1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004 Free Software Foundation, Inc.
6 Center for Software Science
7 Department of Computer Science
9 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 This file is part of BFD, the Binary File Descriptor library.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
33 #include "elf32-hppa.h"
35 #include "elf32-hppa.h"
38 /* In order to gain some understanding of code in this file without
39 knowing all the intricate details of the linker, note the
42 Functions named elf32_hppa_* are called by external routines, other
43 functions are only called locally. elf32_hppa_* functions appear
44 in this file more or less in the order in which they are called
45 from external routines. eg. elf32_hppa_check_relocs is called
46 early in the link process, elf32_hppa_finish_dynamic_sections is
47 one of the last functions. */
49 /* We use two hash tables to hold information for linking PA ELF objects.
51 The first is the elf32_hppa_link_hash_table which is derived
52 from the standard ELF linker hash table. We use this as a place to
53 attach other hash tables and static information.
55 The second is the stub hash table which is derived from the
56 base BFD hash table. The stub hash table holds the information
57 necessary to build the linker stubs during a link.
59 There are a number of different stubs generated by the linker.
67 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
68 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
70 Import stub to call shared library routine from normal object file
71 (single sub-space version)
72 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
73 : ldw RR'lt_ptr+ltoff(%r1),%r21
75 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
77 Import stub to call shared library routine from shared library
78 (single sub-space version)
79 : addil LR'ltoff,%r19 ; get procedure entry point
80 : ldw RR'ltoff(%r1),%r21
82 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
84 Import stub to call shared library routine from normal object file
85 (multiple sub-space support)
86 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
87 : ldw RR'lt_ptr+ltoff(%r1),%r21
88 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : be 0(%sr0,%r21) ; branch to target
92 : stw %rp,-24(%sp) ; save rp
94 Import stub to call shared library routine from shared library
95 (multiple sub-space support)
96 : addil LR'ltoff,%r19 ; get procedure entry point
97 : ldw RR'ltoff(%r1),%r21
98 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : be 0(%sr0,%r21) ; branch to target
102 : stw %rp,-24(%sp) ; save rp
104 Export stub to return from shared lib routine (multiple sub-space support)
105 One of these is created for each exported procedure in a shared
106 library (and stored in the shared lib). Shared lib routines are
107 called via the first instruction in the export stub so that we can
108 do an inter-space return. Not required for single sub-space.
109 : bl,n X,%rp ; trap the return
111 : ldw -24(%sp),%rp ; restore the original rp
114 : be,n 0(%sr0,%rp) ; inter-space return. */
116 #define PLT_ENTRY_SIZE 8
117 #define GOT_ENTRY_SIZE 4
118 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
120 static const bfd_byte plt_stub
[] =
122 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
123 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
124 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
125 #define PLT_STUB_ENTRY (3*4)
126 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
127 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
128 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
129 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
132 /* Section name for stubs is the associated section name plus this
134 #define STUB_SUFFIX ".stub"
136 /* We don't need to copy certain PC- or GP-relative dynamic relocs
137 into a shared object's dynamic section. All the relocs of the
138 limited class we are interested in, are absolute. */
139 #ifndef RELATIVE_DYNRELOCS
140 #define RELATIVE_DYNRELOCS 0
141 #define IS_ABSOLUTE_RELOC(r_type) 1
144 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
145 copying dynamic variables from a shared lib into an app's dynbss
146 section, and instead use a dynamic relocation to point into the
148 #define ELIMINATE_COPY_RELOCS 1
150 enum elf32_hppa_stub_type
{
151 hppa_stub_long_branch
,
152 hppa_stub_long_branch_shared
,
154 hppa_stub_import_shared
,
159 struct elf32_hppa_stub_hash_entry
{
161 /* Base hash table entry structure. */
162 struct bfd_hash_entry root
;
164 /* The stub section. */
167 /* Offset within stub_sec of the beginning of this stub. */
170 /* Given the symbol's value and its section we can determine its final
171 value when building the stubs (so the stub knows where to jump. */
172 bfd_vma target_value
;
173 asection
*target_section
;
175 enum elf32_hppa_stub_type stub_type
;
177 /* The symbol table entry, if any, that this was derived from. */
178 struct elf32_hppa_link_hash_entry
*h
;
180 /* Where this stub is being called from, or, in the case of combined
181 stub sections, the first input section in the group. */
185 struct elf32_hppa_link_hash_entry
{
187 struct elf_link_hash_entry elf
;
189 /* A pointer to the most recently used stub hash entry against this
191 struct elf32_hppa_stub_hash_entry
*stub_cache
;
193 /* Used to count relocations for delayed sizing of relocation
195 struct elf32_hppa_dyn_reloc_entry
{
197 /* Next relocation in the chain. */
198 struct elf32_hppa_dyn_reloc_entry
*next
;
200 /* The input section of the reloc. */
203 /* Number of relocs copied in this section. */
206 #if RELATIVE_DYNRELOCS
207 /* Number of relative relocs copied for the input section. */
208 bfd_size_type relative_count
;
212 /* Set if this symbol is used by a plabel reloc. */
213 unsigned int plabel
:1;
216 struct elf32_hppa_link_hash_table
{
218 /* The main hash table. */
219 struct elf_link_hash_table elf
;
221 /* The stub hash table. */
222 struct bfd_hash_table stub_hash_table
;
224 /* Linker stub bfd. */
227 /* Linker call-backs. */
228 asection
* (*add_stub_section
) (const char *, asection
*);
229 void (*layout_sections_again
) (void);
231 /* Array to keep track of which stub sections have been created, and
232 information on stub grouping. */
234 /* This is the section to which stubs in the group will be
237 /* The stub section. */
241 /* Assorted information used by elf32_hppa_size_stubs. */
242 unsigned int bfd_count
;
244 asection
**input_list
;
245 Elf_Internal_Sym
**all_local_syms
;
247 /* Short-cuts to get to dynamic linker sections. */
255 /* Used during a final link to store the base of the text and data
256 segments so that we can perform SEGREL relocations. */
257 bfd_vma text_segment_base
;
258 bfd_vma data_segment_base
;
260 /* Whether we support multiple sub-spaces for shared libs. */
261 unsigned int multi_subspace
:1;
263 /* Flags set when various size branches are detected. Used to
264 select suitable defaults for the stub group size. */
265 unsigned int has_12bit_branch
:1;
266 unsigned int has_17bit_branch
:1;
267 unsigned int has_22bit_branch
:1;
269 /* Set if we need a .plt stub to support lazy dynamic linking. */
270 unsigned int need_plt_stub
:1;
272 /* Small local sym to section mapping cache. */
273 struct sym_sec_cache sym_sec
;
276 /* Various hash macros and functions. */
277 #define hppa_link_hash_table(p) \
278 ((struct elf32_hppa_link_hash_table *) ((p)->hash))
280 #define hppa_stub_hash_lookup(table, string, create, copy) \
281 ((struct elf32_hppa_stub_hash_entry *) \
282 bfd_hash_lookup ((table), (string), (create), (copy)))
284 /* Assorted hash table functions. */
286 /* Initialize an entry in the stub hash table. */
288 static struct bfd_hash_entry
*
289 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
290 struct bfd_hash_table
*table
,
293 /* Allocate the structure if it has not already been allocated by a
297 entry
= bfd_hash_allocate (table
,
298 sizeof (struct elf32_hppa_stub_hash_entry
));
303 /* Call the allocation method of the superclass. */
304 entry
= bfd_hash_newfunc (entry
, table
, string
);
307 struct elf32_hppa_stub_hash_entry
*eh
;
309 /* Initialize the local fields. */
310 eh
= (struct elf32_hppa_stub_hash_entry
*) entry
;
313 eh
->target_value
= 0;
314 eh
->target_section
= NULL
;
315 eh
->stub_type
= hppa_stub_long_branch
;
323 /* Initialize an entry in the link hash table. */
325 static struct bfd_hash_entry
*
326 hppa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
327 struct bfd_hash_table
*table
,
330 /* Allocate the structure if it has not already been allocated by a
334 entry
= bfd_hash_allocate (table
,
335 sizeof (struct elf32_hppa_link_hash_entry
));
340 /* Call the allocation method of the superclass. */
341 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
344 struct elf32_hppa_link_hash_entry
*eh
;
346 /* Initialize the local fields. */
347 eh
= (struct elf32_hppa_link_hash_entry
*) entry
;
348 eh
->stub_cache
= NULL
;
349 eh
->dyn_relocs
= NULL
;
356 /* Create the derived linker hash table. The PA ELF port uses the derived
357 hash table to keep information specific to the PA ELF linker (without
358 using static variables). */
360 static struct bfd_link_hash_table
*
361 elf32_hppa_link_hash_table_create (bfd
*abfd
)
363 struct elf32_hppa_link_hash_table
*ret
;
364 bfd_size_type amt
= sizeof (*ret
);
366 ret
= bfd_malloc (amt
);
370 if (!_bfd_elf_link_hash_table_init (&ret
->elf
, abfd
, hppa_link_hash_newfunc
))
376 /* Init the stub hash table too. */
377 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
))
380 ret
->stub_bfd
= NULL
;
381 ret
->add_stub_section
= NULL
;
382 ret
->layout_sections_again
= NULL
;
383 ret
->stub_group
= NULL
;
390 ret
->text_segment_base
= (bfd_vma
) -1;
391 ret
->data_segment_base
= (bfd_vma
) -1;
392 ret
->multi_subspace
= 0;
393 ret
->has_12bit_branch
= 0;
394 ret
->has_17bit_branch
= 0;
395 ret
->has_22bit_branch
= 0;
396 ret
->need_plt_stub
= 0;
397 ret
->sym_sec
.abfd
= NULL
;
399 return &ret
->elf
.root
;
402 /* Free the derived linker hash table. */
405 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table
*hash
)
407 struct elf32_hppa_link_hash_table
*ret
408 = (struct elf32_hppa_link_hash_table
*) hash
;
410 bfd_hash_table_free (&ret
->stub_hash_table
);
411 _bfd_generic_link_hash_table_free (hash
);
414 /* Build a name for an entry in the stub hash table. */
417 hppa_stub_name (const asection
*input_section
,
418 const asection
*sym_sec
,
419 const struct elf32_hppa_link_hash_entry
*hash
,
420 const Elf_Internal_Rela
*rel
)
427 len
= 8 + 1 + strlen (hash
->elf
.root
.root
.string
) + 1 + 8 + 1;
428 stub_name
= bfd_malloc (len
);
429 if (stub_name
!= NULL
)
431 sprintf (stub_name
, "%08x_%s+%x",
432 input_section
->id
& 0xffffffff,
433 hash
->elf
.root
.root
.string
,
434 (int) rel
->r_addend
& 0xffffffff);
439 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
440 stub_name
= bfd_malloc (len
);
441 if (stub_name
!= NULL
)
443 sprintf (stub_name
, "%08x_%x:%x+%x",
444 input_section
->id
& 0xffffffff,
445 sym_sec
->id
& 0xffffffff,
446 (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
447 (int) rel
->r_addend
& 0xffffffff);
453 /* Look up an entry in the stub hash. Stub entries are cached because
454 creating the stub name takes a bit of time. */
456 static struct elf32_hppa_stub_hash_entry
*
457 hppa_get_stub_entry (const asection
*input_section
,
458 const asection
*sym_sec
,
459 struct elf32_hppa_link_hash_entry
*hash
,
460 const Elf_Internal_Rela
*rel
,
461 struct elf32_hppa_link_hash_table
*htab
)
463 struct elf32_hppa_stub_hash_entry
*stub_entry
;
464 const asection
*id_sec
;
466 /* If this input section is part of a group of sections sharing one
467 stub section, then use the id of the first section in the group.
468 Stub names need to include a section id, as there may well be
469 more than one stub used to reach say, printf, and we need to
470 distinguish between them. */
471 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
473 if (hash
!= NULL
&& hash
->stub_cache
!= NULL
474 && hash
->stub_cache
->h
== hash
475 && hash
->stub_cache
->id_sec
== id_sec
)
477 stub_entry
= hash
->stub_cache
;
483 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hash
, rel
);
484 if (stub_name
== NULL
)
487 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
488 stub_name
, FALSE
, FALSE
);
490 hash
->stub_cache
= stub_entry
;
498 /* Add a new stub entry to the stub hash. Not all fields of the new
499 stub entry are initialised. */
501 static struct elf32_hppa_stub_hash_entry
*
502 hppa_add_stub (const char *stub_name
,
504 struct elf32_hppa_link_hash_table
*htab
)
508 struct elf32_hppa_stub_hash_entry
*stub_entry
;
510 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
511 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
512 if (stub_sec
== NULL
)
514 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
515 if (stub_sec
== NULL
)
521 namelen
= strlen (link_sec
->name
);
522 len
= namelen
+ sizeof (STUB_SUFFIX
);
523 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
527 memcpy (s_name
, link_sec
->name
, namelen
);
528 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
529 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
530 if (stub_sec
== NULL
)
532 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
534 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
537 /* Enter this entry into the linker stub hash table. */
538 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
540 if (stub_entry
== NULL
)
542 (*_bfd_error_handler
) (_("%B: cannot create stub entry %s"),
548 stub_entry
->stub_sec
= stub_sec
;
549 stub_entry
->stub_offset
= 0;
550 stub_entry
->id_sec
= link_sec
;
554 /* Determine the type of stub needed, if any, for a call. */
556 static enum elf32_hppa_stub_type
557 hppa_type_of_stub (asection
*input_sec
,
558 const Elf_Internal_Rela
*rel
,
559 struct elf32_hppa_link_hash_entry
*hash
,
561 struct bfd_link_info
*info
)
564 bfd_vma branch_offset
;
565 bfd_vma max_branch_offset
;
569 && hash
->elf
.plt
.offset
!= (bfd_vma
) -1
570 && hash
->elf
.dynindx
!= -1
573 || !(hash
->elf
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
574 || hash
->elf
.root
.type
== bfd_link_hash_defweak
))
576 /* We need an import stub. Decide between hppa_stub_import
577 and hppa_stub_import_shared later. */
578 return hppa_stub_import
;
581 /* Determine where the call point is. */
582 location
= (input_sec
->output_offset
583 + input_sec
->output_section
->vma
586 branch_offset
= destination
- location
- 8;
587 r_type
= ELF32_R_TYPE (rel
->r_info
);
589 /* Determine if a long branch stub is needed. parisc branch offsets
590 are relative to the second instruction past the branch, ie. +8
591 bytes on from the branch instruction location. The offset is
592 signed and counts in units of 4 bytes. */
593 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
595 max_branch_offset
= (1 << (17-1)) << 2;
597 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
599 max_branch_offset
= (1 << (12-1)) << 2;
601 else /* R_PARISC_PCREL22F. */
603 max_branch_offset
= (1 << (22-1)) << 2;
606 if (branch_offset
+ max_branch_offset
>= 2*max_branch_offset
)
607 return hppa_stub_long_branch
;
609 return hppa_stub_none
;
612 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
613 IN_ARG contains the link info pointer. */
615 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
616 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
618 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
619 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
620 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
622 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
623 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
624 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
625 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
627 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
628 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
630 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
631 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
632 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
633 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
635 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
636 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
637 #define NOP 0x08000240 /* nop */
638 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
639 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
640 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
647 #define LDW_R1_DLT LDW_R1_R19
649 #define LDW_R1_DLT LDW_R1_DP
653 hppa_build_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
655 struct elf32_hppa_stub_hash_entry
*stub_entry
;
656 struct bfd_link_info
*info
;
657 struct elf32_hppa_link_hash_table
*htab
;
667 /* Massage our args to the form they really have. */
668 stub_entry
= (struct elf32_hppa_stub_hash_entry
*) gen_entry
;
671 htab
= hppa_link_hash_table (info
);
672 stub_sec
= stub_entry
->stub_sec
;
674 /* Make a note of the offset within the stubs for this entry. */
675 stub_entry
->stub_offset
= stub_sec
->size
;
676 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
678 stub_bfd
= stub_sec
->owner
;
680 switch (stub_entry
->stub_type
)
682 case hppa_stub_long_branch
:
683 /* Create the long branch. A long branch is formed with "ldil"
684 loading the upper bits of the target address into a register,
685 then branching with "be" which adds in the lower bits.
686 The "be" has its delay slot nullified. */
687 sym_value
= (stub_entry
->target_value
688 + stub_entry
->target_section
->output_offset
689 + stub_entry
->target_section
->output_section
->vma
);
691 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
);
692 insn
= hppa_rebuild_insn ((int) LDIL_R1
, val
, 21);
693 bfd_put_32 (stub_bfd
, insn
, loc
);
695 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
) >> 2;
696 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
697 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
702 case hppa_stub_long_branch_shared
:
703 /* Branches are relative. This is where we are going to. */
704 sym_value
= (stub_entry
->target_value
705 + stub_entry
->target_section
->output_offset
706 + stub_entry
->target_section
->output_section
->vma
);
708 /* And this is where we are coming from, more or less. */
709 sym_value
-= (stub_entry
->stub_offset
710 + stub_sec
->output_offset
711 + stub_sec
->output_section
->vma
);
713 bfd_put_32 (stub_bfd
, (bfd_vma
) BL_R1
, loc
);
714 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_lrsel
);
715 insn
= hppa_rebuild_insn ((int) ADDIL_R1
, val
, 21);
716 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
718 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_rrsel
) >> 2;
719 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
720 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
724 case hppa_stub_import
:
725 case hppa_stub_import_shared
:
726 off
= stub_entry
->h
->elf
.plt
.offset
;
727 if (off
>= (bfd_vma
) -2)
730 off
&= ~ (bfd_vma
) 1;
732 + htab
->splt
->output_offset
733 + htab
->splt
->output_section
->vma
734 - elf_gp (htab
->splt
->output_section
->owner
));
738 if (stub_entry
->stub_type
== hppa_stub_import_shared
)
741 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
),
742 insn
= hppa_rebuild_insn ((int) insn
, val
, 21);
743 bfd_put_32 (stub_bfd
, insn
, loc
);
745 /* It is critical to use lrsel/rrsel here because we are using
746 two different offsets (+0 and +4) from sym_value. If we use
747 lsel/rsel then with unfortunate sym_values we will round
748 sym_value+4 up to the next 2k block leading to a mis-match
749 between the lsel and rsel value. */
750 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
);
751 insn
= hppa_rebuild_insn ((int) LDW_R1_R21
, val
, 14);
752 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
754 if (htab
->multi_subspace
)
756 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
757 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
758 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
760 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_R21_R1
, loc
+ 12);
761 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
762 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_R21
, loc
+ 20);
763 bfd_put_32 (stub_bfd
, (bfd_vma
) STW_RP
, loc
+ 24);
769 bfd_put_32 (stub_bfd
, (bfd_vma
) BV_R0_R21
, loc
+ 8);
770 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
771 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
772 bfd_put_32 (stub_bfd
, insn
, loc
+ 12);
779 case hppa_stub_export
:
780 /* Branches are relative. This is where we are going to. */
781 sym_value
= (stub_entry
->target_value
782 + stub_entry
->target_section
->output_offset
783 + stub_entry
->target_section
->output_section
->vma
);
785 /* And this is where we are coming from. */
786 sym_value
-= (stub_entry
->stub_offset
787 + stub_sec
->output_offset
788 + stub_sec
->output_section
->vma
);
790 if (sym_value
- 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
791 && (!htab
->has_22bit_branch
792 || sym_value
- 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
794 (*_bfd_error_handler
)
795 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
796 stub_entry
->target_section
->owner
,
798 (long) stub_entry
->stub_offset
,
799 stub_entry
->root
.string
);
800 bfd_set_error (bfd_error_bad_value
);
804 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_fsel
) >> 2;
805 if (!htab
->has_22bit_branch
)
806 insn
= hppa_rebuild_insn ((int) BL_RP
, val
, 17);
808 insn
= hppa_rebuild_insn ((int) BL22_RP
, val
, 22);
809 bfd_put_32 (stub_bfd
, insn
, loc
);
811 bfd_put_32 (stub_bfd
, (bfd_vma
) NOP
, loc
+ 4);
812 bfd_put_32 (stub_bfd
, (bfd_vma
) LDW_RP
, loc
+ 8);
813 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_RP_R1
, loc
+ 12);
814 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
815 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_RP
, loc
+ 20);
817 /* Point the function symbol at the stub. */
818 stub_entry
->h
->elf
.root
.u
.def
.section
= stub_sec
;
819 stub_entry
->h
->elf
.root
.u
.def
.value
= stub_sec
->size
;
829 stub_sec
->size
+= size
;
854 /* As above, but don't actually build the stub. Just bump offset so
855 we know stub section sizes. */
858 hppa_size_one_stub (struct bfd_hash_entry
*gen_entry
, void *in_arg
)
860 struct elf32_hppa_stub_hash_entry
*stub_entry
;
861 struct elf32_hppa_link_hash_table
*htab
;
864 /* Massage our args to the form they really have. */
865 stub_entry
= (struct elf32_hppa_stub_hash_entry
*) gen_entry
;
868 if (stub_entry
->stub_type
== hppa_stub_long_branch
)
870 else if (stub_entry
->stub_type
== hppa_stub_long_branch_shared
)
872 else if (stub_entry
->stub_type
== hppa_stub_export
)
874 else /* hppa_stub_import or hppa_stub_import_shared. */
876 if (htab
->multi_subspace
)
882 stub_entry
->stub_sec
->size
+= size
;
886 /* Return nonzero if ABFD represents an HPPA ELF32 file.
887 Additionally we set the default architecture and machine. */
890 elf32_hppa_object_p (bfd
*abfd
)
892 Elf_Internal_Ehdr
* i_ehdrp
;
895 i_ehdrp
= elf_elfheader (abfd
);
896 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
898 /* GCC on hppa-linux produces binaries with OSABI=Linux,
899 but the kernel produces corefiles with OSABI=SysV. */
900 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
&&
901 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
904 else if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0)
906 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
907 but the kernel produces corefiles with OSABI=SysV. */
908 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NETBSD
&&
909 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
914 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
918 flags
= i_ehdrp
->e_flags
;
919 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
922 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
924 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
926 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
927 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
928 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
933 /* Create the .plt and .got sections, and set up our hash table
934 short-cuts to various dynamic sections. */
937 elf32_hppa_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
939 struct elf32_hppa_link_hash_table
*htab
;
941 /* Don't try to create the .plt and .got twice. */
942 htab
= hppa_link_hash_table (info
);
943 if (htab
->splt
!= NULL
)
946 /* Call the generic code to do most of the work. */
947 if (! _bfd_elf_create_dynamic_sections (abfd
, info
))
950 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
951 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
953 htab
->sgot
= bfd_get_section_by_name (abfd
, ".got");
954 htab
->srelgot
= bfd_make_section (abfd
, ".rela.got");
955 if (htab
->srelgot
== NULL
956 || ! bfd_set_section_flags (abfd
, htab
->srelgot
,
963 || ! bfd_set_section_alignment (abfd
, htab
->srelgot
, 2))
966 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
967 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
972 /* Copy the extra info we tack onto an elf_link_hash_entry. */
975 elf32_hppa_copy_indirect_symbol (const struct elf_backend_data
*bed
,
976 struct elf_link_hash_entry
*dir
,
977 struct elf_link_hash_entry
*ind
)
979 struct elf32_hppa_link_hash_entry
*edir
, *eind
;
981 edir
= (struct elf32_hppa_link_hash_entry
*) dir
;
982 eind
= (struct elf32_hppa_link_hash_entry
*) ind
;
984 if (eind
->dyn_relocs
!= NULL
)
986 if (edir
->dyn_relocs
!= NULL
)
988 struct elf32_hppa_dyn_reloc_entry
**pp
;
989 struct elf32_hppa_dyn_reloc_entry
*p
;
991 if (ind
->root
.type
== bfd_link_hash_indirect
)
994 /* Add reloc counts against the weak sym to the strong sym
995 list. Merge any entries against the same section. */
996 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
998 struct elf32_hppa_dyn_reloc_entry
*q
;
1000 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
1001 if (q
->sec
== p
->sec
)
1003 #if RELATIVE_DYNRELOCS
1004 q
->relative_count
+= p
->relative_count
;
1006 q
->count
+= p
->count
;
1013 *pp
= edir
->dyn_relocs
;
1016 edir
->dyn_relocs
= eind
->dyn_relocs
;
1017 eind
->dyn_relocs
= NULL
;
1020 if (ELIMINATE_COPY_RELOCS
1021 && ind
->root
.type
!= bfd_link_hash_indirect
1022 && (dir
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
1023 /* If called to transfer flags for a weakdef during processing
1024 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
1025 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1026 dir
->elf_link_hash_flags
|=
1027 (ind
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_DYNAMIC
1028 | ELF_LINK_HASH_REF_REGULAR
1029 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1030 | ELF_LINK_HASH_NEEDS_PLT
));
1032 _bfd_elf_link_hash_copy_indirect (bed
, dir
, ind
);
1035 /* Look through the relocs for a section during the first phase, and
1036 calculate needed space in the global offset table, procedure linkage
1037 table, and dynamic reloc sections. At this point we haven't
1038 necessarily read all the input files. */
1041 elf32_hppa_check_relocs (bfd
*abfd
,
1042 struct bfd_link_info
*info
,
1044 const Elf_Internal_Rela
*relocs
)
1046 Elf_Internal_Shdr
*symtab_hdr
;
1047 struct elf_link_hash_entry
**sym_hashes
;
1048 const Elf_Internal_Rela
*rel
;
1049 const Elf_Internal_Rela
*rel_end
;
1050 struct elf32_hppa_link_hash_table
*htab
;
1052 asection
*stubreloc
;
1054 if (info
->relocatable
)
1057 htab
= hppa_link_hash_table (info
);
1058 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1059 sym_hashes
= elf_sym_hashes (abfd
);
1063 rel_end
= relocs
+ sec
->reloc_count
;
1064 for (rel
= relocs
; rel
< rel_end
; rel
++)
1073 unsigned int r_symndx
, r_type
;
1074 struct elf32_hppa_link_hash_entry
*h
;
1077 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1079 if (r_symndx
< symtab_hdr
->sh_info
)
1082 h
= ((struct elf32_hppa_link_hash_entry
*)
1083 sym_hashes
[r_symndx
- symtab_hdr
->sh_info
]);
1085 r_type
= ELF32_R_TYPE (rel
->r_info
);
1089 case R_PARISC_DLTIND14F
:
1090 case R_PARISC_DLTIND14R
:
1091 case R_PARISC_DLTIND21L
:
1092 /* This symbol requires a global offset table entry. */
1093 need_entry
= NEED_GOT
;
1096 case R_PARISC_PLABEL14R
: /* "Official" procedure labels. */
1097 case R_PARISC_PLABEL21L
:
1098 case R_PARISC_PLABEL32
:
1099 /* If the addend is non-zero, we break badly. */
1100 if (rel
->r_addend
!= 0)
1103 /* If we are creating a shared library, then we need to
1104 create a PLT entry for all PLABELs, because PLABELs with
1105 local symbols may be passed via a pointer to another
1106 object. Additionally, output a dynamic relocation
1107 pointing to the PLT entry.
1108 For executables, the original 32-bit ABI allowed two
1109 different styles of PLABELs (function pointers): For
1110 global functions, the PLABEL word points into the .plt
1111 two bytes past a (function address, gp) pair, and for
1112 local functions the PLABEL points directly at the
1113 function. The magic +2 for the first type allows us to
1114 differentiate between the two. As you can imagine, this
1115 is a real pain when it comes to generating code to call
1116 functions indirectly or to compare function pointers.
1117 We avoid the mess by always pointing a PLABEL into the
1118 .plt, even for local functions. */
1119 need_entry
= PLT_PLABEL
| NEED_PLT
| NEED_DYNREL
;
1122 case R_PARISC_PCREL12F
:
1123 htab
->has_12bit_branch
= 1;
1126 case R_PARISC_PCREL17C
:
1127 case R_PARISC_PCREL17F
:
1128 htab
->has_17bit_branch
= 1;
1131 case R_PARISC_PCREL22F
:
1132 htab
->has_22bit_branch
= 1;
1134 /* Function calls might need to go through the .plt, and
1135 might require long branch stubs. */
1138 /* We know local syms won't need a .plt entry, and if
1139 they need a long branch stub we can't guarantee that
1140 we can reach the stub. So just flag an error later
1141 if we're doing a shared link and find we need a long
1147 /* Global symbols will need a .plt entry if they remain
1148 global, and in most cases won't need a long branch
1149 stub. Unfortunately, we have to cater for the case
1150 where a symbol is forced local by versioning, or due
1151 to symbolic linking, and we lose the .plt entry. */
1152 need_entry
= NEED_PLT
;
1153 if (h
->elf
.type
== STT_PARISC_MILLI
)
1158 case R_PARISC_SEGBASE
: /* Used to set segment base. */
1159 case R_PARISC_SEGREL32
: /* Relative reloc, used for unwind. */
1160 case R_PARISC_PCREL14F
: /* PC relative load/store. */
1161 case R_PARISC_PCREL14R
:
1162 case R_PARISC_PCREL17R
: /* External branches. */
1163 case R_PARISC_PCREL21L
: /* As above, and for load/store too. */
1164 case R_PARISC_PCREL32
:
1165 /* We don't need to propagate the relocation if linking a
1166 shared object since these are section relative. */
1169 case R_PARISC_DPREL14F
: /* Used for gp rel data load/store. */
1170 case R_PARISC_DPREL14R
:
1171 case R_PARISC_DPREL21L
:
1174 (*_bfd_error_handler
)
1175 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1177 elf_hppa_howto_table
[r_type
].name
);
1178 bfd_set_error (bfd_error_bad_value
);
1183 case R_PARISC_DIR17F
: /* Used for external branches. */
1184 case R_PARISC_DIR17R
:
1185 case R_PARISC_DIR14F
: /* Used for load/store from absolute locn. */
1186 case R_PARISC_DIR14R
:
1187 case R_PARISC_DIR21L
: /* As above, and for ext branches too. */
1189 /* Help debug shared library creation. Any of the above
1190 relocs can be used in shared libs, but they may cause
1191 pages to become unshared. */
1194 (*_bfd_error_handler
)
1195 (_("%B: relocation %s should not be used when making a shared object; recompile with -fPIC"),
1197 elf_hppa_howto_table
[r_type
].name
);
1202 case R_PARISC_DIR32
: /* .word relocs. */
1203 /* We may want to output a dynamic relocation later. */
1204 need_entry
= NEED_DYNREL
;
1207 /* This relocation describes the C++ object vtable hierarchy.
1208 Reconstruct it for later use during GC. */
1209 case R_PARISC_GNU_VTINHERIT
:
1210 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, &h
->elf
, rel
->r_offset
))
1214 /* This relocation describes which C++ vtable entries are actually
1215 used. Record for later use during GC. */
1216 case R_PARISC_GNU_VTENTRY
:
1217 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, &h
->elf
, rel
->r_addend
))
1225 /* Now carry out our orders. */
1226 if (need_entry
& NEED_GOT
)
1228 /* Allocate space for a GOT entry, as well as a dynamic
1229 relocation for this entry. */
1230 if (htab
->sgot
== NULL
)
1232 if (htab
->elf
.dynobj
== NULL
)
1233 htab
->elf
.dynobj
= abfd
;
1234 if (!elf32_hppa_create_dynamic_sections (htab
->elf
.dynobj
, info
))
1240 h
->elf
.got
.refcount
+= 1;
1244 bfd_signed_vma
*local_got_refcounts
;
1246 /* This is a global offset table entry for a local symbol. */
1247 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1248 if (local_got_refcounts
== NULL
)
1252 /* Allocate space for local got offsets and local
1253 plt offsets. Done this way to save polluting
1254 elf_obj_tdata with another target specific
1256 size
= symtab_hdr
->sh_info
;
1257 size
*= 2 * sizeof (bfd_signed_vma
);
1258 local_got_refcounts
= bfd_zalloc (abfd
, size
);
1259 if (local_got_refcounts
== NULL
)
1261 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1263 local_got_refcounts
[r_symndx
] += 1;
1267 if (need_entry
& NEED_PLT
)
1269 /* If we are creating a shared library, and this is a reloc
1270 against a weak symbol or a global symbol in a dynamic
1271 object, then we will be creating an import stub and a
1272 .plt entry for the symbol. Similarly, on a normal link
1273 to symbols defined in a dynamic object we'll need the
1274 import stub and a .plt entry. We don't know yet whether
1275 the symbol is defined or not, so make an entry anyway and
1276 clean up later in adjust_dynamic_symbol. */
1277 if ((sec
->flags
& SEC_ALLOC
) != 0)
1281 h
->elf
.elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1282 h
->elf
.plt
.refcount
+= 1;
1284 /* If this .plt entry is for a plabel, mark it so
1285 that adjust_dynamic_symbol will keep the entry
1286 even if it appears to be local. */
1287 if (need_entry
& PLT_PLABEL
)
1290 else if (need_entry
& PLT_PLABEL
)
1292 bfd_signed_vma
*local_got_refcounts
;
1293 bfd_signed_vma
*local_plt_refcounts
;
1295 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1296 if (local_got_refcounts
== NULL
)
1300 /* Allocate space for local got offsets and local
1302 size
= symtab_hdr
->sh_info
;
1303 size
*= 2 * sizeof (bfd_signed_vma
);
1304 local_got_refcounts
= bfd_zalloc (abfd
, size
);
1305 if (local_got_refcounts
== NULL
)
1307 elf_local_got_refcounts (abfd
) = local_got_refcounts
;
1309 local_plt_refcounts
= (local_got_refcounts
1310 + symtab_hdr
->sh_info
);
1311 local_plt_refcounts
[r_symndx
] += 1;
1316 if (need_entry
& NEED_DYNREL
)
1318 /* Flag this symbol as having a non-got, non-plt reference
1319 so that we generate copy relocs if it turns out to be
1321 if (h
!= NULL
&& !info
->shared
)
1322 h
->elf
.elf_link_hash_flags
|= ELF_LINK_NON_GOT_REF
;
1324 /* If we are creating a shared library then we need to copy
1325 the reloc into the shared library. However, if we are
1326 linking with -Bsymbolic, we need only copy absolute
1327 relocs or relocs against symbols that are not defined in
1328 an object we are including in the link. PC- or DP- or
1329 DLT-relative relocs against any local sym or global sym
1330 with DEF_REGULAR set, can be discarded. At this point we
1331 have not seen all the input files, so it is possible that
1332 DEF_REGULAR is not set now but will be set later (it is
1333 never cleared). We account for that possibility below by
1334 storing information in the dyn_relocs field of the
1337 A similar situation to the -Bsymbolic case occurs when
1338 creating shared libraries and symbol visibility changes
1339 render the symbol local.
1341 As it turns out, all the relocs we will be creating here
1342 are absolute, so we cannot remove them on -Bsymbolic
1343 links or visibility changes anyway. A STUB_REL reloc
1344 is absolute too, as in that case it is the reloc in the
1345 stub we will be creating, rather than copying the PCREL
1346 reloc in the branch.
1348 If on the other hand, we are creating an executable, we
1349 may need to keep relocations for symbols satisfied by a
1350 dynamic library if we manage to avoid copy relocs for the
1353 && (sec
->flags
& SEC_ALLOC
) != 0
1354 && (IS_ABSOLUTE_RELOC (r_type
)
1357 || h
->elf
.root
.type
== bfd_link_hash_defweak
1358 || (h
->elf
.elf_link_hash_flags
1359 & ELF_LINK_HASH_DEF_REGULAR
) == 0))))
1360 || (ELIMINATE_COPY_RELOCS
1362 && (sec
->flags
& SEC_ALLOC
) != 0
1364 && (h
->elf
.root
.type
== bfd_link_hash_defweak
1365 || (h
->elf
.elf_link_hash_flags
1366 & ELF_LINK_HASH_DEF_REGULAR
) == 0)))
1368 struct elf32_hppa_dyn_reloc_entry
*p
;
1369 struct elf32_hppa_dyn_reloc_entry
**head
;
1371 /* Create a reloc section in dynobj and make room for
1378 name
= (bfd_elf_string_from_elf_section
1380 elf_elfheader (abfd
)->e_shstrndx
,
1381 elf_section_data (sec
)->rel_hdr
.sh_name
));
1384 (*_bfd_error_handler
)
1385 (_("Could not find relocation section for %s"),
1387 bfd_set_error (bfd_error_bad_value
);
1391 if (htab
->elf
.dynobj
== NULL
)
1392 htab
->elf
.dynobj
= abfd
;
1394 dynobj
= htab
->elf
.dynobj
;
1395 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1400 sreloc
= bfd_make_section (dynobj
, name
);
1401 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1402 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1403 if ((sec
->flags
& SEC_ALLOC
) != 0)
1404 flags
|= SEC_ALLOC
| SEC_LOAD
;
1406 || !bfd_set_section_flags (dynobj
, sreloc
, flags
)
1407 || !bfd_set_section_alignment (dynobj
, sreloc
, 2))
1411 elf_section_data (sec
)->sreloc
= sreloc
;
1414 /* If this is a global symbol, we count the number of
1415 relocations we need for this symbol. */
1418 head
= &h
->dyn_relocs
;
1422 /* Track dynamic relocs needed for local syms too.
1423 We really need local syms available to do this
1427 s
= bfd_section_from_r_symndx (abfd
, &htab
->sym_sec
,
1432 head
= ((struct elf32_hppa_dyn_reloc_entry
**)
1433 &elf_section_data (s
)->local_dynrel
);
1437 if (p
== NULL
|| p
->sec
!= sec
)
1439 p
= bfd_alloc (htab
->elf
.dynobj
, sizeof *p
);
1446 #if RELATIVE_DYNRELOCS
1447 p
->relative_count
= 0;
1452 #if RELATIVE_DYNRELOCS
1453 if (!IS_ABSOLUTE_RELOC (rtype
))
1454 p
->relative_count
+= 1;
1463 /* Return the section that should be marked against garbage collection
1464 for a given relocation. */
1467 elf32_hppa_gc_mark_hook (asection
*sec
,
1468 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1469 Elf_Internal_Rela
*rel
,
1470 struct elf_link_hash_entry
*h
,
1471 Elf_Internal_Sym
*sym
)
1475 switch ((unsigned int) ELF32_R_TYPE (rel
->r_info
))
1477 case R_PARISC_GNU_VTINHERIT
:
1478 case R_PARISC_GNU_VTENTRY
:
1482 switch (h
->root
.type
)
1484 case bfd_link_hash_defined
:
1485 case bfd_link_hash_defweak
:
1486 return h
->root
.u
.def
.section
;
1488 case bfd_link_hash_common
:
1489 return h
->root
.u
.c
.p
->section
;
1497 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
1502 /* Update the got and plt entry reference counts for the section being
1506 elf32_hppa_gc_sweep_hook (bfd
*abfd
,
1507 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1509 const Elf_Internal_Rela
*relocs
)
1511 Elf_Internal_Shdr
*symtab_hdr
;
1512 struct elf_link_hash_entry
**sym_hashes
;
1513 bfd_signed_vma
*local_got_refcounts
;
1514 bfd_signed_vma
*local_plt_refcounts
;
1515 const Elf_Internal_Rela
*rel
, *relend
;
1517 elf_section_data (sec
)->local_dynrel
= NULL
;
1519 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1520 sym_hashes
= elf_sym_hashes (abfd
);
1521 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1522 local_plt_refcounts
= local_got_refcounts
;
1523 if (local_plt_refcounts
!= NULL
)
1524 local_plt_refcounts
+= symtab_hdr
->sh_info
;
1526 relend
= relocs
+ sec
->reloc_count
;
1527 for (rel
= relocs
; rel
< relend
; rel
++)
1529 unsigned long r_symndx
;
1530 unsigned int r_type
;
1531 struct elf_link_hash_entry
*h
= NULL
;
1533 r_symndx
= ELF32_R_SYM (rel
->r_info
);
1534 if (r_symndx
>= symtab_hdr
->sh_info
)
1536 struct elf32_hppa_link_hash_entry
*eh
;
1537 struct elf32_hppa_dyn_reloc_entry
**pp
;
1538 struct elf32_hppa_dyn_reloc_entry
*p
;
1540 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1541 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1543 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; pp
= &p
->next
)
1546 /* Everything must go for SEC. */
1552 r_type
= ELF32_R_TYPE (rel
->r_info
);
1555 case R_PARISC_DLTIND14F
:
1556 case R_PARISC_DLTIND14R
:
1557 case R_PARISC_DLTIND21L
:
1560 if (h
->got
.refcount
> 0)
1561 h
->got
.refcount
-= 1;
1563 else if (local_got_refcounts
!= NULL
)
1565 if (local_got_refcounts
[r_symndx
] > 0)
1566 local_got_refcounts
[r_symndx
] -= 1;
1570 case R_PARISC_PCREL12F
:
1571 case R_PARISC_PCREL17C
:
1572 case R_PARISC_PCREL17F
:
1573 case R_PARISC_PCREL22F
:
1576 if (h
->plt
.refcount
> 0)
1577 h
->plt
.refcount
-= 1;
1581 case R_PARISC_PLABEL14R
:
1582 case R_PARISC_PLABEL21L
:
1583 case R_PARISC_PLABEL32
:
1586 if (h
->plt
.refcount
> 0)
1587 h
->plt
.refcount
-= 1;
1589 else if (local_plt_refcounts
!= NULL
)
1591 if (local_plt_refcounts
[r_symndx
] > 0)
1592 local_plt_refcounts
[r_symndx
] -= 1;
1604 /* Our own version of hide_symbol, so that we can keep plt entries for
1608 elf32_hppa_hide_symbol (struct bfd_link_info
*info
,
1609 struct elf_link_hash_entry
*h
,
1610 bfd_boolean force_local
)
1614 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
1615 if (h
->dynindx
!= -1)
1618 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1623 if (! ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
)
1625 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1626 h
->plt
= elf_hash_table (info
)->init_refcount
;
1630 /* Adjust a symbol defined by a dynamic object and referenced by a
1631 regular object. The current definition is in some section of the
1632 dynamic object, but we're not including those sections. We have to
1633 change the definition to something the rest of the link can
1637 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1638 struct elf_link_hash_entry
*h
)
1640 struct elf32_hppa_link_hash_table
*htab
;
1642 unsigned int power_of_two
;
1644 /* If this is a function, put it in the procedure linkage table. We
1645 will fill in the contents of the procedure linkage table later. */
1646 if (h
->type
== STT_FUNC
1647 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0)
1649 if (h
->plt
.refcount
<= 0
1650 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1651 && h
->root
.type
!= bfd_link_hash_defweak
1652 && ! ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
1653 && (!info
->shared
|| info
->symbolic
)))
1655 /* The .plt entry is not needed when:
1656 a) Garbage collection has removed all references to the
1658 b) We know for certain the symbol is defined in this
1659 object, and it's not a weak definition, nor is the symbol
1660 used by a plabel relocation. Either this object is the
1661 application or we are doing a shared symbolic link. */
1663 h
->plt
.offset
= (bfd_vma
) -1;
1664 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1670 h
->plt
.offset
= (bfd_vma
) -1;
1672 /* If this is a weak symbol, and there is a real definition, the
1673 processor independent code will have arranged for us to see the
1674 real definition first, and we can just use the same value. */
1675 if (h
->weakdef
!= NULL
)
1677 if (h
->weakdef
->root
.type
!= bfd_link_hash_defined
1678 && h
->weakdef
->root
.type
!= bfd_link_hash_defweak
)
1680 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1681 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1682 if (ELIMINATE_COPY_RELOCS
)
1683 h
->elf_link_hash_flags
1684 = ((h
->elf_link_hash_flags
& ~ELF_LINK_NON_GOT_REF
)
1685 | (h
->weakdef
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
));
1689 /* This is a reference to a symbol defined by a dynamic object which
1690 is not a function. */
1692 /* If we are creating a shared library, we must presume that the
1693 only references to the symbol are via the global offset table.
1694 For such cases we need not do anything here; the relocations will
1695 be handled correctly by relocate_section. */
1699 /* If there are no references to this symbol that do not use the
1700 GOT, we don't need to generate a copy reloc. */
1701 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0)
1704 if (ELIMINATE_COPY_RELOCS
)
1706 struct elf32_hppa_link_hash_entry
*eh
;
1707 struct elf32_hppa_dyn_reloc_entry
*p
;
1709 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1710 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1712 s
= p
->sec
->output_section
;
1713 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
1717 /* If we didn't find any dynamic relocs in read-only sections, then
1718 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1721 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_GOT_REF
;
1726 /* We must allocate the symbol in our .dynbss section, which will
1727 become part of the .bss section of the executable. There will be
1728 an entry for this symbol in the .dynsym section. The dynamic
1729 object will contain position independent code, so all references
1730 from the dynamic object to this symbol will go through the global
1731 offset table. The dynamic linker will use the .dynsym entry to
1732 determine the address it must put in the global offset table, so
1733 both the dynamic object and the regular object will refer to the
1734 same memory location for the variable. */
1736 htab
= hppa_link_hash_table (info
);
1738 /* We must generate a COPY reloc to tell the dynamic linker to
1739 copy the initial value out of the dynamic object and into the
1740 runtime process image. */
1741 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1743 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
1744 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1747 /* We need to figure out the alignment required for this symbol. I
1748 have no idea how other ELF linkers handle this. */
1750 power_of_two
= bfd_log2 (h
->size
);
1751 if (power_of_two
> 3)
1754 /* Apply the required alignment. */
1756 s
->size
= BFD_ALIGN (s
->size
, (bfd_size_type
) (1 << power_of_two
));
1757 if (power_of_two
> bfd_get_section_alignment (htab
->elf
.dynobj
, s
))
1759 if (! bfd_set_section_alignment (htab
->elf
.dynobj
, s
, power_of_two
))
1763 /* Define the symbol as being at this point in the section. */
1764 h
->root
.u
.def
.section
= s
;
1765 h
->root
.u
.def
.value
= s
->size
;
1767 /* Increment the section size to make room for the symbol. */
1773 /* Allocate space in the .plt for entries that won't have relocations.
1774 ie. plabel entries. */
1777 allocate_plt_static (struct elf_link_hash_entry
*h
, void *inf
)
1779 struct bfd_link_info
*info
;
1780 struct elf32_hppa_link_hash_table
*htab
;
1783 if (h
->root
.type
== bfd_link_hash_indirect
)
1786 if (h
->root
.type
== bfd_link_hash_warning
)
1787 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1790 htab
= hppa_link_hash_table (info
);
1791 if (htab
->elf
.dynamic_sections_created
1792 && h
->plt
.refcount
> 0)
1794 /* Make sure this symbol is output as a dynamic symbol.
1795 Undefined weak syms won't yet be marked as dynamic. */
1796 if (h
->dynindx
== -1
1797 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
1798 && h
->type
!= STT_PARISC_MILLI
)
1800 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1804 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
, h
))
1806 /* Allocate these later. From this point on, h->plabel
1807 means that the plt entry is only used by a plabel.
1808 We'll be using a normal plt entry for this symbol, so
1809 clear the plabel indicator. */
1810 ((struct elf32_hppa_link_hash_entry
*) h
)->plabel
= 0;
1812 else if (((struct elf32_hppa_link_hash_entry
*) h
)->plabel
)
1814 /* Make an entry in the .plt section for plabel references
1815 that won't have a .plt entry for other reasons. */
1817 h
->plt
.offset
= s
->size
;
1818 s
->size
+= PLT_ENTRY_SIZE
;
1822 /* No .plt entry needed. */
1823 h
->plt
.offset
= (bfd_vma
) -1;
1824 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1829 h
->plt
.offset
= (bfd_vma
) -1;
1830 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_NEEDS_PLT
;
1836 /* Allocate space in .plt, .got and associated reloc sections for
1840 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
1842 struct bfd_link_info
*info
;
1843 struct elf32_hppa_link_hash_table
*htab
;
1845 struct elf32_hppa_link_hash_entry
*eh
;
1846 struct elf32_hppa_dyn_reloc_entry
*p
;
1848 if (h
->root
.type
== bfd_link_hash_indirect
)
1851 if (h
->root
.type
== bfd_link_hash_warning
)
1852 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1855 htab
= hppa_link_hash_table (info
);
1856 if (htab
->elf
.dynamic_sections_created
1857 && h
->plt
.offset
!= (bfd_vma
) -1
1858 && !((struct elf32_hppa_link_hash_entry
*) h
)->plabel
)
1860 /* Make an entry in the .plt section. */
1862 h
->plt
.offset
= s
->size
;
1863 s
->size
+= PLT_ENTRY_SIZE
;
1865 /* We also need to make an entry in the .rela.plt section. */
1866 htab
->srelplt
->size
+= sizeof (Elf32_External_Rela
);
1867 htab
->need_plt_stub
= 1;
1870 if (h
->got
.refcount
> 0)
1872 /* Make sure this symbol is output as a dynamic symbol.
1873 Undefined weak syms won't yet be marked as dynamic. */
1874 if (h
->dynindx
== -1
1875 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
1876 && h
->type
!= STT_PARISC_MILLI
)
1878 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1883 h
->got
.offset
= s
->size
;
1884 s
->size
+= GOT_ENTRY_SIZE
;
1885 if (htab
->elf
.dynamic_sections_created
1887 || (h
->dynindx
!= -1
1888 && h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0))
1890 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
1894 h
->got
.offset
= (bfd_vma
) -1;
1896 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
1897 if (eh
->dyn_relocs
== NULL
)
1900 /* If this is a -Bsymbolic shared link, then we need to discard all
1901 space allocated for dynamic pc-relative relocs against symbols
1902 defined in a regular object. For the normal shared case, discard
1903 space for relocs that have become local due to symbol visibility
1907 #if RELATIVE_DYNRELOCS
1908 if (SYMBOL_CALLS_LOCAL (info
, h
))
1910 struct elf32_hppa_dyn_reloc_entry
**pp
;
1912 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
1914 p
->count
-= p
->relative_count
;
1915 p
->relative_count
= 0;
1924 /* Also discard relocs on undefined weak syms with non-default
1926 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1927 && h
->root
.type
== bfd_link_hash_undefweak
)
1928 eh
->dyn_relocs
= NULL
;
1932 /* For the non-shared case, discard space for relocs against
1933 symbols which turn out to need copy relocs or are not
1935 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0
1936 && ((ELIMINATE_COPY_RELOCS
1937 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1938 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1939 || (htab
->elf
.dynamic_sections_created
1940 && (h
->root
.type
== bfd_link_hash_undefweak
1941 || h
->root
.type
== bfd_link_hash_undefined
))))
1943 /* Make sure this symbol is output as a dynamic symbol.
1944 Undefined weak syms won't yet be marked as dynamic. */
1945 if (h
->dynindx
== -1
1946 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0
1947 && h
->type
!= STT_PARISC_MILLI
)
1949 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
1953 /* If that succeeded, we know we'll be keeping all the
1955 if (h
->dynindx
!= -1)
1959 eh
->dyn_relocs
= NULL
;
1965 /* Finally, allocate space. */
1966 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
1968 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
1969 sreloc
->size
+= p
->count
* sizeof (Elf32_External_Rela
);
1975 /* This function is called via elf_link_hash_traverse to force
1976 millicode symbols local so they do not end up as globals in the
1977 dynamic symbol table. We ought to be able to do this in
1978 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
1979 for all dynamic symbols. Arguably, this is a bug in
1980 elf_adjust_dynamic_symbol. */
1983 clobber_millicode_symbols (struct elf_link_hash_entry
*h
,
1984 struct bfd_link_info
*info
)
1986 if (h
->root
.type
== bfd_link_hash_warning
)
1987 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1989 if (h
->type
== STT_PARISC_MILLI
1990 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
1992 elf32_hppa_hide_symbol (info
, h
, TRUE
);
1997 /* Find any dynamic relocs that apply to read-only sections. */
2000 readonly_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
2002 struct elf32_hppa_link_hash_entry
*eh
;
2003 struct elf32_hppa_dyn_reloc_entry
*p
;
2005 if (h
->root
.type
== bfd_link_hash_warning
)
2006 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2008 eh
= (struct elf32_hppa_link_hash_entry
*) h
;
2009 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
2011 asection
*s
= p
->sec
->output_section
;
2013 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
2015 struct bfd_link_info
*info
= inf
;
2017 info
->flags
|= DF_TEXTREL
;
2019 /* Not an error, just cut short the traversal. */
2026 /* Set the sizes of the dynamic sections. */
2029 elf32_hppa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2030 struct bfd_link_info
*info
)
2032 struct elf32_hppa_link_hash_table
*htab
;
2038 htab
= hppa_link_hash_table (info
);
2039 dynobj
= htab
->elf
.dynobj
;
2043 if (htab
->elf
.dynamic_sections_created
)
2045 /* Set the contents of the .interp section to the interpreter. */
2046 if (info
->executable
)
2048 s
= bfd_get_section_by_name (dynobj
, ".interp");
2051 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2052 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2055 /* Force millicode symbols local. */
2056 elf_link_hash_traverse (&htab
->elf
,
2057 clobber_millicode_symbols
,
2061 /* Set up .got and .plt offsets for local syms, and space for local
2063 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2065 bfd_signed_vma
*local_got
;
2066 bfd_signed_vma
*end_local_got
;
2067 bfd_signed_vma
*local_plt
;
2068 bfd_signed_vma
*end_local_plt
;
2069 bfd_size_type locsymcount
;
2070 Elf_Internal_Shdr
*symtab_hdr
;
2073 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
2076 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
2078 struct elf32_hppa_dyn_reloc_entry
*p
;
2080 for (p
= ((struct elf32_hppa_dyn_reloc_entry
*)
2081 elf_section_data (s
)->local_dynrel
);
2085 if (!bfd_is_abs_section (p
->sec
)
2086 && bfd_is_abs_section (p
->sec
->output_section
))
2088 /* Input section has been discarded, either because
2089 it is a copy of a linkonce section or due to
2090 linker script /DISCARD/, so we'll be discarding
2093 else if (p
->count
!= 0)
2095 srel
= elf_section_data (p
->sec
)->sreloc
;
2096 srel
->size
+= p
->count
* sizeof (Elf32_External_Rela
);
2097 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2098 info
->flags
|= DF_TEXTREL
;
2103 local_got
= elf_local_got_refcounts (ibfd
);
2107 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2108 locsymcount
= symtab_hdr
->sh_info
;
2109 end_local_got
= local_got
+ locsymcount
;
2111 srel
= htab
->srelgot
;
2112 for (; local_got
< end_local_got
; ++local_got
)
2116 *local_got
= s
->size
;
2117 s
->size
+= GOT_ENTRY_SIZE
;
2119 srel
->size
+= sizeof (Elf32_External_Rela
);
2122 *local_got
= (bfd_vma
) -1;
2125 local_plt
= end_local_got
;
2126 end_local_plt
= local_plt
+ locsymcount
;
2127 if (! htab
->elf
.dynamic_sections_created
)
2129 /* Won't be used, but be safe. */
2130 for (; local_plt
< end_local_plt
; ++local_plt
)
2131 *local_plt
= (bfd_vma
) -1;
2136 srel
= htab
->srelplt
;
2137 for (; local_plt
< end_local_plt
; ++local_plt
)
2141 *local_plt
= s
->size
;
2142 s
->size
+= PLT_ENTRY_SIZE
;
2144 srel
->size
+= sizeof (Elf32_External_Rela
);
2147 *local_plt
= (bfd_vma
) -1;
2152 /* Do all the .plt entries without relocs first. The dynamic linker
2153 uses the last .plt reloc to find the end of the .plt (and hence
2154 the start of the .got) for lazy linking. */
2155 elf_link_hash_traverse (&htab
->elf
, allocate_plt_static
, info
);
2157 /* Allocate global sym .plt and .got entries, and space for global
2158 sym dynamic relocs. */
2159 elf_link_hash_traverse (&htab
->elf
, allocate_dynrelocs
, info
);
2161 /* The check_relocs and adjust_dynamic_symbol entry points have
2162 determined the sizes of the various dynamic sections. Allocate
2165 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
2167 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
2170 if (s
== htab
->splt
)
2172 if (htab
->need_plt_stub
)
2174 /* Make space for the plt stub at the end of the .plt
2175 section. We want this stub right at the end, up
2176 against the .got section. */
2177 int gotalign
= bfd_section_alignment (dynobj
, htab
->sgot
);
2178 int pltalign
= bfd_section_alignment (dynobj
, s
);
2181 if (gotalign
> pltalign
)
2182 bfd_set_section_alignment (dynobj
, s
, gotalign
);
2183 mask
= ((bfd_size_type
) 1 << gotalign
) - 1;
2184 s
->size
= (s
->size
+ sizeof (plt_stub
) + mask
) & ~mask
;
2187 else if (s
== htab
->sgot
)
2189 else if (strncmp (bfd_get_section_name (dynobj
, s
), ".rela", 5) == 0)
2193 /* Remember whether there are any reloc sections other
2195 if (s
!= htab
->srelplt
)
2198 /* We use the reloc_count field as a counter if we need
2199 to copy relocs into the output file. */
2205 /* It's not one of our sections, so don't allocate space. */
2211 /* If we don't need this section, strip it from the
2212 output file. This is mostly to handle .rela.bss and
2213 .rela.plt. We must create both sections in
2214 create_dynamic_sections, because they must be created
2215 before the linker maps input sections to output
2216 sections. The linker does that before
2217 adjust_dynamic_symbol is called, and it is that
2218 function which decides whether anything needs to go
2219 into these sections. */
2220 _bfd_strip_section_from_output (info
, s
);
2224 /* Allocate memory for the section contents. Zero it, because
2225 we may not fill in all the reloc sections. */
2226 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
2227 if (s
->contents
== NULL
&& s
->size
!= 0)
2231 if (htab
->elf
.dynamic_sections_created
)
2233 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2234 actually has nothing to do with the PLT, it is how we
2235 communicate the LTP value of a load module to the dynamic
2237 #define add_dynamic_entry(TAG, VAL) \
2238 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2240 if (!add_dynamic_entry (DT_PLTGOT
, 0))
2243 /* Add some entries to the .dynamic section. We fill in the
2244 values later, in elf32_hppa_finish_dynamic_sections, but we
2245 must add the entries now so that we get the correct size for
2246 the .dynamic section. The DT_DEBUG entry is filled in by the
2247 dynamic linker and used by the debugger. */
2250 if (!add_dynamic_entry (DT_DEBUG
, 0))
2254 if (htab
->srelplt
->size
!= 0)
2256 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
2257 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2258 || !add_dynamic_entry (DT_JMPREL
, 0))
2264 if (!add_dynamic_entry (DT_RELA
, 0)
2265 || !add_dynamic_entry (DT_RELASZ
, 0)
2266 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
2269 /* If any dynamic relocs apply to a read-only section,
2270 then we need a DT_TEXTREL entry. */
2271 if ((info
->flags
& DF_TEXTREL
) == 0)
2272 elf_link_hash_traverse (&htab
->elf
, readonly_dynrelocs
, info
);
2274 if ((info
->flags
& DF_TEXTREL
) != 0)
2276 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2281 #undef add_dynamic_entry
2286 /* External entry points for sizing and building linker stubs. */
2288 /* Set up various things so that we can make a list of input sections
2289 for each output section included in the link. Returns -1 on error,
2290 0 when no stubs will be needed, and 1 on success. */
2293 elf32_hppa_setup_section_lists (bfd
*output_bfd
, struct bfd_link_info
*info
)
2296 unsigned int bfd_count
;
2297 int top_id
, top_index
;
2299 asection
**input_list
, **list
;
2301 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2303 /* Count the number of input BFDs and find the top input section id. */
2304 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2306 input_bfd
= input_bfd
->link_next
)
2309 for (section
= input_bfd
->sections
;
2311 section
= section
->next
)
2313 if (top_id
< section
->id
)
2314 top_id
= section
->id
;
2317 htab
->bfd_count
= bfd_count
;
2319 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2320 htab
->stub_group
= bfd_zmalloc (amt
);
2321 if (htab
->stub_group
== NULL
)
2324 /* We can't use output_bfd->section_count here to find the top output
2325 section index as some sections may have been removed, and
2326 _bfd_strip_section_from_output doesn't renumber the indices. */
2327 for (section
= output_bfd
->sections
, top_index
= 0;
2329 section
= section
->next
)
2331 if (top_index
< section
->index
)
2332 top_index
= section
->index
;
2335 htab
->top_index
= top_index
;
2336 amt
= sizeof (asection
*) * (top_index
+ 1);
2337 input_list
= bfd_malloc (amt
);
2338 htab
->input_list
= input_list
;
2339 if (input_list
== NULL
)
2342 /* For sections we aren't interested in, mark their entries with a
2343 value we can check later. */
2344 list
= input_list
+ top_index
;
2346 *list
= bfd_abs_section_ptr
;
2347 while (list
-- != input_list
);
2349 for (section
= output_bfd
->sections
;
2351 section
= section
->next
)
2353 if ((section
->flags
& SEC_CODE
) != 0)
2354 input_list
[section
->index
] = NULL
;
2360 /* The linker repeatedly calls this function for each input section,
2361 in the order that input sections are linked into output sections.
2362 Build lists of input sections to determine groupings between which
2363 we may insert linker stubs. */
2366 elf32_hppa_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
2368 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2370 if (isec
->output_section
->index
<= htab
->top_index
)
2372 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
2373 if (*list
!= bfd_abs_section_ptr
)
2375 /* Steal the link_sec pointer for our list. */
2376 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2377 /* This happens to make the list in reverse order,
2378 which is what we want. */
2379 PREV_SEC (isec
) = *list
;
2385 /* See whether we can group stub sections together. Grouping stub
2386 sections may result in fewer stubs. More importantly, we need to
2387 put all .init* and .fini* stubs at the beginning of the .init or
2388 .fini output sections respectively, because glibc splits the
2389 _init and _fini functions into multiple parts. Putting a stub in
2390 the middle of a function is not a good idea. */
2393 group_sections (struct elf32_hppa_link_hash_table
*htab
,
2394 bfd_size_type stub_group_size
,
2395 bfd_boolean stubs_always_before_branch
)
2397 asection
**list
= htab
->input_list
+ htab
->top_index
;
2400 asection
*tail
= *list
;
2401 if (tail
== bfd_abs_section_ptr
)
2403 while (tail
!= NULL
)
2407 bfd_size_type total
;
2408 bfd_boolean big_sec
;
2412 big_sec
= total
>= stub_group_size
;
2414 while ((prev
= PREV_SEC (curr
)) != NULL
2415 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2419 /* OK, the size from the start of CURR to the end is less
2420 than 240000 bytes and thus can be handled by one stub
2421 section. (or the tail section is itself larger than
2422 240000 bytes, in which case we may be toast.)
2423 We should really be keeping track of the total size of
2424 stubs added here, as stubs contribute to the final output
2425 section size. That's a little tricky, and this way will
2426 only break if stubs added total more than 22144 bytes, or
2427 2768 long branch stubs. It seems unlikely for more than
2428 2768 different functions to be called, especially from
2429 code only 240000 bytes long. This limit used to be
2430 250000, but c++ code tends to generate lots of little
2431 functions, and sometimes violated the assumption. */
2434 prev
= PREV_SEC (tail
);
2435 /* Set up this stub group. */
2436 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2438 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2440 /* But wait, there's more! Input sections up to 240000
2441 bytes before the stub section can be handled by it too.
2442 Don't do this if we have a really large section after the
2443 stubs, as adding more stubs increases the chance that
2444 branches may not reach into the stub section. */
2445 if (!stubs_always_before_branch
&& !big_sec
)
2449 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2453 prev
= PREV_SEC (tail
);
2454 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2460 while (list
-- != htab
->input_list
);
2461 free (htab
->input_list
);
2465 /* Read in all local syms for all input bfds, and create hash entries
2466 for export stubs if we are building a multi-subspace shared lib.
2467 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2470 get_local_syms (bfd
*output_bfd
, bfd
*input_bfd
, struct bfd_link_info
*info
)
2472 unsigned int bfd_indx
;
2473 Elf_Internal_Sym
*local_syms
, **all_local_syms
;
2474 int stub_changed
= 0;
2475 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2477 /* We want to read in symbol extension records only once. To do this
2478 we need to read in the local symbols in parallel and save them for
2479 later use; so hold pointers to the local symbols in an array. */
2480 bfd_size_type amt
= sizeof (Elf_Internal_Sym
*) * htab
->bfd_count
;
2481 all_local_syms
= bfd_zmalloc (amt
);
2482 htab
->all_local_syms
= all_local_syms
;
2483 if (all_local_syms
== NULL
)
2486 /* Walk over all the input BFDs, swapping in local symbols.
2487 If we are creating a shared library, create hash entries for the
2491 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2493 Elf_Internal_Shdr
*symtab_hdr
;
2495 /* We'll need the symbol table in a second. */
2496 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2497 if (symtab_hdr
->sh_info
== 0)
2500 /* We need an array of the local symbols attached to the input bfd. */
2501 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2502 if (local_syms
== NULL
)
2504 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
2505 symtab_hdr
->sh_info
, 0,
2507 /* Cache them for elf_link_input_bfd. */
2508 symtab_hdr
->contents
= (unsigned char *) local_syms
;
2510 if (local_syms
== NULL
)
2513 all_local_syms
[bfd_indx
] = local_syms
;
2515 if (info
->shared
&& htab
->multi_subspace
)
2517 struct elf_link_hash_entry
**sym_hashes
;
2518 struct elf_link_hash_entry
**end_hashes
;
2519 unsigned int symcount
;
2521 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
2522 - symtab_hdr
->sh_info
);
2523 sym_hashes
= elf_sym_hashes (input_bfd
);
2524 end_hashes
= sym_hashes
+ symcount
;
2526 /* Look through the global syms for functions; We need to
2527 build export stubs for all globally visible functions. */
2528 for (; sym_hashes
< end_hashes
; sym_hashes
++)
2530 struct elf32_hppa_link_hash_entry
*hash
;
2532 hash
= (struct elf32_hppa_link_hash_entry
*) *sym_hashes
;
2534 while (hash
->elf
.root
.type
== bfd_link_hash_indirect
2535 || hash
->elf
.root
.type
== bfd_link_hash_warning
)
2536 hash
= ((struct elf32_hppa_link_hash_entry
*)
2537 hash
->elf
.root
.u
.i
.link
);
2539 /* At this point in the link, undefined syms have been
2540 resolved, so we need to check that the symbol was
2541 defined in this BFD. */
2542 if ((hash
->elf
.root
.type
== bfd_link_hash_defined
2543 || hash
->elf
.root
.type
== bfd_link_hash_defweak
)
2544 && hash
->elf
.type
== STT_FUNC
2545 && hash
->elf
.root
.u
.def
.section
->output_section
!= NULL
2546 && (hash
->elf
.root
.u
.def
.section
->output_section
->owner
2548 && hash
->elf
.root
.u
.def
.section
->owner
== input_bfd
2549 && (hash
->elf
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
2550 && !(hash
->elf
.elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
)
2551 && ELF_ST_VISIBILITY (hash
->elf
.other
) == STV_DEFAULT
)
2554 const char *stub_name
;
2555 struct elf32_hppa_stub_hash_entry
*stub_entry
;
2557 sec
= hash
->elf
.root
.u
.def
.section
;
2558 stub_name
= hash
->elf
.root
.root
.string
;
2559 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
2562 if (stub_entry
== NULL
)
2564 stub_entry
= hppa_add_stub (stub_name
, sec
, htab
);
2568 stub_entry
->target_value
= hash
->elf
.root
.u
.def
.value
;
2569 stub_entry
->target_section
= hash
->elf
.root
.u
.def
.section
;
2570 stub_entry
->stub_type
= hppa_stub_export
;
2571 stub_entry
->h
= hash
;
2576 (*_bfd_error_handler
) (_("%B: duplicate export stub %s"),
2585 return stub_changed
;
2588 /* Determine and set the size of the stub section for a final link.
2590 The basic idea here is to examine all the relocations looking for
2591 PC-relative calls to a target that is unreachable with a "bl"
2595 elf32_hppa_size_stubs
2596 (bfd
*output_bfd
, bfd
*stub_bfd
, struct bfd_link_info
*info
,
2597 bfd_boolean multi_subspace
, bfd_signed_vma group_size
,
2598 asection
* (*add_stub_section
) (const char *, asection
*),
2599 void (*layout_sections_again
) (void))
2601 bfd_size_type stub_group_size
;
2602 bfd_boolean stubs_always_before_branch
;
2603 bfd_boolean stub_changed
;
2604 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2606 /* Stash our params away. */
2607 htab
->stub_bfd
= stub_bfd
;
2608 htab
->multi_subspace
= multi_subspace
;
2609 htab
->add_stub_section
= add_stub_section
;
2610 htab
->layout_sections_again
= layout_sections_again
;
2611 stubs_always_before_branch
= group_size
< 0;
2613 stub_group_size
= -group_size
;
2615 stub_group_size
= group_size
;
2616 if (stub_group_size
== 1)
2618 /* Default values. */
2619 if (stubs_always_before_branch
)
2621 stub_group_size
= 7680000;
2622 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2623 stub_group_size
= 240000;
2624 if (htab
->has_12bit_branch
)
2625 stub_group_size
= 7500;
2629 stub_group_size
= 6971392;
2630 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2631 stub_group_size
= 217856;
2632 if (htab
->has_12bit_branch
)
2633 stub_group_size
= 6808;
2637 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
2639 switch (get_local_syms (output_bfd
, info
->input_bfds
, info
))
2642 if (htab
->all_local_syms
)
2643 goto error_ret_free_local
;
2647 stub_changed
= FALSE
;
2651 stub_changed
= TRUE
;
2658 unsigned int bfd_indx
;
2661 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2663 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2665 Elf_Internal_Shdr
*symtab_hdr
;
2667 Elf_Internal_Sym
*local_syms
;
2669 /* We'll need the symbol table in a second. */
2670 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2671 if (symtab_hdr
->sh_info
== 0)
2674 local_syms
= htab
->all_local_syms
[bfd_indx
];
2676 /* Walk over each section attached to the input bfd. */
2677 for (section
= input_bfd
->sections
;
2679 section
= section
->next
)
2681 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2683 /* If there aren't any relocs, then there's nothing more
2685 if ((section
->flags
& SEC_RELOC
) == 0
2686 || section
->reloc_count
== 0)
2689 /* If this section is a link-once section that will be
2690 discarded, then don't create any stubs. */
2691 if (section
->output_section
== NULL
2692 || section
->output_section
->owner
!= output_bfd
)
2695 /* Get the relocs. */
2697 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
, NULL
,
2699 if (internal_relocs
== NULL
)
2700 goto error_ret_free_local
;
2702 /* Now examine each relocation. */
2703 irela
= internal_relocs
;
2704 irelaend
= irela
+ section
->reloc_count
;
2705 for (; irela
< irelaend
; irela
++)
2707 unsigned int r_type
, r_indx
;
2708 enum elf32_hppa_stub_type stub_type
;
2709 struct elf32_hppa_stub_hash_entry
*stub_entry
;
2712 bfd_vma destination
;
2713 struct elf32_hppa_link_hash_entry
*hash
;
2715 const asection
*id_sec
;
2717 r_type
= ELF32_R_TYPE (irela
->r_info
);
2718 r_indx
= ELF32_R_SYM (irela
->r_info
);
2720 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
2722 bfd_set_error (bfd_error_bad_value
);
2723 error_ret_free_internal
:
2724 if (elf_section_data (section
)->relocs
== NULL
)
2725 free (internal_relocs
);
2726 goto error_ret_free_local
;
2729 /* Only look for stubs on call instructions. */
2730 if (r_type
!= (unsigned int) R_PARISC_PCREL12F
2731 && r_type
!= (unsigned int) R_PARISC_PCREL17F
2732 && r_type
!= (unsigned int) R_PARISC_PCREL22F
)
2735 /* Now determine the call target, its name, value,
2741 if (r_indx
< symtab_hdr
->sh_info
)
2743 /* It's a local symbol. */
2744 Elf_Internal_Sym
*sym
;
2745 Elf_Internal_Shdr
*hdr
;
2747 sym
= local_syms
+ r_indx
;
2748 hdr
= elf_elfsections (input_bfd
)[sym
->st_shndx
];
2749 sym_sec
= hdr
->bfd_section
;
2750 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
2751 sym_value
= sym
->st_value
;
2752 destination
= (sym_value
+ irela
->r_addend
2753 + sym_sec
->output_offset
2754 + sym_sec
->output_section
->vma
);
2758 /* It's an external symbol. */
2761 e_indx
= r_indx
- symtab_hdr
->sh_info
;
2762 hash
= ((struct elf32_hppa_link_hash_entry
*)
2763 elf_sym_hashes (input_bfd
)[e_indx
]);
2765 while (hash
->elf
.root
.type
== bfd_link_hash_indirect
2766 || hash
->elf
.root
.type
== bfd_link_hash_warning
)
2767 hash
= ((struct elf32_hppa_link_hash_entry
*)
2768 hash
->elf
.root
.u
.i
.link
);
2770 if (hash
->elf
.root
.type
== bfd_link_hash_defined
2771 || hash
->elf
.root
.type
== bfd_link_hash_defweak
)
2773 sym_sec
= hash
->elf
.root
.u
.def
.section
;
2774 sym_value
= hash
->elf
.root
.u
.def
.value
;
2775 if (sym_sec
->output_section
!= NULL
)
2776 destination
= (sym_value
+ irela
->r_addend
2777 + sym_sec
->output_offset
2778 + sym_sec
->output_section
->vma
);
2780 else if (hash
->elf
.root
.type
== bfd_link_hash_undefweak
)
2785 else if (hash
->elf
.root
.type
== bfd_link_hash_undefined
)
2787 if (! (info
->unresolved_syms_in_objects
== RM_IGNORE
2788 && (ELF_ST_VISIBILITY (hash
->elf
.other
)
2790 && hash
->elf
.type
!= STT_PARISC_MILLI
))
2795 bfd_set_error (bfd_error_bad_value
);
2796 goto error_ret_free_internal
;
2800 /* Determine what (if any) linker stub is needed. */
2801 stub_type
= hppa_type_of_stub (section
, irela
, hash
,
2803 if (stub_type
== hppa_stub_none
)
2806 /* Support for grouping stub sections. */
2807 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
2809 /* Get the name of this stub. */
2810 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hash
, irela
);
2812 goto error_ret_free_internal
;
2814 stub_entry
= hppa_stub_hash_lookup (&htab
->stub_hash_table
,
2817 if (stub_entry
!= NULL
)
2819 /* The proper stub has already been created. */
2824 stub_entry
= hppa_add_stub (stub_name
, section
, htab
);
2825 if (stub_entry
== NULL
)
2828 goto error_ret_free_internal
;
2831 stub_entry
->target_value
= sym_value
;
2832 stub_entry
->target_section
= sym_sec
;
2833 stub_entry
->stub_type
= stub_type
;
2836 if (stub_type
== hppa_stub_import
)
2837 stub_entry
->stub_type
= hppa_stub_import_shared
;
2838 else if (stub_type
== hppa_stub_long_branch
)
2839 stub_entry
->stub_type
= hppa_stub_long_branch_shared
;
2841 stub_entry
->h
= hash
;
2842 stub_changed
= TRUE
;
2845 /* We're done with the internal relocs, free them. */
2846 if (elf_section_data (section
)->relocs
== NULL
)
2847 free (internal_relocs
);
2854 /* OK, we've added some stubs. Find out the new size of the
2856 for (stub_sec
= htab
->stub_bfd
->sections
;
2858 stub_sec
= stub_sec
->next
)
2861 bfd_hash_traverse (&htab
->stub_hash_table
, hppa_size_one_stub
, htab
);
2863 /* Ask the linker to do its stuff. */
2864 (*htab
->layout_sections_again
) ();
2865 stub_changed
= FALSE
;
2868 free (htab
->all_local_syms
);
2871 error_ret_free_local
:
2872 free (htab
->all_local_syms
);
2876 /* For a final link, this function is called after we have sized the
2877 stubs to provide a value for __gp. */
2880 elf32_hppa_set_gp (bfd
*abfd
, struct bfd_link_info
*info
)
2882 struct bfd_link_hash_entry
*h
;
2883 asection
*sec
= NULL
;
2885 struct elf32_hppa_link_hash_table
*htab
;
2887 htab
= hppa_link_hash_table (info
);
2888 h
= bfd_link_hash_lookup (&htab
->elf
.root
, "$global$", FALSE
, FALSE
, FALSE
);
2891 && (h
->type
== bfd_link_hash_defined
2892 || h
->type
== bfd_link_hash_defweak
))
2894 gp_val
= h
->u
.def
.value
;
2895 sec
= h
->u
.def
.section
;
2899 asection
*splt
= bfd_get_section_by_name (abfd
, ".plt");
2900 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
2902 /* Choose to point our LTP at, in this order, one of .plt, .got,
2903 or .data, if these sections exist. In the case of choosing
2904 .plt try to make the LTP ideal for addressing anywhere in the
2905 .plt or .got with a 14 bit signed offset. Typically, the end
2906 of the .plt is the start of the .got, so choose .plt + 0x2000
2907 if either the .plt or .got is larger than 0x2000. If both
2908 the .plt and .got are smaller than 0x2000, choose the end of
2909 the .plt section. */
2910 sec
= strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0
2915 if (gp_val
> 0x2000 || (sgot
&& sgot
->size
> 0x2000))
2925 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") != 0)
2927 /* We know we don't have a .plt. If .got is large,
2929 if (sec
->size
> 0x2000)
2935 /* No .plt or .got. Who cares what the LTP is? */
2936 sec
= bfd_get_section_by_name (abfd
, ".data");
2942 h
->type
= bfd_link_hash_defined
;
2943 h
->u
.def
.value
= gp_val
;
2945 h
->u
.def
.section
= sec
;
2947 h
->u
.def
.section
= bfd_abs_section_ptr
;
2951 if (sec
!= NULL
&& sec
->output_section
!= NULL
)
2952 gp_val
+= sec
->output_section
->vma
+ sec
->output_offset
;
2954 elf_gp (abfd
) = gp_val
;
2958 /* Build all the stubs associated with the current output file. The
2959 stubs are kept in a hash table attached to the main linker hash
2960 table. We also set up the .plt entries for statically linked PIC
2961 functions here. This function is called via hppaelf_finish in the
2965 elf32_hppa_build_stubs (struct bfd_link_info
*info
)
2968 struct bfd_hash_table
*table
;
2969 struct elf32_hppa_link_hash_table
*htab
;
2971 htab
= hppa_link_hash_table (info
);
2973 for (stub_sec
= htab
->stub_bfd
->sections
;
2975 stub_sec
= stub_sec
->next
)
2979 /* Allocate memory to hold the linker stubs. */
2980 size
= stub_sec
->size
;
2981 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
2982 if (stub_sec
->contents
== NULL
&& size
!= 0)
2987 /* Build the stubs as directed by the stub hash table. */
2988 table
= &htab
->stub_hash_table
;
2989 bfd_hash_traverse (table
, hppa_build_one_stub
, info
);
2994 /* Perform a final link. */
2997 elf32_hppa_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
2999 /* Invoke the regular ELF linker to do all the work. */
3000 if (!bfd_elf_final_link (abfd
, info
))
3003 /* If we're producing a final executable, sort the contents of the
3005 return elf_hppa_sort_unwind (abfd
);
3008 /* Record the lowest address for the data and text segments. */
3011 hppa_record_segment_addr (bfd
*abfd ATTRIBUTE_UNUSED
,
3015 struct elf32_hppa_link_hash_table
*htab
;
3017 htab
= (struct elf32_hppa_link_hash_table
*) data
;
3019 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
3021 bfd_vma value
= section
->vma
- section
->filepos
;
3023 if ((section
->flags
& SEC_READONLY
) != 0)
3025 if (value
< htab
->text_segment_base
)
3026 htab
->text_segment_base
= value
;
3030 if (value
< htab
->data_segment_base
)
3031 htab
->data_segment_base
= value
;
3036 /* Perform a relocation as part of a final link. */
3038 static bfd_reloc_status_type
3039 final_link_relocate (asection
*input_section
,
3041 const Elf_Internal_Rela
*rel
,
3043 struct elf32_hppa_link_hash_table
*htab
,
3045 struct elf32_hppa_link_hash_entry
*h
,
3046 struct bfd_link_info
*info
)
3049 unsigned int r_type
= ELF32_R_TYPE (rel
->r_info
);
3050 unsigned int orig_r_type
= r_type
;
3051 reloc_howto_type
*howto
= elf_hppa_howto_table
+ r_type
;
3052 int r_format
= howto
->bitsize
;
3053 enum hppa_reloc_field_selector_type_alt r_field
;
3054 bfd
*input_bfd
= input_section
->owner
;
3055 bfd_vma offset
= rel
->r_offset
;
3056 bfd_vma max_branch_offset
= 0;
3057 bfd_byte
*hit_data
= contents
+ offset
;
3058 bfd_signed_vma addend
= rel
->r_addend
;
3060 struct elf32_hppa_stub_hash_entry
*stub_entry
= NULL
;
3063 if (r_type
== R_PARISC_NONE
)
3064 return bfd_reloc_ok
;
3066 insn
= bfd_get_32 (input_bfd
, hit_data
);
3068 /* Find out where we are and where we're going. */
3069 location
= (offset
+
3070 input_section
->output_offset
+
3071 input_section
->output_section
->vma
);
3073 /* If we are not building a shared library, convert DLTIND relocs to
3079 case R_PARISC_DLTIND21L
:
3080 r_type
= R_PARISC_DPREL21L
;
3083 case R_PARISC_DLTIND14R
:
3084 r_type
= R_PARISC_DPREL14R
;
3087 case R_PARISC_DLTIND14F
:
3088 r_type
= R_PARISC_DPREL14F
;
3095 case R_PARISC_PCREL12F
:
3096 case R_PARISC_PCREL17F
:
3097 case R_PARISC_PCREL22F
:
3098 /* If this call should go via the plt, find the import stub in
3101 || sym_sec
->output_section
== NULL
3103 && h
->elf
.plt
.offset
!= (bfd_vma
) -1
3104 && h
->elf
.dynindx
!= -1
3107 || !(h
->elf
.elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
)
3108 || h
->elf
.root
.type
== bfd_link_hash_defweak
)))
3110 stub_entry
= hppa_get_stub_entry (input_section
, sym_sec
,
3112 if (stub_entry
!= NULL
)
3114 value
= (stub_entry
->stub_offset
3115 + stub_entry
->stub_sec
->output_offset
3116 + stub_entry
->stub_sec
->output_section
->vma
);
3119 else if (sym_sec
== NULL
&& h
!= NULL
3120 && h
->elf
.root
.type
== bfd_link_hash_undefweak
)
3122 /* It's OK if undefined weak. Calls to undefined weak
3123 symbols behave as if the "called" function
3124 immediately returns. We can thus call to a weak
3125 function without first checking whether the function
3131 return bfd_reloc_undefined
;
3135 case R_PARISC_PCREL21L
:
3136 case R_PARISC_PCREL17C
:
3137 case R_PARISC_PCREL17R
:
3138 case R_PARISC_PCREL14R
:
3139 case R_PARISC_PCREL14F
:
3140 case R_PARISC_PCREL32
:
3141 /* Make it a pc relative offset. */
3146 case R_PARISC_DPREL21L
:
3147 case R_PARISC_DPREL14R
:
3148 case R_PARISC_DPREL14F
:
3149 /* Convert instructions that use the linkage table pointer (r19) to
3150 instructions that use the global data pointer (dp). This is the
3151 most efficient way of using PIC code in an incomplete executable,
3152 but the user must follow the standard runtime conventions for
3153 accessing data for this to work. */
3154 if (orig_r_type
== R_PARISC_DLTIND21L
)
3156 /* Convert addil instructions if the original reloc was a
3157 DLTIND21L. GCC sometimes uses a register other than r19 for
3158 the operation, so we must convert any addil instruction
3159 that uses this relocation. */
3160 if ((insn
& 0xfc000000) == ((int) OP_ADDIL
<< 26))
3163 /* We must have a ldil instruction. It's too hard to find
3164 and convert the associated add instruction, so issue an
3166 (*_bfd_error_handler
)
3167 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3170 (long) rel
->r_offset
,
3174 else if (orig_r_type
== R_PARISC_DLTIND14F
)
3176 /* This must be a format 1 load/store. Change the base
3178 insn
= (insn
& 0xfc1ffff) | (27 << 21);
3181 /* For all the DP relative relocations, we need to examine the symbol's
3182 section. If it has no section or if it's a code section, then
3183 "data pointer relative" makes no sense. In that case we don't
3184 adjust the "value", and for 21 bit addil instructions, we change the
3185 source addend register from %dp to %r0. This situation commonly
3186 arises for undefined weak symbols and when a variable's "constness"
3187 is declared differently from the way the variable is defined. For
3188 instance: "extern int foo" with foo defined as "const int foo". */
3189 if (sym_sec
== NULL
|| (sym_sec
->flags
& SEC_CODE
) != 0)
3191 if ((insn
& ((0x3f << 26) | (0x1f << 21)))
3192 == (((int) OP_ADDIL
<< 26) | (27 << 21)))
3194 insn
&= ~ (0x1f << 21);
3195 #if 0 /* debug them. */
3196 (*_bfd_error_handler
)
3197 (_("%B(%A+0x%lx): fixing %s"),
3200 (long) rel
->r_offset
,
3204 /* Now try to make things easy for the dynamic linker. */
3210 case R_PARISC_DLTIND21L
:
3211 case R_PARISC_DLTIND14R
:
3212 case R_PARISC_DLTIND14F
:
3213 value
-= elf_gp (input_section
->output_section
->owner
);
3216 case R_PARISC_SEGREL32
:
3217 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3218 value
-= htab
->text_segment_base
;
3220 value
-= htab
->data_segment_base
;
3229 case R_PARISC_DIR32
:
3230 case R_PARISC_DIR14F
:
3231 case R_PARISC_DIR17F
:
3232 case R_PARISC_PCREL17C
:
3233 case R_PARISC_PCREL14F
:
3234 case R_PARISC_PCREL32
:
3235 case R_PARISC_DPREL14F
:
3236 case R_PARISC_PLABEL32
:
3237 case R_PARISC_DLTIND14F
:
3238 case R_PARISC_SEGBASE
:
3239 case R_PARISC_SEGREL32
:
3243 case R_PARISC_DLTIND21L
:
3244 case R_PARISC_PCREL21L
:
3245 case R_PARISC_PLABEL21L
:
3249 case R_PARISC_DIR21L
:
3250 case R_PARISC_DPREL21L
:
3254 case R_PARISC_PCREL17R
:
3255 case R_PARISC_PCREL14R
:
3256 case R_PARISC_PLABEL14R
:
3257 case R_PARISC_DLTIND14R
:
3261 case R_PARISC_DIR17R
:
3262 case R_PARISC_DIR14R
:
3263 case R_PARISC_DPREL14R
:
3267 case R_PARISC_PCREL12F
:
3268 case R_PARISC_PCREL17F
:
3269 case R_PARISC_PCREL22F
:
3272 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3274 max_branch_offset
= (1 << (17-1)) << 2;
3276 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3278 max_branch_offset
= (1 << (12-1)) << 2;
3282 max_branch_offset
= (1 << (22-1)) << 2;
3285 /* sym_sec is NULL on undefined weak syms or when shared on
3286 undefined syms. We've already checked for a stub for the
3287 shared undefined case. */
3288 if (sym_sec
== NULL
)
3291 /* If the branch is out of reach, then redirect the
3292 call to the local stub for this function. */
3293 if (value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3295 stub_entry
= hppa_get_stub_entry (input_section
, sym_sec
,
3297 if (stub_entry
== NULL
)
3298 return bfd_reloc_undefined
;
3300 /* Munge up the value and addend so that we call the stub
3301 rather than the procedure directly. */
3302 value
= (stub_entry
->stub_offset
3303 + stub_entry
->stub_sec
->output_offset
3304 + stub_entry
->stub_sec
->output_section
->vma
3310 /* Something we don't know how to handle. */
3312 return bfd_reloc_notsupported
;
3315 /* Make sure we can reach the stub. */
3316 if (max_branch_offset
!= 0
3317 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3319 (*_bfd_error_handler
)
3320 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3323 (long) rel
->r_offset
,
3324 stub_entry
->root
.string
);
3325 bfd_set_error (bfd_error_bad_value
);
3326 return bfd_reloc_notsupported
;
3329 val
= hppa_field_adjust (value
, addend
, r_field
);
3333 case R_PARISC_PCREL12F
:
3334 case R_PARISC_PCREL17C
:
3335 case R_PARISC_PCREL17F
:
3336 case R_PARISC_PCREL17R
:
3337 case R_PARISC_PCREL22F
:
3338 case R_PARISC_DIR17F
:
3339 case R_PARISC_DIR17R
:
3340 /* This is a branch. Divide the offset by four.
3341 Note that we need to decide whether it's a branch or
3342 otherwise by inspecting the reloc. Inspecting insn won't
3343 work as insn might be from a .word directive. */
3351 insn
= hppa_rebuild_insn (insn
, val
, r_format
);
3353 /* Update the instruction word. */
3354 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3355 return bfd_reloc_ok
;
3358 /* Relocate an HPPA ELF section. */
3361 elf32_hppa_relocate_section (bfd
*output_bfd
,
3362 struct bfd_link_info
*info
,
3364 asection
*input_section
,
3366 Elf_Internal_Rela
*relocs
,
3367 Elf_Internal_Sym
*local_syms
,
3368 asection
**local_sections
)
3370 bfd_vma
*local_got_offsets
;
3371 struct elf32_hppa_link_hash_table
*htab
;
3372 Elf_Internal_Shdr
*symtab_hdr
;
3373 Elf_Internal_Rela
*rel
;
3374 Elf_Internal_Rela
*relend
;
3376 if (info
->relocatable
)
3379 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3381 htab
= hppa_link_hash_table (info
);
3382 local_got_offsets
= elf_local_got_offsets (input_bfd
);
3385 relend
= relocs
+ input_section
->reloc_count
;
3386 for (; rel
< relend
; rel
++)
3388 unsigned int r_type
;
3389 reloc_howto_type
*howto
;
3390 unsigned int r_symndx
;
3391 struct elf32_hppa_link_hash_entry
*h
;
3392 Elf_Internal_Sym
*sym
;
3395 bfd_reloc_status_type r
;
3396 const char *sym_name
;
3398 bfd_boolean warned_undef
;
3400 r_type
= ELF32_R_TYPE (rel
->r_info
);
3401 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
3403 bfd_set_error (bfd_error_bad_value
);
3406 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3407 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3410 /* This is a final link. */
3411 r_symndx
= ELF32_R_SYM (rel
->r_info
);
3415 warned_undef
= FALSE
;
3416 if (r_symndx
< symtab_hdr
->sh_info
)
3418 /* This is a local symbol, h defaults to NULL. */
3419 sym
= local_syms
+ r_symndx
;
3420 sym_sec
= local_sections
[r_symndx
];
3421 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sym_sec
, rel
);
3425 struct elf_link_hash_entry
*hh
;
3426 bfd_boolean unresolved_reloc
;
3427 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
3429 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
3430 r_symndx
, symtab_hdr
, sym_hashes
,
3431 hh
, sym_sec
, relocation
,
3432 unresolved_reloc
, warned_undef
);
3435 && hh
->root
.type
!= bfd_link_hash_defined
3436 && hh
->root
.type
!= bfd_link_hash_defweak
3437 && hh
->root
.type
!= bfd_link_hash_undefweak
)
3439 if (info
->unresolved_syms_in_objects
== RM_IGNORE
3440 && ELF_ST_VISIBILITY (hh
->other
) == STV_DEFAULT
3441 && hh
->type
== STT_PARISC_MILLI
)
3443 if (! info
->callbacks
->undefined_symbol
3444 (info
, hh
->root
.root
.string
, input_bfd
,
3445 input_section
, rel
->r_offset
, FALSE
))
3447 warned_undef
= TRUE
;
3450 h
= (struct elf32_hppa_link_hash_entry
*) hh
;
3453 /* Do any required modifications to the relocation value, and
3454 determine what types of dynamic info we need to output, if
3459 case R_PARISC_DLTIND14F
:
3460 case R_PARISC_DLTIND14R
:
3461 case R_PARISC_DLTIND21L
:
3464 bfd_boolean do_got
= 0;
3466 /* Relocation is to the entry for this symbol in the
3467 global offset table. */
3472 off
= h
->elf
.got
.offset
;
3473 dyn
= htab
->elf
.dynamic_sections_created
;
3474 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
,
3477 /* If we aren't going to call finish_dynamic_symbol,
3478 then we need to handle initialisation of the .got
3479 entry and create needed relocs here. Since the
3480 offset must always be a multiple of 4, we use the
3481 least significant bit to record whether we have
3482 initialised it already. */
3487 h
->elf
.got
.offset
|= 1;
3494 /* Local symbol case. */
3495 if (local_got_offsets
== NULL
)
3498 off
= local_got_offsets
[r_symndx
];
3500 /* The offset must always be a multiple of 4. We use
3501 the least significant bit to record whether we have
3502 already generated the necessary reloc. */
3507 local_got_offsets
[r_symndx
] |= 1;
3516 /* Output a dynamic relocation for this GOT entry.
3517 In this case it is relative to the base of the
3518 object because the symbol index is zero. */
3519 Elf_Internal_Rela outrel
;
3521 asection
*s
= htab
->srelgot
;
3523 outrel
.r_offset
= (off
3524 + htab
->sgot
->output_offset
3525 + htab
->sgot
->output_section
->vma
);
3526 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
3527 outrel
.r_addend
= relocation
;
3529 loc
+= s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3530 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3533 bfd_put_32 (output_bfd
, relocation
,
3534 htab
->sgot
->contents
+ off
);
3537 if (off
>= (bfd_vma
) -2)
3540 /* Add the base of the GOT to the relocation value. */
3542 + htab
->sgot
->output_offset
3543 + htab
->sgot
->output_section
->vma
);
3547 case R_PARISC_SEGREL32
:
3548 /* If this is the first SEGREL relocation, then initialize
3549 the segment base values. */
3550 if (htab
->text_segment_base
== (bfd_vma
) -1)
3551 bfd_map_over_sections (output_bfd
, hppa_record_segment_addr
, htab
);
3554 case R_PARISC_PLABEL14R
:
3555 case R_PARISC_PLABEL21L
:
3556 case R_PARISC_PLABEL32
:
3557 if (htab
->elf
.dynamic_sections_created
)
3560 bfd_boolean do_plt
= 0;
3562 /* If we have a global symbol with a PLT slot, then
3563 redirect this relocation to it. */
3566 off
= h
->elf
.plt
.offset
;
3567 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
,
3570 /* In a non-shared link, adjust_dynamic_symbols
3571 isn't called for symbols forced local. We
3572 need to write out the plt entry here. */
3577 h
->elf
.plt
.offset
|= 1;
3584 bfd_vma
*local_plt_offsets
;
3586 if (local_got_offsets
== NULL
)
3589 local_plt_offsets
= local_got_offsets
+ symtab_hdr
->sh_info
;
3590 off
= local_plt_offsets
[r_symndx
];
3592 /* As for the local .got entry case, we use the last
3593 bit to record whether we've already initialised
3594 this local .plt entry. */
3599 local_plt_offsets
[r_symndx
] |= 1;
3608 /* Output a dynamic IPLT relocation for this
3610 Elf_Internal_Rela outrel
;
3612 asection
*s
= htab
->srelplt
;
3614 outrel
.r_offset
= (off
3615 + htab
->splt
->output_offset
3616 + htab
->splt
->output_section
->vma
);
3617 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
3618 outrel
.r_addend
= relocation
;
3620 loc
+= s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3621 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3625 bfd_put_32 (output_bfd
,
3627 htab
->splt
->contents
+ off
);
3628 bfd_put_32 (output_bfd
,
3629 elf_gp (htab
->splt
->output_section
->owner
),
3630 htab
->splt
->contents
+ off
+ 4);
3634 if (off
>= (bfd_vma
) -2)
3637 /* PLABELs contain function pointers. Relocation is to
3638 the entry for the function in the .plt. The magic +2
3639 offset signals to $$dyncall that the function pointer
3640 is in the .plt and thus has a gp pointer too.
3641 Exception: Undefined PLABELs should have a value of
3644 || (h
->elf
.root
.type
!= bfd_link_hash_undefweak
3645 && h
->elf
.root
.type
!= bfd_link_hash_undefined
))
3648 + htab
->splt
->output_offset
3649 + htab
->splt
->output_section
->vma
3654 /* Fall through and possibly emit a dynamic relocation. */
3656 case R_PARISC_DIR17F
:
3657 case R_PARISC_DIR17R
:
3658 case R_PARISC_DIR14F
:
3659 case R_PARISC_DIR14R
:
3660 case R_PARISC_DIR21L
:
3661 case R_PARISC_DPREL14F
:
3662 case R_PARISC_DPREL14R
:
3663 case R_PARISC_DPREL21L
:
3664 case R_PARISC_DIR32
:
3665 /* r_symndx will be zero only for relocs against symbols
3666 from removed linkonce sections, or sections discarded by
3669 || (input_section
->flags
& SEC_ALLOC
) == 0)
3672 /* The reloc types handled here and this conditional
3673 expression must match the code in ..check_relocs and
3674 allocate_dynrelocs. ie. We need exactly the same condition
3675 as in ..check_relocs, with some extra conditions (dynindx
3676 test in this case) to cater for relocs removed by
3677 allocate_dynrelocs. If you squint, the non-shared test
3678 here does indeed match the one in ..check_relocs, the
3679 difference being that here we test DEF_DYNAMIC as well as
3680 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3681 which is why we can't use just that test here.
3682 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3683 there all files have not been loaded. */
3686 || ELF_ST_VISIBILITY (h
->elf
.other
) == STV_DEFAULT
3687 || h
->elf
.root
.type
!= bfd_link_hash_undefweak
)
3688 && (IS_ABSOLUTE_RELOC (r_type
)
3689 || !SYMBOL_CALLS_LOCAL (info
, &h
->elf
)))
3692 && h
->elf
.dynindx
!= -1
3693 && (h
->elf
.elf_link_hash_flags
& ELF_LINK_NON_GOT_REF
) == 0
3694 && ((ELIMINATE_COPY_RELOCS
3695 && (h
->elf
.elf_link_hash_flags
3696 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
3697 && (h
->elf
.elf_link_hash_flags
3698 & ELF_LINK_HASH_DEF_REGULAR
) == 0)
3699 || h
->elf
.root
.type
== bfd_link_hash_undefweak
3700 || h
->elf
.root
.type
== bfd_link_hash_undefined
)))
3702 Elf_Internal_Rela outrel
;
3707 /* When generating a shared object, these relocations
3708 are copied into the output file to be resolved at run
3711 outrel
.r_addend
= rel
->r_addend
;
3713 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
3715 skip
= (outrel
.r_offset
== (bfd_vma
) -1
3716 || outrel
.r_offset
== (bfd_vma
) -2);
3717 outrel
.r_offset
+= (input_section
->output_offset
3718 + input_section
->output_section
->vma
);
3722 memset (&outrel
, 0, sizeof (outrel
));
3725 && h
->elf
.dynindx
!= -1
3727 || !IS_ABSOLUTE_RELOC (r_type
)
3730 || (h
->elf
.elf_link_hash_flags
3731 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
3733 outrel
.r_info
= ELF32_R_INFO (h
->elf
.dynindx
, r_type
);
3735 else /* It's a local symbol, or one marked to become local. */
3739 /* Add the absolute offset of the symbol. */
3740 outrel
.r_addend
+= relocation
;
3742 /* Global plabels need to be processed by the
3743 dynamic linker so that functions have at most one
3744 fptr. For this reason, we need to differentiate
3745 between global and local plabels, which we do by
3746 providing the function symbol for a global plabel
3747 reloc, and no symbol for local plabels. */
3750 && sym_sec
->output_section
!= NULL
3751 && ! bfd_is_abs_section (sym_sec
))
3753 /* Skip this relocation if the output section has
3755 if (bfd_is_abs_section (sym_sec
->output_section
))
3758 indx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
3759 /* We are turning this relocation into one
3760 against a section symbol, so subtract out the
3761 output section's address but not the offset
3762 of the input section in the output section. */
3763 outrel
.r_addend
-= sym_sec
->output_section
->vma
;
3766 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
3769 /* EH info can cause unaligned DIR32 relocs.
3770 Tweak the reloc type for the dynamic linker. */
3771 if (r_type
== R_PARISC_DIR32
&& (outrel
.r_offset
& 3) != 0)
3772 outrel
.r_info
= ELF32_R_INFO (ELF32_R_SYM (outrel
.r_info
),
3775 sreloc
= elf_section_data (input_section
)->sreloc
;
3779 loc
= sreloc
->contents
;
3780 loc
+= sreloc
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3781 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3789 r
= final_link_relocate (input_section
, contents
, rel
, relocation
,
3790 htab
, sym_sec
, h
, info
);
3792 if (r
== bfd_reloc_ok
)
3796 sym_name
= h
->elf
.root
.root
.string
;
3799 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
3800 symtab_hdr
->sh_link
,
3802 if (sym_name
== NULL
)
3804 if (*sym_name
== '\0')
3805 sym_name
= bfd_section_name (input_bfd
, sym_sec
);
3808 howto
= elf_hppa_howto_table
+ r_type
;
3810 if (r
== bfd_reloc_undefined
|| r
== bfd_reloc_notsupported
)
3812 if (r
== bfd_reloc_notsupported
|| !warned_undef
)
3814 (*_bfd_error_handler
)
3815 (_("%B(%A+0x%lx): cannot handle %s for %s"),
3818 (long) rel
->r_offset
,
3821 bfd_set_error (bfd_error_bad_value
);
3827 if (!((*info
->callbacks
->reloc_overflow
)
3828 (info
, sym_name
, howto
->name
, 0, input_bfd
, input_section
,
3837 /* Finish up dynamic symbol handling. We set the contents of various
3838 dynamic sections here. */
3841 elf32_hppa_finish_dynamic_symbol (bfd
*output_bfd
,
3842 struct bfd_link_info
*info
,
3843 struct elf_link_hash_entry
*h
,
3844 Elf_Internal_Sym
*sym
)
3846 struct elf32_hppa_link_hash_table
*htab
;
3847 Elf_Internal_Rela rel
;
3850 htab
= hppa_link_hash_table (info
);
3852 if (h
->plt
.offset
!= (bfd_vma
) -1)
3856 if (h
->plt
.offset
& 1)
3859 /* This symbol has an entry in the procedure linkage table. Set
3862 The format of a plt entry is
3867 if (h
->root
.type
== bfd_link_hash_defined
3868 || h
->root
.type
== bfd_link_hash_defweak
)
3870 value
= h
->root
.u
.def
.value
;
3871 if (h
->root
.u
.def
.section
->output_section
!= NULL
)
3872 value
+= (h
->root
.u
.def
.section
->output_offset
3873 + h
->root
.u
.def
.section
->output_section
->vma
);
3876 /* Create a dynamic IPLT relocation for this entry. */
3877 rel
.r_offset
= (h
->plt
.offset
3878 + htab
->splt
->output_offset
3879 + htab
->splt
->output_section
->vma
);
3880 if (h
->dynindx
!= -1)
3882 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
3887 /* This symbol has been marked to become local, and is
3888 used by a plabel so must be kept in the .plt. */
3889 rel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
3890 rel
.r_addend
= value
;
3893 loc
= htab
->srelplt
->contents
;
3894 loc
+= htab
->srelplt
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3895 bfd_elf32_swap_reloca_out (htab
->splt
->output_section
->owner
, &rel
, loc
);
3897 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
3899 /* Mark the symbol as undefined, rather than as defined in
3900 the .plt section. Leave the value alone. */
3901 sym
->st_shndx
= SHN_UNDEF
;
3905 if (h
->got
.offset
!= (bfd_vma
) -1)
3907 /* This symbol has an entry in the global offset table. Set it
3910 rel
.r_offset
= ((h
->got
.offset
&~ (bfd_vma
) 1)
3911 + htab
->sgot
->output_offset
3912 + htab
->sgot
->output_section
->vma
);
3914 /* If this is a -Bsymbolic link and the symbol is defined
3915 locally or was forced to be local because of a version file,
3916 we just want to emit a RELATIVE reloc. The entry in the
3917 global offset table will already have been initialized in the
3918 relocate_section function. */
3920 && (info
->symbolic
|| h
->dynindx
== -1)
3921 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
3923 rel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
3924 rel
.r_addend
= (h
->root
.u
.def
.value
3925 + h
->root
.u
.def
.section
->output_offset
3926 + h
->root
.u
.def
.section
->output_section
->vma
);
3930 if ((h
->got
.offset
& 1) != 0)
3932 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ h
->got
.offset
);
3933 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_DIR32
);
3937 loc
= htab
->srelgot
->contents
;
3938 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3939 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
3942 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
3946 /* This symbol needs a copy reloc. Set it up. */
3948 if (! (h
->dynindx
!= -1
3949 && (h
->root
.type
== bfd_link_hash_defined
3950 || h
->root
.type
== bfd_link_hash_defweak
)))
3955 rel
.r_offset
= (h
->root
.u
.def
.value
3956 + h
->root
.u
.def
.section
->output_offset
3957 + h
->root
.u
.def
.section
->output_section
->vma
);
3959 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_PARISC_COPY
);
3960 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3961 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
3964 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3965 if (h
->root
.root
.string
[0] == '_'
3966 && (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
3967 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0))
3969 sym
->st_shndx
= SHN_ABS
;
3975 /* Used to decide how to sort relocs in an optimal manner for the
3976 dynamic linker, before writing them out. */
3978 static enum elf_reloc_type_class
3979 elf32_hppa_reloc_type_class (const Elf_Internal_Rela
*rela
)
3981 if (ELF32_R_SYM (rela
->r_info
) == 0)
3982 return reloc_class_relative
;
3984 switch ((int) ELF32_R_TYPE (rela
->r_info
))
3987 return reloc_class_plt
;
3989 return reloc_class_copy
;
3991 return reloc_class_normal
;
3995 /* Finish up the dynamic sections. */
3998 elf32_hppa_finish_dynamic_sections (bfd
*output_bfd
,
3999 struct bfd_link_info
*info
)
4002 struct elf32_hppa_link_hash_table
*htab
;
4005 htab
= hppa_link_hash_table (info
);
4006 dynobj
= htab
->elf
.dynobj
;
4008 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4010 if (htab
->elf
.dynamic_sections_created
)
4012 Elf32_External_Dyn
*dyncon
, *dynconend
;
4017 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4018 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4019 for (; dyncon
< dynconend
; dyncon
++)
4021 Elf_Internal_Dyn dyn
;
4024 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4032 /* Use PLTGOT to set the GOT register. */
4033 dyn
.d_un
.d_ptr
= elf_gp (output_bfd
);
4038 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4043 dyn
.d_un
.d_val
= s
->size
;
4047 /* Don't count procedure linkage table relocs in the
4048 overall reloc count. */
4052 dyn
.d_un
.d_val
-= s
->size
;
4056 /* We may not be using the standard ELF linker script.
4057 If .rela.plt is the first .rela section, we adjust
4058 DT_RELA to not include it. */
4062 if (dyn
.d_un
.d_ptr
!= s
->output_section
->vma
+ s
->output_offset
)
4064 dyn
.d_un
.d_ptr
+= s
->size
;
4068 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4072 if (htab
->sgot
!= NULL
&& htab
->sgot
->size
!= 0)
4074 /* Fill in the first entry in the global offset table.
4075 We use it to point to our dynamic section, if we have one. */
4076 bfd_put_32 (output_bfd
,
4077 sdyn
? sdyn
->output_section
->vma
+ sdyn
->output_offset
: 0,
4078 htab
->sgot
->contents
);
4080 /* The second entry is reserved for use by the dynamic linker. */
4081 memset (htab
->sgot
->contents
+ GOT_ENTRY_SIZE
, 0, GOT_ENTRY_SIZE
);
4083 /* Set .got entry size. */
4084 elf_section_data (htab
->sgot
->output_section
)
4085 ->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
4088 if (htab
->splt
!= NULL
&& htab
->splt
->size
!= 0)
4090 /* Set plt entry size. */
4091 elf_section_data (htab
->splt
->output_section
)
4092 ->this_hdr
.sh_entsize
= PLT_ENTRY_SIZE
;
4094 if (htab
->need_plt_stub
)
4096 /* Set up the .plt stub. */
4097 memcpy (htab
->splt
->contents
4098 + htab
->splt
->size
- sizeof (plt_stub
),
4099 plt_stub
, sizeof (plt_stub
));
4101 if ((htab
->splt
->output_offset
4102 + htab
->splt
->output_section
->vma
4104 != (htab
->sgot
->output_offset
4105 + htab
->sgot
->output_section
->vma
))
4107 (*_bfd_error_handler
)
4108 (_(".got section not immediately after .plt section"));
4117 /* Tweak the OSABI field of the elf header. */
4120 elf32_hppa_post_process_headers (bfd
*abfd
,
4121 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4123 Elf_Internal_Ehdr
* i_ehdrp
;
4125 i_ehdrp
= elf_elfheader (abfd
);
4127 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
4129 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
4131 else if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0)
4133 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_NETBSD
;
4137 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
4141 /* Called when writing out an object file to decide the type of a
4144 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym
*elf_sym
, int type
)
4146 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
4147 return STT_PARISC_MILLI
;
4152 /* Misc BFD support code. */
4153 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4154 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4155 #define elf_info_to_howto elf_hppa_info_to_howto
4156 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4158 /* Stuff for the BFD linker. */
4159 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4160 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4161 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4162 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4163 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4164 #define elf_backend_check_relocs elf32_hppa_check_relocs
4165 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4166 #define elf_backend_fake_sections elf_hppa_fake_sections
4167 #define elf_backend_relocate_section elf32_hppa_relocate_section
4168 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4169 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4170 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4171 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4172 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4173 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4174 #define elf_backend_object_p elf32_hppa_object_p
4175 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4176 #define elf_backend_post_process_headers elf32_hppa_post_process_headers
4177 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4178 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4180 #define elf_backend_can_gc_sections 1
4181 #define elf_backend_can_refcount 1
4182 #define elf_backend_plt_alignment 2
4183 #define elf_backend_want_got_plt 0
4184 #define elf_backend_plt_readonly 0
4185 #define elf_backend_want_plt_sym 0
4186 #define elf_backend_got_header_size 8
4187 #define elf_backend_rela_normal 1
4189 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4190 #define TARGET_BIG_NAME "elf32-hppa"
4191 #define ELF_ARCH bfd_arch_hppa
4192 #define ELF_MACHINE_CODE EM_PARISC
4193 #define ELF_MAXPAGESIZE 0x1000
4195 #include "elf32-target.h"
4197 #undef TARGET_BIG_SYM
4198 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4199 #undef TARGET_BIG_NAME
4200 #define TARGET_BIG_NAME "elf32-hppa-linux"
4202 #define INCLUDED_TARGET_FILE 1
4203 #include "elf32-target.h"
4205 #undef TARGET_BIG_SYM
4206 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4207 #undef TARGET_BIG_NAME
4208 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4210 #include "elf32-target.h"