Update Spanish and Swedish translations
[binutils.git] / bfd / elf64-hppa.c
blobaef822a02f2d2dc286191e5f15d023bd9b6f77c9
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20 #include "alloca-conf.h"
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/hppa.h"
26 #include "libhppa.h"
27 #include "elf64-hppa.h"
28 #define ARCH_SIZE 64
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
49 struct elf64_hppa_dyn_hash_entry
51 struct bfd_hash_entry root;
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
84 /* The type of the relocation. */
85 int type;
87 /* The input section of the relocation. */
88 asection *sec;
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
97 /* The addend for the relocation. */
98 bfd_vma addend;
100 } *reloc_entries;
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
110 struct elf64_hppa_dyn_hash_table
112 struct bfd_hash_table root;
115 struct elf64_hppa_link_hash_table
117 struct elf_link_hash_table root;
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156 typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159 static boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 boolean create, boolean copy));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
175 static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
183 static boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
186 static boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf64_Internal_Shdr *, const char *));
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
192 static boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
195 static boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
198 static boolean elf64_hppa_mark_milli_and_exported_functions
199 PARAMS ((struct elf_link_hash_entry *, PTR));
201 static boolean elf64_hppa_size_dynamic_sections
202 PARAMS ((bfd *, struct bfd_link_info *));
204 static boolean elf64_hppa_link_output_symbol_hook
205 PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
206 Elf_Internal_Sym *, asection *input_sec));
208 static boolean elf64_hppa_finish_dynamic_symbol
209 PARAMS ((bfd *, struct bfd_link_info *,
210 struct elf_link_hash_entry *, Elf_Internal_Sym *));
212 static int elf64_hppa_additional_program_headers PARAMS ((bfd *));
214 static boolean elf64_hppa_modify_segment_map PARAMS ((bfd *));
216 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217 PARAMS ((const Elf_Internal_Rela *));
219 static boolean elf64_hppa_finish_dynamic_sections
220 PARAMS ((bfd *, struct bfd_link_info *));
222 static boolean elf64_hppa_check_relocs
223 PARAMS ((bfd *, struct bfd_link_info *,
224 asection *, const Elf_Internal_Rela *));
226 static boolean elf64_hppa_dynamic_symbol_p
227 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
229 static boolean elf64_hppa_mark_exported_functions
230 PARAMS ((struct elf_link_hash_entry *, PTR));
232 static boolean elf64_hppa_finalize_opd
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
235 static boolean elf64_hppa_finalize_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
238 static boolean allocate_global_data_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
241 static boolean allocate_global_data_plt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
244 static boolean allocate_global_data_stub
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
247 static boolean allocate_global_data_opd
248 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
250 static boolean get_reloc_section
251 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
253 static boolean count_dyn_reloc
254 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
255 int, asection *, int, bfd_vma, bfd_vma));
257 static boolean allocate_dynrel_entries
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
260 static boolean elf64_hppa_finalize_dynreloc
261 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
263 static boolean get_opd
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
266 static boolean get_plt
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
269 static boolean get_dlt
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
272 static boolean get_stub
273 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
275 static int elf64_hppa_elf_get_symbol_type
276 PARAMS ((Elf_Internal_Sym *, int));
278 static boolean
279 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
280 struct elf64_hppa_dyn_hash_table *ht;
281 bfd *abfd ATTRIBUTE_UNUSED;
282 new_hash_entry_func new;
284 memset (ht, 0, sizeof (*ht));
285 return bfd_hash_table_init (&ht->root, new);
288 static struct bfd_hash_entry*
289 elf64_hppa_new_dyn_hash_entry (entry, table, string)
290 struct bfd_hash_entry *entry;
291 struct bfd_hash_table *table;
292 const char *string;
294 struct elf64_hppa_dyn_hash_entry *ret;
295 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
297 /* Allocate the structure if it has not already been allocated by a
298 subclass. */
299 if (!ret)
300 ret = bfd_hash_allocate (table, sizeof (*ret));
302 if (!ret)
303 return 0;
305 /* Initialize our local data. All zeros, and definitely easier
306 than setting 8 bit fields. */
307 memset (ret, 0, sizeof (*ret));
309 /* Call the allocation method of the superclass. */
310 ret = ((struct elf64_hppa_dyn_hash_entry *)
311 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
313 return &ret->root;
316 /* Create the derived linker hash table. The PA64 ELF port uses this
317 derived hash table to keep information specific to the PA ElF
318 linker (without using static variables). */
320 static struct bfd_link_hash_table*
321 elf64_hppa_hash_table_create (abfd)
322 bfd *abfd;
324 struct elf64_hppa_link_hash_table *ret;
326 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
327 if (!ret)
328 return 0;
329 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
330 _bfd_elf_link_hash_newfunc))
332 bfd_release (abfd, ret);
333 return 0;
336 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
337 elf64_hppa_new_dyn_hash_entry))
338 return 0;
339 return &ret->root.root;
342 /* Look up an entry in a PA64 ELF linker hash table. */
344 static struct elf64_hppa_dyn_hash_entry *
345 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
346 struct elf64_hppa_dyn_hash_table *table;
347 const char *string;
348 boolean create, copy;
350 return ((struct elf64_hppa_dyn_hash_entry *)
351 bfd_hash_lookup (&table->root, string, create, copy));
354 /* Traverse a PA64 ELF linker hash table. */
356 static void
357 elf64_hppa_dyn_hash_traverse (table, func, info)
358 struct elf64_hppa_dyn_hash_table *table;
359 boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
360 PTR info;
362 (bfd_hash_traverse
363 (&table->root,
364 (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
365 info));
368 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
370 Additionally we set the default architecture and machine. */
371 static boolean
372 elf64_hppa_object_p (abfd)
373 bfd *abfd;
375 Elf_Internal_Ehdr * i_ehdrp;
376 unsigned int flags;
378 i_ehdrp = elf_elfheader (abfd);
379 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
381 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
382 return false;
384 else
386 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
387 return false;
390 flags = i_ehdrp->e_flags;
391 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
393 case EFA_PARISC_1_0:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
395 case EFA_PARISC_1_1:
396 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
397 case EFA_PARISC_2_0:
398 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
399 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
402 /* Don't be fussy. */
403 return true;
406 /* Given section type (hdr->sh_type), return a boolean indicating
407 whether or not the section is an elf64-hppa specific section. */
408 static boolean
409 elf64_hppa_section_from_shdr (abfd, hdr, name)
410 bfd *abfd;
411 Elf64_Internal_Shdr *hdr;
412 const char *name;
414 asection *newsect;
416 switch (hdr->sh_type)
418 case SHT_PARISC_EXT:
419 if (strcmp (name, ".PARISC.archext") != 0)
420 return false;
421 break;
422 case SHT_PARISC_UNWIND:
423 if (strcmp (name, ".PARISC.unwind") != 0)
424 return false;
425 break;
426 case SHT_PARISC_DOC:
427 case SHT_PARISC_ANNOT:
428 default:
429 return false;
432 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
433 return false;
434 newsect = hdr->bfd_section;
436 return true;
439 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
440 name describes what was once potentially anonymous memory. We
441 allocate memory as necessary, possibly reusing PBUF/PLEN. */
443 static const char *
444 get_dyn_name (sec, h, rel, pbuf, plen)
445 asection *sec;
446 struct elf_link_hash_entry *h;
447 const Elf_Internal_Rela *rel;
448 char **pbuf;
449 size_t *plen;
451 size_t nlen, tlen;
452 char *buf;
453 size_t len;
455 if (h && rel->r_addend == 0)
456 return h->root.root.string;
458 if (h)
459 nlen = strlen (h->root.root.string);
460 else
461 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
462 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
464 len = *plen;
465 buf = *pbuf;
466 if (len < tlen)
468 if (buf)
469 free (buf);
470 *pbuf = buf = malloc (tlen);
471 *plen = len = tlen;
472 if (!buf)
473 return NULL;
476 if (h)
478 memcpy (buf, h->root.root.string, nlen);
479 buf[nlen++] = '+';
480 sprintf_vma (buf + nlen, rel->r_addend);
482 else
484 nlen = sprintf (buf, "%x:%lx",
485 sec->id & 0xffffffff,
486 (long) ELF64_R_SYM (rel->r_info));
487 if (rel->r_addend)
489 buf[nlen++] = '+';
490 sprintf_vma (buf + nlen, rel->r_addend);
494 return buf;
497 /* SEC is a section containing relocs for an input BFD when linking; return
498 a suitable section for holding relocs in the output BFD for a link. */
500 static boolean
501 get_reloc_section (abfd, hppa_info, sec)
502 bfd *abfd;
503 struct elf64_hppa_link_hash_table *hppa_info;
504 asection *sec;
506 const char *srel_name;
507 asection *srel;
508 bfd *dynobj;
510 srel_name = (bfd_elf_string_from_elf_section
511 (abfd, elf_elfheader(abfd)->e_shstrndx,
512 elf_section_data(sec)->rel_hdr.sh_name));
513 if (srel_name == NULL)
514 return false;
516 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
517 && strcmp (bfd_get_section_name (abfd, sec),
518 srel_name+5) == 0)
519 || (strncmp (srel_name, ".rel", 4) == 0
520 && strcmp (bfd_get_section_name (abfd, sec),
521 srel_name+4) == 0));
523 dynobj = hppa_info->root.dynobj;
524 if (!dynobj)
525 hppa_info->root.dynobj = dynobj = abfd;
527 srel = bfd_get_section_by_name (dynobj, srel_name);
528 if (srel == NULL)
530 srel = bfd_make_section (dynobj, srel_name);
531 if (srel == NULL
532 || !bfd_set_section_flags (dynobj, srel,
533 (SEC_ALLOC
534 | SEC_LOAD
535 | SEC_HAS_CONTENTS
536 | SEC_IN_MEMORY
537 | SEC_LINKER_CREATED
538 | SEC_READONLY))
539 || !bfd_set_section_alignment (dynobj, srel, 3))
540 return false;
543 hppa_info->other_rel_sec = srel;
544 return true;
547 /* Add a new entry to the list of dynamic relocations against DYN_H.
549 We use this to keep a record of all the FPTR relocations against a
550 particular symbol so that we can create FPTR relocations in the
551 output file. */
553 static boolean
554 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
555 bfd *abfd;
556 struct elf64_hppa_dyn_hash_entry *dyn_h;
557 int type;
558 asection *sec;
559 int sec_symndx;
560 bfd_vma offset;
561 bfd_vma addend;
563 struct elf64_hppa_dyn_reloc_entry *rent;
565 rent = (struct elf64_hppa_dyn_reloc_entry *)
566 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
567 if (!rent)
568 return false;
570 rent->next = dyn_h->reloc_entries;
571 rent->type = type;
572 rent->sec = sec;
573 rent->sec_symndx = sec_symndx;
574 rent->offset = offset;
575 rent->addend = addend;
576 dyn_h->reloc_entries = rent;
578 return true;
581 /* Scan the RELOCS and record the type of dynamic entries that each
582 referenced symbol needs. */
584 static boolean
585 elf64_hppa_check_relocs (abfd, info, sec, relocs)
586 bfd *abfd;
587 struct bfd_link_info *info;
588 asection *sec;
589 const Elf_Internal_Rela *relocs;
591 struct elf64_hppa_link_hash_table *hppa_info;
592 const Elf_Internal_Rela *relend;
593 Elf_Internal_Shdr *symtab_hdr;
594 const Elf_Internal_Rela *rel;
595 asection *dlt, *plt, *stubs;
596 char *buf;
597 size_t buf_len;
598 int sec_symndx;
600 if (info->relocateable)
601 return true;
603 /* If this is the first dynamic object found in the link, create
604 the special sections required for dynamic linking. */
605 if (! elf_hash_table (info)->dynamic_sections_created)
607 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
608 return false;
611 hppa_info = elf64_hppa_hash_table (info);
612 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
614 /* If necessary, build a new table holding section symbols indices
615 for this BFD. */
617 if (info->shared && hppa_info->section_syms_bfd != abfd)
619 unsigned long i;
620 unsigned int highest_shndx;
621 Elf_Internal_Sym *local_syms = NULL;
622 Elf_Internal_Sym *isym, *isymend;
623 bfd_size_type amt;
625 /* We're done with the old cache of section index to section symbol
626 index information. Free it.
628 ?!? Note we leak the last section_syms array. Presumably we
629 could free it in one of the later routines in this file. */
630 if (hppa_info->section_syms)
631 free (hppa_info->section_syms);
633 /* Read this BFD's local symbols. */
634 if (symtab_hdr->sh_info != 0)
636 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
637 if (local_syms == NULL)
638 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
639 symtab_hdr->sh_info, 0,
640 NULL, NULL, NULL);
641 if (local_syms == NULL)
642 return false;
645 /* Record the highest section index referenced by the local symbols. */
646 highest_shndx = 0;
647 isymend = local_syms + symtab_hdr->sh_info;
648 for (isym = local_syms; isym < isymend; isym++)
650 if (isym->st_shndx > highest_shndx)
651 highest_shndx = isym->st_shndx;
654 /* Allocate an array to hold the section index to section symbol index
655 mapping. Bump by one since we start counting at zero. */
656 highest_shndx++;
657 amt = highest_shndx;
658 amt *= sizeof (int);
659 hppa_info->section_syms = (int *) bfd_malloc (amt);
661 /* Now walk the local symbols again. If we find a section symbol,
662 record the index of the symbol into the section_syms array. */
663 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
665 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
666 hppa_info->section_syms[isym->st_shndx] = i;
669 /* We are finished with the local symbols. */
670 if (local_syms != NULL
671 && symtab_hdr->contents != (unsigned char *) local_syms)
673 if (! info->keep_memory)
674 free (local_syms);
675 else
677 /* Cache the symbols for elf_link_input_bfd. */
678 symtab_hdr->contents = (unsigned char *) local_syms;
682 /* Record which BFD we built the section_syms mapping for. */
683 hppa_info->section_syms_bfd = abfd;
686 /* Record the symbol index for this input section. We may need it for
687 relocations when building shared libraries. When not building shared
688 libraries this value is never really used, but assign it to zero to
689 prevent out of bounds memory accesses in other routines. */
690 if (info->shared)
692 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
694 /* If we did not find a section symbol for this section, then
695 something went terribly wrong above. */
696 if (sec_symndx == -1)
697 return false;
699 sec_symndx = hppa_info->section_syms[sec_symndx];
701 else
702 sec_symndx = 0;
704 dlt = plt = stubs = NULL;
705 buf = NULL;
706 buf_len = 0;
708 relend = relocs + sec->reloc_count;
709 for (rel = relocs; rel < relend; ++rel)
711 enum {
712 NEED_DLT = 1,
713 NEED_PLT = 2,
714 NEED_STUB = 4,
715 NEED_OPD = 8,
716 NEED_DYNREL = 16,
719 struct elf_link_hash_entry *h = NULL;
720 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
721 struct elf64_hppa_dyn_hash_entry *dyn_h;
722 int need_entry;
723 const char *addr_name;
724 boolean maybe_dynamic;
725 int dynrel_type = R_PARISC_NONE;
726 static reloc_howto_type *howto;
728 if (r_symndx >= symtab_hdr->sh_info)
730 /* We're dealing with a global symbol -- find its hash entry
731 and mark it as being referenced. */
732 long indx = r_symndx - symtab_hdr->sh_info;
733 h = elf_sym_hashes (abfd)[indx];
734 while (h->root.type == bfd_link_hash_indirect
735 || h->root.type == bfd_link_hash_warning)
736 h = (struct elf_link_hash_entry *) h->root.u.i.link;
738 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
741 /* We can only get preliminary data on whether a symbol is
742 locally or externally defined, as not all of the input files
743 have yet been processed. Do something with what we know, as
744 this may help reduce memory usage and processing time later. */
745 maybe_dynamic = false;
746 if (h && ((info->shared
747 && (!info->symbolic || info->allow_shlib_undefined) )
748 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
749 || h->root.type == bfd_link_hash_defweak))
750 maybe_dynamic = true;
752 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
753 need_entry = 0;
754 switch (howto->type)
756 /* These are simple indirect references to symbols through the
757 DLT. We need to create a DLT entry for any symbols which
758 appears in a DLTIND relocation. */
759 case R_PARISC_DLTIND21L:
760 case R_PARISC_DLTIND14R:
761 case R_PARISC_DLTIND14F:
762 case R_PARISC_DLTIND14WR:
763 case R_PARISC_DLTIND14DR:
764 need_entry = NEED_DLT;
765 break;
767 /* ?!? These need a DLT entry. But I have no idea what to do with
768 the "link time TP value. */
769 case R_PARISC_LTOFF_TP21L:
770 case R_PARISC_LTOFF_TP14R:
771 case R_PARISC_LTOFF_TP14F:
772 case R_PARISC_LTOFF_TP64:
773 case R_PARISC_LTOFF_TP14WR:
774 case R_PARISC_LTOFF_TP14DR:
775 case R_PARISC_LTOFF_TP16F:
776 case R_PARISC_LTOFF_TP16WF:
777 case R_PARISC_LTOFF_TP16DF:
778 need_entry = NEED_DLT;
779 break;
781 /* These are function calls. Depending on their precise target we
782 may need to make a stub for them. The stub uses the PLT, so we
783 need to create PLT entries for these symbols too. */
784 case R_PARISC_PCREL12F:
785 case R_PARISC_PCREL17F:
786 case R_PARISC_PCREL22F:
787 case R_PARISC_PCREL32:
788 case R_PARISC_PCREL64:
789 case R_PARISC_PCREL21L:
790 case R_PARISC_PCREL17R:
791 case R_PARISC_PCREL17C:
792 case R_PARISC_PCREL14R:
793 case R_PARISC_PCREL14F:
794 case R_PARISC_PCREL22C:
795 case R_PARISC_PCREL14WR:
796 case R_PARISC_PCREL14DR:
797 case R_PARISC_PCREL16F:
798 case R_PARISC_PCREL16WF:
799 case R_PARISC_PCREL16DF:
800 need_entry = (NEED_PLT | NEED_STUB);
801 break;
803 case R_PARISC_PLTOFF21L:
804 case R_PARISC_PLTOFF14R:
805 case R_PARISC_PLTOFF14F:
806 case R_PARISC_PLTOFF14WR:
807 case R_PARISC_PLTOFF14DR:
808 case R_PARISC_PLTOFF16F:
809 case R_PARISC_PLTOFF16WF:
810 case R_PARISC_PLTOFF16DF:
811 need_entry = (NEED_PLT);
812 break;
814 case R_PARISC_DIR64:
815 if (info->shared || maybe_dynamic)
816 need_entry = (NEED_DYNREL);
817 dynrel_type = R_PARISC_DIR64;
818 break;
820 /* This is an indirect reference through the DLT to get the address
821 of a OPD descriptor. Thus we need to make a DLT entry that points
822 to an OPD entry. */
823 case R_PARISC_LTOFF_FPTR21L:
824 case R_PARISC_LTOFF_FPTR14R:
825 case R_PARISC_LTOFF_FPTR14WR:
826 case R_PARISC_LTOFF_FPTR14DR:
827 case R_PARISC_LTOFF_FPTR32:
828 case R_PARISC_LTOFF_FPTR64:
829 case R_PARISC_LTOFF_FPTR16F:
830 case R_PARISC_LTOFF_FPTR16WF:
831 case R_PARISC_LTOFF_FPTR16DF:
832 if (info->shared || maybe_dynamic)
833 need_entry = (NEED_DLT | NEED_OPD);
834 else
835 need_entry = (NEED_DLT | NEED_OPD);
836 dynrel_type = R_PARISC_FPTR64;
837 break;
839 /* This is a simple OPD entry. */
840 case R_PARISC_FPTR64:
841 if (info->shared || maybe_dynamic)
842 need_entry = (NEED_OPD | NEED_DYNREL);
843 else
844 need_entry = (NEED_OPD);
845 dynrel_type = R_PARISC_FPTR64;
846 break;
848 /* Add more cases as needed. */
851 if (!need_entry)
852 continue;
854 /* Collect a canonical name for this address. */
855 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
857 /* Collect the canonical entry data for this address. */
858 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
859 addr_name, true, true);
860 BFD_ASSERT (dyn_h);
862 /* Stash away enough information to be able to find this symbol
863 regardless of whether or not it is local or global. */
864 dyn_h->h = h;
865 dyn_h->owner = abfd;
866 dyn_h->sym_indx = r_symndx;
868 /* ?!? We may need to do some error checking in here. */
869 /* Create what's needed. */
870 if (need_entry & NEED_DLT)
872 if (! hppa_info->dlt_sec
873 && ! get_dlt (abfd, info, hppa_info))
874 goto err_out;
875 dyn_h->want_dlt = 1;
878 if (need_entry & NEED_PLT)
880 if (! hppa_info->plt_sec
881 && ! get_plt (abfd, info, hppa_info))
882 goto err_out;
883 dyn_h->want_plt = 1;
886 if (need_entry & NEED_STUB)
888 if (! hppa_info->stub_sec
889 && ! get_stub (abfd, info, hppa_info))
890 goto err_out;
891 dyn_h->want_stub = 1;
894 if (need_entry & NEED_OPD)
896 if (! hppa_info->opd_sec
897 && ! get_opd (abfd, info, hppa_info))
898 goto err_out;
900 dyn_h->want_opd = 1;
902 /* FPTRs are not allocated by the dynamic linker for PA64, though
903 it is possible that will change in the future. */
905 /* This could be a local function that had its address taken, in
906 which case H will be NULL. */
907 if (h)
908 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
911 /* Add a new dynamic relocation to the chain of dynamic
912 relocations for this symbol. */
913 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
915 if (! hppa_info->other_rel_sec
916 && ! get_reloc_section (abfd, hppa_info, sec))
917 goto err_out;
919 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
920 sec_symndx, rel->r_offset, rel->r_addend))
921 goto err_out;
923 /* If we are building a shared library and we just recorded
924 a dynamic R_PARISC_FPTR64 relocation, then make sure the
925 section symbol for this section ends up in the dynamic
926 symbol table. */
927 if (info->shared && dynrel_type == R_PARISC_FPTR64
928 && ! (_bfd_elf64_link_record_local_dynamic_symbol
929 (info, abfd, sec_symndx)))
930 return false;
934 if (buf)
935 free (buf);
936 return true;
938 err_out:
939 if (buf)
940 free (buf);
941 return false;
944 struct elf64_hppa_allocate_data
946 struct bfd_link_info *info;
947 bfd_size_type ofs;
950 /* Should we do dynamic things to this symbol? */
952 static boolean
953 elf64_hppa_dynamic_symbol_p (h, info)
954 struct elf_link_hash_entry *h;
955 struct bfd_link_info *info;
957 if (h == NULL)
958 return false;
960 while (h->root.type == bfd_link_hash_indirect
961 || h->root.type == bfd_link_hash_warning)
962 h = (struct elf_link_hash_entry *) h->root.u.i.link;
964 if (h->dynindx == -1)
965 return false;
967 if (h->root.type == bfd_link_hash_undefweak
968 || h->root.type == bfd_link_hash_defweak)
969 return true;
971 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
972 return false;
974 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
975 || ((h->elf_link_hash_flags
976 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
977 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
978 return true;
980 return false;
983 /* Mark all funtions exported by this file so that we can later allocate
984 entries in .opd for them. */
986 static boolean
987 elf64_hppa_mark_exported_functions (h, data)
988 struct elf_link_hash_entry *h;
989 PTR data;
991 struct bfd_link_info *info = (struct bfd_link_info *)data;
992 struct elf64_hppa_link_hash_table *hppa_info;
994 hppa_info = elf64_hppa_hash_table (info);
996 if (h->root.type == bfd_link_hash_warning)
997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
999 if (h
1000 && (h->root.type == bfd_link_hash_defined
1001 || h->root.type == bfd_link_hash_defweak)
1002 && h->root.u.def.section->output_section != NULL
1003 && h->type == STT_FUNC)
1005 struct elf64_hppa_dyn_hash_entry *dyn_h;
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1009 h->root.root.string, true, true);
1010 BFD_ASSERT (dyn_h);
1011 dyn_h->h = h;
1013 if (! hppa_info->opd_sec
1014 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1015 return false;
1017 dyn_h->want_opd = 1;
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h->st_shndx = -1;
1020 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1023 return true;
1026 /* Allocate space for a DLT entry. */
1028 static boolean
1029 allocate_global_data_dlt (dyn_h, data)
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031 PTR data;
1033 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1035 if (dyn_h->want_dlt)
1037 struct elf_link_hash_entry *h = dyn_h->h;
1039 if (x->info->shared)
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1043 against it. */
1044 if (! h
1045 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1047 bfd *owner;
1048 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1050 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1051 (x->info, owner, dyn_h->sym_indx)))
1052 return false;
1056 dyn_h->dlt_offset = x->ofs;
1057 x->ofs += DLT_ENTRY_SIZE;
1059 return true;
1062 /* Allocate space for a DLT.PLT entry. */
1064 static boolean
1065 allocate_global_data_plt (dyn_h, data)
1066 struct elf64_hppa_dyn_hash_entry *dyn_h;
1067 PTR data;
1069 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1071 if (dyn_h->want_plt
1072 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1073 && !((dyn_h->h->root.type == bfd_link_hash_defined
1074 || dyn_h->h->root.type == bfd_link_hash_defweak)
1075 && dyn_h->h->root.u.def.section->output_section != NULL))
1077 dyn_h->plt_offset = x->ofs;
1078 x->ofs += PLT_ENTRY_SIZE;
1079 if (dyn_h->plt_offset < 0x2000)
1080 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1082 else
1083 dyn_h->want_plt = 0;
1085 return true;
1088 /* Allocate space for a STUB entry. */
1090 static boolean
1091 allocate_global_data_stub (dyn_h, data)
1092 struct elf64_hppa_dyn_hash_entry *dyn_h;
1093 PTR data;
1095 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1097 if (dyn_h->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1099 && !((dyn_h->h->root.type == bfd_link_hash_defined
1100 || dyn_h->h->root.type == bfd_link_hash_defweak)
1101 && dyn_h->h->root.u.def.section->output_section != NULL))
1103 dyn_h->stub_offset = x->ofs;
1104 x->ofs += sizeof (plt_stub);
1106 else
1107 dyn_h->want_stub = 0;
1108 return true;
1111 /* Allocate space for a FPTR entry. */
1113 static boolean
1114 allocate_global_data_opd (dyn_h, data)
1115 struct elf64_hppa_dyn_hash_entry *dyn_h;
1116 PTR data;
1118 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1120 if (dyn_h->want_opd)
1122 struct elf_link_hash_entry *h = dyn_h->h;
1124 if (h)
1125 while (h->root.type == bfd_link_hash_indirect
1126 || h->root.type == bfd_link_hash_warning)
1127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
1131 if (h && (h->root.type == bfd_link_hash_undefined
1132 || h->root.u.def.section->output_section == NULL))
1133 dyn_h->want_opd = 0;
1135 /* If we are creating a shared library, took the address of a local
1136 function or might export this function from this object file, then
1137 we have to create an opd descriptor. */
1138 else if (x->info->shared
1139 || h == NULL
1140 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1141 || (h->root.type == bfd_link_hash_defined
1142 || h->root.type == bfd_link_hash_defweak))
1144 /* If we are creating a shared library, then we will have to
1145 create a runtime relocation for the symbol to properly
1146 initialize the .opd entry. Make sure the symbol gets
1147 added to the dynamic symbol table. */
1148 if (x->info->shared
1149 && (h == NULL || (h->dynindx == -1)))
1151 bfd *owner;
1152 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1154 if (!_bfd_elf64_link_record_local_dynamic_symbol
1155 (x->info, owner, dyn_h->sym_indx))
1156 return false;
1159 /* This may not be necessary or desirable anymore now that
1160 we have some support for dealing with section symbols
1161 in dynamic relocs. But name munging does make the result
1162 much easier to debug. ie, the EPLT reloc will reference
1163 a symbol like .foobar, instead of .text + offset. */
1164 if (x->info->shared && h)
1166 char *new_name;
1167 struct elf_link_hash_entry *nh;
1169 new_name = alloca (strlen (h->root.root.string) + 2);
1170 new_name[0] = '.';
1171 strcpy (new_name + 1, h->root.root.string);
1173 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1174 new_name, true, true, true);
1176 nh->root.type = h->root.type;
1177 nh->root.u.def.value = h->root.u.def.value;
1178 nh->root.u.def.section = h->root.u.def.section;
1180 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1181 return false;
1184 dyn_h->opd_offset = x->ofs;
1185 x->ofs += OPD_ENTRY_SIZE;
1188 /* Otherwise we do not need an opd entry. */
1189 else
1190 dyn_h->want_opd = 0;
1192 return true;
1195 /* HP requires the EI_OSABI field to be filled in. The assignment to
1196 EI_ABIVERSION may not be strictly necessary. */
1198 static void
1199 elf64_hppa_post_process_headers (abfd, link_info)
1200 bfd * abfd;
1201 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1203 Elf_Internal_Ehdr * i_ehdrp;
1205 i_ehdrp = elf_elfheader (abfd);
1207 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1209 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1211 else
1213 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1214 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1218 /* Create function descriptor section (.opd). This section is called .opd
1219 because it contains "official prodecure descriptors". The "official"
1220 refers to the fact that these descriptors are used when taking the address
1221 of a procedure, thus ensuring a unique address for each procedure. */
1223 static boolean
1224 get_opd (abfd, info, hppa_info)
1225 bfd *abfd;
1226 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1227 struct elf64_hppa_link_hash_table *hppa_info;
1229 asection *opd;
1230 bfd *dynobj;
1232 opd = hppa_info->opd_sec;
1233 if (!opd)
1235 dynobj = hppa_info->root.dynobj;
1236 if (!dynobj)
1237 hppa_info->root.dynobj = dynobj = abfd;
1239 opd = bfd_make_section (dynobj, ".opd");
1240 if (!opd
1241 || !bfd_set_section_flags (dynobj, opd,
1242 (SEC_ALLOC
1243 | SEC_LOAD
1244 | SEC_HAS_CONTENTS
1245 | SEC_IN_MEMORY
1246 | SEC_LINKER_CREATED))
1247 || !bfd_set_section_alignment (abfd, opd, 3))
1249 BFD_ASSERT (0);
1250 return false;
1253 hppa_info->opd_sec = opd;
1256 return true;
1259 /* Create the PLT section. */
1261 static boolean
1262 get_plt (abfd, info, hppa_info)
1263 bfd *abfd;
1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1265 struct elf64_hppa_link_hash_table *hppa_info;
1267 asection *plt;
1268 bfd *dynobj;
1270 plt = hppa_info->plt_sec;
1271 if (!plt)
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1277 plt = bfd_make_section (dynobj, ".plt");
1278 if (!plt
1279 || !bfd_set_section_flags (dynobj, plt,
1280 (SEC_ALLOC
1281 | SEC_LOAD
1282 | SEC_HAS_CONTENTS
1283 | SEC_IN_MEMORY
1284 | SEC_LINKER_CREATED))
1285 || !bfd_set_section_alignment (abfd, plt, 3))
1287 BFD_ASSERT (0);
1288 return false;
1291 hppa_info->plt_sec = plt;
1294 return true;
1297 /* Create the DLT section. */
1299 static boolean
1300 get_dlt (abfd, info, hppa_info)
1301 bfd *abfd;
1302 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1303 struct elf64_hppa_link_hash_table *hppa_info;
1305 asection *dlt;
1306 bfd *dynobj;
1308 dlt = hppa_info->dlt_sec;
1309 if (!dlt)
1311 dynobj = hppa_info->root.dynobj;
1312 if (!dynobj)
1313 hppa_info->root.dynobj = dynobj = abfd;
1315 dlt = bfd_make_section (dynobj, ".dlt");
1316 if (!dlt
1317 || !bfd_set_section_flags (dynobj, dlt,
1318 (SEC_ALLOC
1319 | SEC_LOAD
1320 | SEC_HAS_CONTENTS
1321 | SEC_IN_MEMORY
1322 | SEC_LINKER_CREATED))
1323 || !bfd_set_section_alignment (abfd, dlt, 3))
1325 BFD_ASSERT (0);
1326 return false;
1329 hppa_info->dlt_sec = dlt;
1332 return true;
1335 /* Create the stubs section. */
1337 static boolean
1338 get_stub (abfd, info, hppa_info)
1339 bfd *abfd;
1340 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1341 struct elf64_hppa_link_hash_table *hppa_info;
1343 asection *stub;
1344 bfd *dynobj;
1346 stub = hppa_info->stub_sec;
1347 if (!stub)
1349 dynobj = hppa_info->root.dynobj;
1350 if (!dynobj)
1351 hppa_info->root.dynobj = dynobj = abfd;
1353 stub = bfd_make_section (dynobj, ".stub");
1354 if (!stub
1355 || !bfd_set_section_flags (dynobj, stub,
1356 (SEC_ALLOC
1357 | SEC_LOAD
1358 | SEC_HAS_CONTENTS
1359 | SEC_IN_MEMORY
1360 | SEC_READONLY
1361 | SEC_LINKER_CREATED))
1362 || !bfd_set_section_alignment (abfd, stub, 3))
1364 BFD_ASSERT (0);
1365 return false;
1368 hppa_info->stub_sec = stub;
1371 return true;
1374 /* Create sections necessary for dynamic linking. This is only a rough
1375 cut and will likely change as we learn more about the somewhat
1376 unusual dynamic linking scheme HP uses.
1378 .stub:
1379 Contains code to implement cross-space calls. The first time one
1380 of the stubs is used it will call into the dynamic linker, later
1381 calls will go straight to the target.
1383 The only stub we support right now looks like
1385 ldd OFFSET(%dp),%r1
1386 bve %r0(%r1)
1387 ldd OFFSET+8(%dp),%dp
1389 Other stubs may be needed in the future. We may want the remove
1390 the break/nop instruction. It is only used right now to keep the
1391 offset of a .plt entry and a .stub entry in sync.
1393 .dlt:
1394 This is what most people call the .got. HP used a different name.
1395 Losers.
1397 .rela.dlt:
1398 Relocations for the DLT.
1400 .plt:
1401 Function pointers as address,gp pairs.
1403 .rela.plt:
1404 Should contain dynamic IPLT (and EPLT?) relocations.
1406 .opd:
1407 FPTRS
1409 .rela.opd:
1410 EPLT relocations for symbols exported from shared libraries. */
1412 static boolean
1413 elf64_hppa_create_dynamic_sections (abfd, info)
1414 bfd *abfd;
1415 struct bfd_link_info *info;
1417 asection *s;
1419 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1420 return false;
1422 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1423 return false;
1425 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1426 return false;
1428 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1429 return false;
1431 s = bfd_make_section(abfd, ".rela.dlt");
1432 if (s == NULL
1433 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1434 | SEC_HAS_CONTENTS
1435 | SEC_IN_MEMORY
1436 | SEC_READONLY
1437 | SEC_LINKER_CREATED))
1438 || !bfd_set_section_alignment (abfd, s, 3))
1439 return false;
1440 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1442 s = bfd_make_section(abfd, ".rela.plt");
1443 if (s == NULL
1444 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1445 | SEC_HAS_CONTENTS
1446 | SEC_IN_MEMORY
1447 | SEC_READONLY
1448 | SEC_LINKER_CREATED))
1449 || !bfd_set_section_alignment (abfd, s, 3))
1450 return false;
1451 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1453 s = bfd_make_section(abfd, ".rela.data");
1454 if (s == NULL
1455 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1456 | SEC_HAS_CONTENTS
1457 | SEC_IN_MEMORY
1458 | SEC_READONLY
1459 | SEC_LINKER_CREATED))
1460 || !bfd_set_section_alignment (abfd, s, 3))
1461 return false;
1462 elf64_hppa_hash_table (info)->other_rel_sec = s;
1464 s = bfd_make_section(abfd, ".rela.opd");
1465 if (s == NULL
1466 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1467 | SEC_HAS_CONTENTS
1468 | SEC_IN_MEMORY
1469 | SEC_READONLY
1470 | SEC_LINKER_CREATED))
1471 || !bfd_set_section_alignment (abfd, s, 3))
1472 return false;
1473 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1475 return true;
1478 /* Allocate dynamic relocations for those symbols that turned out
1479 to be dynamic. */
1481 static boolean
1482 allocate_dynrel_entries (dyn_h, data)
1483 struct elf64_hppa_dyn_hash_entry *dyn_h;
1484 PTR data;
1486 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1487 struct elf64_hppa_link_hash_table *hppa_info;
1488 struct elf64_hppa_dyn_reloc_entry *rent;
1489 boolean dynamic_symbol, shared;
1491 hppa_info = elf64_hppa_hash_table (x->info);
1492 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1493 shared = x->info->shared;
1495 /* We may need to allocate relocations for a non-dynamic symbol
1496 when creating a shared library. */
1497 if (!dynamic_symbol && !shared)
1498 return true;
1500 /* Take care of the normal data relocations. */
1502 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1504 /* Allocate one iff we are building a shared library, the relocation
1505 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1506 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1507 continue;
1509 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1511 /* Make sure this symbol gets into the dynamic symbol table if it is
1512 not already recorded. ?!? This should not be in the loop since
1513 the symbol need only be added once. */
1514 if (dyn_h->h == 0
1515 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1516 if (!_bfd_elf64_link_record_local_dynamic_symbol
1517 (x->info, rent->sec->owner, dyn_h->sym_indx))
1518 return false;
1521 /* Take care of the GOT and PLT relocations. */
1523 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1524 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1526 /* If we are building a shared library, then every symbol that has an
1527 opd entry will need an EPLT relocation to relocate the symbol's address
1528 and __gp value based on the runtime load address. */
1529 if (shared && dyn_h->want_opd)
1530 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1532 if (dyn_h->want_plt && dynamic_symbol)
1534 bfd_size_type t = 0;
1536 /* Dynamic symbols get one IPLT relocation. Local symbols in
1537 shared libraries get two REL relocations. Local symbols in
1538 main applications get nothing. */
1539 if (dynamic_symbol)
1540 t = sizeof (Elf64_External_Rela);
1541 else if (shared)
1542 t = 2 * sizeof (Elf64_External_Rela);
1544 hppa_info->plt_rel_sec->_raw_size += t;
1547 return true;
1550 /* Adjust a symbol defined by a dynamic object and referenced by a
1551 regular object. */
1553 static boolean
1554 elf64_hppa_adjust_dynamic_symbol (info, h)
1555 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1556 struct elf_link_hash_entry *h;
1558 /* ??? Undefined symbols with PLT entries should be re-defined
1559 to be the PLT entry. */
1561 /* If this is a weak symbol, and there is a real definition, the
1562 processor independent code will have arranged for us to see the
1563 real definition first, and we can just use the same value. */
1564 if (h->weakdef != NULL)
1566 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1567 || h->weakdef->root.type == bfd_link_hash_defweak);
1568 h->root.u.def.section = h->weakdef->root.u.def.section;
1569 h->root.u.def.value = h->weakdef->root.u.def.value;
1570 return true;
1573 /* If this is a reference to a symbol defined by a dynamic object which
1574 is not a function, we might allocate the symbol in our .dynbss section
1575 and allocate a COPY dynamic relocation.
1577 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1578 of hackery. */
1580 return true;
1583 /* This function is called via elf_link_hash_traverse to mark millicode
1584 symbols with a dynindx of -1 and to remove the string table reference
1585 from the dynamic symbol table. If the symbol is not a millicode symbol,
1586 elf64_hppa_mark_exported_functions is called. */
1588 static boolean
1589 elf64_hppa_mark_milli_and_exported_functions (h, data)
1590 struct elf_link_hash_entry *h;
1591 PTR data;
1593 struct bfd_link_info *info = (struct bfd_link_info *)data;
1594 struct elf_link_hash_entry *elf = h;
1596 if (elf->root.type == bfd_link_hash_warning)
1597 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1599 if (elf->type == STT_PARISC_MILLI)
1601 if (elf->dynindx != -1)
1603 elf->dynindx = -1;
1604 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1605 elf->dynstr_index);
1607 return true;
1610 return elf64_hppa_mark_exported_functions (h, data);
1613 /* Set the final sizes of the dynamic sections and allocate memory for
1614 the contents of our special sections. */
1616 static boolean
1617 elf64_hppa_size_dynamic_sections (output_bfd, info)
1618 bfd *output_bfd;
1619 struct bfd_link_info *info;
1621 bfd *dynobj;
1622 asection *s;
1623 boolean plt;
1624 boolean relocs;
1625 boolean reltext;
1626 struct elf64_hppa_allocate_data data;
1627 struct elf64_hppa_link_hash_table *hppa_info;
1629 hppa_info = elf64_hppa_hash_table (info);
1631 dynobj = elf_hash_table (info)->dynobj;
1632 BFD_ASSERT (dynobj != NULL);
1634 /* Mark each function this program exports so that we will allocate
1635 space in the .opd section for each function's FPTR. If we are
1636 creating dynamic sections, change the dynamic index of millicode
1637 symbols to -1 and remove them from the string table for .dynstr.
1639 We have to traverse the main linker hash table since we have to
1640 find functions which may not have been mentioned in any relocs. */
1641 elf_link_hash_traverse (elf_hash_table (info),
1642 (elf_hash_table (info)->dynamic_sections_created
1643 ? elf64_hppa_mark_milli_and_exported_functions
1644 : elf64_hppa_mark_exported_functions),
1645 info);
1647 if (elf_hash_table (info)->dynamic_sections_created)
1649 /* Set the contents of the .interp section to the interpreter. */
1650 if (! info->shared)
1652 s = bfd_get_section_by_name (dynobj, ".interp");
1653 BFD_ASSERT (s != NULL);
1654 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1655 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1658 else
1660 /* We may have created entries in the .rela.got section.
1661 However, if we are not creating the dynamic sections, we will
1662 not actually use these entries. Reset the size of .rela.dlt,
1663 which will cause it to get stripped from the output file
1664 below. */
1665 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1666 if (s != NULL)
1667 s->_raw_size = 0;
1670 /* Allocate the GOT entries. */
1672 data.info = info;
1673 if (elf64_hppa_hash_table (info)->dlt_sec)
1675 data.ofs = 0x0;
1676 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677 allocate_global_data_dlt, &data);
1678 hppa_info->dlt_sec->_raw_size = data.ofs;
1680 data.ofs = 0x0;
1681 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1682 allocate_global_data_plt, &data);
1683 hppa_info->plt_sec->_raw_size = data.ofs;
1685 data.ofs = 0x0;
1686 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1687 allocate_global_data_stub, &data);
1688 hppa_info->stub_sec->_raw_size = data.ofs;
1691 /* Allocate space for entries in the .opd section. */
1692 if (elf64_hppa_hash_table (info)->opd_sec)
1694 data.ofs = 0;
1695 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1696 allocate_global_data_opd, &data);
1697 hppa_info->opd_sec->_raw_size = data.ofs;
1700 /* Now allocate space for dynamic relocations, if necessary. */
1701 if (hppa_info->root.dynamic_sections_created)
1702 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1703 allocate_dynrel_entries, &data);
1705 /* The sizes of all the sections are set. Allocate memory for them. */
1706 plt = false;
1707 relocs = false;
1708 reltext = false;
1709 for (s = dynobj->sections; s != NULL; s = s->next)
1711 const char *name;
1712 boolean strip;
1714 if ((s->flags & SEC_LINKER_CREATED) == 0)
1715 continue;
1717 /* It's OK to base decisions on the section name, because none
1718 of the dynobj section names depend upon the input files. */
1719 name = bfd_get_section_name (dynobj, s);
1721 strip = 0;
1723 if (strcmp (name, ".plt") == 0)
1725 /* Strip this section if we don't need it; see the comment below. */
1726 if (s->_raw_size == 0)
1728 strip = true;
1730 else
1732 /* Remember whether there is a PLT. */
1733 plt = true;
1736 else if (strcmp (name, ".dlt") == 0)
1738 /* Strip this section if we don't need it; see the comment below. */
1739 if (s->_raw_size == 0)
1741 strip = true;
1744 else if (strcmp (name, ".opd") == 0)
1746 /* Strip this section if we don't need it; see the comment below. */
1747 if (s->_raw_size == 0)
1749 strip = true;
1752 else if (strncmp (name, ".rela", 5) == 0)
1754 /* If we don't need this section, strip it from the output file.
1755 This is mostly to handle .rela.bss and .rela.plt. We must
1756 create both sections in create_dynamic_sections, because they
1757 must be created before the linker maps input sections to output
1758 sections. The linker does that before adjust_dynamic_symbol
1759 is called, and it is that function which decides whether
1760 anything needs to go into these sections. */
1761 if (s->_raw_size == 0)
1763 /* If we don't need this section, strip it from the
1764 output file. This is mostly to handle .rela.bss and
1765 .rela.plt. We must create both sections in
1766 create_dynamic_sections, because they must be created
1767 before the linker maps input sections to output
1768 sections. The linker does that before
1769 adjust_dynamic_symbol is called, and it is that
1770 function which decides whether anything needs to go
1771 into these sections. */
1772 strip = true;
1774 else
1776 asection *target;
1778 /* Remember whether there are any reloc sections other
1779 than .rela.plt. */
1780 if (strcmp (name, ".rela.plt") != 0)
1782 const char *outname;
1784 relocs = true;
1786 /* If this relocation section applies to a read only
1787 section, then we probably need a DT_TEXTREL
1788 entry. The entries in the .rela.plt section
1789 really apply to the .got section, which we
1790 created ourselves and so know is not readonly. */
1791 outname = bfd_get_section_name (output_bfd,
1792 s->output_section);
1793 target = bfd_get_section_by_name (output_bfd, outname + 4);
1794 if (target != NULL
1795 && (target->flags & SEC_READONLY) != 0
1796 && (target->flags & SEC_ALLOC) != 0)
1797 reltext = true;
1800 /* We use the reloc_count field as a counter if we need
1801 to copy relocs into the output file. */
1802 s->reloc_count = 0;
1805 else if (strncmp (name, ".dlt", 4) != 0
1806 && strcmp (name, ".stub") != 0
1807 && strcmp (name, ".got") != 0)
1809 /* It's not one of our sections, so don't allocate space. */
1810 continue;
1813 if (strip)
1815 _bfd_strip_section_from_output (info, s);
1816 continue;
1819 /* Allocate memory for the section contents if it has not
1820 been allocated already. We use bfd_zalloc here in case
1821 unused entries are not reclaimed before the section's
1822 contents are written out. This should not happen, but this
1823 way if it does, we get a R_PARISC_NONE reloc instead of
1824 garbage. */
1825 if (s->contents == NULL)
1827 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1828 if (s->contents == NULL && s->_raw_size != 0)
1829 return false;
1833 if (elf_hash_table (info)->dynamic_sections_created)
1835 /* Always create a DT_PLTGOT. It actually has nothing to do with
1836 the PLT, it is how we communicate the __gp value of a load
1837 module to the dynamic linker. */
1838 #define add_dynamic_entry(TAG, VAL) \
1839 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1841 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1842 || !add_dynamic_entry (DT_PLTGOT, 0))
1843 return false;
1845 /* Add some entries to the .dynamic section. We fill in the
1846 values later, in elf64_hppa_finish_dynamic_sections, but we
1847 must add the entries now so that we get the correct size for
1848 the .dynamic section. The DT_DEBUG entry is filled in by the
1849 dynamic linker and used by the debugger. */
1850 if (! info->shared)
1852 if (!add_dynamic_entry (DT_DEBUG, 0)
1853 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1854 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1855 return false;
1858 if (plt)
1860 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1861 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1862 || !add_dynamic_entry (DT_JMPREL, 0))
1863 return false;
1866 if (relocs)
1868 if (!add_dynamic_entry (DT_RELA, 0)
1869 || !add_dynamic_entry (DT_RELASZ, 0)
1870 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1871 return false;
1874 if (reltext)
1876 if (!add_dynamic_entry (DT_TEXTREL, 0))
1877 return false;
1878 info->flags |= DF_TEXTREL;
1881 #undef add_dynamic_entry
1883 return true;
1886 /* Called after we have output the symbol into the dynamic symbol
1887 table, but before we output the symbol into the normal symbol
1888 table.
1890 For some symbols we had to change their address when outputting
1891 the dynamic symbol table. We undo that change here so that
1892 the symbols have their expected value in the normal symbol
1893 table. Ick. */
1895 static boolean
1896 elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1897 bfd *abfd ATTRIBUTE_UNUSED;
1898 struct bfd_link_info *info;
1899 const char *name;
1900 Elf_Internal_Sym *sym;
1901 asection *input_sec ATTRIBUTE_UNUSED;
1903 struct elf64_hppa_link_hash_table *hppa_info;
1904 struct elf64_hppa_dyn_hash_entry *dyn_h;
1906 /* We may be called with the file symbol or section symbols.
1907 They never need munging, so it is safe to ignore them. */
1908 if (!name)
1909 return true;
1911 /* Get the PA dyn_symbol (if any) associated with NAME. */
1912 hppa_info = elf64_hppa_hash_table (info);
1913 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1914 name, false, false);
1916 /* Function symbols for which we created .opd entries *may* have been
1917 munged by finish_dynamic_symbol and have to be un-munged here.
1919 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1920 into non-dynamic ones, so we initialize st_shndx to -1 in
1921 mark_exported_functions and check to see if it was overwritten
1922 here instead of just checking dyn_h->h->dynindx. */
1923 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1925 /* Restore the saved value and section index. */
1926 sym->st_value = dyn_h->st_value;
1927 sym->st_shndx = dyn_h->st_shndx;
1930 return true;
1933 /* Finish up dynamic symbol handling. We set the contents of various
1934 dynamic sections here. */
1936 static boolean
1937 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1938 bfd *output_bfd;
1939 struct bfd_link_info *info;
1940 struct elf_link_hash_entry *h;
1941 Elf_Internal_Sym *sym;
1943 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1944 struct elf64_hppa_link_hash_table *hppa_info;
1945 struct elf64_hppa_dyn_hash_entry *dyn_h;
1947 hppa_info = elf64_hppa_hash_table (info);
1948 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1949 h->root.root.string, false, false);
1951 stub = hppa_info->stub_sec;
1952 splt = hppa_info->plt_sec;
1953 sdlt = hppa_info->dlt_sec;
1954 sopd = hppa_info->opd_sec;
1955 spltrel = hppa_info->plt_rel_sec;
1956 sdltrel = hppa_info->dlt_rel_sec;
1958 /* Incredible. It is actually necessary to NOT use the symbol's real
1959 value when building the dynamic symbol table for a shared library.
1960 At least for symbols that refer to functions.
1962 We will store a new value and section index into the symbol long
1963 enough to output it into the dynamic symbol table, then we restore
1964 the original values (in elf64_hppa_link_output_symbol_hook). */
1965 if (dyn_h && dyn_h->want_opd)
1967 BFD_ASSERT (sopd != NULL)
1969 /* Save away the original value and section index so that we
1970 can restore them later. */
1971 dyn_h->st_value = sym->st_value;
1972 dyn_h->st_shndx = sym->st_shndx;
1974 /* For the dynamic symbol table entry, we want the value to be
1975 address of this symbol's entry within the .opd section. */
1976 sym->st_value = (dyn_h->opd_offset
1977 + sopd->output_offset
1978 + sopd->output_section->vma);
1979 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1980 sopd->output_section);
1983 /* Initialize a .plt entry if requested. */
1984 if (dyn_h && dyn_h->want_plt
1985 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1987 bfd_vma value;
1988 Elf_Internal_Rela rel;
1990 BFD_ASSERT (splt != NULL && spltrel != NULL)
1992 /* We do not actually care about the value in the PLT entry
1993 if we are creating a shared library and the symbol is
1994 still undefined, we create a dynamic relocation to fill
1995 in the correct value. */
1996 if (info->shared && h->root.type == bfd_link_hash_undefined)
1997 value = 0;
1998 else
1999 value = (h->root.u.def.value + h->root.u.def.section->vma);
2001 /* Fill in the entry in the procedure linkage table.
2003 The format of a plt entry is
2004 <funcaddr> <__gp>.
2006 plt_offset is the offset within the PLT section at which to
2007 install the PLT entry.
2009 We are modifying the in-memory PLT contents here, so we do not add
2010 in the output_offset of the PLT section. */
2012 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2013 value = _bfd_get_gp_value (splt->output_section->owner);
2014 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2016 /* Create a dynamic IPLT relocation for this entry.
2018 We are creating a relocation in the output file's PLT section,
2019 which is included within the DLT secton. So we do need to include
2020 the PLT's output_offset in the computation of the relocation's
2021 address. */
2022 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2023 + splt->output_section->vma);
2024 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2025 rel.r_addend = 0;
2027 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel,
2028 (((Elf64_External_Rela *)
2029 spltrel->contents)
2030 + spltrel->reloc_count));
2031 spltrel->reloc_count++;
2034 /* Initialize an external call stub entry if requested. */
2035 if (dyn_h && dyn_h->want_stub
2036 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2038 bfd_vma value;
2039 int insn;
2040 unsigned int max_offset;
2042 BFD_ASSERT (stub != NULL)
2044 /* Install the generic stub template.
2046 We are modifying the contents of the stub section, so we do not
2047 need to include the stub section's output_offset here. */
2048 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2050 /* Fix up the first ldd instruction.
2052 We are modifying the contents of the STUB section in memory,
2053 so we do not need to include its output offset in this computation.
2055 Note the plt_offset value is the value of the PLT entry relative to
2056 the start of the PLT section. These instructions will reference
2057 data relative to the value of __gp, which may not necessarily have
2058 the same address as the start of the PLT section.
2060 gp_offset contains the offset of __gp within the PLT section. */
2061 value = dyn_h->plt_offset - hppa_info->gp_offset;
2063 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2064 if (output_bfd->arch_info->mach >= 25)
2066 /* Wide mode allows 16 bit offsets. */
2067 max_offset = 32768;
2068 insn &= ~ 0xfff1;
2069 insn |= re_assemble_16 ((int) value);
2071 else
2073 max_offset = 8192;
2074 insn &= ~ 0x3ff1;
2075 insn |= re_assemble_14 ((int) value);
2078 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2080 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2081 dyn_h->root.string,
2082 (long) value);
2083 return false;
2086 bfd_put_32 (stub->owner, (bfd_vma) insn,
2087 stub->contents + dyn_h->stub_offset);
2089 /* Fix up the second ldd instruction. */
2090 value += 8;
2091 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2092 if (output_bfd->arch_info->mach >= 25)
2094 insn &= ~ 0xfff1;
2095 insn |= re_assemble_16 ((int) value);
2097 else
2099 insn &= ~ 0x3ff1;
2100 insn |= re_assemble_14 ((int) value);
2102 bfd_put_32 (stub->owner, (bfd_vma) insn,
2103 stub->contents + dyn_h->stub_offset + 8);
2106 return true;
2109 /* The .opd section contains FPTRs for each function this file
2110 exports. Initialize the FPTR entries. */
2112 static boolean
2113 elf64_hppa_finalize_opd (dyn_h, data)
2114 struct elf64_hppa_dyn_hash_entry *dyn_h;
2115 PTR data;
2117 struct bfd_link_info *info = (struct bfd_link_info *)data;
2118 struct elf64_hppa_link_hash_table *hppa_info;
2119 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2120 asection *sopd;
2121 asection *sopdrel;
2123 hppa_info = elf64_hppa_hash_table (info);
2124 sopd = hppa_info->opd_sec;
2125 sopdrel = hppa_info->opd_rel_sec;
2127 if (h && dyn_h->want_opd)
2129 bfd_vma value;
2131 /* The first two words of an .opd entry are zero.
2133 We are modifying the contents of the OPD section in memory, so we
2134 do not need to include its output offset in this computation. */
2135 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2137 value = (h->root.u.def.value
2138 + h->root.u.def.section->output_section->vma
2139 + h->root.u.def.section->output_offset);
2141 /* The next word is the address of the function. */
2142 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2144 /* The last word is our local __gp value. */
2145 value = _bfd_get_gp_value (sopd->output_section->owner);
2146 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2149 /* If we are generating a shared library, we must generate EPLT relocations
2150 for each entry in the .opd, even for static functions (they may have
2151 had their address taken). */
2152 if (info->shared && dyn_h && dyn_h->want_opd)
2154 Elf64_Internal_Rela rel;
2155 int dynindx;
2157 /* We may need to do a relocation against a local symbol, in
2158 which case we have to look up it's dynamic symbol index off
2159 the local symbol hash table. */
2160 if (h && h->dynindx != -1)
2161 dynindx = h->dynindx;
2162 else
2163 dynindx
2164 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2165 dyn_h->sym_indx);
2167 /* The offset of this relocation is the absolute address of the
2168 .opd entry for this symbol. */
2169 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2170 + sopd->output_section->vma);
2172 /* If H is non-null, then we have an external symbol.
2174 It is imperative that we use a different dynamic symbol for the
2175 EPLT relocation if the symbol has global scope.
2177 In the dynamic symbol table, the function symbol will have a value
2178 which is address of the function's .opd entry.
2180 Thus, we can not use that dynamic symbol for the EPLT relocation
2181 (if we did, the data in the .opd would reference itself rather
2182 than the actual address of the function). Instead we have to use
2183 a new dynamic symbol which has the same value as the original global
2184 function symbol.
2186 We prefix the original symbol with a "." and use the new symbol in
2187 the EPLT relocation. This new symbol has already been recorded in
2188 the symbol table, we just have to look it up and use it.
2190 We do not have such problems with static functions because we do
2191 not make their addresses in the dynamic symbol table point to
2192 the .opd entry. Ultimately this should be safe since a static
2193 function can not be directly referenced outside of its shared
2194 library.
2196 We do have to play similar games for FPTR relocations in shared
2197 libraries, including those for static symbols. See the FPTR
2198 handling in elf64_hppa_finalize_dynreloc. */
2199 if (h)
2201 char *new_name;
2202 struct elf_link_hash_entry *nh;
2204 new_name = alloca (strlen (h->root.root.string) + 2);
2205 new_name[0] = '.';
2206 strcpy (new_name + 1, h->root.root.string);
2208 nh = elf_link_hash_lookup (elf_hash_table (info),
2209 new_name, false, false, false);
2211 /* All we really want from the new symbol is its dynamic
2212 symbol index. */
2213 dynindx = nh->dynindx;
2216 rel.r_addend = 0;
2217 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2219 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel,
2220 (((Elf64_External_Rela *)
2221 sopdrel->contents)
2222 + sopdrel->reloc_count));
2223 sopdrel->reloc_count++;
2225 return true;
2228 /* The .dlt section contains addresses for items referenced through the
2229 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2230 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2232 static boolean
2233 elf64_hppa_finalize_dlt (dyn_h, data)
2234 struct elf64_hppa_dyn_hash_entry *dyn_h;
2235 PTR data;
2237 struct bfd_link_info *info = (struct bfd_link_info *)data;
2238 struct elf64_hppa_link_hash_table *hppa_info;
2239 asection *sdlt, *sdltrel;
2240 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2242 hppa_info = elf64_hppa_hash_table (info);
2244 sdlt = hppa_info->dlt_sec;
2245 sdltrel = hppa_info->dlt_rel_sec;
2247 /* H/DYN_H may refer to a local variable and we know it's
2248 address, so there is no need to create a relocation. Just install
2249 the proper value into the DLT, note this shortcut can not be
2250 skipped when building a shared library. */
2251 if (! info->shared && h && dyn_h->want_dlt)
2253 bfd_vma value;
2255 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2256 to point to the FPTR entry in the .opd section.
2258 We include the OPD's output offset in this computation as
2259 we are referring to an absolute address in the resulting
2260 object file. */
2261 if (dyn_h->want_opd)
2263 value = (dyn_h->opd_offset
2264 + hppa_info->opd_sec->output_offset
2265 + hppa_info->opd_sec->output_section->vma);
2267 else if (h->root.u.def.section)
2269 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2270 if (h->root.u.def.section->output_section)
2271 value += h->root.u.def.section->output_section->vma;
2272 else
2273 value += h->root.u.def.section->vma;
2275 else
2276 /* We have an undefined function reference. */
2277 value = 0;
2279 /* We do not need to include the output offset of the DLT section
2280 here because we are modifying the in-memory contents. */
2281 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2284 /* Create a relocation for the DLT entry assocated with this symbol.
2285 When building a shared library the symbol does not have to be dynamic. */
2286 if (dyn_h->want_dlt
2287 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2289 Elf64_Internal_Rela rel;
2290 int dynindx;
2292 /* We may need to do a relocation against a local symbol, in
2293 which case we have to look up it's dynamic symbol index off
2294 the local symbol hash table. */
2295 if (h && h->dynindx != -1)
2296 dynindx = h->dynindx;
2297 else
2298 dynindx
2299 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2300 dyn_h->sym_indx);
2302 /* Create a dynamic relocation for this entry. Do include the output
2303 offset of the DLT entry since we need an absolute address in the
2304 resulting object file. */
2305 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2306 + sdlt->output_section->vma);
2307 if (h && h->type == STT_FUNC)
2308 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2309 else
2310 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2311 rel.r_addend = 0;
2313 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel,
2314 (((Elf64_External_Rela *)
2315 sdltrel->contents)
2316 + sdltrel->reloc_count));
2317 sdltrel->reloc_count++;
2319 return true;
2322 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2323 for dynamic functions used to initialize static data. */
2325 static boolean
2326 elf64_hppa_finalize_dynreloc (dyn_h, data)
2327 struct elf64_hppa_dyn_hash_entry *dyn_h;
2328 PTR data;
2330 struct bfd_link_info *info = (struct bfd_link_info *)data;
2331 struct elf64_hppa_link_hash_table *hppa_info;
2332 struct elf_link_hash_entry *h;
2333 int dynamic_symbol;
2335 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2337 if (!dynamic_symbol && !info->shared)
2338 return true;
2340 if (dyn_h->reloc_entries)
2342 struct elf64_hppa_dyn_reloc_entry *rent;
2343 int dynindx;
2345 hppa_info = elf64_hppa_hash_table (info);
2346 h = dyn_h->h;
2348 /* We may need to do a relocation against a local symbol, in
2349 which case we have to look up it's dynamic symbol index off
2350 the local symbol hash table. */
2351 if (h && h->dynindx != -1)
2352 dynindx = h->dynindx;
2353 else
2354 dynindx
2355 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2356 dyn_h->sym_indx);
2358 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2360 Elf64_Internal_Rela rel;
2362 /* Allocate one iff we are building a shared library, the relocation
2363 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2364 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2365 continue;
2367 /* Create a dynamic relocation for this entry.
2369 We need the output offset for the reloc's section because
2370 we are creating an absolute address in the resulting object
2371 file. */
2372 rel.r_offset = (rent->offset + rent->sec->output_offset
2373 + rent->sec->output_section->vma);
2375 /* An FPTR64 relocation implies that we took the address of
2376 a function and that the function has an entry in the .opd
2377 section. We want the FPTR64 relocation to reference the
2378 entry in .opd.
2380 We could munge the symbol value in the dynamic symbol table
2381 (in fact we already do for functions with global scope) to point
2382 to the .opd entry. Then we could use that dynamic symbol in
2383 this relocation.
2385 Or we could do something sensible, not munge the symbol's
2386 address and instead just use a different symbol to reference
2387 the .opd entry. At least that seems sensible until you
2388 realize there's no local dynamic symbols we can use for that
2389 purpose. Thus the hair in the check_relocs routine.
2391 We use a section symbol recorded by check_relocs as the
2392 base symbol for the relocation. The addend is the difference
2393 between the section symbol and the address of the .opd entry. */
2394 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2396 bfd_vma value, value2;
2398 /* First compute the address of the opd entry for this symbol. */
2399 value = (dyn_h->opd_offset
2400 + hppa_info->opd_sec->output_section->vma
2401 + hppa_info->opd_sec->output_offset);
2403 /* Compute the value of the start of the section with
2404 the relocation. */
2405 value2 = (rent->sec->output_section->vma
2406 + rent->sec->output_offset);
2408 /* Compute the difference between the start of the section
2409 with the relocation and the opd entry. */
2410 value -= value2;
2412 /* The result becomes the addend of the relocation. */
2413 rel.r_addend = value;
2415 /* The section symbol becomes the symbol for the dynamic
2416 relocation. */
2417 dynindx
2418 = _bfd_elf_link_lookup_local_dynindx (info,
2419 rent->sec->owner,
2420 rent->sec_symndx);
2422 else
2423 rel.r_addend = rent->addend;
2425 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2427 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2428 &rel,
2429 (((Elf64_External_Rela *)
2430 hppa_info->other_rel_sec->contents)
2431 + hppa_info->other_rel_sec->reloc_count));
2432 hppa_info->other_rel_sec->reloc_count++;
2436 return true;
2439 /* Used to decide how to sort relocs in an optimal manner for the
2440 dynamic linker, before writing them out. */
2442 static enum elf_reloc_type_class
2443 elf64_hppa_reloc_type_class (rela)
2444 const Elf_Internal_Rela *rela;
2446 if (ELF64_R_SYM (rela->r_info) == 0)
2447 return reloc_class_relative;
2449 switch ((int) ELF64_R_TYPE (rela->r_info))
2451 case R_PARISC_IPLT:
2452 return reloc_class_plt;
2453 case R_PARISC_COPY:
2454 return reloc_class_copy;
2455 default:
2456 return reloc_class_normal;
2460 /* Finish up the dynamic sections. */
2462 static boolean
2463 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2464 bfd *output_bfd;
2465 struct bfd_link_info *info;
2467 bfd *dynobj;
2468 asection *sdyn;
2469 struct elf64_hppa_link_hash_table *hppa_info;
2471 hppa_info = elf64_hppa_hash_table (info);
2473 /* Finalize the contents of the .opd section. */
2474 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2475 elf64_hppa_finalize_opd,
2476 info);
2478 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2479 elf64_hppa_finalize_dynreloc,
2480 info);
2482 /* Finalize the contents of the .dlt section. */
2483 dynobj = elf_hash_table (info)->dynobj;
2484 /* Finalize the contents of the .dlt section. */
2485 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2486 elf64_hppa_finalize_dlt,
2487 info);
2489 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2491 if (elf_hash_table (info)->dynamic_sections_created)
2493 Elf64_External_Dyn *dyncon, *dynconend;
2495 BFD_ASSERT (sdyn != NULL);
2497 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2498 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2499 for (; dyncon < dynconend; dyncon++)
2501 Elf_Internal_Dyn dyn;
2502 asection *s;
2504 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2506 switch (dyn.d_tag)
2508 default:
2509 break;
2511 case DT_HP_LOAD_MAP:
2512 /* Compute the absolute address of 16byte scratchpad area
2513 for the dynamic linker.
2515 By convention the linker script will allocate the scratchpad
2516 area at the start of the .data section. So all we have to
2517 to is find the start of the .data section. */
2518 s = bfd_get_section_by_name (output_bfd, ".data");
2519 dyn.d_un.d_ptr = s->vma;
2520 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2521 break;
2523 case DT_PLTGOT:
2524 /* HP's use PLTGOT to set the GOT register. */
2525 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2526 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2527 break;
2529 case DT_JMPREL:
2530 s = hppa_info->plt_rel_sec;
2531 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2532 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2533 break;
2535 case DT_PLTRELSZ:
2536 s = hppa_info->plt_rel_sec;
2537 dyn.d_un.d_val = s->_raw_size;
2538 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2539 break;
2541 case DT_RELA:
2542 s = hppa_info->other_rel_sec;
2543 if (! s || ! s->_raw_size)
2544 s = hppa_info->dlt_rel_sec;
2545 if (! s || ! s->_raw_size)
2546 s = hppa_info->opd_rel_sec;
2547 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2548 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2549 break;
2551 case DT_RELASZ:
2552 s = hppa_info->other_rel_sec;
2553 dyn.d_un.d_val = s->_raw_size;
2554 s = hppa_info->dlt_rel_sec;
2555 dyn.d_un.d_val += s->_raw_size;
2556 s = hppa_info->opd_rel_sec;
2557 dyn.d_un.d_val += s->_raw_size;
2558 /* There is some question about whether or not the size of
2559 the PLT relocs should be included here. HP's tools do
2560 it, so we'll emulate them. */
2561 s = hppa_info->plt_rel_sec;
2562 dyn.d_un.d_val += s->_raw_size;
2563 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2564 break;
2570 return true;
2573 /* Return the number of additional phdrs we will need.
2575 The generic ELF code only creates PT_PHDRs for executables. The HP
2576 dynamic linker requires PT_PHDRs for dynamic libraries too.
2578 This routine indicates that the backend needs one additional program
2579 header for that case.
2581 Note we do not have access to the link info structure here, so we have
2582 to guess whether or not we are building a shared library based on the
2583 existence of a .interp section. */
2585 static int
2586 elf64_hppa_additional_program_headers (abfd)
2587 bfd *abfd;
2589 asection *s;
2591 /* If we are creating a shared library, then we have to create a
2592 PT_PHDR segment. HP's dynamic linker chokes without it. */
2593 s = bfd_get_section_by_name (abfd, ".interp");
2594 if (! s)
2595 return 1;
2596 return 0;
2599 /* Allocate and initialize any program headers required by this
2600 specific backend.
2602 The generic ELF code only creates PT_PHDRs for executables. The HP
2603 dynamic linker requires PT_PHDRs for dynamic libraries too.
2605 This allocates the PT_PHDR and initializes it in a manner suitable
2606 for the HP linker.
2608 Note we do not have access to the link info structure here, so we have
2609 to guess whether or not we are building a shared library based on the
2610 existence of a .interp section. */
2612 static boolean
2613 elf64_hppa_modify_segment_map (abfd)
2614 bfd *abfd;
2616 struct elf_segment_map *m;
2617 asection *s;
2619 s = bfd_get_section_by_name (abfd, ".interp");
2620 if (! s)
2622 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2623 if (m->p_type == PT_PHDR)
2624 break;
2625 if (m == NULL)
2627 m = ((struct elf_segment_map *)
2628 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2629 if (m == NULL)
2630 return false;
2632 m->p_type = PT_PHDR;
2633 m->p_flags = PF_R | PF_X;
2634 m->p_flags_valid = 1;
2635 m->p_paddr_valid = 1;
2636 m->includes_phdrs = 1;
2638 m->next = elf_tdata (abfd)->segment_map;
2639 elf_tdata (abfd)->segment_map = m;
2643 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2644 if (m->p_type == PT_LOAD)
2646 unsigned int i;
2648 for (i = 0; i < m->count; i++)
2650 /* The code "hint" is not really a hint. It is a requirement
2651 for certain versions of the HP dynamic linker. Worse yet,
2652 it must be set even if the shared library does not have
2653 any code in its "text" segment (thus the check for .hash
2654 to catch this situation). */
2655 if (m->sections[i]->flags & SEC_CODE
2656 || (strcmp (m->sections[i]->name, ".hash") == 0))
2657 m->p_flags |= (PF_X | PF_HP_CODE);
2661 return true;
2664 /* Called when writing out an object file to decide the type of a
2665 symbol. */
2666 static int
2667 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2668 Elf_Internal_Sym *elf_sym;
2669 int type;
2671 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2672 return STT_PARISC_MILLI;
2673 else
2674 return type;
2677 /* The hash bucket size is the standard one, namely 4. */
2679 const struct elf_size_info hppa64_elf_size_info =
2681 sizeof (Elf64_External_Ehdr),
2682 sizeof (Elf64_External_Phdr),
2683 sizeof (Elf64_External_Shdr),
2684 sizeof (Elf64_External_Rel),
2685 sizeof (Elf64_External_Rela),
2686 sizeof (Elf64_External_Sym),
2687 sizeof (Elf64_External_Dyn),
2688 sizeof (Elf_External_Note),
2691 64, 8,
2692 ELFCLASS64, EV_CURRENT,
2693 bfd_elf64_write_out_phdrs,
2694 bfd_elf64_write_shdrs_and_ehdr,
2695 bfd_elf64_write_relocs,
2696 bfd_elf64_swap_symbol_in,
2697 bfd_elf64_swap_symbol_out,
2698 bfd_elf64_slurp_reloc_table,
2699 bfd_elf64_slurp_symbol_table,
2700 bfd_elf64_swap_dyn_in,
2701 bfd_elf64_swap_dyn_out,
2702 NULL,
2703 NULL,
2704 NULL,
2705 NULL
2708 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2709 #define TARGET_BIG_NAME "elf64-hppa"
2710 #define ELF_ARCH bfd_arch_hppa
2711 #define ELF_MACHINE_CODE EM_PARISC
2712 /* This is not strictly correct. The maximum page size for PA2.0 is
2713 64M. But everything still uses 4k. */
2714 #define ELF_MAXPAGESIZE 0x1000
2715 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2716 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2717 #define elf_info_to_howto elf_hppa_info_to_howto
2718 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2720 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2721 #define elf_backend_object_p elf64_hppa_object_p
2722 #define elf_backend_final_write_processing \
2723 elf_hppa_final_write_processing
2724 #define elf_backend_fake_sections elf_hppa_fake_sections
2725 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2727 #define elf_backend_relocate_section elf_hppa_relocate_section
2729 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2731 #define elf_backend_create_dynamic_sections \
2732 elf64_hppa_create_dynamic_sections
2733 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2735 #define elf_backend_adjust_dynamic_symbol \
2736 elf64_hppa_adjust_dynamic_symbol
2738 #define elf_backend_size_dynamic_sections \
2739 elf64_hppa_size_dynamic_sections
2741 #define elf_backend_finish_dynamic_symbol \
2742 elf64_hppa_finish_dynamic_symbol
2743 #define elf_backend_finish_dynamic_sections \
2744 elf64_hppa_finish_dynamic_sections
2746 /* Stuff for the BFD linker: */
2747 #define bfd_elf64_bfd_link_hash_table_create \
2748 elf64_hppa_hash_table_create
2750 #define elf_backend_check_relocs \
2751 elf64_hppa_check_relocs
2753 #define elf_backend_size_info \
2754 hppa64_elf_size_info
2756 #define elf_backend_additional_program_headers \
2757 elf64_hppa_additional_program_headers
2759 #define elf_backend_modify_segment_map \
2760 elf64_hppa_modify_segment_map
2762 #define elf_backend_link_output_symbol_hook \
2763 elf64_hppa_link_output_symbol_hook
2765 #define elf_backend_want_got_plt 0
2766 #define elf_backend_plt_readonly 0
2767 #define elf_backend_want_plt_sym 0
2768 #define elf_backend_got_header_size 0
2769 #define elf_backend_plt_header_size 0
2770 #define elf_backend_type_change_ok true
2771 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2772 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2773 #define elf_backend_rela_normal 1
2775 #include "elf64-target.h"
2777 #undef TARGET_BIG_SYM
2778 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2779 #undef TARGET_BIG_NAME
2780 #define TARGET_BIG_NAME "elf64-hppa-linux"
2782 #define INCLUDED_TARGET_FILE 1
2783 #include "elf64-target.h"