1 // target.h -- target support for gold -*- C++ -*-
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
38 #include "parameters.h"
46 template<int size
, bool big_endian
>
48 template<int size
, bool big_endian
>
49 class Sized_relobj_file
;
50 class Relocatable_relocs
;
51 template<int size
, bool big_endian
>
53 class Reloc_symbol_changes
;
59 class Output_data_got_base
;
64 // The abstract class for target specific handling.
72 // Return the bit size that this target implements. This should
76 { return this->pti_
->size
; }
78 // Return whether this target is big-endian.
81 { return this->pti_
->is_big_endian
; }
83 // Machine code to store in e_machine field of ELF header.
86 { return this->pti_
->machine_code
; }
88 // Processor specific flags to store in e_flags field of ELF header.
90 processor_specific_flags() const
91 { return this->processor_specific_flags_
; }
93 // Whether processor specific flags are set at least once.
95 are_processor_specific_flags_set() const
96 { return this->are_processor_specific_flags_set_
; }
98 // Whether this target has a specific make_symbol function.
100 has_make_symbol() const
101 { return this->pti_
->has_make_symbol
; }
103 // Whether this target has a specific resolve function.
106 { return this->pti_
->has_resolve
; }
108 // Whether this target has a specific code fill function.
110 has_code_fill() const
111 { return this->pti_
->has_code_fill
; }
113 // Return the default name of the dynamic linker.
115 dynamic_linker() const
116 { return this->pti_
->dynamic_linker
; }
118 // Return the default address to use for the text segment.
120 default_text_segment_address() const
121 { return this->pti_
->default_text_segment_address
; }
123 // Return the ABI specified page size.
127 if (parameters
->options().max_page_size() > 0)
128 return parameters
->options().max_page_size();
130 return this->pti_
->abi_pagesize
;
133 // Return the common page size used on actual systems.
135 common_pagesize() const
137 if (parameters
->options().common_page_size() > 0)
138 return std::min(parameters
->options().common_page_size(),
139 this->abi_pagesize());
141 return std::min(this->pti_
->common_pagesize
,
142 this->abi_pagesize());
145 // If we see some object files with .note.GNU-stack sections, and
146 // some objects files without them, this returns whether we should
147 // consider the object files without them to imply that the stack
148 // should be executable.
150 is_default_stack_executable() const
151 { return this->pti_
->is_default_stack_executable
; }
153 // Return a character which may appear as a prefix for a wrap
154 // symbol. If this character appears, we strip it when checking for
155 // wrapping and add it back when forming the final symbol name.
156 // This should be '\0' if not special prefix is required, which is
160 { return this->pti_
->wrap_char
; }
162 // Return the special section index which indicates a small common
163 // symbol. This will return SHN_UNDEF if there are no small common
166 small_common_shndx() const
167 { return this->pti_
->small_common_shndx
; }
169 // Return values to add to the section flags for the section holding
170 // small common symbols.
172 small_common_section_flags() const
174 gold_assert(this->pti_
->small_common_shndx
!= elfcpp::SHN_UNDEF
);
175 return this->pti_
->small_common_section_flags
;
178 // Return the special section index which indicates a large common
179 // symbol. This will return SHN_UNDEF if there are no large common
182 large_common_shndx() const
183 { return this->pti_
->large_common_shndx
; }
185 // Return values to add to the section flags for the section holding
186 // large common symbols.
188 large_common_section_flags() const
190 gold_assert(this->pti_
->large_common_shndx
!= elfcpp::SHN_UNDEF
);
191 return this->pti_
->large_common_section_flags
;
194 // This hook is called when an output section is created.
196 new_output_section(Output_section
* os
) const
197 { this->do_new_output_section(os
); }
199 // This is called to tell the target to complete any sections it is
200 // handling. After this all sections must have their final size.
202 finalize_sections(Layout
* layout
, const Input_objects
* input_objects
,
203 Symbol_table
* symtab
)
204 { return this->do_finalize_sections(layout
, input_objects
, symtab
); }
206 // Return the value to use for a global symbol which needs a special
207 // value in the dynamic symbol table. This will only be called if
208 // the backend first calls symbol->set_needs_dynsym_value().
210 dynsym_value(const Symbol
* sym
) const
211 { return this->do_dynsym_value(sym
); }
213 // Return a string to use to fill out a code section. This is
214 // basically one or more NOPS which must fill out the specified
217 code_fill(section_size_type length
) const
218 { return this->do_code_fill(length
); }
220 // Return whether SYM is known to be defined by the ABI. This is
221 // used to avoid inappropriate warnings about undefined symbols.
223 is_defined_by_abi(const Symbol
* sym
) const
224 { return this->do_is_defined_by_abi(sym
); }
226 // Adjust the output file header before it is written out. VIEW
227 // points to the header in external form. LEN is the length.
229 adjust_elf_header(unsigned char* view
, int len
) const
230 { return this->do_adjust_elf_header(view
, len
); }
232 // Return whether NAME is a local label name. This is used to implement the
233 // --discard-locals options.
235 is_local_label_name(const char* name
) const
236 { return this->do_is_local_label_name(name
); }
238 // Get the symbol index to use for a target specific reloc.
240 reloc_symbol_index(void* arg
, unsigned int type
) const
241 { return this->do_reloc_symbol_index(arg
, type
); }
243 // Get the addend to use for a target specific reloc.
245 reloc_addend(void* arg
, unsigned int type
, uint64_t addend
) const
246 { return this->do_reloc_addend(arg
, type
, addend
); }
248 // Return the PLT address to use for a global symbol. This is used
249 // for STT_GNU_IFUNC symbols. The symbol's plt_offset is relative
250 // to this PLT address.
252 plt_address_for_global(const Symbol
* sym
) const
253 { return this->do_plt_address_for_global(sym
); }
255 // Return the PLT address to use for a local symbol. This is used
256 // for STT_GNU_IFUNC symbols. The symbol's plt_offset is relative
257 // to this PLT address.
259 plt_address_for_local(const Relobj
* object
, unsigned int symndx
) const
260 { return this->do_plt_address_for_local(object
, symndx
); }
262 // Return whether this target can use relocation types to determine
263 // if a function's address is taken.
265 can_check_for_function_pointers() const
266 { return this->do_can_check_for_function_pointers(); }
268 // Return whether a relocation to a merged section can be processed
269 // to retrieve the contents.
271 can_icf_inline_merge_sections () const
272 { return this->pti_
->can_icf_inline_merge_sections
; }
274 // Whether a section called SECTION_NAME may have function pointers to
275 // sections not eligible for safe ICF folding.
277 section_may_have_icf_unsafe_pointers(const char* section_name
) const
278 { return this->do_section_may_have_icf_unsafe_pointers(section_name
); }
280 // Return the base to use for the PC value in an FDE when it is
281 // encoded using DW_EH_PE_datarel. This does not appear to be
282 // documented anywhere, but it is target specific. Any use of
283 // DW_EH_PE_datarel in gcc requires defining a special macro
284 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
286 ehframe_datarel_base() const
287 { return this->do_ehframe_datarel_base(); }
289 // Return true if a reference to SYM from a reloc of type R_TYPE
290 // means that the current function may call an object compiled
291 // without -fsplit-stack. SYM is known to be defined in an object
292 // compiled without -fsplit-stack.
294 is_call_to_non_split(const Symbol
* sym
, unsigned int r_type
) const
295 { return this->do_is_call_to_non_split(sym
, r_type
); }
297 // A function starts at OFFSET in section SHNDX in OBJECT. That
298 // function was compiled with -fsplit-stack, but it refers to a
299 // function which was compiled without -fsplit-stack. VIEW is a
300 // modifiable view of the section; VIEW_SIZE is the size of the
301 // view. The target has to adjust the function so that it allocates
304 calls_non_split(Relobj
* object
, unsigned int shndx
,
305 section_offset_type fnoffset
, section_size_type fnsize
,
306 unsigned char* view
, section_size_type view_size
,
307 std::string
* from
, std::string
* to
) const
309 this->do_calls_non_split(object
, shndx
, fnoffset
, fnsize
, view
, view_size
,
313 // Make an ELF object.
314 template<int size
, bool big_endian
>
316 make_elf_object(const std::string
& name
, Input_file
* input_file
,
317 off_t offset
, const elfcpp::Ehdr
<size
, big_endian
>& ehdr
)
318 { return this->do_make_elf_object(name
, input_file
, offset
, ehdr
); }
320 // Make an output section.
322 make_output_section(const char* name
, elfcpp::Elf_Word type
,
323 elfcpp::Elf_Xword flags
)
324 { return this->do_make_output_section(name
, type
, flags
); }
326 // Return true if target wants to perform relaxation.
330 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
331 if (is_debugging_enabled(DEBUG_RELAXATION
))
334 return this->do_may_relax();
337 // Perform a relaxation pass. Return true if layout may be changed.
339 relax(int pass
, const Input_objects
* input_objects
, Symbol_table
* symtab
,
340 Layout
* layout
, const Task
* task
)
342 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
343 if (is_debugging_enabled(DEBUG_RELAXATION
))
346 return this->do_relax(pass
, input_objects
, symtab
, layout
, task
);
349 // Return the target-specific name of attributes section. This is
350 // NULL if a target does not use attributes section or if it uses
351 // the default section name ".gnu.attributes".
353 attributes_section() const
354 { return this->pti_
->attributes_section
; }
356 // Return the vendor name of vendor attributes.
358 attributes_vendor() const
359 { return this->pti_
->attributes_vendor
; }
361 // Whether a section called NAME is an attribute section.
363 is_attributes_section(const char* name
) const
365 return ((this->pti_
->attributes_section
!= NULL
366 && strcmp(name
, this->pti_
->attributes_section
) == 0)
367 || strcmp(name
, ".gnu.attributes") == 0);
370 // Return a bit mask of argument types for attribute with TAG.
372 attribute_arg_type(int tag
) const
373 { return this->do_attribute_arg_type(tag
); }
375 // Return the attribute tag of the position NUM in the list of fixed
376 // attributes. Normally there is no reordering and
377 // attributes_order(NUM) == NUM.
379 attributes_order(int num
) const
380 { return this->do_attributes_order(num
); }
382 // When a target is selected as the default target, we call this method,
383 // which may be used for expensive, target-specific initialization.
385 select_as_default_target()
386 { this->do_select_as_default_target(); }
388 // Return the value to store in the EI_OSABI field in the ELF
392 { return this->osabi_
; }
394 // Set the value to store in the EI_OSABI field in the ELF header.
396 set_osabi(elfcpp::ELFOSABI osabi
)
397 { this->osabi_
= osabi
; }
400 // This struct holds the constant information for a child class. We
401 // use a struct to avoid the overhead of virtual function calls for
402 // simple information.
405 // Address size (32 or 64).
407 // Whether the target is big endian.
409 // The code to store in the e_machine field of the ELF header.
410 elfcpp::EM machine_code
;
411 // Whether this target has a specific make_symbol function.
412 bool has_make_symbol
;
413 // Whether this target has a specific resolve function.
415 // Whether this target has a specific code fill function.
417 // Whether an object file with no .note.GNU-stack sections implies
418 // that the stack should be executable.
419 bool is_default_stack_executable
;
420 // Whether a relocation to a merged section can be processed to
421 // retrieve the contents.
422 bool can_icf_inline_merge_sections
;
423 // Prefix character to strip when checking for wrapping.
425 // The default dynamic linker name.
426 const char* dynamic_linker
;
427 // The default text segment address.
428 uint64_t default_text_segment_address
;
429 // The ABI specified page size.
430 uint64_t abi_pagesize
;
431 // The common page size used by actual implementations.
432 uint64_t common_pagesize
;
433 // The special section index for small common symbols; SHN_UNDEF
435 elfcpp::Elf_Half small_common_shndx
;
436 // The special section index for large common symbols; SHN_UNDEF
438 elfcpp::Elf_Half large_common_shndx
;
439 // Section flags for small common section.
440 elfcpp::Elf_Xword small_common_section_flags
;
441 // Section flags for large common section.
442 elfcpp::Elf_Xword large_common_section_flags
;
443 // Name of attributes section if it is not ".gnu.attributes".
444 const char* attributes_section
;
445 // Vendor name of vendor attributes.
446 const char* attributes_vendor
;
449 Target(const Target_info
* pti
)
450 : pti_(pti
), processor_specific_flags_(0),
451 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE
)
454 // Virtual function which may be implemented by the child class.
456 do_new_output_section(Output_section
*) const
459 // Virtual function which may be implemented by the child class.
461 do_finalize_sections(Layout
*, const Input_objects
*, Symbol_table
*)
464 // Virtual function which may be implemented by the child class.
466 do_dynsym_value(const Symbol
*) const
467 { gold_unreachable(); }
469 // Virtual function which must be implemented by the child class if
472 do_code_fill(section_size_type
) const
473 { gold_unreachable(); }
475 // Virtual function which may be implemented by the child class.
477 do_is_defined_by_abi(const Symbol
*) const
480 // Adjust the output file header before it is written out. VIEW
481 // points to the header in external form. LEN is the length, and
482 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
483 // By default, we set the EI_OSABI field if requested (in
486 do_adjust_elf_header(unsigned char*, int) const = 0;
488 // Virtual function which may be overridden by the child class.
490 do_is_local_label_name(const char*) const;
492 // Virtual function that must be overridden by a target which uses
493 // target specific relocations.
495 do_reloc_symbol_index(void*, unsigned int) const
496 { gold_unreachable(); }
498 // Virtual function that must be overridden by a target which uses
499 // target specific relocations.
501 do_reloc_addend(void*, unsigned int, uint64_t) const
502 { gold_unreachable(); }
504 // Virtual functions that must be overridden by a target that uses
505 // STT_GNU_IFUNC symbols.
507 do_plt_address_for_global(const Symbol
*) const
508 { gold_unreachable(); }
511 do_plt_address_for_local(const Relobj
*, unsigned int) const
512 { gold_unreachable(); }
514 // Virtual function which may be overriden by the child class.
516 do_can_check_for_function_pointers() const
519 // Virtual function which may be overridden by the child class. We
520 // recognize some default sections for which we don't care whether
521 // they have function pointers.
523 do_section_may_have_icf_unsafe_pointers(const char* section_name
) const
525 // We recognize sections for normal vtables, construction vtables and
527 return (!is_prefix_of(".rodata._ZTV", section_name
)
528 && !is_prefix_of(".data.rel.ro._ZTV", section_name
)
529 && !is_prefix_of(".rodata._ZTC", section_name
)
530 && !is_prefix_of(".data.rel.ro._ZTC", section_name
)
531 && !is_prefix_of(".eh_frame", section_name
));
535 do_ehframe_datarel_base() const
536 { gold_unreachable(); }
538 // Virtual function which may be overridden by the child class. The
539 // default implementation is that any function not defined by the
540 // ABI is a call to a non-split function.
542 do_is_call_to_non_split(const Symbol
* sym
, unsigned int) const;
544 // Virtual function which may be overridden by the child class.
546 do_calls_non_split(Relobj
* object
, unsigned int, section_offset_type
,
547 section_size_type
, unsigned char*, section_size_type
,
548 std::string
*, std::string
*) const;
550 // make_elf_object hooks. There are four versions of these for
551 // different address sizes and endianness.
553 // Set processor specific flags.
555 set_processor_specific_flags(elfcpp::Elf_Word flags
)
557 this->processor_specific_flags_
= flags
;
558 this->are_processor_specific_flags_set_
= true;
561 #ifdef HAVE_TARGET_32_LITTLE
562 // Virtual functions which may be overridden by the child class.
564 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
565 const elfcpp::Ehdr
<32, false>&);
568 #ifdef HAVE_TARGET_32_BIG
569 // Virtual functions which may be overridden by the child class.
571 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
572 const elfcpp::Ehdr
<32, true>&);
575 #ifdef HAVE_TARGET_64_LITTLE
576 // Virtual functions which may be overridden by the child class.
578 do_make_elf_object(const std::string
&, Input_file
*, off_t
,
579 const elfcpp::Ehdr
<64, false>& ehdr
);
582 #ifdef HAVE_TARGET_64_BIG
583 // Virtual functions which may be overridden by the child class.
585 do_make_elf_object(const std::string
& name
, Input_file
* input_file
,
586 off_t offset
, const elfcpp::Ehdr
<64, true>& ehdr
);
589 // Virtual functions which may be overridden by the child class.
590 virtual Output_section
*
591 do_make_output_section(const char* name
, elfcpp::Elf_Word type
,
592 elfcpp::Elf_Xword flags
);
594 // Virtual function which may be overridden by the child class.
597 { return parameters
->options().relax(); }
599 // Virtual function which may be overridden by the child class.
601 do_relax(int, const Input_objects
*, Symbol_table
*, Layout
*, const Task
*)
604 // A function for targets to call. Return whether BYTES/LEN matches
605 // VIEW/VIEW_SIZE at OFFSET.
607 match_view(const unsigned char* view
, section_size_type view_size
,
608 section_offset_type offset
, const char* bytes
, size_t len
) const;
610 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
613 set_view_to_nop(unsigned char* view
, section_size_type view_size
,
614 section_offset_type offset
, size_t len
) const;
616 // This must be overridden by the child class if it has target-specific
617 // attributes subsection in the attribute section.
619 do_attribute_arg_type(int) const
620 { gold_unreachable(); }
622 // This may be overridden by the child class.
624 do_attributes_order(int num
) const
627 // This may be overridden by the child class.
629 do_select_as_default_target()
633 // The implementations of the four do_make_elf_object virtual functions are
634 // almost identical except for their sizes and endianness. We use a template.
635 // for their implementations.
636 template<int size
, bool big_endian
>
638 do_make_elf_object_implementation(const std::string
&, Input_file
*, off_t
,
639 const elfcpp::Ehdr
<size
, big_endian
>&);
641 Target(const Target
&);
642 Target
& operator=(const Target
&);
644 // The target information.
645 const Target_info
* pti_
;
646 // Processor-specific flags.
647 elfcpp::Elf_Word processor_specific_flags_
;
648 // Whether the processor-specific flags are set at least once.
649 bool are_processor_specific_flags_set_
;
650 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
651 // the ELF header. This is handled at this level because it is
652 // OS-specific rather than processor-specific.
653 elfcpp::ELFOSABI osabi_
;
656 // The abstract class for a specific size and endianness of target.
657 // Each actual target implementation class should derive from an
658 // instantiation of Sized_target.
660 template<int size
, bool big_endian
>
661 class Sized_target
: public Target
664 // Make a new symbol table entry for the target. This should be
665 // overridden by a target which needs additional information in the
666 // symbol table. This will only be called if has_make_symbol()
668 virtual Sized_symbol
<size
>*
670 { gold_unreachable(); }
672 // Resolve a symbol for the target. This should be overridden by a
673 // target which needs to take special action. TO is the
674 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
675 // VERSION is the version of SYM. This will only be called if
676 // has_resolve() returns true.
678 resolve(Symbol
*, const elfcpp::Sym
<size
, big_endian
>&, Object
*,
680 { gold_unreachable(); }
682 // Process the relocs for a section, and record information of the
683 // mapping from source to destination sections. This mapping is later
684 // used to determine unreferenced garbage sections. This procedure is
685 // only called during garbage collection.
687 gc_process_relocs(Symbol_table
* symtab
,
689 Sized_relobj_file
<size
, big_endian
>* object
,
690 unsigned int data_shndx
,
691 unsigned int sh_type
,
692 const unsigned char* prelocs
,
694 Output_section
* output_section
,
695 bool needs_special_offset_handling
,
696 size_t local_symbol_count
,
697 const unsigned char* plocal_symbols
) = 0;
699 // Scan the relocs for a section, and record any information
700 // required for the symbol. SYMTAB is the symbol table. OBJECT is
701 // the object in which the section appears. DATA_SHNDX is the
702 // section index that these relocs apply to. SH_TYPE is the type of
703 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to
704 // the relocation data. RELOC_COUNT is the number of relocs.
705 // LOCAL_SYMBOL_COUNT is the number of local symbols.
706 // OUTPUT_SECTION is the output section.
707 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
708 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
709 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
710 // pointers to the global symbol table from OBJECT.
712 scan_relocs(Symbol_table
* symtab
,
714 Sized_relobj_file
<size
, big_endian
>* object
,
715 unsigned int data_shndx
,
716 unsigned int sh_type
,
717 const unsigned char* prelocs
,
719 Output_section
* output_section
,
720 bool needs_special_offset_handling
,
721 size_t local_symbol_count
,
722 const unsigned char* plocal_symbols
) = 0;
724 // Relocate section data. SH_TYPE is the type of the relocation
725 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
726 // information. RELOC_COUNT is the number of relocs.
727 // OUTPUT_SECTION is the output section.
728 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
729 // to correspond to the output section. VIEW is a view into the
730 // output file holding the section contents, VIEW_ADDRESS is the
731 // virtual address of the view, and VIEW_SIZE is the size of the
732 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
733 // parameters refer to the complete output section data, not just
734 // the input section data.
736 relocate_section(const Relocate_info
<size
, big_endian
>*,
737 unsigned int sh_type
,
738 const unsigned char* prelocs
,
740 Output_section
* output_section
,
741 bool needs_special_offset_handling
,
743 typename
elfcpp::Elf_types
<size
>::Elf_Addr view_address
,
744 section_size_type view_size
,
745 const Reloc_symbol_changes
*) = 0;
747 // Scan the relocs during a relocatable link. The parameters are
748 // like scan_relocs, with an additional Relocatable_relocs
749 // parameter, used to record the disposition of the relocs.
751 scan_relocatable_relocs(Symbol_table
* symtab
,
753 Sized_relobj_file
<size
, big_endian
>* object
,
754 unsigned int data_shndx
,
755 unsigned int sh_type
,
756 const unsigned char* prelocs
,
758 Output_section
* output_section
,
759 bool needs_special_offset_handling
,
760 size_t local_symbol_count
,
761 const unsigned char* plocal_symbols
,
762 Relocatable_relocs
*) = 0;
764 // Relocate a section during a relocatable link. The parameters are
765 // like relocate_section, with additional parameters for the view of
766 // the output reloc section.
768 relocate_for_relocatable(const Relocate_info
<size
, big_endian
>*,
769 unsigned int sh_type
,
770 const unsigned char* prelocs
,
772 Output_section
* output_section
,
773 off_t offset_in_output_section
,
774 const Relocatable_relocs
*,
776 typename
elfcpp::Elf_types
<size
>::Elf_Addr
778 section_size_type view_size
,
779 unsigned char* reloc_view
,
780 section_size_type reloc_view_size
) = 0;
782 // Perform target-specific processing in a relocatable link. This is
783 // only used if we use the relocation strategy RELOC_SPECIAL.
784 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
785 // section type. PRELOC_IN points to the original relocation. RELNUM is
786 // the index number of the relocation in the relocation section.
787 // OUTPUT_SECTION is the output section to which the relocation is applied.
788 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
789 // within the output section. VIEW points to the output view of the
790 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE
791 // is the size of the output view and PRELOC_OUT points to the new
792 // relocation in the output object.
794 // A target only needs to override this if the generic code in
795 // target-reloc.h cannot handle some relocation types.
798 relocate_special_relocatable(const Relocate_info
<size
, big_endian
>*
800 unsigned int /* sh_type */,
801 const unsigned char* /* preloc_in */,
803 Output_section
* /* output_section */,
804 off_t
/* offset_in_output_section */,
805 unsigned char* /* view */,
806 typename
elfcpp::Elf_types
<size
>::Elf_Addr
808 section_size_type
/* view_size */,
809 unsigned char* /* preloc_out*/)
810 { gold_unreachable(); }
812 // Return the number of entries in the GOT. This is only used for
813 // laying out the incremental link info sections. A target needs
814 // to implement this to support incremental linking.
817 got_entry_count() const
818 { gold_unreachable(); }
820 // Return the number of entries in the PLT. This is only used for
821 // laying out the incremental link info sections. A target needs
822 // to implement this to support incremental linking.
825 plt_entry_count() const
826 { gold_unreachable(); }
828 // Return the offset of the first non-reserved PLT entry. This is
829 // only used for laying out the incremental link info sections.
830 // A target needs to implement this to support incremental linking.
833 first_plt_entry_offset() const
834 { gold_unreachable(); }
836 // Return the size of each PLT entry. This is only used for
837 // laying out the incremental link info sections. A target needs
838 // to implement this to support incremental linking.
841 plt_entry_size() const
842 { gold_unreachable(); }
844 // Create the GOT and PLT sections for an incremental update.
845 // A target needs to implement this to support incremental linking.
847 virtual Output_data_got_base
*
848 init_got_plt_for_update(Symbol_table
*,
850 unsigned int /* got_count */,
851 unsigned int /* plt_count */)
852 { gold_unreachable(); }
854 // Reserve a GOT entry for a local symbol, and regenerate any
855 // necessary dynamic relocations.
857 reserve_local_got_entry(unsigned int /* got_index */,
858 Sized_relobj
<size
, big_endian
>* /* obj */,
859 unsigned int /* r_sym */,
860 unsigned int /* got_type */)
861 { gold_unreachable(); }
863 // Reserve a GOT entry for a global symbol, and regenerate any
864 // necessary dynamic relocations.
866 reserve_global_got_entry(unsigned int /* got_index */, Symbol
* /* gsym */,
867 unsigned int /* got_type */)
868 { gold_unreachable(); }
870 // Register an existing PLT entry for a global symbol.
871 // A target needs to implement this to support incremental linking.
874 register_global_plt_entry(Symbol_table
*, Layout
*,
875 unsigned int /* plt_index */,
877 { gold_unreachable(); }
879 // Force a COPY relocation for a given symbol.
880 // A target needs to implement this to support incremental linking.
883 emit_copy_reloc(Symbol_table
*, Symbol
*, Output_section
*, off_t
)
884 { gold_unreachable(); }
886 // Apply an incremental relocation.
889 apply_relocation(const Relocate_info
<size
, big_endian
>* /* relinfo */,
890 typename
elfcpp::Elf_types
<size
>::Elf_Addr
/* r_offset */,
891 unsigned int /* r_type */,
892 typename
elfcpp::Elf_types
<size
>::Elf_Swxword
/* r_addend */,
893 const Symbol
* /* gsym */,
894 unsigned char* /* view */,
895 typename
elfcpp::Elf_types
<size
>::Elf_Addr
/* address */,
896 section_size_type
/* view_size */)
897 { gold_unreachable(); }
900 Sized_target(const Target::Target_info
* pti
)
903 gold_assert(pti
->size
== size
);
904 gold_assert(pti
->is_big_endian
? big_endian
: !big_endian
);
907 // Set the EI_OSABI field if requested.
909 do_adjust_elf_header(unsigned char*, int) const;
912 } // End namespace gold.
914 #endif // !defined(GOLD_TARGET_H)