1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
30 #include "parameters.h"
33 #include "script-sections.h"
38 #include "compressed_output.h"
45 // Layout_task_runner methods.
47 // Lay out the sections. This is called after all the input objects
51 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
53 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
58 // Now we know the final size of the output file and we know where
59 // each piece of information goes.
60 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
61 if (this->options_
.oformat() != General_options::OBJECT_FORMAT_ELF
)
62 of
->set_is_temporary();
65 // Queue up the final set of tasks.
66 gold::queue_final_tasks(this->options_
, this->input_objects_
,
67 this->symtab_
, this->layout_
, workqueue
, of
);
72 Layout::Layout(const General_options
& options
, Script_options
* script_options
)
73 : options_(options
), script_options_(script_options
), namepool_(),
74 sympool_(), dynpool_(), signatures_(),
75 section_name_map_(), segment_list_(), section_list_(),
76 unattached_section_list_(), special_output_list_(),
77 section_headers_(NULL
), tls_segment_(NULL
), symtab_section_(NULL
),
78 dynsym_section_(NULL
), dynamic_section_(NULL
), dynamic_data_(NULL
),
79 eh_frame_section_(NULL
), group_signatures_(), output_file_size_(-1),
80 input_requires_executable_stack_(false),
81 input_with_gnu_stack_note_(false),
82 input_without_gnu_stack_note_(false),
83 has_static_tls_(false),
84 any_postprocessing_sections_(false)
86 // Make space for more than enough segments for a typical file.
87 // This is just for efficiency--it's OK if we wind up needing more.
88 this->segment_list_
.reserve(12);
90 // We expect two unattached Output_data objects: the file header and
91 // the segment headers.
92 this->special_output_list_
.reserve(2);
95 // Hash a key we use to look up an output section mapping.
98 Layout::Hash_key::operator()(const Layout::Key
& k
) const
100 return k
.first
+ k
.second
.first
+ k
.second
.second
;
103 // Return whether PREFIX is a prefix of STR.
106 is_prefix_of(const char* prefix
, const char* str
)
108 return strncmp(prefix
, str
, strlen(prefix
)) == 0;
111 // Returns whether the given section is in the list of
112 // debug-sections-used-by-some-version-of-gdb. Currently,
113 // we've checked versions of gdb up to and including 6.7.1.
115 static const char* gdb_sections
[] =
117 // ".debug_aranges", // not used by gdb as of 6.7.1
123 // ".debug_pubnames", // not used by gdb as of 6.7.1
129 is_gdb_debug_section(const char* str
)
131 // We can do this faster: binary search or a hashtable. But why bother?
132 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
133 if (strcmp(str
, gdb_sections
[i
]) == 0)
138 // Whether to include this section in the link.
140 template<int size
, bool big_endian
>
142 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
143 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
145 switch (shdr
.get_sh_type())
147 case elfcpp::SHT_NULL
:
148 case elfcpp::SHT_SYMTAB
:
149 case elfcpp::SHT_DYNSYM
:
150 case elfcpp::SHT_STRTAB
:
151 case elfcpp::SHT_HASH
:
152 case elfcpp::SHT_DYNAMIC
:
153 case elfcpp::SHT_SYMTAB_SHNDX
:
156 case elfcpp::SHT_RELA
:
157 case elfcpp::SHT_REL
:
158 case elfcpp::SHT_GROUP
:
159 // If we are emitting relocations these should be handled
161 gold_assert(!parameters
->options().relocatable()
162 && !parameters
->options().emit_relocs());
165 case elfcpp::SHT_PROGBITS
:
166 if (parameters
->options().strip_debug()
167 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
169 // Debugging sections can only be recognized by name.
170 if (is_prefix_of(".debug", name
)
171 || is_prefix_of(".gnu.linkonce.wi.", name
)
172 || is_prefix_of(".line", name
)
173 || is_prefix_of(".stab", name
))
176 if (parameters
->options().strip_debug_gdb()
177 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
179 // Debugging sections can only be recognized by name.
180 if (is_prefix_of(".debug", name
)
181 && !is_gdb_debug_section(name
))
191 // Return an output section named NAME, or NULL if there is none.
194 Layout::find_output_section(const char* name
) const
196 for (Section_list::const_iterator p
= this->section_list_
.begin();
197 p
!= this->section_list_
.end();
199 if (strcmp((*p
)->name(), name
) == 0)
204 // Return an output segment of type TYPE, with segment flags SET set
205 // and segment flags CLEAR clear. Return NULL if there is none.
208 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
209 elfcpp::Elf_Word clear
) const
211 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
212 p
!= this->segment_list_
.end();
214 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
215 && ((*p
)->flags() & set
) == set
216 && ((*p
)->flags() & clear
) == 0)
221 // Return the output section to use for section NAME with type TYPE
222 // and section flags FLAGS. NAME must be canonicalized in the string
223 // pool, and NAME_KEY is the key.
226 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
227 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
229 const Key
key(name_key
, std::make_pair(type
, flags
));
230 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
231 std::pair
<Section_name_map::iterator
, bool> ins(
232 this->section_name_map_
.insert(v
));
235 return ins
.first
->second
;
238 // This is the first time we've seen this name/type/flags
239 // combination. If the section has contents but no flags, then
240 // see whether we have an existing section with the same name.
241 // This is a workaround for cases where assembler code forgets
242 // to set section flags, and the GNU linker would simply pick an
243 // existing section with the same name. FIXME: Perhaps there
244 // should be an option to control this.
245 Output_section
* os
= NULL
;
246 if (type
== elfcpp::SHT_PROGBITS
&& flags
== 0)
248 os
= this->find_output_section(name
);
249 if (os
!= NULL
&& os
->type() != elfcpp::SHT_PROGBITS
)
253 os
= this->make_output_section(name
, type
, flags
);
254 ins
.first
->second
= os
;
259 // Pick the output section to use for section NAME, in input file
260 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
261 // linker created section. ADJUST_NAME is true if we should apply the
262 // standard name mappings in Layout::output_section_name. This will
263 // return NULL if the input section should be discarded.
266 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
267 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
270 // We should ignore some flags. FIXME: This will need some
271 // adjustment for ld -r.
272 flags
&= ~ (elfcpp::SHF_INFO_LINK
273 | elfcpp::SHF_LINK_ORDER
276 | elfcpp::SHF_STRINGS
);
278 if (this->script_options_
->saw_sections_clause())
280 // We are using a SECTIONS clause, so the output section is
281 // chosen based only on the name.
283 Script_sections
* ss
= this->script_options_
->script_sections();
284 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
285 Output_section
** output_section_slot
;
286 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
289 // The SECTIONS clause says to discard this input section.
293 // If this is an orphan section--one not mentioned in the linker
294 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
295 // default processing below.
297 if (output_section_slot
!= NULL
)
299 if (*output_section_slot
!= NULL
)
300 return *output_section_slot
;
302 // We don't put sections found in the linker script into
303 // SECTION_NAME_MAP_. That keeps us from getting confused
304 // if an orphan section is mapped to a section with the same
305 // name as one in the linker script.
307 name
= this->namepool_
.add(name
, false, NULL
);
309 Output_section
* os
= this->make_output_section(name
, type
, flags
);
310 os
->set_found_in_sections_clause();
311 *output_section_slot
= os
;
316 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
318 // Turn NAME from the name of the input section into the name of the
321 size_t len
= strlen(name
);
322 if (adjust_name
&& !parameters
->options().relocatable())
323 name
= Layout::output_section_name(name
, &len
);
325 Stringpool::Key name_key
;
326 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
328 // Find or make the output section. The output section is selected
329 // based on the section name, type, and flags.
330 return this->get_output_section(name
, name_key
, type
, flags
);
333 // Return the output section to use for input section SHNDX, with name
334 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
335 // index of a relocation section which applies to this section, or 0
336 // if none, or -1U if more than one. RELOC_TYPE is the type of the
337 // relocation section if there is one. Set *OFF to the offset of this
338 // input section without the output section. Return NULL if the
339 // section should be discarded. Set *OFF to -1 if the section
340 // contents should not be written directly to the output file, but
341 // will instead receive special handling.
343 template<int size
, bool big_endian
>
345 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
346 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
347 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
349 if (!this->include_section(object
, name
, shdr
))
354 // In a relocatable link a grouped section must not be combined with
355 // any other sections.
356 if (parameters
->options().relocatable()
357 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
359 name
= this->namepool_
.add(name
, true, NULL
);
360 os
= this->make_output_section(name
, shdr
.get_sh_type(),
361 shdr
.get_sh_flags());
365 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
366 shdr
.get_sh_flags(), true);
371 // FIXME: Handle SHF_LINK_ORDER somewhere.
373 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
374 this->script_options_
->saw_sections_clause());
379 // Handle a relocation section when doing a relocatable link.
381 template<int size
, bool big_endian
>
383 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
385 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
386 Output_section
* data_section
,
387 Relocatable_relocs
* rr
)
389 gold_assert(parameters
->options().relocatable()
390 || parameters
->options().emit_relocs());
392 int sh_type
= shdr
.get_sh_type();
395 if (sh_type
== elfcpp::SHT_REL
)
397 else if (sh_type
== elfcpp::SHT_RELA
)
401 name
+= data_section
->name();
403 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
408 os
->set_should_link_to_symtab();
409 os
->set_info_section(data_section
);
411 Output_section_data
* posd
;
412 if (sh_type
== elfcpp::SHT_REL
)
414 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
415 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
419 else if (sh_type
== elfcpp::SHT_RELA
)
421 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
422 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
429 os
->add_output_section_data(posd
);
430 rr
->set_output_data(posd
);
435 // Handle a group section when doing a relocatable link.
437 template<int size
, bool big_endian
>
439 Layout::layout_group(Symbol_table
* symtab
,
440 Sized_relobj
<size
, big_endian
>* object
,
442 const char* group_section_name
,
443 const char* signature
,
444 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
445 const elfcpp::Elf_Word
* contents
)
447 gold_assert(parameters
->options().relocatable());
448 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
449 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
450 Output_section
* os
= this->make_output_section(group_section_name
,
452 shdr
.get_sh_flags());
454 // We need to find a symbol with the signature in the symbol table.
455 // If we don't find one now, we need to look again later.
456 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
458 os
->set_info_symndx(sym
);
461 // We will wind up using a symbol whose name is the signature.
462 // So just put the signature in the symbol name pool to save it.
463 signature
= symtab
->canonicalize_name(signature
);
464 this->group_signatures_
.push_back(Group_signature(os
, signature
));
467 os
->set_should_link_to_symtab();
470 section_size_type entry_count
=
471 convert_to_section_size_type(shdr
.get_sh_size() / 4);
472 Output_section_data
* posd
=
473 new Output_data_group
<size
, big_endian
>(object
, entry_count
, contents
);
474 os
->add_output_section_data(posd
);
477 // Special GNU handling of sections name .eh_frame. They will
478 // normally hold exception frame data as defined by the C++ ABI
479 // (http://codesourcery.com/cxx-abi/).
481 template<int size
, bool big_endian
>
483 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
484 const unsigned char* symbols
,
486 const unsigned char* symbol_names
,
487 off_t symbol_names_size
,
489 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
490 unsigned int reloc_shndx
, unsigned int reloc_type
,
493 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
494 gold_assert(shdr
.get_sh_flags() == elfcpp::SHF_ALLOC
);
496 const char* const name
= ".eh_frame";
497 Output_section
* os
= this->choose_output_section(object
,
499 elfcpp::SHT_PROGBITS
,
505 if (this->eh_frame_section_
== NULL
)
507 this->eh_frame_section_
= os
;
508 this->eh_frame_data_
= new Eh_frame();
509 os
->add_output_section_data(this->eh_frame_data_
);
511 if (this->options_
.eh_frame_hdr())
513 Output_section
* hdr_os
=
514 this->choose_output_section(NULL
,
516 elfcpp::SHT_PROGBITS
,
522 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
523 this->eh_frame_data_
);
524 hdr_os
->add_output_section_data(hdr_posd
);
526 hdr_os
->set_after_input_sections();
528 if (!this->script_options_
->saw_phdrs_clause())
530 Output_segment
* hdr_oseg
;
531 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
533 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
536 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
541 gold_assert(this->eh_frame_section_
== os
);
543 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
554 // We couldn't handle this .eh_frame section for some reason.
555 // Add it as a normal section.
556 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
557 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
558 saw_sections_clause
);
564 // Add POSD to an output section using NAME, TYPE, and FLAGS.
567 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
568 elfcpp::Elf_Xword flags
,
569 Output_section_data
* posd
)
571 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
574 os
->add_output_section_data(posd
);
577 // Map section flags to segment flags.
580 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
582 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
583 if ((flags
& elfcpp::SHF_WRITE
) != 0)
585 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
590 // Sometimes we compress sections. This is typically done for
591 // sections that are not part of normal program execution (such as
592 // .debug_* sections), and where the readers of these sections know
593 // how to deal with compressed sections. (To make it easier for them,
594 // we will rename the ouput section in such cases from .foo to
595 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
596 // doesn't say for certain whether we'll compress -- it depends on
597 // commandline options as well -- just whether this section is a
598 // candidate for compression.
601 is_compressible_debug_section(const char* secname
)
603 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
606 // Make a new Output_section, and attach it to segments as
610 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
611 elfcpp::Elf_Xword flags
)
614 if ((flags
& elfcpp::SHF_ALLOC
) == 0
615 && this->options_
.compress_debug_sections()
616 && is_compressible_debug_section(name
))
617 os
= new Output_compressed_section(&this->options_
, name
, type
, flags
);
619 os
= new Output_section(name
, type
, flags
);
621 this->section_list_
.push_back(os
);
623 if ((flags
& elfcpp::SHF_ALLOC
) == 0)
624 this->unattached_section_list_
.push_back(os
);
627 if (parameters
->options().relocatable())
630 // If we have a SECTIONS clause, we can't handle the attachment
631 // to segments until after we've seen all the sections.
632 if (this->script_options_
->saw_sections_clause())
635 gold_assert(!this->script_options_
->saw_phdrs_clause());
637 // This output section goes into a PT_LOAD segment.
639 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
641 // In general the only thing we really care about for PT_LOAD
642 // segments is whether or not they are writable, so that is how
643 // we search for them. People who need segments sorted on some
644 // other basis will have to use a linker script.
646 Segment_list::const_iterator p
;
647 for (p
= this->segment_list_
.begin();
648 p
!= this->segment_list_
.end();
651 if ((*p
)->type() == elfcpp::PT_LOAD
652 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
654 // If -Tbss was specified, we need to separate the data
656 if (this->options_
.user_set_Tbss())
658 if ((type
== elfcpp::SHT_NOBITS
)
659 == (*p
)->has_any_data_sections())
663 (*p
)->add_output_section(os
, seg_flags
);
668 if (p
== this->segment_list_
.end())
670 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
672 oseg
->add_output_section(os
, seg_flags
);
675 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
677 if (type
== elfcpp::SHT_NOTE
)
679 // See if we already have an equivalent PT_NOTE segment.
680 for (p
= this->segment_list_
.begin();
681 p
!= segment_list_
.end();
684 if ((*p
)->type() == elfcpp::PT_NOTE
685 && (((*p
)->flags() & elfcpp::PF_W
)
686 == (seg_flags
& elfcpp::PF_W
)))
688 (*p
)->add_output_section(os
, seg_flags
);
693 if (p
== this->segment_list_
.end())
695 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
697 oseg
->add_output_section(os
, seg_flags
);
701 // If we see a loadable SHF_TLS section, we create a PT_TLS
702 // segment. There can only be one such segment.
703 if ((flags
& elfcpp::SHF_TLS
) != 0)
705 if (this->tls_segment_
== NULL
)
706 this->tls_segment_
= this->make_output_segment(elfcpp::PT_TLS
,
708 this->tls_segment_
->add_output_section(os
, seg_flags
);
715 // Make an output section for a script.
718 Layout::make_output_section_for_script(const char* name
)
720 name
= this->namepool_
.add(name
, false, NULL
);
721 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
723 os
->set_found_in_sections_clause();
727 // Return the number of segments we expect to see.
730 Layout::expected_segment_count() const
732 size_t ret
= this->segment_list_
.size();
734 // If we didn't see a SECTIONS clause in a linker script, we should
735 // already have the complete list of segments. Otherwise we ask the
736 // SECTIONS clause how many segments it expects, and add in the ones
737 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
739 if (!this->script_options_
->saw_sections_clause())
743 const Script_sections
* ss
= this->script_options_
->script_sections();
744 return ret
+ ss
->expected_segment_count(this);
748 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
749 // is whether we saw a .note.GNU-stack section in the object file.
750 // GNU_STACK_FLAGS is the section flags. The flags give the
751 // protection required for stack memory. We record this in an
752 // executable as a PT_GNU_STACK segment. If an object file does not
753 // have a .note.GNU-stack segment, we must assume that it is an old
754 // object. On some targets that will force an executable stack.
757 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
760 this->input_without_gnu_stack_note_
= true;
763 this->input_with_gnu_stack_note_
= true;
764 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
765 this->input_requires_executable_stack_
= true;
769 // Create the dynamic sections which are needed before we read the
773 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
775 if (parameters
->doing_static_link())
778 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
781 | elfcpp::SHF_WRITE
),
784 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
785 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
786 elfcpp::STV_HIDDEN
, 0, false, false);
788 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
790 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
793 // For each output section whose name can be represented as C symbol,
794 // define __start and __stop symbols for the section. This is a GNU
798 Layout::define_section_symbols(Symbol_table
* symtab
)
800 for (Section_list::const_iterator p
= this->section_list_
.begin();
801 p
!= this->section_list_
.end();
804 const char* const name
= (*p
)->name();
805 if (name
[strspn(name
,
807 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
808 "abcdefghijklmnopqrstuvwxyz"
812 const std::string
name_string(name
);
813 const std::string
start_name("__start_" + name_string
);
814 const std::string
stop_name("__stop_" + name_string
);
816 symtab
->define_in_output_data(start_name
.c_str(),
825 false, // offset_is_from_end
826 true); // only_if_ref
828 symtab
->define_in_output_data(stop_name
.c_str(),
837 true, // offset_is_from_end
838 true); // only_if_ref
843 // Define symbols for group signatures.
846 Layout::define_group_signatures(Symbol_table
* symtab
)
848 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
849 p
!= this->group_signatures_
.end();
852 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
854 p
->section
->set_info_symndx(sym
);
857 // Force the name of the group section to the group
858 // signature, and use the group's section symbol as the
860 if (strcmp(p
->section
->name(), p
->signature
) != 0)
862 const char* name
= this->namepool_
.add(p
->signature
,
864 p
->section
->set_name(name
);
866 p
->section
->set_needs_symtab_index();
867 p
->section
->set_info_section_symndx(p
->section
);
871 this->group_signatures_
.clear();
874 // Find the first read-only PT_LOAD segment, creating one if
878 Layout::find_first_load_seg()
880 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
881 p
!= this->segment_list_
.end();
884 if ((*p
)->type() == elfcpp::PT_LOAD
885 && ((*p
)->flags() & elfcpp::PF_R
) != 0
886 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
890 gold_assert(!this->script_options_
->saw_phdrs_clause());
892 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
897 // Finalize the layout. When this is called, we have created all the
898 // output sections and all the output segments which are based on
899 // input sections. We have several things to do, and we have to do
900 // them in the right order, so that we get the right results correctly
903 // 1) Finalize the list of output segments and create the segment
906 // 2) Finalize the dynamic symbol table and associated sections.
908 // 3) Determine the final file offset of all the output segments.
910 // 4) Determine the final file offset of all the SHF_ALLOC output
913 // 5) Create the symbol table sections and the section name table
916 // 6) Finalize the symbol table: set symbol values to their final
917 // value and make a final determination of which symbols are going
918 // into the output symbol table.
920 // 7) Create the section table header.
922 // 8) Determine the final file offset of all the output sections which
923 // are not SHF_ALLOC, including the section table header.
925 // 9) Finalize the ELF file header.
927 // This function returns the size of the output file.
930 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
931 Target
* target
, const Task
* task
)
933 target
->finalize_sections(this);
935 this->count_local_symbols(task
, input_objects
);
937 this->create_gold_note();
938 this->create_executable_stack_info(target
);
940 Output_segment
* phdr_seg
= NULL
;
941 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
943 // There was a dynamic object in the link. We need to create
944 // some information for the dynamic linker.
946 // Create the PT_PHDR segment which will hold the program
948 if (!this->script_options_
->saw_phdrs_clause())
949 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
951 // Create the dynamic symbol table, including the hash table.
952 Output_section
* dynstr
;
953 std::vector
<Symbol
*> dynamic_symbols
;
954 unsigned int local_dynamic_count
;
955 Versions
versions(*this->script_options()->version_script_info(),
957 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
958 &local_dynamic_count
, &dynamic_symbols
,
961 // Create the .interp section to hold the name of the
962 // interpreter, and put it in a PT_INTERP segment.
963 if (!parameters
->options().shared())
964 this->create_interp(target
);
966 // Finish the .dynamic section to hold the dynamic data, and put
967 // it in a PT_DYNAMIC segment.
968 this->finish_dynamic_section(input_objects
, symtab
);
970 // We should have added everything we need to the dynamic string
972 this->dynpool_
.set_string_offsets();
974 // Create the version sections. We can't do this until the
975 // dynamic string table is complete.
976 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
977 dynamic_symbols
, dynstr
);
980 // If there is a SECTIONS clause, put all the input sections into
981 // the required order.
982 Output_segment
* load_seg
;
983 if (this->script_options_
->saw_sections_clause())
984 load_seg
= this->set_section_addresses_from_script(symtab
);
985 else if (parameters
->options().relocatable())
988 load_seg
= this->find_first_load_seg();
990 if (this->options_
.oformat() != General_options::OBJECT_FORMAT_ELF
)
993 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
995 // Lay out the segment headers.
996 Output_segment_headers
* segment_headers
;
997 if (parameters
->options().relocatable())
998 segment_headers
= NULL
;
1001 segment_headers
= new Output_segment_headers(this->segment_list_
);
1002 if (load_seg
!= NULL
)
1003 load_seg
->add_initial_output_data(segment_headers
);
1004 if (phdr_seg
!= NULL
)
1005 phdr_seg
->add_initial_output_data(segment_headers
);
1008 // Lay out the file header.
1009 Output_file_header
* file_header
;
1010 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1011 this->options_
.entry());
1012 if (load_seg
!= NULL
)
1013 load_seg
->add_initial_output_data(file_header
);
1015 this->special_output_list_
.push_back(file_header
);
1016 if (segment_headers
!= NULL
)
1017 this->special_output_list_
.push_back(segment_headers
);
1019 if (this->script_options_
->saw_phdrs_clause()
1020 && !parameters
->options().relocatable())
1022 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1023 // clause in a linker script.
1024 Script_sections
* ss
= this->script_options_
->script_sections();
1025 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1028 // We set the output section indexes in set_segment_offsets and
1029 // set_section_indexes.
1030 unsigned int shndx
= 1;
1032 // Set the file offsets of all the segments, and all the sections
1035 if (!parameters
->options().relocatable())
1036 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1038 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1040 // Set the file offsets of all the non-data sections we've seen so
1041 // far which don't have to wait for the input sections. We need
1042 // this in order to finalize local symbols in non-allocated
1044 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1046 // Create the symbol table sections.
1047 this->create_symtab_sections(input_objects
, symtab
, &off
);
1048 if (!parameters
->doing_static_link())
1049 this->assign_local_dynsym_offsets(input_objects
);
1051 // Process any symbol assignments from a linker script. This must
1052 // be called after the symbol table has been finalized.
1053 this->script_options_
->finalize_symbols(symtab
, this);
1055 // Create the .shstrtab section.
1056 Output_section
* shstrtab_section
= this->create_shstrtab();
1058 // Set the file offsets of the rest of the non-data sections which
1059 // don't have to wait for the input sections.
1060 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1062 // Now that all sections have been created, set the section indexes.
1063 shndx
= this->set_section_indexes(shndx
);
1065 // Create the section table header.
1066 this->create_shdrs(&off
);
1068 // If there are no sections which require postprocessing, we can
1069 // handle the section names now, and avoid a resize later.
1070 if (!this->any_postprocessing_sections_
)
1071 off
= this->set_section_offsets(off
,
1072 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1074 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1076 // Now we know exactly where everything goes in the output file
1077 // (except for non-allocated sections which require postprocessing).
1078 Output_data::layout_complete();
1080 this->output_file_size_
= off
;
1085 // Create a .note section for an executable or shared library. This
1086 // records the version of gold used to create the binary.
1089 Layout::create_gold_note()
1091 if (parameters
->options().relocatable())
1094 // Authorities all agree that the values in a .note field should
1095 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1096 // they differ on what the alignment is for 64-bit binaries.
1097 // The GABI says unambiguously they take 8-byte alignment:
1098 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1099 // Other documentation says alignment should always be 4 bytes:
1100 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1101 // GNU ld and GNU readelf both support the latter (at least as of
1102 // version 2.16.91), and glibc always generates the latter for
1103 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1105 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1106 const int size
= parameters
->target().get_size();
1108 const int size
= 32;
1111 // The contents of the .note section.
1112 const char* name
= "GNU";
1113 std::string
desc(std::string("gold ") + gold::get_version_string());
1114 size_t namesz
= strlen(name
) + 1;
1115 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1116 size_t descsz
= desc
.length() + 1;
1117 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1118 const int note_type
= 4;
1120 size_t notesz
= 3 * (size
/ 8) + aligned_namesz
+ aligned_descsz
;
1122 unsigned char buffer
[128];
1123 gold_assert(sizeof buffer
>= notesz
);
1124 memset(buffer
, 0, notesz
);
1126 bool is_big_endian
= parameters
->target().is_big_endian();
1132 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1133 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1134 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1138 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1139 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1140 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1143 else if (size
== 64)
1147 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1148 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1149 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1153 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1154 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1155 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1161 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1162 memcpy(buffer
+ 3 * (size
/ 8) + aligned_namesz
, desc
.data(), descsz
);
1164 const char* note_name
= this->namepool_
.add(".note", false, NULL
);
1165 Output_section
* os
= this->make_output_section(note_name
,
1168 Output_section_data
* posd
= new Output_data_const(buffer
, notesz
,
1170 os
->add_output_section_data(posd
);
1173 // Record whether the stack should be executable. This can be set
1174 // from the command line using the -z execstack or -z noexecstack
1175 // options. Otherwise, if any input file has a .note.GNU-stack
1176 // section with the SHF_EXECINSTR flag set, the stack should be
1177 // executable. Otherwise, if at least one input file a
1178 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1179 // section, we use the target default for whether the stack should be
1180 // executable. Otherwise, we don't generate a stack note. When
1181 // generating a object file, we create a .note.GNU-stack section with
1182 // the appropriate marking. When generating an executable or shared
1183 // library, we create a PT_GNU_STACK segment.
1186 Layout::create_executable_stack_info(const Target
* target
)
1188 bool is_stack_executable
;
1189 if (this->options_
.is_execstack_set())
1190 is_stack_executable
= this->options_
.is_stack_executable();
1191 else if (!this->input_with_gnu_stack_note_
)
1195 if (this->input_requires_executable_stack_
)
1196 is_stack_executable
= true;
1197 else if (this->input_without_gnu_stack_note_
)
1198 is_stack_executable
= target
->is_default_stack_executable();
1200 is_stack_executable
= false;
1203 if (parameters
->options().relocatable())
1205 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1206 elfcpp::Elf_Xword flags
= 0;
1207 if (is_stack_executable
)
1208 flags
|= elfcpp::SHF_EXECINSTR
;
1209 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1213 if (this->script_options_
->saw_phdrs_clause())
1215 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1216 if (is_stack_executable
)
1217 flags
|= elfcpp::PF_X
;
1218 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1222 // Return whether SEG1 should be before SEG2 in the output file. This
1223 // is based entirely on the segment type and flags. When this is
1224 // called the segment addresses has normally not yet been set.
1227 Layout::segment_precedes(const Output_segment
* seg1
,
1228 const Output_segment
* seg2
)
1230 elfcpp::Elf_Word type1
= seg1
->type();
1231 elfcpp::Elf_Word type2
= seg2
->type();
1233 // The single PT_PHDR segment is required to precede any loadable
1234 // segment. We simply make it always first.
1235 if (type1
== elfcpp::PT_PHDR
)
1237 gold_assert(type2
!= elfcpp::PT_PHDR
);
1240 if (type2
== elfcpp::PT_PHDR
)
1243 // The single PT_INTERP segment is required to precede any loadable
1244 // segment. We simply make it always second.
1245 if (type1
== elfcpp::PT_INTERP
)
1247 gold_assert(type2
!= elfcpp::PT_INTERP
);
1250 if (type2
== elfcpp::PT_INTERP
)
1253 // We then put PT_LOAD segments before any other segments.
1254 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1256 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1259 // We put the PT_TLS segment last, because that is where the dynamic
1260 // linker expects to find it (this is just for efficiency; other
1261 // positions would also work correctly).
1262 if (type1
== elfcpp::PT_TLS
&& type2
!= elfcpp::PT_TLS
)
1264 if (type2
== elfcpp::PT_TLS
&& type1
!= elfcpp::PT_TLS
)
1267 const elfcpp::Elf_Word flags1
= seg1
->flags();
1268 const elfcpp::Elf_Word flags2
= seg2
->flags();
1270 // The order of non-PT_LOAD segments is unimportant. We simply sort
1271 // by the numeric segment type and flags values. There should not
1272 // be more than one segment with the same type and flags.
1273 if (type1
!= elfcpp::PT_LOAD
)
1276 return type1
< type2
;
1277 gold_assert(flags1
!= flags2
);
1278 return flags1
< flags2
;
1281 // If the addresses are set already, sort by load address.
1282 if (seg1
->are_addresses_set())
1284 if (!seg2
->are_addresses_set())
1287 unsigned int section_count1
= seg1
->output_section_count();
1288 unsigned int section_count2
= seg2
->output_section_count();
1289 if (section_count1
== 0 && section_count2
> 0)
1291 if (section_count1
> 0 && section_count2
== 0)
1294 uint64_t paddr1
= seg1
->first_section_load_address();
1295 uint64_t paddr2
= seg2
->first_section_load_address();
1296 if (paddr1
!= paddr2
)
1297 return paddr1
< paddr2
;
1299 else if (seg2
->are_addresses_set())
1302 // We sort PT_LOAD segments based on the flags. Readonly segments
1303 // come before writable segments. Then writable segments with data
1304 // come before writable segments without data. Then executable
1305 // segments come before non-executable segments. Then the unlikely
1306 // case of a non-readable segment comes before the normal case of a
1307 // readable segment. If there are multiple segments with the same
1308 // type and flags, we require that the address be set, and we sort
1309 // by virtual address and then physical address.
1310 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1311 return (flags1
& elfcpp::PF_W
) == 0;
1312 if ((flags1
& elfcpp::PF_W
) != 0
1313 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1314 return seg1
->has_any_data_sections();
1315 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1316 return (flags1
& elfcpp::PF_X
) != 0;
1317 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1318 return (flags1
& elfcpp::PF_R
) == 0;
1320 // We shouldn't get here--we shouldn't create segments which we
1321 // can't distinguish.
1325 // Set the file offsets of all the segments, and all the sections they
1326 // contain. They have all been created. LOAD_SEG must be be laid out
1327 // first. Return the offset of the data to follow.
1330 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1331 unsigned int *pshndx
)
1333 // Sort them into the final order.
1334 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1335 Layout::Compare_segments());
1337 // Find the PT_LOAD segments, and set their addresses and offsets
1338 // and their section's addresses and offsets.
1340 if (this->options_
.user_set_Ttext())
1341 addr
= this->options_
.Ttext();
1342 else if (parameters
->options().shared())
1345 addr
= target
->default_text_segment_address();
1348 // If LOAD_SEG is NULL, then the file header and segment headers
1349 // will not be loadable. But they still need to be at offset 0 in
1350 // the file. Set their offsets now.
1351 if (load_seg
== NULL
)
1353 for (Data_list::iterator p
= this->special_output_list_
.begin();
1354 p
!= this->special_output_list_
.end();
1357 off
= align_address(off
, (*p
)->addralign());
1358 (*p
)->set_address_and_file_offset(0, off
);
1359 off
+= (*p
)->data_size();
1363 bool was_readonly
= false;
1364 for (Segment_list::iterator p
= this->segment_list_
.begin();
1365 p
!= this->segment_list_
.end();
1368 if ((*p
)->type() == elfcpp::PT_LOAD
)
1370 if (load_seg
!= NULL
&& load_seg
!= *p
)
1374 bool are_addresses_set
= (*p
)->are_addresses_set();
1375 if (are_addresses_set
)
1377 // When it comes to setting file offsets, we care about
1378 // the physical address.
1379 addr
= (*p
)->paddr();
1381 else if (this->options_
.user_set_Tdata()
1382 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1383 && (!this->options_
.user_set_Tbss()
1384 || (*p
)->has_any_data_sections()))
1386 addr
= this->options_
.Tdata();
1387 are_addresses_set
= true;
1389 else if (this->options_
.user_set_Tbss()
1390 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1391 && !(*p
)->has_any_data_sections())
1393 addr
= this->options_
.Tbss();
1394 are_addresses_set
= true;
1397 uint64_t orig_addr
= addr
;
1398 uint64_t orig_off
= off
;
1400 uint64_t aligned_addr
= 0;
1401 uint64_t abi_pagesize
= target
->abi_pagesize();
1403 // FIXME: This should depend on the -n and -N options.
1404 (*p
)->set_minimum_p_align(target
->common_pagesize());
1406 if (are_addresses_set
)
1408 // Adjust the file offset to the same address modulo the
1410 uint64_t unsigned_off
= off
;
1411 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1412 | (addr
& (abi_pagesize
- 1)));
1413 if (aligned_off
< unsigned_off
)
1414 aligned_off
+= abi_pagesize
;
1419 // If the last segment was readonly, and this one is
1420 // not, then skip the address forward one page,
1421 // maintaining the same position within the page. This
1422 // lets us store both segments overlapping on a single
1423 // page in the file, but the loader will put them on
1424 // different pages in memory.
1426 addr
= align_address(addr
, (*p
)->maximum_alignment());
1427 aligned_addr
= addr
;
1429 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1431 if ((addr
& (abi_pagesize
- 1)) != 0)
1432 addr
= addr
+ abi_pagesize
;
1435 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1438 unsigned int shndx_hold
= *pshndx
;
1439 uint64_t new_addr
= (*p
)->set_section_addresses(false, addr
, &off
,
1442 // Now that we know the size of this segment, we may be able
1443 // to save a page in memory, at the cost of wasting some
1444 // file space, by instead aligning to the start of a new
1445 // page. Here we use the real machine page size rather than
1446 // the ABI mandated page size.
1448 if (!are_addresses_set
&& aligned_addr
!= addr
)
1450 uint64_t common_pagesize
= target
->common_pagesize();
1451 uint64_t first_off
= (common_pagesize
1453 & (common_pagesize
- 1)));
1454 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1457 && ((aligned_addr
& ~ (common_pagesize
- 1))
1458 != (new_addr
& ~ (common_pagesize
- 1)))
1459 && first_off
+ last_off
<= common_pagesize
)
1461 *pshndx
= shndx_hold
;
1462 addr
= align_address(aligned_addr
, common_pagesize
);
1463 addr
= align_address(addr
, (*p
)->maximum_alignment());
1464 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1465 new_addr
= (*p
)->set_section_addresses(true, addr
, &off
,
1472 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1473 was_readonly
= true;
1477 // Handle the non-PT_LOAD segments, setting their offsets from their
1478 // section's offsets.
1479 for (Segment_list::iterator p
= this->segment_list_
.begin();
1480 p
!= this->segment_list_
.end();
1483 if ((*p
)->type() != elfcpp::PT_LOAD
)
1487 // Set the TLS offsets for each section in the PT_TLS segment.
1488 if (this->tls_segment_
!= NULL
)
1489 this->tls_segment_
->set_tls_offsets();
1494 // Set the offsets of all the allocated sections when doing a
1495 // relocatable link. This does the same jobs as set_segment_offsets,
1496 // only for a relocatable link.
1499 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
1500 unsigned int *pshndx
)
1504 file_header
->set_address_and_file_offset(0, 0);
1505 off
+= file_header
->data_size();
1507 for (Section_list::iterator p
= this->section_list_
.begin();
1508 p
!= this->section_list_
.end();
1511 // We skip unallocated sections here, except that group sections
1512 // have to come first.
1513 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
1514 && (*p
)->type() != elfcpp::SHT_GROUP
)
1517 off
= align_address(off
, (*p
)->addralign());
1519 // The linker script might have set the address.
1520 if (!(*p
)->is_address_valid())
1521 (*p
)->set_address(0);
1522 (*p
)->set_file_offset(off
);
1523 (*p
)->finalize_data_size();
1524 off
+= (*p
)->data_size();
1526 (*p
)->set_out_shndx(*pshndx
);
1533 // Set the file offset of all the sections not associated with a
1537 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
1539 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1540 p
!= this->unattached_section_list_
.end();
1543 // The symtab section is handled in create_symtab_sections.
1544 if (*p
== this->symtab_section_
)
1547 // If we've already set the data size, don't set it again.
1548 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
1551 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1552 && (*p
)->requires_postprocessing())
1554 (*p
)->create_postprocessing_buffer();
1555 this->any_postprocessing_sections_
= true;
1558 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1559 && (*p
)->after_input_sections())
1561 else if (pass
== POSTPROCESSING_SECTIONS_PASS
1562 && (!(*p
)->after_input_sections()
1563 || (*p
)->type() == elfcpp::SHT_STRTAB
))
1565 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1566 && (!(*p
)->after_input_sections()
1567 || (*p
)->type() != elfcpp::SHT_STRTAB
))
1570 off
= align_address(off
, (*p
)->addralign());
1571 (*p
)->set_file_offset(off
);
1572 (*p
)->finalize_data_size();
1573 off
+= (*p
)->data_size();
1575 // At this point the name must be set.
1576 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
1577 this->namepool_
.add((*p
)->name(), false, NULL
);
1582 // Set the section indexes of all the sections not associated with a
1586 Layout::set_section_indexes(unsigned int shndx
)
1588 const bool output_is_object
= parameters
->options().relocatable();
1589 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1590 p
!= this->unattached_section_list_
.end();
1593 // In a relocatable link, we already did group sections.
1594 if (output_is_object
1595 && (*p
)->type() == elfcpp::SHT_GROUP
)
1598 (*p
)->set_out_shndx(shndx
);
1604 // Set the section addresses according to the linker script. This is
1605 // only called when we see a SECTIONS clause. This returns the
1606 // program segment which should hold the file header and segment
1607 // headers, if any. It will return NULL if they should not be in a
1611 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
1613 Script_sections
* ss
= this->script_options_
->script_sections();
1614 gold_assert(ss
->saw_sections_clause());
1616 // Place each orphaned output section in the script.
1617 for (Section_list::iterator p
= this->section_list_
.begin();
1618 p
!= this->section_list_
.end();
1621 if (!(*p
)->found_in_sections_clause())
1622 ss
->place_orphan(*p
);
1625 return this->script_options_
->set_section_addresses(symtab
, this);
1628 // Count the local symbols in the regular symbol table and the dynamic
1629 // symbol table, and build the respective string pools.
1632 Layout::count_local_symbols(const Task
* task
,
1633 const Input_objects
* input_objects
)
1635 // First, figure out an upper bound on the number of symbols we'll
1636 // be inserting into each pool. This helps us create the pools with
1637 // the right size, to avoid unnecessary hashtable resizing.
1638 unsigned int symbol_count
= 0;
1639 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1640 p
!= input_objects
->relobj_end();
1642 symbol_count
+= (*p
)->local_symbol_count();
1644 // Go from "upper bound" to "estimate." We overcount for two
1645 // reasons: we double-count symbols that occur in more than one
1646 // object file, and we count symbols that are dropped from the
1647 // output. Add it all together and assume we overcount by 100%.
1650 // We assume all symbols will go into both the sympool and dynpool.
1651 this->sympool_
.reserve(symbol_count
);
1652 this->dynpool_
.reserve(symbol_count
);
1654 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1655 p
!= input_objects
->relobj_end();
1658 Task_lock_obj
<Object
> tlo(task
, *p
);
1659 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
1663 // Create the symbol table sections. Here we also set the final
1664 // values of the symbols. At this point all the loadable sections are
1668 Layout::create_symtab_sections(const Input_objects
* input_objects
,
1669 Symbol_table
* symtab
,
1674 if (parameters
->target().get_size() == 32)
1676 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
1679 else if (parameters
->target().get_size() == 64)
1681 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
1688 off
= align_address(off
, align
);
1689 off_t startoff
= off
;
1691 // Save space for the dummy symbol at the start of the section. We
1692 // never bother to write this out--it will just be left as zero.
1694 unsigned int local_symbol_index
= 1;
1696 // Add STT_SECTION symbols for each Output section which needs one.
1697 for (Section_list::iterator p
= this->section_list_
.begin();
1698 p
!= this->section_list_
.end();
1701 if (!(*p
)->needs_symtab_index())
1702 (*p
)->set_symtab_index(-1U);
1705 (*p
)->set_symtab_index(local_symbol_index
);
1706 ++local_symbol_index
;
1711 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1712 p
!= input_objects
->relobj_end();
1715 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
1717 off
+= (index
- local_symbol_index
) * symsize
;
1718 local_symbol_index
= index
;
1721 unsigned int local_symcount
= local_symbol_index
;
1722 gold_assert(local_symcount
* symsize
== off
- startoff
);
1725 size_t dyn_global_index
;
1727 if (this->dynsym_section_
== NULL
)
1730 dyn_global_index
= 0;
1735 dyn_global_index
= this->dynsym_section_
->info();
1736 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
1737 dynoff
= this->dynsym_section_
->offset() + locsize
;
1738 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
1739 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
1740 == this->dynsym_section_
->data_size() - locsize
);
1743 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
1744 &this->sympool_
, &local_symcount
);
1746 if (!parameters
->options().strip_all())
1748 this->sympool_
.set_string_offsets();
1750 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
1751 Output_section
* osymtab
= this->make_output_section(symtab_name
,
1754 this->symtab_section_
= osymtab
;
1756 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
1758 osymtab
->add_output_section_data(pos
);
1760 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
1761 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
1765 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
1766 ostrtab
->add_output_section_data(pstr
);
1768 osymtab
->set_file_offset(startoff
);
1769 osymtab
->finalize_data_size();
1770 osymtab
->set_link_section(ostrtab
);
1771 osymtab
->set_info(local_symcount
);
1772 osymtab
->set_entsize(symsize
);
1778 // Create the .shstrtab section, which holds the names of the
1779 // sections. At the time this is called, we have created all the
1780 // output sections except .shstrtab itself.
1783 Layout::create_shstrtab()
1785 // FIXME: We don't need to create a .shstrtab section if we are
1786 // stripping everything.
1788 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
1790 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
1792 // We can't write out this section until we've set all the section
1793 // names, and we don't set the names of compressed output sections
1794 // until relocations are complete.
1795 os
->set_after_input_sections();
1797 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
1798 os
->add_output_section_data(posd
);
1803 // Create the section headers. SIZE is 32 or 64. OFF is the file
1807 Layout::create_shdrs(off_t
* poff
)
1809 Output_section_headers
* oshdrs
;
1810 oshdrs
= new Output_section_headers(this,
1811 &this->segment_list_
,
1812 &this->section_list_
,
1813 &this->unattached_section_list_
,
1815 off_t off
= align_address(*poff
, oshdrs
->addralign());
1816 oshdrs
->set_address_and_file_offset(0, off
);
1817 off
+= oshdrs
->data_size();
1819 this->section_headers_
= oshdrs
;
1822 // Create the dynamic symbol table.
1825 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
1826 Symbol_table
* symtab
,
1827 Output_section
**pdynstr
,
1828 unsigned int* plocal_dynamic_count
,
1829 std::vector
<Symbol
*>* pdynamic_symbols
,
1830 Versions
* pversions
)
1832 // Count all the symbols in the dynamic symbol table, and set the
1833 // dynamic symbol indexes.
1835 // Skip symbol 0, which is always all zeroes.
1836 unsigned int index
= 1;
1838 // Add STT_SECTION symbols for each Output section which needs one.
1839 for (Section_list::iterator p
= this->section_list_
.begin();
1840 p
!= this->section_list_
.end();
1843 if (!(*p
)->needs_dynsym_index())
1844 (*p
)->set_dynsym_index(-1U);
1847 (*p
)->set_dynsym_index(index
);
1852 // Count the local symbols that need to go in the dynamic symbol table,
1853 // and set the dynamic symbol indexes.
1854 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1855 p
!= input_objects
->relobj_end();
1858 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
1862 unsigned int local_symcount
= index
;
1863 *plocal_dynamic_count
= local_symcount
;
1865 // FIXME: We have to tell set_dynsym_indexes whether the
1866 // -E/--export-dynamic option was used.
1867 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
1868 &this->dynpool_
, pversions
);
1872 const int size
= parameters
->target().get_size();
1875 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
1878 else if (size
== 64)
1880 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
1886 // Create the dynamic symbol table section.
1888 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
1893 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
1895 dynsym
->add_output_section_data(odata
);
1897 dynsym
->set_info(local_symcount
);
1898 dynsym
->set_entsize(symsize
);
1899 dynsym
->set_addralign(align
);
1901 this->dynsym_section_
= dynsym
;
1903 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
1904 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
1905 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
1907 // Create the dynamic string table section.
1909 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
1914 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
1915 dynstr
->add_output_section_data(strdata
);
1917 dynsym
->set_link_section(dynstr
);
1918 this->dynamic_section_
->set_link_section(dynstr
);
1920 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
1921 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
1925 // Create the hash tables.
1927 // FIXME: We need an option to create a GNU hash table.
1929 unsigned char* phash
;
1930 unsigned int hashlen
;
1931 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
1934 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
1939 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
1942 hashsec
->add_output_section_data(hashdata
);
1944 hashsec
->set_link_section(dynsym
);
1945 hashsec
->set_entsize(4);
1947 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
1950 // Assign offsets to each local portion of the dynamic symbol table.
1953 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
1955 Output_section
* dynsym
= this->dynsym_section_
;
1956 gold_assert(dynsym
!= NULL
);
1958 off_t off
= dynsym
->offset();
1960 // Skip the dummy symbol at the start of the section.
1961 off
+= dynsym
->entsize();
1963 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
1964 p
!= input_objects
->relobj_end();
1967 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
1968 off
+= count
* dynsym
->entsize();
1972 // Create the version sections.
1975 Layout::create_version_sections(const Versions
* versions
,
1976 const Symbol_table
* symtab
,
1977 unsigned int local_symcount
,
1978 const std::vector
<Symbol
*>& dynamic_symbols
,
1979 const Output_section
* dynstr
)
1981 if (!versions
->any_defs() && !versions
->any_needs())
1984 switch (parameters
->size_and_endianness())
1986 #ifdef HAVE_TARGET_32_LITTLE
1987 case Parameters::TARGET_32_LITTLE
:
1988 this->sized_create_version_sections
<32, false>(versions
, symtab
,
1990 dynamic_symbols
, dynstr
);
1993 #ifdef HAVE_TARGET_32_BIG
1994 case Parameters::TARGET_32_BIG
:
1995 this->sized_create_version_sections
<32, true>(versions
, symtab
,
1997 dynamic_symbols
, dynstr
);
2000 #ifdef HAVE_TARGET_64_LITTLE
2001 case Parameters::TARGET_64_LITTLE
:
2002 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2004 dynamic_symbols
, dynstr
);
2007 #ifdef HAVE_TARGET_64_BIG
2008 case Parameters::TARGET_64_BIG
:
2009 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2011 dynamic_symbols
, dynstr
);
2019 // Create the version sections, sized version.
2021 template<int size
, bool big_endian
>
2023 Layout::sized_create_version_sections(
2024 const Versions
* versions
,
2025 const Symbol_table
* symtab
,
2026 unsigned int local_symcount
,
2027 const std::vector
<Symbol
*>& dynamic_symbols
,
2028 const Output_section
* dynstr
)
2030 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2031 elfcpp::SHT_GNU_versym
,
2035 unsigned char* vbuf
;
2037 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2042 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2);
2044 vsec
->add_output_section_data(vdata
);
2045 vsec
->set_entsize(2);
2046 vsec
->set_link_section(this->dynsym_section_
);
2048 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2049 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2051 if (versions
->any_defs())
2053 Output_section
* vdsec
;
2054 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2055 elfcpp::SHT_GNU_verdef
,
2059 unsigned char* vdbuf
;
2060 unsigned int vdsize
;
2061 unsigned int vdentries
;
2062 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2063 &vdsize
, &vdentries
);
2065 Output_section_data
* vddata
= new Output_data_const_buffer(vdbuf
,
2069 vdsec
->add_output_section_data(vddata
);
2070 vdsec
->set_link_section(dynstr
);
2071 vdsec
->set_info(vdentries
);
2073 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2074 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2077 if (versions
->any_needs())
2079 Output_section
* vnsec
;
2080 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2081 elfcpp::SHT_GNU_verneed
,
2085 unsigned char* vnbuf
;
2086 unsigned int vnsize
;
2087 unsigned int vnentries
;
2088 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2092 Output_section_data
* vndata
= new Output_data_const_buffer(vnbuf
,
2096 vnsec
->add_output_section_data(vndata
);
2097 vnsec
->set_link_section(dynstr
);
2098 vnsec
->set_info(vnentries
);
2100 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2101 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2105 // Create the .interp section and PT_INTERP segment.
2108 Layout::create_interp(const Target
* target
)
2110 const char* interp
= this->options_
.dynamic_linker();
2113 interp
= target
->dynamic_linker();
2114 gold_assert(interp
!= NULL
);
2117 size_t len
= strlen(interp
) + 1;
2119 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2121 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2122 elfcpp::SHT_PROGBITS
,
2125 osec
->add_output_section_data(odata
);
2127 if (!this->script_options_
->saw_phdrs_clause())
2129 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2131 oseg
->add_initial_output_section(osec
, elfcpp::PF_R
);
2135 // Finish the .dynamic section and PT_DYNAMIC segment.
2138 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2139 const Symbol_table
* symtab
)
2141 if (!this->script_options_
->saw_phdrs_clause())
2143 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2146 oseg
->add_initial_output_section(this->dynamic_section_
,
2147 elfcpp::PF_R
| elfcpp::PF_W
);
2150 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2152 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2153 p
!= input_objects
->dynobj_end();
2156 // FIXME: Handle --as-needed.
2157 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2160 if (parameters
->options().shared())
2162 const char* soname
= this->options_
.soname();
2164 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2167 // FIXME: Support --init and --fini.
2168 Symbol
* sym
= symtab
->lookup("_init");
2169 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2170 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2172 sym
= symtab
->lookup("_fini");
2173 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2174 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2176 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2178 // Add a DT_RPATH entry if needed.
2179 const General_options::Dir_list
& rpath(this->options_
.rpath());
2182 std::string rpath_val
;
2183 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2187 if (rpath_val
.empty())
2188 rpath_val
= p
->name();
2191 // Eliminate duplicates.
2192 General_options::Dir_list::const_iterator q
;
2193 for (q
= rpath
.begin(); q
!= p
; ++q
)
2194 if (q
->name() == p
->name())
2199 rpath_val
+= p
->name();
2204 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2207 // Look for text segments that have dynamic relocations.
2208 bool have_textrel
= false;
2209 if (!this->script_options_
->saw_sections_clause())
2211 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2212 p
!= this->segment_list_
.end();
2215 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2216 && (*p
)->dynamic_reloc_count() > 0)
2218 have_textrel
= true;
2225 // We don't know the section -> segment mapping, so we are
2226 // conservative and just look for readonly sections with
2227 // relocations. If those sections wind up in writable segments,
2228 // then we have created an unnecessary DT_TEXTREL entry.
2229 for (Section_list::const_iterator p
= this->section_list_
.begin();
2230 p
!= this->section_list_
.end();
2233 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2234 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2235 && ((*p
)->dynamic_reloc_count() > 0))
2237 have_textrel
= true;
2243 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2244 // post-link tools can easily modify these flags if desired.
2245 unsigned int flags
= 0;
2248 // Add a DT_TEXTREL for compatibility with older loaders.
2249 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2250 flags
|= elfcpp::DF_TEXTREL
;
2252 if (parameters
->options().shared() && this->has_static_tls())
2253 flags
|= elfcpp::DF_STATIC_TLS
;
2254 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2257 // The mapping of .gnu.linkonce section names to real section names.
2259 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2260 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
2262 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Must be before "d".
2263 MAPPING_INIT("t", ".text"),
2264 MAPPING_INIT("r", ".rodata"),
2265 MAPPING_INIT("d", ".data"),
2266 MAPPING_INIT("b", ".bss"),
2267 MAPPING_INIT("s", ".sdata"),
2268 MAPPING_INIT("sb", ".sbss"),
2269 MAPPING_INIT("s2", ".sdata2"),
2270 MAPPING_INIT("sb2", ".sbss2"),
2271 MAPPING_INIT("wi", ".debug_info"),
2272 MAPPING_INIT("td", ".tdata"),
2273 MAPPING_INIT("tb", ".tbss"),
2274 MAPPING_INIT("lr", ".lrodata"),
2275 MAPPING_INIT("l", ".ldata"),
2276 MAPPING_INIT("lb", ".lbss"),
2280 const int Layout::linkonce_mapping_count
=
2281 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
2283 // Return the name of the output section to use for a .gnu.linkonce
2284 // section. This is based on the default ELF linker script of the old
2285 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2286 // to ".text". Set *PLEN to the length of the name. *PLEN is
2287 // initialized to the length of NAME.
2290 Layout::linkonce_output_name(const char* name
, size_t *plen
)
2292 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
2296 const Linkonce_mapping
* plm
= linkonce_mapping
;
2297 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
2299 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
2308 // Choose the output section name to use given an input section name.
2309 // Set *PLEN to the length of the name. *PLEN is initialized to the
2313 Layout::output_section_name(const char* name
, size_t* plen
)
2315 if (Layout::is_linkonce(name
))
2317 // .gnu.linkonce sections are laid out as though they were named
2318 // for the sections are placed into.
2319 return Layout::linkonce_output_name(name
, plen
);
2322 // gcc 4.3 generates the following sorts of section names when it
2323 // needs a section name specific to a function:
2329 // .data.rel.local.FN
2331 // .data.rel.ro.local.FN
2338 // The GNU linker maps all of those to the part before the .FN,
2339 // except that .data.rel.local.FN is mapped to .data, and
2340 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2341 // beginning with .data.rel.ro.local are grouped together.
2343 // For an anonymous namespace, the string FN can contain a '.'.
2345 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2346 // GNU linker maps to .rodata.
2348 // The .data.rel.ro sections enable a security feature triggered by
2349 // the -z relro option. Section which need to be relocated at
2350 // program startup time but which may be readonly after startup are
2351 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2352 // segment. The dynamic linker will make that segment writable,
2353 // perform relocations, and then make it read-only. FIXME: We do
2354 // not yet implement this optimization.
2356 // It is hard to handle this in a principled way.
2358 // These are the rules we follow:
2360 // If the section name has no initial '.', or no dot other than an
2361 // initial '.', we use the name unchanged (i.e., "mysection" and
2362 // ".text" are unchanged).
2364 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2366 // Otherwise, we drop the second '.' and everything that comes after
2367 // it (i.e., ".text.XXX" becomes ".text").
2369 const char* s
= name
;
2373 const char* sdot
= strchr(s
, '.');
2377 const char* const data_rel_ro
= ".data.rel.ro";
2378 if (strncmp(name
, data_rel_ro
, strlen(data_rel_ro
)) == 0)
2380 *plen
= strlen(data_rel_ro
);
2384 *plen
= sdot
- name
;
2388 // Record the signature of a comdat section, and return whether to
2389 // include it in the link. If GROUP is true, this is a regular
2390 // section group. If GROUP is false, this is a group signature
2391 // derived from the name of a linkonce section. We want linkonce
2392 // signatures and group signatures to block each other, but we don't
2393 // want a linkonce signature to block another linkonce signature.
2396 Layout::add_comdat(const char* signature
, bool group
)
2398 std::string
sig(signature
);
2399 std::pair
<Signatures::iterator
, bool> ins(
2400 this->signatures_
.insert(std::make_pair(sig
, group
)));
2404 // This is the first time we've seen this signature.
2408 if (ins
.first
->second
)
2410 // We've already seen a real section group with this signature.
2415 // This is a real section group, and we've already seen a
2416 // linkonce section with this signature. Record that we've seen
2417 // a section group, and don't include this section group.
2418 ins
.first
->second
= true;
2423 // We've already seen a linkonce section and this is a linkonce
2424 // section. These don't block each other--this may be the same
2425 // symbol name with different section types.
2430 // Store the allocated sections into the section list.
2433 Layout::get_allocated_sections(Section_list
* section_list
) const
2435 for (Section_list::const_iterator p
= this->section_list_
.begin();
2436 p
!= this->section_list_
.end();
2438 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
2439 section_list
->push_back(*p
);
2442 // Create an output segment.
2445 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2447 gold_assert(!parameters
->options().relocatable());
2448 Output_segment
* oseg
= new Output_segment(type
, flags
);
2449 this->segment_list_
.push_back(oseg
);
2453 // Write out the Output_sections. Most won't have anything to write,
2454 // since most of the data will come from input sections which are
2455 // handled elsewhere. But some Output_sections do have Output_data.
2458 Layout::write_output_sections(Output_file
* of
) const
2460 for (Section_list::const_iterator p
= this->section_list_
.begin();
2461 p
!= this->section_list_
.end();
2464 if (!(*p
)->after_input_sections())
2469 // Write out data not associated with a section or the symbol table.
2472 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
2474 if (!parameters
->options().strip_all())
2476 const Output_section
* symtab_section
= this->symtab_section_
;
2477 for (Section_list::const_iterator p
= this->section_list_
.begin();
2478 p
!= this->section_list_
.end();
2481 if ((*p
)->needs_symtab_index())
2483 gold_assert(symtab_section
!= NULL
);
2484 unsigned int index
= (*p
)->symtab_index();
2485 gold_assert(index
> 0 && index
!= -1U);
2486 off_t off
= (symtab_section
->offset()
2487 + index
* symtab_section
->entsize());
2488 symtab
->write_section_symbol(*p
, of
, off
);
2493 const Output_section
* dynsym_section
= this->dynsym_section_
;
2494 for (Section_list::const_iterator p
= this->section_list_
.begin();
2495 p
!= this->section_list_
.end();
2498 if ((*p
)->needs_dynsym_index())
2500 gold_assert(dynsym_section
!= NULL
);
2501 unsigned int index
= (*p
)->dynsym_index();
2502 gold_assert(index
> 0 && index
!= -1U);
2503 off_t off
= (dynsym_section
->offset()
2504 + index
* dynsym_section
->entsize());
2505 symtab
->write_section_symbol(*p
, of
, off
);
2509 // Write out the Output_data which are not in an Output_section.
2510 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
2511 p
!= this->special_output_list_
.end();
2516 // Write out the Output_sections which can only be written after the
2517 // input sections are complete.
2520 Layout::write_sections_after_input_sections(Output_file
* of
)
2522 // Determine the final section offsets, and thus the final output
2523 // file size. Note we finalize the .shstrab last, to allow the
2524 // after_input_section sections to modify their section-names before
2526 if (this->any_postprocessing_sections_
)
2528 off_t off
= this->output_file_size_
;
2529 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
2531 // Now that we've finalized the names, we can finalize the shstrab.
2533 this->set_section_offsets(off
,
2534 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
2536 if (off
> this->output_file_size_
)
2539 this->output_file_size_
= off
;
2543 for (Section_list::const_iterator p
= this->section_list_
.begin();
2544 p
!= this->section_list_
.end();
2547 if ((*p
)->after_input_sections())
2551 this->section_headers_
->write(of
);
2554 // Write out a binary file. This is called after the link is
2555 // complete. IN is the temporary output file we used to generate the
2556 // ELF code. We simply walk through the segments, read them from
2557 // their file offset in IN, and write them to their load address in
2558 // the output file. FIXME: with a bit more work, we could support
2559 // S-records and/or Intel hex format here.
2562 Layout::write_binary(Output_file
* in
) const
2564 gold_assert(this->options_
.oformat()
2565 == General_options::OBJECT_FORMAT_BINARY
);
2567 // Get the size of the binary file.
2568 uint64_t max_load_address
= 0;
2569 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2570 p
!= this->segment_list_
.end();
2573 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
2575 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
2576 if (max_paddr
> max_load_address
)
2577 max_load_address
= max_paddr
;
2581 Output_file
out(parameters
->options().output_file_name());
2582 out
.open(max_load_address
);
2584 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2585 p
!= this->segment_list_
.end();
2588 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
2590 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
2592 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
2594 memcpy(vout
, vin
, (*p
)->filesz());
2595 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
2596 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
2603 // Print statistical information to stderr. This is used for --stats.
2606 Layout::print_stats() const
2608 this->namepool_
.print_stats("section name pool");
2609 this->sympool_
.print_stats("output symbol name pool");
2610 this->dynpool_
.print_stats("dynamic name pool");
2612 for (Section_list::const_iterator p
= this->section_list_
.begin();
2613 p
!= this->section_list_
.end();
2615 (*p
)->print_merge_stats();
2618 // Write_sections_task methods.
2620 // We can always run this task.
2623 Write_sections_task::is_runnable()
2628 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
2632 Write_sections_task::locks(Task_locker
* tl
)
2634 tl
->add(this, this->output_sections_blocker_
);
2635 tl
->add(this, this->final_blocker_
);
2638 // Run the task--write out the data.
2641 Write_sections_task::run(Workqueue
*)
2643 this->layout_
->write_output_sections(this->of_
);
2646 // Write_data_task methods.
2648 // We can always run this task.
2651 Write_data_task::is_runnable()
2656 // We need to unlock FINAL_BLOCKER when finished.
2659 Write_data_task::locks(Task_locker
* tl
)
2661 tl
->add(this, this->final_blocker_
);
2664 // Run the task--write out the data.
2667 Write_data_task::run(Workqueue
*)
2669 this->layout_
->write_data(this->symtab_
, this->of_
);
2672 // Write_symbols_task methods.
2674 // We can always run this task.
2677 Write_symbols_task::is_runnable()
2682 // We need to unlock FINAL_BLOCKER when finished.
2685 Write_symbols_task::locks(Task_locker
* tl
)
2687 tl
->add(this, this->final_blocker_
);
2690 // Run the task--write out the symbols.
2693 Write_symbols_task::run(Workqueue
*)
2695 this->symtab_
->write_globals(this->input_objects_
, this->sympool_
,
2696 this->dynpool_
, this->of_
);
2699 // Write_after_input_sections_task methods.
2701 // We can only run this task after the input sections have completed.
2704 Write_after_input_sections_task::is_runnable()
2706 if (this->input_sections_blocker_
->is_blocked())
2707 return this->input_sections_blocker_
;
2711 // We need to unlock FINAL_BLOCKER when finished.
2714 Write_after_input_sections_task::locks(Task_locker
* tl
)
2716 tl
->add(this, this->final_blocker_
);
2722 Write_after_input_sections_task::run(Workqueue
*)
2724 this->layout_
->write_sections_after_input_sections(this->of_
);
2727 // Close_task_runner methods.
2729 // Run the task--close the file.
2732 Close_task_runner::run(Workqueue
*, const Task
*)
2734 // If we've been asked to create a binary file, we do so here.
2735 if (this->options_
->oformat() != General_options::OBJECT_FORMAT_ELF
)
2736 this->layout_
->write_binary(this->of_
);
2741 // Instantiate the templates we need. We could use the configure
2742 // script to restrict this to only the ones for implemented targets.
2744 #ifdef HAVE_TARGET_32_LITTLE
2747 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
2749 const elfcpp::Shdr
<32, false>& shdr
,
2750 unsigned int, unsigned int, off_t
*);
2753 #ifdef HAVE_TARGET_32_BIG
2756 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
2758 const elfcpp::Shdr
<32, true>& shdr
,
2759 unsigned int, unsigned int, off_t
*);
2762 #ifdef HAVE_TARGET_64_LITTLE
2765 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
2767 const elfcpp::Shdr
<64, false>& shdr
,
2768 unsigned int, unsigned int, off_t
*);
2771 #ifdef HAVE_TARGET_64_BIG
2774 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
2776 const elfcpp::Shdr
<64, true>& shdr
,
2777 unsigned int, unsigned int, off_t
*);
2780 #ifdef HAVE_TARGET_32_LITTLE
2783 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
2784 unsigned int reloc_shndx
,
2785 const elfcpp::Shdr
<32, false>& shdr
,
2786 Output_section
* data_section
,
2787 Relocatable_relocs
* rr
);
2790 #ifdef HAVE_TARGET_32_BIG
2793 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
2794 unsigned int reloc_shndx
,
2795 const elfcpp::Shdr
<32, true>& shdr
,
2796 Output_section
* data_section
,
2797 Relocatable_relocs
* rr
);
2800 #ifdef HAVE_TARGET_64_LITTLE
2803 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
2804 unsigned int reloc_shndx
,
2805 const elfcpp::Shdr
<64, false>& shdr
,
2806 Output_section
* data_section
,
2807 Relocatable_relocs
* rr
);
2810 #ifdef HAVE_TARGET_64_BIG
2813 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
2814 unsigned int reloc_shndx
,
2815 const elfcpp::Shdr
<64, true>& shdr
,
2816 Output_section
* data_section
,
2817 Relocatable_relocs
* rr
);
2820 #ifdef HAVE_TARGET_32_LITTLE
2823 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
2824 Sized_relobj
<32, false>* object
,
2826 const char* group_section_name
,
2827 const char* signature
,
2828 const elfcpp::Shdr
<32, false>& shdr
,
2829 const elfcpp::Elf_Word
* contents
);
2832 #ifdef HAVE_TARGET_32_BIG
2835 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
2836 Sized_relobj
<32, true>* object
,
2838 const char* group_section_name
,
2839 const char* signature
,
2840 const elfcpp::Shdr
<32, true>& shdr
,
2841 const elfcpp::Elf_Word
* contents
);
2844 #ifdef HAVE_TARGET_64_LITTLE
2847 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
2848 Sized_relobj
<64, false>* object
,
2850 const char* group_section_name
,
2851 const char* signature
,
2852 const elfcpp::Shdr
<64, false>& shdr
,
2853 const elfcpp::Elf_Word
* contents
);
2856 #ifdef HAVE_TARGET_64_BIG
2859 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
2860 Sized_relobj
<64, true>* object
,
2862 const char* group_section_name
,
2863 const char* signature
,
2864 const elfcpp::Shdr
<64, true>& shdr
,
2865 const elfcpp::Elf_Word
* contents
);
2868 #ifdef HAVE_TARGET_32_LITTLE
2871 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
2872 const unsigned char* symbols
,
2874 const unsigned char* symbol_names
,
2875 off_t symbol_names_size
,
2877 const elfcpp::Shdr
<32, false>& shdr
,
2878 unsigned int reloc_shndx
,
2879 unsigned int reloc_type
,
2883 #ifdef HAVE_TARGET_32_BIG
2886 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
2887 const unsigned char* symbols
,
2889 const unsigned char* symbol_names
,
2890 off_t symbol_names_size
,
2892 const elfcpp::Shdr
<32, true>& shdr
,
2893 unsigned int reloc_shndx
,
2894 unsigned int reloc_type
,
2898 #ifdef HAVE_TARGET_64_LITTLE
2901 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
2902 const unsigned char* symbols
,
2904 const unsigned char* symbol_names
,
2905 off_t symbol_names_size
,
2907 const elfcpp::Shdr
<64, false>& shdr
,
2908 unsigned int reloc_shndx
,
2909 unsigned int reloc_type
,
2913 #ifdef HAVE_TARGET_64_BIG
2916 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
2917 const unsigned char* symbols
,
2919 const unsigned char* symbol_names
,
2920 off_t symbol_names_size
,
2922 const elfcpp::Shdr
<64, true>& shdr
,
2923 unsigned int reloc_shndx
,
2924 unsigned int reloc_type
,
2928 } // End namespace gold.