* config/tc-dlx.h (tc_coff_symbol_emit_hook): Delete.
[binutils.git] / bfd / elf.c
blob9e48f66e90fa22596bcd660e1a025832ed2233e7
1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23 SECTION
24 ELF backends
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
70 /* Swap out a Verdef structure. */
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
86 /* Swap in a Verdaux structure. */
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
97 /* Swap out a Verdaux structure. */
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
108 /* Swap in a Verneed structure. */
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
122 /* Swap out a Verneed structure. */
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
136 /* Swap in a Vernaux structure. */
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
150 /* Swap out a Vernaux structure. */
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
164 /* Swap in a Versym structure. */
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
174 /* Swap out a Versym structure. */
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
187 unsigned long
188 bfd_elf_hash (const char *namearg)
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
195 while ((ch = *name++) != '\0')
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
206 return h & 0xffffffff;
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
220 return TRUE;
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
265 return (char *) shstrtab;
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
273 Elf_Internal_Shdr *hdr;
275 if (strindex == 0)
276 return "";
278 hdr = elf_elfsections (abfd)[shindex];
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
284 if (strindex >= hdr->sh_size)
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
296 return ((char *) hdr->contents) + strindex;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
326 if (symcount == 0)
327 return intsym_buf;
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
350 intsym_buf = NULL;
351 goto out;
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
370 intsym_buf = NULL;
371 goto out;
375 if (intsym_buf == NULL)
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
395 return intsym_buf;
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
424 return name;
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
468 unsigned int num_group = elf_tdata (abfd)->num_group;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
474 unsigned int i, shnum;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
487 if (num_group == 0)
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
492 else
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
510 unsigned char *src;
511 Elf_Internal_Group *dest;
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
536 unsigned int idx;
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
549 if (idx >= shnum)
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
555 dest->shdr = elf_elfsections (abfd)[idx];
562 if (num_group != (unsigned) -1)
564 unsigned int i;
566 for (i = 0; i < num_group; i++)
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
577 asection *s = NULL;
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
596 else
598 const char *gname;
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
614 i = num_group - 1;
615 break;
620 if (elf_group_name (newsect) == NULL)
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
625 return TRUE;
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
655 else
657 asection *link;
659 this_hdr = elf_elfsections (abfd)[elfsec];
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
673 elf_linked_to_section (s) = link;
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
682 for (i = 0; i < num_group; i++)
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
714 return result;
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
720 return elf_next_in_group (sec) != NULL;
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
736 if (hdr->bfd_section != NULL)
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
755 newsect->filepos = hdr->sh_offset;
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
793 if ((flags & SEC_ALLOC) == 0)
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
799 const char *name;
800 int len;
801 } debug_sections [] =
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
821 if (name [0] == '.')
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
851 if ((flags & SEC_ALLOC) != 0)
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
862 if (phdr->p_paddr != 0)
863 break;
865 if (i < elf_elfheader (abfd)->e_phnum)
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
917 return TRUE;
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
956 return 0;
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
993 return bfd_reloc_continue;
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1006 /* Finish SHF_MERGE section merging. */
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1011 bfd *ibfd;
1012 asection *sec;
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1023 struct bfd_elf_section_data *secdata;
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1051 /* Copy the program header and other data from one object module to
1052 another. */
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1074 const char *pt;
1075 switch (p_type)
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1090 return pt;
1093 /* Print out the program headers. */
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1106 unsigned int i, c;
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1115 if (pt == NULL)
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1150 fprintf (f, _("\nDynamic Section:\n"));
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1257 fprintf (f, "\n");
1260 free (dynbuf);
1261 dynbuf = NULL;
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1271 if (elf_dynverdef (abfd) != 0)
1273 Elf_Internal_Verdef *t;
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1283 Elf_Internal_Verdaux *a;
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1296 if (elf_dynverref (abfd) != 0)
1298 Elf_Internal_Verneed *t;
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1303 Elf_Internal_Vernaux *a;
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1314 return TRUE;
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1322 /* Display ELF-specific fields of a symbol. */
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1330 FILE *file = filep;
1331 switch (how)
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1355 if (name == NULL)
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1377 unsigned int vernum;
1378 const char *version_string;
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1391 Elf_Internal_Verneed *t;
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1398 Elf_Internal_Vernaux *a;
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1402 if (a->vna_other == vernum)
1404 version_string = a->vna_nodename;
1405 break;
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1415 int i;
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1426 switch (st_other)
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1438 fprintf (file, " %s", name);
1440 break;
1444 /* Create an entry in an ELF linker hash table. */
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1481 return entry;
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1492 struct elf_link_hash_table *htab;
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1526 if (ind->dynindx != -1)
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1556 /* Initialize an ELF linker hash table. */
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1595 return ret;
1598 /* Create an ELF linker hash table. */
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1613 free (ret);
1614 return NULL;
1617 return &ret->root;
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1704 *pneeded = NULL;
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1730 Elf_Internal_Dyn dyn;
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1737 if (dyn.d_tag == DT_NEEDED)
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1760 free (dynbuf);
1762 return TRUE;
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1775 struct bfd_strtab_hash *ret;
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1780 bfd_size_type loc;
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1790 return ret;
1793 /* ELF .o/exec file reading */
1795 /* Create a new bfd section from an ELF section header. */
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1811 switch (hdr->sh_type)
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1835 Elf_Internal_Shdr *dynsymhdr;
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1845 else
1847 unsigned int i, num_sec;
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1861 break;
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1892 unsigned int i, num_sec;
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1913 return TRUE;
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1974 unsigned int i, num_sec;
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2030 unsigned int scan;
2031 int found;
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2039 if (found != 0)
2041 found = 0;
2042 break;
2044 found = scan;
2047 if (found != 0)
2048 hdr->sh_link = found;
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2102 break;
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116 break;
2118 case SHT_GNU_verneed:
2119 elf_dynverref (abfd) = shindex;
2120 elf_tdata (abfd)->dynverref_hdr = *hdr;
2121 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2122 break;
2124 case SHT_SHLIB:
2125 return TRUE;
2127 case SHT_GROUP:
2128 /* We need a BFD section for objcopy and relocatable linking,
2129 and it's handy to have the signature available as the section
2130 name. */
2131 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2132 return FALSE;
2133 name = group_signature (abfd, hdr);
2134 if (name == NULL)
2135 return FALSE;
2136 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2137 return FALSE;
2138 if (hdr->contents != NULL)
2140 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2141 unsigned int n_elt = hdr->sh_size / 4;
2142 asection *s;
2144 if (idx->flags & GRP_COMDAT)
2145 hdr->bfd_section->flags
2146 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2148 /* We try to keep the same section order as it comes in. */
2149 idx += n_elt;
2150 while (--n_elt != 0)
2151 if ((s = (--idx)->shdr->bfd_section) != NULL
2152 && elf_next_in_group (s) != NULL)
2154 elf_next_in_group (hdr->bfd_section) = s;
2155 break;
2158 break;
2160 default:
2161 /* Check for any processor-specific section types. */
2162 return bed->elf_backend_section_from_shdr (abfd, hdr, name,
2163 shindex);
2166 return TRUE;
2169 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2170 Return SEC for sections that have no elf section, and NULL on error. */
2172 asection *
2173 bfd_section_from_r_symndx (bfd *abfd,
2174 struct sym_sec_cache *cache,
2175 asection *sec,
2176 unsigned long r_symndx)
2178 Elf_Internal_Shdr *symtab_hdr;
2179 unsigned char esym[sizeof (Elf64_External_Sym)];
2180 Elf_External_Sym_Shndx eshndx;
2181 Elf_Internal_Sym isym;
2182 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2184 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2185 return cache->sec[ent];
2187 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2188 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2189 &isym, esym, &eshndx) == NULL)
2190 return NULL;
2192 if (cache->abfd != abfd)
2194 memset (cache->indx, -1, sizeof (cache->indx));
2195 cache->abfd = abfd;
2197 cache->indx[ent] = r_symndx;
2198 cache->sec[ent] = sec;
2199 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2200 || isym.st_shndx > SHN_HIRESERVE)
2202 asection *s;
2203 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2204 if (s != NULL)
2205 cache->sec[ent] = s;
2207 return cache->sec[ent];
2210 /* Given an ELF section number, retrieve the corresponding BFD
2211 section. */
2213 asection *
2214 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2216 if (index >= elf_numsections (abfd))
2217 return NULL;
2218 return elf_elfsections (abfd)[index]->bfd_section;
2221 static const struct bfd_elf_special_section special_sections_b[] =
2223 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2224 { NULL, 0, 0, 0, 0 }
2227 static const struct bfd_elf_special_section special_sections_c[] =
2229 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2230 { NULL, 0, 0, 0, 0 }
2233 static const struct bfd_elf_special_section special_sections_d[] =
2235 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2236 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2237 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2238 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2239 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2240 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2241 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2242 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2243 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2244 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2245 { NULL, 0, 0, 0, 0 }
2248 static const struct bfd_elf_special_section special_sections_f[] =
2250 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2251 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2252 { NULL, 0, 0, 0, 0 }
2255 static const struct bfd_elf_special_section special_sections_g[] =
2257 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2258 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2259 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2260 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2261 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2262 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2263 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2264 { NULL, 0, 0, 0, 0 }
2267 static const struct bfd_elf_special_section special_sections_h[] =
2269 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2270 { NULL, 0, 0, 0, 0 }
2273 static const struct bfd_elf_special_section special_sections_i[] =
2275 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2276 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2277 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2278 { NULL, 0, 0, 0, 0 }
2281 static const struct bfd_elf_special_section special_sections_l[] =
2283 { ".line", 5, 0, SHT_PROGBITS, 0 },
2284 { NULL, 0, 0, 0, 0 }
2287 static const struct bfd_elf_special_section special_sections_n[] =
2289 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2290 { ".note", 5, -1, SHT_NOTE, 0 },
2291 { NULL, 0, 0, 0, 0 }
2294 static const struct bfd_elf_special_section special_sections_p[] =
2296 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2297 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2298 { NULL, 0, 0, 0, 0 }
2301 static const struct bfd_elf_special_section special_sections_r[] =
2303 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2304 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2305 { ".rela", 5, -1, SHT_RELA, 0 },
2306 { ".rel", 4, -1, SHT_REL, 0 },
2307 { NULL, 0, 0, 0, 0 }
2310 static const struct bfd_elf_special_section special_sections_s[] =
2312 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2313 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2314 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2315 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2316 { NULL, 0, 0, 0, 0 }
2319 static const struct bfd_elf_special_section special_sections_t[] =
2321 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2322 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2323 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2324 { NULL, 0, 0, 0, 0 }
2327 static const struct bfd_elf_special_section *special_sections[] =
2329 special_sections_b, /* 'b' */
2330 special_sections_c, /* 'b' */
2331 special_sections_d, /* 'd' */
2332 NULL, /* 'e' */
2333 special_sections_f, /* 'f' */
2334 special_sections_g, /* 'g' */
2335 special_sections_h, /* 'h' */
2336 special_sections_i, /* 'i' */
2337 NULL, /* 'j' */
2338 NULL, /* 'k' */
2339 special_sections_l, /* 'l' */
2340 NULL, /* 'm' */
2341 special_sections_n, /* 'n' */
2342 NULL, /* 'o' */
2343 special_sections_p, /* 'p' */
2344 NULL, /* 'q' */
2345 special_sections_r, /* 'r' */
2346 special_sections_s, /* 's' */
2347 special_sections_t, /* 't' */
2350 const struct bfd_elf_special_section *
2351 _bfd_elf_get_special_section (const char *name,
2352 const struct bfd_elf_special_section *spec,
2353 unsigned int rela)
2355 int i;
2356 int len;
2358 len = strlen (name);
2360 for (i = 0; spec[i].prefix != NULL; i++)
2362 int suffix_len;
2363 int prefix_len = spec[i].prefix_length;
2365 if (len < prefix_len)
2366 continue;
2367 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2368 continue;
2370 suffix_len = spec[i].suffix_length;
2371 if (suffix_len <= 0)
2373 if (name[prefix_len] != 0)
2375 if (suffix_len == 0)
2376 continue;
2377 if (name[prefix_len] != '.'
2378 && (suffix_len == -2
2379 || (rela && spec[i].type == SHT_REL)))
2380 continue;
2383 else
2385 if (len < prefix_len + suffix_len)
2386 continue;
2387 if (memcmp (name + len - suffix_len,
2388 spec[i].prefix + prefix_len,
2389 suffix_len) != 0)
2390 continue;
2392 return &spec[i];
2395 return NULL;
2398 const struct bfd_elf_special_section *
2399 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2401 int i;
2402 const struct bfd_elf_special_section *spec;
2403 const struct elf_backend_data *bed;
2405 /* See if this is one of the special sections. */
2406 if (sec->name == NULL)
2407 return NULL;
2409 bed = get_elf_backend_data (abfd);
2410 spec = bed->special_sections;
2411 if (spec)
2413 spec = _bfd_elf_get_special_section (sec->name,
2414 bed->special_sections,
2415 sec->use_rela_p);
2416 if (spec != NULL)
2417 return spec;
2420 if (sec->name[0] != '.')
2421 return NULL;
2423 i = sec->name[1] - 'b';
2424 if (i < 0 || i > 't' - 'b')
2425 return NULL;
2427 spec = special_sections[i];
2429 if (spec == NULL)
2430 return NULL;
2432 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2435 bfd_boolean
2436 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2438 struct bfd_elf_section_data *sdata;
2439 const struct elf_backend_data *bed;
2440 const struct bfd_elf_special_section *ssect;
2442 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2443 if (sdata == NULL)
2445 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2446 if (sdata == NULL)
2447 return FALSE;
2448 sec->used_by_bfd = sdata;
2451 /* Indicate whether or not this section should use RELA relocations. */
2452 bed = get_elf_backend_data (abfd);
2453 sec->use_rela_p = bed->default_use_rela_p;
2455 /* When we read a file, we don't need section type and flags unless
2456 it is a linker created section. They will be overridden in
2457 _bfd_elf_make_section_from_shdr anyway. */
2458 if (abfd->direction != read_direction
2459 || (sec->flags & SEC_LINKER_CREATED) != 0)
2461 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2462 if (ssect != NULL)
2464 elf_section_type (sec) = ssect->type;
2465 elf_section_flags (sec) = ssect->attr;
2469 return TRUE;
2472 /* Create a new bfd section from an ELF program header.
2474 Since program segments have no names, we generate a synthetic name
2475 of the form segment<NUM>, where NUM is generally the index in the
2476 program header table. For segments that are split (see below) we
2477 generate the names segment<NUM>a and segment<NUM>b.
2479 Note that some program segments may have a file size that is different than
2480 (less than) the memory size. All this means is that at execution the
2481 system must allocate the amount of memory specified by the memory size,
2482 but only initialize it with the first "file size" bytes read from the
2483 file. This would occur for example, with program segments consisting
2484 of combined data+bss.
2486 To handle the above situation, this routine generates TWO bfd sections
2487 for the single program segment. The first has the length specified by
2488 the file size of the segment, and the second has the length specified
2489 by the difference between the two sizes. In effect, the segment is split
2490 into it's initialized and uninitialized parts.
2494 bfd_boolean
2495 _bfd_elf_make_section_from_phdr (bfd *abfd,
2496 Elf_Internal_Phdr *hdr,
2497 int index,
2498 const char *typename)
2500 asection *newsect;
2501 char *name;
2502 char namebuf[64];
2503 size_t len;
2504 int split;
2506 split = ((hdr->p_memsz > 0)
2507 && (hdr->p_filesz > 0)
2508 && (hdr->p_memsz > hdr->p_filesz));
2509 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2510 len = strlen (namebuf) + 1;
2511 name = bfd_alloc (abfd, len);
2512 if (!name)
2513 return FALSE;
2514 memcpy (name, namebuf, len);
2515 newsect = bfd_make_section (abfd, name);
2516 if (newsect == NULL)
2517 return FALSE;
2518 newsect->vma = hdr->p_vaddr;
2519 newsect->lma = hdr->p_paddr;
2520 newsect->size = hdr->p_filesz;
2521 newsect->filepos = hdr->p_offset;
2522 newsect->flags |= SEC_HAS_CONTENTS;
2523 newsect->alignment_power = bfd_log2 (hdr->p_align);
2524 if (hdr->p_type == PT_LOAD)
2526 newsect->flags |= SEC_ALLOC;
2527 newsect->flags |= SEC_LOAD;
2528 if (hdr->p_flags & PF_X)
2530 /* FIXME: all we known is that it has execute PERMISSION,
2531 may be data. */
2532 newsect->flags |= SEC_CODE;
2535 if (!(hdr->p_flags & PF_W))
2537 newsect->flags |= SEC_READONLY;
2540 if (split)
2542 sprintf (namebuf, "%s%db", typename, index);
2543 len = strlen (namebuf) + 1;
2544 name = bfd_alloc (abfd, len);
2545 if (!name)
2546 return FALSE;
2547 memcpy (name, namebuf, len);
2548 newsect = bfd_make_section (abfd, name);
2549 if (newsect == NULL)
2550 return FALSE;
2551 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2552 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2553 newsect->size = hdr->p_memsz - hdr->p_filesz;
2554 if (hdr->p_type == PT_LOAD)
2556 newsect->flags |= SEC_ALLOC;
2557 if (hdr->p_flags & PF_X)
2558 newsect->flags |= SEC_CODE;
2560 if (!(hdr->p_flags & PF_W))
2561 newsect->flags |= SEC_READONLY;
2564 return TRUE;
2567 bfd_boolean
2568 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2570 const struct elf_backend_data *bed;
2572 switch (hdr->p_type)
2574 case PT_NULL:
2575 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2577 case PT_LOAD:
2578 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2580 case PT_DYNAMIC:
2581 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2583 case PT_INTERP:
2584 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2586 case PT_NOTE:
2587 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2588 return FALSE;
2589 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2590 return FALSE;
2591 return TRUE;
2593 case PT_SHLIB:
2594 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2596 case PT_PHDR:
2597 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2599 case PT_GNU_EH_FRAME:
2600 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2601 "eh_frame_hdr");
2603 case PT_GNU_STACK:
2604 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2606 case PT_GNU_RELRO:
2607 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2609 default:
2610 /* Check for any processor-specific program segment types. */
2611 bed = get_elf_backend_data (abfd);
2612 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2616 /* Initialize REL_HDR, the section-header for new section, containing
2617 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2618 relocations; otherwise, we use REL relocations. */
2620 bfd_boolean
2621 _bfd_elf_init_reloc_shdr (bfd *abfd,
2622 Elf_Internal_Shdr *rel_hdr,
2623 asection *asect,
2624 bfd_boolean use_rela_p)
2626 char *name;
2627 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2628 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2630 name = bfd_alloc (abfd, amt);
2631 if (name == NULL)
2632 return FALSE;
2633 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2634 rel_hdr->sh_name =
2635 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2636 FALSE);
2637 if (rel_hdr->sh_name == (unsigned int) -1)
2638 return FALSE;
2639 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2640 rel_hdr->sh_entsize = (use_rela_p
2641 ? bed->s->sizeof_rela
2642 : bed->s->sizeof_rel);
2643 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2644 rel_hdr->sh_flags = 0;
2645 rel_hdr->sh_addr = 0;
2646 rel_hdr->sh_size = 0;
2647 rel_hdr->sh_offset = 0;
2649 return TRUE;
2652 /* Set up an ELF internal section header for a section. */
2654 static void
2655 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2657 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2658 bfd_boolean *failedptr = failedptrarg;
2659 Elf_Internal_Shdr *this_hdr;
2661 if (*failedptr)
2663 /* We already failed; just get out of the bfd_map_over_sections
2664 loop. */
2665 return;
2668 this_hdr = &elf_section_data (asect)->this_hdr;
2670 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2671 asect->name, FALSE);
2672 if (this_hdr->sh_name == (unsigned int) -1)
2674 *failedptr = TRUE;
2675 return;
2678 /* Don't clear sh_flags. Assembler may set additional bits. */
2680 if ((asect->flags & SEC_ALLOC) != 0
2681 || asect->user_set_vma)
2682 this_hdr->sh_addr = asect->vma;
2683 else
2684 this_hdr->sh_addr = 0;
2686 this_hdr->sh_offset = 0;
2687 this_hdr->sh_size = asect->size;
2688 this_hdr->sh_link = 0;
2689 this_hdr->sh_addralign = 1 << asect->alignment_power;
2690 /* The sh_entsize and sh_info fields may have been set already by
2691 copy_private_section_data. */
2693 this_hdr->bfd_section = asect;
2694 this_hdr->contents = NULL;
2696 /* If the section type is unspecified, we set it based on
2697 asect->flags. */
2698 if (this_hdr->sh_type == SHT_NULL)
2700 if ((asect->flags & SEC_GROUP) != 0)
2701 this_hdr->sh_type = SHT_GROUP;
2702 else if ((asect->flags & SEC_ALLOC) != 0
2703 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2704 || (asect->flags & SEC_NEVER_LOAD) != 0))
2705 this_hdr->sh_type = SHT_NOBITS;
2706 else
2707 this_hdr->sh_type = SHT_PROGBITS;
2710 switch (this_hdr->sh_type)
2712 default:
2713 break;
2715 case SHT_STRTAB:
2716 case SHT_INIT_ARRAY:
2717 case SHT_FINI_ARRAY:
2718 case SHT_PREINIT_ARRAY:
2719 case SHT_NOTE:
2720 case SHT_NOBITS:
2721 case SHT_PROGBITS:
2722 break;
2724 case SHT_HASH:
2725 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2726 break;
2728 case SHT_DYNSYM:
2729 this_hdr->sh_entsize = bed->s->sizeof_sym;
2730 break;
2732 case SHT_DYNAMIC:
2733 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2734 break;
2736 case SHT_RELA:
2737 if (get_elf_backend_data (abfd)->may_use_rela_p)
2738 this_hdr->sh_entsize = bed->s->sizeof_rela;
2739 break;
2741 case SHT_REL:
2742 if (get_elf_backend_data (abfd)->may_use_rel_p)
2743 this_hdr->sh_entsize = bed->s->sizeof_rel;
2744 break;
2746 case SHT_GNU_versym:
2747 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2748 break;
2750 case SHT_GNU_verdef:
2751 this_hdr->sh_entsize = 0;
2752 /* objcopy or strip will copy over sh_info, but may not set
2753 cverdefs. The linker will set cverdefs, but sh_info will be
2754 zero. */
2755 if (this_hdr->sh_info == 0)
2756 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2757 else
2758 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2759 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2760 break;
2762 case SHT_GNU_verneed:
2763 this_hdr->sh_entsize = 0;
2764 /* objcopy or strip will copy over sh_info, but may not set
2765 cverrefs. The linker will set cverrefs, but sh_info will be
2766 zero. */
2767 if (this_hdr->sh_info == 0)
2768 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2769 else
2770 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2771 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2772 break;
2774 case SHT_GROUP:
2775 this_hdr->sh_entsize = 4;
2776 break;
2779 if ((asect->flags & SEC_ALLOC) != 0)
2780 this_hdr->sh_flags |= SHF_ALLOC;
2781 if ((asect->flags & SEC_READONLY) == 0)
2782 this_hdr->sh_flags |= SHF_WRITE;
2783 if ((asect->flags & SEC_CODE) != 0)
2784 this_hdr->sh_flags |= SHF_EXECINSTR;
2785 if ((asect->flags & SEC_MERGE) != 0)
2787 this_hdr->sh_flags |= SHF_MERGE;
2788 this_hdr->sh_entsize = asect->entsize;
2789 if ((asect->flags & SEC_STRINGS) != 0)
2790 this_hdr->sh_flags |= SHF_STRINGS;
2792 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2793 this_hdr->sh_flags |= SHF_GROUP;
2794 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2796 this_hdr->sh_flags |= SHF_TLS;
2797 if (asect->size == 0
2798 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2800 struct bfd_link_order *o = asect->map_tail.link_order;
2802 this_hdr->sh_size = 0;
2803 if (o != NULL)
2805 this_hdr->sh_size = o->offset + o->size;
2806 if (this_hdr->sh_size != 0)
2807 this_hdr->sh_type = SHT_NOBITS;
2812 /* Check for processor-specific section types. */
2813 if (bed->elf_backend_fake_sections
2814 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2815 *failedptr = TRUE;
2817 /* If the section has relocs, set up a section header for the
2818 SHT_REL[A] section. If two relocation sections are required for
2819 this section, it is up to the processor-specific back-end to
2820 create the other. */
2821 if ((asect->flags & SEC_RELOC) != 0
2822 && !_bfd_elf_init_reloc_shdr (abfd,
2823 &elf_section_data (asect)->rel_hdr,
2824 asect,
2825 asect->use_rela_p))
2826 *failedptr = TRUE;
2829 /* Fill in the contents of a SHT_GROUP section. */
2831 void
2832 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2834 bfd_boolean *failedptr = failedptrarg;
2835 unsigned long symindx;
2836 asection *elt, *first;
2837 unsigned char *loc;
2838 bfd_boolean gas;
2840 /* Ignore linker created group section. See elfNN_ia64_object_p in
2841 elfxx-ia64.c. */
2842 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2843 || *failedptr)
2844 return;
2846 symindx = 0;
2847 if (elf_group_id (sec) != NULL)
2848 symindx = elf_group_id (sec)->udata.i;
2850 if (symindx == 0)
2852 /* If called from the assembler, swap_out_syms will have set up
2853 elf_section_syms; If called for "ld -r", use target_index. */
2854 if (elf_section_syms (abfd) != NULL)
2855 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2856 else
2857 symindx = sec->target_index;
2859 elf_section_data (sec)->this_hdr.sh_info = symindx;
2861 /* The contents won't be allocated for "ld -r" or objcopy. */
2862 gas = TRUE;
2863 if (sec->contents == NULL)
2865 gas = FALSE;
2866 sec->contents = bfd_alloc (abfd, sec->size);
2868 /* Arrange for the section to be written out. */
2869 elf_section_data (sec)->this_hdr.contents = sec->contents;
2870 if (sec->contents == NULL)
2872 *failedptr = TRUE;
2873 return;
2877 loc = sec->contents + sec->size;
2879 /* Get the pointer to the first section in the group that gas
2880 squirreled away here. objcopy arranges for this to be set to the
2881 start of the input section group. */
2882 first = elt = elf_next_in_group (sec);
2884 /* First element is a flag word. Rest of section is elf section
2885 indices for all the sections of the group. Write them backwards
2886 just to keep the group in the same order as given in .section
2887 directives, not that it matters. */
2888 while (elt != NULL)
2890 asection *s;
2891 unsigned int idx;
2893 loc -= 4;
2894 s = elt;
2895 if (!gas)
2896 s = s->output_section;
2897 idx = 0;
2898 if (s != NULL)
2899 idx = elf_section_data (s)->this_idx;
2900 H_PUT_32 (abfd, idx, loc);
2901 elt = elf_next_in_group (elt);
2902 if (elt == first)
2903 break;
2906 if ((loc -= 4) != sec->contents)
2907 abort ();
2909 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2912 /* Assign all ELF section numbers. The dummy first section is handled here
2913 too. The link/info pointers for the standard section types are filled
2914 in here too, while we're at it. */
2916 static bfd_boolean
2917 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2919 struct elf_obj_tdata *t = elf_tdata (abfd);
2920 asection *sec;
2921 unsigned int section_number, secn;
2922 Elf_Internal_Shdr **i_shdrp;
2923 struct bfd_elf_section_data *d;
2925 section_number = 1;
2927 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2929 /* SHT_GROUP sections are in relocatable files only. */
2930 if (link_info == NULL || link_info->relocatable)
2932 /* Put SHT_GROUP sections first. */
2933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2935 d = elf_section_data (sec);
2937 if (d->this_hdr.sh_type == SHT_GROUP)
2939 if (sec->flags & SEC_LINKER_CREATED)
2941 /* Remove the linker created SHT_GROUP sections. */
2942 bfd_section_list_remove (abfd, sec);
2943 abfd->section_count--;
2945 else
2947 if (section_number == SHN_LORESERVE)
2948 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2949 d->this_idx = section_number++;
2955 for (sec = abfd->sections; sec; sec = sec->next)
2957 d = elf_section_data (sec);
2959 if (d->this_hdr.sh_type != SHT_GROUP)
2961 if (section_number == SHN_LORESERVE)
2962 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2963 d->this_idx = section_number++;
2965 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2966 if ((sec->flags & SEC_RELOC) == 0)
2967 d->rel_idx = 0;
2968 else
2970 if (section_number == SHN_LORESERVE)
2971 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2972 d->rel_idx = section_number++;
2973 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2976 if (d->rel_hdr2)
2978 if (section_number == SHN_LORESERVE)
2979 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2980 d->rel_idx2 = section_number++;
2981 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2983 else
2984 d->rel_idx2 = 0;
2987 if (section_number == SHN_LORESERVE)
2988 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2989 t->shstrtab_section = section_number++;
2990 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2991 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2993 if (bfd_get_symcount (abfd) > 0)
2995 if (section_number == SHN_LORESERVE)
2996 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2997 t->symtab_section = section_number++;
2998 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2999 if (section_number > SHN_LORESERVE - 2)
3001 if (section_number == SHN_LORESERVE)
3002 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3003 t->symtab_shndx_section = section_number++;
3004 t->symtab_shndx_hdr.sh_name
3005 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3006 ".symtab_shndx", FALSE);
3007 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3008 return FALSE;
3010 if (section_number == SHN_LORESERVE)
3011 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3012 t->strtab_section = section_number++;
3013 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3016 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3017 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3019 elf_numsections (abfd) = section_number;
3020 elf_elfheader (abfd)->e_shnum = section_number;
3021 if (section_number > SHN_LORESERVE)
3022 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3024 /* Set up the list of section header pointers, in agreement with the
3025 indices. */
3026 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3027 if (i_shdrp == NULL)
3028 return FALSE;
3030 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3031 if (i_shdrp[0] == NULL)
3033 bfd_release (abfd, i_shdrp);
3034 return FALSE;
3037 elf_elfsections (abfd) = i_shdrp;
3039 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3040 if (bfd_get_symcount (abfd) > 0)
3042 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3043 if (elf_numsections (abfd) > SHN_LORESERVE)
3045 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3046 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3048 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3049 t->symtab_hdr.sh_link = t->strtab_section;
3052 for (sec = abfd->sections; sec; sec = sec->next)
3054 struct bfd_elf_section_data *d = elf_section_data (sec);
3055 asection *s;
3056 const char *name;
3058 i_shdrp[d->this_idx] = &d->this_hdr;
3059 if (d->rel_idx != 0)
3060 i_shdrp[d->rel_idx] = &d->rel_hdr;
3061 if (d->rel_idx2 != 0)
3062 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3064 /* Fill in the sh_link and sh_info fields while we're at it. */
3066 /* sh_link of a reloc section is the section index of the symbol
3067 table. sh_info is the section index of the section to which
3068 the relocation entries apply. */
3069 if (d->rel_idx != 0)
3071 d->rel_hdr.sh_link = t->symtab_section;
3072 d->rel_hdr.sh_info = d->this_idx;
3074 if (d->rel_idx2 != 0)
3076 d->rel_hdr2->sh_link = t->symtab_section;
3077 d->rel_hdr2->sh_info = d->this_idx;
3080 /* We need to set up sh_link for SHF_LINK_ORDER. */
3081 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3083 s = elf_linked_to_section (sec);
3084 if (s)
3086 /* elf_linked_to_section points to the input section. */
3087 if (link_info != NULL)
3089 /* Check discarded linkonce section. */
3090 if (elf_discarded_section (s))
3092 asection *kept;
3093 (*_bfd_error_handler)
3094 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3095 abfd, d->this_hdr.bfd_section,
3096 s, s->owner);
3097 /* Point to the kept section if it has the same
3098 size as the discarded one. */
3099 kept = _bfd_elf_check_kept_section (s);
3100 if (kept == NULL)
3102 bfd_set_error (bfd_error_bad_value);
3103 return FALSE;
3105 s = kept;
3108 s = s->output_section;
3109 BFD_ASSERT (s != NULL);
3111 else
3113 /* Handle objcopy. */
3114 if (s->output_section == NULL)
3116 (*_bfd_error_handler)
3117 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3118 abfd, d->this_hdr.bfd_section, s, s->owner);
3119 bfd_set_error (bfd_error_bad_value);
3120 return FALSE;
3122 s = s->output_section;
3124 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3126 else
3128 /* PR 290:
3129 The Intel C compiler generates SHT_IA_64_UNWIND with
3130 SHF_LINK_ORDER. But it doesn't set the sh_link or
3131 sh_info fields. Hence we could get the situation
3132 where s is NULL. */
3133 const struct elf_backend_data *bed
3134 = get_elf_backend_data (abfd);
3135 if (bed->link_order_error_handler)
3136 bed->link_order_error_handler
3137 (_("%B: warning: sh_link not set for section `%A'"),
3138 abfd, sec);
3142 switch (d->this_hdr.sh_type)
3144 case SHT_REL:
3145 case SHT_RELA:
3146 /* A reloc section which we are treating as a normal BFD
3147 section. sh_link is the section index of the symbol
3148 table. sh_info is the section index of the section to
3149 which the relocation entries apply. We assume that an
3150 allocated reloc section uses the dynamic symbol table.
3151 FIXME: How can we be sure? */
3152 s = bfd_get_section_by_name (abfd, ".dynsym");
3153 if (s != NULL)
3154 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3156 /* We look up the section the relocs apply to by name. */
3157 name = sec->name;
3158 if (d->this_hdr.sh_type == SHT_REL)
3159 name += 4;
3160 else
3161 name += 5;
3162 s = bfd_get_section_by_name (abfd, name);
3163 if (s != NULL)
3164 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3165 break;
3167 case SHT_STRTAB:
3168 /* We assume that a section named .stab*str is a stabs
3169 string section. We look for a section with the same name
3170 but without the trailing ``str'', and set its sh_link
3171 field to point to this section. */
3172 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3173 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3175 size_t len;
3176 char *alc;
3178 len = strlen (sec->name);
3179 alc = bfd_malloc (len - 2);
3180 if (alc == NULL)
3181 return FALSE;
3182 memcpy (alc, sec->name, len - 3);
3183 alc[len - 3] = '\0';
3184 s = bfd_get_section_by_name (abfd, alc);
3185 free (alc);
3186 if (s != NULL)
3188 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3190 /* This is a .stab section. */
3191 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3192 elf_section_data (s)->this_hdr.sh_entsize
3193 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3196 break;
3198 case SHT_DYNAMIC:
3199 case SHT_DYNSYM:
3200 case SHT_GNU_verneed:
3201 case SHT_GNU_verdef:
3202 /* sh_link is the section header index of the string table
3203 used for the dynamic entries, or the symbol table, or the
3204 version strings. */
3205 s = bfd_get_section_by_name (abfd, ".dynstr");
3206 if (s != NULL)
3207 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3208 break;
3210 case SHT_GNU_LIBLIST:
3211 /* sh_link is the section header index of the prelink library
3212 list
3213 used for the dynamic entries, or the symbol table, or the
3214 version strings. */
3215 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3216 ? ".dynstr" : ".gnu.libstr");
3217 if (s != NULL)
3218 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3219 break;
3221 case SHT_HASH:
3222 case SHT_GNU_versym:
3223 /* sh_link is the section header index of the symbol table
3224 this hash table or version table is for. */
3225 s = bfd_get_section_by_name (abfd, ".dynsym");
3226 if (s != NULL)
3227 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3228 break;
3230 case SHT_GROUP:
3231 d->this_hdr.sh_link = t->symtab_section;
3235 for (secn = 1; secn < section_number; ++secn)
3236 if (i_shdrp[secn] == NULL)
3237 i_shdrp[secn] = i_shdrp[0];
3238 else
3239 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3240 i_shdrp[secn]->sh_name);
3241 return TRUE;
3244 /* Map symbol from it's internal number to the external number, moving
3245 all local symbols to be at the head of the list. */
3247 static int
3248 sym_is_global (bfd *abfd, asymbol *sym)
3250 /* If the backend has a special mapping, use it. */
3251 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3252 if (bed->elf_backend_sym_is_global)
3253 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3255 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3256 || bfd_is_und_section (bfd_get_section (sym))
3257 || bfd_is_com_section (bfd_get_section (sym)));
3260 static bfd_boolean
3261 elf_map_symbols (bfd *abfd)
3263 unsigned int symcount = bfd_get_symcount (abfd);
3264 asymbol **syms = bfd_get_outsymbols (abfd);
3265 asymbol **sect_syms;
3266 unsigned int num_locals = 0;
3267 unsigned int num_globals = 0;
3268 unsigned int num_locals2 = 0;
3269 unsigned int num_globals2 = 0;
3270 int max_index = 0;
3271 unsigned int idx;
3272 asection *asect;
3273 asymbol **new_syms;
3275 #ifdef DEBUG
3276 fprintf (stderr, "elf_map_symbols\n");
3277 fflush (stderr);
3278 #endif
3280 for (asect = abfd->sections; asect; asect = asect->next)
3282 if (max_index < asect->index)
3283 max_index = asect->index;
3286 max_index++;
3287 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3288 if (sect_syms == NULL)
3289 return FALSE;
3290 elf_section_syms (abfd) = sect_syms;
3291 elf_num_section_syms (abfd) = max_index;
3293 /* Init sect_syms entries for any section symbols we have already
3294 decided to output. */
3295 for (idx = 0; idx < symcount; idx++)
3297 asymbol *sym = syms[idx];
3299 if ((sym->flags & BSF_SECTION_SYM) != 0
3300 && sym->value == 0)
3302 asection *sec;
3304 sec = sym->section;
3306 if (sec->owner != NULL)
3308 if (sec->owner != abfd)
3310 if (sec->output_offset != 0)
3311 continue;
3313 sec = sec->output_section;
3315 /* Empty sections in the input files may have had a
3316 section symbol created for them. (See the comment
3317 near the end of _bfd_generic_link_output_symbols in
3318 linker.c). If the linker script discards such
3319 sections then we will reach this point. Since we know
3320 that we cannot avoid this case, we detect it and skip
3321 the abort and the assignment to the sect_syms array.
3322 To reproduce this particular case try running the
3323 linker testsuite test ld-scripts/weak.exp for an ELF
3324 port that uses the generic linker. */
3325 if (sec->owner == NULL)
3326 continue;
3328 BFD_ASSERT (sec->owner == abfd);
3330 sect_syms[sec->index] = syms[idx];
3335 /* Classify all of the symbols. */
3336 for (idx = 0; idx < symcount; idx++)
3338 if (!sym_is_global (abfd, syms[idx]))
3339 num_locals++;
3340 else
3341 num_globals++;
3344 /* We will be adding a section symbol for each BFD section. Most normal
3345 sections will already have a section symbol in outsymbols, but
3346 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3347 at least in that case. */
3348 for (asect = abfd->sections; asect; asect = asect->next)
3350 if (sect_syms[asect->index] == NULL)
3352 if (!sym_is_global (abfd, asect->symbol))
3353 num_locals++;
3354 else
3355 num_globals++;
3359 /* Now sort the symbols so the local symbols are first. */
3360 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3362 if (new_syms == NULL)
3363 return FALSE;
3365 for (idx = 0; idx < symcount; idx++)
3367 asymbol *sym = syms[idx];
3368 unsigned int i;
3370 if (!sym_is_global (abfd, sym))
3371 i = num_locals2++;
3372 else
3373 i = num_locals + num_globals2++;
3374 new_syms[i] = sym;
3375 sym->udata.i = i + 1;
3377 for (asect = abfd->sections; asect; asect = asect->next)
3379 if (sect_syms[asect->index] == NULL)
3381 asymbol *sym = asect->symbol;
3382 unsigned int i;
3384 sect_syms[asect->index] = sym;
3385 if (!sym_is_global (abfd, sym))
3386 i = num_locals2++;
3387 else
3388 i = num_locals + num_globals2++;
3389 new_syms[i] = sym;
3390 sym->udata.i = i + 1;
3394 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3396 elf_num_locals (abfd) = num_locals;
3397 elf_num_globals (abfd) = num_globals;
3398 return TRUE;
3401 /* Align to the maximum file alignment that could be required for any
3402 ELF data structure. */
3404 static inline file_ptr
3405 align_file_position (file_ptr off, int align)
3407 return (off + align - 1) & ~(align - 1);
3410 /* Assign a file position to a section, optionally aligning to the
3411 required section alignment. */
3413 file_ptr
3414 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3415 file_ptr offset,
3416 bfd_boolean align)
3418 if (align)
3420 unsigned int al;
3422 al = i_shdrp->sh_addralign;
3423 if (al > 1)
3424 offset = BFD_ALIGN (offset, al);
3426 i_shdrp->sh_offset = offset;
3427 if (i_shdrp->bfd_section != NULL)
3428 i_shdrp->bfd_section->filepos = offset;
3429 if (i_shdrp->sh_type != SHT_NOBITS)
3430 offset += i_shdrp->sh_size;
3431 return offset;
3434 /* Compute the file positions we are going to put the sections at, and
3435 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3436 is not NULL, this is being called by the ELF backend linker. */
3438 bfd_boolean
3439 _bfd_elf_compute_section_file_positions (bfd *abfd,
3440 struct bfd_link_info *link_info)
3442 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3443 bfd_boolean failed;
3444 struct bfd_strtab_hash *strtab = NULL;
3445 Elf_Internal_Shdr *shstrtab_hdr;
3447 if (abfd->output_has_begun)
3448 return TRUE;
3450 /* Do any elf backend specific processing first. */
3451 if (bed->elf_backend_begin_write_processing)
3452 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3454 if (! prep_headers (abfd))
3455 return FALSE;
3457 /* Post process the headers if necessary. */
3458 if (bed->elf_backend_post_process_headers)
3459 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3461 failed = FALSE;
3462 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3463 if (failed)
3464 return FALSE;
3466 if (!assign_section_numbers (abfd, link_info))
3467 return FALSE;
3469 /* The backend linker builds symbol table information itself. */
3470 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3472 /* Non-zero if doing a relocatable link. */
3473 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3475 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3476 return FALSE;
3479 if (link_info == NULL)
3481 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3482 if (failed)
3483 return FALSE;
3486 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3487 /* sh_name was set in prep_headers. */
3488 shstrtab_hdr->sh_type = SHT_STRTAB;
3489 shstrtab_hdr->sh_flags = 0;
3490 shstrtab_hdr->sh_addr = 0;
3491 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3492 shstrtab_hdr->sh_entsize = 0;
3493 shstrtab_hdr->sh_link = 0;
3494 shstrtab_hdr->sh_info = 0;
3495 /* sh_offset is set in assign_file_positions_except_relocs. */
3496 shstrtab_hdr->sh_addralign = 1;
3498 if (!assign_file_positions_except_relocs (abfd, link_info))
3499 return FALSE;
3501 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3503 file_ptr off;
3504 Elf_Internal_Shdr *hdr;
3506 off = elf_tdata (abfd)->next_file_pos;
3508 hdr = &elf_tdata (abfd)->symtab_hdr;
3509 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3511 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3512 if (hdr->sh_size != 0)
3513 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515 hdr = &elf_tdata (abfd)->strtab_hdr;
3516 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3518 elf_tdata (abfd)->next_file_pos = off;
3520 /* Now that we know where the .strtab section goes, write it
3521 out. */
3522 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3523 || ! _bfd_stringtab_emit (abfd, strtab))
3524 return FALSE;
3525 _bfd_stringtab_free (strtab);
3528 abfd->output_has_begun = TRUE;
3530 return TRUE;
3533 /* Create a mapping from a set of sections to a program segment. */
3535 static struct elf_segment_map *
3536 make_mapping (bfd *abfd,
3537 asection **sections,
3538 unsigned int from,
3539 unsigned int to,
3540 bfd_boolean phdr)
3542 struct elf_segment_map *m;
3543 unsigned int i;
3544 asection **hdrpp;
3545 bfd_size_type amt;
3547 amt = sizeof (struct elf_segment_map);
3548 amt += (to - from - 1) * sizeof (asection *);
3549 m = bfd_zalloc (abfd, amt);
3550 if (m == NULL)
3551 return NULL;
3552 m->next = NULL;
3553 m->p_type = PT_LOAD;
3554 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3555 m->sections[i - from] = *hdrpp;
3556 m->count = to - from;
3558 if (from == 0 && phdr)
3560 /* Include the headers in the first PT_LOAD segment. */
3561 m->includes_filehdr = 1;
3562 m->includes_phdrs = 1;
3565 return m;
3568 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3569 on failure. */
3571 struct elf_segment_map *
3572 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3574 struct elf_segment_map *m;
3576 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3577 if (m == NULL)
3578 return NULL;
3579 m->next = NULL;
3580 m->p_type = PT_DYNAMIC;
3581 m->count = 1;
3582 m->sections[0] = dynsec;
3584 return m;
3587 /* Set up a mapping from BFD sections to program segments. */
3589 static bfd_boolean
3590 map_sections_to_segments (bfd *abfd)
3592 asection **sections = NULL;
3593 asection *s;
3594 unsigned int i;
3595 unsigned int count;
3596 struct elf_segment_map *mfirst;
3597 struct elf_segment_map **pm;
3598 struct elf_segment_map *m;
3599 asection *last_hdr;
3600 bfd_vma last_size;
3601 unsigned int phdr_index;
3602 bfd_vma maxpagesize;
3603 asection **hdrpp;
3604 bfd_boolean phdr_in_segment = TRUE;
3605 bfd_boolean writable;
3606 int tls_count = 0;
3607 asection *first_tls = NULL;
3608 asection *dynsec, *eh_frame_hdr;
3609 bfd_size_type amt;
3611 if (elf_tdata (abfd)->segment_map != NULL)
3612 return TRUE;
3614 if (bfd_count_sections (abfd) == 0)
3615 return TRUE;
3617 /* Select the allocated sections, and sort them. */
3619 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3620 if (sections == NULL)
3621 goto error_return;
3623 i = 0;
3624 for (s = abfd->sections; s != NULL; s = s->next)
3626 if ((s->flags & SEC_ALLOC) != 0)
3628 sections[i] = s;
3629 ++i;
3632 BFD_ASSERT (i <= bfd_count_sections (abfd));
3633 count = i;
3635 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3637 /* Build the mapping. */
3639 mfirst = NULL;
3640 pm = &mfirst;
3642 /* If we have a .interp section, then create a PT_PHDR segment for
3643 the program headers and a PT_INTERP segment for the .interp
3644 section. */
3645 s = bfd_get_section_by_name (abfd, ".interp");
3646 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3648 amt = sizeof (struct elf_segment_map);
3649 m = bfd_zalloc (abfd, amt);
3650 if (m == NULL)
3651 goto error_return;
3652 m->next = NULL;
3653 m->p_type = PT_PHDR;
3654 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3655 m->p_flags = PF_R | PF_X;
3656 m->p_flags_valid = 1;
3657 m->includes_phdrs = 1;
3659 *pm = m;
3660 pm = &m->next;
3662 amt = sizeof (struct elf_segment_map);
3663 m = bfd_zalloc (abfd, amt);
3664 if (m == NULL)
3665 goto error_return;
3666 m->next = NULL;
3667 m->p_type = PT_INTERP;
3668 m->count = 1;
3669 m->sections[0] = s;
3671 *pm = m;
3672 pm = &m->next;
3675 /* Look through the sections. We put sections in the same program
3676 segment when the start of the second section can be placed within
3677 a few bytes of the end of the first section. */
3678 last_hdr = NULL;
3679 last_size = 0;
3680 phdr_index = 0;
3681 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3682 writable = FALSE;
3683 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3684 if (dynsec != NULL
3685 && (dynsec->flags & SEC_LOAD) == 0)
3686 dynsec = NULL;
3688 /* Deal with -Ttext or something similar such that the first section
3689 is not adjacent to the program headers. This is an
3690 approximation, since at this point we don't know exactly how many
3691 program headers we will need. */
3692 if (count > 0)
3694 bfd_size_type phdr_size;
3696 phdr_size = elf_tdata (abfd)->program_header_size;
3697 if (phdr_size == 0)
3698 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3699 if ((abfd->flags & D_PAGED) == 0
3700 || sections[0]->lma < phdr_size
3701 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3702 phdr_in_segment = FALSE;
3705 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3707 asection *hdr;
3708 bfd_boolean new_segment;
3710 hdr = *hdrpp;
3712 /* See if this section and the last one will fit in the same
3713 segment. */
3715 if (last_hdr == NULL)
3717 /* If we don't have a segment yet, then we don't need a new
3718 one (we build the last one after this loop). */
3719 new_segment = FALSE;
3721 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3723 /* If this section has a different relation between the
3724 virtual address and the load address, then we need a new
3725 segment. */
3726 new_segment = TRUE;
3728 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3729 < BFD_ALIGN (hdr->lma, maxpagesize))
3731 /* If putting this section in this segment would force us to
3732 skip a page in the segment, then we need a new segment. */
3733 new_segment = TRUE;
3735 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3736 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3738 /* We don't want to put a loadable section after a
3739 nonloadable section in the same segment.
3740 Consider .tbss sections as loadable for this purpose. */
3741 new_segment = TRUE;
3743 else if ((abfd->flags & D_PAGED) == 0)
3745 /* If the file is not demand paged, which means that we
3746 don't require the sections to be correctly aligned in the
3747 file, then there is no other reason for a new segment. */
3748 new_segment = FALSE;
3750 else if (! writable
3751 && (hdr->flags & SEC_READONLY) == 0
3752 && (((last_hdr->lma + last_size - 1)
3753 & ~(maxpagesize - 1))
3754 != (hdr->lma & ~(maxpagesize - 1))))
3756 /* We don't want to put a writable section in a read only
3757 segment, unless they are on the same page in memory
3758 anyhow. We already know that the last section does not
3759 bring us past the current section on the page, so the
3760 only case in which the new section is not on the same
3761 page as the previous section is when the previous section
3762 ends precisely on a page boundary. */
3763 new_segment = TRUE;
3765 else
3767 /* Otherwise, we can use the same segment. */
3768 new_segment = FALSE;
3771 if (! new_segment)
3773 if ((hdr->flags & SEC_READONLY) == 0)
3774 writable = TRUE;
3775 last_hdr = hdr;
3776 /* .tbss sections effectively have zero size. */
3777 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3778 last_size = hdr->size;
3779 else
3780 last_size = 0;
3781 continue;
3784 /* We need a new program segment. We must create a new program
3785 header holding all the sections from phdr_index until hdr. */
3787 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3788 if (m == NULL)
3789 goto error_return;
3791 *pm = m;
3792 pm = &m->next;
3794 if ((hdr->flags & SEC_READONLY) == 0)
3795 writable = TRUE;
3796 else
3797 writable = FALSE;
3799 last_hdr = hdr;
3800 /* .tbss sections effectively have zero size. */
3801 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3802 last_size = hdr->size;
3803 else
3804 last_size = 0;
3805 phdr_index = i;
3806 phdr_in_segment = FALSE;
3809 /* Create a final PT_LOAD program segment. */
3810 if (last_hdr != NULL)
3812 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3813 if (m == NULL)
3814 goto error_return;
3816 *pm = m;
3817 pm = &m->next;
3820 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3821 if (dynsec != NULL)
3823 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3824 if (m == NULL)
3825 goto error_return;
3826 *pm = m;
3827 pm = &m->next;
3830 /* For each loadable .note section, add a PT_NOTE segment. We don't
3831 use bfd_get_section_by_name, because if we link together
3832 nonloadable .note sections and loadable .note sections, we will
3833 generate two .note sections in the output file. FIXME: Using
3834 names for section types is bogus anyhow. */
3835 for (s = abfd->sections; s != NULL; s = s->next)
3837 if ((s->flags & SEC_LOAD) != 0
3838 && strncmp (s->name, ".note", 5) == 0)
3840 amt = sizeof (struct elf_segment_map);
3841 m = bfd_zalloc (abfd, amt);
3842 if (m == NULL)
3843 goto error_return;
3844 m->next = NULL;
3845 m->p_type = PT_NOTE;
3846 m->count = 1;
3847 m->sections[0] = s;
3849 *pm = m;
3850 pm = &m->next;
3852 if (s->flags & SEC_THREAD_LOCAL)
3854 if (! tls_count)
3855 first_tls = s;
3856 tls_count++;
3860 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3861 if (tls_count > 0)
3863 int i;
3865 amt = sizeof (struct elf_segment_map);
3866 amt += (tls_count - 1) * sizeof (asection *);
3867 m = bfd_zalloc (abfd, amt);
3868 if (m == NULL)
3869 goto error_return;
3870 m->next = NULL;
3871 m->p_type = PT_TLS;
3872 m->count = tls_count;
3873 /* Mandated PF_R. */
3874 m->p_flags = PF_R;
3875 m->p_flags_valid = 1;
3876 for (i = 0; i < tls_count; ++i)
3878 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3879 m->sections[i] = first_tls;
3880 first_tls = first_tls->next;
3883 *pm = m;
3884 pm = &m->next;
3887 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3888 segment. */
3889 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3890 if (eh_frame_hdr != NULL
3891 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3893 amt = sizeof (struct elf_segment_map);
3894 m = bfd_zalloc (abfd, amt);
3895 if (m == NULL)
3896 goto error_return;
3897 m->next = NULL;
3898 m->p_type = PT_GNU_EH_FRAME;
3899 m->count = 1;
3900 m->sections[0] = eh_frame_hdr->output_section;
3902 *pm = m;
3903 pm = &m->next;
3906 if (elf_tdata (abfd)->stack_flags)
3908 amt = sizeof (struct elf_segment_map);
3909 m = bfd_zalloc (abfd, amt);
3910 if (m == NULL)
3911 goto error_return;
3912 m->next = NULL;
3913 m->p_type = PT_GNU_STACK;
3914 m->p_flags = elf_tdata (abfd)->stack_flags;
3915 m->p_flags_valid = 1;
3917 *pm = m;
3918 pm = &m->next;
3921 if (elf_tdata (abfd)->relro)
3923 amt = sizeof (struct elf_segment_map);
3924 m = bfd_zalloc (abfd, amt);
3925 if (m == NULL)
3926 goto error_return;
3927 m->next = NULL;
3928 m->p_type = PT_GNU_RELRO;
3929 m->p_flags = PF_R;
3930 m->p_flags_valid = 1;
3932 *pm = m;
3933 pm = &m->next;
3936 free (sections);
3937 sections = NULL;
3939 elf_tdata (abfd)->segment_map = mfirst;
3940 return TRUE;
3942 error_return:
3943 if (sections != NULL)
3944 free (sections);
3945 return FALSE;
3948 /* Sort sections by address. */
3950 static int
3951 elf_sort_sections (const void *arg1, const void *arg2)
3953 const asection *sec1 = *(const asection **) arg1;
3954 const asection *sec2 = *(const asection **) arg2;
3955 bfd_size_type size1, size2;
3957 /* Sort by LMA first, since this is the address used to
3958 place the section into a segment. */
3959 if (sec1->lma < sec2->lma)
3960 return -1;
3961 else if (sec1->lma > sec2->lma)
3962 return 1;
3964 /* Then sort by VMA. Normally the LMA and the VMA will be
3965 the same, and this will do nothing. */
3966 if (sec1->vma < sec2->vma)
3967 return -1;
3968 else if (sec1->vma > sec2->vma)
3969 return 1;
3971 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3973 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3975 if (TOEND (sec1))
3977 if (TOEND (sec2))
3979 /* If the indicies are the same, do not return 0
3980 here, but continue to try the next comparison. */
3981 if (sec1->target_index - sec2->target_index != 0)
3982 return sec1->target_index - sec2->target_index;
3984 else
3985 return 1;
3987 else if (TOEND (sec2))
3988 return -1;
3990 #undef TOEND
3992 /* Sort by size, to put zero sized sections
3993 before others at the same address. */
3995 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3996 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3998 if (size1 < size2)
3999 return -1;
4000 if (size1 > size2)
4001 return 1;
4003 return sec1->target_index - sec2->target_index;
4006 /* Ian Lance Taylor writes:
4008 We shouldn't be using % with a negative signed number. That's just
4009 not good. We have to make sure either that the number is not
4010 negative, or that the number has an unsigned type. When the types
4011 are all the same size they wind up as unsigned. When file_ptr is a
4012 larger signed type, the arithmetic winds up as signed long long,
4013 which is wrong.
4015 What we're trying to say here is something like ``increase OFF by
4016 the least amount that will cause it to be equal to the VMA modulo
4017 the page size.'' */
4018 /* In other words, something like:
4020 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4021 off_offset = off % bed->maxpagesize;
4022 if (vma_offset < off_offset)
4023 adjustment = vma_offset + bed->maxpagesize - off_offset;
4024 else
4025 adjustment = vma_offset - off_offset;
4027 which can can be collapsed into the expression below. */
4029 static file_ptr
4030 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4032 return ((vma - off) % maxpagesize);
4035 static void
4036 print_segment_map (bfd *abfd)
4038 struct elf_segment_map *m;
4039 unsigned int i, j;
4041 fprintf (stderr, _(" Section to Segment mapping:\n"));
4042 fprintf (stderr, _(" Segment Sections...\n"));
4044 for (i= 0, m = elf_tdata (abfd)->segment_map;
4045 m != NULL;
4046 i++, m = m->next)
4048 const char *pt = get_segment_type (m->p_type);
4049 char buf[32];
4051 if (pt == NULL)
4053 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4054 sprintf (buf, "LOPROC+%7.7x",
4055 (unsigned int) (m->p_type - PT_LOPROC));
4056 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4057 sprintf (buf, "LOOS+%7.7x",
4058 (unsigned int) (m->p_type - PT_LOOS));
4059 else
4060 snprintf (buf, sizeof (buf), "%8.8x",
4061 (unsigned int) m->p_type);
4062 pt = buf;
4064 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4065 for (j = 0; j < m->count; j++)
4066 fprintf (stderr, "%s ", m->sections [j]->name);
4067 putc ('\n',stderr);
4071 /* Assign file positions to the sections based on the mapping from
4072 sections to segments. This function also sets up some fields in
4073 the file header, and writes out the program headers. */
4075 static bfd_boolean
4076 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4078 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4079 unsigned int count;
4080 struct elf_segment_map *m;
4081 unsigned int alloc;
4082 Elf_Internal_Phdr *phdrs;
4083 file_ptr off, voff;
4084 bfd_vma filehdr_vaddr, filehdr_paddr;
4085 bfd_vma phdrs_vaddr, phdrs_paddr;
4086 Elf_Internal_Phdr *p;
4088 if (elf_tdata (abfd)->segment_map == NULL)
4090 if (! map_sections_to_segments (abfd))
4091 return FALSE;
4093 else
4095 /* The placement algorithm assumes that non allocated sections are
4096 not in PT_LOAD segments. We ensure this here by removing such
4097 sections from the segment map. We also remove excluded
4098 sections. */
4099 for (m = elf_tdata (abfd)->segment_map;
4100 m != NULL;
4101 m = m->next)
4103 unsigned int new_count;
4104 unsigned int i;
4106 new_count = 0;
4107 for (i = 0; i < m->count; i ++)
4109 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4110 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4111 || m->p_type != PT_LOAD))
4113 if (i != new_count)
4114 m->sections[new_count] = m->sections[i];
4116 new_count ++;
4120 if (new_count != m->count)
4121 m->count = new_count;
4125 if (bed->elf_backend_modify_segment_map)
4127 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4128 return FALSE;
4131 count = 0;
4132 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4133 ++count;
4135 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4136 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4137 elf_elfheader (abfd)->e_phnum = count;
4139 if (count == 0)
4141 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4142 return TRUE;
4145 /* If we already counted the number of program segments, make sure
4146 that we allocated enough space. This happens when SIZEOF_HEADERS
4147 is used in a linker script. */
4148 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4149 if (alloc != 0 && count > alloc)
4151 ((*_bfd_error_handler)
4152 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4153 abfd, alloc, count));
4154 print_segment_map (abfd);
4155 bfd_set_error (bfd_error_bad_value);
4156 return FALSE;
4159 if (alloc == 0)
4160 alloc = count;
4162 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4163 if (phdrs == NULL)
4164 return FALSE;
4166 off = bed->s->sizeof_ehdr;
4167 off += alloc * bed->s->sizeof_phdr;
4169 filehdr_vaddr = 0;
4170 filehdr_paddr = 0;
4171 phdrs_vaddr = 0;
4172 phdrs_paddr = 0;
4174 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4175 m != NULL;
4176 m = m->next, p++)
4178 unsigned int i;
4179 asection **secpp;
4181 /* If elf_segment_map is not from map_sections_to_segments, the
4182 sections may not be correctly ordered. NOTE: sorting should
4183 not be done to the PT_NOTE section of a corefile, which may
4184 contain several pseudo-sections artificially created by bfd.
4185 Sorting these pseudo-sections breaks things badly. */
4186 if (m->count > 1
4187 && !(elf_elfheader (abfd)->e_type == ET_CORE
4188 && m->p_type == PT_NOTE))
4189 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4190 elf_sort_sections);
4192 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4193 number of sections with contents contributing to both p_filesz
4194 and p_memsz, followed by a number of sections with no contents
4195 that just contribute to p_memsz. In this loop, OFF tracks next
4196 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4197 an adjustment we use for segments that have no file contents
4198 but need zero filled memory allocation. */
4199 voff = 0;
4200 p->p_type = m->p_type;
4201 p->p_flags = m->p_flags;
4203 if (p->p_type == PT_LOAD
4204 && m->count > 0)
4206 bfd_size_type align;
4207 bfd_vma adjust;
4208 unsigned int align_power = 0;
4210 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4212 unsigned int secalign;
4214 secalign = bfd_get_section_alignment (abfd, *secpp);
4215 if (secalign > align_power)
4216 align_power = secalign;
4218 align = (bfd_size_type) 1 << align_power;
4220 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4221 align = bed->maxpagesize;
4223 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4224 off += adjust;
4225 if (adjust != 0
4226 && !m->includes_filehdr
4227 && !m->includes_phdrs
4228 && (ufile_ptr) off >= align)
4230 /* If the first section isn't loadable, the same holds for
4231 any other sections. Since the segment won't need file
4232 space, we can make p_offset overlap some prior segment.
4233 However, .tbss is special. If a segment starts with
4234 .tbss, we need to look at the next section to decide
4235 whether the segment has any loadable sections. */
4236 i = 0;
4237 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4239 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4240 || ++i >= m->count)
4242 off -= adjust;
4243 voff = adjust - align;
4244 break;
4249 /* Make sure the .dynamic section is the first section in the
4250 PT_DYNAMIC segment. */
4251 else if (p->p_type == PT_DYNAMIC
4252 && m->count > 1
4253 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4255 _bfd_error_handler
4256 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4257 abfd);
4258 bfd_set_error (bfd_error_bad_value);
4259 return FALSE;
4262 if (m->count == 0)
4263 p->p_vaddr = 0;
4264 else
4265 p->p_vaddr = m->sections[0]->vma;
4267 if (m->p_paddr_valid)
4268 p->p_paddr = m->p_paddr;
4269 else if (m->count == 0)
4270 p->p_paddr = 0;
4271 else
4272 p->p_paddr = m->sections[0]->lma;
4274 if (p->p_type == PT_LOAD
4275 && (abfd->flags & D_PAGED) != 0)
4276 p->p_align = bed->maxpagesize;
4277 else if (m->count == 0)
4278 p->p_align = 1 << bed->s->log_file_align;
4279 else
4280 p->p_align = 0;
4282 p->p_offset = 0;
4283 p->p_filesz = 0;
4284 p->p_memsz = 0;
4286 if (m->includes_filehdr)
4288 if (! m->p_flags_valid)
4289 p->p_flags |= PF_R;
4290 p->p_offset = 0;
4291 p->p_filesz = bed->s->sizeof_ehdr;
4292 p->p_memsz = bed->s->sizeof_ehdr;
4293 if (m->count > 0)
4295 BFD_ASSERT (p->p_type == PT_LOAD);
4297 if (p->p_vaddr < (bfd_vma) off)
4299 (*_bfd_error_handler)
4300 (_("%B: Not enough room for program headers, try linking with -N"),
4301 abfd);
4302 bfd_set_error (bfd_error_bad_value);
4303 return FALSE;
4306 p->p_vaddr -= off;
4307 if (! m->p_paddr_valid)
4308 p->p_paddr -= off;
4310 if (p->p_type == PT_LOAD)
4312 filehdr_vaddr = p->p_vaddr;
4313 filehdr_paddr = p->p_paddr;
4317 if (m->includes_phdrs)
4319 if (! m->p_flags_valid)
4320 p->p_flags |= PF_R;
4322 if (m->includes_filehdr)
4324 if (p->p_type == PT_LOAD)
4326 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4327 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4330 else
4332 p->p_offset = bed->s->sizeof_ehdr;
4334 if (m->count > 0)
4336 BFD_ASSERT (p->p_type == PT_LOAD);
4337 p->p_vaddr -= off - p->p_offset;
4338 if (! m->p_paddr_valid)
4339 p->p_paddr -= off - p->p_offset;
4342 if (p->p_type == PT_LOAD)
4344 phdrs_vaddr = p->p_vaddr;
4345 phdrs_paddr = p->p_paddr;
4347 else
4348 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4351 p->p_filesz += alloc * bed->s->sizeof_phdr;
4352 p->p_memsz += alloc * bed->s->sizeof_phdr;
4355 if (p->p_type == PT_LOAD
4356 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4358 if (! m->includes_filehdr && ! m->includes_phdrs)
4359 p->p_offset = off + voff;
4360 else
4362 file_ptr adjust;
4364 adjust = off - (p->p_offset + p->p_filesz);
4365 p->p_filesz += adjust;
4366 p->p_memsz += adjust;
4370 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4372 asection *sec;
4373 flagword flags;
4374 bfd_size_type align;
4376 sec = *secpp;
4377 flags = sec->flags;
4378 align = 1 << bfd_get_section_alignment (abfd, sec);
4380 if (p->p_type == PT_LOAD
4381 || p->p_type == PT_TLS)
4383 bfd_signed_vma adjust;
4385 if ((flags & SEC_LOAD) != 0)
4387 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4388 if (adjust < 0)
4390 (*_bfd_error_handler)
4391 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4392 abfd, sec, (unsigned long) sec->lma);
4393 adjust = 0;
4395 off += adjust;
4396 p->p_filesz += adjust;
4397 p->p_memsz += adjust;
4399 /* .tbss is special. It doesn't contribute to p_memsz of
4400 normal segments. */
4401 else if ((flags & SEC_THREAD_LOCAL) == 0
4402 || p->p_type == PT_TLS)
4404 /* The section VMA must equal the file position
4405 modulo the page size. */
4406 bfd_size_type page = align;
4407 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4408 page = bed->maxpagesize;
4409 adjust = vma_page_aligned_bias (sec->vma,
4410 p->p_vaddr + p->p_memsz,
4411 page);
4412 p->p_memsz += adjust;
4416 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4418 /* The section at i == 0 is the one that actually contains
4419 everything. */
4420 if (i == 0)
4422 sec->filepos = off;
4423 off += sec->size;
4424 p->p_filesz = sec->size;
4425 p->p_memsz = 0;
4426 p->p_align = 1;
4428 else
4430 /* The rest are fake sections that shouldn't be written. */
4431 sec->filepos = 0;
4432 sec->size = 0;
4433 sec->flags = 0;
4434 continue;
4437 else
4439 if (p->p_type == PT_LOAD)
4441 sec->filepos = off;
4442 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4443 1997, and the exact reason for it isn't clear. One
4444 plausible explanation is that it is to work around
4445 a problem we have with linker scripts using data
4446 statements in NOLOAD sections. I don't think it
4447 makes a great deal of sense to have such a section
4448 assigned to a PT_LOAD segment, but apparently
4449 people do this. The data statement results in a
4450 bfd_data_link_order being built, and these need
4451 section contents to write into. Eventually, we get
4452 to _bfd_elf_write_object_contents which writes any
4453 section with contents to the output. Make room
4454 here for the write, so that following segments are
4455 not trashed. */
4456 if ((flags & SEC_LOAD) != 0
4457 || (flags & SEC_HAS_CONTENTS) != 0)
4458 off += sec->size;
4461 if ((flags & SEC_LOAD) != 0)
4463 p->p_filesz += sec->size;
4464 p->p_memsz += sec->size;
4466 /* PR ld/594: Sections in note segments which are not loaded
4467 contribute to the file size but not the in-memory size. */
4468 else if (p->p_type == PT_NOTE
4469 && (flags & SEC_HAS_CONTENTS) != 0)
4470 p->p_filesz += sec->size;
4472 /* .tbss is special. It doesn't contribute to p_memsz of
4473 normal segments. */
4474 else if ((flags & SEC_THREAD_LOCAL) == 0
4475 || p->p_type == PT_TLS)
4476 p->p_memsz += sec->size;
4478 if (p->p_type == PT_TLS
4479 && sec->size == 0
4480 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4482 struct bfd_link_order *o = sec->map_tail.link_order;
4483 if (o != NULL)
4484 p->p_memsz += o->offset + o->size;
4487 if (align > p->p_align
4488 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4489 p->p_align = align;
4492 if (! m->p_flags_valid)
4494 p->p_flags |= PF_R;
4495 if ((flags & SEC_CODE) != 0)
4496 p->p_flags |= PF_X;
4497 if ((flags & SEC_READONLY) == 0)
4498 p->p_flags |= PF_W;
4503 /* Now that we have set the section file positions, we can set up
4504 the file positions for the non PT_LOAD segments. */
4505 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4506 m != NULL;
4507 m = m->next, p++)
4509 if (p->p_type != PT_LOAD && m->count > 0)
4511 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4512 /* If the section has not yet been assigned a file position,
4513 do so now. The ARM BPABI requires that .dynamic section
4514 not be marked SEC_ALLOC because it is not part of any
4515 PT_LOAD segment, so it will not be processed above. */
4516 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4518 unsigned int i;
4519 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4521 i = 1;
4522 while (i_shdrpp[i]->bfd_section != m->sections[0])
4523 ++i;
4524 off = (_bfd_elf_assign_file_position_for_section
4525 (i_shdrpp[i], off, TRUE));
4526 p->p_filesz = m->sections[0]->size;
4528 p->p_offset = m->sections[0]->filepos;
4530 if (m->count == 0)
4532 if (m->includes_filehdr)
4534 p->p_vaddr = filehdr_vaddr;
4535 if (! m->p_paddr_valid)
4536 p->p_paddr = filehdr_paddr;
4538 else if (m->includes_phdrs)
4540 p->p_vaddr = phdrs_vaddr;
4541 if (! m->p_paddr_valid)
4542 p->p_paddr = phdrs_paddr;
4544 else if (p->p_type == PT_GNU_RELRO)
4546 Elf_Internal_Phdr *lp;
4548 for (lp = phdrs; lp < phdrs + count; ++lp)
4550 if (lp->p_type == PT_LOAD
4551 && lp->p_vaddr <= link_info->relro_end
4552 && lp->p_vaddr >= link_info->relro_start
4553 && lp->p_vaddr + lp->p_filesz
4554 >= link_info->relro_end)
4555 break;
4558 if (lp < phdrs + count
4559 && link_info->relro_end > lp->p_vaddr)
4561 p->p_vaddr = lp->p_vaddr;
4562 p->p_paddr = lp->p_paddr;
4563 p->p_offset = lp->p_offset;
4564 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4565 p->p_memsz = p->p_filesz;
4566 p->p_align = 1;
4567 p->p_flags = (lp->p_flags & ~PF_W);
4569 else
4571 memset (p, 0, sizeof *p);
4572 p->p_type = PT_NULL;
4578 /* Clear out any program headers we allocated but did not use. */
4579 for (; count < alloc; count++, p++)
4581 memset (p, 0, sizeof *p);
4582 p->p_type = PT_NULL;
4585 elf_tdata (abfd)->phdr = phdrs;
4587 elf_tdata (abfd)->next_file_pos = off;
4589 /* Write out the program headers. */
4590 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4591 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4592 return FALSE;
4594 return TRUE;
4597 /* Get the size of the program header.
4599 If this is called by the linker before any of the section VMA's are set, it
4600 can't calculate the correct value for a strange memory layout. This only
4601 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4602 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4603 data segment (exclusive of .interp and .dynamic).
4605 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4606 will be two segments. */
4608 static bfd_size_type
4609 get_program_header_size (bfd *abfd)
4611 size_t segs;
4612 asection *s;
4613 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4615 /* We can't return a different result each time we're called. */
4616 if (elf_tdata (abfd)->program_header_size != 0)
4617 return elf_tdata (abfd)->program_header_size;
4619 if (elf_tdata (abfd)->segment_map != NULL)
4621 struct elf_segment_map *m;
4623 segs = 0;
4624 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4625 ++segs;
4626 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4627 return elf_tdata (abfd)->program_header_size;
4630 /* Assume we will need exactly two PT_LOAD segments: one for text
4631 and one for data. */
4632 segs = 2;
4634 s = bfd_get_section_by_name (abfd, ".interp");
4635 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4637 /* If we have a loadable interpreter section, we need a
4638 PT_INTERP segment. In this case, assume we also need a
4639 PT_PHDR segment, although that may not be true for all
4640 targets. */
4641 segs += 2;
4644 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4646 /* We need a PT_DYNAMIC segment. */
4647 ++segs;
4650 if (elf_tdata (abfd)->eh_frame_hdr)
4652 /* We need a PT_GNU_EH_FRAME segment. */
4653 ++segs;
4656 if (elf_tdata (abfd)->stack_flags)
4658 /* We need a PT_GNU_STACK segment. */
4659 ++segs;
4662 if (elf_tdata (abfd)->relro)
4664 /* We need a PT_GNU_RELRO segment. */
4665 ++segs;
4668 for (s = abfd->sections; s != NULL; s = s->next)
4670 if ((s->flags & SEC_LOAD) != 0
4671 && strncmp (s->name, ".note", 5) == 0)
4673 /* We need a PT_NOTE segment. */
4674 ++segs;
4678 for (s = abfd->sections; s != NULL; s = s->next)
4680 if (s->flags & SEC_THREAD_LOCAL)
4682 /* We need a PT_TLS segment. */
4683 ++segs;
4684 break;
4688 /* Let the backend count up any program headers it might need. */
4689 if (bed->elf_backend_additional_program_headers)
4691 int a;
4693 a = (*bed->elf_backend_additional_program_headers) (abfd);
4694 if (a == -1)
4695 abort ();
4696 segs += a;
4699 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4700 return elf_tdata (abfd)->program_header_size;
4703 /* Work out the file positions of all the sections. This is called by
4704 _bfd_elf_compute_section_file_positions. All the section sizes and
4705 VMAs must be known before this is called.
4707 Reloc sections come in two flavours: Those processed specially as
4708 "side-channel" data attached to a section to which they apply, and
4709 those that bfd doesn't process as relocations. The latter sort are
4710 stored in a normal bfd section by bfd_section_from_shdr. We don't
4711 consider the former sort here, unless they form part of the loadable
4712 image. Reloc sections not assigned here will be handled later by
4713 assign_file_positions_for_relocs.
4715 We also don't set the positions of the .symtab and .strtab here. */
4717 static bfd_boolean
4718 assign_file_positions_except_relocs (bfd *abfd,
4719 struct bfd_link_info *link_info)
4721 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4722 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4723 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4724 unsigned int num_sec = elf_numsections (abfd);
4725 file_ptr off;
4726 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4728 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4729 && bfd_get_format (abfd) != bfd_core)
4731 Elf_Internal_Shdr **hdrpp;
4732 unsigned int i;
4734 /* Start after the ELF header. */
4735 off = i_ehdrp->e_ehsize;
4737 /* We are not creating an executable, which means that we are
4738 not creating a program header, and that the actual order of
4739 the sections in the file is unimportant. */
4740 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4742 Elf_Internal_Shdr *hdr;
4744 hdr = *hdrpp;
4745 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4746 && hdr->bfd_section == NULL)
4747 || i == tdata->symtab_section
4748 || i == tdata->symtab_shndx_section
4749 || i == tdata->strtab_section)
4751 hdr->sh_offset = -1;
4753 else
4754 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4756 if (i == SHN_LORESERVE - 1)
4758 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4759 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4763 else
4765 unsigned int i;
4766 Elf_Internal_Shdr **hdrpp;
4768 /* Assign file positions for the loaded sections based on the
4769 assignment of sections to segments. */
4770 if (! assign_file_positions_for_segments (abfd, link_info))
4771 return FALSE;
4773 /* Assign file positions for the other sections. */
4775 off = elf_tdata (abfd)->next_file_pos;
4776 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4778 Elf_Internal_Shdr *hdr;
4780 hdr = *hdrpp;
4781 if (hdr->bfd_section != NULL
4782 && hdr->bfd_section->filepos != 0)
4783 hdr->sh_offset = hdr->bfd_section->filepos;
4784 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4786 ((*_bfd_error_handler)
4787 (_("%B: warning: allocated section `%s' not in segment"),
4788 abfd,
4789 (hdr->bfd_section == NULL
4790 ? "*unknown*"
4791 : hdr->bfd_section->name)));
4792 if ((abfd->flags & D_PAGED) != 0)
4793 off += vma_page_aligned_bias (hdr->sh_addr, off,
4794 bed->maxpagesize);
4795 else
4796 off += vma_page_aligned_bias (hdr->sh_addr, off,
4797 hdr->sh_addralign);
4798 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4799 FALSE);
4801 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4802 && hdr->bfd_section == NULL)
4803 || hdr == i_shdrpp[tdata->symtab_section]
4804 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4805 || hdr == i_shdrpp[tdata->strtab_section])
4806 hdr->sh_offset = -1;
4807 else
4808 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4810 if (i == SHN_LORESERVE - 1)
4812 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4813 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4818 /* Place the section headers. */
4819 off = align_file_position (off, 1 << bed->s->log_file_align);
4820 i_ehdrp->e_shoff = off;
4821 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4823 elf_tdata (abfd)->next_file_pos = off;
4825 return TRUE;
4828 static bfd_boolean
4829 prep_headers (bfd *abfd)
4831 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4832 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4833 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4834 struct elf_strtab_hash *shstrtab;
4835 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4837 i_ehdrp = elf_elfheader (abfd);
4838 i_shdrp = elf_elfsections (abfd);
4840 shstrtab = _bfd_elf_strtab_init ();
4841 if (shstrtab == NULL)
4842 return FALSE;
4844 elf_shstrtab (abfd) = shstrtab;
4846 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4847 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4848 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4849 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4851 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4852 i_ehdrp->e_ident[EI_DATA] =
4853 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4854 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4856 if ((abfd->flags & DYNAMIC) != 0)
4857 i_ehdrp->e_type = ET_DYN;
4858 else if ((abfd->flags & EXEC_P) != 0)
4859 i_ehdrp->e_type = ET_EXEC;
4860 else if (bfd_get_format (abfd) == bfd_core)
4861 i_ehdrp->e_type = ET_CORE;
4862 else
4863 i_ehdrp->e_type = ET_REL;
4865 switch (bfd_get_arch (abfd))
4867 case bfd_arch_unknown:
4868 i_ehdrp->e_machine = EM_NONE;
4869 break;
4871 /* There used to be a long list of cases here, each one setting
4872 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4873 in the corresponding bfd definition. To avoid duplication,
4874 the switch was removed. Machines that need special handling
4875 can generally do it in elf_backend_final_write_processing(),
4876 unless they need the information earlier than the final write.
4877 Such need can generally be supplied by replacing the tests for
4878 e_machine with the conditions used to determine it. */
4879 default:
4880 i_ehdrp->e_machine = bed->elf_machine_code;
4883 i_ehdrp->e_version = bed->s->ev_current;
4884 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4886 /* No program header, for now. */
4887 i_ehdrp->e_phoff = 0;
4888 i_ehdrp->e_phentsize = 0;
4889 i_ehdrp->e_phnum = 0;
4891 /* Each bfd section is section header entry. */
4892 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4893 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4895 /* If we're building an executable, we'll need a program header table. */
4896 if (abfd->flags & EXEC_P)
4897 /* It all happens later. */
4899 else
4901 i_ehdrp->e_phentsize = 0;
4902 i_phdrp = 0;
4903 i_ehdrp->e_phoff = 0;
4906 elf_tdata (abfd)->symtab_hdr.sh_name =
4907 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4908 elf_tdata (abfd)->strtab_hdr.sh_name =
4909 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4910 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4911 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4912 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4913 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4914 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4915 return FALSE;
4917 return TRUE;
4920 /* Assign file positions for all the reloc sections which are not part
4921 of the loadable file image. */
4923 void
4924 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4926 file_ptr off;
4927 unsigned int i, num_sec;
4928 Elf_Internal_Shdr **shdrpp;
4930 off = elf_tdata (abfd)->next_file_pos;
4932 num_sec = elf_numsections (abfd);
4933 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4935 Elf_Internal_Shdr *shdrp;
4937 shdrp = *shdrpp;
4938 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4939 && shdrp->sh_offset == -1)
4940 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4943 elf_tdata (abfd)->next_file_pos = off;
4946 bfd_boolean
4947 _bfd_elf_write_object_contents (bfd *abfd)
4949 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4950 Elf_Internal_Ehdr *i_ehdrp;
4951 Elf_Internal_Shdr **i_shdrp;
4952 bfd_boolean failed;
4953 unsigned int count, num_sec;
4955 if (! abfd->output_has_begun
4956 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4957 return FALSE;
4959 i_shdrp = elf_elfsections (abfd);
4960 i_ehdrp = elf_elfheader (abfd);
4962 failed = FALSE;
4963 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4964 if (failed)
4965 return FALSE;
4967 _bfd_elf_assign_file_positions_for_relocs (abfd);
4969 /* After writing the headers, we need to write the sections too... */
4970 num_sec = elf_numsections (abfd);
4971 for (count = 1; count < num_sec; count++)
4973 if (bed->elf_backend_section_processing)
4974 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4975 if (i_shdrp[count]->contents)
4977 bfd_size_type amt = i_shdrp[count]->sh_size;
4979 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4980 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4981 return FALSE;
4983 if (count == SHN_LORESERVE - 1)
4984 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4987 /* Write out the section header names. */
4988 if (elf_shstrtab (abfd) != NULL
4989 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4990 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4991 return FALSE;
4993 if (bed->elf_backend_final_write_processing)
4994 (*bed->elf_backend_final_write_processing) (abfd,
4995 elf_tdata (abfd)->linker);
4997 return bed->s->write_shdrs_and_ehdr (abfd);
5000 bfd_boolean
5001 _bfd_elf_write_corefile_contents (bfd *abfd)
5003 /* Hopefully this can be done just like an object file. */
5004 return _bfd_elf_write_object_contents (abfd);
5007 /* Given a section, search the header to find them. */
5010 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5012 const struct elf_backend_data *bed;
5013 int index;
5015 if (elf_section_data (asect) != NULL
5016 && elf_section_data (asect)->this_idx != 0)
5017 return elf_section_data (asect)->this_idx;
5019 if (bfd_is_abs_section (asect))
5020 index = SHN_ABS;
5021 else if (bfd_is_com_section (asect))
5022 index = SHN_COMMON;
5023 else if (bfd_is_und_section (asect))
5024 index = SHN_UNDEF;
5025 else
5026 index = -1;
5028 bed = get_elf_backend_data (abfd);
5029 if (bed->elf_backend_section_from_bfd_section)
5031 int retval = index;
5033 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5034 return retval;
5037 if (index == -1)
5038 bfd_set_error (bfd_error_nonrepresentable_section);
5040 return index;
5043 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5044 on error. */
5047 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5049 asymbol *asym_ptr = *asym_ptr_ptr;
5050 int idx;
5051 flagword flags = asym_ptr->flags;
5053 /* When gas creates relocations against local labels, it creates its
5054 own symbol for the section, but does put the symbol into the
5055 symbol chain, so udata is 0. When the linker is generating
5056 relocatable output, this section symbol may be for one of the
5057 input sections rather than the output section. */
5058 if (asym_ptr->udata.i == 0
5059 && (flags & BSF_SECTION_SYM)
5060 && asym_ptr->section)
5062 int indx;
5064 if (asym_ptr->section->output_section != NULL)
5065 indx = asym_ptr->section->output_section->index;
5066 else
5067 indx = asym_ptr->section->index;
5068 if (indx < elf_num_section_syms (abfd)
5069 && elf_section_syms (abfd)[indx] != NULL)
5070 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5073 idx = asym_ptr->udata.i;
5075 if (idx == 0)
5077 /* This case can occur when using --strip-symbol on a symbol
5078 which is used in a relocation entry. */
5079 (*_bfd_error_handler)
5080 (_("%B: symbol `%s' required but not present"),
5081 abfd, bfd_asymbol_name (asym_ptr));
5082 bfd_set_error (bfd_error_no_symbols);
5083 return -1;
5086 #if DEBUG & 4
5088 fprintf (stderr,
5089 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5090 (long) asym_ptr, asym_ptr->name, idx, flags,
5091 elf_symbol_flags (flags));
5092 fflush (stderr);
5094 #endif
5096 return idx;
5099 /* Rewrite program header information. */
5101 static bfd_boolean
5102 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5104 Elf_Internal_Ehdr *iehdr;
5105 struct elf_segment_map *map;
5106 struct elf_segment_map *map_first;
5107 struct elf_segment_map **pointer_to_map;
5108 Elf_Internal_Phdr *segment;
5109 asection *section;
5110 unsigned int i;
5111 unsigned int num_segments;
5112 bfd_boolean phdr_included = FALSE;
5113 bfd_vma maxpagesize;
5114 struct elf_segment_map *phdr_adjust_seg = NULL;
5115 unsigned int phdr_adjust_num = 0;
5116 const struct elf_backend_data *bed;
5118 bed = get_elf_backend_data (ibfd);
5119 iehdr = elf_elfheader (ibfd);
5121 map_first = NULL;
5122 pointer_to_map = &map_first;
5124 num_segments = elf_elfheader (ibfd)->e_phnum;
5125 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5127 /* Returns the end address of the segment + 1. */
5128 #define SEGMENT_END(segment, start) \
5129 (start + (segment->p_memsz > segment->p_filesz \
5130 ? segment->p_memsz : segment->p_filesz))
5132 #define SECTION_SIZE(section, segment) \
5133 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5134 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5135 ? section->size : 0)
5137 /* Returns TRUE if the given section is contained within
5138 the given segment. VMA addresses are compared. */
5139 #define IS_CONTAINED_BY_VMA(section, segment) \
5140 (section->vma >= segment->p_vaddr \
5141 && (section->vma + SECTION_SIZE (section, segment) \
5142 <= (SEGMENT_END (segment, segment->p_vaddr))))
5144 /* Returns TRUE if the given section is contained within
5145 the given segment. LMA addresses are compared. */
5146 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5147 (section->lma >= base \
5148 && (section->lma + SECTION_SIZE (section, segment) \
5149 <= SEGMENT_END (segment, base)))
5151 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5152 #define IS_COREFILE_NOTE(p, s) \
5153 (p->p_type == PT_NOTE \
5154 && bfd_get_format (ibfd) == bfd_core \
5155 && s->vma == 0 && s->lma == 0 \
5156 && (bfd_vma) s->filepos >= p->p_offset \
5157 && ((bfd_vma) s->filepos + s->size \
5158 <= p->p_offset + p->p_filesz))
5160 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5161 linker, which generates a PT_INTERP section with p_vaddr and
5162 p_memsz set to 0. */
5163 #define IS_SOLARIS_PT_INTERP(p, s) \
5164 (p->p_vaddr == 0 \
5165 && p->p_paddr == 0 \
5166 && p->p_memsz == 0 \
5167 && p->p_filesz > 0 \
5168 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5169 && s->size > 0 \
5170 && (bfd_vma) s->filepos >= p->p_offset \
5171 && ((bfd_vma) s->filepos + s->size \
5172 <= p->p_offset + p->p_filesz))
5174 /* Decide if the given section should be included in the given segment.
5175 A section will be included if:
5176 1. It is within the address space of the segment -- we use the LMA
5177 if that is set for the segment and the VMA otherwise,
5178 2. It is an allocated segment,
5179 3. There is an output section associated with it,
5180 4. The section has not already been allocated to a previous segment.
5181 5. PT_GNU_STACK segments do not include any sections.
5182 6. PT_TLS segment includes only SHF_TLS sections.
5183 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5184 8. PT_DYNAMIC should not contain empty sections at the beginning
5185 (with the possible exception of .dynamic). */
5186 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5187 ((((segment->p_paddr \
5188 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5189 : IS_CONTAINED_BY_VMA (section, segment)) \
5190 && (section->flags & SEC_ALLOC) != 0) \
5191 || IS_COREFILE_NOTE (segment, section)) \
5192 && section->output_section != NULL \
5193 && segment->p_type != PT_GNU_STACK \
5194 && (segment->p_type != PT_TLS \
5195 || (section->flags & SEC_THREAD_LOCAL)) \
5196 && (segment->p_type == PT_LOAD \
5197 || segment->p_type == PT_TLS \
5198 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5199 && (segment->p_type != PT_DYNAMIC \
5200 || SECTION_SIZE (section, segment) > 0 \
5201 || (segment->p_paddr \
5202 ? segment->p_paddr != section->lma \
5203 : segment->p_vaddr != section->vma) \
5204 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5205 == 0)) \
5206 && ! section->segment_mark)
5208 /* Returns TRUE iff seg1 starts after the end of seg2. */
5209 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5210 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5212 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5213 their VMA address ranges and their LMA address ranges overlap.
5214 It is possible to have overlapping VMA ranges without overlapping LMA
5215 ranges. RedBoot images for example can have both .data and .bss mapped
5216 to the same VMA range, but with the .data section mapped to a different
5217 LMA. */
5218 #define SEGMENT_OVERLAPS(seg1, seg2) \
5219 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5220 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5221 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5222 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5224 /* Initialise the segment mark field. */
5225 for (section = ibfd->sections; section != NULL; section = section->next)
5226 section->segment_mark = FALSE;
5228 /* Scan through the segments specified in the program header
5229 of the input BFD. For this first scan we look for overlaps
5230 in the loadable segments. These can be created by weird
5231 parameters to objcopy. Also, fix some solaris weirdness. */
5232 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5233 i < num_segments;
5234 i++, segment++)
5236 unsigned int j;
5237 Elf_Internal_Phdr *segment2;
5239 if (segment->p_type == PT_INTERP)
5240 for (section = ibfd->sections; section; section = section->next)
5241 if (IS_SOLARIS_PT_INTERP (segment, section))
5243 /* Mininal change so that the normal section to segment
5244 assignment code will work. */
5245 segment->p_vaddr = section->vma;
5246 break;
5249 if (segment->p_type != PT_LOAD)
5250 continue;
5252 /* Determine if this segment overlaps any previous segments. */
5253 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5255 bfd_signed_vma extra_length;
5257 if (segment2->p_type != PT_LOAD
5258 || ! SEGMENT_OVERLAPS (segment, segment2))
5259 continue;
5261 /* Merge the two segments together. */
5262 if (segment2->p_vaddr < segment->p_vaddr)
5264 /* Extend SEGMENT2 to include SEGMENT and then delete
5265 SEGMENT. */
5266 extra_length =
5267 SEGMENT_END (segment, segment->p_vaddr)
5268 - SEGMENT_END (segment2, segment2->p_vaddr);
5270 if (extra_length > 0)
5272 segment2->p_memsz += extra_length;
5273 segment2->p_filesz += extra_length;
5276 segment->p_type = PT_NULL;
5278 /* Since we have deleted P we must restart the outer loop. */
5279 i = 0;
5280 segment = elf_tdata (ibfd)->phdr;
5281 break;
5283 else
5285 /* Extend SEGMENT to include SEGMENT2 and then delete
5286 SEGMENT2. */
5287 extra_length =
5288 SEGMENT_END (segment2, segment2->p_vaddr)
5289 - SEGMENT_END (segment, segment->p_vaddr);
5291 if (extra_length > 0)
5293 segment->p_memsz += extra_length;
5294 segment->p_filesz += extra_length;
5297 segment2->p_type = PT_NULL;
5302 /* The second scan attempts to assign sections to segments. */
5303 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5304 i < num_segments;
5305 i ++, segment ++)
5307 unsigned int section_count;
5308 asection ** sections;
5309 asection * output_section;
5310 unsigned int isec;
5311 bfd_vma matching_lma;
5312 bfd_vma suggested_lma;
5313 unsigned int j;
5314 bfd_size_type amt;
5316 if (segment->p_type == PT_NULL)
5317 continue;
5319 /* Compute how many sections might be placed into this segment. */
5320 for (section = ibfd->sections, section_count = 0;
5321 section != NULL;
5322 section = section->next)
5323 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5324 ++section_count;
5326 /* Allocate a segment map big enough to contain
5327 all of the sections we have selected. */
5328 amt = sizeof (struct elf_segment_map);
5329 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5330 map = bfd_alloc (obfd, amt);
5331 if (map == NULL)
5332 return FALSE;
5334 /* Initialise the fields of the segment map. Default to
5335 using the physical address of the segment in the input BFD. */
5336 map->next = NULL;
5337 map->p_type = segment->p_type;
5338 map->p_flags = segment->p_flags;
5339 map->p_flags_valid = 1;
5340 map->p_paddr = segment->p_paddr;
5341 map->p_paddr_valid = 1;
5343 /* Determine if this segment contains the ELF file header
5344 and if it contains the program headers themselves. */
5345 map->includes_filehdr = (segment->p_offset == 0
5346 && segment->p_filesz >= iehdr->e_ehsize);
5348 map->includes_phdrs = 0;
5350 if (! phdr_included || segment->p_type != PT_LOAD)
5352 map->includes_phdrs =
5353 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5354 && (segment->p_offset + segment->p_filesz
5355 >= ((bfd_vma) iehdr->e_phoff
5356 + iehdr->e_phnum * iehdr->e_phentsize)));
5358 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5359 phdr_included = TRUE;
5362 if (section_count == 0)
5364 /* Special segments, such as the PT_PHDR segment, may contain
5365 no sections, but ordinary, loadable segments should contain
5366 something. They are allowed by the ELF spec however, so only
5367 a warning is produced. */
5368 if (segment->p_type == PT_LOAD)
5369 (*_bfd_error_handler)
5370 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5371 ibfd);
5373 map->count = 0;
5374 *pointer_to_map = map;
5375 pointer_to_map = &map->next;
5377 continue;
5380 /* Now scan the sections in the input BFD again and attempt
5381 to add their corresponding output sections to the segment map.
5382 The problem here is how to handle an output section which has
5383 been moved (ie had its LMA changed). There are four possibilities:
5385 1. None of the sections have been moved.
5386 In this case we can continue to use the segment LMA from the
5387 input BFD.
5389 2. All of the sections have been moved by the same amount.
5390 In this case we can change the segment's LMA to match the LMA
5391 of the first section.
5393 3. Some of the sections have been moved, others have not.
5394 In this case those sections which have not been moved can be
5395 placed in the current segment which will have to have its size,
5396 and possibly its LMA changed, and a new segment or segments will
5397 have to be created to contain the other sections.
5399 4. The sections have been moved, but not by the same amount.
5400 In this case we can change the segment's LMA to match the LMA
5401 of the first section and we will have to create a new segment
5402 or segments to contain the other sections.
5404 In order to save time, we allocate an array to hold the section
5405 pointers that we are interested in. As these sections get assigned
5406 to a segment, they are removed from this array. */
5408 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5409 to work around this long long bug. */
5410 sections = bfd_malloc2 (section_count, sizeof (asection *));
5411 if (sections == NULL)
5412 return FALSE;
5414 /* Step One: Scan for segment vs section LMA conflicts.
5415 Also add the sections to the section array allocated above.
5416 Also add the sections to the current segment. In the common
5417 case, where the sections have not been moved, this means that
5418 we have completely filled the segment, and there is nothing
5419 more to do. */
5420 isec = 0;
5421 matching_lma = 0;
5422 suggested_lma = 0;
5424 for (j = 0, section = ibfd->sections;
5425 section != NULL;
5426 section = section->next)
5428 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5430 output_section = section->output_section;
5432 sections[j ++] = section;
5434 /* The Solaris native linker always sets p_paddr to 0.
5435 We try to catch that case here, and set it to the
5436 correct value. Note - some backends require that
5437 p_paddr be left as zero. */
5438 if (segment->p_paddr == 0
5439 && segment->p_vaddr != 0
5440 && (! bed->want_p_paddr_set_to_zero)
5441 && isec == 0
5442 && output_section->lma != 0
5443 && (output_section->vma == (segment->p_vaddr
5444 + (map->includes_filehdr
5445 ? iehdr->e_ehsize
5446 : 0)
5447 + (map->includes_phdrs
5448 ? (iehdr->e_phnum
5449 * iehdr->e_phentsize)
5450 : 0))))
5451 map->p_paddr = segment->p_vaddr;
5453 /* Match up the physical address of the segment with the
5454 LMA address of the output section. */
5455 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5456 || IS_COREFILE_NOTE (segment, section)
5457 || (bed->want_p_paddr_set_to_zero &&
5458 IS_CONTAINED_BY_VMA (output_section, segment))
5461 if (matching_lma == 0)
5462 matching_lma = output_section->lma;
5464 /* We assume that if the section fits within the segment
5465 then it does not overlap any other section within that
5466 segment. */
5467 map->sections[isec ++] = output_section;
5469 else if (suggested_lma == 0)
5470 suggested_lma = output_section->lma;
5474 BFD_ASSERT (j == section_count);
5476 /* Step Two: Adjust the physical address of the current segment,
5477 if necessary. */
5478 if (isec == section_count)
5480 /* All of the sections fitted within the segment as currently
5481 specified. This is the default case. Add the segment to
5482 the list of built segments and carry on to process the next
5483 program header in the input BFD. */
5484 map->count = section_count;
5485 *pointer_to_map = map;
5486 pointer_to_map = &map->next;
5488 free (sections);
5489 continue;
5491 else
5493 if (matching_lma != 0)
5495 /* At least one section fits inside the current segment.
5496 Keep it, but modify its physical address to match the
5497 LMA of the first section that fitted. */
5498 map->p_paddr = matching_lma;
5500 else
5502 /* None of the sections fitted inside the current segment.
5503 Change the current segment's physical address to match
5504 the LMA of the first section. */
5505 map->p_paddr = suggested_lma;
5508 /* Offset the segment physical address from the lma
5509 to allow for space taken up by elf headers. */
5510 if (map->includes_filehdr)
5511 map->p_paddr -= iehdr->e_ehsize;
5513 if (map->includes_phdrs)
5515 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5517 /* iehdr->e_phnum is just an estimate of the number
5518 of program headers that we will need. Make a note
5519 here of the number we used and the segment we chose
5520 to hold these headers, so that we can adjust the
5521 offset when we know the correct value. */
5522 phdr_adjust_num = iehdr->e_phnum;
5523 phdr_adjust_seg = map;
5527 /* Step Three: Loop over the sections again, this time assigning
5528 those that fit to the current segment and removing them from the
5529 sections array; but making sure not to leave large gaps. Once all
5530 possible sections have been assigned to the current segment it is
5531 added to the list of built segments and if sections still remain
5532 to be assigned, a new segment is constructed before repeating
5533 the loop. */
5534 isec = 0;
5537 map->count = 0;
5538 suggested_lma = 0;
5540 /* Fill the current segment with sections that fit. */
5541 for (j = 0; j < section_count; j++)
5543 section = sections[j];
5545 if (section == NULL)
5546 continue;
5548 output_section = section->output_section;
5550 BFD_ASSERT (output_section != NULL);
5552 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5553 || IS_COREFILE_NOTE (segment, section))
5555 if (map->count == 0)
5557 /* If the first section in a segment does not start at
5558 the beginning of the segment, then something is
5559 wrong. */
5560 if (output_section->lma !=
5561 (map->p_paddr
5562 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5563 + (map->includes_phdrs
5564 ? iehdr->e_phnum * iehdr->e_phentsize
5565 : 0)))
5566 abort ();
5568 else
5570 asection * prev_sec;
5572 prev_sec = map->sections[map->count - 1];
5574 /* If the gap between the end of the previous section
5575 and the start of this section is more than
5576 maxpagesize then we need to start a new segment. */
5577 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5578 maxpagesize)
5579 < BFD_ALIGN (output_section->lma, maxpagesize))
5580 || ((prev_sec->lma + prev_sec->size)
5581 > output_section->lma))
5583 if (suggested_lma == 0)
5584 suggested_lma = output_section->lma;
5586 continue;
5590 map->sections[map->count++] = output_section;
5591 ++isec;
5592 sections[j] = NULL;
5593 section->segment_mark = TRUE;
5595 else if (suggested_lma == 0)
5596 suggested_lma = output_section->lma;
5599 BFD_ASSERT (map->count > 0);
5601 /* Add the current segment to the list of built segments. */
5602 *pointer_to_map = map;
5603 pointer_to_map = &map->next;
5605 if (isec < section_count)
5607 /* We still have not allocated all of the sections to
5608 segments. Create a new segment here, initialise it
5609 and carry on looping. */
5610 amt = sizeof (struct elf_segment_map);
5611 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5612 map = bfd_alloc (obfd, amt);
5613 if (map == NULL)
5615 free (sections);
5616 return FALSE;
5619 /* Initialise the fields of the segment map. Set the physical
5620 physical address to the LMA of the first section that has
5621 not yet been assigned. */
5622 map->next = NULL;
5623 map->p_type = segment->p_type;
5624 map->p_flags = segment->p_flags;
5625 map->p_flags_valid = 1;
5626 map->p_paddr = suggested_lma;
5627 map->p_paddr_valid = 1;
5628 map->includes_filehdr = 0;
5629 map->includes_phdrs = 0;
5632 while (isec < section_count);
5634 free (sections);
5637 /* The Solaris linker creates program headers in which all the
5638 p_paddr fields are zero. When we try to objcopy or strip such a
5639 file, we get confused. Check for this case, and if we find it
5640 reset the p_paddr_valid fields. */
5641 for (map = map_first; map != NULL; map = map->next)
5642 if (map->p_paddr != 0)
5643 break;
5644 if (map == NULL)
5645 for (map = map_first; map != NULL; map = map->next)
5646 map->p_paddr_valid = 0;
5648 elf_tdata (obfd)->segment_map = map_first;
5650 /* If we had to estimate the number of program headers that were
5651 going to be needed, then check our estimate now and adjust
5652 the offset if necessary. */
5653 if (phdr_adjust_seg != NULL)
5655 unsigned int count;
5657 for (count = 0, map = map_first; map != NULL; map = map->next)
5658 count++;
5660 if (count > phdr_adjust_num)
5661 phdr_adjust_seg->p_paddr
5662 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5665 #undef SEGMENT_END
5666 #undef SECTION_SIZE
5667 #undef IS_CONTAINED_BY_VMA
5668 #undef IS_CONTAINED_BY_LMA
5669 #undef IS_COREFILE_NOTE
5670 #undef IS_SOLARIS_PT_INTERP
5671 #undef INCLUDE_SECTION_IN_SEGMENT
5672 #undef SEGMENT_AFTER_SEGMENT
5673 #undef SEGMENT_OVERLAPS
5674 return TRUE;
5677 /* Copy ELF program header information. */
5679 static bfd_boolean
5680 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5682 Elf_Internal_Ehdr *iehdr;
5683 struct elf_segment_map *map;
5684 struct elf_segment_map *map_first;
5685 struct elf_segment_map **pointer_to_map;
5686 Elf_Internal_Phdr *segment;
5687 unsigned int i;
5688 unsigned int num_segments;
5689 bfd_boolean phdr_included = FALSE;
5691 iehdr = elf_elfheader (ibfd);
5693 map_first = NULL;
5694 pointer_to_map = &map_first;
5696 num_segments = elf_elfheader (ibfd)->e_phnum;
5697 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5698 i < num_segments;
5699 i++, segment++)
5701 asection *section;
5702 unsigned int section_count;
5703 bfd_size_type amt;
5704 Elf_Internal_Shdr *this_hdr;
5706 /* FIXME: Do we need to copy PT_NULL segment? */
5707 if (segment->p_type == PT_NULL)
5708 continue;
5710 /* Compute how many sections are in this segment. */
5711 for (section = ibfd->sections, section_count = 0;
5712 section != NULL;
5713 section = section->next)
5715 this_hdr = &(elf_section_data(section)->this_hdr);
5716 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5717 section_count++;
5720 /* Allocate a segment map big enough to contain
5721 all of the sections we have selected. */
5722 amt = sizeof (struct elf_segment_map);
5723 if (section_count != 0)
5724 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5725 map = bfd_alloc (obfd, amt);
5726 if (map == NULL)
5727 return FALSE;
5729 /* Initialize the fields of the output segment map with the
5730 input segment. */
5731 map->next = NULL;
5732 map->p_type = segment->p_type;
5733 map->p_flags = segment->p_flags;
5734 map->p_flags_valid = 1;
5735 map->p_paddr = segment->p_paddr;
5736 map->p_paddr_valid = 1;
5738 /* Determine if this segment contains the ELF file header
5739 and if it contains the program headers themselves. */
5740 map->includes_filehdr = (segment->p_offset == 0
5741 && segment->p_filesz >= iehdr->e_ehsize);
5743 map->includes_phdrs = 0;
5744 if (! phdr_included || segment->p_type != PT_LOAD)
5746 map->includes_phdrs =
5747 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5748 && (segment->p_offset + segment->p_filesz
5749 >= ((bfd_vma) iehdr->e_phoff
5750 + iehdr->e_phnum * iehdr->e_phentsize)));
5752 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5753 phdr_included = TRUE;
5756 if (section_count != 0)
5758 unsigned int isec = 0;
5760 for (section = ibfd->sections;
5761 section != NULL;
5762 section = section->next)
5764 this_hdr = &(elf_section_data(section)->this_hdr);
5765 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5766 map->sections[isec++] = section->output_section;
5770 map->count = section_count;
5771 *pointer_to_map = map;
5772 pointer_to_map = &map->next;
5775 elf_tdata (obfd)->segment_map = map_first;
5776 return TRUE;
5779 /* Copy private BFD data. This copies or rewrites ELF program header
5780 information. */
5782 static bfd_boolean
5783 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5785 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5786 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5787 return TRUE;
5789 if (elf_tdata (ibfd)->phdr == NULL)
5790 return TRUE;
5792 if (ibfd->xvec == obfd->xvec)
5794 /* Check if any sections in the input BFD covered by ELF program
5795 header are changed. */
5796 Elf_Internal_Phdr *segment;
5797 asection *section, *osec;
5798 unsigned int i, num_segments;
5799 Elf_Internal_Shdr *this_hdr;
5801 /* Initialize the segment mark field. */
5802 for (section = obfd->sections; section != NULL;
5803 section = section->next)
5804 section->segment_mark = FALSE;
5806 num_segments = elf_elfheader (ibfd)->e_phnum;
5807 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5808 i < num_segments;
5809 i++, segment++)
5811 for (section = ibfd->sections;
5812 section != NULL; section = section->next)
5814 /* We mark the output section so that we know it comes
5815 from the input BFD. */
5816 osec = section->output_section;
5817 if (osec)
5818 osec->segment_mark = TRUE;
5820 /* Check if this section is covered by the segment. */
5821 this_hdr = &(elf_section_data(section)->this_hdr);
5822 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5824 /* FIXME: Check if its output section is changed or
5825 removed. What else do we need to check? */
5826 if (osec == NULL
5827 || section->flags != osec->flags
5828 || section->lma != osec->lma
5829 || section->vma != osec->vma
5830 || section->size != osec->size
5831 || section->rawsize != osec->rawsize
5832 || section->alignment_power != osec->alignment_power)
5833 goto rewrite;
5838 /* Check to see if any output section doesn't come from the
5839 input BFD. */
5840 for (section = obfd->sections; section != NULL;
5841 section = section->next)
5843 if (section->segment_mark == FALSE)
5844 goto rewrite;
5845 else
5846 section->segment_mark = FALSE;
5849 return copy_elf_program_header (ibfd, obfd);
5852 rewrite:
5853 return rewrite_elf_program_header (ibfd, obfd);
5856 /* Initialize private output section information from input section. */
5858 bfd_boolean
5859 _bfd_elf_init_private_section_data (bfd *ibfd,
5860 asection *isec,
5861 bfd *obfd,
5862 asection *osec,
5863 struct bfd_link_info *link_info)
5866 Elf_Internal_Shdr *ihdr, *ohdr;
5867 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5869 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5870 || obfd->xvec->flavour != bfd_target_elf_flavour)
5871 return TRUE;
5873 /* FIXME: What if the output ELF section type has been set to
5874 something different? */
5875 if (elf_section_type (osec) == SHT_NULL)
5876 elf_section_type (osec) = elf_section_type (isec);
5878 /* Set things up for objcopy and relocatable link. The output
5879 SHT_GROUP section will have its elf_next_in_group pointing back
5880 to the input group members. Ignore linker created group section.
5881 See elfNN_ia64_object_p in elfxx-ia64.c. */
5883 if (need_group)
5885 if (elf_sec_group (isec) == NULL
5886 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5888 if (elf_section_flags (isec) & SHF_GROUP)
5889 elf_section_flags (osec) |= SHF_GROUP;
5890 elf_next_in_group (osec) = elf_next_in_group (isec);
5891 elf_group_name (osec) = elf_group_name (isec);
5895 ihdr = &elf_section_data (isec)->this_hdr;
5897 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5898 don't use the output section of the linked-to section since it
5899 may be NULL at this point. */
5900 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5902 ohdr = &elf_section_data (osec)->this_hdr;
5903 ohdr->sh_flags |= SHF_LINK_ORDER;
5904 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5907 osec->use_rela_p = isec->use_rela_p;
5909 return TRUE;
5912 /* Copy private section information. This copies over the entsize
5913 field, and sometimes the info field. */
5915 bfd_boolean
5916 _bfd_elf_copy_private_section_data (bfd *ibfd,
5917 asection *isec,
5918 bfd *obfd,
5919 asection *osec)
5921 Elf_Internal_Shdr *ihdr, *ohdr;
5923 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5924 || obfd->xvec->flavour != bfd_target_elf_flavour)
5925 return TRUE;
5927 ihdr = &elf_section_data (isec)->this_hdr;
5928 ohdr = &elf_section_data (osec)->this_hdr;
5930 ohdr->sh_entsize = ihdr->sh_entsize;
5932 if (ihdr->sh_type == SHT_SYMTAB
5933 || ihdr->sh_type == SHT_DYNSYM
5934 || ihdr->sh_type == SHT_GNU_verneed
5935 || ihdr->sh_type == SHT_GNU_verdef)
5936 ohdr->sh_info = ihdr->sh_info;
5938 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5939 NULL);
5942 /* Copy private header information. */
5944 bfd_boolean
5945 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5947 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5948 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5949 return TRUE;
5951 /* Copy over private BFD data if it has not already been copied.
5952 This must be done here, rather than in the copy_private_bfd_data
5953 entry point, because the latter is called after the section
5954 contents have been set, which means that the program headers have
5955 already been worked out. */
5956 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5958 if (! copy_private_bfd_data (ibfd, obfd))
5959 return FALSE;
5962 return TRUE;
5965 /* Copy private symbol information. If this symbol is in a section
5966 which we did not map into a BFD section, try to map the section
5967 index correctly. We use special macro definitions for the mapped
5968 section indices; these definitions are interpreted by the
5969 swap_out_syms function. */
5971 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5972 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5973 #define MAP_STRTAB (SHN_HIOS + 3)
5974 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5975 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5977 bfd_boolean
5978 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5979 asymbol *isymarg,
5980 bfd *obfd,
5981 asymbol *osymarg)
5983 elf_symbol_type *isym, *osym;
5985 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5986 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5987 return TRUE;
5989 isym = elf_symbol_from (ibfd, isymarg);
5990 osym = elf_symbol_from (obfd, osymarg);
5992 if (isym != NULL
5993 && osym != NULL
5994 && bfd_is_abs_section (isym->symbol.section))
5996 unsigned int shndx;
5998 shndx = isym->internal_elf_sym.st_shndx;
5999 if (shndx == elf_onesymtab (ibfd))
6000 shndx = MAP_ONESYMTAB;
6001 else if (shndx == elf_dynsymtab (ibfd))
6002 shndx = MAP_DYNSYMTAB;
6003 else if (shndx == elf_tdata (ibfd)->strtab_section)
6004 shndx = MAP_STRTAB;
6005 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6006 shndx = MAP_SHSTRTAB;
6007 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6008 shndx = MAP_SYM_SHNDX;
6009 osym->internal_elf_sym.st_shndx = shndx;
6012 return TRUE;
6015 /* Swap out the symbols. */
6017 static bfd_boolean
6018 swap_out_syms (bfd *abfd,
6019 struct bfd_strtab_hash **sttp,
6020 int relocatable_p)
6022 const struct elf_backend_data *bed;
6023 int symcount;
6024 asymbol **syms;
6025 struct bfd_strtab_hash *stt;
6026 Elf_Internal_Shdr *symtab_hdr;
6027 Elf_Internal_Shdr *symtab_shndx_hdr;
6028 Elf_Internal_Shdr *symstrtab_hdr;
6029 bfd_byte *outbound_syms;
6030 bfd_byte *outbound_shndx;
6031 int idx;
6032 bfd_size_type amt;
6033 bfd_boolean name_local_sections;
6035 if (!elf_map_symbols (abfd))
6036 return FALSE;
6038 /* Dump out the symtabs. */
6039 stt = _bfd_elf_stringtab_init ();
6040 if (stt == NULL)
6041 return FALSE;
6043 bed = get_elf_backend_data (abfd);
6044 symcount = bfd_get_symcount (abfd);
6045 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6046 symtab_hdr->sh_type = SHT_SYMTAB;
6047 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6048 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6049 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6050 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6052 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6053 symstrtab_hdr->sh_type = SHT_STRTAB;
6055 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6056 if (outbound_syms == NULL)
6058 _bfd_stringtab_free (stt);
6059 return FALSE;
6061 symtab_hdr->contents = outbound_syms;
6063 outbound_shndx = NULL;
6064 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6065 if (symtab_shndx_hdr->sh_name != 0)
6067 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6068 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6069 sizeof (Elf_External_Sym_Shndx));
6070 if (outbound_shndx == NULL)
6072 _bfd_stringtab_free (stt);
6073 return FALSE;
6076 symtab_shndx_hdr->contents = outbound_shndx;
6077 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6078 symtab_shndx_hdr->sh_size = amt;
6079 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6080 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6083 /* Now generate the data (for "contents"). */
6085 /* Fill in zeroth symbol and swap it out. */
6086 Elf_Internal_Sym sym;
6087 sym.st_name = 0;
6088 sym.st_value = 0;
6089 sym.st_size = 0;
6090 sym.st_info = 0;
6091 sym.st_other = 0;
6092 sym.st_shndx = SHN_UNDEF;
6093 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6094 outbound_syms += bed->s->sizeof_sym;
6095 if (outbound_shndx != NULL)
6096 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6099 name_local_sections
6100 = (bed->elf_backend_name_local_section_symbols
6101 && bed->elf_backend_name_local_section_symbols (abfd));
6103 syms = bfd_get_outsymbols (abfd);
6104 for (idx = 0; idx < symcount; idx++)
6106 Elf_Internal_Sym sym;
6107 bfd_vma value = syms[idx]->value;
6108 elf_symbol_type *type_ptr;
6109 flagword flags = syms[idx]->flags;
6110 int type;
6112 if (!name_local_sections
6113 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6115 /* Local section symbols have no name. */
6116 sym.st_name = 0;
6118 else
6120 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6121 syms[idx]->name,
6122 TRUE, FALSE);
6123 if (sym.st_name == (unsigned long) -1)
6125 _bfd_stringtab_free (stt);
6126 return FALSE;
6130 type_ptr = elf_symbol_from (abfd, syms[idx]);
6132 if ((flags & BSF_SECTION_SYM) == 0
6133 && bfd_is_com_section (syms[idx]->section))
6135 /* ELF common symbols put the alignment into the `value' field,
6136 and the size into the `size' field. This is backwards from
6137 how BFD handles it, so reverse it here. */
6138 sym.st_size = value;
6139 if (type_ptr == NULL
6140 || type_ptr->internal_elf_sym.st_value == 0)
6141 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6142 else
6143 sym.st_value = type_ptr->internal_elf_sym.st_value;
6144 sym.st_shndx = _bfd_elf_section_from_bfd_section
6145 (abfd, syms[idx]->section);
6147 else
6149 asection *sec = syms[idx]->section;
6150 int shndx;
6152 if (sec->output_section)
6154 value += sec->output_offset;
6155 sec = sec->output_section;
6158 /* Don't add in the section vma for relocatable output. */
6159 if (! relocatable_p)
6160 value += sec->vma;
6161 sym.st_value = value;
6162 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6164 if (bfd_is_abs_section (sec)
6165 && type_ptr != NULL
6166 && type_ptr->internal_elf_sym.st_shndx != 0)
6168 /* This symbol is in a real ELF section which we did
6169 not create as a BFD section. Undo the mapping done
6170 by copy_private_symbol_data. */
6171 shndx = type_ptr->internal_elf_sym.st_shndx;
6172 switch (shndx)
6174 case MAP_ONESYMTAB:
6175 shndx = elf_onesymtab (abfd);
6176 break;
6177 case MAP_DYNSYMTAB:
6178 shndx = elf_dynsymtab (abfd);
6179 break;
6180 case MAP_STRTAB:
6181 shndx = elf_tdata (abfd)->strtab_section;
6182 break;
6183 case MAP_SHSTRTAB:
6184 shndx = elf_tdata (abfd)->shstrtab_section;
6185 break;
6186 case MAP_SYM_SHNDX:
6187 shndx = elf_tdata (abfd)->symtab_shndx_section;
6188 break;
6189 default:
6190 break;
6193 else
6195 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6197 if (shndx == -1)
6199 asection *sec2;
6201 /* Writing this would be a hell of a lot easier if
6202 we had some decent documentation on bfd, and
6203 knew what to expect of the library, and what to
6204 demand of applications. For example, it
6205 appears that `objcopy' might not set the
6206 section of a symbol to be a section that is
6207 actually in the output file. */
6208 sec2 = bfd_get_section_by_name (abfd, sec->name);
6209 if (sec2 == NULL)
6211 _bfd_error_handler (_("\
6212 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6213 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6214 sec->name);
6215 bfd_set_error (bfd_error_invalid_operation);
6216 _bfd_stringtab_free (stt);
6217 return FALSE;
6220 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6221 BFD_ASSERT (shndx != -1);
6225 sym.st_shndx = shndx;
6228 if ((flags & BSF_THREAD_LOCAL) != 0)
6229 type = STT_TLS;
6230 else if ((flags & BSF_FUNCTION) != 0)
6231 type = STT_FUNC;
6232 else if ((flags & BSF_OBJECT) != 0)
6233 type = STT_OBJECT;
6234 else
6235 type = STT_NOTYPE;
6237 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6238 type = STT_TLS;
6240 /* Processor-specific types. */
6241 if (type_ptr != NULL
6242 && bed->elf_backend_get_symbol_type)
6243 type = ((*bed->elf_backend_get_symbol_type)
6244 (&type_ptr->internal_elf_sym, type));
6246 if (flags & BSF_SECTION_SYM)
6248 if (flags & BSF_GLOBAL)
6249 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6250 else
6251 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6253 else if (bfd_is_com_section (syms[idx]->section))
6254 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6255 else if (bfd_is_und_section (syms[idx]->section))
6256 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6257 ? STB_WEAK
6258 : STB_GLOBAL),
6259 type);
6260 else if (flags & BSF_FILE)
6261 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6262 else
6264 int bind = STB_LOCAL;
6266 if (flags & BSF_LOCAL)
6267 bind = STB_LOCAL;
6268 else if (flags & BSF_WEAK)
6269 bind = STB_WEAK;
6270 else if (flags & BSF_GLOBAL)
6271 bind = STB_GLOBAL;
6273 sym.st_info = ELF_ST_INFO (bind, type);
6276 if (type_ptr != NULL)
6277 sym.st_other = type_ptr->internal_elf_sym.st_other;
6278 else
6279 sym.st_other = 0;
6281 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6282 outbound_syms += bed->s->sizeof_sym;
6283 if (outbound_shndx != NULL)
6284 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6287 *sttp = stt;
6288 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6289 symstrtab_hdr->sh_type = SHT_STRTAB;
6291 symstrtab_hdr->sh_flags = 0;
6292 symstrtab_hdr->sh_addr = 0;
6293 symstrtab_hdr->sh_entsize = 0;
6294 symstrtab_hdr->sh_link = 0;
6295 symstrtab_hdr->sh_info = 0;
6296 symstrtab_hdr->sh_addralign = 1;
6298 return TRUE;
6301 /* Return the number of bytes required to hold the symtab vector.
6303 Note that we base it on the count plus 1, since we will null terminate
6304 the vector allocated based on this size. However, the ELF symbol table
6305 always has a dummy entry as symbol #0, so it ends up even. */
6307 long
6308 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6310 long symcount;
6311 long symtab_size;
6312 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6314 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6315 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6316 if (symcount > 0)
6317 symtab_size -= sizeof (asymbol *);
6319 return symtab_size;
6322 long
6323 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6325 long symcount;
6326 long symtab_size;
6327 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6329 if (elf_dynsymtab (abfd) == 0)
6331 bfd_set_error (bfd_error_invalid_operation);
6332 return -1;
6335 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6336 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6337 if (symcount > 0)
6338 symtab_size -= sizeof (asymbol *);
6340 return symtab_size;
6343 long
6344 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6345 sec_ptr asect)
6347 return (asect->reloc_count + 1) * sizeof (arelent *);
6350 /* Canonicalize the relocs. */
6352 long
6353 _bfd_elf_canonicalize_reloc (bfd *abfd,
6354 sec_ptr section,
6355 arelent **relptr,
6356 asymbol **symbols)
6358 arelent *tblptr;
6359 unsigned int i;
6360 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6362 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6363 return -1;
6365 tblptr = section->relocation;
6366 for (i = 0; i < section->reloc_count; i++)
6367 *relptr++ = tblptr++;
6369 *relptr = NULL;
6371 return section->reloc_count;
6374 long
6375 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6378 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6380 if (symcount >= 0)
6381 bfd_get_symcount (abfd) = symcount;
6382 return symcount;
6385 long
6386 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6387 asymbol **allocation)
6389 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6390 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6392 if (symcount >= 0)
6393 bfd_get_dynamic_symcount (abfd) = symcount;
6394 return symcount;
6397 /* Return the size required for the dynamic reloc entries. Any loadable
6398 section that was actually installed in the BFD, and has type SHT_REL
6399 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6400 dynamic reloc section. */
6402 long
6403 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6405 long ret;
6406 asection *s;
6408 if (elf_dynsymtab (abfd) == 0)
6410 bfd_set_error (bfd_error_invalid_operation);
6411 return -1;
6414 ret = sizeof (arelent *);
6415 for (s = abfd->sections; s != NULL; s = s->next)
6416 if ((s->flags & SEC_LOAD) != 0
6417 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6418 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6419 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6420 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6421 * sizeof (arelent *));
6423 return ret;
6426 /* Canonicalize the dynamic relocation entries. Note that we return the
6427 dynamic relocations as a single block, although they are actually
6428 associated with particular sections; the interface, which was
6429 designed for SunOS style shared libraries, expects that there is only
6430 one set of dynamic relocs. Any loadable section that was actually
6431 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6432 dynamic symbol table, is considered to be a dynamic reloc section. */
6434 long
6435 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6436 arelent **storage,
6437 asymbol **syms)
6439 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6440 asection *s;
6441 long ret;
6443 if (elf_dynsymtab (abfd) == 0)
6445 bfd_set_error (bfd_error_invalid_operation);
6446 return -1;
6449 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6450 ret = 0;
6451 for (s = abfd->sections; s != NULL; s = s->next)
6453 if ((s->flags & SEC_LOAD) != 0
6454 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6455 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6456 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6458 arelent *p;
6459 long count, i;
6461 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6462 return -1;
6463 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6464 p = s->relocation;
6465 for (i = 0; i < count; i++)
6466 *storage++ = p++;
6467 ret += count;
6471 *storage = NULL;
6473 return ret;
6476 /* Read in the version information. */
6478 bfd_boolean
6479 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6481 bfd_byte *contents = NULL;
6482 unsigned int freeidx = 0;
6484 if (elf_dynverref (abfd) != 0)
6486 Elf_Internal_Shdr *hdr;
6487 Elf_External_Verneed *everneed;
6488 Elf_Internal_Verneed *iverneed;
6489 unsigned int i;
6490 bfd_byte *contents_end;
6492 hdr = &elf_tdata (abfd)->dynverref_hdr;
6494 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6495 sizeof (Elf_Internal_Verneed));
6496 if (elf_tdata (abfd)->verref == NULL)
6497 goto error_return;
6499 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6501 contents = bfd_malloc (hdr->sh_size);
6502 if (contents == NULL)
6504 error_return_verref:
6505 elf_tdata (abfd)->verref = NULL;
6506 elf_tdata (abfd)->cverrefs = 0;
6507 goto error_return;
6509 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6510 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6511 goto error_return_verref;
6513 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6514 goto error_return_verref;
6516 BFD_ASSERT (sizeof (Elf_External_Verneed)
6517 == sizeof (Elf_External_Vernaux));
6518 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6519 everneed = (Elf_External_Verneed *) contents;
6520 iverneed = elf_tdata (abfd)->verref;
6521 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6523 Elf_External_Vernaux *evernaux;
6524 Elf_Internal_Vernaux *ivernaux;
6525 unsigned int j;
6527 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6529 iverneed->vn_bfd = abfd;
6531 iverneed->vn_filename =
6532 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6533 iverneed->vn_file);
6534 if (iverneed->vn_filename == NULL)
6535 goto error_return_verref;
6537 if (iverneed->vn_cnt == 0)
6538 iverneed->vn_auxptr = NULL;
6539 else
6541 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6542 sizeof (Elf_Internal_Vernaux));
6543 if (iverneed->vn_auxptr == NULL)
6544 goto error_return_verref;
6547 if (iverneed->vn_aux
6548 > (size_t) (contents_end - (bfd_byte *) everneed))
6549 goto error_return_verref;
6551 evernaux = ((Elf_External_Vernaux *)
6552 ((bfd_byte *) everneed + iverneed->vn_aux));
6553 ivernaux = iverneed->vn_auxptr;
6554 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6556 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6558 ivernaux->vna_nodename =
6559 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6560 ivernaux->vna_name);
6561 if (ivernaux->vna_nodename == NULL)
6562 goto error_return_verref;
6564 if (j + 1 < iverneed->vn_cnt)
6565 ivernaux->vna_nextptr = ivernaux + 1;
6566 else
6567 ivernaux->vna_nextptr = NULL;
6569 if (ivernaux->vna_next
6570 > (size_t) (contents_end - (bfd_byte *) evernaux))
6571 goto error_return_verref;
6573 evernaux = ((Elf_External_Vernaux *)
6574 ((bfd_byte *) evernaux + ivernaux->vna_next));
6576 if (ivernaux->vna_other > freeidx)
6577 freeidx = ivernaux->vna_other;
6580 if (i + 1 < hdr->sh_info)
6581 iverneed->vn_nextref = iverneed + 1;
6582 else
6583 iverneed->vn_nextref = NULL;
6585 if (iverneed->vn_next
6586 > (size_t) (contents_end - (bfd_byte *) everneed))
6587 goto error_return_verref;
6589 everneed = ((Elf_External_Verneed *)
6590 ((bfd_byte *) everneed + iverneed->vn_next));
6593 free (contents);
6594 contents = NULL;
6597 if (elf_dynverdef (abfd) != 0)
6599 Elf_Internal_Shdr *hdr;
6600 Elf_External_Verdef *everdef;
6601 Elf_Internal_Verdef *iverdef;
6602 Elf_Internal_Verdef *iverdefarr;
6603 Elf_Internal_Verdef iverdefmem;
6604 unsigned int i;
6605 unsigned int maxidx;
6606 bfd_byte *contents_end_def, *contents_end_aux;
6608 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6610 contents = bfd_malloc (hdr->sh_size);
6611 if (contents == NULL)
6612 goto error_return;
6613 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6614 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6615 goto error_return;
6617 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6618 goto error_return;
6620 BFD_ASSERT (sizeof (Elf_External_Verdef)
6621 >= sizeof (Elf_External_Verdaux));
6622 contents_end_def = contents + hdr->sh_size
6623 - sizeof (Elf_External_Verdef);
6624 contents_end_aux = contents + hdr->sh_size
6625 - sizeof (Elf_External_Verdaux);
6627 /* We know the number of entries in the section but not the maximum
6628 index. Therefore we have to run through all entries and find
6629 the maximum. */
6630 everdef = (Elf_External_Verdef *) contents;
6631 maxidx = 0;
6632 for (i = 0; i < hdr->sh_info; ++i)
6634 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6636 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6637 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6639 if (iverdefmem.vd_next
6640 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6641 goto error_return;
6643 everdef = ((Elf_External_Verdef *)
6644 ((bfd_byte *) everdef + iverdefmem.vd_next));
6647 if (default_imported_symver)
6649 if (freeidx > maxidx)
6650 maxidx = ++freeidx;
6651 else
6652 freeidx = ++maxidx;
6654 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6655 sizeof (Elf_Internal_Verdef));
6656 if (elf_tdata (abfd)->verdef == NULL)
6657 goto error_return;
6659 elf_tdata (abfd)->cverdefs = maxidx;
6661 everdef = (Elf_External_Verdef *) contents;
6662 iverdefarr = elf_tdata (abfd)->verdef;
6663 for (i = 0; i < hdr->sh_info; i++)
6665 Elf_External_Verdaux *everdaux;
6666 Elf_Internal_Verdaux *iverdaux;
6667 unsigned int j;
6669 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6671 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6673 error_return_verdef:
6674 elf_tdata (abfd)->verdef = NULL;
6675 elf_tdata (abfd)->cverdefs = 0;
6676 goto error_return;
6679 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6680 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6682 iverdef->vd_bfd = abfd;
6684 if (iverdef->vd_cnt == 0)
6685 iverdef->vd_auxptr = NULL;
6686 else
6688 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6689 sizeof (Elf_Internal_Verdaux));
6690 if (iverdef->vd_auxptr == NULL)
6691 goto error_return_verdef;
6694 if (iverdef->vd_aux
6695 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6696 goto error_return_verdef;
6698 everdaux = ((Elf_External_Verdaux *)
6699 ((bfd_byte *) everdef + iverdef->vd_aux));
6700 iverdaux = iverdef->vd_auxptr;
6701 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6703 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6705 iverdaux->vda_nodename =
6706 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6707 iverdaux->vda_name);
6708 if (iverdaux->vda_nodename == NULL)
6709 goto error_return_verdef;
6711 if (j + 1 < iverdef->vd_cnt)
6712 iverdaux->vda_nextptr = iverdaux + 1;
6713 else
6714 iverdaux->vda_nextptr = NULL;
6716 if (iverdaux->vda_next
6717 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6718 goto error_return_verdef;
6720 everdaux = ((Elf_External_Verdaux *)
6721 ((bfd_byte *) everdaux + iverdaux->vda_next));
6724 if (iverdef->vd_cnt)
6725 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6727 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6728 iverdef->vd_nextdef = iverdef + 1;
6729 else
6730 iverdef->vd_nextdef = NULL;
6732 everdef = ((Elf_External_Verdef *)
6733 ((bfd_byte *) everdef + iverdef->vd_next));
6736 free (contents);
6737 contents = NULL;
6739 else if (default_imported_symver)
6741 if (freeidx < 3)
6742 freeidx = 3;
6743 else
6744 freeidx++;
6746 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6747 sizeof (Elf_Internal_Verdef));
6748 if (elf_tdata (abfd)->verdef == NULL)
6749 goto error_return;
6751 elf_tdata (abfd)->cverdefs = freeidx;
6754 /* Create a default version based on the soname. */
6755 if (default_imported_symver)
6757 Elf_Internal_Verdef *iverdef;
6758 Elf_Internal_Verdaux *iverdaux;
6760 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6762 iverdef->vd_version = VER_DEF_CURRENT;
6763 iverdef->vd_flags = 0;
6764 iverdef->vd_ndx = freeidx;
6765 iverdef->vd_cnt = 1;
6767 iverdef->vd_bfd = abfd;
6769 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6770 if (iverdef->vd_nodename == NULL)
6771 goto error_return_verdef;
6772 iverdef->vd_nextdef = NULL;
6773 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6774 if (iverdef->vd_auxptr == NULL)
6775 goto error_return_verdef;
6777 iverdaux = iverdef->vd_auxptr;
6778 iverdaux->vda_nodename = iverdef->vd_nodename;
6779 iverdaux->vda_nextptr = NULL;
6782 return TRUE;
6784 error_return:
6785 if (contents != NULL)
6786 free (contents);
6787 return FALSE;
6790 asymbol *
6791 _bfd_elf_make_empty_symbol (bfd *abfd)
6793 elf_symbol_type *newsym;
6794 bfd_size_type amt = sizeof (elf_symbol_type);
6796 newsym = bfd_zalloc (abfd, amt);
6797 if (!newsym)
6798 return NULL;
6799 else
6801 newsym->symbol.the_bfd = abfd;
6802 return &newsym->symbol;
6806 void
6807 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6808 asymbol *symbol,
6809 symbol_info *ret)
6811 bfd_symbol_info (symbol, ret);
6814 /* Return whether a symbol name implies a local symbol. Most targets
6815 use this function for the is_local_label_name entry point, but some
6816 override it. */
6818 bfd_boolean
6819 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6820 const char *name)
6822 /* Normal local symbols start with ``.L''. */
6823 if (name[0] == '.' && name[1] == 'L')
6824 return TRUE;
6826 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6827 DWARF debugging symbols starting with ``..''. */
6828 if (name[0] == '.' && name[1] == '.')
6829 return TRUE;
6831 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6832 emitting DWARF debugging output. I suspect this is actually a
6833 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6834 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6835 underscore to be emitted on some ELF targets). For ease of use,
6836 we treat such symbols as local. */
6837 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6838 return TRUE;
6840 return FALSE;
6843 alent *
6844 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6845 asymbol *symbol ATTRIBUTE_UNUSED)
6847 abort ();
6848 return NULL;
6851 bfd_boolean
6852 _bfd_elf_set_arch_mach (bfd *abfd,
6853 enum bfd_architecture arch,
6854 unsigned long machine)
6856 /* If this isn't the right architecture for this backend, and this
6857 isn't the generic backend, fail. */
6858 if (arch != get_elf_backend_data (abfd)->arch
6859 && arch != bfd_arch_unknown
6860 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6861 return FALSE;
6863 return bfd_default_set_arch_mach (abfd, arch, machine);
6866 /* Find the function to a particular section and offset,
6867 for error reporting. */
6869 static bfd_boolean
6870 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6871 asection *section,
6872 asymbol **symbols,
6873 bfd_vma offset,
6874 const char **filename_ptr,
6875 const char **functionname_ptr)
6877 const char *filename;
6878 asymbol *func, *file;
6879 bfd_vma low_func;
6880 asymbol **p;
6881 /* ??? Given multiple file symbols, it is impossible to reliably
6882 choose the right file name for global symbols. File symbols are
6883 local symbols, and thus all file symbols must sort before any
6884 global symbols. The ELF spec may be interpreted to say that a
6885 file symbol must sort before other local symbols, but currently
6886 ld -r doesn't do this. So, for ld -r output, it is possible to
6887 make a better choice of file name for local symbols by ignoring
6888 file symbols appearing after a given local symbol. */
6889 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6891 filename = NULL;
6892 func = NULL;
6893 file = NULL;
6894 low_func = 0;
6895 state = nothing_seen;
6897 for (p = symbols; *p != NULL; p++)
6899 elf_symbol_type *q;
6901 q = (elf_symbol_type *) *p;
6903 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6905 default:
6906 break;
6907 case STT_FILE:
6908 file = &q->symbol;
6909 if (state == symbol_seen)
6910 state = file_after_symbol_seen;
6911 continue;
6912 case STT_NOTYPE:
6913 case STT_FUNC:
6914 if (bfd_get_section (&q->symbol) == section
6915 && q->symbol.value >= low_func
6916 && q->symbol.value <= offset)
6918 func = (asymbol *) q;
6919 low_func = q->symbol.value;
6920 filename = NULL;
6921 if (file != NULL
6922 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6923 || state != file_after_symbol_seen))
6924 filename = bfd_asymbol_name (file);
6926 break;
6928 if (state == nothing_seen)
6929 state = symbol_seen;
6932 if (func == NULL)
6933 return FALSE;
6935 if (filename_ptr)
6936 *filename_ptr = filename;
6937 if (functionname_ptr)
6938 *functionname_ptr = bfd_asymbol_name (func);
6940 return TRUE;
6943 /* Find the nearest line to a particular section and offset,
6944 for error reporting. */
6946 bfd_boolean
6947 _bfd_elf_find_nearest_line (bfd *abfd,
6948 asection *section,
6949 asymbol **symbols,
6950 bfd_vma offset,
6951 const char **filename_ptr,
6952 const char **functionname_ptr,
6953 unsigned int *line_ptr)
6955 bfd_boolean found;
6957 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6958 filename_ptr, functionname_ptr,
6959 line_ptr))
6961 if (!*functionname_ptr)
6962 elf_find_function (abfd, section, symbols, offset,
6963 *filename_ptr ? NULL : filename_ptr,
6964 functionname_ptr);
6966 return TRUE;
6969 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6970 filename_ptr, functionname_ptr,
6971 line_ptr, 0,
6972 &elf_tdata (abfd)->dwarf2_find_line_info))
6974 if (!*functionname_ptr)
6975 elf_find_function (abfd, section, symbols, offset,
6976 *filename_ptr ? NULL : filename_ptr,
6977 functionname_ptr);
6979 return TRUE;
6982 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6983 &found, filename_ptr,
6984 functionname_ptr, line_ptr,
6985 &elf_tdata (abfd)->line_info))
6986 return FALSE;
6987 if (found && (*functionname_ptr || *line_ptr))
6988 return TRUE;
6990 if (symbols == NULL)
6991 return FALSE;
6993 if (! elf_find_function (abfd, section, symbols, offset,
6994 filename_ptr, functionname_ptr))
6995 return FALSE;
6997 *line_ptr = 0;
6998 return TRUE;
7001 /* Find the line for a symbol. */
7003 bfd_boolean
7004 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7005 const char **filename_ptr, unsigned int *line_ptr)
7007 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7008 filename_ptr, line_ptr, 0,
7009 &elf_tdata (abfd)->dwarf2_find_line_info);
7012 /* After a call to bfd_find_nearest_line, successive calls to
7013 bfd_find_inliner_info can be used to get source information about
7014 each level of function inlining that terminated at the address
7015 passed to bfd_find_nearest_line. Currently this is only supported
7016 for DWARF2 with appropriate DWARF3 extensions. */
7018 bfd_boolean
7019 _bfd_elf_find_inliner_info (bfd *abfd,
7020 const char **filename_ptr,
7021 const char **functionname_ptr,
7022 unsigned int *line_ptr)
7024 bfd_boolean found;
7025 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7026 functionname_ptr, line_ptr,
7027 & elf_tdata (abfd)->dwarf2_find_line_info);
7028 return found;
7032 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7034 int ret;
7036 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7037 if (! reloc)
7038 ret += get_program_header_size (abfd);
7039 return ret;
7042 bfd_boolean
7043 _bfd_elf_set_section_contents (bfd *abfd,
7044 sec_ptr section,
7045 const void *location,
7046 file_ptr offset,
7047 bfd_size_type count)
7049 Elf_Internal_Shdr *hdr;
7050 bfd_signed_vma pos;
7052 if (! abfd->output_has_begun
7053 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7054 return FALSE;
7056 hdr = &elf_section_data (section)->this_hdr;
7057 pos = hdr->sh_offset + offset;
7058 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7059 || bfd_bwrite (location, count, abfd) != count)
7060 return FALSE;
7062 return TRUE;
7065 void
7066 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7067 arelent *cache_ptr ATTRIBUTE_UNUSED,
7068 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7070 abort ();
7073 /* Try to convert a non-ELF reloc into an ELF one. */
7075 bfd_boolean
7076 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7078 /* Check whether we really have an ELF howto. */
7080 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7082 bfd_reloc_code_real_type code;
7083 reloc_howto_type *howto;
7085 /* Alien reloc: Try to determine its type to replace it with an
7086 equivalent ELF reloc. */
7088 if (areloc->howto->pc_relative)
7090 switch (areloc->howto->bitsize)
7092 case 8:
7093 code = BFD_RELOC_8_PCREL;
7094 break;
7095 case 12:
7096 code = BFD_RELOC_12_PCREL;
7097 break;
7098 case 16:
7099 code = BFD_RELOC_16_PCREL;
7100 break;
7101 case 24:
7102 code = BFD_RELOC_24_PCREL;
7103 break;
7104 case 32:
7105 code = BFD_RELOC_32_PCREL;
7106 break;
7107 case 64:
7108 code = BFD_RELOC_64_PCREL;
7109 break;
7110 default:
7111 goto fail;
7114 howto = bfd_reloc_type_lookup (abfd, code);
7116 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7118 if (howto->pcrel_offset)
7119 areloc->addend += areloc->address;
7120 else
7121 areloc->addend -= areloc->address; /* addend is unsigned!! */
7124 else
7126 switch (areloc->howto->bitsize)
7128 case 8:
7129 code = BFD_RELOC_8;
7130 break;
7131 case 14:
7132 code = BFD_RELOC_14;
7133 break;
7134 case 16:
7135 code = BFD_RELOC_16;
7136 break;
7137 case 26:
7138 code = BFD_RELOC_26;
7139 break;
7140 case 32:
7141 code = BFD_RELOC_32;
7142 break;
7143 case 64:
7144 code = BFD_RELOC_64;
7145 break;
7146 default:
7147 goto fail;
7150 howto = bfd_reloc_type_lookup (abfd, code);
7153 if (howto)
7154 areloc->howto = howto;
7155 else
7156 goto fail;
7159 return TRUE;
7161 fail:
7162 (*_bfd_error_handler)
7163 (_("%B: unsupported relocation type %s"),
7164 abfd, areloc->howto->name);
7165 bfd_set_error (bfd_error_bad_value);
7166 return FALSE;
7169 bfd_boolean
7170 _bfd_elf_close_and_cleanup (bfd *abfd)
7172 if (bfd_get_format (abfd) == bfd_object)
7174 if (elf_shstrtab (abfd) != NULL)
7175 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7176 _bfd_dwarf2_cleanup_debug_info (abfd);
7179 return _bfd_generic_close_and_cleanup (abfd);
7182 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7183 in the relocation's offset. Thus we cannot allow any sort of sanity
7184 range-checking to interfere. There is nothing else to do in processing
7185 this reloc. */
7187 bfd_reloc_status_type
7188 _bfd_elf_rel_vtable_reloc_fn
7189 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7190 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7191 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7192 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7194 return bfd_reloc_ok;
7197 /* Elf core file support. Much of this only works on native
7198 toolchains, since we rely on knowing the
7199 machine-dependent procfs structure in order to pick
7200 out details about the corefile. */
7202 #ifdef HAVE_SYS_PROCFS_H
7203 # include <sys/procfs.h>
7204 #endif
7206 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7208 static int
7209 elfcore_make_pid (bfd *abfd)
7211 return ((elf_tdata (abfd)->core_lwpid << 16)
7212 + (elf_tdata (abfd)->core_pid));
7215 /* If there isn't a section called NAME, make one, using
7216 data from SECT. Note, this function will generate a
7217 reference to NAME, so you shouldn't deallocate or
7218 overwrite it. */
7220 static bfd_boolean
7221 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7223 asection *sect2;
7225 if (bfd_get_section_by_name (abfd, name) != NULL)
7226 return TRUE;
7228 sect2 = bfd_make_section (abfd, name);
7229 if (sect2 == NULL)
7230 return FALSE;
7232 sect2->size = sect->size;
7233 sect2->filepos = sect->filepos;
7234 sect2->flags = sect->flags;
7235 sect2->alignment_power = sect->alignment_power;
7236 return TRUE;
7239 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7240 actually creates up to two pseudosections:
7241 - For the single-threaded case, a section named NAME, unless
7242 such a section already exists.
7243 - For the multi-threaded case, a section named "NAME/PID", where
7244 PID is elfcore_make_pid (abfd).
7245 Both pseudosections have identical contents. */
7246 bfd_boolean
7247 _bfd_elfcore_make_pseudosection (bfd *abfd,
7248 char *name,
7249 size_t size,
7250 ufile_ptr filepos)
7252 char buf[100];
7253 char *threaded_name;
7254 size_t len;
7255 asection *sect;
7257 /* Build the section name. */
7259 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7260 len = strlen (buf) + 1;
7261 threaded_name = bfd_alloc (abfd, len);
7262 if (threaded_name == NULL)
7263 return FALSE;
7264 memcpy (threaded_name, buf, len);
7266 sect = bfd_make_section_anyway (abfd, threaded_name);
7267 if (sect == NULL)
7268 return FALSE;
7269 sect->size = size;
7270 sect->filepos = filepos;
7271 sect->flags = SEC_HAS_CONTENTS;
7272 sect->alignment_power = 2;
7274 return elfcore_maybe_make_sect (abfd, name, sect);
7277 /* prstatus_t exists on:
7278 solaris 2.5+
7279 linux 2.[01] + glibc
7280 unixware 4.2
7283 #if defined (HAVE_PRSTATUS_T)
7285 static bfd_boolean
7286 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7288 size_t size;
7289 int offset;
7291 if (note->descsz == sizeof (prstatus_t))
7293 prstatus_t prstat;
7295 size = sizeof (prstat.pr_reg);
7296 offset = offsetof (prstatus_t, pr_reg);
7297 memcpy (&prstat, note->descdata, sizeof (prstat));
7299 /* Do not overwrite the core signal if it
7300 has already been set by another thread. */
7301 if (elf_tdata (abfd)->core_signal == 0)
7302 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7303 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7305 /* pr_who exists on:
7306 solaris 2.5+
7307 unixware 4.2
7308 pr_who doesn't exist on:
7309 linux 2.[01]
7311 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7312 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7313 #endif
7315 #if defined (HAVE_PRSTATUS32_T)
7316 else if (note->descsz == sizeof (prstatus32_t))
7318 /* 64-bit host, 32-bit corefile */
7319 prstatus32_t prstat;
7321 size = sizeof (prstat.pr_reg);
7322 offset = offsetof (prstatus32_t, pr_reg);
7323 memcpy (&prstat, note->descdata, sizeof (prstat));
7325 /* Do not overwrite the core signal if it
7326 has already been set by another thread. */
7327 if (elf_tdata (abfd)->core_signal == 0)
7328 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7329 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7331 /* pr_who exists on:
7332 solaris 2.5+
7333 unixware 4.2
7334 pr_who doesn't exist on:
7335 linux 2.[01]
7337 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7338 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7339 #endif
7341 #endif /* HAVE_PRSTATUS32_T */
7342 else
7344 /* Fail - we don't know how to handle any other
7345 note size (ie. data object type). */
7346 return TRUE;
7349 /* Make a ".reg/999" section and a ".reg" section. */
7350 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7351 size, note->descpos + offset);
7353 #endif /* defined (HAVE_PRSTATUS_T) */
7355 /* Create a pseudosection containing the exact contents of NOTE. */
7356 static bfd_boolean
7357 elfcore_make_note_pseudosection (bfd *abfd,
7358 char *name,
7359 Elf_Internal_Note *note)
7361 return _bfd_elfcore_make_pseudosection (abfd, name,
7362 note->descsz, note->descpos);
7365 /* There isn't a consistent prfpregset_t across platforms,
7366 but it doesn't matter, because we don't have to pick this
7367 data structure apart. */
7369 static bfd_boolean
7370 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7372 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7375 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7376 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7377 literally. */
7379 static bfd_boolean
7380 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7382 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7385 #if defined (HAVE_PRPSINFO_T)
7386 typedef prpsinfo_t elfcore_psinfo_t;
7387 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7388 typedef prpsinfo32_t elfcore_psinfo32_t;
7389 #endif
7390 #endif
7392 #if defined (HAVE_PSINFO_T)
7393 typedef psinfo_t elfcore_psinfo_t;
7394 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7395 typedef psinfo32_t elfcore_psinfo32_t;
7396 #endif
7397 #endif
7399 /* return a malloc'ed copy of a string at START which is at
7400 most MAX bytes long, possibly without a terminating '\0'.
7401 the copy will always have a terminating '\0'. */
7403 char *
7404 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7406 char *dups;
7407 char *end = memchr (start, '\0', max);
7408 size_t len;
7410 if (end == NULL)
7411 len = max;
7412 else
7413 len = end - start;
7415 dups = bfd_alloc (abfd, len + 1);
7416 if (dups == NULL)
7417 return NULL;
7419 memcpy (dups, start, len);
7420 dups[len] = '\0';
7422 return dups;
7425 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7426 static bfd_boolean
7427 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7429 if (note->descsz == sizeof (elfcore_psinfo_t))
7431 elfcore_psinfo_t psinfo;
7433 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7435 elf_tdata (abfd)->core_program
7436 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7437 sizeof (psinfo.pr_fname));
7439 elf_tdata (abfd)->core_command
7440 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7441 sizeof (psinfo.pr_psargs));
7443 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7444 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7446 /* 64-bit host, 32-bit corefile */
7447 elfcore_psinfo32_t psinfo;
7449 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7451 elf_tdata (abfd)->core_program
7452 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7453 sizeof (psinfo.pr_fname));
7455 elf_tdata (abfd)->core_command
7456 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7457 sizeof (psinfo.pr_psargs));
7459 #endif
7461 else
7463 /* Fail - we don't know how to handle any other
7464 note size (ie. data object type). */
7465 return TRUE;
7468 /* Note that for some reason, a spurious space is tacked
7469 onto the end of the args in some (at least one anyway)
7470 implementations, so strip it off if it exists. */
7473 char *command = elf_tdata (abfd)->core_command;
7474 int n = strlen (command);
7476 if (0 < n && command[n - 1] == ' ')
7477 command[n - 1] = '\0';
7480 return TRUE;
7482 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7484 #if defined (HAVE_PSTATUS_T)
7485 static bfd_boolean
7486 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7488 if (note->descsz == sizeof (pstatus_t)
7489 #if defined (HAVE_PXSTATUS_T)
7490 || note->descsz == sizeof (pxstatus_t)
7491 #endif
7494 pstatus_t pstat;
7496 memcpy (&pstat, note->descdata, sizeof (pstat));
7498 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7500 #if defined (HAVE_PSTATUS32_T)
7501 else if (note->descsz == sizeof (pstatus32_t))
7503 /* 64-bit host, 32-bit corefile */
7504 pstatus32_t pstat;
7506 memcpy (&pstat, note->descdata, sizeof (pstat));
7508 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7510 #endif
7511 /* Could grab some more details from the "representative"
7512 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7513 NT_LWPSTATUS note, presumably. */
7515 return TRUE;
7517 #endif /* defined (HAVE_PSTATUS_T) */
7519 #if defined (HAVE_LWPSTATUS_T)
7520 static bfd_boolean
7521 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7523 lwpstatus_t lwpstat;
7524 char buf[100];
7525 char *name;
7526 size_t len;
7527 asection *sect;
7529 if (note->descsz != sizeof (lwpstat)
7530 #if defined (HAVE_LWPXSTATUS_T)
7531 && note->descsz != sizeof (lwpxstatus_t)
7532 #endif
7534 return TRUE;
7536 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7538 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7539 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7541 /* Make a ".reg/999" section. */
7543 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7544 len = strlen (buf) + 1;
7545 name = bfd_alloc (abfd, len);
7546 if (name == NULL)
7547 return FALSE;
7548 memcpy (name, buf, len);
7550 sect = bfd_make_section_anyway (abfd, name);
7551 if (sect == NULL)
7552 return FALSE;
7554 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7555 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7556 sect->filepos = note->descpos
7557 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7558 #endif
7560 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7561 sect->size = sizeof (lwpstat.pr_reg);
7562 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7563 #endif
7565 sect->flags = SEC_HAS_CONTENTS;
7566 sect->alignment_power = 2;
7568 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7569 return FALSE;
7571 /* Make a ".reg2/999" section */
7573 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7574 len = strlen (buf) + 1;
7575 name = bfd_alloc (abfd, len);
7576 if (name == NULL)
7577 return FALSE;
7578 memcpy (name, buf, len);
7580 sect = bfd_make_section_anyway (abfd, name);
7581 if (sect == NULL)
7582 return FALSE;
7584 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7585 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7586 sect->filepos = note->descpos
7587 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7588 #endif
7590 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7591 sect->size = sizeof (lwpstat.pr_fpreg);
7592 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7593 #endif
7595 sect->flags = SEC_HAS_CONTENTS;
7596 sect->alignment_power = 2;
7598 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7600 #endif /* defined (HAVE_LWPSTATUS_T) */
7602 #if defined (HAVE_WIN32_PSTATUS_T)
7603 static bfd_boolean
7604 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7606 char buf[30];
7607 char *name;
7608 size_t len;
7609 asection *sect;
7610 win32_pstatus_t pstatus;
7612 if (note->descsz < sizeof (pstatus))
7613 return TRUE;
7615 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7617 switch (pstatus.data_type)
7619 case NOTE_INFO_PROCESS:
7620 /* FIXME: need to add ->core_command. */
7621 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7622 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7623 break;
7625 case NOTE_INFO_THREAD:
7626 /* Make a ".reg/999" section. */
7627 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7629 len = strlen (buf) + 1;
7630 name = bfd_alloc (abfd, len);
7631 if (name == NULL)
7632 return FALSE;
7634 memcpy (name, buf, len);
7636 sect = bfd_make_section_anyway (abfd, name);
7637 if (sect == NULL)
7638 return FALSE;
7640 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7641 sect->filepos = (note->descpos
7642 + offsetof (struct win32_pstatus,
7643 data.thread_info.thread_context));
7644 sect->flags = SEC_HAS_CONTENTS;
7645 sect->alignment_power = 2;
7647 if (pstatus.data.thread_info.is_active_thread)
7648 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7649 return FALSE;
7650 break;
7652 case NOTE_INFO_MODULE:
7653 /* Make a ".module/xxxxxxxx" section. */
7654 sprintf (buf, ".module/%08lx",
7655 (long) pstatus.data.module_info.base_address);
7657 len = strlen (buf) + 1;
7658 name = bfd_alloc (abfd, len);
7659 if (name == NULL)
7660 return FALSE;
7662 memcpy (name, buf, len);
7664 sect = bfd_make_section_anyway (abfd, name);
7666 if (sect == NULL)
7667 return FALSE;
7669 sect->size = note->descsz;
7670 sect->filepos = note->descpos;
7671 sect->flags = SEC_HAS_CONTENTS;
7672 sect->alignment_power = 2;
7673 break;
7675 default:
7676 return TRUE;
7679 return TRUE;
7681 #endif /* HAVE_WIN32_PSTATUS_T */
7683 static bfd_boolean
7684 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7686 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7688 switch (note->type)
7690 default:
7691 return TRUE;
7693 case NT_PRSTATUS:
7694 if (bed->elf_backend_grok_prstatus)
7695 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7696 return TRUE;
7697 #if defined (HAVE_PRSTATUS_T)
7698 return elfcore_grok_prstatus (abfd, note);
7699 #else
7700 return TRUE;
7701 #endif
7703 #if defined (HAVE_PSTATUS_T)
7704 case NT_PSTATUS:
7705 return elfcore_grok_pstatus (abfd, note);
7706 #endif
7708 #if defined (HAVE_LWPSTATUS_T)
7709 case NT_LWPSTATUS:
7710 return elfcore_grok_lwpstatus (abfd, note);
7711 #endif
7713 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7714 return elfcore_grok_prfpreg (abfd, note);
7716 #if defined (HAVE_WIN32_PSTATUS_T)
7717 case NT_WIN32PSTATUS:
7718 return elfcore_grok_win32pstatus (abfd, note);
7719 #endif
7721 case NT_PRXFPREG: /* Linux SSE extension */
7722 if (note->namesz == 6
7723 && strcmp (note->namedata, "LINUX") == 0)
7724 return elfcore_grok_prxfpreg (abfd, note);
7725 else
7726 return TRUE;
7728 case NT_PRPSINFO:
7729 case NT_PSINFO:
7730 if (bed->elf_backend_grok_psinfo)
7731 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7732 return TRUE;
7733 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7734 return elfcore_grok_psinfo (abfd, note);
7735 #else
7736 return TRUE;
7737 #endif
7739 case NT_AUXV:
7741 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7743 if (sect == NULL)
7744 return FALSE;
7745 sect->size = note->descsz;
7746 sect->filepos = note->descpos;
7747 sect->flags = SEC_HAS_CONTENTS;
7748 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7750 return TRUE;
7755 static bfd_boolean
7756 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7758 char *cp;
7760 cp = strchr (note->namedata, '@');
7761 if (cp != NULL)
7763 *lwpidp = atoi(cp + 1);
7764 return TRUE;
7766 return FALSE;
7769 static bfd_boolean
7770 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7773 /* Signal number at offset 0x08. */
7774 elf_tdata (abfd)->core_signal
7775 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7777 /* Process ID at offset 0x50. */
7778 elf_tdata (abfd)->core_pid
7779 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7781 /* Command name at 0x7c (max 32 bytes, including nul). */
7782 elf_tdata (abfd)->core_command
7783 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7785 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7786 note);
7789 static bfd_boolean
7790 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7792 int lwp;
7794 if (elfcore_netbsd_get_lwpid (note, &lwp))
7795 elf_tdata (abfd)->core_lwpid = lwp;
7797 if (note->type == NT_NETBSDCORE_PROCINFO)
7799 /* NetBSD-specific core "procinfo". Note that we expect to
7800 find this note before any of the others, which is fine,
7801 since the kernel writes this note out first when it
7802 creates a core file. */
7804 return elfcore_grok_netbsd_procinfo (abfd, note);
7807 /* As of Jan 2002 there are no other machine-independent notes
7808 defined for NetBSD core files. If the note type is less
7809 than the start of the machine-dependent note types, we don't
7810 understand it. */
7812 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7813 return TRUE;
7816 switch (bfd_get_arch (abfd))
7818 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7819 PT_GETFPREGS == mach+2. */
7821 case bfd_arch_alpha:
7822 case bfd_arch_sparc:
7823 switch (note->type)
7825 case NT_NETBSDCORE_FIRSTMACH+0:
7826 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7828 case NT_NETBSDCORE_FIRSTMACH+2:
7829 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7831 default:
7832 return TRUE;
7835 /* On all other arch's, PT_GETREGS == mach+1 and
7836 PT_GETFPREGS == mach+3. */
7838 default:
7839 switch (note->type)
7841 case NT_NETBSDCORE_FIRSTMACH+1:
7842 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7844 case NT_NETBSDCORE_FIRSTMACH+3:
7845 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7847 default:
7848 return TRUE;
7851 /* NOTREACHED */
7854 static bfd_boolean
7855 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7857 void *ddata = note->descdata;
7858 char buf[100];
7859 char *name;
7860 asection *sect;
7861 short sig;
7862 unsigned flags;
7864 /* nto_procfs_status 'pid' field is at offset 0. */
7865 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7867 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7868 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7870 /* nto_procfs_status 'flags' field is at offset 8. */
7871 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7873 /* nto_procfs_status 'what' field is at offset 14. */
7874 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7876 elf_tdata (abfd)->core_signal = sig;
7877 elf_tdata (abfd)->core_lwpid = *tid;
7880 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7881 do not come from signals so we make sure we set the current
7882 thread just in case. */
7883 if (flags & 0x00000080)
7884 elf_tdata (abfd)->core_lwpid = *tid;
7886 /* Make a ".qnx_core_status/%d" section. */
7887 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7889 name = bfd_alloc (abfd, strlen (buf) + 1);
7890 if (name == NULL)
7891 return FALSE;
7892 strcpy (name, buf);
7894 sect = bfd_make_section_anyway (abfd, name);
7895 if (sect == NULL)
7896 return FALSE;
7898 sect->size = note->descsz;
7899 sect->filepos = note->descpos;
7900 sect->flags = SEC_HAS_CONTENTS;
7901 sect->alignment_power = 2;
7903 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7906 static bfd_boolean
7907 elfcore_grok_nto_regs (bfd *abfd,
7908 Elf_Internal_Note *note,
7909 pid_t tid,
7910 char *base)
7912 char buf[100];
7913 char *name;
7914 asection *sect;
7916 /* Make a "(base)/%d" section. */
7917 sprintf (buf, "%s/%ld", base, (long) tid);
7919 name = bfd_alloc (abfd, strlen (buf) + 1);
7920 if (name == NULL)
7921 return FALSE;
7922 strcpy (name, buf);
7924 sect = bfd_make_section_anyway (abfd, name);
7925 if (sect == NULL)
7926 return FALSE;
7928 sect->size = note->descsz;
7929 sect->filepos = note->descpos;
7930 sect->flags = SEC_HAS_CONTENTS;
7931 sect->alignment_power = 2;
7933 /* This is the current thread. */
7934 if (elf_tdata (abfd)->core_lwpid == tid)
7935 return elfcore_maybe_make_sect (abfd, base, sect);
7937 return TRUE;
7940 #define BFD_QNT_CORE_INFO 7
7941 #define BFD_QNT_CORE_STATUS 8
7942 #define BFD_QNT_CORE_GREG 9
7943 #define BFD_QNT_CORE_FPREG 10
7945 static bfd_boolean
7946 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7948 /* Every GREG section has a STATUS section before it. Store the
7949 tid from the previous call to pass down to the next gregs
7950 function. */
7951 static pid_t tid = 1;
7953 switch (note->type)
7955 case BFD_QNT_CORE_INFO:
7956 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7957 case BFD_QNT_CORE_STATUS:
7958 return elfcore_grok_nto_status (abfd, note, &tid);
7959 case BFD_QNT_CORE_GREG:
7960 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7961 case BFD_QNT_CORE_FPREG:
7962 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7963 default:
7964 return TRUE;
7968 /* Function: elfcore_write_note
7970 Inputs:
7971 buffer to hold note
7972 name of note
7973 type of note
7974 data for note
7975 size of data for note
7977 Return:
7978 End of buffer containing note. */
7980 char *
7981 elfcore_write_note (bfd *abfd,
7982 char *buf,
7983 int *bufsiz,
7984 const char *name,
7985 int type,
7986 const void *input,
7987 int size)
7989 Elf_External_Note *xnp;
7990 size_t namesz;
7991 size_t pad;
7992 size_t newspace;
7993 char *p, *dest;
7995 namesz = 0;
7996 pad = 0;
7997 if (name != NULL)
7999 const struct elf_backend_data *bed;
8001 namesz = strlen (name) + 1;
8002 bed = get_elf_backend_data (abfd);
8003 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8006 newspace = 12 + namesz + pad + size;
8008 p = realloc (buf, *bufsiz + newspace);
8009 dest = p + *bufsiz;
8010 *bufsiz += newspace;
8011 xnp = (Elf_External_Note *) dest;
8012 H_PUT_32 (abfd, namesz, xnp->namesz);
8013 H_PUT_32 (abfd, size, xnp->descsz);
8014 H_PUT_32 (abfd, type, xnp->type);
8015 dest = xnp->name;
8016 if (name != NULL)
8018 memcpy (dest, name, namesz);
8019 dest += namesz;
8020 while (pad != 0)
8022 *dest++ = '\0';
8023 --pad;
8026 memcpy (dest, input, size);
8027 return p;
8030 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8031 char *
8032 elfcore_write_prpsinfo (bfd *abfd,
8033 char *buf,
8034 int *bufsiz,
8035 const char *fname,
8036 const char *psargs)
8038 int note_type;
8039 char *note_name = "CORE";
8041 #if defined (HAVE_PSINFO_T)
8042 psinfo_t data;
8043 note_type = NT_PSINFO;
8044 #else
8045 prpsinfo_t data;
8046 note_type = NT_PRPSINFO;
8047 #endif
8049 memset (&data, 0, sizeof (data));
8050 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8051 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8052 return elfcore_write_note (abfd, buf, bufsiz,
8053 note_name, note_type, &data, sizeof (data));
8055 #endif /* PSINFO_T or PRPSINFO_T */
8057 #if defined (HAVE_PRSTATUS_T)
8058 char *
8059 elfcore_write_prstatus (bfd *abfd,
8060 char *buf,
8061 int *bufsiz,
8062 long pid,
8063 int cursig,
8064 const void *gregs)
8066 prstatus_t prstat;
8067 char *note_name = "CORE";
8069 memset (&prstat, 0, sizeof (prstat));
8070 prstat.pr_pid = pid;
8071 prstat.pr_cursig = cursig;
8072 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8073 return elfcore_write_note (abfd, buf, bufsiz,
8074 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8076 #endif /* HAVE_PRSTATUS_T */
8078 #if defined (HAVE_LWPSTATUS_T)
8079 char *
8080 elfcore_write_lwpstatus (bfd *abfd,
8081 char *buf,
8082 int *bufsiz,
8083 long pid,
8084 int cursig,
8085 const void *gregs)
8087 lwpstatus_t lwpstat;
8088 char *note_name = "CORE";
8090 memset (&lwpstat, 0, sizeof (lwpstat));
8091 lwpstat.pr_lwpid = pid >> 16;
8092 lwpstat.pr_cursig = cursig;
8093 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8094 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8095 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8096 #if !defined(gregs)
8097 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8098 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8099 #else
8100 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8101 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8102 #endif
8103 #endif
8104 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8105 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8107 #endif /* HAVE_LWPSTATUS_T */
8109 #if defined (HAVE_PSTATUS_T)
8110 char *
8111 elfcore_write_pstatus (bfd *abfd,
8112 char *buf,
8113 int *bufsiz,
8114 long pid,
8115 int cursig ATTRIBUTE_UNUSED,
8116 const void *gregs ATTRIBUTE_UNUSED)
8118 pstatus_t pstat;
8119 char *note_name = "CORE";
8121 memset (&pstat, 0, sizeof (pstat));
8122 pstat.pr_pid = pid & 0xffff;
8123 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8124 NT_PSTATUS, &pstat, sizeof (pstat));
8125 return buf;
8127 #endif /* HAVE_PSTATUS_T */
8129 char *
8130 elfcore_write_prfpreg (bfd *abfd,
8131 char *buf,
8132 int *bufsiz,
8133 const void *fpregs,
8134 int size)
8136 char *note_name = "CORE";
8137 return elfcore_write_note (abfd, buf, bufsiz,
8138 note_name, NT_FPREGSET, fpregs, size);
8141 char *
8142 elfcore_write_prxfpreg (bfd *abfd,
8143 char *buf,
8144 int *bufsiz,
8145 const void *xfpregs,
8146 int size)
8148 char *note_name = "LINUX";
8149 return elfcore_write_note (abfd, buf, bufsiz,
8150 note_name, NT_PRXFPREG, xfpregs, size);
8153 static bfd_boolean
8154 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8156 char *buf;
8157 char *p;
8159 if (size <= 0)
8160 return TRUE;
8162 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8163 return FALSE;
8165 buf = bfd_malloc (size);
8166 if (buf == NULL)
8167 return FALSE;
8169 if (bfd_bread (buf, size, abfd) != size)
8171 error:
8172 free (buf);
8173 return FALSE;
8176 p = buf;
8177 while (p < buf + size)
8179 /* FIXME: bad alignment assumption. */
8180 Elf_External_Note *xnp = (Elf_External_Note *) p;
8181 Elf_Internal_Note in;
8183 in.type = H_GET_32 (abfd, xnp->type);
8185 in.namesz = H_GET_32 (abfd, xnp->namesz);
8186 in.namedata = xnp->name;
8188 in.descsz = H_GET_32 (abfd, xnp->descsz);
8189 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8190 in.descpos = offset + (in.descdata - buf);
8192 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8194 if (! elfcore_grok_netbsd_note (abfd, &in))
8195 goto error;
8197 else if (strncmp (in.namedata, "QNX", 3) == 0)
8199 if (! elfcore_grok_nto_note (abfd, &in))
8200 goto error;
8202 else
8204 if (! elfcore_grok_note (abfd, &in))
8205 goto error;
8208 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8211 free (buf);
8212 return TRUE;
8215 /* Providing external access to the ELF program header table. */
8217 /* Return an upper bound on the number of bytes required to store a
8218 copy of ABFD's program header table entries. Return -1 if an error
8219 occurs; bfd_get_error will return an appropriate code. */
8221 long
8222 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8224 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8226 bfd_set_error (bfd_error_wrong_format);
8227 return -1;
8230 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8233 /* Copy ABFD's program header table entries to *PHDRS. The entries
8234 will be stored as an array of Elf_Internal_Phdr structures, as
8235 defined in include/elf/internal.h. To find out how large the
8236 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8238 Return the number of program header table entries read, or -1 if an
8239 error occurs; bfd_get_error will return an appropriate code. */
8242 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8244 int num_phdrs;
8246 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8248 bfd_set_error (bfd_error_wrong_format);
8249 return -1;
8252 num_phdrs = elf_elfheader (abfd)->e_phnum;
8253 memcpy (phdrs, elf_tdata (abfd)->phdr,
8254 num_phdrs * sizeof (Elf_Internal_Phdr));
8256 return num_phdrs;
8259 void
8260 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8262 #ifdef BFD64
8263 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8265 i_ehdrp = elf_elfheader (abfd);
8266 if (i_ehdrp == NULL)
8267 sprintf_vma (buf, value);
8268 else
8270 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8272 #if BFD_HOST_64BIT_LONG
8273 sprintf (buf, "%016lx", value);
8274 #else
8275 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8276 _bfd_int64_low (value));
8277 #endif
8279 else
8280 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8282 #else
8283 sprintf_vma (buf, value);
8284 #endif
8287 void
8288 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8290 #ifdef BFD64
8291 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8293 i_ehdrp = elf_elfheader (abfd);
8294 if (i_ehdrp == NULL)
8295 fprintf_vma ((FILE *) stream, value);
8296 else
8298 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8300 #if BFD_HOST_64BIT_LONG
8301 fprintf ((FILE *) stream, "%016lx", value);
8302 #else
8303 fprintf ((FILE *) stream, "%08lx%08lx",
8304 _bfd_int64_high (value), _bfd_int64_low (value));
8305 #endif
8307 else
8308 fprintf ((FILE *) stream, "%08lx",
8309 (unsigned long) (value & 0xffffffff));
8311 #else
8312 fprintf_vma ((FILE *) stream, value);
8313 #endif
8316 enum elf_reloc_type_class
8317 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8319 return reloc_class_normal;
8322 /* For RELA architectures, return the relocation value for a
8323 relocation against a local symbol. */
8325 bfd_vma
8326 _bfd_elf_rela_local_sym (bfd *abfd,
8327 Elf_Internal_Sym *sym,
8328 asection **psec,
8329 Elf_Internal_Rela *rel)
8331 asection *sec = *psec;
8332 bfd_vma relocation;
8334 relocation = (sec->output_section->vma
8335 + sec->output_offset
8336 + sym->st_value);
8337 if ((sec->flags & SEC_MERGE)
8338 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8339 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8341 rel->r_addend =
8342 _bfd_merged_section_offset (abfd, psec,
8343 elf_section_data (sec)->sec_info,
8344 sym->st_value + rel->r_addend);
8345 if (sec != *psec)
8347 /* If we have changed the section, and our original section is
8348 marked with SEC_EXCLUDE, it means that the original
8349 SEC_MERGE section has been completely subsumed in some
8350 other SEC_MERGE section. In this case, we need to leave
8351 some info around for --emit-relocs. */
8352 if ((sec->flags & SEC_EXCLUDE) != 0)
8353 sec->kept_section = *psec;
8354 sec = *psec;
8356 rel->r_addend -= relocation;
8357 rel->r_addend += sec->output_section->vma + sec->output_offset;
8359 return relocation;
8362 bfd_vma
8363 _bfd_elf_rel_local_sym (bfd *abfd,
8364 Elf_Internal_Sym *sym,
8365 asection **psec,
8366 bfd_vma addend)
8368 asection *sec = *psec;
8370 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8371 return sym->st_value + addend;
8373 return _bfd_merged_section_offset (abfd, psec,
8374 elf_section_data (sec)->sec_info,
8375 sym->st_value + addend);
8378 bfd_vma
8379 _bfd_elf_section_offset (bfd *abfd,
8380 struct bfd_link_info *info,
8381 asection *sec,
8382 bfd_vma offset)
8384 switch (sec->sec_info_type)
8386 case ELF_INFO_TYPE_STABS:
8387 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8388 offset);
8389 case ELF_INFO_TYPE_EH_FRAME:
8390 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8391 default:
8392 return offset;
8396 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8397 reconstruct an ELF file by reading the segments out of remote memory
8398 based on the ELF file header at EHDR_VMA and the ELF program headers it
8399 points to. If not null, *LOADBASEP is filled in with the difference
8400 between the VMAs from which the segments were read, and the VMAs the
8401 file headers (and hence BFD's idea of each section's VMA) put them at.
8403 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8404 remote memory at target address VMA into the local buffer at MYADDR; it
8405 should return zero on success or an `errno' code on failure. TEMPL must
8406 be a BFD for an ELF target with the word size and byte order found in
8407 the remote memory. */
8409 bfd *
8410 bfd_elf_bfd_from_remote_memory
8411 (bfd *templ,
8412 bfd_vma ehdr_vma,
8413 bfd_vma *loadbasep,
8414 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8416 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8417 (templ, ehdr_vma, loadbasep, target_read_memory);
8420 long
8421 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8422 long symcount ATTRIBUTE_UNUSED,
8423 asymbol **syms ATTRIBUTE_UNUSED,
8424 long dynsymcount,
8425 asymbol **dynsyms,
8426 asymbol **ret)
8428 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8429 asection *relplt;
8430 asymbol *s;
8431 const char *relplt_name;
8432 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8433 arelent *p;
8434 long count, i, n;
8435 size_t size;
8436 Elf_Internal_Shdr *hdr;
8437 char *names;
8438 asection *plt;
8440 *ret = NULL;
8442 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8443 return 0;
8445 if (dynsymcount <= 0)
8446 return 0;
8448 if (!bed->plt_sym_val)
8449 return 0;
8451 relplt_name = bed->relplt_name;
8452 if (relplt_name == NULL)
8453 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8454 relplt = bfd_get_section_by_name (abfd, relplt_name);
8455 if (relplt == NULL)
8456 return 0;
8458 hdr = &elf_section_data (relplt)->this_hdr;
8459 if (hdr->sh_link != elf_dynsymtab (abfd)
8460 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8461 return 0;
8463 plt = bfd_get_section_by_name (abfd, ".plt");
8464 if (plt == NULL)
8465 return 0;
8467 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8468 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8469 return -1;
8471 count = relplt->size / hdr->sh_entsize;
8472 size = count * sizeof (asymbol);
8473 p = relplt->relocation;
8474 for (i = 0; i < count; i++, s++, p++)
8475 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8477 s = *ret = bfd_malloc (size);
8478 if (s == NULL)
8479 return -1;
8481 names = (char *) (s + count);
8482 p = relplt->relocation;
8483 n = 0;
8484 for (i = 0; i < count; i++, s++, p++)
8486 size_t len;
8487 bfd_vma addr;
8489 addr = bed->plt_sym_val (i, plt, p);
8490 if (addr == (bfd_vma) -1)
8491 continue;
8493 *s = **p->sym_ptr_ptr;
8494 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8495 we are defining a symbol, ensure one of them is set. */
8496 if ((s->flags & BSF_LOCAL) == 0)
8497 s->flags |= BSF_GLOBAL;
8498 s->section = plt;
8499 s->value = addr - plt->vma;
8500 s->name = names;
8501 len = strlen ((*p->sym_ptr_ptr)->name);
8502 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8503 names += len;
8504 memcpy (names, "@plt", sizeof ("@plt"));
8505 names += sizeof ("@plt");
8506 ++n;
8509 return n;
8512 /* Sort symbol by binding and section. We want to put definitions
8513 sorted by section at the beginning. */
8515 static int
8516 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8518 const Elf_Internal_Sym *s1;
8519 const Elf_Internal_Sym *s2;
8520 int shndx;
8522 /* Make sure that undefined symbols are at the end. */
8523 s1 = (const Elf_Internal_Sym *) arg1;
8524 if (s1->st_shndx == SHN_UNDEF)
8525 return 1;
8526 s2 = (const Elf_Internal_Sym *) arg2;
8527 if (s2->st_shndx == SHN_UNDEF)
8528 return -1;
8530 /* Sorted by section index. */
8531 shndx = s1->st_shndx - s2->st_shndx;
8532 if (shndx != 0)
8533 return shndx;
8535 /* Sorted by binding. */
8536 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8539 struct elf_symbol
8541 Elf_Internal_Sym *sym;
8542 const char *name;
8545 static int
8546 elf_sym_name_compare (const void *arg1, const void *arg2)
8548 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8549 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8550 return strcmp (s1->name, s2->name);
8553 /* Check if 2 sections define the same set of local and global
8554 symbols. */
8556 bfd_boolean
8557 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8559 bfd *bfd1, *bfd2;
8560 const struct elf_backend_data *bed1, *bed2;
8561 Elf_Internal_Shdr *hdr1, *hdr2;
8562 bfd_size_type symcount1, symcount2;
8563 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8564 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8565 Elf_Internal_Sym *isymend;
8566 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8567 bfd_size_type count1, count2, i;
8568 int shndx1, shndx2;
8569 bfd_boolean result;
8571 bfd1 = sec1->owner;
8572 bfd2 = sec2->owner;
8574 /* If both are .gnu.linkonce sections, they have to have the same
8575 section name. */
8576 if (strncmp (sec1->name, ".gnu.linkonce",
8577 sizeof ".gnu.linkonce" - 1) == 0
8578 && strncmp (sec2->name, ".gnu.linkonce",
8579 sizeof ".gnu.linkonce" - 1) == 0)
8580 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8581 sec2->name + sizeof ".gnu.linkonce") == 0;
8583 /* Both sections have to be in ELF. */
8584 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8585 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8586 return FALSE;
8588 if (elf_section_type (sec1) != elf_section_type (sec2))
8589 return FALSE;
8591 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8592 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8594 /* If both are members of section groups, they have to have the
8595 same group name. */
8596 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8597 return FALSE;
8600 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8601 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8602 if (shndx1 == -1 || shndx2 == -1)
8603 return FALSE;
8605 bed1 = get_elf_backend_data (bfd1);
8606 bed2 = get_elf_backend_data (bfd2);
8607 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8608 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8609 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8610 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8612 if (symcount1 == 0 || symcount2 == 0)
8613 return FALSE;
8615 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8616 NULL, NULL, NULL);
8617 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8618 NULL, NULL, NULL);
8620 result = FALSE;
8621 if (isymbuf1 == NULL || isymbuf2 == NULL)
8622 goto done;
8624 /* Sort symbols by binding and section. Global definitions are at
8625 the beginning. */
8626 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8627 elf_sort_elf_symbol);
8628 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8629 elf_sort_elf_symbol);
8631 /* Count definitions in the section. */
8632 count1 = 0;
8633 for (isym = isymbuf1, isymend = isym + symcount1;
8634 isym < isymend; isym++)
8636 if (isym->st_shndx == (unsigned int) shndx1)
8638 if (count1 == 0)
8639 isymstart1 = isym;
8640 count1++;
8643 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8644 break;
8647 count2 = 0;
8648 for (isym = isymbuf2, isymend = isym + symcount2;
8649 isym < isymend; isym++)
8651 if (isym->st_shndx == (unsigned int) shndx2)
8653 if (count2 == 0)
8654 isymstart2 = isym;
8655 count2++;
8658 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8659 break;
8662 if (count1 == 0 || count2 == 0 || count1 != count2)
8663 goto done;
8665 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8666 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8668 if (symtable1 == NULL || symtable2 == NULL)
8669 goto done;
8671 symp = symtable1;
8672 for (isym = isymstart1, isymend = isym + count1;
8673 isym < isymend; isym++)
8675 symp->sym = isym;
8676 symp->name = bfd_elf_string_from_elf_section (bfd1,
8677 hdr1->sh_link,
8678 isym->st_name);
8679 symp++;
8682 symp = symtable2;
8683 for (isym = isymstart2, isymend = isym + count1;
8684 isym < isymend; isym++)
8686 symp->sym = isym;
8687 symp->name = bfd_elf_string_from_elf_section (bfd2,
8688 hdr2->sh_link,
8689 isym->st_name);
8690 symp++;
8693 /* Sort symbol by name. */
8694 qsort (symtable1, count1, sizeof (struct elf_symbol),
8695 elf_sym_name_compare);
8696 qsort (symtable2, count1, sizeof (struct elf_symbol),
8697 elf_sym_name_compare);
8699 for (i = 0; i < count1; i++)
8700 /* Two symbols must have the same binding, type and name. */
8701 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8702 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8703 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8704 goto done;
8706 result = TRUE;
8708 done:
8709 if (symtable1)
8710 free (symtable1);
8711 if (symtable2)
8712 free (symtable2);
8713 if (isymbuf1)
8714 free (isymbuf1);
8715 if (isymbuf2)
8716 free (isymbuf2);
8718 return result;
8721 /* It is only used by x86-64 so far. */
8722 asection _bfd_elf_large_com_section
8723 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8724 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8727 /* Return TRUE if 2 section types are compatible. */
8729 bfd_boolean
8730 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8731 bfd *bbfd, const asection *bsec)
8733 if (asec == NULL
8734 || bsec == NULL
8735 || abfd->xvec->flavour != bfd_target_elf_flavour
8736 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8737 return TRUE;
8739 return elf_section_type (asec) == elf_section_type (bsec);