepos
= note
->descpos
;
7234 sect
->flags
= SEC_HAS_CONTENTS
;
7235 sect
->alignment_power
= 2;
7237 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7241 elfcore_grok_nto_gregs (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t tid
)
7247 /* Make a ".reg/%d" section. */
7248 sprintf (buf
, ".reg/%d", tid
);
7250 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7255 sect
= bfd_make_section_anyway (abfd
, name
);
7259 sect
->size
= note
->descsz
;
7260 sect
->filepos
= note
->descpos
;
7261 sect
->flags
= SEC_HAS_CONTENTS
;
7262 sect
->alignment_power
= 2;
7264 /* This is the current thread. */
7265 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7266 return elfcore_maybe_make_sect (abfd
, ".reg", sect
);
7271 #define BFD_QNT_CORE_INFO 7
7272 #define BFD_QNT_CORE_STATUS 8
7273 #define BFD_QNT_CORE_GREG 9
7274 #define BFD_QNT_CORE_FPREG 10
7277 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7279 /* Every GREG section has a STATUS section before it. Store the
7280 tid from the previous call to pass down to the next gregs
7282 static pid_t tid
= 1;
7286 case BFD_QNT_CORE_INFO
: return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7287 case BFD_QNT_CORE_STATUS
: return elfcore_grok_nto_status (abfd
, note
, &tid
);
7288 case BFD_QNT_CORE_GREG
: return elfcore_grok_nto_gregs (abfd
, note
, tid
);
7289 case BFD_QNT_CORE_FPREG
: return elfcore_grok_prfpreg (abfd
, note
);
7290 default: return TRUE
;
7294 /* Function: elfcore_write_note
7301 size of data for note
7304 End of buffer containing note. */
7307 elfcore_write_note (bfd
*abfd
,
7315 Elf_External_Note
*xnp
;
7325 const struct elf_backend_data
*bed
;
7327 namesz
= strlen (name
) + 1;
7328 bed
= get_elf_backend_data (abfd
);
7329 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7332 newspace
= 12 + namesz
+ pad
+ size
;
7334 p
= realloc (buf
, *bufsiz
+ newspace
);
7336 *bufsiz
+= newspace
;
7337 xnp
= (Elf_External_Note
*) dest
;
7338 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7339 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7340 H_PUT_32 (abfd
, type
, xnp
->type
);
7344 memcpy (dest
, name
, namesz
);
7352 memcpy (dest
, input
, size
);
7356 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7358 elfcore_write_prpsinfo (bfd
*abfd
,
7365 char *note_name
= "CORE";
7367 #if defined (HAVE_PSINFO_T)
7369 note_type
= NT_PSINFO
;
7372 note_type
= NT_PRPSINFO
;
7375 memset (&data
, 0, sizeof (data
));
7376 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
7377 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
7378 return elfcore_write_note (abfd
, buf
, bufsiz
,
7379 note_name
, note_type
, &data
, sizeof (data
));
7381 #endif /* PSINFO_T or PRPSINFO_T */
7383 #if defined (HAVE_PRSTATUS_T)
7385 elfcore_write_prstatus (bfd
*abfd
,
7393 char *note_name
= "CORE";
7395 memset (&prstat
, 0, sizeof (prstat
));
7396 prstat
.pr_pid
= pid
;
7397 prstat
.pr_cursig
= cursig
;
7398 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
7399 return elfcore_write_note (abfd
, buf
, bufsiz
,
7400 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
7402 #endif /* HAVE_PRSTATUS_T */
7404 #if defined (HAVE_LWPSTATUS_T)
7406 elfcore_write_lwpstatus (bfd
*abfd
,
7413 lwpstatus_t lwpstat
;
7414 char *note_name
= "CORE";
7416 memset (&lwpstat
, 0, sizeof (lwpstat
));
7417 lwpstat
.pr_lwpid
= pid
>> 16;
7418 lwpstat
.pr_cursig
= cursig
;
7419 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7420 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
7421 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7423 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
7424 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
7426 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
7427 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
7430 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7431 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
7433 #endif /* HAVE_LWPSTATUS_T */
7435 #if defined (HAVE_PSTATUS_T)
7437 elfcore_write_pstatus (bfd
*abfd
,
7445 char *note_name
= "CORE";
7447 memset (&pstat
, 0, sizeof (pstat
));
7448 pstat
.pr_pid
= pid
& 0xffff;
7449 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
7450 NT_PSTATUS
, &pstat
, sizeof (pstat
));
7453 #endif /* HAVE_PSTATUS_T */
7456 elfcore_write_prfpreg (bfd
*abfd
,
7462 char *note_name
= "CORE";
7463 return elfcore_write_note (abfd
, buf
, bufsiz
,
7464 note_name
, NT_FPREGSET
, fpregs
, size
);
7468 elfcore_write_prxfpreg (bfd
*abfd
,
7471 const void *xfpregs
,
7474 char *note_name
= "LINUX";
7475 return elfcore_write_note (abfd
, buf
, bufsiz
,
7476 note_name
, NT_PRXFPREG
, xfpregs
, size
);
7480 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
7488 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
7491 buf
= bfd_malloc (size
);
7495 if (bfd_bread (buf
, size
, abfd
) != size
)
7503 while (p
< buf
+ size
)
7505 /* FIXME: bad alignment assumption. */
7506 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
7507 Elf_Internal_Note in
;
7509 in
.type
= H_GET_32 (abfd
, xnp
->type
);
7511 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
7512 in
.namedata
= xnp
->name
;
7514 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
7515 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
7516 in
.descpos
= offset
+ (in
.descdata
- buf
);
7518 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
7520 if (! elfcore_grok_netbsd_note (abfd
, &in
))
7523 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
7525 if (! elfcore_grok_nto_note (abfd
, &in
))
7530 if (! elfcore_grok_note (abfd
, &in
))
7534 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
7541 /* Providing external access to the ELF program header table. */
7543 /* Return an upper bound on the number of bytes required to store a
7544 copy of ABFD's program header table entries. Return -1 if an error
7545 occurs; bfd_get_error will return an appropriate code. */
7548 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
7550 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7552 bfd_set_error (bfd_error_wrong_format
);
7556 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
7559 /* Copy ABFD's program header table entries to *PHDRS. The entries
7560 will be stored as an array of Elf_Internal_Phdr structures, as
7561 defined in include/elf/internal.h. To find out how large the
7562 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7564 Return the number of program header table entries read, or -1 if an
7565 error occurs; bfd_get_error will return an appropriate code. */
7568 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
7572 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7574 bfd_set_error (bfd_error_wrong_format
);
7578 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
7579 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
7580 num_phdrs
* sizeof (Elf_Internal_Phdr
));
7586 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
7589 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7591 i_ehdrp
= elf_elfheader (abfd
);
7592 if (i_ehdrp
== NULL
)
7593 sprintf_vma (buf
, value
);
7596 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7598 #if BFD_HOST_64BIT_LONG
7599 sprintf (buf
, "%016lx", value
);
7601 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
7602 _bfd_int64_low (value
));
7606 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
7609 sprintf_vma (buf
, value
);
7614 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
7617 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
7619 i_ehdrp
= elf_elfheader (abfd
);
7620 if (i_ehdrp
== NULL
)
7621 fprintf_vma ((FILE *) stream
, value
);
7624 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
7626 #if BFD_HOST_64BIT_LONG
7627 fprintf ((FILE *) stream
, "%016lx", value
);
7629 fprintf ((FILE *) stream
, "%08lx%08lx",
7630 _bfd_int64_high (value
), _bfd_int64_low (value
));
7634 fprintf ((FILE *) stream
, "%08lx",
7635 (unsigned long) (value
& 0xffffffff));
7638 fprintf_vma ((FILE *) stream
, value
);
7642 enum elf_reloc_type_class
7643 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
7645 return reloc_class_normal
;
7648 /* For RELA architectures, return the relocation value for a
7649 relocation against a local symbol. */
7652 _bfd_elf_rela_local_sym (bfd
*abfd
,
7653 Elf_Internal_Sym
*sym
,
7655 Elf_Internal_Rela
*rel
)
7657 asection
*sec
= *psec
;
7660 relocation
= (sec
->output_section
->vma
7661 + sec
->output_offset
7663 if ((sec
->flags
& SEC_MERGE
)
7664 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
7665 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
7668 _bfd_merged_section_offset (abfd
, psec
,
7669 elf_section_data (sec
)->sec_info
,
7670 sym
->st_value
+ rel
->r_addend
);
7673 /* If we have changed the section, and our original section is
7674 marked with SEC_EXCLUDE, it means that the original
7675 SEC_MERGE section has been completely subsumed in some
7676 other SEC_MERGE section. In this case, we need to leave
7677 some info around for --emit-relocs. */
7678 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
7679 sec
->kept_section
= *psec
;
7682 rel
->r_addend
-= relocation
;
7683 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
7689 _bfd_elf_rel_local_sym (bfd
*abfd
,
7690 Elf_Internal_Sym
*sym
,
7694 asection
*sec
= *psec
;
7696 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
7697 return sym
->st_value
+ addend
;
7699 return _bfd_merged_section_offset (abfd
, psec
,
7700 elf_section_data (sec
)->sec_info
,
7701 sym
->st_value
+ addend
);
7705 _bfd_elf_section_offset (bfd
*abfd
,
7706 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
7710 switch (sec
->sec_info_type
)
7712 case ELF_INFO_TYPE_STABS
:
7713 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
7715 case ELF_INFO_TYPE_EH_FRAME
:
7716 return _bfd_elf_eh_frame_section_offset (abfd
, sec
, offset
);
7722 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7723 reconstruct an ELF file by reading the segments out of remote memory
7724 based on the ELF file header at EHDR_VMA and the ELF program headers it
7725 points to. If not null, *LOADBASEP is filled in with the difference
7726 between the VMAs from which the segments were read, and the VMAs the
7727 file headers (and hence BFD's idea of each section's VMA) put them at.
7729 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7730 remote memory at target address VMA into the local buffer at MYADDR; it
7731 should return zero on success or an `errno' code on failure. TEMPL must
7732 be a BFD for an ELF target with the word size and byte order found in
7733 the remote memory. */
7736 bfd_elf_bfd_from_remote_memory
7740 int (*target_read_memory
) (bfd_vma
, char *, int))
7742 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
7743 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
7747 _bfd_elf_get_synthetic_symtab (bfd
*abfd
, asymbol
**dynsyms
, asymbol
**ret
)
7749 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7752 const char *relplt_name
;
7753 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
7757 Elf_Internal_Shdr
*hdr
;
7762 if (!bed
->plt_sym_val
)
7765 relplt_name
= bed
->relplt_name
;
7766 if (relplt_name
== NULL
)
7767 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
7768 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
7772 hdr
= &elf_section_data (relplt
)->this_hdr
;
7773 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
7774 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
7777 plt
= bfd_get_section_by_name (abfd
, ".plt");
7781 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
7782 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
7785 count
= relplt
->size
/ hdr
->sh_entsize
;
7786 size
= count
* sizeof (asymbol
);
7787 p
= relplt
->relocation
;
7788 for (i
= 0; i
< count
; i
++, s
++, p
++)
7789 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
7791 s
= *ret
= bfd_malloc (size
);
7795 names
= (char *) (s
+ count
);
7796 p
= relplt
->relocation
;
7798 for (i
= 0; i
< count
; i
++, s
++, p
++)
7803 addr
= bed
->plt_sym_val (i
, plt
, p
);
7804 if (addr
== (bfd_vma
) -1)
7807 *s
= **p
->sym_ptr_ptr
;
7809 s
->value
= addr
- plt
->vma
;
7811 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
7812 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
7814 memcpy (names
, "@plt", sizeof ("@plt"));
7815 names
+= sizeof ("@plt");
7822 /* Sort symbol by binding and section. We want to put definitions
7823 sorted by section at the beginning. */
7826 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7828 const Elf_Internal_Sym
*s1
;
7829 const Elf_Internal_Sym
*s2
;
7832 /* Make sure that undefined symbols are at the end. */
7833 s1
= (const Elf_Internal_Sym
*) arg1
;
7834 if (s1
->st_shndx
== SHN_UNDEF
)
7836 s2
= (const Elf_Internal_Sym
*) arg2
;
7837 if (s2
->st_shndx
== SHN_UNDEF
)
7840 /* Sorted by section index. */
7841 shndx
= s1
->st_shndx
- s2
->st_shndx
;
7845 /* Sorted by binding. */
7846 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
7851 Elf_Internal_Sym
*sym
;
7856 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7858 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7859 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7860 return strcmp (s1
->name
, s2
->name
);
7863 /* Check if 2 sections define the same set of local and global
7867 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
7870 const struct elf_backend_data
*bed1
, *bed2
;
7871 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7872 bfd_size_type symcount1
, symcount2
;
7873 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7874 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
7875 Elf_Internal_Sym
*isymend
;
7876 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
7877 bfd_size_type count1
, count2
, i
;
7884 /* If both are .gnu.linkonce sections, they have to have the same
7886 if (strncmp (sec1
->name
, ".gnu.linkonce",
7887 sizeof ".gnu.linkonce" - 1) == 0
7888 && strncmp (sec2
->name
, ".gnu.linkonce",
7889 sizeof ".gnu.linkonce" - 1) == 0)
7890 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
7891 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
7893 /* Both sections have to be in ELF. */
7894 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7895 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7898 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7901 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
7902 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
7904 /* If both are members of section groups, they have to have the
7906 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
7910 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7911 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7912 if (shndx1
== -1 || shndx2
== -1)
7915 bed1
= get_elf_backend_data (bfd1
);
7916 bed2
= get_elf_backend_data (bfd2
);
7917 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7918 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7919 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7920 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7922 if (symcount1
== 0 || symcount2
== 0)
7925 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7927 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7931 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
7934 /* Sort symbols by binding and section. Global definitions are at
7936 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
7937 elf_sort_elf_symbol
);
7938 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
7939 elf_sort_elf_symbol
);
7941 /* Count definitions in the section. */
7943 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
7944 isym
< isymend
; isym
++)
7946 if (isym
->st_shndx
== (unsigned int) shndx1
)
7953 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
7958 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
7959 isym
< isymend
; isym
++)
7961 if (isym
->st_shndx
== (unsigned int) shndx2
)
7968 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
7972 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7975 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
7976 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
7978 if (symtable1
== NULL
|| symtable2
== NULL
)
7982 for (isym
= isymstart1
, isymend
= isym
+ count1
;
7983 isym
< isymend
; isym
++)
7986 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7993 for (isym
= isymstart2
, isymend
= isym
+ count1
;
7994 isym
< isymend
; isym
++)
7997 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8003 /* Sort symbol by name. */
8004 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8005 elf_sym_name_compare
);
8006 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8007 elf_sym_name_compare
);
8009 for (i
= 0; i
< count1
; i
++)
8010 /* Two symbols must have the same binding, type and name. */
8011 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8012 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8013 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)