Update Spanish and Swedish translations
[binutils.git] / bfd / elf32-hppa.c
blobca62709872e868bad597f2df1c69ca467bfd8681
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002 Free Software Foundation, Inc.
5 Original code by
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "bfd.h"
28 #include "sysdep.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31 #include "elf/hppa.h"
32 #include "libhppa.h"
33 #include "elf32-hppa.h"
34 #define ARCH_SIZE 32
35 #include "elf32-hppa.h"
36 #include "elf-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
40 following:
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
61 Long branch stub:
62 : ldil LR'X,%r1
63 : be,n RR'X(%sr4,%r1)
65 PIC long branch stub:
66 : b,l .+8,%r1
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
74 : bv %r0(%r21)
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
81 : bv %r0(%r21)
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
89 : ldsid (%r21),%r1
90 : mtsp %r1,%sr0
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
99 : ldsid (%r21),%r1
100 : mtsp %r1,%sr0
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
110 : nop
111 : ldw -24(%sp),%rp ; restore the original rp
112 : ldsid (%rp),%r1
113 : mtsp %r1,%sr0
114 : be,n 0(%sr0,%rp) ; inter-space return */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
133 string. */
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
142 #endif
144 enum elf32_hppa_stub_type {
145 hppa_stub_long_branch,
146 hppa_stub_long_branch_shared,
147 hppa_stub_import,
148 hppa_stub_import_shared,
149 hppa_stub_export,
150 hppa_stub_none
153 struct elf32_hppa_stub_hash_entry {
155 /* Base hash table entry structure. */
156 struct bfd_hash_entry root;
158 /* The stub section. */
159 asection *stub_sec;
161 /* Offset within stub_sec of the beginning of this stub. */
162 bfd_vma stub_offset;
164 /* Given the symbol's value and its section we can determine its final
165 value when building the stubs (so the stub knows where to jump. */
166 bfd_vma target_value;
167 asection *target_section;
169 enum elf32_hppa_stub_type stub_type;
171 /* The symbol table entry, if any, that this was derived from. */
172 struct elf32_hppa_link_hash_entry *h;
174 /* Where this stub is being called from, or, in the case of combined
175 stub sections, the first input section in the group. */
176 asection *id_sec;
179 struct elf32_hppa_link_hash_entry {
181 struct elf_link_hash_entry elf;
183 /* A pointer to the most recently used stub hash entry against this
184 symbol. */
185 struct elf32_hppa_stub_hash_entry *stub_cache;
187 /* Used to count relocations for delayed sizing of relocation
188 sections. */
189 struct elf32_hppa_dyn_reloc_entry {
191 /* Next relocation in the chain. */
192 struct elf32_hppa_dyn_reloc_entry *next;
194 /* The input section of the reloc. */
195 asection *sec;
197 /* Number of relocs copied in this section. */
198 bfd_size_type count;
200 #if RELATIVE_DYNRELOCS
201 /* Number of relative relocs copied for the input section. */
202 bfd_size_type relative_count;
203 #endif
204 } *dyn_relocs;
206 /* Set if the only reason we need a .plt entry is for a non-PIC to
207 PIC function call. */
208 unsigned int pic_call:1;
210 /* Set if this symbol is used by a plabel reloc. */
211 unsigned int plabel:1;
214 struct elf32_hppa_link_hash_table {
216 /* The main hash table. */
217 struct elf_link_hash_table elf;
219 /* The stub hash table. */
220 struct bfd_hash_table stub_hash_table;
222 /* Linker stub bfd. */
223 bfd *stub_bfd;
225 /* Linker call-backs. */
226 asection * (*add_stub_section) PARAMS ((const char *, asection *));
227 void (*layout_sections_again) PARAMS ((void));
229 /* Array to keep track of which stub sections have been created, and
230 information on stub grouping. */
231 struct map_stub {
232 /* This is the section to which stubs in the group will be
233 attached. */
234 asection *link_sec;
235 /* The stub section. */
236 asection *stub_sec;
237 } *stub_group;
239 /* Assorted information used by elf32_hppa_size_stubs. */
240 unsigned int bfd_count;
241 int top_index;
242 asection **input_list;
243 Elf_Internal_Sym **all_local_syms;
245 /* Short-cuts to get to dynamic linker sections. */
246 asection *sgot;
247 asection *srelgot;
248 asection *splt;
249 asection *srelplt;
250 asection *sdynbss;
251 asection *srelbss;
253 /* Used during a final link to store the base of the text and data
254 segments so that we can perform SEGREL relocations. */
255 bfd_vma text_segment_base;
256 bfd_vma data_segment_base;
258 /* Whether we support multiple sub-spaces for shared libs. */
259 unsigned int multi_subspace:1;
261 /* Flags set when various size branches are detected. Used to
262 select suitable defaults for the stub group size. */
263 unsigned int has_12bit_branch:1;
264 unsigned int has_17bit_branch:1;
265 unsigned int has_22bit_branch:1;
267 /* Set if we need a .plt stub to support lazy dynamic linking. */
268 unsigned int need_plt_stub:1;
270 /* Small local sym to section mapping cache. */
271 struct sym_sec_cache sym_sec;
274 /* Various hash macros and functions. */
275 #define hppa_link_hash_table(p) \
276 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
278 #define hppa_stub_hash_lookup(table, string, create, copy) \
279 ((struct elf32_hppa_stub_hash_entry *) \
280 bfd_hash_lookup ((table), (string), (create), (copy)))
282 static struct bfd_hash_entry *stub_hash_newfunc
283 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
285 static struct bfd_hash_entry *hppa_link_hash_newfunc
286 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
288 static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
289 PARAMS ((bfd *));
291 static void elf32_hppa_link_hash_table_free
292 PARAMS ((struct bfd_link_hash_table *));
294 /* Stub handling functions. */
295 static char *hppa_stub_name
296 PARAMS ((const asection *, const asection *,
297 const struct elf32_hppa_link_hash_entry *,
298 const Elf_Internal_Rela *));
300 static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry
301 PARAMS ((const asection *, const asection *,
302 struct elf32_hppa_link_hash_entry *,
303 const Elf_Internal_Rela *,
304 struct elf32_hppa_link_hash_table *));
306 static struct elf32_hppa_stub_hash_entry *hppa_add_stub
307 PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *));
309 static enum elf32_hppa_stub_type hppa_type_of_stub
310 PARAMS ((asection *, const Elf_Internal_Rela *,
311 struct elf32_hppa_link_hash_entry *, bfd_vma));
313 static boolean hppa_build_one_stub
314 PARAMS ((struct bfd_hash_entry *, PTR));
316 static boolean hppa_size_one_stub
317 PARAMS ((struct bfd_hash_entry *, PTR));
319 /* BFD and elf backend functions. */
320 static boolean elf32_hppa_object_p PARAMS ((bfd *));
322 static boolean elf32_hppa_add_symbol_hook
323 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
324 const char **, flagword *, asection **, bfd_vma *));
326 static boolean elf32_hppa_create_dynamic_sections
327 PARAMS ((bfd *, struct bfd_link_info *));
329 static void elf32_hppa_copy_indirect_symbol
330 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
332 static boolean elf32_hppa_check_relocs
333 PARAMS ((bfd *, struct bfd_link_info *,
334 asection *, const Elf_Internal_Rela *));
336 static asection *elf32_hppa_gc_mark_hook
337 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
338 struct elf_link_hash_entry *, Elf_Internal_Sym *));
340 static boolean elf32_hppa_gc_sweep_hook
341 PARAMS ((bfd *, struct bfd_link_info *,
342 asection *, const Elf_Internal_Rela *));
344 static void elf32_hppa_hide_symbol
345 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *, boolean));
347 static boolean elf32_hppa_adjust_dynamic_symbol
348 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
350 static boolean mark_PIC_calls
351 PARAMS ((struct elf_link_hash_entry *, PTR));
353 static boolean allocate_plt_static
354 PARAMS ((struct elf_link_hash_entry *, PTR));
356 static boolean allocate_dynrelocs
357 PARAMS ((struct elf_link_hash_entry *, PTR));
359 static boolean readonly_dynrelocs
360 PARAMS ((struct elf_link_hash_entry *, PTR));
362 static boolean clobber_millicode_symbols
363 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
365 static boolean elf32_hppa_size_dynamic_sections
366 PARAMS ((bfd *, struct bfd_link_info *));
368 static void group_sections
369 PARAMS ((struct elf32_hppa_link_hash_table *, bfd_size_type, boolean));
371 static int get_local_syms
372 PARAMS ((bfd *, bfd *, struct bfd_link_info *));
374 static boolean elf32_hppa_final_link
375 PARAMS ((bfd *, struct bfd_link_info *));
377 static void hppa_record_segment_addr
378 PARAMS ((bfd *, asection *, PTR));
380 static bfd_reloc_status_type final_link_relocate
381 PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *,
382 bfd_vma, struct elf32_hppa_link_hash_table *, asection *,
383 struct elf32_hppa_link_hash_entry *));
385 static boolean elf32_hppa_relocate_section
386 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
387 bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
389 static boolean elf32_hppa_finish_dynamic_symbol
390 PARAMS ((bfd *, struct bfd_link_info *,
391 struct elf_link_hash_entry *, Elf_Internal_Sym *));
393 static enum elf_reloc_type_class elf32_hppa_reloc_type_class
394 PARAMS ((const Elf_Internal_Rela *));
396 static boolean elf32_hppa_finish_dynamic_sections
397 PARAMS ((bfd *, struct bfd_link_info *));
399 static void elf32_hppa_post_process_headers
400 PARAMS ((bfd *, struct bfd_link_info *));
402 static int elf32_hppa_elf_get_symbol_type
403 PARAMS ((Elf_Internal_Sym *, int));
405 /* Assorted hash table functions. */
407 /* Initialize an entry in the stub hash table. */
409 static struct bfd_hash_entry *
410 stub_hash_newfunc (entry, table, string)
411 struct bfd_hash_entry *entry;
412 struct bfd_hash_table *table;
413 const char *string;
415 /* Allocate the structure if it has not already been allocated by a
416 subclass. */
417 if (entry == NULL)
419 entry = bfd_hash_allocate (table,
420 sizeof (struct elf32_hppa_stub_hash_entry));
421 if (entry == NULL)
422 return entry;
425 /* Call the allocation method of the superclass. */
426 entry = bfd_hash_newfunc (entry, table, string);
427 if (entry != NULL)
429 struct elf32_hppa_stub_hash_entry *eh;
431 /* Initialize the local fields. */
432 eh = (struct elf32_hppa_stub_hash_entry *) entry;
433 eh->stub_sec = NULL;
434 eh->stub_offset = 0;
435 eh->target_value = 0;
436 eh->target_section = NULL;
437 eh->stub_type = hppa_stub_long_branch;
438 eh->h = NULL;
439 eh->id_sec = NULL;
442 return entry;
445 /* Initialize an entry in the link hash table. */
447 static struct bfd_hash_entry *
448 hppa_link_hash_newfunc (entry, table, string)
449 struct bfd_hash_entry *entry;
450 struct bfd_hash_table *table;
451 const char *string;
453 /* Allocate the structure if it has not already been allocated by a
454 subclass. */
455 if (entry == NULL)
457 entry = bfd_hash_allocate (table,
458 sizeof (struct elf32_hppa_link_hash_entry));
459 if (entry == NULL)
460 return entry;
463 /* Call the allocation method of the superclass. */
464 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
465 if (entry != NULL)
467 struct elf32_hppa_link_hash_entry *eh;
469 /* Initialize the local fields. */
470 eh = (struct elf32_hppa_link_hash_entry *) entry;
471 eh->stub_cache = NULL;
472 eh->dyn_relocs = NULL;
473 eh->pic_call = 0;
474 eh->plabel = 0;
477 return entry;
480 /* Create the derived linker hash table. The PA ELF port uses the derived
481 hash table to keep information specific to the PA ELF linker (without
482 using static variables). */
484 static struct bfd_link_hash_table *
485 elf32_hppa_link_hash_table_create (abfd)
486 bfd *abfd;
488 struct elf32_hppa_link_hash_table *ret;
489 bfd_size_type amt = sizeof (*ret);
491 ret = (struct elf32_hppa_link_hash_table *) bfd_malloc (amt);
492 if (ret == NULL)
493 return NULL;
495 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc))
497 free (ret);
498 return NULL;
501 /* Init the stub hash table too. */
502 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc))
503 return NULL;
505 ret->stub_bfd = NULL;
506 ret->add_stub_section = NULL;
507 ret->layout_sections_again = NULL;
508 ret->stub_group = NULL;
509 ret->sgot = NULL;
510 ret->srelgot = NULL;
511 ret->splt = NULL;
512 ret->srelplt = NULL;
513 ret->sdynbss = NULL;
514 ret->srelbss = NULL;
515 ret->text_segment_base = (bfd_vma) -1;
516 ret->data_segment_base = (bfd_vma) -1;
517 ret->multi_subspace = 0;
518 ret->has_12bit_branch = 0;
519 ret->has_17bit_branch = 0;
520 ret->has_22bit_branch = 0;
521 ret->need_plt_stub = 0;
522 ret->sym_sec.abfd = NULL;
524 return &ret->elf.root;
527 /* Free the derived linker hash table. */
529 static void
530 elf32_hppa_link_hash_table_free (hash)
531 struct bfd_link_hash_table *hash;
533 struct elf32_hppa_link_hash_table *ret
534 = (struct elf32_hppa_link_hash_table *) hash;
536 bfd_hash_table_free (&ret->stub_hash_table);
537 _bfd_generic_link_hash_table_free (hash);
540 /* Build a name for an entry in the stub hash table. */
542 static char *
543 hppa_stub_name (input_section, sym_sec, hash, rel)
544 const asection *input_section;
545 const asection *sym_sec;
546 const struct elf32_hppa_link_hash_entry *hash;
547 const Elf_Internal_Rela *rel;
549 char *stub_name;
550 bfd_size_type len;
552 if (hash)
554 len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1;
555 stub_name = bfd_malloc (len);
556 if (stub_name != NULL)
558 sprintf (stub_name, "%08x_%s+%x",
559 input_section->id & 0xffffffff,
560 hash->elf.root.root.string,
561 (int) rel->r_addend & 0xffffffff);
564 else
566 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
567 stub_name = bfd_malloc (len);
568 if (stub_name != NULL)
570 sprintf (stub_name, "%08x_%x:%x+%x",
571 input_section->id & 0xffffffff,
572 sym_sec->id & 0xffffffff,
573 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
574 (int) rel->r_addend & 0xffffffff);
577 return stub_name;
580 /* Look up an entry in the stub hash. Stub entries are cached because
581 creating the stub name takes a bit of time. */
583 static struct elf32_hppa_stub_hash_entry *
584 hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab)
585 const asection *input_section;
586 const asection *sym_sec;
587 struct elf32_hppa_link_hash_entry *hash;
588 const Elf_Internal_Rela *rel;
589 struct elf32_hppa_link_hash_table *htab;
591 struct elf32_hppa_stub_hash_entry *stub_entry;
592 const asection *id_sec;
594 /* If this input section is part of a group of sections sharing one
595 stub section, then use the id of the first section in the group.
596 Stub names need to include a section id, as there may well be
597 more than one stub used to reach say, printf, and we need to
598 distinguish between them. */
599 id_sec = htab->stub_group[input_section->id].link_sec;
601 if (hash != NULL && hash->stub_cache != NULL
602 && hash->stub_cache->h == hash
603 && hash->stub_cache->id_sec == id_sec)
605 stub_entry = hash->stub_cache;
607 else
609 char *stub_name;
611 stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel);
612 if (stub_name == NULL)
613 return NULL;
615 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
616 stub_name, false, false);
617 if (hash != NULL)
618 hash->stub_cache = stub_entry;
620 free (stub_name);
623 return stub_entry;
626 /* Add a new stub entry to the stub hash. Not all fields of the new
627 stub entry are initialised. */
629 static struct elf32_hppa_stub_hash_entry *
630 hppa_add_stub (stub_name, section, htab)
631 const char *stub_name;
632 asection *section;
633 struct elf32_hppa_link_hash_table *htab;
635 asection *link_sec;
636 asection *stub_sec;
637 struct elf32_hppa_stub_hash_entry *stub_entry;
639 link_sec = htab->stub_group[section->id].link_sec;
640 stub_sec = htab->stub_group[section->id].stub_sec;
641 if (stub_sec == NULL)
643 stub_sec = htab->stub_group[link_sec->id].stub_sec;
644 if (stub_sec == NULL)
646 size_t namelen;
647 bfd_size_type len;
648 char *s_name;
650 namelen = strlen (link_sec->name);
651 len = namelen + sizeof (STUB_SUFFIX);
652 s_name = bfd_alloc (htab->stub_bfd, len);
653 if (s_name == NULL)
654 return NULL;
656 memcpy (s_name, link_sec->name, namelen);
657 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
658 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
659 if (stub_sec == NULL)
660 return NULL;
661 htab->stub_group[link_sec->id].stub_sec = stub_sec;
663 htab->stub_group[section->id].stub_sec = stub_sec;
666 /* Enter this entry into the linker stub hash table. */
667 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name,
668 true, false);
669 if (stub_entry == NULL)
671 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
672 bfd_archive_filename (section->owner),
673 stub_name);
674 return NULL;
677 stub_entry->stub_sec = stub_sec;
678 stub_entry->stub_offset = 0;
679 stub_entry->id_sec = link_sec;
680 return stub_entry;
683 /* Determine the type of stub needed, if any, for a call. */
685 static enum elf32_hppa_stub_type
686 hppa_type_of_stub (input_sec, rel, hash, destination)
687 asection *input_sec;
688 const Elf_Internal_Rela *rel;
689 struct elf32_hppa_link_hash_entry *hash;
690 bfd_vma destination;
692 bfd_vma location;
693 bfd_vma branch_offset;
694 bfd_vma max_branch_offset;
695 unsigned int r_type;
697 if (hash != NULL
698 && hash->elf.plt.offset != (bfd_vma) -1
699 && (hash->elf.dynindx != -1 || hash->pic_call)
700 && !hash->plabel)
702 /* We need an import stub. Decide between hppa_stub_import
703 and hppa_stub_import_shared later. */
704 return hppa_stub_import;
707 /* Determine where the call point is. */
708 location = (input_sec->output_offset
709 + input_sec->output_section->vma
710 + rel->r_offset);
712 branch_offset = destination - location - 8;
713 r_type = ELF32_R_TYPE (rel->r_info);
715 /* Determine if a long branch stub is needed. parisc branch offsets
716 are relative to the second instruction past the branch, ie. +8
717 bytes on from the branch instruction location. The offset is
718 signed and counts in units of 4 bytes. */
719 if (r_type == (unsigned int) R_PARISC_PCREL17F)
721 max_branch_offset = (1 << (17-1)) << 2;
723 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
725 max_branch_offset = (1 << (12-1)) << 2;
727 else /* R_PARISC_PCREL22F. */
729 max_branch_offset = (1 << (22-1)) << 2;
732 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
733 return hppa_stub_long_branch;
735 return hppa_stub_none;
738 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
739 IN_ARG contains the link info pointer. */
741 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
742 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
744 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
745 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
746 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
748 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
749 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
750 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
751 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
753 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
754 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
756 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
757 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
758 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
759 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
761 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
762 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
763 #define NOP 0x08000240 /* nop */
764 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
765 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
766 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
768 #ifndef R19_STUBS
769 #define R19_STUBS 1
770 #endif
772 #if R19_STUBS
773 #define LDW_R1_DLT LDW_R1_R19
774 #else
775 #define LDW_R1_DLT LDW_R1_DP
776 #endif
778 static boolean
779 hppa_build_one_stub (gen_entry, in_arg)
780 struct bfd_hash_entry *gen_entry;
781 PTR in_arg;
783 struct elf32_hppa_stub_hash_entry *stub_entry;
784 struct bfd_link_info *info;
785 struct elf32_hppa_link_hash_table *htab;
786 asection *stub_sec;
787 bfd *stub_bfd;
788 bfd_byte *loc;
789 bfd_vma sym_value;
790 bfd_vma insn;
791 bfd_vma off;
792 int val;
793 int size;
795 /* Massage our args to the form they really have. */
796 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
797 info = (struct bfd_link_info *) in_arg;
799 htab = hppa_link_hash_table (info);
800 stub_sec = stub_entry->stub_sec;
802 /* Make a note of the offset within the stubs for this entry. */
803 stub_entry->stub_offset = stub_sec->_raw_size;
804 loc = stub_sec->contents + stub_entry->stub_offset;
806 stub_bfd = stub_sec->owner;
808 switch (stub_entry->stub_type)
810 case hppa_stub_long_branch:
811 /* Create the long branch. A long branch is formed with "ldil"
812 loading the upper bits of the target address into a register,
813 then branching with "be" which adds in the lower bits.
814 The "be" has its delay slot nullified. */
815 sym_value = (stub_entry->target_value
816 + stub_entry->target_section->output_offset
817 + stub_entry->target_section->output_section->vma);
819 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel);
820 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
821 bfd_put_32 (stub_bfd, insn, loc);
823 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2;
824 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
825 bfd_put_32 (stub_bfd, insn, loc + 4);
827 size = 8;
828 break;
830 case hppa_stub_long_branch_shared:
831 /* Branches are relative. This is where we are going to. */
832 sym_value = (stub_entry->target_value
833 + stub_entry->target_section->output_offset
834 + stub_entry->target_section->output_section->vma);
836 /* And this is where we are coming from, more or less. */
837 sym_value -= (stub_entry->stub_offset
838 + stub_sec->output_offset
839 + stub_sec->output_section->vma);
841 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
842 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
843 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
844 bfd_put_32 (stub_bfd, insn, loc + 4);
846 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
847 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
848 bfd_put_32 (stub_bfd, insn, loc + 8);
849 size = 12;
850 break;
852 case hppa_stub_import:
853 case hppa_stub_import_shared:
854 off = stub_entry->h->elf.plt.offset;
855 if (off >= (bfd_vma) -2)
856 abort ();
858 off &= ~ (bfd_vma) 1;
859 sym_value = (off
860 + htab->splt->output_offset
861 + htab->splt->output_section->vma
862 - elf_gp (htab->splt->output_section->owner));
864 insn = ADDIL_DP;
865 #if R19_STUBS
866 if (stub_entry->stub_type == hppa_stub_import_shared)
867 insn = ADDIL_R19;
868 #endif
869 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel),
870 insn = hppa_rebuild_insn ((int) insn, val, 21);
871 bfd_put_32 (stub_bfd, insn, loc);
873 /* It is critical to use lrsel/rrsel here because we are using
874 two different offsets (+0 and +4) from sym_value. If we use
875 lsel/rsel then with unfortunate sym_values we will round
876 sym_value+4 up to the next 2k block leading to a mis-match
877 between the lsel and rsel value. */
878 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel);
879 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
880 bfd_put_32 (stub_bfd, insn, loc + 4);
882 if (htab->multi_subspace)
884 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
885 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
886 bfd_put_32 (stub_bfd, insn, loc + 8);
888 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
889 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
890 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
891 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
893 size = 28;
895 else
897 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
898 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
899 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
900 bfd_put_32 (stub_bfd, insn, loc + 12);
902 size = 16;
905 if (!info->shared
906 && stub_entry->h != NULL
907 && stub_entry->h->pic_call)
909 /* Build the .plt entry needed to call a PIC function from
910 statically linked code. We don't need any relocs. */
911 bfd *dynobj;
912 struct elf32_hppa_link_hash_entry *eh;
913 bfd_vma value;
915 dynobj = htab->elf.dynobj;
916 eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h;
918 if (eh->elf.root.type != bfd_link_hash_defined
919 && eh->elf.root.type != bfd_link_hash_defweak)
920 abort ();
922 value = (eh->elf.root.u.def.value
923 + eh->elf.root.u.def.section->output_offset
924 + eh->elf.root.u.def.section->output_section->vma);
926 /* Fill in the entry in the procedure linkage table.
928 The format of a plt entry is
929 <funcaddr>
930 <__gp>. */
932 bfd_put_32 (htab->splt->owner, value,
933 htab->splt->contents + off);
934 value = elf_gp (htab->splt->output_section->owner);
935 bfd_put_32 (htab->splt->owner, value,
936 htab->splt->contents + off + 4);
938 break;
940 case hppa_stub_export:
941 /* Branches are relative. This is where we are going to. */
942 sym_value = (stub_entry->target_value
943 + stub_entry->target_section->output_offset
944 + stub_entry->target_section->output_section->vma);
946 /* And this is where we are coming from. */
947 sym_value -= (stub_entry->stub_offset
948 + stub_sec->output_offset
949 + stub_sec->output_section->vma);
951 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
952 && (!htab->has_22bit_branch
953 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
955 (*_bfd_error_handler)
956 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
957 bfd_archive_filename (stub_entry->target_section->owner),
958 stub_sec->name,
959 (long) stub_entry->stub_offset,
960 stub_entry->root.string);
961 bfd_set_error (bfd_error_bad_value);
962 return false;
965 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
966 if (!htab->has_22bit_branch)
967 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
968 else
969 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
970 bfd_put_32 (stub_bfd, insn, loc);
972 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
973 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
974 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
975 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
976 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
978 /* Point the function symbol at the stub. */
979 stub_entry->h->elf.root.u.def.section = stub_sec;
980 stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size;
982 size = 24;
983 break;
985 default:
986 BFD_FAIL ();
987 return false;
990 stub_sec->_raw_size += size;
991 return true;
994 #undef LDIL_R1
995 #undef BE_SR4_R1
996 #undef BL_R1
997 #undef ADDIL_R1
998 #undef DEPI_R1
999 #undef ADDIL_DP
1000 #undef LDW_R1_R21
1001 #undef LDW_R1_DLT
1002 #undef LDW_R1_R19
1003 #undef ADDIL_R19
1004 #undef LDW_R1_DP
1005 #undef LDSID_R21_R1
1006 #undef MTSP_R1
1007 #undef BE_SR0_R21
1008 #undef STW_RP
1009 #undef BV_R0_R21
1010 #undef BL_RP
1011 #undef NOP
1012 #undef LDW_RP
1013 #undef LDSID_RP_R1
1014 #undef BE_SR0_RP
1016 /* As above, but don't actually build the stub. Just bump offset so
1017 we know stub section sizes. */
1019 static boolean
1020 hppa_size_one_stub (gen_entry, in_arg)
1021 struct bfd_hash_entry *gen_entry;
1022 PTR in_arg;
1024 struct elf32_hppa_stub_hash_entry *stub_entry;
1025 struct elf32_hppa_link_hash_table *htab;
1026 int size;
1028 /* Massage our args to the form they really have. */
1029 stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry;
1030 htab = (struct elf32_hppa_link_hash_table *) in_arg;
1032 if (stub_entry->stub_type == hppa_stub_long_branch)
1033 size = 8;
1034 else if (stub_entry->stub_type == hppa_stub_long_branch_shared)
1035 size = 12;
1036 else if (stub_entry->stub_type == hppa_stub_export)
1037 size = 24;
1038 else /* hppa_stub_import or hppa_stub_import_shared. */
1040 if (htab->multi_subspace)
1041 size = 28;
1042 else
1043 size = 16;
1046 stub_entry->stub_sec->_raw_size += size;
1047 return true;
1050 /* Return nonzero if ABFD represents an HPPA ELF32 file.
1051 Additionally we set the default architecture and machine. */
1053 static boolean
1054 elf32_hppa_object_p (abfd)
1055 bfd *abfd;
1057 Elf_Internal_Ehdr * i_ehdrp;
1058 unsigned int flags;
1060 i_ehdrp = elf_elfheader (abfd);
1061 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
1063 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
1064 return false;
1066 else
1068 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
1069 return false;
1072 flags = i_ehdrp->e_flags;
1073 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
1075 case EFA_PARISC_1_0:
1076 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
1077 case EFA_PARISC_1_1:
1078 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1079 case EFA_PARISC_2_0:
1080 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1081 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1082 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1084 return true;
1087 /* Undo the generic ELF code's subtraction of section->vma from the
1088 value of each external symbol. */
1090 static boolean
1091 elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1092 bfd *abfd ATTRIBUTE_UNUSED;
1093 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1094 const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED;
1095 const char **namep ATTRIBUTE_UNUSED;
1096 flagword *flagsp ATTRIBUTE_UNUSED;
1097 asection **secp;
1098 bfd_vma *valp;
1100 *valp += (*secp)->vma;
1101 return true;
1104 /* Create the .plt and .got sections, and set up our hash table
1105 short-cuts to various dynamic sections. */
1107 static boolean
1108 elf32_hppa_create_dynamic_sections (abfd, info)
1109 bfd *abfd;
1110 struct bfd_link_info *info;
1112 struct elf32_hppa_link_hash_table *htab;
1114 /* Don't try to create the .plt and .got twice. */
1115 htab = hppa_link_hash_table (info);
1116 if (htab->splt != NULL)
1117 return true;
1119 /* Call the generic code to do most of the work. */
1120 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1121 return false;
1123 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1124 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1126 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1127 htab->srelgot = bfd_make_section (abfd, ".rela.got");
1128 if (htab->srelgot == NULL
1129 || ! bfd_set_section_flags (abfd, htab->srelgot,
1130 (SEC_ALLOC
1131 | SEC_LOAD
1132 | SEC_HAS_CONTENTS
1133 | SEC_IN_MEMORY
1134 | SEC_LINKER_CREATED
1135 | SEC_READONLY))
1136 || ! bfd_set_section_alignment (abfd, htab->srelgot, 2))
1137 return false;
1139 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1140 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1142 return true;
1145 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1147 static void
1148 elf32_hppa_copy_indirect_symbol (dir, ind)
1149 struct elf_link_hash_entry *dir, *ind;
1151 struct elf32_hppa_link_hash_entry *edir, *eind;
1153 edir = (struct elf32_hppa_link_hash_entry *) dir;
1154 eind = (struct elf32_hppa_link_hash_entry *) ind;
1156 if (eind->dyn_relocs != NULL)
1158 if (edir->dyn_relocs != NULL)
1160 struct elf32_hppa_dyn_reloc_entry **pp;
1161 struct elf32_hppa_dyn_reloc_entry *p;
1163 if (ind->root.type == bfd_link_hash_indirect)
1164 abort ();
1166 /* Add reloc counts against the weak sym to the strong sym
1167 list. Merge any entries against the same section. */
1168 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
1170 struct elf32_hppa_dyn_reloc_entry *q;
1172 for (q = edir->dyn_relocs; q != NULL; q = q->next)
1173 if (q->sec == p->sec)
1175 #if RELATIVE_DYNRELOCS
1176 q->relative_count += p->relative_count;
1177 #endif
1178 q->count += p->count;
1179 *pp = p->next;
1180 break;
1182 if (q == NULL)
1183 pp = &p->next;
1185 *pp = edir->dyn_relocs;
1188 edir->dyn_relocs = eind->dyn_relocs;
1189 eind->dyn_relocs = NULL;
1192 _bfd_elf_link_hash_copy_indirect (dir, ind);
1195 /* Look through the relocs for a section during the first phase, and
1196 calculate needed space in the global offset table, procedure linkage
1197 table, and dynamic reloc sections. At this point we haven't
1198 necessarily read all the input files. */
1200 static boolean
1201 elf32_hppa_check_relocs (abfd, info, sec, relocs)
1202 bfd *abfd;
1203 struct bfd_link_info *info;
1204 asection *sec;
1205 const Elf_Internal_Rela *relocs;
1207 Elf_Internal_Shdr *symtab_hdr;
1208 struct elf_link_hash_entry **sym_hashes;
1209 const Elf_Internal_Rela *rel;
1210 const Elf_Internal_Rela *rel_end;
1211 struct elf32_hppa_link_hash_table *htab;
1212 asection *sreloc;
1213 asection *stubreloc;
1215 if (info->relocateable)
1216 return true;
1218 htab = hppa_link_hash_table (info);
1219 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1220 sym_hashes = elf_sym_hashes (abfd);
1221 sreloc = NULL;
1222 stubreloc = NULL;
1224 rel_end = relocs + sec->reloc_count;
1225 for (rel = relocs; rel < rel_end; rel++)
1227 enum {
1228 NEED_GOT = 1,
1229 NEED_PLT = 2,
1230 NEED_DYNREL = 4,
1231 PLT_PLABEL = 8
1234 unsigned int r_symndx, r_type;
1235 struct elf32_hppa_link_hash_entry *h;
1236 int need_entry;
1238 r_symndx = ELF32_R_SYM (rel->r_info);
1240 if (r_symndx < symtab_hdr->sh_info)
1241 h = NULL;
1242 else
1243 h = ((struct elf32_hppa_link_hash_entry *)
1244 sym_hashes[r_symndx - symtab_hdr->sh_info]);
1246 r_type = ELF32_R_TYPE (rel->r_info);
1248 switch (r_type)
1250 case R_PARISC_DLTIND14F:
1251 case R_PARISC_DLTIND14R:
1252 case R_PARISC_DLTIND21L:
1253 /* This symbol requires a global offset table entry. */
1254 need_entry = NEED_GOT;
1256 /* Mark this section as containing PIC code. */
1257 sec->flags |= SEC_HAS_GOT_REF;
1258 break;
1260 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1261 case R_PARISC_PLABEL21L:
1262 case R_PARISC_PLABEL32:
1263 /* If the addend is non-zero, we break badly. */
1264 if (rel->r_addend != 0)
1265 abort ();
1267 /* If we are creating a shared library, then we need to
1268 create a PLT entry for all PLABELs, because PLABELs with
1269 local symbols may be passed via a pointer to another
1270 object. Additionally, output a dynamic relocation
1271 pointing to the PLT entry.
1272 For executables, the original 32-bit ABI allowed two
1273 different styles of PLABELs (function pointers): For
1274 global functions, the PLABEL word points into the .plt
1275 two bytes past a (function address, gp) pair, and for
1276 local functions the PLABEL points directly at the
1277 function. The magic +2 for the first type allows us to
1278 differentiate between the two. As you can imagine, this
1279 is a real pain when it comes to generating code to call
1280 functions indirectly or to compare function pointers.
1281 We avoid the mess by always pointing a PLABEL into the
1282 .plt, even for local functions. */
1283 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1284 break;
1286 case R_PARISC_PCREL12F:
1287 htab->has_12bit_branch = 1;
1288 goto branch_common;
1290 case R_PARISC_PCREL17C:
1291 case R_PARISC_PCREL17F:
1292 htab->has_17bit_branch = 1;
1293 goto branch_common;
1295 case R_PARISC_PCREL22F:
1296 htab->has_22bit_branch = 1;
1297 branch_common:
1298 /* Function calls might need to go through the .plt, and
1299 might require long branch stubs. */
1300 if (h == NULL)
1302 /* We know local syms won't need a .plt entry, and if
1303 they need a long branch stub we can't guarantee that
1304 we can reach the stub. So just flag an error later
1305 if we're doing a shared link and find we need a long
1306 branch stub. */
1307 continue;
1309 else
1311 /* Global symbols will need a .plt entry if they remain
1312 global, and in most cases won't need a long branch
1313 stub. Unfortunately, we have to cater for the case
1314 where a symbol is forced local by versioning, or due
1315 to symbolic linking, and we lose the .plt entry. */
1316 need_entry = NEED_PLT;
1317 if (h->elf.type == STT_PARISC_MILLI)
1318 need_entry = 0;
1320 break;
1322 case R_PARISC_SEGBASE: /* Used to set segment base. */
1323 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1324 case R_PARISC_PCREL14F: /* PC relative load/store. */
1325 case R_PARISC_PCREL14R:
1326 case R_PARISC_PCREL17R: /* External branches. */
1327 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1328 /* We don't need to propagate the relocation if linking a
1329 shared object since these are section relative. */
1330 continue;
1332 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1333 case R_PARISC_DPREL14R:
1334 case R_PARISC_DPREL21L:
1335 if (info->shared)
1337 (*_bfd_error_handler)
1338 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1339 bfd_archive_filename (abfd),
1340 elf_hppa_howto_table[r_type].name);
1341 bfd_set_error (bfd_error_bad_value);
1342 return false;
1344 /* Fall through. */
1346 case R_PARISC_DIR17F: /* Used for external branches. */
1347 case R_PARISC_DIR17R:
1348 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1349 case R_PARISC_DIR14R:
1350 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1351 #if 0
1352 /* Help debug shared library creation. Any of the above
1353 relocs can be used in shared libs, but they may cause
1354 pages to become unshared. */
1355 if (info->shared)
1357 (*_bfd_error_handler)
1358 (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1359 bfd_archive_filename (abfd),
1360 elf_hppa_howto_table[r_type].name);
1362 /* Fall through. */
1363 #endif
1365 case R_PARISC_DIR32: /* .word relocs. */
1366 /* We may want to output a dynamic relocation later. */
1367 need_entry = NEED_DYNREL;
1368 break;
1370 /* This relocation describes the C++ object vtable hierarchy.
1371 Reconstruct it for later use during GC. */
1372 case R_PARISC_GNU_VTINHERIT:
1373 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec,
1374 &h->elf, rel->r_offset))
1375 return false;
1376 continue;
1378 /* This relocation describes which C++ vtable entries are actually
1379 used. Record for later use during GC. */
1380 case R_PARISC_GNU_VTENTRY:
1381 if (!_bfd_elf32_gc_record_vtentry (abfd, sec,
1382 &h->elf, rel->r_addend))
1383 return false;
1384 continue;
1386 default:
1387 continue;
1390 /* Now carry out our orders. */
1391 if (need_entry & NEED_GOT)
1393 /* Allocate space for a GOT entry, as well as a dynamic
1394 relocation for this entry. */
1395 if (htab->sgot == NULL)
1397 if (htab->elf.dynobj == NULL)
1398 htab->elf.dynobj = abfd;
1399 if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info))
1400 return false;
1403 if (h != NULL)
1405 h->elf.got.refcount += 1;
1407 else
1409 bfd_signed_vma *local_got_refcounts;
1411 /* This is a global offset table entry for a local symbol. */
1412 local_got_refcounts = elf_local_got_refcounts (abfd);
1413 if (local_got_refcounts == NULL)
1415 bfd_size_type size;
1417 /* Allocate space for local got offsets and local
1418 plt offsets. Done this way to save polluting
1419 elf_obj_tdata with another target specific
1420 pointer. */
1421 size = symtab_hdr->sh_info;
1422 size *= 2 * sizeof (bfd_signed_vma);
1423 local_got_refcounts = ((bfd_signed_vma *)
1424 bfd_zalloc (abfd, size));
1425 if (local_got_refcounts == NULL)
1426 return false;
1427 elf_local_got_refcounts (abfd) = local_got_refcounts;
1429 local_got_refcounts[r_symndx] += 1;
1433 if (need_entry & NEED_PLT)
1435 /* If we are creating a shared library, and this is a reloc
1436 against a weak symbol or a global symbol in a dynamic
1437 object, then we will be creating an import stub and a
1438 .plt entry for the symbol. Similarly, on a normal link
1439 to symbols defined in a dynamic object we'll need the
1440 import stub and a .plt entry. We don't know yet whether
1441 the symbol is defined or not, so make an entry anyway and
1442 clean up later in adjust_dynamic_symbol. */
1443 if ((sec->flags & SEC_ALLOC) != 0)
1445 if (h != NULL)
1447 h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1448 h->elf.plt.refcount += 1;
1450 /* If this .plt entry is for a plabel, mark it so
1451 that adjust_dynamic_symbol will keep the entry
1452 even if it appears to be local. */
1453 if (need_entry & PLT_PLABEL)
1454 h->plabel = 1;
1456 else if (need_entry & PLT_PLABEL)
1458 bfd_signed_vma *local_got_refcounts;
1459 bfd_signed_vma *local_plt_refcounts;
1461 local_got_refcounts = elf_local_got_refcounts (abfd);
1462 if (local_got_refcounts == NULL)
1464 bfd_size_type size;
1466 /* Allocate space for local got offsets and local
1467 plt offsets. */
1468 size = symtab_hdr->sh_info;
1469 size *= 2 * sizeof (bfd_signed_vma);
1470 local_got_refcounts = ((bfd_signed_vma *)
1471 bfd_zalloc (abfd, size));
1472 if (local_got_refcounts == NULL)
1473 return false;
1474 elf_local_got_refcounts (abfd) = local_got_refcounts;
1476 local_plt_refcounts = (local_got_refcounts
1477 + symtab_hdr->sh_info);
1478 local_plt_refcounts[r_symndx] += 1;
1483 if (need_entry & NEED_DYNREL)
1485 /* Flag this symbol as having a non-got, non-plt reference
1486 so that we generate copy relocs if it turns out to be
1487 dynamic. */
1488 if (h != NULL && !info->shared)
1489 h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
1491 /* If we are creating a shared library then we need to copy
1492 the reloc into the shared library. However, if we are
1493 linking with -Bsymbolic, we need only copy absolute
1494 relocs or relocs against symbols that are not defined in
1495 an object we are including in the link. PC- or DP- or
1496 DLT-relative relocs against any local sym or global sym
1497 with DEF_REGULAR set, can be discarded. At this point we
1498 have not seen all the input files, so it is possible that
1499 DEF_REGULAR is not set now but will be set later (it is
1500 never cleared). We account for that possibility below by
1501 storing information in the dyn_relocs field of the
1502 hash table entry.
1504 A similar situation to the -Bsymbolic case occurs when
1505 creating shared libraries and symbol visibility changes
1506 render the symbol local.
1508 As it turns out, all the relocs we will be creating here
1509 are absolute, so we cannot remove them on -Bsymbolic
1510 links or visibility changes anyway. A STUB_REL reloc
1511 is absolute too, as in that case it is the reloc in the
1512 stub we will be creating, rather than copying the PCREL
1513 reloc in the branch.
1515 If on the other hand, we are creating an executable, we
1516 may need to keep relocations for symbols satisfied by a
1517 dynamic library if we manage to avoid copy relocs for the
1518 symbol. */
1519 if ((info->shared
1520 && (sec->flags & SEC_ALLOC) != 0
1521 && (IS_ABSOLUTE_RELOC (r_type)
1522 || (h != NULL
1523 && (!info->symbolic
1524 || h->elf.root.type == bfd_link_hash_defweak
1525 || (h->elf.elf_link_hash_flags
1526 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1527 || (!info->shared
1528 && (sec->flags & SEC_ALLOC) != 0
1529 && h != NULL
1530 && (h->elf.root.type == bfd_link_hash_defweak
1531 || (h->elf.elf_link_hash_flags
1532 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
1534 struct elf32_hppa_dyn_reloc_entry *p;
1535 struct elf32_hppa_dyn_reloc_entry **head;
1537 /* Create a reloc section in dynobj and make room for
1538 this reloc. */
1539 if (sreloc == NULL)
1541 char *name;
1542 bfd *dynobj;
1544 name = (bfd_elf_string_from_elf_section
1545 (abfd,
1546 elf_elfheader (abfd)->e_shstrndx,
1547 elf_section_data (sec)->rel_hdr.sh_name));
1548 if (name == NULL)
1550 (*_bfd_error_handler)
1551 (_("Could not find relocation section for %s"),
1552 sec->name);
1553 bfd_set_error (bfd_error_bad_value);
1554 return false;
1557 if (htab->elf.dynobj == NULL)
1558 htab->elf.dynobj = abfd;
1560 dynobj = htab->elf.dynobj;
1561 sreloc = bfd_get_section_by_name (dynobj, name);
1562 if (sreloc == NULL)
1564 flagword flags;
1566 sreloc = bfd_make_section (dynobj, name);
1567 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1568 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1569 if ((sec->flags & SEC_ALLOC) != 0)
1570 flags |= SEC_ALLOC | SEC_LOAD;
1571 if (sreloc == NULL
1572 || !bfd_set_section_flags (dynobj, sreloc, flags)
1573 || !bfd_set_section_alignment (dynobj, sreloc, 2))
1574 return false;
1577 elf_section_data (sec)->sreloc = sreloc;
1580 /* If this is a global symbol, we count the number of
1581 relocations we need for this symbol. */
1582 if (h != NULL)
1584 head = &h->dyn_relocs;
1586 else
1588 /* Track dynamic relocs needed for local syms too.
1589 We really need local syms available to do this
1590 easily. Oh well. */
1592 asection *s;
1593 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1594 sec, r_symndx);
1595 if (s == NULL)
1596 return false;
1598 head = ((struct elf32_hppa_dyn_reloc_entry **)
1599 &elf_section_data (s)->local_dynrel);
1602 p = *head;
1603 if (p == NULL || p->sec != sec)
1605 p = ((struct elf32_hppa_dyn_reloc_entry *)
1606 bfd_alloc (htab->elf.dynobj,
1607 (bfd_size_type) sizeof *p));
1608 if (p == NULL)
1609 return false;
1610 p->next = *head;
1611 *head = p;
1612 p->sec = sec;
1613 p->count = 0;
1614 #if RELATIVE_DYNRELOCS
1615 p->relative_count = 0;
1616 #endif
1619 p->count += 1;
1620 #if RELATIVE_DYNRELOCS
1621 if (!IS_ABSOLUTE_RELOC (rtype))
1622 p->relative_count += 1;
1623 #endif
1628 return true;
1631 /* Return the section that should be marked against garbage collection
1632 for a given relocation. */
1634 static asection *
1635 elf32_hppa_gc_mark_hook (sec, info, rel, h, sym)
1636 asection *sec;
1637 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1638 Elf_Internal_Rela *rel;
1639 struct elf_link_hash_entry *h;
1640 Elf_Internal_Sym *sym;
1642 if (h != NULL)
1644 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1646 case R_PARISC_GNU_VTINHERIT:
1647 case R_PARISC_GNU_VTENTRY:
1648 break;
1650 default:
1651 switch (h->root.type)
1653 case bfd_link_hash_defined:
1654 case bfd_link_hash_defweak:
1655 return h->root.u.def.section;
1657 case bfd_link_hash_common:
1658 return h->root.u.c.p->section;
1660 default:
1661 break;
1665 else
1666 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1668 return NULL;
1671 /* Update the got and plt entry reference counts for the section being
1672 removed. */
1674 static boolean
1675 elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs)
1676 bfd *abfd;
1677 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1678 asection *sec;
1679 const Elf_Internal_Rela *relocs;
1681 Elf_Internal_Shdr *symtab_hdr;
1682 struct elf_link_hash_entry **sym_hashes;
1683 bfd_signed_vma *local_got_refcounts;
1684 bfd_signed_vma *local_plt_refcounts;
1685 const Elf_Internal_Rela *rel, *relend;
1686 unsigned long r_symndx;
1687 struct elf_link_hash_entry *h;
1688 struct elf32_hppa_link_hash_table *htab;
1689 bfd *dynobj;
1691 elf_section_data (sec)->local_dynrel = NULL;
1693 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1694 sym_hashes = elf_sym_hashes (abfd);
1695 local_got_refcounts = elf_local_got_refcounts (abfd);
1696 local_plt_refcounts = local_got_refcounts;
1697 if (local_plt_refcounts != NULL)
1698 local_plt_refcounts += symtab_hdr->sh_info;
1699 htab = hppa_link_hash_table (info);
1700 dynobj = htab->elf.dynobj;
1701 if (dynobj == NULL)
1702 return true;
1704 relend = relocs + sec->reloc_count;
1705 for (rel = relocs; rel < relend; rel++)
1706 switch ((unsigned int) ELF32_R_TYPE (rel->r_info))
1708 case R_PARISC_DLTIND14F:
1709 case R_PARISC_DLTIND14R:
1710 case R_PARISC_DLTIND21L:
1711 r_symndx = ELF32_R_SYM (rel->r_info);
1712 if (r_symndx >= symtab_hdr->sh_info)
1714 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1715 if (h->got.refcount > 0)
1716 h->got.refcount -= 1;
1718 else if (local_got_refcounts != NULL)
1720 if (local_got_refcounts[r_symndx] > 0)
1721 local_got_refcounts[r_symndx] -= 1;
1723 break;
1725 case R_PARISC_PCREL12F:
1726 case R_PARISC_PCREL17C:
1727 case R_PARISC_PCREL17F:
1728 case R_PARISC_PCREL22F:
1729 r_symndx = ELF32_R_SYM (rel->r_info);
1730 if (r_symndx >= symtab_hdr->sh_info)
1732 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1733 if (h->plt.refcount > 0)
1734 h->plt.refcount -= 1;
1736 break;
1738 case R_PARISC_PLABEL14R:
1739 case R_PARISC_PLABEL21L:
1740 case R_PARISC_PLABEL32:
1741 r_symndx = ELF32_R_SYM (rel->r_info);
1742 if (r_symndx >= symtab_hdr->sh_info)
1744 struct elf32_hppa_link_hash_entry *eh;
1745 struct elf32_hppa_dyn_reloc_entry **pp;
1746 struct elf32_hppa_dyn_reloc_entry *p;
1748 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1750 if (h->plt.refcount > 0)
1751 h->plt.refcount -= 1;
1753 eh = (struct elf32_hppa_link_hash_entry *) h;
1755 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1756 if (p->sec == sec)
1758 #if RELATIVE_DYNRELOCS
1759 if (!IS_ABSOLUTE_RELOC (rtype))
1760 p->relative_count -= 1;
1761 #endif
1762 p->count -= 1;
1763 if (p->count == 0)
1764 *pp = p->next;
1765 break;
1768 else if (local_plt_refcounts != NULL)
1770 if (local_plt_refcounts[r_symndx] > 0)
1771 local_plt_refcounts[r_symndx] -= 1;
1773 break;
1775 case R_PARISC_DIR32:
1776 r_symndx = ELF32_R_SYM (rel->r_info);
1777 if (r_symndx >= symtab_hdr->sh_info)
1779 struct elf32_hppa_link_hash_entry *eh;
1780 struct elf32_hppa_dyn_reloc_entry **pp;
1781 struct elf32_hppa_dyn_reloc_entry *p;
1783 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1785 eh = (struct elf32_hppa_link_hash_entry *) h;
1787 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1788 if (p->sec == sec)
1790 #if RELATIVE_DYNRELOCS
1791 if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32))
1792 p->relative_count -= 1;
1793 #endif
1794 p->count -= 1;
1795 if (p->count == 0)
1796 *pp = p->next;
1797 break;
1800 break;
1802 default:
1803 break;
1806 return true;
1809 /* Our own version of hide_symbol, so that we can keep plt entries for
1810 plabels. */
1812 static void
1813 elf32_hppa_hide_symbol (info, h, force_local)
1814 struct bfd_link_info *info;
1815 struct elf_link_hash_entry *h;
1816 boolean force_local;
1818 if (force_local)
1820 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1821 if (h->dynindx != -1)
1823 h->dynindx = -1;
1824 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1825 h->dynstr_index);
1829 if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel)
1831 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1832 h->plt.offset = (bfd_vma) -1;
1836 /* This is the condition under which elf32_hppa_finish_dynamic_symbol
1837 will be called from elflink.h. If elflink.h doesn't call our
1838 finish_dynamic_symbol routine, we'll need to do something about
1839 initializing any .plt and .got entries in elf32_hppa_relocate_section. */
1840 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1841 ((DYN) \
1842 && ((INFO)->shared \
1843 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1844 && ((H)->dynindx != -1 \
1845 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1847 /* Adjust a symbol defined by a dynamic object and referenced by a
1848 regular object. The current definition is in some section of the
1849 dynamic object, but we're not including those sections. We have to
1850 change the definition to something the rest of the link can
1851 understand. */
1853 static boolean
1854 elf32_hppa_adjust_dynamic_symbol (info, h)
1855 struct bfd_link_info *info;
1856 struct elf_link_hash_entry *h;
1858 struct elf32_hppa_link_hash_table *htab;
1859 struct elf32_hppa_link_hash_entry *eh;
1860 struct elf32_hppa_dyn_reloc_entry *p;
1861 asection *s;
1862 unsigned int power_of_two;
1864 /* If this is a function, put it in the procedure linkage table. We
1865 will fill in the contents of the procedure linkage table later. */
1866 if (h->type == STT_FUNC
1867 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1869 if (h->plt.refcount <= 0
1870 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1871 && h->root.type != bfd_link_hash_defweak
1872 && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel
1873 && (!info->shared || info->symbolic)))
1875 /* The .plt entry is not needed when:
1876 a) Garbage collection has removed all references to the
1877 symbol, or
1878 b) We know for certain the symbol is defined in this
1879 object, and it's not a weak definition, nor is the symbol
1880 used by a plabel relocation. Either this object is the
1881 application or we are doing a shared symbolic link. */
1883 /* As a special sop to the hppa ABI, we keep a .plt entry
1884 for functions in sections containing PIC code. */
1885 if (!info->shared
1886 && h->plt.refcount > 0
1887 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1888 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)
1889 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
1890 else
1892 h->plt.offset = (bfd_vma) -1;
1893 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1897 return true;
1899 else
1900 h->plt.offset = (bfd_vma) -1;
1902 /* If this is a weak symbol, and there is a real definition, the
1903 processor independent code will have arranged for us to see the
1904 real definition first, and we can just use the same value. */
1905 if (h->weakdef != NULL)
1907 if (h->weakdef->root.type != bfd_link_hash_defined
1908 && h->weakdef->root.type != bfd_link_hash_defweak)
1909 abort ();
1910 h->root.u.def.section = h->weakdef->root.u.def.section;
1911 h->root.u.def.value = h->weakdef->root.u.def.value;
1912 return true;
1915 /* This is a reference to a symbol defined by a dynamic object which
1916 is not a function. */
1918 /* If we are creating a shared library, we must presume that the
1919 only references to the symbol are via the global offset table.
1920 For such cases we need not do anything here; the relocations will
1921 be handled correctly by relocate_section. */
1922 if (info->shared)
1923 return true;
1925 /* If there are no references to this symbol that do not use the
1926 GOT, we don't need to generate a copy reloc. */
1927 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1928 return true;
1930 eh = (struct elf32_hppa_link_hash_entry *) h;
1931 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1933 s = p->sec->output_section;
1934 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1935 break;
1938 /* If we didn't find any dynamic relocs in read-only sections, then
1939 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1940 if (p == NULL)
1942 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1943 return true;
1946 /* We must allocate the symbol in our .dynbss section, which will
1947 become part of the .bss section of the executable. There will be
1948 an entry for this symbol in the .dynsym section. The dynamic
1949 object will contain position independent code, so all references
1950 from the dynamic object to this symbol will go through the global
1951 offset table. The dynamic linker will use the .dynsym entry to
1952 determine the address it must put in the global offset table, so
1953 both the dynamic object and the regular object will refer to the
1954 same memory location for the variable. */
1956 htab = hppa_link_hash_table (info);
1958 /* We must generate a COPY reloc to tell the dynamic linker to
1959 copy the initial value out of the dynamic object and into the
1960 runtime process image. */
1961 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1963 htab->srelbss->_raw_size += sizeof (Elf32_External_Rela);
1964 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1967 /* We need to figure out the alignment required for this symbol. I
1968 have no idea how other ELF linkers handle this. */
1970 power_of_two = bfd_log2 (h->size);
1971 if (power_of_two > 3)
1972 power_of_two = 3;
1974 /* Apply the required alignment. */
1975 s = htab->sdynbss;
1976 s->_raw_size = BFD_ALIGN (s->_raw_size,
1977 (bfd_size_type) (1 << power_of_two));
1978 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1980 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1981 return false;
1984 /* Define the symbol as being at this point in the section. */
1985 h->root.u.def.section = s;
1986 h->root.u.def.value = s->_raw_size;
1988 /* Increment the section size to make room for the symbol. */
1989 s->_raw_size += h->size;
1991 return true;
1994 /* Called via elf_link_hash_traverse to create .plt entries for an
1995 application that uses statically linked PIC functions. Similar to
1996 the first part of elf32_hppa_adjust_dynamic_symbol. */
1998 static boolean
1999 mark_PIC_calls (h, inf)
2000 struct elf_link_hash_entry *h;
2001 PTR inf ATTRIBUTE_UNUSED;
2003 if (h->root.type == bfd_link_hash_warning)
2004 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2006 if (! (h->plt.refcount > 0
2007 && (h->root.type == bfd_link_hash_defined
2008 || h->root.type == bfd_link_hash_defweak)
2009 && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0))
2011 h->plt.offset = (bfd_vma) -1;
2012 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2013 return true;
2016 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
2017 ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1;
2019 return true;
2022 /* Allocate space in the .plt for entries that won't have relocations.
2023 ie. pic_call and plabel entries. */
2025 static boolean
2026 allocate_plt_static (h, inf)
2027 struct elf_link_hash_entry *h;
2028 PTR inf;
2030 struct bfd_link_info *info;
2031 struct elf32_hppa_link_hash_table *htab;
2032 asection *s;
2034 if (h->root.type == bfd_link_hash_indirect)
2035 return true;
2037 if (h->root.type == bfd_link_hash_warning)
2038 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2040 info = (struct bfd_link_info *) inf;
2041 htab = hppa_link_hash_table (info);
2042 if (((struct elf32_hppa_link_hash_entry *) h)->pic_call)
2044 /* Make an entry in the .plt section for non-pic code that is
2045 calling pic code. */
2046 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2047 s = htab->splt;
2048 h->plt.offset = s->_raw_size;
2049 s->_raw_size += PLT_ENTRY_SIZE;
2051 else if (htab->elf.dynamic_sections_created
2052 && h->plt.refcount > 0)
2054 /* Make sure this symbol is output as a dynamic symbol.
2055 Undefined weak syms won't yet be marked as dynamic. */
2056 if (h->dynindx == -1
2057 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2058 && h->type != STT_PARISC_MILLI)
2060 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2061 return false;
2064 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
2066 /* Allocate these later. From this point on, h->plabel
2067 means that the plt entry is only used by a plabel.
2068 We'll be using a normal plt entry for this symbol, so
2069 clear the plabel indicator. */
2070 ((struct elf32_hppa_link_hash_entry *) h)->plabel = 0;
2072 else if (((struct elf32_hppa_link_hash_entry *) h)->plabel)
2074 /* Make an entry in the .plt section for plabel references
2075 that won't have a .plt entry for other reasons. */
2076 s = htab->splt;
2077 h->plt.offset = s->_raw_size;
2078 s->_raw_size += PLT_ENTRY_SIZE;
2080 else
2082 /* No .plt entry needed. */
2083 h->plt.offset = (bfd_vma) -1;
2084 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2087 else
2089 h->plt.offset = (bfd_vma) -1;
2090 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
2093 return true;
2096 /* Allocate space in .plt, .got and associated reloc sections for
2097 global syms. */
2099 static boolean
2100 allocate_dynrelocs (h, inf)
2101 struct elf_link_hash_entry *h;
2102 PTR inf;
2104 struct bfd_link_info *info;
2105 struct elf32_hppa_link_hash_table *htab;
2106 asection *s;
2107 struct elf32_hppa_link_hash_entry *eh;
2108 struct elf32_hppa_dyn_reloc_entry *p;
2110 if (h->root.type == bfd_link_hash_indirect)
2111 return true;
2113 if (h->root.type == bfd_link_hash_warning)
2114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2116 info = (struct bfd_link_info *) inf;
2117 htab = hppa_link_hash_table (info);
2118 if (htab->elf.dynamic_sections_created
2119 && h->plt.offset != (bfd_vma) -1
2120 && !((struct elf32_hppa_link_hash_entry *) h)->pic_call
2121 && !((struct elf32_hppa_link_hash_entry *) h)->plabel)
2123 /* Make an entry in the .plt section. */
2124 s = htab->splt;
2125 h->plt.offset = s->_raw_size;
2126 s->_raw_size += PLT_ENTRY_SIZE;
2128 /* We also need to make an entry in the .rela.plt section. */
2129 htab->srelplt->_raw_size += sizeof (Elf32_External_Rela);
2130 htab->need_plt_stub = 1;
2133 if (h->got.refcount > 0)
2135 /* Make sure this symbol is output as a dynamic symbol.
2136 Undefined weak syms won't yet be marked as dynamic. */
2137 if (h->dynindx == -1
2138 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2139 && h->type != STT_PARISC_MILLI)
2141 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2142 return false;
2145 s = htab->sgot;
2146 h->got.offset = s->_raw_size;
2147 s->_raw_size += GOT_ENTRY_SIZE;
2148 if (htab->elf.dynamic_sections_created
2149 && (info->shared
2150 || (h->dynindx != -1
2151 && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0))
2153 htab->srelgot->_raw_size += sizeof (Elf32_External_Rela);
2156 else
2157 h->got.offset = (bfd_vma) -1;
2159 eh = (struct elf32_hppa_link_hash_entry *) h;
2160 if (eh->dyn_relocs == NULL)
2161 return true;
2163 /* If this is a -Bsymbolic shared link, then we need to discard all
2164 space allocated for dynamic pc-relative relocs against symbols
2165 defined in a regular object. For the normal shared case, discard
2166 space for relocs that have become local due to symbol visibility
2167 changes. */
2168 if (info->shared)
2170 #if RELATIVE_DYNRELOCS
2171 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
2172 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
2173 || info->symbolic))
2175 struct elf32_hppa_dyn_reloc_entry **pp;
2177 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2179 p->count -= p->relative_count;
2180 p->relative_count = 0;
2181 if (p->count == 0)
2182 *pp = p->next;
2183 else
2184 pp = &p->next;
2187 #endif
2189 else
2191 /* For the non-shared case, discard space for relocs against
2192 symbols which turn out to need copy relocs or are not
2193 dynamic. */
2194 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2195 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2196 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2197 || (htab->elf.dynamic_sections_created
2198 && (h->root.type == bfd_link_hash_undefweak
2199 || h->root.type == bfd_link_hash_undefined))))
2201 /* Make sure this symbol is output as a dynamic symbol.
2202 Undefined weak syms won't yet be marked as dynamic. */
2203 if (h->dynindx == -1
2204 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0
2205 && h->type != STT_PARISC_MILLI)
2207 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
2208 return false;
2211 /* If that succeeded, we know we'll be keeping all the
2212 relocs. */
2213 if (h->dynindx != -1)
2214 goto keep;
2217 eh->dyn_relocs = NULL;
2218 return true;
2220 keep: ;
2223 /* Finally, allocate space. */
2224 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2226 asection *sreloc = elf_section_data (p->sec)->sreloc;
2227 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela);
2230 return true;
2233 /* This function is called via elf_link_hash_traverse to force
2234 millicode symbols local so they do not end up as globals in the
2235 dynamic symbol table. We ought to be able to do this in
2236 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2237 for all dynamic symbols. Arguably, this is a bug in
2238 elf_adjust_dynamic_symbol. */
2240 static boolean
2241 clobber_millicode_symbols (h, info)
2242 struct elf_link_hash_entry *h;
2243 struct bfd_link_info *info;
2245 if (h->root.type == bfd_link_hash_warning)
2246 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2248 if (h->type == STT_PARISC_MILLI
2249 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
2251 elf32_hppa_hide_symbol (info, h, true);
2253 return true;
2256 /* Find any dynamic relocs that apply to read-only sections. */
2258 static boolean
2259 readonly_dynrelocs (h, inf)
2260 struct elf_link_hash_entry *h;
2261 PTR inf;
2263 struct elf32_hppa_link_hash_entry *eh;
2264 struct elf32_hppa_dyn_reloc_entry *p;
2266 if (h->root.type == bfd_link_hash_warning)
2267 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2269 eh = (struct elf32_hppa_link_hash_entry *) h;
2270 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2272 asection *s = p->sec->output_section;
2274 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2276 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2278 info->flags |= DF_TEXTREL;
2280 /* Not an error, just cut short the traversal. */
2281 return false;
2284 return true;
2287 /* Set the sizes of the dynamic sections. */
2289 static boolean
2290 elf32_hppa_size_dynamic_sections (output_bfd, info)
2291 bfd *output_bfd ATTRIBUTE_UNUSED;
2292 struct bfd_link_info *info;
2294 struct elf32_hppa_link_hash_table *htab;
2295 bfd *dynobj;
2296 bfd *ibfd;
2297 asection *s;
2298 boolean relocs;
2300 htab = hppa_link_hash_table (info);
2301 dynobj = htab->elf.dynobj;
2302 if (dynobj == NULL)
2303 abort ();
2305 if (htab->elf.dynamic_sections_created)
2307 /* Set the contents of the .interp section to the interpreter. */
2308 if (! info->shared)
2310 s = bfd_get_section_by_name (dynobj, ".interp");
2311 if (s == NULL)
2312 abort ();
2313 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
2314 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2317 /* Force millicode symbols local. */
2318 elf_link_hash_traverse (&htab->elf,
2319 clobber_millicode_symbols,
2320 info);
2322 else
2324 /* Run through the function symbols, looking for any that are
2325 PIC, and mark them as needing .plt entries so that %r19 will
2326 be set up. */
2327 if (! info->shared)
2328 elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info);
2331 /* Set up .got and .plt offsets for local syms, and space for local
2332 dynamic relocs. */
2333 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2335 bfd_signed_vma *local_got;
2336 bfd_signed_vma *end_local_got;
2337 bfd_signed_vma *local_plt;
2338 bfd_signed_vma *end_local_plt;
2339 bfd_size_type locsymcount;
2340 Elf_Internal_Shdr *symtab_hdr;
2341 asection *srel;
2343 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2344 continue;
2346 for (s = ibfd->sections; s != NULL; s = s->next)
2348 struct elf32_hppa_dyn_reloc_entry *p;
2350 for (p = ((struct elf32_hppa_dyn_reloc_entry *)
2351 elf_section_data (s)->local_dynrel);
2352 p != NULL;
2353 p = p->next)
2355 if (!bfd_is_abs_section (p->sec)
2356 && bfd_is_abs_section (p->sec->output_section))
2358 /* Input section has been discarded, either because
2359 it is a copy of a linkonce section or due to
2360 linker script /DISCARD/, so we'll be discarding
2361 the relocs too. */
2363 else if (p->count != 0)
2365 srel = elf_section_data (p->sec)->sreloc;
2366 srel->_raw_size += p->count * sizeof (Elf32_External_Rela);
2367 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2368 info->flags |= DF_TEXTREL;
2373 local_got = elf_local_got_refcounts (ibfd);
2374 if (!local_got)
2375 continue;
2377 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2378 locsymcount = symtab_hdr->sh_info;
2379 end_local_got = local_got + locsymcount;
2380 s = htab->sgot;
2381 srel = htab->srelgot;
2382 for (; local_got < end_local_got; ++local_got)
2384 if (*local_got > 0)
2386 *local_got = s->_raw_size;
2387 s->_raw_size += GOT_ENTRY_SIZE;
2388 if (info->shared)
2389 srel->_raw_size += sizeof (Elf32_External_Rela);
2391 else
2392 *local_got = (bfd_vma) -1;
2395 local_plt = end_local_got;
2396 end_local_plt = local_plt + locsymcount;
2397 if (! htab->elf.dynamic_sections_created)
2399 /* Won't be used, but be safe. */
2400 for (; local_plt < end_local_plt; ++local_plt)
2401 *local_plt = (bfd_vma) -1;
2403 else
2405 s = htab->splt;
2406 srel = htab->srelplt;
2407 for (; local_plt < end_local_plt; ++local_plt)
2409 if (*local_plt > 0)
2411 *local_plt = s->_raw_size;
2412 s->_raw_size += PLT_ENTRY_SIZE;
2413 if (info->shared)
2414 srel->_raw_size += sizeof (Elf32_External_Rela);
2416 else
2417 *local_plt = (bfd_vma) -1;
2422 /* Do all the .plt entries without relocs first. The dynamic linker
2423 uses the last .plt reloc to find the end of the .plt (and hence
2424 the start of the .got) for lazy linking. */
2425 elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info);
2427 /* Allocate global sym .plt and .got entries, and space for global
2428 sym dynamic relocs. */
2429 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
2431 /* The check_relocs and adjust_dynamic_symbol entry points have
2432 determined the sizes of the various dynamic sections. Allocate
2433 memory for them. */
2434 relocs = false;
2435 for (s = dynobj->sections; s != NULL; s = s->next)
2437 if ((s->flags & SEC_LINKER_CREATED) == 0)
2438 continue;
2440 if (s == htab->splt)
2442 if (htab->need_plt_stub)
2444 /* Make space for the plt stub at the end of the .plt
2445 section. We want this stub right at the end, up
2446 against the .got section. */
2447 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2448 int pltalign = bfd_section_alignment (dynobj, s);
2449 bfd_size_type mask;
2451 if (gotalign > pltalign)
2452 bfd_set_section_alignment (dynobj, s, gotalign);
2453 mask = ((bfd_size_type) 1 << gotalign) - 1;
2454 s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask;
2457 else if (s == htab->sgot)
2459 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
2461 if (s->_raw_size != 0)
2463 /* Remember whether there are any reloc sections other
2464 than .rela.plt. */
2465 if (s != htab->srelplt)
2466 relocs = true;
2468 /* We use the reloc_count field as a counter if we need
2469 to copy relocs into the output file. */
2470 s->reloc_count = 0;
2473 else
2475 /* It's not one of our sections, so don't allocate space. */
2476 continue;
2479 if (s->_raw_size == 0)
2481 /* If we don't need this section, strip it from the
2482 output file. This is mostly to handle .rela.bss and
2483 .rela.plt. We must create both sections in
2484 create_dynamic_sections, because they must be created
2485 before the linker maps input sections to output
2486 sections. The linker does that before
2487 adjust_dynamic_symbol is called, and it is that
2488 function which decides whether anything needs to go
2489 into these sections. */
2490 _bfd_strip_section_from_output (info, s);
2491 continue;
2494 /* Allocate memory for the section contents. Zero it, because
2495 we may not fill in all the reloc sections. */
2496 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
2497 if (s->contents == NULL && s->_raw_size != 0)
2498 return false;
2501 if (htab->elf.dynamic_sections_created)
2503 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2504 actually has nothing to do with the PLT, it is how we
2505 communicate the LTP value of a load module to the dynamic
2506 linker. */
2507 #define add_dynamic_entry(TAG, VAL) \
2508 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
2510 if (!add_dynamic_entry (DT_PLTGOT, 0))
2511 return false;
2513 /* Add some entries to the .dynamic section. We fill in the
2514 values later, in elf32_hppa_finish_dynamic_sections, but we
2515 must add the entries now so that we get the correct size for
2516 the .dynamic section. The DT_DEBUG entry is filled in by the
2517 dynamic linker and used by the debugger. */
2518 if (!info->shared)
2520 if (!add_dynamic_entry (DT_DEBUG, 0))
2521 return false;
2524 if (htab->srelplt->_raw_size != 0)
2526 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2527 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2528 || !add_dynamic_entry (DT_JMPREL, 0))
2529 return false;
2532 if (relocs)
2534 if (!add_dynamic_entry (DT_RELA, 0)
2535 || !add_dynamic_entry (DT_RELASZ, 0)
2536 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2537 return false;
2539 /* If any dynamic relocs apply to a read-only section,
2540 then we need a DT_TEXTREL entry. */
2541 if ((info->flags & DF_TEXTREL) == 0)
2542 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
2543 (PTR) info);
2545 if ((info->flags & DF_TEXTREL) != 0)
2547 if (!add_dynamic_entry (DT_TEXTREL, 0))
2548 return false;
2552 #undef add_dynamic_entry
2554 return true;
2557 /* External entry points for sizing and building linker stubs. */
2559 /* Set up various things so that we can make a list of input sections
2560 for each output section included in the link. Returns -1 on error,
2561 0 when no stubs will be needed, and 1 on success. */
2564 elf32_hppa_setup_section_lists (output_bfd, info)
2565 bfd *output_bfd;
2566 struct bfd_link_info *info;
2568 bfd *input_bfd;
2569 unsigned int bfd_count;
2570 int top_id, top_index;
2571 asection *section;
2572 asection **input_list, **list;
2573 bfd_size_type amt;
2574 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2576 if (htab->elf.root.creator->flavour != bfd_target_elf_flavour)
2577 return 0;
2579 /* Count the number of input BFDs and find the top input section id. */
2580 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2581 input_bfd != NULL;
2582 input_bfd = input_bfd->link_next)
2584 bfd_count += 1;
2585 for (section = input_bfd->sections;
2586 section != NULL;
2587 section = section->next)
2589 if (top_id < section->id)
2590 top_id = section->id;
2593 htab->bfd_count = bfd_count;
2595 amt = sizeof (struct map_stub) * (top_id + 1);
2596 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
2597 if (htab->stub_group == NULL)
2598 return -1;
2600 /* We can't use output_bfd->section_count here to find the top output
2601 section index as some sections may have been removed, and
2602 _bfd_strip_section_from_output doesn't renumber the indices. */
2603 for (section = output_bfd->sections, top_index = 0;
2604 section != NULL;
2605 section = section->next)
2607 if (top_index < section->index)
2608 top_index = section->index;
2611 htab->top_index = top_index;
2612 amt = sizeof (asection *) * (top_index + 1);
2613 input_list = (asection **) bfd_malloc (amt);
2614 htab->input_list = input_list;
2615 if (input_list == NULL)
2616 return -1;
2618 /* For sections we aren't interested in, mark their entries with a
2619 value we can check later. */
2620 list = input_list + top_index;
2622 *list = bfd_abs_section_ptr;
2623 while (list-- != input_list);
2625 for (section = output_bfd->sections;
2626 section != NULL;
2627 section = section->next)
2629 if ((section->flags & SEC_CODE) != 0)
2630 input_list[section->index] = NULL;
2633 return 1;
2636 /* The linker repeatedly calls this function for each input section,
2637 in the order that input sections are linked into output sections.
2638 Build lists of input sections to determine groupings between which
2639 we may insert linker stubs. */
2641 void
2642 elf32_hppa_next_input_section (info, isec)
2643 struct bfd_link_info *info;
2644 asection *isec;
2646 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2648 if (isec->output_section->index <= htab->top_index)
2650 asection **list = htab->input_list + isec->output_section->index;
2651 if (*list != bfd_abs_section_ptr)
2653 /* Steal the link_sec pointer for our list. */
2654 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2655 /* This happens to make the list in reverse order,
2656 which is what we want. */
2657 PREV_SEC (isec) = *list;
2658 *list = isec;
2663 /* See whether we can group stub sections together. Grouping stub
2664 sections may result in fewer stubs. More importantly, we need to
2665 put all .init* and .fini* stubs at the beginning of the .init or
2666 .fini output sections respectively, because glibc splits the
2667 _init and _fini functions into multiple parts. Putting a stub in
2668 the middle of a function is not a good idea. */
2670 static void
2671 group_sections (htab, stub_group_size, stubs_always_before_branch)
2672 struct elf32_hppa_link_hash_table *htab;
2673 bfd_size_type stub_group_size;
2674 boolean stubs_always_before_branch;
2676 asection **list = htab->input_list + htab->top_index;
2679 asection *tail = *list;
2680 if (tail == bfd_abs_section_ptr)
2681 continue;
2682 while (tail != NULL)
2684 asection *curr;
2685 asection *prev;
2686 bfd_size_type total;
2688 curr = tail;
2689 if (tail->_cooked_size)
2690 total = tail->_cooked_size;
2691 else
2692 total = tail->_raw_size;
2693 while ((prev = PREV_SEC (curr)) != NULL
2694 && ((total += curr->output_offset - prev->output_offset)
2695 < stub_group_size))
2696 curr = prev;
2698 /* OK, the size from the start of CURR to the end is less
2699 than 240000 bytes and thus can be handled by one stub
2700 section. (or the tail section is itself larger than
2701 240000 bytes, in which case we may be toast.)
2702 We should really be keeping track of the total size of
2703 stubs added here, as stubs contribute to the final output
2704 section size. That's a little tricky, and this way will
2705 only break if stubs added total more than 22144 bytes, or
2706 2768 long branch stubs. It seems unlikely for more than
2707 2768 different functions to be called, especially from
2708 code only 240000 bytes long. This limit used to be
2709 250000, but c++ code tends to generate lots of little
2710 functions, and sometimes violated the assumption. */
2713 prev = PREV_SEC (tail);
2714 /* Set up this stub group. */
2715 htab->stub_group[tail->id].link_sec = curr;
2717 while (tail != curr && (tail = prev) != NULL);
2719 /* But wait, there's more! Input sections up to 240000
2720 bytes before the stub section can be handled by it too. */
2721 if (!stubs_always_before_branch)
2723 total = 0;
2724 while (prev != NULL
2725 && ((total += tail->output_offset - prev->output_offset)
2726 < stub_group_size))
2728 tail = prev;
2729 prev = PREV_SEC (tail);
2730 htab->stub_group[tail->id].link_sec = curr;
2733 tail = prev;
2736 while (list-- != htab->input_list);
2737 free (htab->input_list);
2738 #undef PREV_SEC
2741 /* Read in all local syms for all input bfds, and create hash entries
2742 for export stubs if we are building a multi-subspace shared lib.
2743 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2745 static int
2746 get_local_syms (output_bfd, input_bfd, info)
2747 bfd *output_bfd;
2748 bfd *input_bfd;
2749 struct bfd_link_info *info;
2751 unsigned int bfd_indx;
2752 Elf_Internal_Sym *local_syms, **all_local_syms;
2753 int stub_changed = 0;
2754 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2756 /* We want to read in symbol extension records only once. To do this
2757 we need to read in the local symbols in parallel and save them for
2758 later use; so hold pointers to the local symbols in an array. */
2759 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2760 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
2761 htab->all_local_syms = all_local_syms;
2762 if (all_local_syms == NULL)
2763 return -1;
2765 /* Walk over all the input BFDs, swapping in local symbols.
2766 If we are creating a shared library, create hash entries for the
2767 export stubs. */
2768 for (bfd_indx = 0;
2769 input_bfd != NULL;
2770 input_bfd = input_bfd->link_next, bfd_indx++)
2772 Elf_Internal_Shdr *symtab_hdr;
2774 /* We'll need the symbol table in a second. */
2775 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2776 if (symtab_hdr->sh_info == 0)
2777 continue;
2779 /* We need an array of the local symbols attached to the input bfd. */
2780 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2781 if (local_syms == NULL)
2783 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2784 symtab_hdr->sh_info, 0,
2785 NULL, NULL, NULL);
2786 /* Cache them for elf_link_input_bfd. */
2787 symtab_hdr->contents = (unsigned char *) local_syms;
2789 if (local_syms == NULL)
2790 return -1;
2792 all_local_syms[bfd_indx] = local_syms;
2794 if (info->shared && htab->multi_subspace)
2796 struct elf_link_hash_entry **sym_hashes;
2797 struct elf_link_hash_entry **end_hashes;
2798 unsigned int symcount;
2800 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2801 - symtab_hdr->sh_info);
2802 sym_hashes = elf_sym_hashes (input_bfd);
2803 end_hashes = sym_hashes + symcount;
2805 /* Look through the global syms for functions; We need to
2806 build export stubs for all globally visible functions. */
2807 for (; sym_hashes < end_hashes; sym_hashes++)
2809 struct elf32_hppa_link_hash_entry *hash;
2811 hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes;
2813 while (hash->elf.root.type == bfd_link_hash_indirect
2814 || hash->elf.root.type == bfd_link_hash_warning)
2815 hash = ((struct elf32_hppa_link_hash_entry *)
2816 hash->elf.root.u.i.link);
2818 /* At this point in the link, undefined syms have been
2819 resolved, so we need to check that the symbol was
2820 defined in this BFD. */
2821 if ((hash->elf.root.type == bfd_link_hash_defined
2822 || hash->elf.root.type == bfd_link_hash_defweak)
2823 && hash->elf.type == STT_FUNC
2824 && hash->elf.root.u.def.section->output_section != NULL
2825 && (hash->elf.root.u.def.section->output_section->owner
2826 == output_bfd)
2827 && hash->elf.root.u.def.section->owner == input_bfd
2828 && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
2829 && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)
2830 && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT)
2832 asection *sec;
2833 const char *stub_name;
2834 struct elf32_hppa_stub_hash_entry *stub_entry;
2836 sec = hash->elf.root.u.def.section;
2837 stub_name = hash->elf.root.root.string;
2838 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
2839 stub_name,
2840 false, false);
2841 if (stub_entry == NULL)
2843 stub_entry = hppa_add_stub (stub_name, sec, htab);
2844 if (!stub_entry)
2845 return -1;
2847 stub_entry->target_value = hash->elf.root.u.def.value;
2848 stub_entry->target_section = hash->elf.root.u.def.section;
2849 stub_entry->stub_type = hppa_stub_export;
2850 stub_entry->h = hash;
2851 stub_changed = 1;
2853 else
2855 (*_bfd_error_handler) (_("%s: duplicate export stub %s"),
2856 bfd_archive_filename (input_bfd),
2857 stub_name);
2864 return stub_changed;
2867 /* Determine and set the size of the stub section for a final link.
2869 The basic idea here is to examine all the relocations looking for
2870 PC-relative calls to a target that is unreachable with a "bl"
2871 instruction. */
2873 boolean
2874 elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size,
2875 add_stub_section, layout_sections_again)
2876 bfd *output_bfd;
2877 bfd *stub_bfd;
2878 struct bfd_link_info *info;
2879 boolean multi_subspace;
2880 bfd_signed_vma group_size;
2881 asection * (*add_stub_section) PARAMS ((const char *, asection *));
2882 void (*layout_sections_again) PARAMS ((void));
2884 bfd_size_type stub_group_size;
2885 boolean stubs_always_before_branch;
2886 boolean stub_changed;
2887 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2889 /* Stash our params away. */
2890 htab->stub_bfd = stub_bfd;
2891 htab->multi_subspace = multi_subspace;
2892 htab->add_stub_section = add_stub_section;
2893 htab->layout_sections_again = layout_sections_again;
2894 stubs_always_before_branch = group_size < 0;
2895 if (group_size < 0)
2896 stub_group_size = -group_size;
2897 else
2898 stub_group_size = group_size;
2899 if (stub_group_size == 1)
2901 /* Default values. */
2902 stub_group_size = 7680000;
2903 if (htab->has_17bit_branch || htab->multi_subspace)
2904 stub_group_size = 240000;
2905 if (htab->has_12bit_branch)
2906 stub_group_size = 7500;
2909 group_sections (htab, stub_group_size, stubs_always_before_branch);
2911 switch (get_local_syms (output_bfd, info->input_bfds, info))
2913 default:
2914 if (htab->all_local_syms)
2915 goto error_ret_free_local;
2916 return false;
2918 case 0:
2919 stub_changed = false;
2920 break;
2922 case 1:
2923 stub_changed = true;
2924 break;
2927 while (1)
2929 bfd *input_bfd;
2930 unsigned int bfd_indx;
2931 asection *stub_sec;
2933 for (input_bfd = info->input_bfds, bfd_indx = 0;
2934 input_bfd != NULL;
2935 input_bfd = input_bfd->link_next, bfd_indx++)
2937 Elf_Internal_Shdr *symtab_hdr;
2938 asection *section;
2939 Elf_Internal_Sym *local_syms;
2941 /* We'll need the symbol table in a second. */
2942 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2943 if (symtab_hdr->sh_info == 0)
2944 continue;
2946 local_syms = htab->all_local_syms[bfd_indx];
2948 /* Walk over each section attached to the input bfd. */
2949 for (section = input_bfd->sections;
2950 section != NULL;
2951 section = section->next)
2953 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2955 /* If there aren't any relocs, then there's nothing more
2956 to do. */
2957 if ((section->flags & SEC_RELOC) == 0
2958 || section->reloc_count == 0)
2959 continue;
2961 /* If this section is a link-once section that will be
2962 discarded, then don't create any stubs. */
2963 if (section->output_section == NULL
2964 || section->output_section->owner != output_bfd)
2965 continue;
2967 /* Get the relocs. */
2968 internal_relocs
2969 = _bfd_elf32_link_read_relocs (input_bfd, section, NULL,
2970 (Elf_Internal_Rela *) NULL,
2971 info->keep_memory);
2972 if (internal_relocs == NULL)
2973 goto error_ret_free_local;
2975 /* Now examine each relocation. */
2976 irela = internal_relocs;
2977 irelaend = irela + section->reloc_count;
2978 for (; irela < irelaend; irela++)
2980 unsigned int r_type, r_indx;
2981 enum elf32_hppa_stub_type stub_type;
2982 struct elf32_hppa_stub_hash_entry *stub_entry;
2983 asection *sym_sec;
2984 bfd_vma sym_value;
2985 bfd_vma destination;
2986 struct elf32_hppa_link_hash_entry *hash;
2987 char *stub_name;
2988 const asection *id_sec;
2990 r_type = ELF32_R_TYPE (irela->r_info);
2991 r_indx = ELF32_R_SYM (irela->r_info);
2993 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2995 bfd_set_error (bfd_error_bad_value);
2996 error_ret_free_internal:
2997 if (elf_section_data (section)->relocs == NULL)
2998 free (internal_relocs);
2999 goto error_ret_free_local;
3002 /* Only look for stubs on call instructions. */
3003 if (r_type != (unsigned int) R_PARISC_PCREL12F
3004 && r_type != (unsigned int) R_PARISC_PCREL17F
3005 && r_type != (unsigned int) R_PARISC_PCREL22F)
3006 continue;
3008 /* Now determine the call target, its name, value,
3009 section. */
3010 sym_sec = NULL;
3011 sym_value = 0;
3012 destination = 0;
3013 hash = NULL;
3014 if (r_indx < symtab_hdr->sh_info)
3016 /* It's a local symbol. */
3017 Elf_Internal_Sym *sym;
3018 Elf_Internal_Shdr *hdr;
3020 sym = local_syms + r_indx;
3021 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3022 sym_sec = hdr->bfd_section;
3023 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3024 sym_value = sym->st_value;
3025 destination = (sym_value + irela->r_addend
3026 + sym_sec->output_offset
3027 + sym_sec->output_section->vma);
3029 else
3031 /* It's an external symbol. */
3032 int e_indx;
3034 e_indx = r_indx - symtab_hdr->sh_info;
3035 hash = ((struct elf32_hppa_link_hash_entry *)
3036 elf_sym_hashes (input_bfd)[e_indx]);
3038 while (hash->elf.root.type == bfd_link_hash_indirect
3039 || hash->elf.root.type == bfd_link_hash_warning)
3040 hash = ((struct elf32_hppa_link_hash_entry *)
3041 hash->elf.root.u.i.link);
3043 if (hash->elf.root.type == bfd_link_hash_defined
3044 || hash->elf.root.type == bfd_link_hash_defweak)
3046 sym_sec = hash->elf.root.u.def.section;
3047 sym_value = hash->elf.root.u.def.value;
3048 if (sym_sec->output_section != NULL)
3049 destination = (sym_value + irela->r_addend
3050 + sym_sec->output_offset
3051 + sym_sec->output_section->vma);
3053 else if (hash->elf.root.type == bfd_link_hash_undefweak)
3055 if (! info->shared)
3056 continue;
3058 else if (hash->elf.root.type == bfd_link_hash_undefined)
3060 if (! (info->shared
3061 && !info->no_undefined
3062 && (ELF_ST_VISIBILITY (hash->elf.other)
3063 == STV_DEFAULT)
3064 && hash->elf.type != STT_PARISC_MILLI))
3065 continue;
3067 else
3069 bfd_set_error (bfd_error_bad_value);
3070 goto error_ret_free_internal;
3074 /* Determine what (if any) linker stub is needed. */
3075 stub_type = hppa_type_of_stub (section, irela, hash,
3076 destination);
3077 if (stub_type == hppa_stub_none)
3078 continue;
3080 /* Support for grouping stub sections. */
3081 id_sec = htab->stub_group[section->id].link_sec;
3083 /* Get the name of this stub. */
3084 stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela);
3085 if (!stub_name)
3086 goto error_ret_free_internal;
3088 stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table,
3089 stub_name,
3090 false, false);
3091 if (stub_entry != NULL)
3093 /* The proper stub has already been created. */
3094 free (stub_name);
3095 continue;
3098 stub_entry = hppa_add_stub (stub_name, section, htab);
3099 if (stub_entry == NULL)
3101 free (stub_name);
3102 goto error_ret_free_internal;
3105 stub_entry->target_value = sym_value;
3106 stub_entry->target_section = sym_sec;
3107 stub_entry->stub_type = stub_type;
3108 if (info->shared)
3110 if (stub_type == hppa_stub_import)
3111 stub_entry->stub_type = hppa_stub_import_shared;
3112 else if (stub_type == hppa_stub_long_branch)
3113 stub_entry->stub_type = hppa_stub_long_branch_shared;
3115 stub_entry->h = hash;
3116 stub_changed = true;
3119 /* We're done with the internal relocs, free them. */
3120 if (elf_section_data (section)->relocs == NULL)
3121 free (internal_relocs);
3125 if (!stub_changed)
3126 break;
3128 /* OK, we've added some stubs. Find out the new size of the
3129 stub sections. */
3130 for (stub_sec = htab->stub_bfd->sections;
3131 stub_sec != NULL;
3132 stub_sec = stub_sec->next)
3134 stub_sec->_raw_size = 0;
3135 stub_sec->_cooked_size = 0;
3138 bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab);
3140 /* Ask the linker to do its stuff. */
3141 (*htab->layout_sections_again) ();
3142 stub_changed = false;
3145 free (htab->all_local_syms);
3146 return true;
3148 error_ret_free_local:
3149 free (htab->all_local_syms);
3150 return false;
3153 /* For a final link, this function is called after we have sized the
3154 stubs to provide a value for __gp. */
3156 boolean
3157 elf32_hppa_set_gp (abfd, info)
3158 bfd *abfd;
3159 struct bfd_link_info *info;
3161 struct bfd_link_hash_entry *h;
3162 asection *sec = NULL;
3163 bfd_vma gp_val = 0;
3164 struct elf32_hppa_link_hash_table *htab;
3166 htab = hppa_link_hash_table (info);
3167 h = bfd_link_hash_lookup (&htab->elf.root, "$global$", false, false, false);
3169 if (h != NULL
3170 && (h->type == bfd_link_hash_defined
3171 || h->type == bfd_link_hash_defweak))
3173 gp_val = h->u.def.value;
3174 sec = h->u.def.section;
3176 else
3178 asection *splt;
3179 asection *sgot;
3181 if (htab->elf.root.creator->flavour == bfd_target_elf_flavour)
3183 splt = htab->splt;
3184 sgot = htab->sgot;
3186 else
3188 /* If we're not elf, look up the output sections in the
3189 hope we may actually find them. */
3190 splt = bfd_get_section_by_name (abfd, ".plt");
3191 sgot = bfd_get_section_by_name (abfd, ".got");
3194 /* Choose to point our LTP at, in this order, one of .plt, .got,
3195 or .data, if these sections exist. In the case of choosing
3196 .plt try to make the LTP ideal for addressing anywhere in the
3197 .plt or .got with a 14 bit signed offset. Typically, the end
3198 of the .plt is the start of the .got, so choose .plt + 0x2000
3199 if either the .plt or .got is larger than 0x2000. If both
3200 the .plt and .got are smaller than 0x2000, choose the end of
3201 the .plt section. */
3202 sec = splt;
3203 if (sec != NULL)
3205 gp_val = sec->_raw_size;
3206 if (gp_val > 0x2000 || (sgot && sgot->_raw_size > 0x2000))
3208 gp_val = 0x2000;
3211 else
3213 sec = sgot;
3214 if (sec != NULL)
3216 /* We know we don't have a .plt. If .got is large,
3217 offset our LTP. */
3218 if (sec->_raw_size > 0x2000)
3219 gp_val = 0x2000;
3221 else
3223 /* No .plt or .got. Who cares what the LTP is? */
3224 sec = bfd_get_section_by_name (abfd, ".data");
3228 if (h != NULL)
3230 h->type = bfd_link_hash_defined;
3231 h->u.def.value = gp_val;
3232 if (sec != NULL)
3233 h->u.def.section = sec;
3234 else
3235 h->u.def.section = bfd_abs_section_ptr;
3239 if (sec != NULL && sec->output_section != NULL)
3240 gp_val += sec->output_section->vma + sec->output_offset;
3242 elf_gp (abfd) = gp_val;
3243 return true;
3246 /* Build all the stubs associated with the current output file. The
3247 stubs are kept in a hash table attached to the main linker hash
3248 table. We also set up the .plt entries for statically linked PIC
3249 functions here. This function is called via hppaelf_finish in the
3250 linker. */
3252 boolean
3253 elf32_hppa_build_stubs (info)
3254 struct bfd_link_info *info;
3256 asection *stub_sec;
3257 struct bfd_hash_table *table;
3258 struct elf32_hppa_link_hash_table *htab;
3260 htab = hppa_link_hash_table (info);
3262 for (stub_sec = htab->stub_bfd->sections;
3263 stub_sec != NULL;
3264 stub_sec = stub_sec->next)
3266 bfd_size_type size;
3268 /* Allocate memory to hold the linker stubs. */
3269 size = stub_sec->_raw_size;
3270 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
3271 if (stub_sec->contents == NULL && size != 0)
3272 return false;
3273 stub_sec->_raw_size = 0;
3276 /* Build the stubs as directed by the stub hash table. */
3277 table = &htab->stub_hash_table;
3278 bfd_hash_traverse (table, hppa_build_one_stub, info);
3280 return true;
3283 /* Perform a final link. */
3285 static boolean
3286 elf32_hppa_final_link (abfd, info)
3287 bfd *abfd;
3288 struct bfd_link_info *info;
3290 /* Invoke the regular ELF linker to do all the work. */
3291 if (!bfd_elf32_bfd_final_link (abfd, info))
3292 return false;
3294 /* If we're producing a final executable, sort the contents of the
3295 unwind section. */
3296 return elf_hppa_sort_unwind (abfd);
3299 /* Record the lowest address for the data and text segments. */
3301 static void
3302 hppa_record_segment_addr (abfd, section, data)
3303 bfd *abfd ATTRIBUTE_UNUSED;
3304 asection *section;
3305 PTR data;
3307 struct elf32_hppa_link_hash_table *htab;
3309 htab = (struct elf32_hppa_link_hash_table *) data;
3311 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3313 bfd_vma value = section->vma - section->filepos;
3315 if ((section->flags & SEC_READONLY) != 0)
3317 if (value < htab->text_segment_base)
3318 htab->text_segment_base = value;
3320 else
3322 if (value < htab->data_segment_base)
3323 htab->data_segment_base = value;
3328 /* Perform a relocation as part of a final link. */
3330 static bfd_reloc_status_type
3331 final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h)
3332 asection *input_section;
3333 bfd_byte *contents;
3334 const Elf_Internal_Rela *rel;
3335 bfd_vma value;
3336 struct elf32_hppa_link_hash_table *htab;
3337 asection *sym_sec;
3338 struct elf32_hppa_link_hash_entry *h;
3340 int insn;
3341 unsigned int r_type = ELF32_R_TYPE (rel->r_info);
3342 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3343 int r_format = howto->bitsize;
3344 enum hppa_reloc_field_selector_type_alt r_field;
3345 bfd *input_bfd = input_section->owner;
3346 bfd_vma offset = rel->r_offset;
3347 bfd_vma max_branch_offset = 0;
3348 bfd_byte *hit_data = contents + offset;
3349 bfd_signed_vma addend = rel->r_addend;
3350 bfd_vma location;
3351 struct elf32_hppa_stub_hash_entry *stub_entry = NULL;
3352 int val;
3354 if (r_type == R_PARISC_NONE)
3355 return bfd_reloc_ok;
3357 insn = bfd_get_32 (input_bfd, hit_data);
3359 /* Find out where we are and where we're going. */
3360 location = (offset +
3361 input_section->output_offset +
3362 input_section->output_section->vma);
3364 switch (r_type)
3366 case R_PARISC_PCREL12F:
3367 case R_PARISC_PCREL17F:
3368 case R_PARISC_PCREL22F:
3369 /* If this call should go via the plt, find the import stub in
3370 the stub hash. */
3371 if (sym_sec == NULL
3372 || sym_sec->output_section == NULL
3373 || (h != NULL
3374 && h->elf.plt.offset != (bfd_vma) -1
3375 && (h->elf.dynindx != -1 || h->pic_call)
3376 && !h->plabel))
3378 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3379 h, rel, htab);
3380 if (stub_entry != NULL)
3382 value = (stub_entry->stub_offset
3383 + stub_entry->stub_sec->output_offset
3384 + stub_entry->stub_sec->output_section->vma);
3385 addend = 0;
3387 else if (sym_sec == NULL && h != NULL
3388 && h->elf.root.type == bfd_link_hash_undefweak)
3390 /* It's OK if undefined weak. Calls to undefined weak
3391 symbols behave as if the "called" function
3392 immediately returns. We can thus call to a weak
3393 function without first checking whether the function
3394 is defined. */
3395 value = location;
3396 addend = 8;
3398 else
3399 return bfd_reloc_undefined;
3401 /* Fall thru. */
3403 case R_PARISC_PCREL21L:
3404 case R_PARISC_PCREL17C:
3405 case R_PARISC_PCREL17R:
3406 case R_PARISC_PCREL14R:
3407 case R_PARISC_PCREL14F:
3408 /* Make it a pc relative offset. */
3409 value -= location;
3410 addend -= 8;
3411 break;
3413 case R_PARISC_DPREL21L:
3414 case R_PARISC_DPREL14R:
3415 case R_PARISC_DPREL14F:
3416 /* For all the DP relative relocations, we need to examine the symbol's
3417 section. If it's a code section, then "data pointer relative" makes
3418 no sense. In that case we don't adjust the "value", and for 21 bit
3419 addil instructions, we change the source addend register from %dp to
3420 %r0. This situation commonly arises when a variable's "constness"
3421 is declared differently from the way the variable is defined. For
3422 instance: "extern int foo" with foo defined as "const int foo". */
3423 if (sym_sec == NULL)
3424 break;
3425 if ((sym_sec->flags & SEC_CODE) != 0)
3427 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3428 == (((int) OP_ADDIL << 26) | (27 << 21)))
3430 insn &= ~ (0x1f << 21);
3431 #if 0 /* debug them. */
3432 (*_bfd_error_handler)
3433 (_("%s(%s+0x%lx): fixing %s"),
3434 bfd_archive_filename (input_bfd),
3435 input_section->name,
3436 (long) rel->r_offset,
3437 howto->name);
3438 #endif
3440 /* Now try to make things easy for the dynamic linker. */
3442 break;
3444 /* Fall thru. */
3446 case R_PARISC_DLTIND21L:
3447 case R_PARISC_DLTIND14R:
3448 case R_PARISC_DLTIND14F:
3449 value -= elf_gp (input_section->output_section->owner);
3450 break;
3452 case R_PARISC_SEGREL32:
3453 if ((sym_sec->flags & SEC_CODE) != 0)
3454 value -= htab->text_segment_base;
3455 else
3456 value -= htab->data_segment_base;
3457 break;
3459 default:
3460 break;
3463 switch (r_type)
3465 case R_PARISC_DIR32:
3466 case R_PARISC_DIR14F:
3467 case R_PARISC_DIR17F:
3468 case R_PARISC_PCREL17C:
3469 case R_PARISC_PCREL14F:
3470 case R_PARISC_DPREL14F:
3471 case R_PARISC_PLABEL32:
3472 case R_PARISC_DLTIND14F:
3473 case R_PARISC_SEGBASE:
3474 case R_PARISC_SEGREL32:
3475 r_field = e_fsel;
3476 break;
3478 case R_PARISC_DLTIND21L:
3479 case R_PARISC_PCREL21L:
3480 case R_PARISC_PLABEL21L:
3481 r_field = e_lsel;
3482 break;
3484 case R_PARISC_DIR21L:
3485 case R_PARISC_DPREL21L:
3486 r_field = e_lrsel;
3487 break;
3489 case R_PARISC_PCREL17R:
3490 case R_PARISC_PCREL14R:
3491 case R_PARISC_PLABEL14R:
3492 case R_PARISC_DLTIND14R:
3493 r_field = e_rsel;
3494 break;
3496 case R_PARISC_DIR17R:
3497 case R_PARISC_DIR14R:
3498 case R_PARISC_DPREL14R:
3499 r_field = e_rrsel;
3500 break;
3502 case R_PARISC_PCREL12F:
3503 case R_PARISC_PCREL17F:
3504 case R_PARISC_PCREL22F:
3505 r_field = e_fsel;
3507 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3509 max_branch_offset = (1 << (17-1)) << 2;
3511 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3513 max_branch_offset = (1 << (12-1)) << 2;
3515 else
3517 max_branch_offset = (1 << (22-1)) << 2;
3520 /* sym_sec is NULL on undefined weak syms or when shared on
3521 undefined syms. We've already checked for a stub for the
3522 shared undefined case. */
3523 if (sym_sec == NULL)
3524 break;
3526 /* If the branch is out of reach, then redirect the
3527 call to the local stub for this function. */
3528 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3530 stub_entry = hppa_get_stub_entry (input_section, sym_sec,
3531 h, rel, htab);
3532 if (stub_entry == NULL)
3533 return bfd_reloc_undefined;
3535 /* Munge up the value and addend so that we call the stub
3536 rather than the procedure directly. */
3537 value = (stub_entry->stub_offset
3538 + stub_entry->stub_sec->output_offset
3539 + stub_entry->stub_sec->output_section->vma
3540 - location);
3541 addend = -8;
3543 break;
3545 /* Something we don't know how to handle. */
3546 default:
3547 return bfd_reloc_notsupported;
3550 /* Make sure we can reach the stub. */
3551 if (max_branch_offset != 0
3552 && value + addend + max_branch_offset >= 2*max_branch_offset)
3554 (*_bfd_error_handler)
3555 (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3556 bfd_archive_filename (input_bfd),
3557 input_section->name,
3558 (long) rel->r_offset,
3559 stub_entry->root.string);
3560 bfd_set_error (bfd_error_bad_value);
3561 return bfd_reloc_notsupported;
3564 val = hppa_field_adjust (value, addend, r_field);
3566 switch (r_type)
3568 case R_PARISC_PCREL12F:
3569 case R_PARISC_PCREL17C:
3570 case R_PARISC_PCREL17F:
3571 case R_PARISC_PCREL17R:
3572 case R_PARISC_PCREL22F:
3573 case R_PARISC_DIR17F:
3574 case R_PARISC_DIR17R:
3575 /* This is a branch. Divide the offset by four.
3576 Note that we need to decide whether it's a branch or
3577 otherwise by inspecting the reloc. Inspecting insn won't
3578 work as insn might be from a .word directive. */
3579 val >>= 2;
3580 break;
3582 default:
3583 break;
3586 insn = hppa_rebuild_insn (insn, val, r_format);
3588 /* Update the instruction word. */
3589 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3590 return bfd_reloc_ok;
3593 /* Relocate an HPPA ELF section. */
3595 static boolean
3596 elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
3597 contents, relocs, local_syms, local_sections)
3598 bfd *output_bfd;
3599 struct bfd_link_info *info;
3600 bfd *input_bfd;
3601 asection *input_section;
3602 bfd_byte *contents;
3603 Elf_Internal_Rela *relocs;
3604 Elf_Internal_Sym *local_syms;
3605 asection **local_sections;
3607 bfd_vma *local_got_offsets;
3608 struct elf32_hppa_link_hash_table *htab;
3609 Elf_Internal_Shdr *symtab_hdr;
3610 Elf_Internal_Rela *rel;
3611 Elf_Internal_Rela *relend;
3613 if (info->relocateable)
3614 return true;
3616 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3618 htab = hppa_link_hash_table (info);
3619 local_got_offsets = elf_local_got_offsets (input_bfd);
3621 rel = relocs;
3622 relend = relocs + input_section->reloc_count;
3623 for (; rel < relend; rel++)
3625 unsigned int r_type;
3626 reloc_howto_type *howto;
3627 unsigned int r_symndx;
3628 struct elf32_hppa_link_hash_entry *h;
3629 Elf_Internal_Sym *sym;
3630 asection *sym_sec;
3631 bfd_vma relocation;
3632 bfd_reloc_status_type r;
3633 const char *sym_name;
3634 boolean plabel;
3635 boolean warned_undef;
3637 r_type = ELF32_R_TYPE (rel->r_info);
3638 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3640 bfd_set_error (bfd_error_bad_value);
3641 return false;
3643 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3644 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3645 continue;
3647 /* This is a final link. */
3648 r_symndx = ELF32_R_SYM (rel->r_info);
3649 h = NULL;
3650 sym = NULL;
3651 sym_sec = NULL;
3652 warned_undef = false;
3653 if (r_symndx < symtab_hdr->sh_info)
3655 /* This is a local symbol, h defaults to NULL. */
3656 sym = local_syms + r_symndx;
3657 sym_sec = local_sections[r_symndx];
3658 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel);
3660 else
3662 int indx;
3664 /* It's a global; Find its entry in the link hash. */
3665 indx = r_symndx - symtab_hdr->sh_info;
3666 h = ((struct elf32_hppa_link_hash_entry *)
3667 elf_sym_hashes (input_bfd)[indx]);
3668 while (h->elf.root.type == bfd_link_hash_indirect
3669 || h->elf.root.type == bfd_link_hash_warning)
3670 h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link;
3672 relocation = 0;
3673 if (h->elf.root.type == bfd_link_hash_defined
3674 || h->elf.root.type == bfd_link_hash_defweak)
3676 sym_sec = h->elf.root.u.def.section;
3677 /* If sym_sec->output_section is NULL, then it's a
3678 symbol defined in a shared library. */
3679 if (sym_sec->output_section != NULL)
3680 relocation = (h->elf.root.u.def.value
3681 + sym_sec->output_offset
3682 + sym_sec->output_section->vma);
3684 else if (h->elf.root.type == bfd_link_hash_undefweak)
3686 else if (info->shared && !info->no_undefined
3687 && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
3688 && h->elf.type != STT_PARISC_MILLI)
3690 if (info->symbolic && !info->allow_shlib_undefined)
3692 if (!((*info->callbacks->undefined_symbol)
3693 (info, h->elf.root.root.string, input_bfd,
3694 input_section, rel->r_offset, false)))
3695 return false;
3696 warned_undef = true;
3699 else
3701 if (!((*info->callbacks->undefined_symbol)
3702 (info, h->elf.root.root.string, input_bfd,
3703 input_section, rel->r_offset, true)))
3704 return false;
3705 warned_undef = true;
3709 /* Do any required modifications to the relocation value, and
3710 determine what types of dynamic info we need to output, if
3711 any. */
3712 plabel = 0;
3713 switch (r_type)
3715 case R_PARISC_DLTIND14F:
3716 case R_PARISC_DLTIND14R:
3717 case R_PARISC_DLTIND21L:
3719 bfd_vma off;
3720 boolean do_got = 0;
3722 /* Relocation is to the entry for this symbol in the
3723 global offset table. */
3724 if (h != NULL)
3726 boolean dyn;
3728 off = h->elf.got.offset;
3729 dyn = htab->elf.dynamic_sections_created;
3730 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf))
3732 /* If we aren't going to call finish_dynamic_symbol,
3733 then we need to handle initialisation of the .got
3734 entry and create needed relocs here. Since the
3735 offset must always be a multiple of 4, we use the
3736 least significant bit to record whether we have
3737 initialised it already. */
3738 if ((off & 1) != 0)
3739 off &= ~1;
3740 else
3742 h->elf.got.offset |= 1;
3743 do_got = 1;
3747 else
3749 /* Local symbol case. */
3750 if (local_got_offsets == NULL)
3751 abort ();
3753 off = local_got_offsets[r_symndx];
3755 /* The offset must always be a multiple of 4. We use
3756 the least significant bit to record whether we have
3757 already generated the necessary reloc. */
3758 if ((off & 1) != 0)
3759 off &= ~1;
3760 else
3762 local_got_offsets[r_symndx] |= 1;
3763 do_got = 1;
3767 if (do_got)
3769 if (info->shared)
3771 /* Output a dynamic relocation for this GOT entry.
3772 In this case it is relative to the base of the
3773 object because the symbol index is zero. */
3774 Elf_Internal_Rela outrel;
3775 asection *srelgot = htab->srelgot;
3776 Elf32_External_Rela *loc;
3778 outrel.r_offset = (off
3779 + htab->sgot->output_offset
3780 + htab->sgot->output_section->vma);
3781 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3782 outrel.r_addend = relocation;
3783 loc = (Elf32_External_Rela *) srelgot->contents;
3784 loc += srelgot->reloc_count++;
3785 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3787 else
3788 bfd_put_32 (output_bfd, relocation,
3789 htab->sgot->contents + off);
3792 if (off >= (bfd_vma) -2)
3793 abort ();
3795 /* Add the base of the GOT to the relocation value. */
3796 relocation = (off
3797 + htab->sgot->output_offset
3798 + htab->sgot->output_section->vma);
3800 break;
3802 case R_PARISC_SEGREL32:
3803 /* If this is the first SEGREL relocation, then initialize
3804 the segment base values. */
3805 if (htab->text_segment_base == (bfd_vma) -1)
3806 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3807 break;
3809 case R_PARISC_PLABEL14R:
3810 case R_PARISC_PLABEL21L:
3811 case R_PARISC_PLABEL32:
3812 if (htab->elf.dynamic_sections_created)
3814 bfd_vma off;
3815 boolean do_plt = 0;
3817 /* If we have a global symbol with a PLT slot, then
3818 redirect this relocation to it. */
3819 if (h != NULL)
3821 off = h->elf.plt.offset;
3822 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf))
3824 /* In a non-shared link, adjust_dynamic_symbols
3825 isn't called for symbols forced local. We
3826 need to write out the plt entry here. */
3827 if ((off & 1) != 0)
3828 off &= ~1;
3829 else
3831 h->elf.plt.offset |= 1;
3832 do_plt = 1;
3836 else
3838 bfd_vma *local_plt_offsets;
3840 if (local_got_offsets == NULL)
3841 abort ();
3843 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3844 off = local_plt_offsets[r_symndx];
3846 /* As for the local .got entry case, we use the last
3847 bit to record whether we've already initialised
3848 this local .plt entry. */
3849 if ((off & 1) != 0)
3850 off &= ~1;
3851 else
3853 local_plt_offsets[r_symndx] |= 1;
3854 do_plt = 1;
3858 if (do_plt)
3860 if (info->shared)
3862 /* Output a dynamic IPLT relocation for this
3863 PLT entry. */
3864 Elf_Internal_Rela outrel;
3865 asection *srelplt = htab->srelplt;
3866 Elf32_External_Rela *loc;
3868 outrel.r_offset = (off
3869 + htab->splt->output_offset
3870 + htab->splt->output_section->vma);
3871 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3872 outrel.r_addend = relocation;
3873 loc = (Elf32_External_Rela *) srelplt->contents;
3874 loc += srelplt->reloc_count++;
3875 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3877 else
3879 bfd_put_32 (output_bfd,
3880 relocation,
3881 htab->splt->contents + off);
3882 bfd_put_32 (output_bfd,
3883 elf_gp (htab->splt->output_section->owner),
3884 htab->splt->contents + off + 4);
3888 if (off >= (bfd_vma) -2)
3889 abort ();
3891 /* PLABELs contain function pointers. Relocation is to
3892 the entry for the function in the .plt. The magic +2
3893 offset signals to $$dyncall that the function pointer
3894 is in the .plt and thus has a gp pointer too.
3895 Exception: Undefined PLABELs should have a value of
3896 zero. */
3897 if (h == NULL
3898 || (h->elf.root.type != bfd_link_hash_undefweak
3899 && h->elf.root.type != bfd_link_hash_undefined))
3901 relocation = (off
3902 + htab->splt->output_offset
3903 + htab->splt->output_section->vma
3904 + 2);
3906 plabel = 1;
3908 /* Fall through and possibly emit a dynamic relocation. */
3910 case R_PARISC_DIR17F:
3911 case R_PARISC_DIR17R:
3912 case R_PARISC_DIR14F:
3913 case R_PARISC_DIR14R:
3914 case R_PARISC_DIR21L:
3915 case R_PARISC_DPREL14F:
3916 case R_PARISC_DPREL14R:
3917 case R_PARISC_DPREL21L:
3918 case R_PARISC_DIR32:
3919 /* r_symndx will be zero only for relocs against symbols
3920 from removed linkonce sections, or sections discarded by
3921 a linker script. */
3922 if (r_symndx == 0
3923 || (input_section->flags & SEC_ALLOC) == 0)
3924 break;
3926 /* The reloc types handled here and this conditional
3927 expression must match the code in ..check_relocs and
3928 allocate_dynrelocs. ie. We need exactly the same condition
3929 as in ..check_relocs, with some extra conditions (dynindx
3930 test in this case) to cater for relocs removed by
3931 allocate_dynrelocs. If you squint, the non-shared test
3932 here does indeed match the one in ..check_relocs, the
3933 difference being that here we test DEF_DYNAMIC as well as
3934 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3935 which is why we can't use just that test here.
3936 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3937 there all files have not been loaded. */
3938 if ((info->shared
3939 && (IS_ABSOLUTE_RELOC (r_type)
3940 || (h != NULL
3941 && h->elf.dynindx != -1
3942 && (!info->symbolic
3943 || (h->elf.elf_link_hash_flags
3944 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
3945 || (!info->shared
3946 && h != NULL
3947 && h->elf.dynindx != -1
3948 && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
3949 && (((h->elf.elf_link_hash_flags
3950 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
3951 && (h->elf.elf_link_hash_flags
3952 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3953 || h->elf.root.type == bfd_link_hash_undefweak
3954 || h->elf.root.type == bfd_link_hash_undefined)))
3956 Elf_Internal_Rela outrel;
3957 boolean skip;
3958 asection *sreloc;
3959 Elf32_External_Rela *loc;
3961 /* When generating a shared object, these relocations
3962 are copied into the output file to be resolved at run
3963 time. */
3965 outrel.r_addend = rel->r_addend;
3966 outrel.r_offset =
3967 _bfd_elf_section_offset (output_bfd, info, input_section,
3968 rel->r_offset);
3969 skip = (outrel.r_offset == (bfd_vma) -1
3970 || outrel.r_offset == (bfd_vma) -2);
3971 outrel.r_offset += (input_section->output_offset
3972 + input_section->output_section->vma);
3974 if (skip)
3976 memset (&outrel, 0, sizeof (outrel));
3978 else if (h != NULL
3979 && h->elf.dynindx != -1
3980 && (plabel
3981 || !IS_ABSOLUTE_RELOC (r_type)
3982 || !info->shared
3983 || !info->symbolic
3984 || (h->elf.elf_link_hash_flags
3985 & ELF_LINK_HASH_DEF_REGULAR) == 0))
3987 outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type);
3989 else /* It's a local symbol, or one marked to become local. */
3991 int indx = 0;
3993 /* Add the absolute offset of the symbol. */
3994 outrel.r_addend += relocation;
3996 /* Global plabels need to be processed by the
3997 dynamic linker so that functions have at most one
3998 fptr. For this reason, we need to differentiate
3999 between global and local plabels, which we do by
4000 providing the function symbol for a global plabel
4001 reloc, and no symbol for local plabels. */
4002 if (! plabel
4003 && sym_sec != NULL
4004 && sym_sec->output_section != NULL
4005 && ! bfd_is_abs_section (sym_sec))
4007 indx = elf_section_data (sym_sec->output_section)->dynindx;
4008 /* We are turning this relocation into one
4009 against a section symbol, so subtract out the
4010 output section's address but not the offset
4011 of the input section in the output section. */
4012 outrel.r_addend -= sym_sec->output_section->vma;
4015 outrel.r_info = ELF32_R_INFO (indx, r_type);
4017 #if 0
4018 /* EH info can cause unaligned DIR32 relocs.
4019 Tweak the reloc type for the dynamic linker. */
4020 if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0)
4021 outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info),
4022 R_PARISC_DIR32U);
4023 #endif
4024 sreloc = elf_section_data (input_section)->sreloc;
4025 if (sreloc == NULL)
4026 abort ();
4028 loc = (Elf32_External_Rela *) sreloc->contents;
4029 loc += sreloc->reloc_count++;
4030 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4032 break;
4034 default:
4035 break;
4038 r = final_link_relocate (input_section, contents, rel, relocation,
4039 htab, sym_sec, h);
4041 if (r == bfd_reloc_ok)
4042 continue;
4044 if (h != NULL)
4045 sym_name = h->elf.root.root.string;
4046 else
4048 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4049 symtab_hdr->sh_link,
4050 sym->st_name);
4051 if (sym_name == NULL)
4052 return false;
4053 if (*sym_name == '\0')
4054 sym_name = bfd_section_name (input_bfd, sym_sec);
4057 howto = elf_hppa_howto_table + r_type;
4059 if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported)
4061 if (r == bfd_reloc_notsupported || !warned_undef)
4063 (*_bfd_error_handler)
4064 (_("%s(%s+0x%lx): cannot handle %s for %s"),
4065 bfd_archive_filename (input_bfd),
4066 input_section->name,
4067 (long) rel->r_offset,
4068 howto->name,
4069 sym_name);
4070 bfd_set_error (bfd_error_bad_value);
4071 return false;
4074 else
4076 if (!((*info->callbacks->reloc_overflow)
4077 (info, sym_name, howto->name, (bfd_vma) 0,
4078 input_bfd, input_section, rel->r_offset)))
4079 return false;
4083 return true;
4086 /* Finish up dynamic symbol handling. We set the contents of various
4087 dynamic sections here. */
4089 static boolean
4090 elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
4091 bfd *output_bfd;
4092 struct bfd_link_info *info;
4093 struct elf_link_hash_entry *h;
4094 Elf_Internal_Sym *sym;
4096 struct elf32_hppa_link_hash_table *htab;
4098 htab = hppa_link_hash_table (info);
4100 if (h->plt.offset != (bfd_vma) -1)
4102 bfd_vma value;
4104 if (h->plt.offset & 1)
4105 abort ();
4107 /* This symbol has an entry in the procedure linkage table. Set
4108 it up.
4110 The format of a plt entry is
4111 <funcaddr>
4112 <__gp>
4114 value = 0;
4115 if (h->root.type == bfd_link_hash_defined
4116 || h->root.type == bfd_link_hash_defweak)
4118 value = h->root.u.def.value;
4119 if (h->root.u.def.section->output_section != NULL)
4120 value += (h->root.u.def.section->output_offset
4121 + h->root.u.def.section->output_section->vma);
4124 if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call)
4126 Elf_Internal_Rela rel;
4127 Elf32_External_Rela *loc;
4129 /* Create a dynamic IPLT relocation for this entry. */
4130 rel.r_offset = (h->plt.offset
4131 + htab->splt->output_offset
4132 + htab->splt->output_section->vma);
4133 if (h->dynindx != -1)
4135 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT);
4136 rel.r_addend = 0;
4138 else
4140 /* This symbol has been marked to become local, and is
4141 used by a plabel so must be kept in the .plt. */
4142 rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4143 rel.r_addend = value;
4146 loc = (Elf32_External_Rela *) htab->srelplt->contents;
4147 loc += htab->srelplt->reloc_count++;
4148 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner,
4149 &rel, loc);
4151 else
4153 bfd_put_32 (htab->splt->owner,
4154 value,
4155 htab->splt->contents + h->plt.offset);
4156 bfd_put_32 (htab->splt->owner,
4157 elf_gp (htab->splt->output_section->owner),
4158 htab->splt->contents + h->plt.offset + 4);
4161 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4163 /* Mark the symbol as undefined, rather than as defined in
4164 the .plt section. Leave the value alone. */
4165 sym->st_shndx = SHN_UNDEF;
4169 if (h->got.offset != (bfd_vma) -1)
4171 Elf_Internal_Rela rel;
4172 Elf32_External_Rela *loc;
4174 /* This symbol has an entry in the global offset table. Set it
4175 up. */
4177 rel.r_offset = ((h->got.offset &~ (bfd_vma) 1)
4178 + htab->sgot->output_offset
4179 + htab->sgot->output_section->vma);
4181 /* If this is a -Bsymbolic link and the symbol is defined
4182 locally or was forced to be local because of a version file,
4183 we just want to emit a RELATIVE reloc. The entry in the
4184 global offset table will already have been initialized in the
4185 relocate_section function. */
4186 if (info->shared
4187 && (info->symbolic || h->dynindx == -1)
4188 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
4190 rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4191 rel.r_addend = (h->root.u.def.value
4192 + h->root.u.def.section->output_offset
4193 + h->root.u.def.section->output_section->vma);
4195 else
4197 if ((h->got.offset & 1) != 0)
4198 abort ();
4199 bfd_put_32 (output_bfd, (bfd_vma) 0,
4200 htab->sgot->contents + h->got.offset);
4201 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32);
4202 rel.r_addend = 0;
4205 loc = (Elf32_External_Rela *) htab->srelgot->contents;
4206 loc += htab->srelgot->reloc_count++;
4207 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4210 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
4212 asection *s;
4213 Elf_Internal_Rela rel;
4214 Elf32_External_Rela *loc;
4216 /* This symbol needs a copy reloc. Set it up. */
4218 if (! (h->dynindx != -1
4219 && (h->root.type == bfd_link_hash_defined
4220 || h->root.type == bfd_link_hash_defweak)))
4221 abort ();
4223 s = htab->srelbss;
4225 rel.r_offset = (h->root.u.def.value
4226 + h->root.u.def.section->output_offset
4227 + h->root.u.def.section->output_section->vma);
4228 rel.r_addend = 0;
4229 rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY);
4230 loc = (Elf32_External_Rela *) s->contents + s->reloc_count++;
4231 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
4234 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4235 if (h->root.root.string[0] == '_'
4236 && (strcmp (h->root.root.string, "_DYNAMIC") == 0
4237 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0))
4239 sym->st_shndx = SHN_ABS;
4242 return true;
4245 /* Used to decide how to sort relocs in an optimal manner for the
4246 dynamic linker, before writing them out. */
4248 static enum elf_reloc_type_class
4249 elf32_hppa_reloc_type_class (rela)
4250 const Elf_Internal_Rela *rela;
4252 if (ELF32_R_SYM (rela->r_info) == 0)
4253 return reloc_class_relative;
4255 switch ((int) ELF32_R_TYPE (rela->r_info))
4257 case R_PARISC_IPLT:
4258 return reloc_class_plt;
4259 case R_PARISC_COPY:
4260 return reloc_class_copy;
4261 default:
4262 return reloc_class_normal;
4266 /* Finish up the dynamic sections. */
4268 static boolean
4269 elf32_hppa_finish_dynamic_sections (output_bfd, info)
4270 bfd *output_bfd;
4271 struct bfd_link_info *info;
4273 bfd *dynobj;
4274 struct elf32_hppa_link_hash_table *htab;
4275 asection *sdyn;
4277 htab = hppa_link_hash_table (info);
4278 dynobj = htab->elf.dynobj;
4280 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4282 if (htab->elf.dynamic_sections_created)
4284 Elf32_External_Dyn *dyncon, *dynconend;
4286 if (sdyn == NULL)
4287 abort ();
4289 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4290 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
4291 for (; dyncon < dynconend; dyncon++)
4293 Elf_Internal_Dyn dyn;
4294 asection *s;
4296 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4298 switch (dyn.d_tag)
4300 default:
4301 continue;
4303 case DT_PLTGOT:
4304 /* Use PLTGOT to set the GOT register. */
4305 dyn.d_un.d_ptr = elf_gp (output_bfd);
4306 break;
4308 case DT_JMPREL:
4309 s = htab->srelplt;
4310 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4311 break;
4313 case DT_PLTRELSZ:
4314 s = htab->srelplt;
4315 if (s->_cooked_size != 0)
4316 dyn.d_un.d_val = s->_cooked_size;
4317 else
4318 dyn.d_un.d_val = s->_raw_size;
4319 break;
4321 case DT_RELASZ:
4322 /* Don't count procedure linkage table relocs in the
4323 overall reloc count. */
4324 if (htab->srelplt != NULL)
4326 s = htab->srelplt->output_section;
4327 if (s->_cooked_size != 0)
4328 dyn.d_un.d_val -= s->_cooked_size;
4329 else
4330 dyn.d_un.d_val -= s->_raw_size;
4332 break;
4335 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4339 if (htab->sgot != NULL && htab->sgot->_raw_size != 0)
4341 /* Fill in the first entry in the global offset table.
4342 We use it to point to our dynamic section, if we have one. */
4343 bfd_put_32 (output_bfd,
4344 (sdyn != NULL
4345 ? sdyn->output_section->vma + sdyn->output_offset
4346 : (bfd_vma) 0),
4347 htab->sgot->contents);
4349 /* The second entry is reserved for use by the dynamic linker. */
4350 memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4352 /* Set .got entry size. */
4353 elf_section_data (htab->sgot->output_section)
4354 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4357 if (htab->splt != NULL && htab->splt->_raw_size != 0)
4359 /* Set plt entry size. */
4360 elf_section_data (htab->splt->output_section)
4361 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4363 if (htab->need_plt_stub)
4365 /* Set up the .plt stub. */
4366 memcpy (htab->splt->contents
4367 + htab->splt->_raw_size - sizeof (plt_stub),
4368 plt_stub, sizeof (plt_stub));
4370 if ((htab->splt->output_offset
4371 + htab->splt->output_section->vma
4372 + htab->splt->_raw_size)
4373 != (htab->sgot->output_offset
4374 + htab->sgot->output_section->vma))
4376 (*_bfd_error_handler)
4377 (_(".got section not immediately after .plt section"));
4378 return false;
4383 return true;
4386 /* Tweak the OSABI field of the elf header. */
4388 static void
4389 elf32_hppa_post_process_headers (abfd, link_info)
4390 bfd *abfd;
4391 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
4393 Elf_Internal_Ehdr * i_ehdrp;
4395 i_ehdrp = elf_elfheader (abfd);
4397 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
4399 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
4401 else
4403 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
4407 /* Called when writing out an object file to decide the type of a
4408 symbol. */
4409 static int
4410 elf32_hppa_elf_get_symbol_type (elf_sym, type)
4411 Elf_Internal_Sym *elf_sym;
4412 int type;
4414 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4415 return STT_PARISC_MILLI;
4416 else
4417 return type;
4420 /* Misc BFD support code. */
4421 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4422 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4423 #define elf_info_to_howto elf_hppa_info_to_howto
4424 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4426 /* Stuff for the BFD linker. */
4427 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4428 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4429 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4430 #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook
4431 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4432 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4433 #define elf_backend_check_relocs elf32_hppa_check_relocs
4434 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4435 #define elf_backend_fake_sections elf_hppa_fake_sections
4436 #define elf_backend_relocate_section elf32_hppa_relocate_section
4437 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4438 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4439 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4440 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4441 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4442 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4443 #define elf_backend_object_p elf32_hppa_object_p
4444 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4445 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4446 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4447 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4449 #define elf_backend_can_gc_sections 1
4450 #define elf_backend_can_refcount 1
4451 #define elf_backend_plt_alignment 2
4452 #define elf_backend_want_got_plt 0
4453 #define elf_backend_plt_readonly 0
4454 #define elf_backend_want_plt_sym 0
4455 #define elf_backend_got_header_size 8
4456 #define elf_backend_rela_normal 1
4458 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4459 #define TARGET_BIG_NAME "elf32-hppa"
4460 #define ELF_ARCH bfd_arch_hppa
4461 #define ELF_MACHINE_CODE EM_PARISC
4462 #define ELF_MAXPAGESIZE 0x1000
4464 #include "elf32-target.h"
4466 #undef TARGET_BIG_SYM
4467 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4468 #undef TARGET_BIG_NAME
4469 #define TARGET_BIG_NAME "elf32-hppa-linux"
4471 #define INCLUDED_TARGET_FILE 1
4472 #include "elf32-target.h"