1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
51 #include "descriptors.h"
53 #include "incremental.h"
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists
= 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes
= 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes
= 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits
= 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates
= 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits
= 0;
74 // Initialize the free list. Creates a single free list node that
75 // describes the entire region of length LEN. If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
80 Free_list::init(off_t len
, bool extend
)
82 this->list_
.push_front(Free_list_node(0, len
));
83 this->last_remove_
= this->list_
.begin();
84 this->extend_
= extend
;
86 ++Free_list::num_lists
;
87 ++Free_list::num_nodes
;
90 // Remove a chunk from the free list. Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node. We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
100 Free_list::remove(off_t start
, off_t end
)
104 gold_assert(start
< end
);
106 ++Free_list::num_removes
;
108 Iterator p
= this->last_remove_
;
109 if (p
->start_
> start
)
110 p
= this->list_
.begin();
112 for (; p
!= this->list_
.end(); ++p
)
114 ++Free_list::num_remove_visits
;
115 // Find a node that wholly contains the indicated region.
116 if (p
->start_
<= start
&& p
->end_
>= end
)
118 // Case 1: the indicated region spans the whole node.
119 // Add some fuzz to avoid creating tiny free chunks.
120 if (p
->start_
+ 3 >= start
&& p
->end_
<= end
+ 3)
121 p
= this->list_
.erase(p
);
122 // Case 2: remove a chunk from the start of the node.
123 else if (p
->start_
+ 3 >= start
)
125 // Case 3: remove a chunk from the end of the node.
126 else if (p
->end_
<= end
+ 3)
128 // Case 4: remove a chunk from the middle, and split
129 // the node into two.
132 Free_list_node
newnode(p
->start_
, start
);
134 this->list_
.insert(p
, newnode
);
135 ++Free_list::num_nodes
;
137 this->last_remove_
= p
;
142 // Did not find a node containing the given chunk. This could happen
143 // because a small chunk was already removed due to the fuzz.
144 gold_debug(DEBUG_INCREMENTAL
,
145 "Free_list::remove(%d,%d) not found",
146 static_cast<int>(start
), static_cast<int>(end
));
149 // Allocate a chunk of size LEN from the free list. Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
154 Free_list::allocate(off_t len
, uint64_t align
, off_t minoff
)
156 gold_debug(DEBUG_INCREMENTAL
,
157 "Free_list::allocate(%08lx, %d, %08lx)",
158 static_cast<long>(len
), static_cast<int>(align
),
159 static_cast<long>(minoff
));
161 return align_address(minoff
, align
);
163 ++Free_list::num_allocates
;
165 // We usually want to drop free chunks smaller than 4 bytes.
166 // If we need to guarantee a minimum hole size, though, we need
167 // to keep track of all free chunks.
168 const int fuzz
= this->min_hole_
> 0 ? 0 : 3;
170 for (Iterator p
= this->list_
.begin(); p
!= this->list_
.end(); ++p
)
172 ++Free_list::num_allocate_visits
;
173 off_t start
= p
->start_
> minoff
? p
->start_
: minoff
;
174 start
= align_address(start
, align
);
175 off_t end
= start
+ len
;
176 if (end
> p
->end_
&& p
->end_
== this->length_
&& this->extend_
)
181 if (end
== p
->end_
|| (end
<= p
->end_
- this->min_hole_
))
183 if (p
->start_
+ fuzz
>= start
&& p
->end_
<= end
+ fuzz
)
184 this->list_
.erase(p
);
185 else if (p
->start_
+ fuzz
>= start
)
187 else if (p
->end_
<= end
+ fuzz
)
191 Free_list_node
newnode(p
->start_
, start
);
193 this->list_
.insert(p
, newnode
);
194 ++Free_list::num_nodes
;
201 off_t start
= align_address(this->length_
, align
);
202 this->length_
= start
+ len
;
208 // Dump the free list (for debugging).
212 gold_info("Free list:\n start end length\n");
213 for (Iterator p
= this->list_
.begin(); p
!= this->list_
.end(); ++p
)
214 gold_info(" %08lx %08lx %08lx", static_cast<long>(p
->start_
),
215 static_cast<long>(p
->end_
),
216 static_cast<long>(p
->end_
- p
->start_
));
219 // Print the statistics for the free lists.
221 Free_list::print_stats()
223 fprintf(stderr
, _("%s: total free lists: %u\n"),
224 program_name
, Free_list::num_lists
);
225 fprintf(stderr
, _("%s: total free list nodes: %u\n"),
226 program_name
, Free_list::num_nodes
);
227 fprintf(stderr
, _("%s: calls to Free_list::remove: %u\n"),
228 program_name
, Free_list::num_removes
);
229 fprintf(stderr
, _("%s: nodes visited: %u\n"),
230 program_name
, Free_list::num_remove_visits
);
231 fprintf(stderr
, _("%s: calls to Free_list::allocate: %u\n"),
232 program_name
, Free_list::num_allocates
);
233 fprintf(stderr
, _("%s: nodes visited: %u\n"),
234 program_name
, Free_list::num_allocate_visits
);
237 // Layout::Relaxation_debug_check methods.
239 // Check that sections and special data are in reset states.
240 // We do not save states for Output_sections and special Output_data.
241 // So we check that they have not assigned any addresses or offsets.
242 // clean_up_after_relaxation simply resets their addresses and offsets.
244 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
245 const Layout::Section_list
& sections
,
246 const Layout::Data_list
& special_outputs
)
248 for(Layout::Section_list::const_iterator p
= sections
.begin();
251 gold_assert((*p
)->address_and_file_offset_have_reset_values());
253 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
254 p
!= special_outputs
.end();
256 gold_assert((*p
)->address_and_file_offset_have_reset_values());
259 // Save information of SECTIONS for checking later.
262 Layout::Relaxation_debug_check::read_sections(
263 const Layout::Section_list
& sections
)
265 for(Layout::Section_list::const_iterator p
= sections
.begin();
269 Output_section
* os
= *p
;
271 info
.output_section
= os
;
272 info
.address
= os
->is_address_valid() ? os
->address() : 0;
273 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
274 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
275 this->section_infos_
.push_back(info
);
279 // Verify SECTIONS using previously recorded information.
282 Layout::Relaxation_debug_check::verify_sections(
283 const Layout::Section_list
& sections
)
286 for(Layout::Section_list::const_iterator p
= sections
.begin();
290 Output_section
* os
= *p
;
291 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
292 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
293 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
295 if (i
>= this->section_infos_
.size())
297 gold_fatal("Section_info of %s missing.\n", os
->name());
299 const Section_info
& info
= this->section_infos_
[i
];
300 if (os
!= info
.output_section
)
301 gold_fatal("Section order changed. Expecting %s but see %s\n",
302 info
.output_section
->name(), os
->name());
303 if (address
!= info
.address
304 || data_size
!= info
.data_size
305 || offset
!= info
.offset
)
306 gold_fatal("Section %s changed.\n", os
->name());
310 // Layout_task_runner methods.
312 // Lay out the sections. This is called after all the input objects
316 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
318 Layout
* layout
= this->layout_
;
319 off_t file_size
= layout
->finalize(this->input_objects_
,
324 // Now we know the final size of the output file and we know where
325 // each piece of information goes.
327 if (this->mapfile_
!= NULL
)
329 this->mapfile_
->print_discarded_sections(this->input_objects_
);
330 layout
->print_to_mapfile(this->mapfile_
);
334 if (layout
->incremental_base() == NULL
)
336 of
= new Output_file(parameters
->options().output_file_name());
337 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
338 of
->set_is_temporary();
343 of
= layout
->incremental_base()->output_file();
345 // Apply the incremental relocations for symbols whose values
346 // have changed. We do this before we resize the file and start
347 // writing anything else to it, so that we can read the old
348 // incremental information from the file before (possibly)
350 if (parameters
->incremental_update())
351 layout
->incremental_base()->apply_incremental_relocs(this->symtab_
,
355 of
->resize(file_size
);
358 // Queue up the final set of tasks.
359 gold::queue_final_tasks(this->options_
, this->input_objects_
,
360 this->symtab_
, layout
, workqueue
, of
);
365 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
366 : number_of_input_files_(number_of_input_files
),
367 script_options_(script_options
),
375 unattached_section_list_(),
376 special_output_list_(),
377 section_headers_(NULL
),
379 relro_segment_(NULL
),
380 interp_segment_(NULL
),
382 symtab_section_(NULL
),
383 symtab_xindex_(NULL
),
384 dynsym_section_(NULL
),
385 dynsym_xindex_(NULL
),
386 dynamic_section_(NULL
),
387 dynamic_symbol_(NULL
),
389 eh_frame_section_(NULL
),
390 eh_frame_data_(NULL
),
391 added_eh_frame_data_(false),
392 eh_frame_hdr_section_(NULL
),
393 build_id_note_(NULL
),
397 output_file_size_(-1),
398 have_added_input_section_(false),
399 sections_are_attached_(false),
400 input_requires_executable_stack_(false),
401 input_with_gnu_stack_note_(false),
402 input_without_gnu_stack_note_(false),
403 has_static_tls_(false),
404 any_postprocessing_sections_(false),
405 resized_signatures_(false),
406 have_stabstr_section_(false),
407 section_ordering_specified_(false),
408 incremental_inputs_(NULL
),
409 record_output_section_data_from_script_(false),
410 script_output_section_data_list_(),
411 segment_states_(NULL
),
412 relaxation_debug_check_(NULL
),
413 section_order_map_(),
414 input_section_position_(),
415 input_section_glob_(),
416 incremental_base_(NULL
),
419 // Make space for more than enough segments for a typical file.
420 // This is just for efficiency--it's OK if we wind up needing more.
421 this->segment_list_
.reserve(12);
423 // We expect two unattached Output_data objects: the file header and
424 // the segment headers.
425 this->special_output_list_
.reserve(2);
427 // Initialize structure needed for an incremental build.
428 if (parameters
->incremental())
429 this->incremental_inputs_
= new Incremental_inputs
;
431 // The section name pool is worth optimizing in all cases, because
432 // it is small, but there are often overlaps due to .rel sections.
433 this->namepool_
.set_optimize();
436 // For incremental links, record the base file to be modified.
439 Layout::set_incremental_base(Incremental_binary
* base
)
441 this->incremental_base_
= base
;
442 this->free_list_
.init(base
->output_file()->filesize(), true);
445 // Hash a key we use to look up an output section mapping.
448 Layout::Hash_key::operator()(const Layout::Key
& k
) const
450 return k
.first
+ k
.second
.first
+ k
.second
.second
;
453 // Returns whether the given section is in the list of
454 // debug-sections-used-by-some-version-of-gdb. Currently,
455 // we've checked versions of gdb up to and including 6.7.1.
457 static const char* gdb_sections
[] =
459 // ".debug_aranges", // not used by gdb as of 6.7.1
466 // ".debug_pubnames", // not used by gdb as of 6.7.1
471 static const char* lines_only_debug_sections
[] =
473 // ".debug_aranges", // not used by gdb as of 6.7.1
480 // ".debug_pubnames", // not used by gdb as of 6.7.1
486 is_gdb_debug_section(const char* str
)
488 // We can do this faster: binary search or a hashtable. But why bother?
489 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
490 if (strcmp(str
, gdb_sections
[i
]) == 0)
496 is_lines_only_debug_section(const char* str
)
498 // We can do this faster: binary search or a hashtable. But why bother?
500 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
502 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
507 // Sometimes we compress sections. This is typically done for
508 // sections that are not part of normal program execution (such as
509 // .debug_* sections), and where the readers of these sections know
510 // how to deal with compressed sections. This routine doesn't say for
511 // certain whether we'll compress -- it depends on commandline options
512 // as well -- just whether this section is a candidate for compression.
513 // (The Output_compressed_section class decides whether to compress
514 // a given section, and picks the name of the compressed section.)
517 is_compressible_debug_section(const char* secname
)
519 return (is_prefix_of(".debug", secname
));
522 // We may see compressed debug sections in input files. Return TRUE
523 // if this is the name of a compressed debug section.
526 is_compressed_debug_section(const char* secname
)
528 return (is_prefix_of(".zdebug", secname
));
531 // Whether to include this section in the link.
533 template<int size
, bool big_endian
>
535 Layout::include_section(Sized_relobj_file
<size
, big_endian
>*, const char* name
,
536 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
538 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
541 switch (shdr
.get_sh_type())
543 case elfcpp::SHT_NULL
:
544 case elfcpp::SHT_SYMTAB
:
545 case elfcpp::SHT_DYNSYM
:
546 case elfcpp::SHT_HASH
:
547 case elfcpp::SHT_DYNAMIC
:
548 case elfcpp::SHT_SYMTAB_SHNDX
:
551 case elfcpp::SHT_STRTAB
:
552 // Discard the sections which have special meanings in the ELF
553 // ABI. Keep others (e.g., .stabstr). We could also do this by
554 // checking the sh_link fields of the appropriate sections.
555 return (strcmp(name
, ".dynstr") != 0
556 && strcmp(name
, ".strtab") != 0
557 && strcmp(name
, ".shstrtab") != 0);
559 case elfcpp::SHT_RELA
:
560 case elfcpp::SHT_REL
:
561 case elfcpp::SHT_GROUP
:
562 // If we are emitting relocations these should be handled
564 gold_assert(!parameters
->options().relocatable()
565 && !parameters
->options().emit_relocs());
568 case elfcpp::SHT_PROGBITS
:
569 if (parameters
->options().strip_debug()
570 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
572 if (is_debug_info_section(name
))
575 if (parameters
->options().strip_debug_non_line()
576 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
578 // Debugging sections can only be recognized by name.
579 if (is_prefix_of(".debug", name
)
580 && !is_lines_only_debug_section(name
))
583 if (parameters
->options().strip_debug_gdb()
584 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
586 // Debugging sections can only be recognized by name.
587 if (is_prefix_of(".debug", name
)
588 && !is_gdb_debug_section(name
))
591 if (parameters
->options().strip_lto_sections()
592 && !parameters
->options().relocatable()
593 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
595 // Ignore LTO sections containing intermediate code.
596 if (is_prefix_of(".gnu.lto_", name
))
599 // The GNU linker strips .gnu_debuglink sections, so we do too.
600 // This is a feature used to keep debugging information in
602 if (strcmp(name
, ".gnu_debuglink") == 0)
611 // Return an output section named NAME, or NULL if there is none.
614 Layout::find_output_section(const char* name
) const
616 for (Section_list::const_iterator p
= this->section_list_
.begin();
617 p
!= this->section_list_
.end();
619 if (strcmp((*p
)->name(), name
) == 0)
624 // Return an output segment of type TYPE, with segment flags SET set
625 // and segment flags CLEAR clear. Return NULL if there is none.
628 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
629 elfcpp::Elf_Word clear
) const
631 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
632 p
!= this->segment_list_
.end();
634 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
635 && ((*p
)->flags() & set
) == set
636 && ((*p
)->flags() & clear
) == 0)
641 // When we put a .ctors or .dtors section with more than one word into
642 // a .init_array or .fini_array section, we need to reverse the words
643 // in the .ctors/.dtors section. This is because .init_array executes
644 // constructors front to back, where .ctors executes them back to
645 // front, and vice-versa for .fini_array/.dtors. Although we do want
646 // to remap .ctors/.dtors into .init_array/.fini_array because it can
647 // be more efficient, we don't want to change the order in which
648 // constructors/destructors are run. This set just keeps track of
649 // these sections which need to be reversed. It is only changed by
650 // Layout::layout. It should be a private member of Layout, but that
651 // would require layout.h to #include object.h to get the definition
653 static Unordered_set
<Section_id
, Section_id_hash
> ctors_sections_in_init_array
;
655 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
656 // .init_array/.fini_array section.
659 Layout::is_ctors_in_init_array(Relobj
* relobj
, unsigned int shndx
) const
661 return (ctors_sections_in_init_array
.find(Section_id(relobj
, shndx
))
662 != ctors_sections_in_init_array
.end());
665 // Return the output section to use for section NAME with type TYPE
666 // and section flags FLAGS. NAME must be canonicalized in the string
667 // pool, and NAME_KEY is the key. ORDER is where this should appear
668 // in the output sections. IS_RELRO is true for a relro section.
671 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
672 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
673 Output_section_order order
, bool is_relro
)
675 elfcpp::Elf_Word lookup_type
= type
;
677 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
678 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
679 // .init_array, .fini_array, and .preinit_array sections by name
680 // whatever their type in the input file. We do this because the
681 // types are not always right in the input files.
682 if (lookup_type
== elfcpp::SHT_INIT_ARRAY
683 || lookup_type
== elfcpp::SHT_FINI_ARRAY
684 || lookup_type
== elfcpp::SHT_PREINIT_ARRAY
)
685 lookup_type
= elfcpp::SHT_PROGBITS
;
687 elfcpp::Elf_Xword lookup_flags
= flags
;
689 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
690 // read-write with read-only sections. Some other ELF linkers do
691 // not do this. FIXME: Perhaps there should be an option
693 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
695 const Key
key(name_key
, std::make_pair(lookup_type
, lookup_flags
));
696 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
697 std::pair
<Section_name_map::iterator
, bool> ins(
698 this->section_name_map_
.insert(v
));
701 return ins
.first
->second
;
704 // This is the first time we've seen this name/type/flags
705 // combination. For compatibility with the GNU linker, we
706 // combine sections with contents and zero flags with sections
707 // with non-zero flags. This is a workaround for cases where
708 // assembler code forgets to set section flags. FIXME: Perhaps
709 // there should be an option to control this.
710 Output_section
* os
= NULL
;
712 if (lookup_type
== elfcpp::SHT_PROGBITS
)
716 Output_section
* same_name
= this->find_output_section(name
);
717 if (same_name
!= NULL
718 && (same_name
->type() == elfcpp::SHT_PROGBITS
719 || same_name
->type() == elfcpp::SHT_INIT_ARRAY
720 || same_name
->type() == elfcpp::SHT_FINI_ARRAY
721 || same_name
->type() == elfcpp::SHT_PREINIT_ARRAY
)
722 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
725 else if ((flags
& elfcpp::SHF_TLS
) == 0)
727 elfcpp::Elf_Xword zero_flags
= 0;
728 const Key
zero_key(name_key
, std::make_pair(lookup_type
,
730 Section_name_map::iterator p
=
731 this->section_name_map_
.find(zero_key
);
732 if (p
!= this->section_name_map_
.end())
738 os
= this->make_output_section(name
, type
, flags
, order
, is_relro
);
740 ins
.first
->second
= os
;
745 // Pick the output section to use for section NAME, in input file
746 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
747 // linker created section. IS_INPUT_SECTION is true if we are
748 // choosing an output section for an input section found in a input
749 // file. ORDER is where this section should appear in the output
750 // sections. IS_RELRO is true for a relro section. This will return
751 // NULL if the input section should be discarded.
754 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
755 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
756 bool is_input_section
, Output_section_order order
,
759 // We should not see any input sections after we have attached
760 // sections to segments.
761 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
763 // Some flags in the input section should not be automatically
764 // copied to the output section.
765 flags
&= ~ (elfcpp::SHF_INFO_LINK
768 | elfcpp::SHF_STRINGS
);
770 // We only clear the SHF_LINK_ORDER flag in for
771 // a non-relocatable link.
772 if (!parameters
->options().relocatable())
773 flags
&= ~elfcpp::SHF_LINK_ORDER
;
775 if (this->script_options_
->saw_sections_clause())
777 // We are using a SECTIONS clause, so the output section is
778 // chosen based only on the name.
780 Script_sections
* ss
= this->script_options_
->script_sections();
781 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
782 Output_section
** output_section_slot
;
783 Script_sections::Section_type script_section_type
;
784 const char* orig_name
= name
;
785 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
786 &script_section_type
);
789 gold_debug(DEBUG_SCRIPT
, _("Unable to create output section '%s' "
790 "because it is not allowed by the "
791 "SECTIONS clause of the linker script"),
793 // The SECTIONS clause says to discard this input section.
797 // We can only handle script section types ST_NONE and ST_NOLOAD.
798 switch (script_section_type
)
800 case Script_sections::ST_NONE
:
802 case Script_sections::ST_NOLOAD
:
803 flags
&= elfcpp::SHF_ALLOC
;
809 // If this is an orphan section--one not mentioned in the linker
810 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
811 // default processing below.
813 if (output_section_slot
!= NULL
)
815 if (*output_section_slot
!= NULL
)
817 (*output_section_slot
)->update_flags_for_input_section(flags
);
818 return *output_section_slot
;
821 // We don't put sections found in the linker script into
822 // SECTION_NAME_MAP_. That keeps us from getting confused
823 // if an orphan section is mapped to a section with the same
824 // name as one in the linker script.
826 name
= this->namepool_
.add(name
, false, NULL
);
828 Output_section
* os
= this->make_output_section(name
, type
, flags
,
831 os
->set_found_in_sections_clause();
833 // Special handling for NOLOAD sections.
834 if (script_section_type
== Script_sections::ST_NOLOAD
)
838 // The constructor of Output_section sets addresses of non-ALLOC
839 // sections to 0 by default. We don't want that for NOLOAD
840 // sections even if they have no SHF_ALLOC flag.
841 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
842 && os
->is_address_valid())
844 gold_assert(os
->address() == 0
845 && !os
->is_offset_valid()
846 && !os
->is_data_size_valid());
847 os
->reset_address_and_file_offset();
851 *output_section_slot
= os
;
856 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
858 size_t len
= strlen(name
);
859 char* uncompressed_name
= NULL
;
861 // Compressed debug sections should be mapped to the corresponding
862 // uncompressed section.
863 if (is_compressed_debug_section(name
))
865 uncompressed_name
= new char[len
];
866 uncompressed_name
[0] = '.';
867 gold_assert(name
[0] == '.' && name
[1] == 'z');
868 strncpy(&uncompressed_name
[1], &name
[2], len
- 2);
869 uncompressed_name
[len
- 1] = '\0';
871 name
= uncompressed_name
;
874 // Turn NAME from the name of the input section into the name of the
877 && !this->script_options_
->saw_sections_clause()
878 && !parameters
->options().relocatable())
879 name
= Layout::output_section_name(relobj
, name
, &len
);
881 Stringpool::Key name_key
;
882 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
884 if (uncompressed_name
!= NULL
)
885 delete[] uncompressed_name
;
887 // Find or make the output section. The output section is selected
888 // based on the section name, type, and flags.
889 return this->get_output_section(name
, name_key
, type
, flags
, order
, is_relro
);
892 // For incremental links, record the initial fixed layout of a section
893 // from the base file, and return a pointer to the Output_section.
895 template<int size
, bool big_endian
>
897 Layout::init_fixed_output_section(const char* name
,
898 elfcpp::Shdr
<size
, big_endian
>& shdr
)
900 unsigned int sh_type
= shdr
.get_sh_type();
902 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
903 // PRE_INIT_ARRAY, and NOTE sections.
904 // All others will be created from scratch and reallocated.
905 if (!can_incremental_update(sh_type
))
908 typename
elfcpp::Elf_types
<size
>::Elf_Addr sh_addr
= shdr
.get_sh_addr();
909 typename
elfcpp::Elf_types
<size
>::Elf_Off sh_offset
= shdr
.get_sh_offset();
910 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
911 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
912 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_addralign
=
913 shdr
.get_sh_addralign();
915 // Make the output section.
916 Stringpool::Key name_key
;
917 name
= this->namepool_
.add(name
, true, &name_key
);
918 Output_section
* os
= this->get_output_section(name
, name_key
, sh_type
,
919 sh_flags
, ORDER_INVALID
, false);
920 os
->set_fixed_layout(sh_addr
, sh_offset
, sh_size
, sh_addralign
);
921 if (sh_type
!= elfcpp::SHT_NOBITS
)
922 this->free_list_
.remove(sh_offset
, sh_offset
+ sh_size
);
926 // Return the output section to use for input section SHNDX, with name
927 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
928 // index of a relocation section which applies to this section, or 0
929 // if none, or -1U if more than one. RELOC_TYPE is the type of the
930 // relocation section if there is one. Set *OFF to the offset of this
931 // input section without the output section. Return NULL if the
932 // section should be discarded. Set *OFF to -1 if the section
933 // contents should not be written directly to the output file, but
934 // will instead receive special handling.
936 template<int size
, bool big_endian
>
938 Layout::layout(Sized_relobj_file
<size
, big_endian
>* object
, unsigned int shndx
,
939 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
940 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
944 if (!this->include_section(object
, name
, shdr
))
947 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
949 // In a relocatable link a grouped section must not be combined with
950 // any other sections.
952 if (parameters
->options().relocatable()
953 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
955 name
= this->namepool_
.add(name
, true, NULL
);
956 os
= this->make_output_section(name
, sh_type
, shdr
.get_sh_flags(),
957 ORDER_INVALID
, false);
961 os
= this->choose_output_section(object
, name
, sh_type
,
962 shdr
.get_sh_flags(), true,
963 ORDER_INVALID
, false);
968 // By default the GNU linker sorts input sections whose names match
969 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
970 // sections are sorted by name. This is used to implement
971 // constructor priority ordering. We are compatible. When we put
972 // .ctor sections in .init_array and .dtor sections in .fini_array,
973 // we must also sort plain .ctor and .dtor sections.
974 if (!this->script_options_
->saw_sections_clause()
975 && !parameters
->options().relocatable()
976 && (is_prefix_of(".ctors.", name
)
977 || is_prefix_of(".dtors.", name
)
978 || is_prefix_of(".init_array.", name
)
979 || is_prefix_of(".fini_array.", name
)
980 || (parameters
->options().ctors_in_init_array()
981 && (strcmp(name
, ".ctors") == 0
982 || strcmp(name
, ".dtors") == 0))))
983 os
->set_must_sort_attached_input_sections();
985 // If this is a .ctors or .ctors.* section being mapped to a
986 // .init_array section, or a .dtors or .dtors.* section being mapped
987 // to a .fini_array section, we will need to reverse the words if
988 // there is more than one. Record this section for later. See
989 // ctors_sections_in_init_array above.
990 if (!this->script_options_
->saw_sections_clause()
991 && !parameters
->options().relocatable()
992 && shdr
.get_sh_size() > size
/ 8
993 && (((strcmp(name
, ".ctors") == 0
994 || is_prefix_of(".ctors.", name
))
995 && strcmp(os
->name(), ".init_array") == 0)
996 || ((strcmp(name
, ".dtors") == 0
997 || is_prefix_of(".dtors.", name
))
998 && strcmp(os
->name(), ".fini_array") == 0)))
999 ctors_sections_in_init_array
.insert(Section_id(object
, shndx
));
1001 // FIXME: Handle SHF_LINK_ORDER somewhere.
1003 elfcpp::Elf_Xword orig_flags
= os
->flags();
1005 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
1006 this->script_options_
->saw_sections_clause());
1008 // If the flags changed, we may have to change the order.
1009 if ((orig_flags
& elfcpp::SHF_ALLOC
) != 0)
1011 orig_flags
&= (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
1012 elfcpp::Elf_Xword new_flags
=
1013 os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
1014 if (orig_flags
!= new_flags
)
1015 os
->set_order(this->default_section_order(os
, false));
1018 this->have_added_input_section_
= true;
1023 // Handle a relocation section when doing a relocatable link.
1025 template<int size
, bool big_endian
>
1027 Layout::layout_reloc(Sized_relobj_file
<size
, big_endian
>* object
,
1029 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1030 Output_section
* data_section
,
1031 Relocatable_relocs
* rr
)
1033 gold_assert(parameters
->options().relocatable()
1034 || parameters
->options().emit_relocs());
1036 int sh_type
= shdr
.get_sh_type();
1039 if (sh_type
== elfcpp::SHT_REL
)
1041 else if (sh_type
== elfcpp::SHT_RELA
)
1045 name
+= data_section
->name();
1047 // In a relocatable link relocs for a grouped section must not be
1048 // combined with other reloc sections.
1050 if (!parameters
->options().relocatable()
1051 || (data_section
->flags() & elfcpp::SHF_GROUP
) == 0)
1052 os
= this->choose_output_section(object
, name
.c_str(), sh_type
,
1053 shdr
.get_sh_flags(), false,
1054 ORDER_INVALID
, false);
1057 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
1058 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
1059 ORDER_INVALID
, false);
1062 os
->set_should_link_to_symtab();
1063 os
->set_info_section(data_section
);
1065 Output_section_data
* posd
;
1066 if (sh_type
== elfcpp::SHT_REL
)
1068 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1069 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
1073 else if (sh_type
== elfcpp::SHT_RELA
)
1075 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1076 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
1083 os
->add_output_section_data(posd
);
1084 rr
->set_output_data(posd
);
1089 // Handle a group section when doing a relocatable link.
1091 template<int size
, bool big_endian
>
1093 Layout::layout_group(Symbol_table
* symtab
,
1094 Sized_relobj_file
<size
, big_endian
>* object
,
1096 const char* group_section_name
,
1097 const char* signature
,
1098 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1099 elfcpp::Elf_Word flags
,
1100 std::vector
<unsigned int>* shndxes
)
1102 gold_assert(parameters
->options().relocatable());
1103 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
1104 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
1105 Output_section
* os
= this->make_output_section(group_section_name
,
1107 shdr
.get_sh_flags(),
1108 ORDER_INVALID
, false);
1110 // We need to find a symbol with the signature in the symbol table.
1111 // If we don't find one now, we need to look again later.
1112 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
1114 os
->set_info_symndx(sym
);
1117 // Reserve some space to minimize reallocations.
1118 if (this->group_signatures_
.empty())
1119 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
1121 // We will wind up using a symbol whose name is the signature.
1122 // So just put the signature in the symbol name pool to save it.
1123 signature
= symtab
->canonicalize_name(signature
);
1124 this->group_signatures_
.push_back(Group_signature(os
, signature
));
1127 os
->set_should_link_to_symtab();
1130 section_size_type entry_count
=
1131 convert_to_section_size_type(shdr
.get_sh_size() / 4);
1132 Output_section_data
* posd
=
1133 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
1135 os
->add_output_section_data(posd
);
1138 // Special GNU handling of sections name .eh_frame. They will
1139 // normally hold exception frame data as defined by the C++ ABI
1140 // (http://codesourcery.com/cxx-abi/).
1142 template<int size
, bool big_endian
>
1144 Layout::layout_eh_frame(Sized_relobj_file
<size
, big_endian
>* object
,
1145 const unsigned char* symbols
,
1147 const unsigned char* symbol_names
,
1148 off_t symbol_names_size
,
1150 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1151 unsigned int reloc_shndx
, unsigned int reloc_type
,
1154 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
1155 || shdr
.get_sh_type() == elfcpp::SHT_X86_64_UNWIND
);
1156 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
1158 Output_section
* os
= this->make_eh_frame_section(object
);
1162 gold_assert(this->eh_frame_section_
== os
);
1164 elfcpp::Elf_Xword orig_flags
= os
->flags();
1166 if (!parameters
->incremental()
1167 && this->eh_frame_data_
->add_ehframe_input_section(object
,
1176 os
->update_flags_for_input_section(shdr
.get_sh_flags());
1178 // A writable .eh_frame section is a RELRO section.
1179 if ((orig_flags
& (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
))
1180 != (os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
)))
1183 os
->set_order(ORDER_RELRO
);
1186 // We found a .eh_frame section we are going to optimize, so now
1187 // we can add the set of optimized sections to the output
1188 // section. We need to postpone adding this until we've found a
1189 // section we can optimize so that the .eh_frame section in
1190 // crtbegin.o winds up at the start of the output section.
1191 if (!this->added_eh_frame_data_
)
1193 os
->add_output_section_data(this->eh_frame_data_
);
1194 this->added_eh_frame_data_
= true;
1200 // We couldn't handle this .eh_frame section for some reason.
1201 // Add it as a normal section.
1202 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
1203 *off
= os
->add_input_section(this, object
, shndx
, ".eh_frame", shdr
,
1204 reloc_shndx
, saw_sections_clause
);
1205 this->have_added_input_section_
= true;
1207 if ((orig_flags
& (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
))
1208 != (os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
)))
1209 os
->set_order(this->default_section_order(os
, false));
1215 // Create and return the magic .eh_frame section. Create
1216 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1217 // input .eh_frame section; it may be NULL.
1220 Layout::make_eh_frame_section(const Relobj
* object
)
1222 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1224 Output_section
* os
= this->choose_output_section(object
, ".eh_frame",
1225 elfcpp::SHT_PROGBITS
,
1226 elfcpp::SHF_ALLOC
, false,
1227 ORDER_EHFRAME
, false);
1231 if (this->eh_frame_section_
== NULL
)
1233 this->eh_frame_section_
= os
;
1234 this->eh_frame_data_
= new Eh_frame();
1236 // For incremental linking, we do not optimize .eh_frame sections
1237 // or create a .eh_frame_hdr section.
1238 if (parameters
->options().eh_frame_hdr() && !parameters
->incremental())
1240 Output_section
* hdr_os
=
1241 this->choose_output_section(NULL
, ".eh_frame_hdr",
1242 elfcpp::SHT_PROGBITS
,
1243 elfcpp::SHF_ALLOC
, false,
1244 ORDER_EHFRAME
, false);
1248 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
1249 this->eh_frame_data_
);
1250 hdr_os
->add_output_section_data(hdr_posd
);
1252 hdr_os
->set_after_input_sections();
1254 if (!this->script_options_
->saw_phdrs_clause())
1256 Output_segment
* hdr_oseg
;
1257 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
1259 hdr_oseg
->add_output_section_to_nonload(hdr_os
,
1263 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
1271 // Add an exception frame for a PLT. This is called from target code.
1274 Layout::add_eh_frame_for_plt(Output_data
* plt
, const unsigned char* cie_data
,
1275 size_t cie_length
, const unsigned char* fde_data
,
1278 if (parameters
->incremental())
1280 // FIXME: Maybe this could work some day....
1283 Output_section
* os
= this->make_eh_frame_section(NULL
);
1286 this->eh_frame_data_
->add_ehframe_for_plt(plt
, cie_data
, cie_length
,
1287 fde_data
, fde_length
);
1288 if (!this->added_eh_frame_data_
)
1290 os
->add_output_section_data(this->eh_frame_data_
);
1291 this->added_eh_frame_data_
= true;
1295 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1296 // the output section.
1299 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
1300 elfcpp::Elf_Xword flags
,
1301 Output_section_data
* posd
,
1302 Output_section_order order
, bool is_relro
)
1304 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
1305 false, order
, is_relro
);
1307 os
->add_output_section_data(posd
);
1311 // Map section flags to segment flags.
1314 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
1316 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
1317 if ((flags
& elfcpp::SHF_WRITE
) != 0)
1318 ret
|= elfcpp::PF_W
;
1319 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
1320 ret
|= elfcpp::PF_X
;
1324 // Make a new Output_section, and attach it to segments as
1325 // appropriate. ORDER is the order in which this section should
1326 // appear in the output segment. IS_RELRO is true if this is a relro
1327 // (read-only after relocations) section.
1330 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
1331 elfcpp::Elf_Xword flags
,
1332 Output_section_order order
, bool is_relro
)
1335 if ((flags
& elfcpp::SHF_ALLOC
) == 0
1336 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
1337 && is_compressible_debug_section(name
))
1338 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
1340 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
1341 && parameters
->options().strip_debug_non_line()
1342 && strcmp(".debug_abbrev", name
) == 0)
1344 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
1346 if (this->debug_info_
)
1347 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1349 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
1350 && parameters
->options().strip_debug_non_line()
1351 && strcmp(".debug_info", name
) == 0)
1353 os
= this->debug_info_
= new Output_reduced_debug_info_section(
1355 if (this->debug_abbrev_
)
1356 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1360 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1361 // not have correct section types. Force them here.
1362 if (type
== elfcpp::SHT_PROGBITS
)
1364 if (is_prefix_of(".init_array", name
))
1365 type
= elfcpp::SHT_INIT_ARRAY
;
1366 else if (is_prefix_of(".preinit_array", name
))
1367 type
= elfcpp::SHT_PREINIT_ARRAY
;
1368 else if (is_prefix_of(".fini_array", name
))
1369 type
= elfcpp::SHT_FINI_ARRAY
;
1372 // FIXME: const_cast is ugly.
1373 Target
* target
= const_cast<Target
*>(¶meters
->target());
1374 os
= target
->make_output_section(name
, type
, flags
);
1377 // With -z relro, we have to recognize the special sections by name.
1378 // There is no other way.
1379 bool is_relro_local
= false;
1380 if (!this->script_options_
->saw_sections_clause()
1381 && parameters
->options().relro()
1382 && type
== elfcpp::SHT_PROGBITS
1383 && (flags
& elfcpp::SHF_ALLOC
) != 0
1384 && (flags
& elfcpp::SHF_WRITE
) != 0)
1386 if (strcmp(name
, ".data.rel.ro") == 0)
1388 else if (strcmp(name
, ".data.rel.ro.local") == 0)
1391 is_relro_local
= true;
1393 else if (type
== elfcpp::SHT_INIT_ARRAY
1394 || type
== elfcpp::SHT_FINI_ARRAY
1395 || type
== elfcpp::SHT_PREINIT_ARRAY
)
1397 else if (strcmp(name
, ".ctors") == 0
1398 || strcmp(name
, ".dtors") == 0
1399 || strcmp(name
, ".jcr") == 0)
1406 if (order
== ORDER_INVALID
&& (flags
& elfcpp::SHF_ALLOC
) != 0)
1407 order
= this->default_section_order(os
, is_relro_local
);
1409 os
->set_order(order
);
1411 parameters
->target().new_output_section(os
);
1413 this->section_list_
.push_back(os
);
1415 // The GNU linker by default sorts some sections by priority, so we
1416 // do the same. We need to know that this might happen before we
1417 // attach any input sections.
1418 if (!this->script_options_
->saw_sections_clause()
1419 && !parameters
->options().relocatable()
1420 && (strcmp(name
, ".init_array") == 0
1421 || strcmp(name
, ".fini_array") == 0
1422 || (!parameters
->options().ctors_in_init_array()
1423 && (strcmp(name
, ".ctors") == 0
1424 || strcmp(name
, ".dtors") == 0))))
1425 os
->set_may_sort_attached_input_sections();
1427 // Check for .stab*str sections, as .stab* sections need to link to
1429 if (type
== elfcpp::SHT_STRTAB
1430 && !this->have_stabstr_section_
1431 && strncmp(name
, ".stab", 5) == 0
1432 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1433 this->have_stabstr_section_
= true;
1435 // During a full incremental link, we add patch space to most
1436 // PROGBITS and NOBITS sections. Flag those that may be
1437 // arbitrarily padded.
1438 if ((type
== elfcpp::SHT_PROGBITS
|| type
== elfcpp::SHT_NOBITS
)
1439 && order
!= ORDER_INTERP
1440 && order
!= ORDER_INIT
1441 && order
!= ORDER_PLT
1442 && order
!= ORDER_FINI
1443 && order
!= ORDER_RELRO_LAST
1444 && order
!= ORDER_NON_RELRO_FIRST
1445 && strcmp(name
, ".eh_frame") != 0
1446 && strcmp(name
, ".ctors") != 0
1447 && strcmp(name
, ".dtors") != 0
1448 && strcmp(name
, ".jcr") != 0)
1450 os
->set_is_patch_space_allowed();
1452 // Certain sections require "holes" to be filled with
1453 // specific fill patterns. These fill patterns may have
1454 // a minimum size, so we must prevent allocations from the
1455 // free list that leave a hole smaller than the minimum.
1456 if (strcmp(name
, ".debug_info") == 0)
1457 os
->set_free_space_fill(new Output_fill_debug_info(false));
1458 else if (strcmp(name
, ".debug_types") == 0)
1459 os
->set_free_space_fill(new Output_fill_debug_info(true));
1460 else if (strcmp(name
, ".debug_line") == 0)
1461 os
->set_free_space_fill(new Output_fill_debug_line());
1464 // If we have already attached the sections to segments, then we
1465 // need to attach this one now. This happens for sections created
1466 // directly by the linker.
1467 if (this->sections_are_attached_
)
1468 this->attach_section_to_segment(os
);
1473 // Return the default order in which a section should be placed in an
1474 // output segment. This function captures a lot of the ideas in
1475 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1476 // linker created section is normally set when the section is created;
1477 // this function is used for input sections.
1479 Output_section_order
1480 Layout::default_section_order(Output_section
* os
, bool is_relro_local
)
1482 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
1483 bool is_write
= (os
->flags() & elfcpp::SHF_WRITE
) != 0;
1484 bool is_execinstr
= (os
->flags() & elfcpp::SHF_EXECINSTR
) != 0;
1485 bool is_bss
= false;
1490 case elfcpp::SHT_PROGBITS
:
1492 case elfcpp::SHT_NOBITS
:
1495 case elfcpp::SHT_RELA
:
1496 case elfcpp::SHT_REL
:
1498 return ORDER_DYNAMIC_RELOCS
;
1500 case elfcpp::SHT_HASH
:
1501 case elfcpp::SHT_DYNAMIC
:
1502 case elfcpp::SHT_SHLIB
:
1503 case elfcpp::SHT_DYNSYM
:
1504 case elfcpp::SHT_GNU_HASH
:
1505 case elfcpp::SHT_GNU_verdef
:
1506 case elfcpp::SHT_GNU_verneed
:
1507 case elfcpp::SHT_GNU_versym
:
1509 return ORDER_DYNAMIC_LINKER
;
1511 case elfcpp::SHT_NOTE
:
1512 return is_write
? ORDER_RW_NOTE
: ORDER_RO_NOTE
;
1515 if ((os
->flags() & elfcpp::SHF_TLS
) != 0)
1516 return is_bss
? ORDER_TLS_BSS
: ORDER_TLS_DATA
;
1518 if (!is_bss
&& !is_write
)
1522 if (strcmp(os
->name(), ".init") == 0)
1524 else if (strcmp(os
->name(), ".fini") == 0)
1527 return is_execinstr
? ORDER_TEXT
: ORDER_READONLY
;
1531 return is_relro_local
? ORDER_RELRO_LOCAL
: ORDER_RELRO
;
1533 if (os
->is_small_section())
1534 return is_bss
? ORDER_SMALL_BSS
: ORDER_SMALL_DATA
;
1535 if (os
->is_large_section())
1536 return is_bss
? ORDER_LARGE_BSS
: ORDER_LARGE_DATA
;
1538 return is_bss
? ORDER_BSS
: ORDER_DATA
;
1541 // Attach output sections to segments. This is called after we have
1542 // seen all the input sections.
1545 Layout::attach_sections_to_segments()
1547 for (Section_list::iterator p
= this->section_list_
.begin();
1548 p
!= this->section_list_
.end();
1550 this->attach_section_to_segment(*p
);
1552 this->sections_are_attached_
= true;
1555 // Attach an output section to a segment.
1558 Layout::attach_section_to_segment(Output_section
* os
)
1560 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1561 this->unattached_section_list_
.push_back(os
);
1563 this->attach_allocated_section_to_segment(os
);
1566 // Attach an allocated output section to a segment.
1569 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1571 elfcpp::Elf_Xword flags
= os
->flags();
1572 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1574 if (parameters
->options().relocatable())
1577 // If we have a SECTIONS clause, we can't handle the attachment to
1578 // segments until after we've seen all the sections.
1579 if (this->script_options_
->saw_sections_clause())
1582 gold_assert(!this->script_options_
->saw_phdrs_clause());
1584 // This output section goes into a PT_LOAD segment.
1586 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1588 // Check for --section-start.
1590 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1592 // In general the only thing we really care about for PT_LOAD
1593 // segments is whether or not they are writable or executable,
1594 // so that is how we search for them.
1595 // Large data sections also go into their own PT_LOAD segment.
1596 // People who need segments sorted on some other basis will
1597 // have to use a linker script.
1599 Segment_list::const_iterator p
;
1600 for (p
= this->segment_list_
.begin();
1601 p
!= this->segment_list_
.end();
1604 if ((*p
)->type() != elfcpp::PT_LOAD
)
1606 if (!parameters
->options().omagic()
1607 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1609 if (parameters
->options().rosegment()
1610 && ((*p
)->flags() & elfcpp::PF_X
) != (seg_flags
& elfcpp::PF_X
))
1612 // If -Tbss was specified, we need to separate the data and BSS
1614 if (parameters
->options().user_set_Tbss())
1616 if ((os
->type() == elfcpp::SHT_NOBITS
)
1617 == (*p
)->has_any_data_sections())
1620 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1625 if ((*p
)->are_addresses_set())
1628 (*p
)->add_initial_output_data(os
);
1629 (*p
)->update_flags_for_output_section(seg_flags
);
1630 (*p
)->set_addresses(addr
, addr
);
1634 (*p
)->add_output_section_to_load(this, os
, seg_flags
);
1638 if (p
== this->segment_list_
.end())
1640 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1642 if (os
->is_large_data_section())
1643 oseg
->set_is_large_data_segment();
1644 oseg
->add_output_section_to_load(this, os
, seg_flags
);
1646 oseg
->set_addresses(addr
, addr
);
1649 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1651 if (os
->type() == elfcpp::SHT_NOTE
)
1653 // See if we already have an equivalent PT_NOTE segment.
1654 for (p
= this->segment_list_
.begin();
1655 p
!= segment_list_
.end();
1658 if ((*p
)->type() == elfcpp::PT_NOTE
1659 && (((*p
)->flags() & elfcpp::PF_W
)
1660 == (seg_flags
& elfcpp::PF_W
)))
1662 (*p
)->add_output_section_to_nonload(os
, seg_flags
);
1667 if (p
== this->segment_list_
.end())
1669 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1671 oseg
->add_output_section_to_nonload(os
, seg_flags
);
1675 // If we see a loadable SHF_TLS section, we create a PT_TLS
1676 // segment. There can only be one such segment.
1677 if ((flags
& elfcpp::SHF_TLS
) != 0)
1679 if (this->tls_segment_
== NULL
)
1680 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1681 this->tls_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1684 // If -z relro is in effect, and we see a relro section, we create a
1685 // PT_GNU_RELRO segment. There can only be one such segment.
1686 if (os
->is_relro() && parameters
->options().relro())
1688 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1689 if (this->relro_segment_
== NULL
)
1690 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1691 this->relro_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1694 // If we see a section named .interp, put it into a PT_INTERP
1695 // segment. This seems broken to me, but this is what GNU ld does,
1696 // and glibc expects it.
1697 if (strcmp(os
->name(), ".interp") == 0
1698 && !this->script_options_
->saw_phdrs_clause())
1700 if (this->interp_segment_
== NULL
)
1701 this->make_output_segment(elfcpp::PT_INTERP
, seg_flags
);
1703 gold_warning(_("multiple '.interp' sections in input files "
1704 "may cause confusing PT_INTERP segment"));
1705 this->interp_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1709 // Make an output section for a script.
1712 Layout::make_output_section_for_script(
1714 Script_sections::Section_type section_type
)
1716 name
= this->namepool_
.add(name
, false, NULL
);
1717 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
1718 if (section_type
== Script_sections::ST_NOLOAD
)
1720 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1721 sh_flags
, ORDER_INVALID
,
1723 os
->set_found_in_sections_clause();
1724 if (section_type
== Script_sections::ST_NOLOAD
)
1725 os
->set_is_noload();
1729 // Return the number of segments we expect to see.
1732 Layout::expected_segment_count() const
1734 size_t ret
= this->segment_list_
.size();
1736 // If we didn't see a SECTIONS clause in a linker script, we should
1737 // already have the complete list of segments. Otherwise we ask the
1738 // SECTIONS clause how many segments it expects, and add in the ones
1739 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1741 if (!this->script_options_
->saw_sections_clause())
1745 const Script_sections
* ss
= this->script_options_
->script_sections();
1746 return ret
+ ss
->expected_segment_count(this);
1750 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1751 // is whether we saw a .note.GNU-stack section in the object file.
1752 // GNU_STACK_FLAGS is the section flags. The flags give the
1753 // protection required for stack memory. We record this in an
1754 // executable as a PT_GNU_STACK segment. If an object file does not
1755 // have a .note.GNU-stack segment, we must assume that it is an old
1756 // object. On some targets that will force an executable stack.
1759 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
,
1762 if (!seen_gnu_stack
)
1764 this->input_without_gnu_stack_note_
= true;
1765 if (parameters
->options().warn_execstack()
1766 && parameters
->target().is_default_stack_executable())
1767 gold_warning(_("%s: missing .note.GNU-stack section"
1768 " implies executable stack"),
1769 obj
->name().c_str());
1773 this->input_with_gnu_stack_note_
= true;
1774 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1776 this->input_requires_executable_stack_
= true;
1777 if (parameters
->options().warn_execstack()
1778 || parameters
->options().is_stack_executable())
1779 gold_warning(_("%s: requires executable stack"),
1780 obj
->name().c_str());
1785 // Create automatic note sections.
1788 Layout::create_notes()
1790 this->create_gold_note();
1791 this->create_executable_stack_info();
1792 this->create_build_id();
1795 // Create the dynamic sections which are needed before we read the
1799 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1801 if (parameters
->doing_static_link())
1804 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1805 elfcpp::SHT_DYNAMIC
,
1807 | elfcpp::SHF_WRITE
),
1811 // A linker script may discard .dynamic, so check for NULL.
1812 if (this->dynamic_section_
!= NULL
)
1814 this->dynamic_symbol_
=
1815 symtab
->define_in_output_data("_DYNAMIC", NULL
,
1816 Symbol_table::PREDEFINED
,
1817 this->dynamic_section_
, 0, 0,
1818 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1819 elfcpp::STV_HIDDEN
, 0, false, false);
1821 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1823 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1827 // For each output section whose name can be represented as C symbol,
1828 // define __start and __stop symbols for the section. This is a GNU
1832 Layout::define_section_symbols(Symbol_table
* symtab
)
1834 for (Section_list::const_iterator p
= this->section_list_
.begin();
1835 p
!= this->section_list_
.end();
1838 const char* const name
= (*p
)->name();
1839 if (is_cident(name
))
1841 const std::string
name_string(name
);
1842 const std::string
start_name(cident_section_start_prefix
1844 const std::string
stop_name(cident_section_stop_prefix
1847 symtab
->define_in_output_data(start_name
.c_str(),
1849 Symbol_table::PREDEFINED
,
1855 elfcpp::STV_DEFAULT
,
1857 false, // offset_is_from_end
1858 true); // only_if_ref
1860 symtab
->define_in_output_data(stop_name
.c_str(),
1862 Symbol_table::PREDEFINED
,
1868 elfcpp::STV_DEFAULT
,
1870 true, // offset_is_from_end
1871 true); // only_if_ref
1876 // Define symbols for group signatures.
1879 Layout::define_group_signatures(Symbol_table
* symtab
)
1881 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1882 p
!= this->group_signatures_
.end();
1885 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1887 p
->section
->set_info_symndx(sym
);
1890 // Force the name of the group section to the group
1891 // signature, and use the group's section symbol as the
1892 // signature symbol.
1893 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1895 const char* name
= this->namepool_
.add(p
->signature
,
1897 p
->section
->set_name(name
);
1899 p
->section
->set_needs_symtab_index();
1900 p
->section
->set_info_section_symndx(p
->section
);
1904 this->group_signatures_
.clear();
1907 // Find the first read-only PT_LOAD segment, creating one if
1911 Layout::find_first_load_seg()
1913 Output_segment
* best
= NULL
;
1914 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1915 p
!= this->segment_list_
.end();
1918 if ((*p
)->type() == elfcpp::PT_LOAD
1919 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1920 && (parameters
->options().omagic()
1921 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1923 if (best
== NULL
|| this->segment_precedes(*p
, best
))
1930 gold_assert(!this->script_options_
->saw_phdrs_clause());
1932 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1937 // Save states of all current output segments. Store saved states
1938 // in SEGMENT_STATES.
1941 Layout::save_segments(Segment_states
* segment_states
)
1943 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1944 p
!= this->segment_list_
.end();
1947 Output_segment
* segment
= *p
;
1949 Output_segment
* copy
= new Output_segment(*segment
);
1950 (*segment_states
)[segment
] = copy
;
1954 // Restore states of output segments and delete any segment not found in
1958 Layout::restore_segments(const Segment_states
* segment_states
)
1960 // Go through the segment list and remove any segment added in the
1962 this->tls_segment_
= NULL
;
1963 this->relro_segment_
= NULL
;
1964 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1965 while (list_iter
!= this->segment_list_
.end())
1967 Output_segment
* segment
= *list_iter
;
1968 Segment_states::const_iterator states_iter
=
1969 segment_states
->find(segment
);
1970 if (states_iter
!= segment_states
->end())
1972 const Output_segment
* copy
= states_iter
->second
;
1973 // Shallow copy to restore states.
1976 // Also fix up TLS and RELRO segment pointers as appropriate.
1977 if (segment
->type() == elfcpp::PT_TLS
)
1978 this->tls_segment_
= segment
;
1979 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1980 this->relro_segment_
= segment
;
1986 list_iter
= this->segment_list_
.erase(list_iter
);
1987 // This is a segment created during section layout. It should be
1988 // safe to remove it since we should have removed all pointers to it.
1994 // Clean up after relaxation so that sections can be laid out again.
1997 Layout::clean_up_after_relaxation()
1999 // Restore the segments to point state just prior to the relaxation loop.
2000 Script_sections
* script_section
= this->script_options_
->script_sections();
2001 script_section
->release_segments();
2002 this->restore_segments(this->segment_states_
);
2004 // Reset section addresses and file offsets
2005 for (Section_list::iterator p
= this->section_list_
.begin();
2006 p
!= this->section_list_
.end();
2009 (*p
)->restore_states();
2011 // If an input section changes size because of relaxation,
2012 // we need to adjust the section offsets of all input sections.
2013 // after such a section.
2014 if ((*p
)->section_offsets_need_adjustment())
2015 (*p
)->adjust_section_offsets();
2017 (*p
)->reset_address_and_file_offset();
2020 // Reset special output object address and file offsets.
2021 for (Data_list::iterator p
= this->special_output_list_
.begin();
2022 p
!= this->special_output_list_
.end();
2024 (*p
)->reset_address_and_file_offset();
2026 // A linker script may have created some output section data objects.
2027 // They are useless now.
2028 for (Output_section_data_list::const_iterator p
=
2029 this->script_output_section_data_list_
.begin();
2030 p
!= this->script_output_section_data_list_
.end();
2033 this->script_output_section_data_list_
.clear();
2036 // Prepare for relaxation.
2039 Layout::prepare_for_relaxation()
2041 // Create an relaxation debug check if in debugging mode.
2042 if (is_debugging_enabled(DEBUG_RELAXATION
))
2043 this->relaxation_debug_check_
= new Relaxation_debug_check();
2045 // Save segment states.
2046 this->segment_states_
= new Segment_states();
2047 this->save_segments(this->segment_states_
);
2049 for(Section_list::const_iterator p
= this->section_list_
.begin();
2050 p
!= this->section_list_
.end();
2052 (*p
)->save_states();
2054 if (is_debugging_enabled(DEBUG_RELAXATION
))
2055 this->relaxation_debug_check_
->check_output_data_for_reset_values(
2056 this->section_list_
, this->special_output_list_
);
2058 // Also enable recording of output section data from scripts.
2059 this->record_output_section_data_from_script_
= true;
2062 // Relaxation loop body: If target has no relaxation, this runs only once
2063 // Otherwise, the target relaxation hook is called at the end of
2064 // each iteration. If the hook returns true, it means re-layout of
2065 // section is required.
2067 // The number of segments created by a linking script without a PHDRS
2068 // clause may be affected by section sizes and alignments. There is
2069 // a remote chance that relaxation causes different number of PT_LOAD
2070 // segments are created and sections are attached to different segments.
2071 // Therefore, we always throw away all segments created during section
2072 // layout. In order to be able to restart the section layout, we keep
2073 // a copy of the segment list right before the relaxation loop and use
2074 // that to restore the segments.
2076 // PASS is the current relaxation pass number.
2077 // SYMTAB is a symbol table.
2078 // PLOAD_SEG is the address of a pointer for the load segment.
2079 // PHDR_SEG is a pointer to the PHDR segment.
2080 // SEGMENT_HEADERS points to the output segment header.
2081 // FILE_HEADER points to the output file header.
2082 // PSHNDX is the address to store the output section index.
2085 Layout::relaxation_loop_body(
2088 Symbol_table
* symtab
,
2089 Output_segment
** pload_seg
,
2090 Output_segment
* phdr_seg
,
2091 Output_segment_headers
* segment_headers
,
2092 Output_file_header
* file_header
,
2093 unsigned int* pshndx
)
2095 // If this is not the first iteration, we need to clean up after
2096 // relaxation so that we can lay out the sections again.
2098 this->clean_up_after_relaxation();
2100 // If there is a SECTIONS clause, put all the input sections into
2101 // the required order.
2102 Output_segment
* load_seg
;
2103 if (this->script_options_
->saw_sections_clause())
2104 load_seg
= this->set_section_addresses_from_script(symtab
);
2105 else if (parameters
->options().relocatable())
2108 load_seg
= this->find_first_load_seg();
2110 if (parameters
->options().oformat_enum()
2111 != General_options::OBJECT_FORMAT_ELF
)
2114 // If the user set the address of the text segment, that may not be
2115 // compatible with putting the segment headers and file headers into
2117 if (parameters
->options().user_set_Ttext()
2118 && parameters
->options().Ttext() % target
->common_pagesize() != 0)
2124 gold_assert(phdr_seg
== NULL
2126 || this->script_options_
->saw_sections_clause());
2128 // If the address of the load segment we found has been set by
2129 // --section-start rather than by a script, then adjust the VMA and
2130 // LMA downward if possible to include the file and section headers.
2131 uint64_t header_gap
= 0;
2132 if (load_seg
!= NULL
2133 && load_seg
->are_addresses_set()
2134 && !this->script_options_
->saw_sections_clause()
2135 && !parameters
->options().relocatable())
2137 file_header
->finalize_data_size();
2138 segment_headers
->finalize_data_size();
2139 size_t sizeof_headers
= (file_header
->data_size()
2140 + segment_headers
->data_size());
2141 const uint64_t abi_pagesize
= target
->abi_pagesize();
2142 uint64_t hdr_paddr
= load_seg
->paddr() - sizeof_headers
;
2143 hdr_paddr
&= ~(abi_pagesize
- 1);
2144 uint64_t subtract
= load_seg
->paddr() - hdr_paddr
;
2145 if (load_seg
->paddr() < subtract
|| load_seg
->vaddr() < subtract
)
2149 load_seg
->set_addresses(load_seg
->vaddr() - subtract
,
2150 load_seg
->paddr() - subtract
);
2151 header_gap
= subtract
- sizeof_headers
;
2155 // Lay out the segment headers.
2156 if (!parameters
->options().relocatable())
2158 gold_assert(segment_headers
!= NULL
);
2159 if (header_gap
!= 0 && load_seg
!= NULL
)
2161 Output_data_zero_fill
* z
= new Output_data_zero_fill(header_gap
, 1);
2162 load_seg
->add_initial_output_data(z
);
2164 if (load_seg
!= NULL
)
2165 load_seg
->add_initial_output_data(segment_headers
);
2166 if (phdr_seg
!= NULL
)
2167 phdr_seg
->add_initial_output_data(segment_headers
);
2170 // Lay out the file header.
2171 if (load_seg
!= NULL
)
2172 load_seg
->add_initial_output_data(file_header
);
2174 if (this->script_options_
->saw_phdrs_clause()
2175 && !parameters
->options().relocatable())
2177 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2178 // clause in a linker script.
2179 Script_sections
* ss
= this->script_options_
->script_sections();
2180 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
2183 // We set the output section indexes in set_segment_offsets and
2184 // set_section_indexes.
2187 // Set the file offsets of all the segments, and all the sections
2190 if (!parameters
->options().relocatable())
2191 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
2193 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
2195 // Verify that the dummy relaxation does not change anything.
2196 if (is_debugging_enabled(DEBUG_RELAXATION
))
2199 this->relaxation_debug_check_
->read_sections(this->section_list_
);
2201 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
2204 *pload_seg
= load_seg
;
2208 // Search the list of patterns and find the postion of the given section
2209 // name in the output section. If the section name matches a glob
2210 // pattern and a non-glob name, then the non-glob position takes
2211 // precedence. Return 0 if no match is found.
2214 Layout::find_section_order_index(const std::string
& section_name
)
2216 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
2217 map_it
= this->input_section_position_
.find(section_name
);
2218 if (map_it
!= this->input_section_position_
.end())
2219 return map_it
->second
;
2221 // Absolute match failed. Linear search the glob patterns.
2222 std::vector
<std::string
>::iterator it
;
2223 for (it
= this->input_section_glob_
.begin();
2224 it
!= this->input_section_glob_
.end();
2227 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
2229 map_it
= this->input_section_position_
.find(*it
);
2230 gold_assert(map_it
!= this->input_section_position_
.end());
2231 return map_it
->second
;
2237 // Read the sequence of input sections from the file specified with
2238 // option --section-ordering-file.
2241 Layout::read_layout_from_file()
2243 const char* filename
= parameters
->options().section_ordering_file();
2249 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2250 filename
, strerror(errno
));
2252 std::getline(in
, line
); // this chops off the trailing \n, if any
2253 unsigned int position
= 1;
2254 this->set_section_ordering_specified();
2258 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
2259 line
.resize(line
.length() - 1);
2260 // Ignore comments, beginning with '#'
2263 std::getline(in
, line
);
2266 this->input_section_position_
[line
] = position
;
2267 // Store all glob patterns in a vector.
2268 if (is_wildcard_string(line
.c_str()))
2269 this->input_section_glob_
.push_back(line
);
2271 std::getline(in
, line
);
2275 // Finalize the layout. When this is called, we have created all the
2276 // output sections and all the output segments which are based on
2277 // input sections. We have several things to do, and we have to do
2278 // them in the right order, so that we get the right results correctly
2281 // 1) Finalize the list of output segments and create the segment
2284 // 2) Finalize the dynamic symbol table and associated sections.
2286 // 3) Determine the final file offset of all the output segments.
2288 // 4) Determine the final file offset of all the SHF_ALLOC output
2291 // 5) Create the symbol table sections and the section name table
2294 // 6) Finalize the symbol table: set symbol values to their final
2295 // value and make a final determination of which symbols are going
2296 // into the output symbol table.
2298 // 7) Create the section table header.
2300 // 8) Determine the final file offset of all the output sections which
2301 // are not SHF_ALLOC, including the section table header.
2303 // 9) Finalize the ELF file header.
2305 // This function returns the size of the output file.
2308 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
2309 Target
* target
, const Task
* task
)
2311 target
->finalize_sections(this, input_objects
, symtab
);
2313 this->count_local_symbols(task
, input_objects
);
2315 this->link_stabs_sections();
2317 Output_segment
* phdr_seg
= NULL
;
2318 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
2320 // There was a dynamic object in the link. We need to create
2321 // some information for the dynamic linker.
2323 // Create the PT_PHDR segment which will hold the program
2325 if (!this->script_options_
->saw_phdrs_clause())
2326 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
2328 // Create the dynamic symbol table, including the hash table.
2329 Output_section
* dynstr
;
2330 std::vector
<Symbol
*> dynamic_symbols
;
2331 unsigned int local_dynamic_count
;
2332 Versions
versions(*this->script_options()->version_script_info(),
2334 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
2335 &local_dynamic_count
, &dynamic_symbols
,
2338 // Create the .interp section to hold the name of the
2339 // interpreter, and put it in a PT_INTERP segment. Don't do it
2340 // if we saw a .interp section in an input file.
2341 if ((!parameters
->options().shared()
2342 || parameters
->options().dynamic_linker() != NULL
)
2343 && this->interp_segment_
== NULL
)
2344 this->create_interp(target
);
2346 // Finish the .dynamic section to hold the dynamic data, and put
2347 // it in a PT_DYNAMIC segment.
2348 this->finish_dynamic_section(input_objects
, symtab
);
2350 // We should have added everything we need to the dynamic string
2352 this->dynpool_
.set_string_offsets();
2354 // Create the version sections. We can't do this until the
2355 // dynamic string table is complete.
2356 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
2357 dynamic_symbols
, dynstr
);
2359 // Set the size of the _DYNAMIC symbol. We can't do this until
2360 // after we call create_version_sections.
2361 this->set_dynamic_symbol_size(symtab
);
2364 // Create segment headers.
2365 Output_segment_headers
* segment_headers
=
2366 (parameters
->options().relocatable()
2368 : new Output_segment_headers(this->segment_list_
));
2370 // Lay out the file header.
2371 Output_file_header
* file_header
= new Output_file_header(target
, symtab
,
2374 this->special_output_list_
.push_back(file_header
);
2375 if (segment_headers
!= NULL
)
2376 this->special_output_list_
.push_back(segment_headers
);
2378 // Find approriate places for orphan output sections if we are using
2380 if (this->script_options_
->saw_sections_clause())
2381 this->place_orphan_sections_in_script();
2383 Output_segment
* load_seg
;
2388 // Take a snapshot of the section layout as needed.
2389 if (target
->may_relax())
2390 this->prepare_for_relaxation();
2392 // Run the relaxation loop to lay out sections.
2395 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
2396 phdr_seg
, segment_headers
, file_header
,
2400 while (target
->may_relax()
2401 && target
->relax(pass
, input_objects
, symtab
, this, task
));
2403 // Set the file offsets of all the non-data sections we've seen so
2404 // far which don't have to wait for the input sections. We need
2405 // this in order to finalize local symbols in non-allocated
2407 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
2409 // Set the section indexes of all unallocated sections seen so far,
2410 // in case any of them are somehow referenced by a symbol.
2411 shndx
= this->set_section_indexes(shndx
);
2413 // Create the symbol table sections.
2414 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
2415 if (!parameters
->doing_static_link())
2416 this->assign_local_dynsym_offsets(input_objects
);
2418 // Process any symbol assignments from a linker script. This must
2419 // be called after the symbol table has been finalized.
2420 this->script_options_
->finalize_symbols(symtab
, this);
2422 // Create the incremental inputs sections.
2423 if (this->incremental_inputs_
)
2425 this->incremental_inputs_
->finalize();
2426 this->create_incremental_info_sections(symtab
);
2429 // Create the .shstrtab section.
2430 Output_section
* shstrtab_section
= this->create_shstrtab();
2432 // Set the file offsets of the rest of the non-data sections which
2433 // don't have to wait for the input sections.
2434 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
2436 // Now that all sections have been created, set the section indexes
2437 // for any sections which haven't been done yet.
2438 shndx
= this->set_section_indexes(shndx
);
2440 // Create the section table header.
2441 this->create_shdrs(shstrtab_section
, &off
);
2443 // If there are no sections which require postprocessing, we can
2444 // handle the section names now, and avoid a resize later.
2445 if (!this->any_postprocessing_sections_
)
2447 off
= this->set_section_offsets(off
,
2448 POSTPROCESSING_SECTIONS_PASS
);
2450 this->set_section_offsets(off
,
2451 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
2454 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
2456 // Now we know exactly where everything goes in the output file
2457 // (except for non-allocated sections which require postprocessing).
2458 Output_data::layout_complete();
2460 this->output_file_size_
= off
;
2465 // Create a note header following the format defined in the ELF ABI.
2466 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2467 // of the section to create, DESCSZ is the size of the descriptor.
2468 // ALLOCATE is true if the section should be allocated in memory.
2469 // This returns the new note section. It sets *TRAILING_PADDING to
2470 // the number of trailing zero bytes required.
2473 Layout::create_note(const char* name
, int note_type
,
2474 const char* section_name
, size_t descsz
,
2475 bool allocate
, size_t* trailing_padding
)
2477 // Authorities all agree that the values in a .note field should
2478 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2479 // they differ on what the alignment is for 64-bit binaries.
2480 // The GABI says unambiguously they take 8-byte alignment:
2481 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2482 // Other documentation says alignment should always be 4 bytes:
2483 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2484 // GNU ld and GNU readelf both support the latter (at least as of
2485 // version 2.16.91), and glibc always generates the latter for
2486 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2488 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2489 const int size
= parameters
->target().get_size();
2491 const int size
= 32;
2494 // The contents of the .note section.
2495 size_t namesz
= strlen(name
) + 1;
2496 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
2497 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
2499 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
2501 unsigned char* buffer
= new unsigned char[notehdrsz
];
2502 memset(buffer
, 0, notehdrsz
);
2504 bool is_big_endian
= parameters
->target().is_big_endian();
2510 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
2511 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
2512 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
2516 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
2517 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
2518 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
2521 else if (size
== 64)
2525 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
2526 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
2527 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
2531 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
2532 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
2533 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
2539 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
2541 elfcpp::Elf_Xword flags
= 0;
2542 Output_section_order order
= ORDER_INVALID
;
2545 flags
= elfcpp::SHF_ALLOC
;
2546 order
= ORDER_RO_NOTE
;
2548 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
2550 flags
, false, order
, false);
2554 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
2557 os
->add_output_section_data(posd
);
2559 *trailing_padding
= aligned_descsz
- descsz
;
2564 // For an executable or shared library, create a note to record the
2565 // version of gold used to create the binary.
2568 Layout::create_gold_note()
2570 if (parameters
->options().relocatable()
2571 || parameters
->incremental_update())
2574 std::string desc
= std::string("gold ") + gold::get_version_string();
2576 size_t trailing_padding
;
2577 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
2578 ".note.gnu.gold-version", desc
.size(),
2579 false, &trailing_padding
);
2583 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2584 os
->add_output_section_data(posd
);
2586 if (trailing_padding
> 0)
2588 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2589 os
->add_output_section_data(posd
);
2593 // Record whether the stack should be executable. This can be set
2594 // from the command line using the -z execstack or -z noexecstack
2595 // options. Otherwise, if any input file has a .note.GNU-stack
2596 // section with the SHF_EXECINSTR flag set, the stack should be
2597 // executable. Otherwise, if at least one input file a
2598 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2599 // section, we use the target default for whether the stack should be
2600 // executable. Otherwise, we don't generate a stack note. When
2601 // generating a object file, we create a .note.GNU-stack section with
2602 // the appropriate marking. When generating an executable or shared
2603 // library, we create a PT_GNU_STACK segment.
2606 Layout::create_executable_stack_info()
2608 bool is_stack_executable
;
2609 if (parameters
->options().is_execstack_set())
2610 is_stack_executable
= parameters
->options().is_stack_executable();
2611 else if (!this->input_with_gnu_stack_note_
)
2615 if (this->input_requires_executable_stack_
)
2616 is_stack_executable
= true;
2617 else if (this->input_without_gnu_stack_note_
)
2618 is_stack_executable
=
2619 parameters
->target().is_default_stack_executable();
2621 is_stack_executable
= false;
2624 if (parameters
->options().relocatable())
2626 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
2627 elfcpp::Elf_Xword flags
= 0;
2628 if (is_stack_executable
)
2629 flags
|= elfcpp::SHF_EXECINSTR
;
2630 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
,
2631 ORDER_INVALID
, false);
2635 if (this->script_options_
->saw_phdrs_clause())
2637 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
2638 if (is_stack_executable
)
2639 flags
|= elfcpp::PF_X
;
2640 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
2644 // If --build-id was used, set up the build ID note.
2647 Layout::create_build_id()
2649 if (!parameters
->options().user_set_build_id())
2652 const char* style
= parameters
->options().build_id();
2653 if (strcmp(style
, "none") == 0)
2656 // Set DESCSZ to the size of the note descriptor. When possible,
2657 // set DESC to the note descriptor contents.
2660 if (strcmp(style
, "md5") == 0)
2662 else if (strcmp(style
, "sha1") == 0)
2664 else if (strcmp(style
, "uuid") == 0)
2666 const size_t uuidsz
= 128 / 8;
2668 char buffer
[uuidsz
];
2669 memset(buffer
, 0, uuidsz
);
2671 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
2673 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2677 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
2678 release_descriptor(descriptor
, true);
2680 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
2681 else if (static_cast<size_t>(got
) != uuidsz
)
2682 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2686 desc
.assign(buffer
, uuidsz
);
2689 else if (strncmp(style
, "0x", 2) == 0)
2692 const char* p
= style
+ 2;
2695 if (hex_p(p
[0]) && hex_p(p
[1]))
2697 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
2701 else if (*p
== '-' || *p
== ':')
2704 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2707 descsz
= desc
.size();
2710 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
2713 size_t trailing_padding
;
2714 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
2715 ".note.gnu.build-id", descsz
, true,
2722 // We know the value already, so we fill it in now.
2723 gold_assert(desc
.size() == descsz
);
2725 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2726 os
->add_output_section_data(posd
);
2728 if (trailing_padding
!= 0)
2730 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2731 os
->add_output_section_data(posd
);
2736 // We need to compute a checksum after we have completed the
2738 gold_assert(trailing_padding
== 0);
2739 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2740 os
->add_output_section_data(this->build_id_note_
);
2744 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2745 // field of the former should point to the latter. I'm not sure who
2746 // started this, but the GNU linker does it, and some tools depend
2750 Layout::link_stabs_sections()
2752 if (!this->have_stabstr_section_
)
2755 for (Section_list::iterator p
= this->section_list_
.begin();
2756 p
!= this->section_list_
.end();
2759 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2762 const char* name
= (*p
)->name();
2763 if (strncmp(name
, ".stab", 5) != 0)
2766 size_t len
= strlen(name
);
2767 if (strcmp(name
+ len
- 3, "str") != 0)
2770 std::string
stab_name(name
, len
- 3);
2771 Output_section
* stab_sec
;
2772 stab_sec
= this->find_output_section(stab_name
.c_str());
2773 if (stab_sec
!= NULL
)
2774 stab_sec
->set_link_section(*p
);
2778 // Create .gnu_incremental_inputs and related sections needed
2779 // for the next run of incremental linking to check what has changed.
2782 Layout::create_incremental_info_sections(Symbol_table
* symtab
)
2784 Incremental_inputs
* incr
= this->incremental_inputs_
;
2786 gold_assert(incr
!= NULL
);
2788 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2789 incr
->create_data_sections(symtab
);
2791 // Add the .gnu_incremental_inputs section.
2792 const char* incremental_inputs_name
=
2793 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2794 Output_section
* incremental_inputs_os
=
2795 this->make_output_section(incremental_inputs_name
,
2796 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2797 ORDER_INVALID
, false);
2798 incremental_inputs_os
->add_output_section_data(incr
->inputs_section());
2800 // Add the .gnu_incremental_symtab section.
2801 const char* incremental_symtab_name
=
2802 this->namepool_
.add(".gnu_incremental_symtab", false, NULL
);
2803 Output_section
* incremental_symtab_os
=
2804 this->make_output_section(incremental_symtab_name
,
2805 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB
, 0,
2806 ORDER_INVALID
, false);
2807 incremental_symtab_os
->add_output_section_data(incr
->symtab_section());
2808 incremental_symtab_os
->set_entsize(4);
2810 // Add the .gnu_incremental_relocs section.
2811 const char* incremental_relocs_name
=
2812 this->namepool_
.add(".gnu_incremental_relocs", false, NULL
);
2813 Output_section
* incremental_relocs_os
=
2814 this->make_output_section(incremental_relocs_name
,
2815 elfcpp::SHT_GNU_INCREMENTAL_RELOCS
, 0,
2816 ORDER_INVALID
, false);
2817 incremental_relocs_os
->add_output_section_data(incr
->relocs_section());
2818 incremental_relocs_os
->set_entsize(incr
->relocs_entsize());
2820 // Add the .gnu_incremental_got_plt section.
2821 const char* incremental_got_plt_name
=
2822 this->namepool_
.add(".gnu_incremental_got_plt", false, NULL
);
2823 Output_section
* incremental_got_plt_os
=
2824 this->make_output_section(incremental_got_plt_name
,
2825 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT
, 0,
2826 ORDER_INVALID
, false);
2827 incremental_got_plt_os
->add_output_section_data(incr
->got_plt_section());
2829 // Add the .gnu_incremental_strtab section.
2830 const char* incremental_strtab_name
=
2831 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2832 Output_section
* incremental_strtab_os
= this->make_output_section(incremental_strtab_name
,
2833 elfcpp::SHT_STRTAB
, 0,
2834 ORDER_INVALID
, false);
2835 Output_data_strtab
* strtab_data
=
2836 new Output_data_strtab(incr
->get_stringpool());
2837 incremental_strtab_os
->add_output_section_data(strtab_data
);
2839 incremental_inputs_os
->set_after_input_sections();
2840 incremental_symtab_os
->set_after_input_sections();
2841 incremental_relocs_os
->set_after_input_sections();
2842 incremental_got_plt_os
->set_after_input_sections();
2844 incremental_inputs_os
->set_link_section(incremental_strtab_os
);
2845 incremental_symtab_os
->set_link_section(incremental_inputs_os
);
2846 incremental_relocs_os
->set_link_section(incremental_inputs_os
);
2847 incremental_got_plt_os
->set_link_section(incremental_inputs_os
);
2850 // Return whether SEG1 should be before SEG2 in the output file. This
2851 // is based entirely on the segment type and flags. When this is
2852 // called the segment addresses have normally not yet been set.
2855 Layout::segment_precedes(const Output_segment
* seg1
,
2856 const Output_segment
* seg2
)
2858 elfcpp::Elf_Word type1
= seg1
->type();
2859 elfcpp::Elf_Word type2
= seg2
->type();
2861 // The single PT_PHDR segment is required to precede any loadable
2862 // segment. We simply make it always first.
2863 if (type1
== elfcpp::PT_PHDR
)
2865 gold_assert(type2
!= elfcpp::PT_PHDR
);
2868 if (type2
== elfcpp::PT_PHDR
)
2871 // The single PT_INTERP segment is required to precede any loadable
2872 // segment. We simply make it always second.
2873 if (type1
== elfcpp::PT_INTERP
)
2875 gold_assert(type2
!= elfcpp::PT_INTERP
);
2878 if (type2
== elfcpp::PT_INTERP
)
2881 // We then put PT_LOAD segments before any other segments.
2882 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2884 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2887 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2888 // segment, because that is where the dynamic linker expects to find
2889 // it (this is just for efficiency; other positions would also work
2891 if (type1
== elfcpp::PT_TLS
2892 && type2
!= elfcpp::PT_TLS
2893 && type2
!= elfcpp::PT_GNU_RELRO
)
2895 if (type2
== elfcpp::PT_TLS
2896 && type1
!= elfcpp::PT_TLS
2897 && type1
!= elfcpp::PT_GNU_RELRO
)
2900 // We put the PT_GNU_RELRO segment last, because that is where the
2901 // dynamic linker expects to find it (as with PT_TLS, this is just
2903 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2905 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2908 const elfcpp::Elf_Word flags1
= seg1
->flags();
2909 const elfcpp::Elf_Word flags2
= seg2
->flags();
2911 // The order of non-PT_LOAD segments is unimportant. We simply sort
2912 // by the numeric segment type and flags values. There should not
2913 // be more than one segment with the same type and flags.
2914 if (type1
!= elfcpp::PT_LOAD
)
2917 return type1
< type2
;
2918 gold_assert(flags1
!= flags2
);
2919 return flags1
< flags2
;
2922 // If the addresses are set already, sort by load address.
2923 if (seg1
->are_addresses_set())
2925 if (!seg2
->are_addresses_set())
2928 unsigned int section_count1
= seg1
->output_section_count();
2929 unsigned int section_count2
= seg2
->output_section_count();
2930 if (section_count1
== 0 && section_count2
> 0)
2932 if (section_count1
> 0 && section_count2
== 0)
2935 uint64_t paddr1
= (seg1
->are_addresses_set()
2937 : seg1
->first_section_load_address());
2938 uint64_t paddr2
= (seg2
->are_addresses_set()
2940 : seg2
->first_section_load_address());
2942 if (paddr1
!= paddr2
)
2943 return paddr1
< paddr2
;
2945 else if (seg2
->are_addresses_set())
2948 // A segment which holds large data comes after a segment which does
2949 // not hold large data.
2950 if (seg1
->is_large_data_segment())
2952 if (!seg2
->is_large_data_segment())
2955 else if (seg2
->is_large_data_segment())
2958 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2959 // segments come before writable segments. Then writable segments
2960 // with data come before writable segments without data. Then
2961 // executable segments come before non-executable segments. Then
2962 // the unlikely case of a non-readable segment comes before the
2963 // normal case of a readable segment. If there are multiple
2964 // segments with the same type and flags, we require that the
2965 // address be set, and we sort by virtual address and then physical
2967 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2968 return (flags1
& elfcpp::PF_W
) == 0;
2969 if ((flags1
& elfcpp::PF_W
) != 0
2970 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2971 return seg1
->has_any_data_sections();
2972 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2973 return (flags1
& elfcpp::PF_X
) != 0;
2974 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2975 return (flags1
& elfcpp::PF_R
) == 0;
2977 // We shouldn't get here--we shouldn't create segments which we
2978 // can't distinguish. Unless of course we are using a weird linker
2979 // script or overlapping --section-start options.
2980 gold_assert(this->script_options_
->saw_phdrs_clause()
2981 || parameters
->options().any_section_start());
2985 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2988 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2990 uint64_t unsigned_off
= off
;
2991 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2992 | (addr
& (abi_pagesize
- 1)));
2993 if (aligned_off
< unsigned_off
)
2994 aligned_off
+= abi_pagesize
;
2998 // Set the file offsets of all the segments, and all the sections they
2999 // contain. They have all been created. LOAD_SEG must be be laid out
3000 // first. Return the offset of the data to follow.
3003 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
3004 unsigned int* pshndx
)
3006 // Sort them into the final order. We use a stable sort so that we
3007 // don't randomize the order of indistinguishable segments created
3008 // by linker scripts.
3009 std::stable_sort(this->segment_list_
.begin(), this->segment_list_
.end(),
3010 Layout::Compare_segments(this));
3012 // Find the PT_LOAD segments, and set their addresses and offsets
3013 // and their section's addresses and offsets.
3015 if (parameters
->options().user_set_Ttext())
3016 addr
= parameters
->options().Ttext();
3017 else if (parameters
->options().output_is_position_independent())
3020 addr
= target
->default_text_segment_address();
3023 // If LOAD_SEG is NULL, then the file header and segment headers
3024 // will not be loadable. But they still need to be at offset 0 in
3025 // the file. Set their offsets now.
3026 if (load_seg
== NULL
)
3028 for (Data_list::iterator p
= this->special_output_list_
.begin();
3029 p
!= this->special_output_list_
.end();
3032 off
= align_address(off
, (*p
)->addralign());
3033 (*p
)->set_address_and_file_offset(0, off
);
3034 off
+= (*p
)->data_size();
3038 unsigned int increase_relro
= this->increase_relro_
;
3039 if (this->script_options_
->saw_sections_clause())
3042 const bool check_sections
= parameters
->options().check_sections();
3043 Output_segment
* last_load_segment
= NULL
;
3045 for (Segment_list::iterator p
= this->segment_list_
.begin();
3046 p
!= this->segment_list_
.end();
3049 if ((*p
)->type() == elfcpp::PT_LOAD
)
3051 if (load_seg
!= NULL
&& load_seg
!= *p
)
3055 bool are_addresses_set
= (*p
)->are_addresses_set();
3056 if (are_addresses_set
)
3058 // When it comes to setting file offsets, we care about
3059 // the physical address.
3060 addr
= (*p
)->paddr();
3062 else if (parameters
->options().user_set_Ttext()
3063 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
3065 are_addresses_set
= true;
3067 else if (parameters
->options().user_set_Tdata()
3068 && ((*p
)->flags() & elfcpp::PF_W
) != 0
3069 && (!parameters
->options().user_set_Tbss()
3070 || (*p
)->has_any_data_sections()))
3072 addr
= parameters
->options().Tdata();
3073 are_addresses_set
= true;
3075 else if (parameters
->options().user_set_Tbss()
3076 && ((*p
)->flags() & elfcpp::PF_W
) != 0
3077 && !(*p
)->has_any_data_sections())
3079 addr
= parameters
->options().Tbss();
3080 are_addresses_set
= true;
3083 uint64_t orig_addr
= addr
;
3084 uint64_t orig_off
= off
;
3086 uint64_t aligned_addr
= 0;
3087 uint64_t abi_pagesize
= target
->abi_pagesize();
3088 uint64_t common_pagesize
= target
->common_pagesize();
3090 if (!parameters
->options().nmagic()
3091 && !parameters
->options().omagic())
3092 (*p
)->set_minimum_p_align(common_pagesize
);
3094 if (!are_addresses_set
)
3096 // Skip the address forward one page, maintaining the same
3097 // position within the page. This lets us store both segments
3098 // overlapping on a single page in the file, but the loader will
3099 // put them on different pages in memory. We will revisit this
3100 // decision once we know the size of the segment.
3102 addr
= align_address(addr
, (*p
)->maximum_alignment());
3103 aligned_addr
= addr
;
3105 if ((addr
& (abi_pagesize
- 1)) != 0)
3106 addr
= addr
+ abi_pagesize
;
3108 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
3111 if (!parameters
->options().nmagic()
3112 && !parameters
->options().omagic())
3113 off
= align_file_offset(off
, addr
, abi_pagesize
);
3114 else if (load_seg
== NULL
)
3116 // This is -N or -n with a section script which prevents
3117 // us from using a load segment. We need to ensure that
3118 // the file offset is aligned to the alignment of the
3119 // segment. This is because the linker script
3120 // implicitly assumed a zero offset. If we don't align
3121 // here, then the alignment of the sections in the
3122 // linker script may not match the alignment of the
3123 // sections in the set_section_addresses call below,
3124 // causing an error about dot moving backward.
3125 off
= align_address(off
, (*p
)->maximum_alignment());
3128 unsigned int shndx_hold
= *pshndx
;
3129 bool has_relro
= false;
3130 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
3135 // Now that we know the size of this segment, we may be able
3136 // to save a page in memory, at the cost of wasting some
3137 // file space, by instead aligning to the start of a new
3138 // page. Here we use the real machine page size rather than
3139 // the ABI mandated page size. If the segment has been
3140 // aligned so that the relro data ends at a page boundary,
3141 // we do not try to realign it.
3143 if (!are_addresses_set
3145 && aligned_addr
!= addr
3146 && !parameters
->incremental())
3148 uint64_t first_off
= (common_pagesize
3150 & (common_pagesize
- 1)));
3151 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
3154 && ((aligned_addr
& ~ (common_pagesize
- 1))
3155 != (new_addr
& ~ (common_pagesize
- 1)))
3156 && first_off
+ last_off
<= common_pagesize
)
3158 *pshndx
= shndx_hold
;
3159 addr
= align_address(aligned_addr
, common_pagesize
);
3160 addr
= align_address(addr
, (*p
)->maximum_alignment());
3161 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
3162 off
= align_file_offset(off
, addr
, abi_pagesize
);
3164 increase_relro
= this->increase_relro_
;
3165 if (this->script_options_
->saw_sections_clause())
3169 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
3178 // Implement --check-sections. We know that the segments
3179 // are sorted by LMA.
3180 if (check_sections
&& last_load_segment
!= NULL
)
3182 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
3183 if (last_load_segment
->paddr() + last_load_segment
->memsz()
3186 unsigned long long lb1
= last_load_segment
->paddr();
3187 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
3188 unsigned long long lb2
= (*p
)->paddr();
3189 unsigned long long le2
= lb2
+ (*p
)->memsz();
3190 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3191 "[0x%llx -> 0x%llx]"),
3192 lb1
, le1
, lb2
, le2
);
3195 last_load_segment
= *p
;
3199 // Handle the non-PT_LOAD segments, setting their offsets from their
3200 // section's offsets.
3201 for (Segment_list::iterator p
= this->segment_list_
.begin();
3202 p
!= this->segment_list_
.end();
3205 if ((*p
)->type() != elfcpp::PT_LOAD
)
3206 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
3211 // Set the TLS offsets for each section in the PT_TLS segment.
3212 if (this->tls_segment_
!= NULL
)
3213 this->tls_segment_
->set_tls_offsets();
3218 // Set the offsets of all the allocated sections when doing a
3219 // relocatable link. This does the same jobs as set_segment_offsets,
3220 // only for a relocatable link.
3223 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
3224 unsigned int* pshndx
)
3228 file_header
->set_address_and_file_offset(0, 0);
3229 off
+= file_header
->data_size();
3231 for (Section_list::iterator p
= this->section_list_
.begin();
3232 p
!= this->section_list_
.end();
3235 // We skip unallocated sections here, except that group sections
3236 // have to come first.
3237 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
3238 && (*p
)->type() != elfcpp::SHT_GROUP
)
3241 off
= align_address(off
, (*p
)->addralign());
3243 // The linker script might have set the address.
3244 if (!(*p
)->is_address_valid())
3245 (*p
)->set_address(0);
3246 (*p
)->set_file_offset(off
);
3247 (*p
)->finalize_data_size();
3248 off
+= (*p
)->data_size();
3250 (*p
)->set_out_shndx(*pshndx
);
3257 // Set the file offset of all the sections not associated with a
3261 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
3263 off_t startoff
= off
;
3266 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
3267 p
!= this->unattached_section_list_
.end();
3270 // The symtab section is handled in create_symtab_sections.
3271 if (*p
== this->symtab_section_
)
3274 // If we've already set the data size, don't set it again.
3275 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
3278 if (pass
== BEFORE_INPUT_SECTIONS_PASS
3279 && (*p
)->requires_postprocessing())
3281 (*p
)->create_postprocessing_buffer();
3282 this->any_postprocessing_sections_
= true;
3285 if (pass
== BEFORE_INPUT_SECTIONS_PASS
3286 && (*p
)->after_input_sections())
3288 else if (pass
== POSTPROCESSING_SECTIONS_PASS
3289 && (!(*p
)->after_input_sections()
3290 || (*p
)->type() == elfcpp::SHT_STRTAB
))
3292 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3293 && (!(*p
)->after_input_sections()
3294 || (*p
)->type() != elfcpp::SHT_STRTAB
))
3297 if (!parameters
->incremental_update())
3299 off
= align_address(off
, (*p
)->addralign());
3300 (*p
)->set_file_offset(off
);
3301 (*p
)->finalize_data_size();
3305 // Incremental update: allocate file space from free list.
3306 (*p
)->pre_finalize_data_size();
3307 off_t current_size
= (*p
)->current_data_size();
3308 off
= this->allocate(current_size
, (*p
)->addralign(), startoff
);
3311 if (is_debugging_enabled(DEBUG_INCREMENTAL
))
3312 this->free_list_
.dump();
3313 gold_assert((*p
)->output_section() != NULL
);
3314 gold_fallback(_("out of patch space for section %s; "
3315 "relink with --incremental-full"),
3316 (*p
)->output_section()->name());
3318 (*p
)->set_file_offset(off
);
3319 (*p
)->finalize_data_size();
3320 if ((*p
)->data_size() > current_size
)
3322 gold_assert((*p
)->output_section() != NULL
);
3323 gold_fallback(_("%s: section changed size; "
3324 "relink with --incremental-full"),
3325 (*p
)->output_section()->name());
3327 gold_debug(DEBUG_INCREMENTAL
,
3328 "set_section_offsets: %08lx %08lx %s",
3329 static_cast<long>(off
),
3330 static_cast<long>((*p
)->data_size()),
3331 ((*p
)->output_section() != NULL
3332 ? (*p
)->output_section()->name() : "(special)"));
3335 off
+= (*p
)->data_size();
3339 // At this point the name must be set.
3340 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
3341 this->namepool_
.add((*p
)->name(), false, NULL
);
3346 // Set the section indexes of all the sections not associated with a
3350 Layout::set_section_indexes(unsigned int shndx
)
3352 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
3353 p
!= this->unattached_section_list_
.end();
3356 if (!(*p
)->has_out_shndx())
3358 (*p
)->set_out_shndx(shndx
);
3365 // Set the section addresses according to the linker script. This is
3366 // only called when we see a SECTIONS clause. This returns the
3367 // program segment which should hold the file header and segment
3368 // headers, if any. It will return NULL if they should not be in a
3372 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
3374 Script_sections
* ss
= this->script_options_
->script_sections();
3375 gold_assert(ss
->saw_sections_clause());
3376 return this->script_options_
->set_section_addresses(symtab
, this);
3379 // Place the orphan sections in the linker script.
3382 Layout::place_orphan_sections_in_script()
3384 Script_sections
* ss
= this->script_options_
->script_sections();
3385 gold_assert(ss
->saw_sections_clause());
3387 // Place each orphaned output section in the script.
3388 for (Section_list::iterator p
= this->section_list_
.begin();
3389 p
!= this->section_list_
.end();
3392 if (!(*p
)->found_in_sections_clause())
3393 ss
->place_orphan(*p
);
3397 // Count the local symbols in the regular symbol table and the dynamic
3398 // symbol table, and build the respective string pools.
3401 Layout::count_local_symbols(const Task
* task
,
3402 const Input_objects
* input_objects
)
3404 // First, figure out an upper bound on the number of symbols we'll
3405 // be inserting into each pool. This helps us create the pools with
3406 // the right size, to avoid unnecessary hashtable resizing.
3407 unsigned int symbol_count
= 0;
3408 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3409 p
!= input_objects
->relobj_end();
3411 symbol_count
+= (*p
)->local_symbol_count();
3413 // Go from "upper bound" to "estimate." We overcount for two
3414 // reasons: we double-count symbols that occur in more than one
3415 // object file, and we count symbols that are dropped from the
3416 // output. Add it all together and assume we overcount by 100%.
3419 // We assume all symbols will go into both the sympool and dynpool.
3420 this->sympool_
.reserve(symbol_count
);
3421 this->dynpool_
.reserve(symbol_count
);
3423 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3424 p
!= input_objects
->relobj_end();
3427 Task_lock_obj
<Object
> tlo(task
, *p
);
3428 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
3432 // Create the symbol table sections. Here we also set the final
3433 // values of the symbols. At this point all the loadable sections are
3434 // fully laid out. SHNUM is the number of sections so far.
3437 Layout::create_symtab_sections(const Input_objects
* input_objects
,
3438 Symbol_table
* symtab
,
3444 if (parameters
->target().get_size() == 32)
3446 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3449 else if (parameters
->target().get_size() == 64)
3451 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3457 // Compute file offsets relative to the start of the symtab section.
3460 // Save space for the dummy symbol at the start of the section. We
3461 // never bother to write this out--it will just be left as zero.
3463 unsigned int local_symbol_index
= 1;
3465 // Add STT_SECTION symbols for each Output section which needs one.
3466 for (Section_list::iterator p
= this->section_list_
.begin();
3467 p
!= this->section_list_
.end();
3470 if (!(*p
)->needs_symtab_index())
3471 (*p
)->set_symtab_index(-1U);
3474 (*p
)->set_symtab_index(local_symbol_index
);
3475 ++local_symbol_index
;
3480 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3481 p
!= input_objects
->relobj_end();
3484 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
3486 off
+= (index
- local_symbol_index
) * symsize
;
3487 local_symbol_index
= index
;
3490 unsigned int local_symcount
= local_symbol_index
;
3491 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
);
3494 size_t dyn_global_index
;
3496 if (this->dynsym_section_
== NULL
)
3499 dyn_global_index
= 0;
3504 dyn_global_index
= this->dynsym_section_
->info();
3505 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
3506 dynoff
= this->dynsym_section_
->offset() + locsize
;
3507 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
3508 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
3509 == this->dynsym_section_
->data_size() - locsize
);
3512 off_t global_off
= off
;
3513 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
3514 &this->sympool_
, &local_symcount
);
3516 if (!parameters
->options().strip_all())
3518 this->sympool_
.set_string_offsets();
3520 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
3521 Output_section
* osymtab
= this->make_output_section(symtab_name
,
3525 this->symtab_section_
= osymtab
;
3527 Output_section_data
* pos
= new Output_data_fixed_space(off
, align
,
3529 osymtab
->add_output_section_data(pos
);
3531 // We generate a .symtab_shndx section if we have more than
3532 // SHN_LORESERVE sections. Technically it is possible that we
3533 // don't need one, because it is possible that there are no
3534 // symbols in any of sections with indexes larger than
3535 // SHN_LORESERVE. That is probably unusual, though, and it is
3536 // easier to always create one than to compute section indexes
3537 // twice (once here, once when writing out the symbols).
3538 if (shnum
>= elfcpp::SHN_LORESERVE
)
3540 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
3542 Output_section
* osymtab_xindex
=
3543 this->make_output_section(symtab_xindex_name
,
3544 elfcpp::SHT_SYMTAB_SHNDX
, 0,
3545 ORDER_INVALID
, false);
3547 size_t symcount
= off
/ symsize
;
3548 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
3550 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
3552 osymtab_xindex
->set_link_section(osymtab
);
3553 osymtab_xindex
->set_addralign(4);
3554 osymtab_xindex
->set_entsize(4);
3556 osymtab_xindex
->set_after_input_sections();
3558 // This tells the driver code to wait until the symbol table
3559 // has written out before writing out the postprocessing
3560 // sections, including the .symtab_shndx section.
3561 this->any_postprocessing_sections_
= true;
3564 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
3565 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
3570 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
3571 ostrtab
->add_output_section_data(pstr
);
3574 if (!parameters
->incremental_update())
3575 symtab_off
= align_address(*poff
, align
);
3578 symtab_off
= this->allocate(off
, align
, *poff
);
3580 gold_fallback(_("out of patch space for symbol table; "
3581 "relink with --incremental-full"));
3582 gold_debug(DEBUG_INCREMENTAL
,
3583 "create_symtab_sections: %08lx %08lx .symtab",
3584 static_cast<long>(symtab_off
),
3585 static_cast<long>(off
));
3588 symtab
->set_file_offset(symtab_off
+ global_off
);
3589 osymtab
->set_file_offset(symtab_off
);
3590 osymtab
->finalize_data_size();
3591 osymtab
->set_link_section(ostrtab
);
3592 osymtab
->set_info(local_symcount
);
3593 osymtab
->set_entsize(symsize
);
3595 if (symtab_off
+ off
> *poff
)
3596 *poff
= symtab_off
+ off
;
3600 // Create the .shstrtab section, which holds the names of the
3601 // sections. At the time this is called, we have created all the
3602 // output sections except .shstrtab itself.
3605 Layout::create_shstrtab()
3607 // FIXME: We don't need to create a .shstrtab section if we are
3608 // stripping everything.
3610 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
3612 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
3613 ORDER_INVALID
, false);
3615 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
3617 // We can't write out this section until we've set all the
3618 // section names, and we don't set the names of compressed
3619 // output sections until relocations are complete. FIXME: With
3620 // the current names we use, this is unnecessary.
3621 os
->set_after_input_sections();
3624 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
3625 os
->add_output_section_data(posd
);
3630 // Create the section headers. SIZE is 32 or 64. OFF is the file
3634 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
3636 Output_section_headers
* oshdrs
;
3637 oshdrs
= new Output_section_headers(this,
3638 &this->segment_list_
,
3639 &this->section_list_
,
3640 &this->unattached_section_list_
,
3644 if (!parameters
->incremental_update())
3645 off
= align_address(*poff
, oshdrs
->addralign());
3648 oshdrs
->pre_finalize_data_size();
3649 off
= this->allocate(oshdrs
->data_size(), oshdrs
->addralign(), *poff
);
3651 gold_fallback(_("out of patch space for section header table; "
3652 "relink with --incremental-full"));
3653 gold_debug(DEBUG_INCREMENTAL
,
3654 "create_shdrs: %08lx %08lx (section header table)",
3655 static_cast<long>(off
),
3656 static_cast<long>(off
+ oshdrs
->data_size()));
3658 oshdrs
->set_address_and_file_offset(0, off
);
3659 off
+= oshdrs
->data_size();
3662 this->section_headers_
= oshdrs
;
3665 // Count the allocated sections.
3668 Layout::allocated_output_section_count() const
3670 size_t section_count
= 0;
3671 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3672 p
!= this->segment_list_
.end();
3674 section_count
+= (*p
)->output_section_count();
3675 return section_count
;
3678 // Create the dynamic symbol table.
3681 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
3682 Symbol_table
* symtab
,
3683 Output_section
** pdynstr
,
3684 unsigned int* plocal_dynamic_count
,
3685 std::vector
<Symbol
*>* pdynamic_symbols
,
3686 Versions
* pversions
)
3688 // Count all the symbols in the dynamic symbol table, and set the
3689 // dynamic symbol indexes.
3691 // Skip symbol 0, which is always all zeroes.
3692 unsigned int index
= 1;
3694 // Add STT_SECTION symbols for each Output section which needs one.
3695 for (Section_list::iterator p
= this->section_list_
.begin();
3696 p
!= this->section_list_
.end();
3699 if (!(*p
)->needs_dynsym_index())
3700 (*p
)->set_dynsym_index(-1U);
3703 (*p
)->set_dynsym_index(index
);
3708 // Count the local symbols that need to go in the dynamic symbol table,
3709 // and set the dynamic symbol indexes.
3710 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3711 p
!= input_objects
->relobj_end();
3714 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
3718 unsigned int local_symcount
= index
;
3719 *plocal_dynamic_count
= local_symcount
;
3721 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
3722 &this->dynpool_
, pversions
);
3726 const int size
= parameters
->target().get_size();
3729 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3732 else if (size
== 64)
3734 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3740 // Create the dynamic symbol table section.
3742 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
3746 ORDER_DYNAMIC_LINKER
,
3749 // Check for NULL as a linker script may discard .dynsym.
3752 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
3755 dynsym
->add_output_section_data(odata
);
3757 dynsym
->set_info(local_symcount
);
3758 dynsym
->set_entsize(symsize
);
3759 dynsym
->set_addralign(align
);
3761 this->dynsym_section_
= dynsym
;
3764 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3767 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
3768 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
3771 // If there are more than SHN_LORESERVE allocated sections, we
3772 // create a .dynsym_shndx section. It is possible that we don't
3773 // need one, because it is possible that there are no dynamic
3774 // symbols in any of the sections with indexes larger than
3775 // SHN_LORESERVE. This is probably unusual, though, and at this
3776 // time we don't know the actual section indexes so it is
3777 // inconvenient to check.
3778 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
3780 Output_section
* dynsym_xindex
=
3781 this->choose_output_section(NULL
, ".dynsym_shndx",
3782 elfcpp::SHT_SYMTAB_SHNDX
,
3784 false, ORDER_DYNAMIC_LINKER
, false);
3786 if (dynsym_xindex
!= NULL
)
3788 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
3790 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
3792 dynsym_xindex
->set_link_section(dynsym
);
3793 dynsym_xindex
->set_addralign(4);
3794 dynsym_xindex
->set_entsize(4);
3796 dynsym_xindex
->set_after_input_sections();
3798 // This tells the driver code to wait until the symbol table
3799 // has written out before writing out the postprocessing
3800 // sections, including the .dynsym_shndx section.
3801 this->any_postprocessing_sections_
= true;
3805 // Create the dynamic string table section.
3807 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
3811 ORDER_DYNAMIC_LINKER
,
3816 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
3817 dynstr
->add_output_section_data(strdata
);
3820 dynsym
->set_link_section(dynstr
);
3821 if (this->dynamic_section_
!= NULL
)
3822 this->dynamic_section_
->set_link_section(dynstr
);
3826 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
3827 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
3833 // Create the hash tables.
3835 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
3836 || strcmp(parameters
->options().hash_style(), "both") == 0)
3838 unsigned char* phash
;
3839 unsigned int hashlen
;
3840 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
3843 Output_section
* hashsec
=
3844 this->choose_output_section(NULL
, ".hash", elfcpp::SHT_HASH
,
3845 elfcpp::SHF_ALLOC
, false,
3846 ORDER_DYNAMIC_LINKER
, false);
3848 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3852 if (hashsec
!= NULL
&& hashdata
!= NULL
)
3853 hashsec
->add_output_section_data(hashdata
);
3855 if (hashsec
!= NULL
)
3858 hashsec
->set_link_section(dynsym
);
3859 hashsec
->set_entsize(4);
3863 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
3866 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
3867 || strcmp(parameters
->options().hash_style(), "both") == 0)
3869 unsigned char* phash
;
3870 unsigned int hashlen
;
3871 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3874 Output_section
* hashsec
=
3875 this->choose_output_section(NULL
, ".gnu.hash", elfcpp::SHT_GNU_HASH
,
3876 elfcpp::SHF_ALLOC
, false,
3877 ORDER_DYNAMIC_LINKER
, false);
3879 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3883 if (hashsec
!= NULL
&& hashdata
!= NULL
)
3884 hashsec
->add_output_section_data(hashdata
);
3886 if (hashsec
!= NULL
)
3889 hashsec
->set_link_section(dynsym
);
3891 // For a 64-bit target, the entries in .gnu.hash do not have
3892 // a uniform size, so we only set the entry size for a
3894 if (parameters
->target().get_size() == 32)
3895 hashsec
->set_entsize(4);
3898 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3903 // Assign offsets to each local portion of the dynamic symbol table.
3906 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3908 Output_section
* dynsym
= this->dynsym_section_
;
3912 off_t off
= dynsym
->offset();
3914 // Skip the dummy symbol at the start of the section.
3915 off
+= dynsym
->entsize();
3917 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3918 p
!= input_objects
->relobj_end();
3921 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3922 off
+= count
* dynsym
->entsize();
3926 // Create the version sections.
3929 Layout::create_version_sections(const Versions
* versions
,
3930 const Symbol_table
* symtab
,
3931 unsigned int local_symcount
,
3932 const std::vector
<Symbol
*>& dynamic_symbols
,
3933 const Output_section
* dynstr
)
3935 if (!versions
->any_defs() && !versions
->any_needs())
3938 switch (parameters
->size_and_endianness())
3940 #ifdef HAVE_TARGET_32_LITTLE
3941 case Parameters::TARGET_32_LITTLE
:
3942 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3944 dynamic_symbols
, dynstr
);
3947 #ifdef HAVE_TARGET_32_BIG
3948 case Parameters::TARGET_32_BIG
:
3949 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3951 dynamic_symbols
, dynstr
);
3954 #ifdef HAVE_TARGET_64_LITTLE
3955 case Parameters::TARGET_64_LITTLE
:
3956 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3958 dynamic_symbols
, dynstr
);
3961 #ifdef HAVE_TARGET_64_BIG
3962 case Parameters::TARGET_64_BIG
:
3963 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3965 dynamic_symbols
, dynstr
);
3973 // Create the version sections, sized version.
3975 template<int size
, bool big_endian
>
3977 Layout::sized_create_version_sections(
3978 const Versions
* versions
,
3979 const Symbol_table
* symtab
,
3980 unsigned int local_symcount
,
3981 const std::vector
<Symbol
*>& dynamic_symbols
,
3982 const Output_section
* dynstr
)
3984 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3985 elfcpp::SHT_GNU_versym
,
3988 ORDER_DYNAMIC_LINKER
,
3991 // Check for NULL since a linker script may discard this section.
3994 unsigned char* vbuf
;
3996 versions
->symbol_section_contents
<size
, big_endian
>(symtab
,
4002 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
4005 vsec
->add_output_section_data(vdata
);
4006 vsec
->set_entsize(2);
4007 vsec
->set_link_section(this->dynsym_section_
);
4010 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
4011 if (odyn
!= NULL
&& vsec
!= NULL
)
4012 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
4014 if (versions
->any_defs())
4016 Output_section
* vdsec
;
4017 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
4018 elfcpp::SHT_GNU_verdef
,
4020 false, ORDER_DYNAMIC_LINKER
, false);
4024 unsigned char* vdbuf
;
4025 unsigned int vdsize
;
4026 unsigned int vdentries
;
4027 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
,
4031 Output_section_data
* vddata
=
4032 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
4034 vdsec
->add_output_section_data(vddata
);
4035 vdsec
->set_link_section(dynstr
);
4036 vdsec
->set_info(vdentries
);
4040 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
4041 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
4046 if (versions
->any_needs())
4048 Output_section
* vnsec
;
4049 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
4050 elfcpp::SHT_GNU_verneed
,
4052 false, ORDER_DYNAMIC_LINKER
, false);
4056 unsigned char* vnbuf
;
4057 unsigned int vnsize
;
4058 unsigned int vnentries
;
4059 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
4063 Output_section_data
* vndata
=
4064 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
4066 vnsec
->add_output_section_data(vndata
);
4067 vnsec
->set_link_section(dynstr
);
4068 vnsec
->set_info(vnentries
);
4072 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
4073 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
4079 // Create the .interp section and PT_INTERP segment.
4082 Layout::create_interp(const Target
* target
)
4084 gold_assert(this->interp_segment_
== NULL
);
4086 const char* interp
= parameters
->options().dynamic_linker();
4089 interp
= target
->dynamic_linker();
4090 gold_assert(interp
!= NULL
);
4093 size_t len
= strlen(interp
) + 1;
4095 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
4097 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
4098 elfcpp::SHT_PROGBITS
,
4100 false, ORDER_INTERP
,
4103 osec
->add_output_section_data(odata
);
4106 // Add dynamic tags for the PLT and the dynamic relocs. This is
4107 // called by the target-specific code. This does nothing if not doing
4110 // USE_REL is true for REL relocs rather than RELA relocs.
4112 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4114 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4115 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4116 // some targets have multiple reloc sections in PLT_REL.
4118 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4119 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4122 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4126 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
4127 const Output_data
* plt_rel
,
4128 const Output_data_reloc_generic
* dyn_rel
,
4129 bool add_debug
, bool dynrel_includes_plt
)
4131 Output_data_dynamic
* odyn
= this->dynamic_data_
;
4135 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
4136 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
4138 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
4140 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
4141 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
4142 odyn
->add_constant(elfcpp::DT_PLTREL
,
4143 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
4146 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
4148 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
4149 dyn_rel
->output_section());
4151 && plt_rel
->output_section() != NULL
4152 && dynrel_includes_plt
)
4153 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
4154 dyn_rel
->output_section(),
4155 plt_rel
->output_section());
4157 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
4158 dyn_rel
->output_section());
4159 const int size
= parameters
->target().get_size();
4164 rel_tag
= elfcpp::DT_RELENT
;
4166 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
4167 else if (size
== 64)
4168 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
4174 rel_tag
= elfcpp::DT_RELAENT
;
4176 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
4177 else if (size
== 64)
4178 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
4182 odyn
->add_constant(rel_tag
, rel_size
);
4184 if (parameters
->options().combreloc())
4186 size_t c
= dyn_rel
->relative_reloc_count();
4188 odyn
->add_constant((use_rel
4189 ? elfcpp::DT_RELCOUNT
4190 : elfcpp::DT_RELACOUNT
),
4195 if (add_debug
&& !parameters
->options().shared())
4197 // The value of the DT_DEBUG tag is filled in by the dynamic
4198 // linker at run time, and used by the debugger.
4199 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
4203 // Finish the .dynamic section and PT_DYNAMIC segment.
4206 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
4207 const Symbol_table
* symtab
)
4209 if (!this->script_options_
->saw_phdrs_clause()
4210 && this->dynamic_section_
!= NULL
)
4212 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
4215 oseg
->add_output_section_to_nonload(this->dynamic_section_
,
4216 elfcpp::PF_R
| elfcpp::PF_W
);
4219 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
4223 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
4224 p
!= input_objects
->dynobj_end();
4227 if (!(*p
)->is_needed() && (*p
)->as_needed())
4229 // This dynamic object was linked with --as-needed, but it
4234 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
4237 if (parameters
->options().shared())
4239 const char* soname
= parameters
->options().soname();
4241 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
4244 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
4245 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
4246 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
4248 sym
= symtab
->lookup(parameters
->options().fini());
4249 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
4250 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
4252 // Look for .init_array, .preinit_array and .fini_array by checking
4254 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
4255 p
!= this->section_list_
.end();
4257 switch((*p
)->type())
4259 case elfcpp::SHT_FINI_ARRAY
:
4260 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
4261 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
4263 case elfcpp::SHT_INIT_ARRAY
:
4264 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
4265 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
4267 case elfcpp::SHT_PREINIT_ARRAY
:
4268 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
4269 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
4275 // Add a DT_RPATH entry if needed.
4276 const General_options::Dir_list
& rpath(parameters
->options().rpath());
4279 std::string rpath_val
;
4280 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
4284 if (rpath_val
.empty())
4285 rpath_val
= p
->name();
4288 // Eliminate duplicates.
4289 General_options::Dir_list::const_iterator q
;
4290 for (q
= rpath
.begin(); q
!= p
; ++q
)
4291 if (q
->name() == p
->name())
4296 rpath_val
+= p
->name();
4301 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
4302 if (parameters
->options().enable_new_dtags())
4303 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
4306 // Look for text segments that have dynamic relocations.
4307 bool have_textrel
= false;
4308 if (!this->script_options_
->saw_sections_clause())
4310 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4311 p
!= this->segment_list_
.end();
4314 if ((*p
)->type() == elfcpp::PT_LOAD
4315 && ((*p
)->flags() & elfcpp::PF_W
) == 0
4316 && (*p
)->has_dynamic_reloc())
4318 have_textrel
= true;
4325 // We don't know the section -> segment mapping, so we are
4326 // conservative and just look for readonly sections with
4327 // relocations. If those sections wind up in writable segments,
4328 // then we have created an unnecessary DT_TEXTREL entry.
4329 for (Section_list::const_iterator p
= this->section_list_
.begin();
4330 p
!= this->section_list_
.end();
4333 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
4334 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
4335 && (*p
)->has_dynamic_reloc())
4337 have_textrel
= true;
4343 if (parameters
->options().filter() != NULL
)
4344 odyn
->add_string(elfcpp::DT_FILTER
, parameters
->options().filter());
4345 if (parameters
->options().any_auxiliary())
4347 for (options::String_set::const_iterator p
=
4348 parameters
->options().auxiliary_begin();
4349 p
!= parameters
->options().auxiliary_end();
4351 odyn
->add_string(elfcpp::DT_AUXILIARY
, *p
);
4354 // Add a DT_FLAGS entry if necessary.
4355 unsigned int flags
= 0;
4358 // Add a DT_TEXTREL for compatibility with older loaders.
4359 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
4360 flags
|= elfcpp::DF_TEXTREL
;
4362 if (parameters
->options().text())
4363 gold_error(_("read-only segment has dynamic relocations"));
4364 else if (parameters
->options().warn_shared_textrel()
4365 && parameters
->options().shared())
4366 gold_warning(_("shared library text segment is not shareable"));
4368 if (parameters
->options().shared() && this->has_static_tls())
4369 flags
|= elfcpp::DF_STATIC_TLS
;
4370 if (parameters
->options().origin())
4371 flags
|= elfcpp::DF_ORIGIN
;
4372 if (parameters
->options().Bsymbolic())
4374 flags
|= elfcpp::DF_SYMBOLIC
;
4375 // Add DT_SYMBOLIC for compatibility with older loaders.
4376 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
4378 if (parameters
->options().now())
4379 flags
|= elfcpp::DF_BIND_NOW
;
4381 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
4384 if (parameters
->options().initfirst())
4385 flags
|= elfcpp::DF_1_INITFIRST
;
4386 if (parameters
->options().interpose())
4387 flags
|= elfcpp::DF_1_INTERPOSE
;
4388 if (parameters
->options().loadfltr())
4389 flags
|= elfcpp::DF_1_LOADFLTR
;
4390 if (parameters
->options().nodefaultlib())
4391 flags
|= elfcpp::DF_1_NODEFLIB
;
4392 if (parameters
->options().nodelete())
4393 flags
|= elfcpp::DF_1_NODELETE
;
4394 if (parameters
->options().nodlopen())
4395 flags
|= elfcpp::DF_1_NOOPEN
;
4396 if (parameters
->options().nodump())
4397 flags
|= elfcpp::DF_1_NODUMP
;
4398 if (!parameters
->options().shared())
4399 flags
&= ~(elfcpp::DF_1_INITFIRST
4400 | elfcpp::DF_1_NODELETE
4401 | elfcpp::DF_1_NOOPEN
);
4402 if (parameters
->options().origin())
4403 flags
|= elfcpp::DF_1_ORIGIN
;
4404 if (parameters
->options().now())
4405 flags
|= elfcpp::DF_1_NOW
;
4406 if (parameters
->options().Bgroup())
4407 flags
|= elfcpp::DF_1_GROUP
;
4409 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
4412 // Set the size of the _DYNAMIC symbol table to be the size of the
4416 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
4418 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
4421 odyn
->finalize_data_size();
4422 if (this->dynamic_symbol_
== NULL
)
4424 off_t data_size
= odyn
->data_size();
4425 const int size
= parameters
->target().get_size();
4427 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
4428 else if (size
== 64)
4429 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
4434 // The mapping of input section name prefixes to output section names.
4435 // In some cases one prefix is itself a prefix of another prefix; in
4436 // such a case the longer prefix must come first. These prefixes are
4437 // based on the GNU linker default ELF linker script.
4439 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4440 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
4442 MAPPING_INIT(".text.", ".text"),
4443 MAPPING_INIT(".rodata.", ".rodata"),
4444 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4445 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4446 MAPPING_INIT(".data.", ".data"),
4447 MAPPING_INIT(".bss.", ".bss"),
4448 MAPPING_INIT(".tdata.", ".tdata"),
4449 MAPPING_INIT(".tbss.", ".tbss"),
4450 MAPPING_INIT(".init_array.", ".init_array"),
4451 MAPPING_INIT(".fini_array.", ".fini_array"),
4452 MAPPING_INIT(".sdata.", ".sdata"),
4453 MAPPING_INIT(".sbss.", ".sbss"),
4454 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4455 // differently depending on whether it is creating a shared library.
4456 MAPPING_INIT(".sdata2.", ".sdata"),
4457 MAPPING_INIT(".sbss2.", ".sbss"),
4458 MAPPING_INIT(".lrodata.", ".lrodata"),
4459 MAPPING_INIT(".ldata.", ".ldata"),
4460 MAPPING_INIT(".lbss.", ".lbss"),
4461 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4462 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4463 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4464 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4465 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4466 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4467 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4468 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4469 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4470 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4471 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4472 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4473 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4474 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4475 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4476 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4477 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4478 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4479 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4480 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4481 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4485 const int Layout::section_name_mapping_count
=
4486 (sizeof(Layout::section_name_mapping
)
4487 / sizeof(Layout::section_name_mapping
[0]));
4489 // Choose the output section name to use given an input section name.
4490 // Set *PLEN to the length of the name. *PLEN is initialized to the
4494 Layout::output_section_name(const Relobj
* relobj
, const char* name
,
4497 // gcc 4.3 generates the following sorts of section names when it
4498 // needs a section name specific to a function:
4504 // .data.rel.local.FN
4506 // .data.rel.ro.local.FN
4513 // The GNU linker maps all of those to the part before the .FN,
4514 // except that .data.rel.local.FN is mapped to .data, and
4515 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4516 // beginning with .data.rel.ro.local are grouped together.
4518 // For an anonymous namespace, the string FN can contain a '.'.
4520 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4521 // GNU linker maps to .rodata.
4523 // The .data.rel.ro sections are used with -z relro. The sections
4524 // are recognized by name. We use the same names that the GNU
4525 // linker does for these sections.
4527 // It is hard to handle this in a principled way, so we don't even
4528 // try. We use a table of mappings. If the input section name is
4529 // not found in the table, we simply use it as the output section
4532 const Section_name_mapping
* psnm
= section_name_mapping
;
4533 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
4535 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
4537 *plen
= psnm
->tolen
;
4542 // As an additional complication, .ctors sections are output in
4543 // either .ctors or .init_array sections, and .dtors sections are
4544 // output in either .dtors or .fini_array sections.
4545 if (is_prefix_of(".ctors.", name
) || is_prefix_of(".dtors.", name
))
4547 if (parameters
->options().ctors_in_init_array())
4550 return name
[1] == 'c' ? ".init_array" : ".fini_array";
4555 return name
[1] == 'c' ? ".ctors" : ".dtors";
4558 if (parameters
->options().ctors_in_init_array()
4559 && (strcmp(name
, ".ctors") == 0 || strcmp(name
, ".dtors") == 0))
4561 // To make .init_array/.fini_array work with gcc we must exclude
4562 // .ctors and .dtors sections from the crtbegin and crtend
4565 || (!Layout::match_file_name(relobj
, "crtbegin")
4566 && !Layout::match_file_name(relobj
, "crtend")))
4569 return name
[1] == 'c' ? ".init_array" : ".fini_array";
4576 // Return true if RELOBJ is an input file whose base name matches
4577 // FILE_NAME. The base name must have an extension of ".o", and must
4578 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4579 // to match crtbegin.o as well as crtbeginS.o without getting confused
4580 // by other possibilities. Overall matching the file name this way is
4581 // a dreadful hack, but the GNU linker does it in order to better
4582 // support gcc, and we need to be compatible.
4585 Layout::match_file_name(const Relobj
* relobj
, const char* match
)
4587 const std::string
& file_name(relobj
->name());
4588 const char* base_name
= lbasename(file_name
.c_str());
4589 size_t match_len
= strlen(match
);
4590 if (strncmp(base_name
, match
, match_len
) != 0)
4592 size_t base_len
= strlen(base_name
);
4593 if (base_len
!= match_len
+ 2 && base_len
!= match_len
+ 3)
4595 return memcmp(base_name
+ base_len
- 2, ".o", 2) == 0;
4598 // Check if a comdat group or .gnu.linkonce section with the given
4599 // NAME is selected for the link. If there is already a section,
4600 // *KEPT_SECTION is set to point to the existing section and the
4601 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4602 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4603 // *KEPT_SECTION is set to the internal copy and the function returns
4607 Layout::find_or_add_kept_section(const std::string
& name
,
4612 Kept_section
** kept_section
)
4614 // It's normal to see a couple of entries here, for the x86 thunk
4615 // sections. If we see more than a few, we're linking a C++
4616 // program, and we resize to get more space to minimize rehashing.
4617 if (this->signatures_
.size() > 4
4618 && !this->resized_signatures_
)
4620 reserve_unordered_map(&this->signatures_
,
4621 this->number_of_input_files_
* 64);
4622 this->resized_signatures_
= true;
4625 Kept_section candidate
;
4626 std::pair
<Signatures::iterator
, bool> ins
=
4627 this->signatures_
.insert(std::make_pair(name
, candidate
));
4629 if (kept_section
!= NULL
)
4630 *kept_section
= &ins
.first
->second
;
4633 // This is the first time we've seen this signature.
4634 ins
.first
->second
.set_object(object
);
4635 ins
.first
->second
.set_shndx(shndx
);
4637 ins
.first
->second
.set_is_comdat();
4639 ins
.first
->second
.set_is_group_name();
4643 // We have already seen this signature.
4645 if (ins
.first
->second
.is_group_name())
4647 // We've already seen a real section group with this signature.
4648 // If the kept group is from a plugin object, and we're in the
4649 // replacement phase, accept the new one as a replacement.
4650 if (ins
.first
->second
.object() == NULL
4651 && parameters
->options().plugins()->in_replacement_phase())
4653 ins
.first
->second
.set_object(object
);
4654 ins
.first
->second
.set_shndx(shndx
);
4659 else if (is_group_name
)
4661 // This is a real section group, and we've already seen a
4662 // linkonce section with this signature. Record that we've seen
4663 // a section group, and don't include this section group.
4664 ins
.first
->second
.set_is_group_name();
4669 // We've already seen a linkonce section and this is a linkonce
4670 // section. These don't block each other--this may be the same
4671 // symbol name with different section types.
4676 // Store the allocated sections into the section list.
4679 Layout::get_allocated_sections(Section_list
* section_list
) const
4681 for (Section_list::const_iterator p
= this->section_list_
.begin();
4682 p
!= this->section_list_
.end();
4684 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
4685 section_list
->push_back(*p
);
4688 // Create an output segment.
4691 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
4693 gold_assert(!parameters
->options().relocatable());
4694 Output_segment
* oseg
= new Output_segment(type
, flags
);
4695 this->segment_list_
.push_back(oseg
);
4697 if (type
== elfcpp::PT_TLS
)
4698 this->tls_segment_
= oseg
;
4699 else if (type
== elfcpp::PT_GNU_RELRO
)
4700 this->relro_segment_
= oseg
;
4701 else if (type
== elfcpp::PT_INTERP
)
4702 this->interp_segment_
= oseg
;
4707 // Return the file offset of the normal symbol table.
4710 Layout::symtab_section_offset() const
4712 if (this->symtab_section_
!= NULL
)
4713 return this->symtab_section_
->offset();
4717 // Return the section index of the normal symbol table. It may have
4718 // been stripped by the -s/--strip-all option.
4721 Layout::symtab_section_shndx() const
4723 if (this->symtab_section_
!= NULL
)
4724 return this->symtab_section_
->out_shndx();
4728 // Write out the Output_sections. Most won't have anything to write,
4729 // since most of the data will come from input sections which are
4730 // handled elsewhere. But some Output_sections do have Output_data.
4733 Layout::write_output_sections(Output_file
* of
) const
4735 for (Section_list::const_iterator p
= this->section_list_
.begin();
4736 p
!= this->section_list_
.end();
4739 if (!(*p
)->after_input_sections())
4744 // Write out data not associated with a section or the symbol table.
4747 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
4749 if (!parameters
->options().strip_all())
4751 const Output_section
* symtab_section
= this->symtab_section_
;
4752 for (Section_list::const_iterator p
= this->section_list_
.begin();
4753 p
!= this->section_list_
.end();
4756 if ((*p
)->needs_symtab_index())
4758 gold_assert(symtab_section
!= NULL
);
4759 unsigned int index
= (*p
)->symtab_index();
4760 gold_assert(index
> 0 && index
!= -1U);
4761 off_t off
= (symtab_section
->offset()
4762 + index
* symtab_section
->entsize());
4763 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
4768 const Output_section
* dynsym_section
= this->dynsym_section_
;
4769 for (Section_list::const_iterator p
= this->section_list_
.begin();
4770 p
!= this->section_list_
.end();
4773 if ((*p
)->needs_dynsym_index())
4775 gold_assert(dynsym_section
!= NULL
);
4776 unsigned int index
= (*p
)->dynsym_index();
4777 gold_assert(index
> 0 && index
!= -1U);
4778 off_t off
= (dynsym_section
->offset()
4779 + index
* dynsym_section
->entsize());
4780 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
4784 // Write out the Output_data which are not in an Output_section.
4785 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
4786 p
!= this->special_output_list_
.end();
4791 // Write out the Output_sections which can only be written after the
4792 // input sections are complete.
4795 Layout::write_sections_after_input_sections(Output_file
* of
)
4797 // Determine the final section offsets, and thus the final output
4798 // file size. Note we finalize the .shstrab last, to allow the
4799 // after_input_section sections to modify their section-names before
4801 if (this->any_postprocessing_sections_
)
4803 off_t off
= this->output_file_size_
;
4804 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
4806 // Now that we've finalized the names, we can finalize the shstrab.
4808 this->set_section_offsets(off
,
4809 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
4811 if (off
> this->output_file_size_
)
4814 this->output_file_size_
= off
;
4818 for (Section_list::const_iterator p
= this->section_list_
.begin();
4819 p
!= this->section_list_
.end();
4822 if ((*p
)->after_input_sections())
4826 this->section_headers_
->write(of
);
4829 // If the build ID requires computing a checksum, do so here, and
4830 // write it out. We compute a checksum over the entire file because
4831 // that is simplest.
4834 Layout::write_build_id(Output_file
* of
) const
4836 if (this->build_id_note_
== NULL
)
4839 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
4841 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
4842 this->build_id_note_
->data_size());
4844 const char* style
= parameters
->options().build_id();
4845 if (strcmp(style
, "sha1") == 0)
4848 sha1_init_ctx(&ctx
);
4849 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
4850 sha1_finish_ctx(&ctx
, ov
);
4852 else if (strcmp(style
, "md5") == 0)
4856 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
4857 md5_finish_ctx(&ctx
, ov
);
4862 of
->write_output_view(this->build_id_note_
->offset(),
4863 this->build_id_note_
->data_size(),
4866 of
->free_input_view(0, this->output_file_size_
, iv
);
4869 // Write out a binary file. This is called after the link is
4870 // complete. IN is the temporary output file we used to generate the
4871 // ELF code. We simply walk through the segments, read them from
4872 // their file offset in IN, and write them to their load address in
4873 // the output file. FIXME: with a bit more work, we could support
4874 // S-records and/or Intel hex format here.
4877 Layout::write_binary(Output_file
* in
) const
4879 gold_assert(parameters
->options().oformat_enum()
4880 == General_options::OBJECT_FORMAT_BINARY
);
4882 // Get the size of the binary file.
4883 uint64_t max_load_address
= 0;
4884 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4885 p
!= this->segment_list_
.end();
4888 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4890 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
4891 if (max_paddr
> max_load_address
)
4892 max_load_address
= max_paddr
;
4896 Output_file
out(parameters
->options().output_file_name());
4897 out
.open(max_load_address
);
4899 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4900 p
!= this->segment_list_
.end();
4903 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4905 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
4907 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
4909 memcpy(vout
, vin
, (*p
)->filesz());
4910 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
4911 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
4918 // Print the output sections to the map file.
4921 Layout::print_to_mapfile(Mapfile
* mapfile
) const
4923 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4924 p
!= this->segment_list_
.end();
4926 (*p
)->print_sections_to_mapfile(mapfile
);
4929 // Print statistical information to stderr. This is used for --stats.
4932 Layout::print_stats() const
4934 this->namepool_
.print_stats("section name pool");
4935 this->sympool_
.print_stats("output symbol name pool");
4936 this->dynpool_
.print_stats("dynamic name pool");
4938 for (Section_list::const_iterator p
= this->section_list_
.begin();
4939 p
!= this->section_list_
.end();
4941 (*p
)->print_merge_stats();
4944 // Write_sections_task methods.
4946 // We can always run this task.
4949 Write_sections_task::is_runnable()
4954 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4958 Write_sections_task::locks(Task_locker
* tl
)
4960 tl
->add(this, this->output_sections_blocker_
);
4961 tl
->add(this, this->final_blocker_
);
4964 // Run the task--write out the data.
4967 Write_sections_task::run(Workqueue
*)
4969 this->layout_
->write_output_sections(this->of_
);
4972 // Write_data_task methods.
4974 // We can always run this task.
4977 Write_data_task::is_runnable()
4982 // We need to unlock FINAL_BLOCKER when finished.
4985 Write_data_task::locks(Task_locker
* tl
)
4987 tl
->add(this, this->final_blocker_
);
4990 // Run the task--write out the data.
4993 Write_data_task::run(Workqueue
*)
4995 this->layout_
->write_data(this->symtab_
, this->of_
);
4998 // Write_symbols_task methods.
5000 // We can always run this task.
5003 Write_symbols_task::is_runnable()
5008 // We need to unlock FINAL_BLOCKER when finished.
5011 Write_symbols_task::locks(Task_locker
* tl
)
5013 tl
->add(this, this->final_blocker_
);
5016 // Run the task--write out the symbols.
5019 Write_symbols_task::run(Workqueue
*)
5021 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
5022 this->layout_
->symtab_xindex(),
5023 this->layout_
->dynsym_xindex(), this->of_
);
5026 // Write_after_input_sections_task methods.
5028 // We can only run this task after the input sections have completed.
5031 Write_after_input_sections_task::is_runnable()
5033 if (this->input_sections_blocker_
->is_blocked())
5034 return this->input_sections_blocker_
;
5038 // We need to unlock FINAL_BLOCKER when finished.
5041 Write_after_input_sections_task::locks(Task_locker
* tl
)
5043 tl
->add(this, this->final_blocker_
);
5049 Write_after_input_sections_task::run(Workqueue
*)
5051 this->layout_
->write_sections_after_input_sections(this->of_
);
5054 // Close_task_runner methods.
5056 // Run the task--close the file.
5059 Close_task_runner::run(Workqueue
*, const Task
*)
5061 // If we need to compute a checksum for the BUILD if, we do so here.
5062 this->layout_
->write_build_id(this->of_
);
5064 // If we've been asked to create a binary file, we do so here.
5065 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
5066 this->layout_
->write_binary(this->of_
);
5071 // Instantiate the templates we need. We could use the configure
5072 // script to restrict this to only the ones for implemented targets.
5074 #ifdef HAVE_TARGET_32_LITTLE
5077 Layout::init_fixed_output_section
<32, false>(
5079 elfcpp::Shdr
<32, false>& shdr
);
5082 #ifdef HAVE_TARGET_32_BIG
5085 Layout::init_fixed_output_section
<32, true>(
5087 elfcpp::Shdr
<32, true>& shdr
);
5090 #ifdef HAVE_TARGET_64_LITTLE
5093 Layout::init_fixed_output_section
<64, false>(
5095 elfcpp::Shdr
<64, false>& shdr
);
5098 #ifdef HAVE_TARGET_64_BIG
5101 Layout::init_fixed_output_section
<64, true>(
5103 elfcpp::Shdr
<64, true>& shdr
);
5106 #ifdef HAVE_TARGET_32_LITTLE
5109 Layout::layout
<32, false>(Sized_relobj_file
<32, false>* object
,
5112 const elfcpp::Shdr
<32, false>& shdr
,
5113 unsigned int, unsigned int, off_t
*);
5116 #ifdef HAVE_TARGET_32_BIG
5119 Layout::layout
<32, true>(Sized_relobj_file
<32, true>* object
,
5122 const elfcpp::Shdr
<32, true>& shdr
,
5123 unsigned int, unsigned int, off_t
*);
5126 #ifdef HAVE_TARGET_64_LITTLE
5129 Layout::layout
<64, false>(Sized_relobj_file
<64, false>* object
,
5132 const elfcpp::Shdr
<64, false>& shdr
,
5133 unsigned int, unsigned int, off_t
*);
5136 #ifdef HAVE_TARGET_64_BIG
5139 Layout::layout
<64, true>(Sized_relobj_file
<64, true>* object
,
5142 const elfcpp::Shdr
<64, true>& shdr
,
5143 unsigned int, unsigned int, off_t
*);
5146 #ifdef HAVE_TARGET_32_LITTLE
5149 Layout::layout_reloc
<32, false>(Sized_relobj_file
<32, false>* object
,
5150 unsigned int reloc_shndx
,
5151 const elfcpp::Shdr
<32, false>& shdr
,
5152 Output_section
* data_section
,
5153 Relocatable_relocs
* rr
);
5156 #ifdef HAVE_TARGET_32_BIG
5159 Layout::layout_reloc
<32, true>(Sized_relobj_file
<32, true>* object
,
5160 unsigned int reloc_shndx
,
5161 const elfcpp::Shdr
<32, true>& shdr
,
5162 Output_section
* data_section
,
5163 Relocatable_relocs
* rr
);
5166 #ifdef HAVE_TARGET_64_LITTLE
5169 Layout::layout_reloc
<64, false>(Sized_relobj_file
<64, false>* object
,
5170 unsigned int reloc_shndx
,
5171 const elfcpp::Shdr
<64, false>& shdr
,
5172 Output_section
* data_section
,
5173 Relocatable_relocs
* rr
);
5176 #ifdef HAVE_TARGET_64_BIG
5179 Layout::layout_reloc
<64, true>(Sized_relobj_file
<64, true>* object
,
5180 unsigned int reloc_shndx
,
5181 const elfcpp::Shdr
<64, true>& shdr
,
5182 Output_section
* data_section
,
5183 Relocatable_relocs
* rr
);
5186 #ifdef HAVE_TARGET_32_LITTLE
5189 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
5190 Sized_relobj_file
<32, false>* object
,
5192 const char* group_section_name
,
5193 const char* signature
,
5194 const elfcpp::Shdr
<32, false>& shdr
,
5195 elfcpp::Elf_Word flags
,
5196 std::vector
<unsigned int>* shndxes
);
5199 #ifdef HAVE_TARGET_32_BIG
5202 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
5203 Sized_relobj_file
<32, true>* object
,
5205 const char* group_section_name
,
5206 const char* signature
,
5207 const elfcpp::Shdr
<32, true>& shdr
,
5208 elfcpp::Elf_Word flags
,
5209 std::vector
<unsigned int>* shndxes
);
5212 #ifdef HAVE_TARGET_64_LITTLE
5215 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
5216 Sized_relobj_file
<64, false>* object
,
5218 const char* group_section_name
,
5219 const char* signature
,
5220 const elfcpp::Shdr
<64, false>& shdr
,
5221 elfcpp::Elf_Word flags
,
5222 std::vector
<unsigned int>* shndxes
);
5225 #ifdef HAVE_TARGET_64_BIG
5228 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
5229 Sized_relobj_file
<64, true>* object
,
5231 const char* group_section_name
,
5232 const char* signature
,
5233 const elfcpp::Shdr
<64, true>& shdr
,
5234 elfcpp::Elf_Word flags
,
5235 std::vector
<unsigned int>* shndxes
);
5238 #ifdef HAVE_TARGET_32_LITTLE
5241 Layout::layout_eh_frame
<32, false>(Sized_relobj_file
<32, false>* object
,
5242 const unsigned char* symbols
,
5244 const unsigned char* symbol_names
,
5245 off_t symbol_names_size
,
5247 const elfcpp::Shdr
<32, false>& shdr
,
5248 unsigned int reloc_shndx
,
5249 unsigned int reloc_type
,
5253 #ifdef HAVE_TARGET_32_BIG
5256 Layout::layout_eh_frame
<32, true>(Sized_relobj_file
<32, true>* object
,
5257 const unsigned char* symbols
,
5259 const unsigned char* symbol_names
,
5260 off_t symbol_names_size
,
5262 const elfcpp::Shdr
<32, true>& shdr
,
5263 unsigned int reloc_shndx
,
5264 unsigned int reloc_type
,
5268 #ifdef HAVE_TARGET_64_LITTLE
5271 Layout::layout_eh_frame
<64, false>(Sized_relobj_file
<64, false>* object
,
5272 const unsigned char* symbols
,
5274 const unsigned char* symbol_names
,
5275 off_t symbol_names_size
,
5277 const elfcpp::Shdr
<64, false>& shdr
,
5278 unsigned int reloc_shndx
,
5279 unsigned int reloc_type
,
5283 #ifdef HAVE_TARGET_64_BIG
5286 Layout::layout_eh_frame
<64, true>(Sized_relobj_file
<64, true>* object
,
5287 const unsigned char* symbols
,
5289 const unsigned char* symbol_names
,
5290 off_t symbol_names_size
,
5292 const elfcpp::Shdr
<64, true>& shdr
,
5293 unsigned int reloc_shndx
,
5294 unsigned int reloc_type
,
5298 } // End namespace gold.