* ldlang.h (lang_afile_asection_pair_statement_enum): Delete.
[binutils.git] / gprof / gprof.texi
blobe609ffec9e912e279a00611a5c48c6dbedfe0aeb
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @c Copyright 1988, 1992, 1993, 1998, 1999, 2000, 2001, 2002, 2003,
4 @c 2004, 2007
5 @c Free Software Foundation, Inc.
6 @settitle GNU gprof
7 @setchapternewpage odd
9 @c man begin INCLUDE
10 @include bfdver.texi
11 @c man end
13 @ifinfo
14 @c This is a dir.info fragment to support semi-automated addition of
15 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
16 @format
17 START-INFO-DIR-ENTRY
18 * gprof: (gprof).                Profiling your program's execution
19 END-INFO-DIR-ENTRY
20 @end format
21 @end ifinfo
23 @copying
24 This file documents the gprof profiler of the GNU system.
26 @c man begin COPYRIGHT
27 Copyright @copyright{} 1988, 92, 97, 98, 99, 2000, 2001, 2003, 2007 Free Software Foundation, Inc.
29 Permission is granted to copy, distribute and/or modify this document
30 under the terms of the GNU Free Documentation License, Version 1.1
31 or any later version published by the Free Software Foundation;
32 with no Invariant Sections, with no Front-Cover Texts, and with no
33 Back-Cover Texts.  A copy of the license is included in the
34 section entitled ``GNU Free Documentation License''.
36 @c man end
37 @end copying
39 @finalout
40 @smallbook
42 @titlepage
43 @title GNU gprof
44 @subtitle The @sc{gnu} Profiler 
45 @ifset VERSION_PACKAGE
46 @subtitle @value{VERSION_PACKAGE}
47 @end ifset
48 @subtitle Version @value{VERSION}
49 @author Jay Fenlason and Richard Stallman
51 @page
53 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
54 can use it to determine which parts of a program are taking most of the
55 execution time.  We assume that you know how to write, compile, and
56 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
57 Eric S. Raymond made some minor corrections and additions in 2003.
59 @vskip 0pt plus 1filll
60 Copyright @copyright{} 1988, 92, 97, 98, 99, 2000, 2003 Free Software Foundation, Inc.
62       Permission is granted to copy, distribute and/or modify this document
63       under the terms of the GNU Free Documentation License, Version 1.1
64       or any later version published by the Free Software Foundation;
65       with no Invariant Sections, with no Front-Cover Texts, and with no
66       Back-Cover Texts.  A copy of the license is included in the
67       section entitled ``GNU Free Documentation License''.
69 @end titlepage
70 @contents
72 @ifnottex
73 @node Top
74 @top Profiling a Program: Where Does It Spend Its Time?
76 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
77 can use it to determine which parts of a program are taking most of the
78 execution time.  We assume that you know how to write, compile, and
79 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
81 This manual is for @code{gprof}
82 @ifset VERSION_PACKAGE
83 @value{VERSION_PACKAGE}
84 @end ifset
85 version @value{VERSION}.
87 This document is distributed under the terms of the GNU Free
88 Documentation License.  A copy of the license is included in the
89 section entitled ``GNU Free Documentation License''.
91 @menu
92 * Introduction::        What profiling means, and why it is useful.
94 * Compiling::           How to compile your program for profiling.
95 * Executing::           Executing your program to generate profile data
96 * Invoking::            How to run @code{gprof}, and its options
98 * Output::              Interpreting @code{gprof}'s output
100 * Inaccuracy::          Potential problems you should be aware of
101 * How do I?::           Answers to common questions
102 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
103 * Details::             Details of how profiling is done
104 * GNU Free Documentation License::  GNU Free Documentation License
105 @end menu
106 @end ifnottex
108 @node Introduction
109 @chapter Introduction to Profiling
111 @ifset man
112 @c man title gprof display call graph profile data
114 @smallexample
115 @c man begin SYNOPSIS
116 gprof [ -[abcDhilLrsTvwxyz] ] [ -[ACeEfFJnNOpPqQZ][@var{name}] ] 
117  [ -I @var{dirs} ] [ -d[@var{num}] ] [ -k @var{from/to} ]
118  [ -m @var{min-count} ] [ -R @var{map_file} ] [ -t @var{table-length} ]
119  [ --[no-]annotated-source[=@var{name}] ] 
120  [ --[no-]exec-counts[=@var{name}] ]
121  [ --[no-]flat-profile[=@var{name}] ] [ --[no-]graph[=@var{name}] ]
122  [ --[no-]time=@var{name}] [ --all-lines ] [ --brief ] 
123  [ --debug[=@var{level}] ] [ --function-ordering ] 
124  [ --file-ordering @var{map_file} ] [ --directory-path=@var{dirs} ]
125  [ --display-unused-functions ] [ --file-format=@var{name} ]
126  [ --file-info ] [ --help ] [ --line ] [ --min-count=@var{n} ]
127  [ --no-static ] [ --print-path ] [ --separate-files ]
128  [ --static-call-graph ] [ --sum ] [ --table-length=@var{len} ]
129  [ --traditional ] [ --version ] [ --width=@var{n} ]
130  [ --ignore-non-functions ] [ --demangle[=@var{STYLE}] ]
131  [ --no-demangle ] [ @var{image-file} ] [ @var{profile-file} @dots{} ]
132 @c man end
133 @end smallexample
135 @c man begin DESCRIPTION
136 @code{gprof} produces an execution profile of C, Pascal, or Fortran77 
137 programs.  The effect of called routines is incorporated in the profile 
138 of each caller.  The profile data is taken from the call graph profile file
139 (@file{gmon.out} default) which is created by programs
140 that are compiled with the @samp{-pg} option of
141 @code{cc}, @code{pc}, and @code{f77}.
142 The @samp{-pg} option also links in versions of the library routines
143 that are compiled for profiling.  @code{Gprof} reads the given object 
144 file (the default is @code{a.out}) and establishes the relation between
145 its symbol table and the call graph profile from @file{gmon.out}.
146 If more than one profile file is specified, the @code{gprof}
147 output shows the sum of the profile information in the given profile files.
149 @code{Gprof} calculates the amount of time spent in each routine.
150 Next, these times are propagated along the edges of the call graph.
151 Cycles are discovered, and calls into a cycle are made to share the time
152 of the cycle.
154 @c man end
156 @c man begin BUGS
157 The granularity of the sampling is shown, but remains
158 statistical at best.
159 We assume that the time for each execution of a function
160 can be expressed by the total time for the function divided
161 by the number of times the function is called.
162 Thus the time propagated along the call graph arcs to the function's
163 parents is directly proportional to the number of times that
164 arc is traversed.
166 Parents that are not themselves profiled will have the time of
167 their profiled children propagated to them, but they will appear
168 to be spontaneously invoked in the call graph listing, and will
169 not have their time propagated further.
170 Similarly, signal catchers, even though profiled, will appear
171 to be spontaneous (although for more obscure reasons).
172 Any profiled children of signal catchers should have their times
173 propagated properly, unless the signal catcher was invoked during
174 the execution of the profiling routine, in which case all is lost.
176 The profiled program must call @code{exit}(2)
177 or return normally for the profiling information to be saved
178 in the @file{gmon.out} file.
179 @c man end
181 @c man begin FILES
182 @table @code
183 @item @file{a.out}
184 the namelist and text space.
185 @item @file{gmon.out}
186 dynamic call graph and profile.
187 @item @file{gmon.sum}
188 summarized dynamic call graph and profile.  
189 @end table
190 @c man end
192 @c man begin SEEALSO
193 monitor(3), profil(2), cc(1), prof(1), and the Info entry for @file{gprof}.
195 ``An Execution Profiler for Modular Programs'',
196 by S. Graham, P. Kessler, M. McKusick;
197 Software - Practice and Experience,
198 Vol. 13, pp. 671-685, 1983.
200 ``gprof: A Call Graph Execution Profiler'',
201 by S. Graham, P. Kessler, M. McKusick;
202 Proceedings of the SIGPLAN '82 Symposium on Compiler Construction,
203 SIGPLAN Notices, Vol. 17, No  6, pp. 120-126, June 1982.
204 @c man end
205 @end ifset
207 Profiling allows you to learn where your program spent its time and which
208 functions called which other functions while it was executing.  This
209 information can show you which pieces of your program are slower than you
210 expected, and might be candidates for rewriting to make your program
211 execute faster.  It can also tell you which functions are being called more
212 or less often than you expected.  This may help you spot bugs that had
213 otherwise been unnoticed.
215 Since the profiler uses information collected during the actual execution
216 of your program, it can be used on programs that are too large or too
217 complex to analyze by reading the source.  However, how your program is run
218 will affect the information that shows up in the profile data.  If you
219 don't use some feature of your program while it is being profiled, no
220 profile information will be generated for that feature.
222 Profiling has several steps:
224 @itemize @bullet
225 @item
226 You must compile and link your program with profiling enabled.
227 @xref{Compiling, ,Compiling a Program for Profiling}.
229 @item
230 You must execute your program to generate a profile data file.
231 @xref{Executing, ,Executing the Program}.
233 @item
234 You must run @code{gprof} to analyze the profile data.
235 @xref{Invoking, ,@code{gprof} Command Summary}.
236 @end itemize
238 The next three chapters explain these steps in greater detail.
240 @c man begin DESCRIPTION
242 Several forms of output are available from the analysis.
244 The @dfn{flat profile} shows how much time your program spent in each function,
245 and how many times that function was called.  If you simply want to know
246 which functions burn most of the cycles, it is stated concisely here.
247 @xref{Flat Profile, ,The Flat Profile}.
249 The @dfn{call graph} shows, for each function, which functions called it, which
250 other functions it called, and how many times.  There is also an estimate
251 of how much time was spent in the subroutines of each function.  This can
252 suggest places where you might try to eliminate function calls that use a
253 lot of time.  @xref{Call Graph, ,The Call Graph}.
255 The @dfn{annotated source} listing is a copy of the program's
256 source code, labeled with the number of times each line of the
257 program was executed.  @xref{Annotated Source, ,The Annotated Source
258 Listing}.
259 @c man end
261 To better understand how profiling works, you may wish to read
262 a description of its implementation.
263 @xref{Implementation, ,Implementation of Profiling}.
265 @node Compiling
266 @chapter Compiling a Program for Profiling
268 The first step in generating profile information for your program is
269 to compile and link it with profiling enabled.
271 To compile a source file for profiling, specify the @samp{-pg} option when
272 you run the compiler.  (This is in addition to the options you normally
273 use.)
275 To link the program for profiling, if you use a compiler such as @code{cc}
276 to do the linking, simply specify @samp{-pg} in addition to your usual
277 options.  The same option, @samp{-pg}, alters either compilation or linking
278 to do what is necessary for profiling.  Here are examples:
280 @example
281 cc -g -c myprog.c utils.c -pg
282 cc -o myprog myprog.o utils.o -pg
283 @end example
285 The @samp{-pg} option also works with a command that both compiles and links:
287 @example
288 cc -o myprog myprog.c utils.c -g -pg
289 @end example
291 Note: The @samp{-pg} option must be part of your compilation options
292 as well as your link options.  If it is not then no call-graph data
293 will be gathered and when you run @code{gprof} you will get an error
294 message like this:
296 @example
297 gprof: gmon.out file is missing call-graph data
298 @end example
300 If you add the @samp{-Q} switch to suppress the printing of the call
301 graph data you will still be able to see the time samples:
303 @example
304 Flat profile:
306 Each sample counts as 0.01 seconds.
307   %   cumulative   self              self     total           
308  time   seconds   seconds    calls  Ts/call  Ts/call  name    
309  44.12      0.07     0.07                             zazLoop
310  35.29      0.14     0.06                             main
311  20.59      0.17     0.04                             bazMillion
312 @end example
314 If you run the linker @code{ld} directly instead of through a compiler
315 such as @code{cc}, you may have to specify a profiling startup file
316 @file{gcrt0.o} as the first input file instead of the usual startup
317 file @file{crt0.o}.  In addition, you would probably want to
318 specify the profiling C library, @file{libc_p.a}, by writing
319 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
320 necessary, but doing this gives you number-of-calls information for
321 standard library functions such as @code{read} and @code{open}.  For
322 example:
324 @example
325 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
326 @end example
328 If you compile only some of the modules of the program with @samp{-pg}, you
329 can still profile the program, but you won't get complete information about
330 the modules that were compiled without @samp{-pg}.  The only information
331 you get for the functions in those modules is the total time spent in them;
332 there is no record of how many times they were called, or from where.  This
333 will not affect the flat profile (except that the @code{calls} field for
334 the functions will be blank), but will greatly reduce the usefulness of the
335 call graph.
337 If you wish to perform line-by-line profiling you should use the
338 @code{gcov} tool instead of @code{gprof}.  See that tool's manual or
339 info pages for more details of how to do this.
341 Note, older versions of @code{gcc} produce line-by-line profiling
342 information that works with @code{gprof} rather than @code{gcov} so
343 there is still support for displaying this kind of information in
344 @code{gprof}. @xref{Line-by-line, ,Line-by-line Profiling}.
346 It also worth noting that @code{gcc} implements a
347 @samp{-finstrument-functions} command line option which will insert
348 calls to special user supplied instrumentation routines at the entry
349 and exit of every function in their program.  This can be used to
350 implement an alternative profiling scheme.
352 @node Executing
353 @chapter Executing the Program
355 Once the program is compiled for profiling, you must run it in order to
356 generate the information that @code{gprof} needs.  Simply run the program
357 as usual, using the normal arguments, file names, etc.  The program should
358 run normally, producing the same output as usual.  It will, however, run
359 somewhat slower than normal because of the time spent collecting and
360 writing the profile data.
362 The way you run the program---the arguments and input that you give
363 it---may have a dramatic effect on what the profile information shows.  The
364 profile data will describe the parts of the program that were activated for
365 the particular input you use.  For example, if the first command you give
366 to your program is to quit, the profile data will show the time used in
367 initialization and in cleanup, but not much else.
369 Your program will write the profile data into a file called @file{gmon.out}
370 just before exiting.  If there is already a file called @file{gmon.out},
371 its contents are overwritten.  There is currently no way to tell the
372 program to write the profile data under a different name, but you can rename
373 the file afterwards if you are concerned that it may be overwritten.
375 In order to write the @file{gmon.out} file properly, your program must exit
376 normally: by returning from @code{main} or by calling @code{exit}.  Calling
377 the low-level function @code{_exit} does not write the profile data, and
378 neither does abnormal termination due to an unhandled signal.
380 The @file{gmon.out} file is written in the program's @emph{current working
381 directory} at the time it exits.  This means that if your program calls
382 @code{chdir}, the @file{gmon.out} file will be left in the last directory
383 your program @code{chdir}'d to.  If you don't have permission to write in
384 this directory, the file is not written, and you will get an error message.
386 Older versions of the @sc{gnu} profiling library may also write a file
387 called @file{bb.out}.  This file, if present, contains an human-readable
388 listing of the basic-block execution counts.  Unfortunately, the
389 appearance of a human-readable @file{bb.out} means the basic-block
390 counts didn't get written into @file{gmon.out}.
391 The Perl script @code{bbconv.pl}, included with the @code{gprof}
392 source distribution, will convert a @file{bb.out} file into
393 a format readable by @code{gprof}.  Invoke it like this:
395 @smallexample
396 bbconv.pl < bb.out > @var{bh-data}
397 @end smallexample
399 This translates the information in @file{bb.out} into a form that
400 @code{gprof} can understand.  But you still need to tell @code{gprof}
401 about the existence of this translated information.  To do that, include
402 @var{bb-data} on the @code{gprof} command line, @emph{along with
403 @file{gmon.out}}, like this:
405 @smallexample
406 gprof @var{options} @var{executable-file} gmon.out @var{bb-data} [@var{yet-more-profile-data-files}@dots{}] [> @var{outfile}]
407 @end smallexample
409 @node Invoking
410 @chapter @code{gprof} Command Summary
412 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
413 to interpret the information in it.  The @code{gprof} program prints a
414 flat profile and a call graph on standard output.  Typically you would
415 redirect the output of @code{gprof} into a file with @samp{>}.
417 You run @code{gprof} like this:
419 @smallexample
420 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
421 @end smallexample
423 @noindent
424 Here square-brackets indicate optional arguments.
426 If you omit the executable file name, the file @file{a.out} is used.  If
427 you give no profile data file name, the file @file{gmon.out} is used.  If
428 any file is not in the proper format, or if the profile data file does not
429 appear to belong to the executable file, an error message is printed.
431 You can give more than one profile data file by entering all their names
432 after the executable file name; then the statistics in all the data files
433 are summed together.
435 The order of these options does not matter.
437 @menu
438 * Output Options::      Controlling @code{gprof}'s output style
439 * Analysis Options::    Controlling how @code{gprof} analyzes its data
440 * Miscellaneous Options::
441 * Deprecated Options::  Options you no longer need to use, but which
442                             have been retained for compatibility
443 * Symspecs::            Specifying functions to include or exclude
444 @end menu
446 @node Output Options
447 @section Output Options
449 @c man begin OPTIONS
450 These options specify which of several output formats
451 @code{gprof} should produce.
453 Many of these options take an optional @dfn{symspec} to specify
454 functions to be included or excluded.  These options can be
455 specified multiple times, with different symspecs, to include
456 or exclude sets of symbols.  @xref{Symspecs, ,Symspecs}.
458 Specifying any of these options overrides the default (@samp{-p -q}),
459 which prints a flat profile and call graph analysis
460 for all functions.
462 @table @code
464 @item -A[@var{symspec}]
465 @itemx --annotated-source[=@var{symspec}]
466 The @samp{-A} option causes @code{gprof} to print annotated source code.
467 If @var{symspec} is specified, print output only for matching symbols.
468 @xref{Annotated Source, ,The Annotated Source Listing}.
470 @item -b
471 @itemx --brief
472 If the @samp{-b} option is given, @code{gprof} doesn't print the
473 verbose blurbs that try to explain the meaning of all of the fields in
474 the tables.  This is useful if you intend to print out the output, or
475 are tired of seeing the blurbs.
477 @item -C[@var{symspec}]
478 @itemx --exec-counts[=@var{symspec}]
479 The @samp{-C} option causes @code{gprof} to
480 print a tally of functions and the number of times each was called.
481 If @var{symspec} is specified, print tally only for matching symbols.
483 If the profile data file contains basic-block count records, specifying
484 the @samp{-l} option, along with @samp{-C}, will cause basic-block
485 execution counts to be tallied and displayed.
487 @item -i
488 @itemx --file-info
489 The @samp{-i} option causes @code{gprof} to display summary information
490 about the profile data file(s) and then exit.  The number of histogram,
491 call graph, and basic-block count records is displayed.
493 @item -I @var{dirs}
494 @itemx --directory-path=@var{dirs}
495 The @samp{-I} option specifies a list of search directories in
496 which to find source files.  Environment variable @var{GPROF_PATH}
497 can also be used to convey this information.
498 Used mostly for annotated source output.
500 @item -J[@var{symspec}]
501 @itemx --no-annotated-source[=@var{symspec}]
502 The @samp{-J} option causes @code{gprof} not to
503 print annotated source code.
504 If @var{symspec} is specified, @code{gprof} prints annotated source,
505 but excludes matching symbols.
507 @item -L
508 @itemx --print-path
509 Normally, source filenames are printed with the path
510 component suppressed.  The @samp{-L} option causes @code{gprof}
511 to print the full pathname of
512 source filenames, which is determined
513 from symbolic debugging information in the image file
514 and is relative to the directory in which the compiler
515 was invoked.
517 @item -p[@var{symspec}]
518 @itemx --flat-profile[=@var{symspec}]
519 The @samp{-p} option causes @code{gprof} to print a flat profile.
520 If @var{symspec} is specified, print flat profile only for matching symbols.
521 @xref{Flat Profile, ,The Flat Profile}.
523 @item -P[@var{symspec}]
524 @itemx --no-flat-profile[=@var{symspec}]
525 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
526 If @var{symspec} is specified, @code{gprof} prints a flat profile,
527 but excludes matching symbols.
529 @item -q[@var{symspec}]
530 @itemx --graph[=@var{symspec}]
531 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
532 If @var{symspec} is specified, print call graph only for matching symbols
533 and their children.
534 @xref{Call Graph, ,The Call Graph}.
536 @item -Q[@var{symspec}]
537 @itemx --no-graph[=@var{symspec}]
538 The @samp{-Q} option causes @code{gprof} to suppress printing the
539 call graph.
540 If @var{symspec} is specified, @code{gprof} prints a call graph,
541 but excludes matching symbols.
543 @item -t
544 @itemx --table-length=@var{num}
545 The @samp{-t} option causes the @var{num} most active source lines in
546 each source file to be listed when source annotation is enabled.  The
547 default is 10.
549 @item -y
550 @itemx --separate-files
551 This option affects annotated source output only.
552 Normally, @code{gprof} prints annotated source files
553 to standard-output.  If this option is specified,
554 annotated source for a file named @file{path/@var{filename}}
555 is generated in the file @file{@var{filename}-ann}.  If the underlying
556 file system would truncate @file{@var{filename}-ann} so that it
557 overwrites the original @file{@var{filename}}, @code{gprof} generates
558 annotated source in the file @file{@var{filename}.ann} instead (if the
559 original file name has an extension, that extension is @emph{replaced}
560 with @file{.ann}).
562 @item -Z[@var{symspec}]
563 @itemx --no-exec-counts[=@var{symspec}]
564 The @samp{-Z} option causes @code{gprof} not to
565 print a tally of functions and the number of times each was called.
566 If @var{symspec} is specified, print tally, but exclude matching symbols.
568 @item -r
569 @itemx --function-ordering
570 The @samp{--function-ordering} option causes @code{gprof} to print a
571 suggested function ordering for the program based on profiling data.
572 This option suggests an ordering which may improve paging, tlb and
573 cache behavior for the program on systems which support arbitrary
574 ordering of functions in an executable.
576 The exact details of how to force the linker to place functions
577 in a particular order is system dependent and out of the scope of this
578 manual.
580 @item -R @var{map_file}
581 @itemx --file-ordering @var{map_file}
582 The @samp{--file-ordering} option causes @code{gprof} to print a
583 suggested .o link line ordering for the program based on profiling data.
584 This option suggests an ordering which may improve paging, tlb and
585 cache behavior for the program on systems which do not support arbitrary
586 ordering of functions in an executable.
588 Use of the @samp{-a} argument is highly recommended with this option.
590 The @var{map_file} argument is a pathname to a file which provides
591 function name to object file mappings.  The format of the file is similar to
592 the output of the program @code{nm}.
594 @smallexample
595 @group
596 c-parse.o:00000000 T yyparse
597 c-parse.o:00000004 C yyerrflag
598 c-lang.o:00000000 T maybe_objc_method_name
599 c-lang.o:00000000 T print_lang_statistics
600 c-lang.o:00000000 T recognize_objc_keyword
601 c-decl.o:00000000 T print_lang_identifier
602 c-decl.o:00000000 T print_lang_type
603 @dots{}
605 @end group
606 @end smallexample
608 To create a @var{map_file} with @sc{gnu} @code{nm}, type a command like
609 @kbd{nm --extern-only --defined-only -v --print-file-name program-name}.
611 @item -T
612 @itemx --traditional
613 The @samp{-T} option causes @code{gprof} to print its output in
614 ``traditional'' BSD style.
616 @item -w @var{width}
617 @itemx --width=@var{width}
618 Sets width of output lines to @var{width}.
619 Currently only used when printing the function index at the bottom
620 of the call graph.
622 @item -x
623 @itemx --all-lines
624 This option affects annotated source output only.
625 By default, only the lines at the beginning of a basic-block
626 are annotated.  If this option is specified, every line in
627 a basic-block is annotated by repeating the annotation for the
628 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
630 @item --demangle[=@var{style}]
631 @itemx --no-demangle
632 These options control whether C++ symbol names should be demangled when
633 printing output.  The default is to demangle symbols.  The
634 @code{--no-demangle} option may be used to turn off demangling. Different 
635 compilers have different mangling styles.  The optional demangling style 
636 argument can be used to choose an appropriate demangling style for your 
637 compiler.
638 @end table
640 @node Analysis Options
641 @section Analysis Options
643 @table @code
645 @item -a
646 @itemx --no-static
647 The @samp{-a} option causes @code{gprof} to suppress the printing of
648 statically declared (private) functions.  (These are functions whose
649 names are not listed as global, and which are not visible outside the
650 file/function/block where they were defined.)  Time spent in these
651 functions, calls to/from them, etc., will all be attributed to the
652 function that was loaded directly before it in the executable file.
653 @c This is compatible with Unix @code{gprof}, but a bad idea.  
654 This option affects both the flat profile and the call graph.
656 @item -c
657 @itemx --static-call-graph
658 The @samp{-c} option causes the call graph of the program to be
659 augmented by a heuristic which examines the text space of the object
660 file and identifies function calls in the binary machine code.
661 Since normal call graph records are only generated when functions are
662 entered, this option identifies children that could have been called,
663 but never were.  Calls to functions that were not compiled with
664 profiling enabled are also identified, but only if symbol table
665 entries are present for them.
666 Calls to dynamic library routines are typically @emph{not} found
667 by this option.
668 Parents or children identified via this heuristic
669 are indicated in the call graph with call counts of @samp{0}.
671 @item -D
672 @itemx --ignore-non-functions
673 The @samp{-D} option causes @code{gprof} to ignore symbols which
674 are not known to be functions.  This option will give more accurate
675 profile data on systems where it is supported (Solaris and HPUX for
676 example).
678 @item -k @var{from}/@var{to}
679 The @samp{-k} option allows you to delete from the call graph any arcs from
680 symbols matching symspec @var{from} to those matching symspec @var{to}.
682 @item -l
683 @itemx --line
684 The @samp{-l} option enables line-by-line profiling, which causes
685 histogram hits to be charged to individual source code lines,
686 instead of functions.  This feature only works with programs compiled
687 by older versions of the @code{gcc} compiler.  Newer versions of
688 @code{gcc} are designed to work with the @code{gcov} tool instead.
690 If the program was compiled with basic-block counting enabled,
691 this option will also identify how many times each line of
692 code was executed.
693 While line-by-line profiling can help isolate where in a large function
694 a program is spending its time, it also significantly increases
695 the running time of @code{gprof}, and magnifies statistical
696 inaccuracies.
697 @xref{Sampling Error, ,Statistical Sampling Error}.
699 @item -m @var{num}
700 @itemx --min-count=@var{num}
701 This option affects execution count output only.
702 Symbols that are executed less than @var{num} times are suppressed.
704 @item -n@var{symspec}
705 @itemx --time=@var{symspec}
706 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
707 to only propagate times for symbols matching @var{symspec}.
709 @item -N@var{symspec}
710 @itemx --no-time=@var{symspec}
711 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
712 not to propagate times for symbols matching @var{symspec}.
714 @item -z
715 @itemx --display-unused-functions
716 If you give the @samp{-z} option, @code{gprof} will mention all
717 functions in the flat profile, even those that were never called, and
718 that had no time spent in them.  This is useful in conjunction with the
719 @samp{-c} option for discovering which routines were never called.
721 @end table
723 @node Miscellaneous Options
724 @section Miscellaneous Options
726 @table @code
728 @item -d[@var{num}]
729 @itemx --debug[=@var{num}]
730 The @samp{-d @var{num}} option specifies debugging options.
731 If @var{num} is not specified, enable all debugging.
732 @xref{Debugging, ,Debugging @code{gprof}}.
734 @item -h
735 @itemx --help
736 The @samp{-h} option prints command line usage.
738 @item -O@var{name}
739 @itemx --file-format=@var{name}
740 Selects the format of the profile data files.  Recognized formats are
741 @samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
742 @samp{prof} (not yet supported).
744 @item -s
745 @itemx --sum
746 The @samp{-s} option causes @code{gprof} to summarize the information
747 in the profile data files it read in, and write out a profile data
748 file called @file{gmon.sum}, which contains all the information from
749 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
750 may be one of the specified input files; the effect of this is to
751 merge the data in the other input files into @file{gmon.sum}.
753 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
754 cumulative data in the file @file{gmon.sum}.
756 @item -v
757 @itemx --version
758 The @samp{-v} flag causes @code{gprof} to print the current version
759 number, and then exit.
761 @end table
763 @node Deprecated Options
764 @section Deprecated Options
766 @table @code
768 These options have been replaced with newer versions that use symspecs.
770 @item -e @var{function_name}
771 The @samp{-e @var{function}} option tells @code{gprof} to not print
772 information about the function @var{function_name} (and its
773 children@dots{}) in the call graph.  The function will still be listed
774 as a child of any functions that call it, but its index number will be
775 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
776 given; only one @var{function_name} may be indicated with each @samp{-e}
777 option. 
779 @item -E @var{function_name}
780 The @code{-E @var{function}} option works like the @code{-e} option, but
781 time spent in the function (and children who were not called from
782 anywhere else), will not be used to compute the percentages-of-time for
783 the call graph.  More than one @samp{-E} option may be given; only one
784 @var{function_name} may be indicated with each @samp{-E} option.
786 @item -f @var{function_name}
787 The @samp{-f @var{function}} option causes @code{gprof} to limit the
788 call graph to the function @var{function_name} and its children (and
789 their children@dots{}).  More than one @samp{-f} option may be given;
790 only one @var{function_name} may be indicated with each @samp{-f}
791 option.  
793 @item -F @var{function_name}
794 The @samp{-F @var{function}} option works like the @code{-f} option, but
795 only time spent in the function and its children (and their
796 children@dots{}) will be used to determine total-time and
797 percentages-of-time for the call graph.  More than one @samp{-F} option
798 may be given; only one @var{function_name} may be indicated with each
799 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
801 @end table
803 @c man end
805 Note that only one function can be specified with each @code{-e},
806 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
807 function, use multiple options.  For example, this command:
809 @example
810 gprof -e boring -f foo -f bar myprogram > gprof.output
811 @end example
813 @noindent
814 lists in the call graph all functions that were reached from either
815 @code{foo} or @code{bar} and were not reachable from @code{boring}.
817 @node Symspecs
818 @section Symspecs
820 Many of the output options allow functions to be included or excluded
821 using @dfn{symspecs} (symbol specifications), which observe the
822 following syntax:
824 @example
825   filename_containing_a_dot
826 | funcname_not_containing_a_dot
827 | linenumber
828 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
829 @end example
831 Here are some sample symspecs:
833 @table @samp
834 @item main.c
835 Selects everything in file @file{main.c}---the
836 dot in the string tells @code{gprof} to interpret
837 the string as a filename, rather than as
838 a function name.  To select a file whose
839 name does not contain a dot, a trailing colon
840 should be specified.  For example, @samp{odd:} is
841 interpreted as the file named @file{odd}.
843 @item main
844 Selects all functions named @samp{main}.
846 Note that there may be multiple instances of the same function name
847 because some of the definitions may be local (i.e., static).  Unless a
848 function name is unique in a program, you must use the colon notation
849 explained below to specify a function from a specific source file.
851 Sometimes, function names contain dots.  In such cases, it is necessary
852 to add a leading colon to the name.  For example, @samp{:.mul} selects
853 function @samp{.mul}.
855 In some object file formats, symbols have a leading underscore.
856 @code{gprof} will normally not print these underscores.  When you name a
857 symbol in a symspec, you should type it exactly as @code{gprof} prints
858 it in its output.  For example, if the compiler produces a symbol
859 @samp{_main} from your @code{main} function, @code{gprof} still prints
860 it as @samp{main} in its output, so you should use @samp{main} in
861 symspecs.
863 @item main.c:main
864 Selects function @samp{main} in file @file{main.c}.
866 @item main.c:134
867 Selects line 134 in file @file{main.c}.
868 @end table
870 @node Output
871 @chapter Interpreting @code{gprof}'s Output
873 @code{gprof} can produce several different output styles, the
874 most important of which are described below.  The simplest output
875 styles (file information, execution count, and function and file ordering)
876 are not described here, but are documented with the respective options
877 that trigger them.
878 @xref{Output Options, ,Output Options}.
880 @menu
881 * Flat Profile::        The flat profile shows how much time was spent
882                             executing directly in each function.
883 * Call Graph::          The call graph shows which functions called which
884                             others, and how much time each function used
885                             when its subroutine calls are included.
886 * Line-by-line::        @code{gprof} can analyze individual source code lines
887 * Annotated Source::    The annotated source listing displays source code
888                             labeled with execution counts
889 @end menu
892 @node Flat Profile
893 @section The Flat Profile
894 @cindex flat profile
896 The @dfn{flat profile} shows the total amount of time your program
897 spent executing each function.  Unless the @samp{-z} option is given,
898 functions with no apparent time spent in them, and no apparent calls
899 to them, are not mentioned.  Note that if a function was not compiled
900 for profiling, and didn't run long enough to show up on the program
901 counter histogram, it will be indistinguishable from a function that
902 was never called.
904 This is part of a flat profile for a small program:
906 @smallexample
907 @group
908 Flat profile:
910 Each sample counts as 0.01 seconds.
911   %   cumulative   self              self     total           
912  time   seconds   seconds    calls  ms/call  ms/call  name    
913  33.34      0.02     0.02     7208     0.00     0.00  open
914  16.67      0.03     0.01      244     0.04     0.12  offtime
915  16.67      0.04     0.01        8     1.25     1.25  memccpy
916  16.67      0.05     0.01        7     1.43     1.43  write
917  16.67      0.06     0.01                             mcount
918   0.00      0.06     0.00      236     0.00     0.00  tzset
919   0.00      0.06     0.00      192     0.00     0.00  tolower
920   0.00      0.06     0.00       47     0.00     0.00  strlen
921   0.00      0.06     0.00       45     0.00     0.00  strchr
922   0.00      0.06     0.00        1     0.00    50.00  main
923   0.00      0.06     0.00        1     0.00     0.00  memcpy
924   0.00      0.06     0.00        1     0.00    10.11  print
925   0.00      0.06     0.00        1     0.00     0.00  profil
926   0.00      0.06     0.00        1     0.00    50.00  report
927 @dots{}
928 @end group
929 @end smallexample
931 @noindent
932 The functions are sorted first by decreasing run-time spent in them,
933 then by decreasing number of calls, then alphabetically by name.  The
934 functions @samp{mcount} and @samp{profil} are part of the profiling
935 apparatus and appear in every flat profile; their time gives a measure of
936 the amount of overhead due to profiling.
938 Just before the column headers, a statement appears indicating
939 how much time each sample counted as.
940 This @dfn{sampling period} estimates the margin of error in each of the time
941 figures.  A time figure that is not much larger than this is not
942 reliable.  In this example, each sample counted as 0.01 seconds,
943 suggesting a 100 Hz sampling rate.
944 The program's total execution time was 0.06
945 seconds, as indicated by the @samp{cumulative seconds} field.  Since
946 each sample counted for 0.01 seconds, this means only six samples
947 were taken during the run.  Two of the samples occurred while the
948 program was in the @samp{open} function, as indicated by the
949 @samp{self seconds} field.  Each of the other four samples
950 occurred one each in @samp{offtime}, @samp{memccpy}, @samp{write},
951 and @samp{mcount}.
952 Since only six samples were taken, none of these values can
953 be regarded as particularly reliable.
954 In another run,
955 the @samp{self seconds} field for
956 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
957 @xref{Sampling Error, ,Statistical Sampling Error},
958 for a complete discussion.
960 The remaining functions in the listing (those whose
961 @samp{self seconds} field is @samp{0.00}) didn't appear
962 in the histogram samples at all.  However, the call graph
963 indicated that they were called, so therefore they are listed,
964 sorted in decreasing order by the @samp{calls} field.
965 Clearly some time was spent executing these functions,
966 but the paucity of histogram samples prevents any
967 determination of how much time each took.
969 Here is what the fields in each line mean:
971 @table @code
972 @item % time
973 This is the percentage of the total execution time your program spent
974 in this function.  These should all add up to 100%.
976 @item cumulative seconds
977 This is the cumulative total number of seconds the computer spent
978 executing this functions, plus the time spent in all the functions
979 above this one in this table.
981 @item self seconds
982 This is the number of seconds accounted for by this function alone.
983 The flat profile listing is sorted first by this number.
985 @item calls
986 This is the total number of times the function was called.  If the
987 function was never called, or the number of times it was called cannot
988 be determined (probably because the function was not compiled with
989 profiling enabled), the @dfn{calls} field is blank.
991 @item self ms/call
992 This represents the average number of milliseconds spent in this
993 function per call, if this function is profiled.  Otherwise, this field
994 is blank for this function.
996 @item total ms/call
997 This represents the average number of milliseconds spent in this
998 function and its descendants per call, if this function is profiled.
999 Otherwise, this field is blank for this function.
1000 This is the only field in the flat profile that uses call graph analysis.
1002 @item name
1003 This is the name of the function.   The flat profile is sorted by this
1004 field alphabetically after the @dfn{self seconds} and @dfn{calls}
1005 fields are sorted.
1006 @end table
1008 @node Call Graph
1009 @section The Call Graph
1010 @cindex call graph
1012 The @dfn{call graph} shows how much time was spent in each function
1013 and its children.  From this information, you can find functions that,
1014 while they themselves may not have used much time, called other
1015 functions that did use unusual amounts of time.
1017 Here is a sample call from a small program.  This call came from the
1018 same @code{gprof} run as the flat profile example in the previous
1019 section.
1021 @smallexample
1022 @group
1023 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
1025 index % time    self  children    called     name
1026                                                  <spontaneous>
1027 [1]    100.0    0.00    0.05                 start [1]
1028                 0.00    0.05       1/1           main [2]
1029                 0.00    0.00       1/2           on_exit [28]
1030                 0.00    0.00       1/1           exit [59]
1031 -----------------------------------------------
1032                 0.00    0.05       1/1           start [1]
1033 [2]    100.0    0.00    0.05       1         main [2]
1034                 0.00    0.05       1/1           report [3]
1035 -----------------------------------------------
1036                 0.00    0.05       1/1           main [2]
1037 [3]    100.0    0.00    0.05       1         report [3]
1038                 0.00    0.03       8/8           timelocal [6]
1039                 0.00    0.01       1/1           print [9]
1040                 0.00    0.01       9/9           fgets [12]
1041                 0.00    0.00      12/34          strncmp <cycle 1> [40]
1042                 0.00    0.00       8/8           lookup [20]
1043                 0.00    0.00       1/1           fopen [21]
1044                 0.00    0.00       8/8           chewtime [24]
1045                 0.00    0.00       8/16          skipspace [44]
1046 -----------------------------------------------
1047 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole> [4]
1048                 0.01        0.02     244+260         offtime <cycle 2> [7]
1049                 0.00        0.00     236+1           tzset <cycle 2> [26]
1050 -----------------------------------------------
1051 @end group
1052 @end smallexample
1054 The lines full of dashes divide this table into @dfn{entries}, one for each
1055 function.  Each entry has one or more lines.
1057 In each entry, the primary line is the one that starts with an index number
1058 in square brackets.  The end of this line says which function the entry is
1059 for.  The preceding lines in the entry describe the callers of this
1060 function and the following lines describe its subroutines (also called
1061 @dfn{children} when we speak of the call graph).
1063 The entries are sorted by time spent in the function and its subroutines.
1065 The internal profiling function @code{mcount} (@pxref{Flat Profile, ,The 
1066 Flat Profile}) is never mentioned in the call graph.
1068 @menu
1069 * Primary::       Details of the primary line's contents.
1070 * Callers::       Details of caller-lines' contents.
1071 * Subroutines::   Details of subroutine-lines' contents.
1072 * Cycles::        When there are cycles of recursion,
1073                    such as @code{a} calls @code{b} calls @code{a}@dots{}
1074 @end menu
1076 @node Primary
1077 @subsection The Primary Line
1079 The @dfn{primary line} in a call graph entry is the line that
1080 describes the function which the entry is about and gives the overall
1081 statistics for this function.
1083 For reference, we repeat the primary line from the entry for function
1084 @code{report} in our main example, together with the heading line that
1085 shows the names of the fields:
1087 @smallexample
1088 @group
1089 index  % time    self  children called     name
1090 @dots{}
1091 [3]    100.0    0.00    0.05       1         report [3]
1092 @end group
1093 @end smallexample
1095 Here is what the fields in the primary line mean:
1097 @table @code
1098 @item index
1099 Entries are numbered with consecutive integers.  Each function
1100 therefore has an index number, which appears at the beginning of its
1101 primary line.
1103 Each cross-reference to a function, as a caller or subroutine of
1104 another, gives its index number as well as its name.  The index number
1105 guides you if you wish to look for the entry for that function.
1107 @item % time
1108 This is the percentage of the total time that was spent in this
1109 function, including time spent in subroutines called from this
1110 function.
1112 The time spent in this function is counted again for the callers of
1113 this function.  Therefore, adding up these percentages is meaningless.
1115 @item self
1116 This is the total amount of time spent in this function.  This
1117 should be identical to the number printed in the @code{seconds} field
1118 for this function in the flat profile.
1120 @item children
1121 This is the total amount of time spent in the subroutine calls made by
1122 this function.  This should be equal to the sum of all the @code{self}
1123 and @code{children} entries of the children listed directly below this
1124 function.
1126 @item called
1127 This is the number of times the function was called.
1129 If the function called itself recursively, there are two numbers,
1130 separated by a @samp{+}.  The first number counts non-recursive calls,
1131 and the second counts recursive calls.
1133 In the example above, the function @code{report} was called once from
1134 @code{main}.
1136 @item name
1137 This is the name of the current function.  The index number is
1138 repeated after it.
1140 If the function is part of a cycle of recursion, the cycle number is
1141 printed between the function's name and the index number
1142 (@pxref{Cycles, ,How Mutually Recursive Functions Are Described}).
1143 For example, if function @code{gnurr} is part of
1144 cycle number one, and has index number twelve, its primary line would
1145 be end like this:
1147 @example
1148 gnurr <cycle 1> [12]
1149 @end example
1150 @end table
1152 @node Callers
1153 @subsection Lines for a Function's Callers
1155 A function's entry has a line for each function it was called by.
1156 These lines' fields correspond to the fields of the primary line, but
1157 their meanings are different because of the difference in context.
1159 For reference, we repeat two lines from the entry for the function
1160 @code{report}, the primary line and one caller-line preceding it, together
1161 with the heading line that shows the names of the fields:
1163 @smallexample
1164 index  % time    self  children called     name
1165 @dots{}
1166                 0.00    0.05       1/1           main [2]
1167 [3]    100.0    0.00    0.05       1         report [3]
1168 @end smallexample
1170 Here are the meanings of the fields in the caller-line for @code{report}
1171 called from @code{main}:
1173 @table @code
1174 @item self
1175 An estimate of the amount of time spent in @code{report} itself when it was
1176 called from @code{main}.
1178 @item children
1179 An estimate of the amount of time spent in subroutines of @code{report}
1180 when @code{report} was called from @code{main}.
1182 The sum of the @code{self} and @code{children} fields is an estimate
1183 of the amount of time spent within calls to @code{report} from @code{main}.
1185 @item called
1186 Two numbers: the number of times @code{report} was called from @code{main},
1187 followed by the total number of non-recursive calls to @code{report} from
1188 all its callers.
1190 @item name and index number
1191 The name of the caller of @code{report} to which this line applies,
1192 followed by the caller's index number.
1194 Not all functions have entries in the call graph; some
1195 options to @code{gprof} request the omission of certain functions.
1196 When a caller has no entry of its own, it still has caller-lines
1197 in the entries of the functions it calls.
1199 If the caller is part of a recursion cycle, the cycle number is
1200 printed between the name and the index number.
1201 @end table
1203 If the identity of the callers of a function cannot be determined, a
1204 dummy caller-line is printed which has @samp{<spontaneous>} as the
1205 ``caller's name'' and all other fields blank.  This can happen for
1206 signal handlers.
1207 @c What if some calls have determinable callers' names but not all?
1208 @c FIXME - still relevant?
1210 @node Subroutines
1211 @subsection Lines for a Function's Subroutines
1213 A function's entry has a line for each of its subroutines---in other
1214 words, a line for each other function that it called.  These lines'
1215 fields correspond to the fields of the primary line, but their meanings
1216 are different because of the difference in context.
1218 For reference, we repeat two lines from the entry for the function
1219 @code{main}, the primary line and a line for a subroutine, together
1220 with the heading line that shows the names of the fields:
1222 @smallexample
1223 index  % time    self  children called     name
1224 @dots{}
1225 [2]    100.0    0.00    0.05       1         main [2]
1226                 0.00    0.05       1/1           report [3]
1227 @end smallexample
1229 Here are the meanings of the fields in the subroutine-line for @code{main}
1230 calling @code{report}:
1232 @table @code
1233 @item self
1234 An estimate of the amount of time spent directly within @code{report}
1235 when @code{report} was called from @code{main}.
1237 @item children
1238 An estimate of the amount of time spent in subroutines of @code{report}
1239 when @code{report} was called from @code{main}.
1241 The sum of the @code{self} and @code{children} fields is an estimate
1242 of the total time spent in calls to @code{report} from @code{main}.
1244 @item called
1245 Two numbers, the number of calls to @code{report} from @code{main}
1246 followed by the total number of non-recursive calls to @code{report}.
1247 This ratio is used to determine how much of @code{report}'s @code{self}
1248 and @code{children} time gets credited to @code{main}.
1249 @xref{Assumptions, ,Estimating @code{children} Times}.
1251 @item name
1252 The name of the subroutine of @code{main} to which this line applies,
1253 followed by the subroutine's index number.
1255 If the caller is part of a recursion cycle, the cycle number is
1256 printed between the name and the index number.
1257 @end table
1259 @node Cycles
1260 @subsection How Mutually Recursive Functions Are Described
1261 @cindex cycle
1262 @cindex recursion cycle
1264 The graph may be complicated by the presence of @dfn{cycles of
1265 recursion} in the call graph.  A cycle exists if a function calls
1266 another function that (directly or indirectly) calls (or appears to
1267 call) the original function.  For example: if @code{a} calls @code{b},
1268 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1270 Whenever there are call paths both ways between a pair of functions, they
1271 belong to the same cycle.  If @code{a} and @code{b} call each other and
1272 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1273 even if @code{b} only calls @code{a} if it was not called from @code{a},
1274 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1275 considered a cycle.
1277 The cycles are numbered with consecutive integers.  When a function
1278 belongs to a cycle, each time the function name appears in the call graph
1279 it is followed by @samp{<cycle @var{number}>}.
1281 The reason cycles matter is that they make the time values in the call
1282 graph paradoxical.  The ``time spent in children'' of @code{a} should
1283 include the time spent in its subroutine @code{b} and in @code{b}'s
1284 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1285 @code{a}'s time should be included in the children of @code{a}, when
1286 @code{a} is indirectly recursive?
1288 The way @code{gprof} resolves this paradox is by creating a single entry
1289 for the cycle as a whole.  The primary line of this entry describes the
1290 total time spent directly in the functions of the cycle.  The
1291 ``subroutines'' of the cycle are the individual functions of the cycle, and
1292 all other functions that were called directly by them.  The ``callers'' of
1293 the cycle are the functions, outside the cycle, that called functions in
1294 the cycle.
1296 Here is an example portion of a call graph which shows a cycle containing
1297 functions @code{a} and @code{b}.  The cycle was entered by a call to
1298 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1300 @smallexample
1301 index  % time    self  children called     name
1302 ----------------------------------------
1303                  1.77        0    1/1        main [2]
1304 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1305                  1.02        0    3          b <cycle 1> [4]
1306                  0.75        0    2          a <cycle 1> [5]
1307 ----------------------------------------
1308                                   3          a <cycle 1> [5]
1309 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1310                                   2          a <cycle 1> [5]
1311                     0        0    3/6        c [6]
1312 ----------------------------------------
1313                  1.77        0    1/1        main [2]
1314                                   2          b <cycle 1> [4]
1315 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1316                                   3          b <cycle 1> [4]
1317                     0        0    3/6        c [6]
1318 ----------------------------------------
1319 @end smallexample
1321 @noindent
1322 (The entire call graph for this program contains in addition an entry for
1323 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1324 @code{a} and @code{b}.)
1326 @smallexample
1327 index  % time    self  children called     name
1328                                              <spontaneous>
1329 [1]    100.00       0     1.93    0      start [1]
1330                  0.16     1.77    1/1        main [2]
1331 ----------------------------------------
1332                  0.16     1.77    1/1        start [1]
1333 [2]    100.00    0.16     1.77    1      main [2]
1334                  1.77        0    1/1        a <cycle 1> [5]
1335 ----------------------------------------
1336                  1.77        0    1/1        main [2]
1337 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1338                  1.02        0    3          b <cycle 1> [4]
1339                  0.75        0    2          a <cycle 1> [5]
1340                     0        0    6/6        c [6]
1341 ----------------------------------------
1342                                   3          a <cycle 1> [5]
1343 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1344                                   2          a <cycle 1> [5]
1345                     0        0    3/6        c [6]
1346 ----------------------------------------
1347                  1.77        0    1/1        main [2]
1348                                   2          b <cycle 1> [4]
1349 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1350                                   3          b <cycle 1> [4]
1351                     0        0    3/6        c [6]
1352 ----------------------------------------
1353                     0        0    3/6        b <cycle 1> [4]
1354                     0        0    3/6        a <cycle 1> [5]
1355 [6]      0.00       0        0    6      c [6]
1356 ----------------------------------------
1357 @end smallexample
1359 The @code{self} field of the cycle's primary line is the total time
1360 spent in all the functions of the cycle.  It equals the sum of the
1361 @code{self} fields for the individual functions in the cycle, found
1362 in the entry in the subroutine lines for these functions.
1364 The @code{children} fields of the cycle's primary line and subroutine lines
1365 count only subroutines outside the cycle.  Even though @code{a} calls
1366 @code{b}, the time spent in those calls to @code{b} is not counted in
1367 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1368 what to do when the time in those calls to @code{b} includes indirect
1369 recursive calls back to @code{a}.
1371 The @code{children} field of a caller-line in the cycle's entry estimates
1372 the amount of time spent @emph{in the whole cycle}, and its other
1373 subroutines, on the times when that caller called a function in the cycle.
1375 The @code{called} field in the primary line for the cycle has two numbers:
1376 first, the number of times functions in the cycle were called by functions
1377 outside the cycle; second, the number of times they were called by
1378 functions in the cycle (including times when a function in the cycle calls
1379 itself).  This is a generalization of the usual split into non-recursive and
1380 recursive calls.
1382 The @code{called} field of a subroutine-line for a cycle member in the
1383 cycle's entry says how many time that function was called from functions in
1384 the cycle.  The total of all these is the second number in the primary line's
1385 @code{called} field.
1387 In the individual entry for a function in a cycle, the other functions in
1388 the same cycle can appear as subroutines and as callers.  These lines show
1389 how many times each function in the cycle called or was called from each other
1390 function in the cycle.  The @code{self} and @code{children} fields in these
1391 lines are blank because of the difficulty of defining meanings for them
1392 when recursion is going on.
1394 @node Line-by-line
1395 @section Line-by-line Profiling
1397 @code{gprof}'s @samp{-l} option causes the program to perform
1398 @dfn{line-by-line} profiling.  In this mode, histogram
1399 samples are assigned not to functions, but to individual
1400 lines of source code.  This only works with programs compiled with
1401 older versions of the @code{gcc} compiler.  Newer versions of @code{gcc}
1402 use a different program - @code{gcov} - to display line-by-line
1403 profiling information.
1405 With the older versions of @code{gcc} the program usually has to be
1406 compiled with a @samp{-g} option, in addition to @samp{-pg}, in order
1407 to generate debugging symbols for tracking source code lines.
1408 Note, in much older versions of @code{gcc} the program had to be
1409 compiled with the @samp{-a} command line option as well.
1411 The flat profile is the most useful output table
1412 in line-by-line mode.
1413 The call graph isn't as useful as normal, since
1414 the current version of @code{gprof} does not propagate
1415 call graph arcs from source code lines to the enclosing function.
1416 The call graph does, however, show each line of code
1417 that called each function, along with a count.
1419 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1420 Note that @code{ct_init} accounted for four histogram hits, and
1421 13327 calls to @code{init_block}.
1423 @smallexample
1424 Flat profile:
1426 Each sample counts as 0.01 seconds.
1427   %   cumulative   self              self     total           
1428  time   seconds   seconds    calls  us/call  us/call  name    
1429  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1432                      Call graph (explanation follows)
1435 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1437 index % time    self  children    called     name
1439                 0.00    0.00       1/13496       name_too_long
1440                 0.00    0.00      40/13496       deflate
1441                 0.00    0.00     128/13496       deflate_fast
1442                 0.00    0.00   13327/13496       ct_init
1443 [7]      0.0    0.00    0.00   13496         init_block
1445 @end smallexample
1447 Now let's look at some of @code{gprof}'s output from the same program run,
1448 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1449 four histogram hits are broken down into four lines of source code---one hit
1450 occurred on each of lines 349, 351, 382 and 385.  In the call graph,
1451 note how
1452 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1453 into one call from line 396, 3071 calls from line 384, 3730 calls
1454 from line 385, and 6525 calls from 387.
1456 @smallexample
1457 Flat profile:
1459 Each sample counts as 0.01 seconds.
1460   %   cumulative   self                    
1461  time   seconds   seconds    calls  name    
1462   7.69      0.10     0.01           ct_init (trees.c:349)
1463   7.69      0.11     0.01           ct_init (trees.c:351)
1464   7.69      0.12     0.01           ct_init (trees.c:382)
1465   7.69      0.13     0.01           ct_init (trees.c:385)
1468                      Call graph (explanation follows)
1471 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1473   % time    self  children    called     name
1475             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1476             0.00    0.00       1/13496       deflate (deflate.c:763)
1477             0.00    0.00       1/13496       ct_init (trees.c:396)
1478             0.00    0.00       2/13496       deflate (deflate.c:727)
1479             0.00    0.00       4/13496       deflate (deflate.c:686)
1480             0.00    0.00       5/13496       deflate (deflate.c:675)
1481             0.00    0.00      12/13496       deflate (deflate.c:679)
1482             0.00    0.00      16/13496       deflate (deflate.c:730)
1483             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1484             0.00    0.00    3071/13496       ct_init (trees.c:384)
1485             0.00    0.00    3730/13496       ct_init (trees.c:385)
1486             0.00    0.00    6525/13496       ct_init (trees.c:387)
1487 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1489 @end smallexample
1492 @node Annotated Source
1493 @section The Annotated Source Listing
1495 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1496 which lists the program's source code, each function labeled with the
1497 number of times it was called.  You may also need to specify the
1498 @samp{-I} option, if @code{gprof} can't find the source code files.
1500 With older versions of @code{gcc} compiling with @samp{gcc @dots{} -g
1501 -pg -a} augments your program with basic-block counting code, in
1502 addition to function counting code.  This enables @code{gprof} to
1503 determine how many times each line of code was executed.  With newer
1504 versions of @code{gcc} support for displaying basic-block counts is
1505 provided by the @code{gcov} program.
1507 For example, consider the following function, taken from gzip,
1508 with line numbers added:
1510 @smallexample
1511  1 ulg updcrc(s, n)
1512  2     uch *s;
1513  3     unsigned n;
1514  4 @{
1515  5     register ulg c;
1517  7     static ulg crc = (ulg)0xffffffffL;
1519  9     if (s == NULL) @{
1520 10         c = 0xffffffffL;
1521 11     @} else @{
1522 12         c = crc;
1523 13         if (n) do @{
1524 14             c = crc_32_tab[...];
1525 15         @} while (--n);
1526 16     @}
1527 17     crc = c;
1528 18     return c ^ 0xffffffffL;
1529 19 @}
1531 @end smallexample
1533 @code{updcrc} has at least five basic-blocks.
1534 One is the function itself.  The
1535 @code{if} statement on line 9 generates two more basic-blocks, one
1536 for each branch of the @code{if}.  A fourth basic-block results from
1537 the @code{if} on line 13, and the contents of the @code{do} loop form
1538 the fifth basic-block.  The compiler may also generate additional
1539 basic-blocks to handle various special cases.
1541 A program augmented for basic-block counting can be analyzed with
1542 @samp{gprof -l -A}.
1543 The @samp{-x} option is also helpful,
1544 to ensure that each line of code is labeled at least once.
1545 Here is @code{updcrc}'s
1546 annotated source listing for a sample @code{gzip} run:
1548 @smallexample
1549                 ulg updcrc(s, n)
1550                     uch *s;
1551                     unsigned n;
1552             2 ->@{
1553                     register ulg c;
1554                 
1555                     static ulg crc = (ulg)0xffffffffL;
1556                 
1557             2 ->    if (s == NULL) @{
1558             1 ->        c = 0xffffffffL;
1559             1 ->    @} else @{
1560             1 ->        c = crc;
1561             1 ->        if (n) do @{
1562         26312 ->            c = crc_32_tab[...];
1563 26312,1,26311 ->        @} while (--n);
1564                     @}
1565             2 ->    crc = c;
1566             2 ->    return c ^ 0xffffffffL;
1567             2 ->@}
1568 @end smallexample
1570 In this example, the function was called twice, passing once through
1571 each branch of the @code{if} statement.  The body of the @code{do}
1572 loop was executed a total of 26312 times.  Note how the @code{while}
1573 statement is annotated.  It began execution 26312 times, once for
1574 each iteration through the loop.  One of those times (the last time)
1575 it exited, while it branched back to the beginning of the loop 26311 times.
1577 @node Inaccuracy
1578 @chapter Inaccuracy of @code{gprof} Output
1580 @menu
1581 * Sampling Error::      Statistical margins of error
1582 * Assumptions::         Estimating children times
1583 @end menu
1585 @node Sampling Error
1586 @section Statistical Sampling Error
1588 The run-time figures that @code{gprof} gives you are based on a sampling
1589 process, so they are subject to statistical inaccuracy.  If a function runs
1590 only a small amount of time, so that on the average the sampling process
1591 ought to catch that function in the act only once, there is a pretty good
1592 chance it will actually find that function zero times, or twice.
1594 By contrast, the number-of-calls and basic-block figures
1595 are derived by counting, not
1596 sampling.  They are completely accurate and will not vary from run to run
1597 if your program is deterministic.
1599 The @dfn{sampling period} that is printed at the beginning of the flat
1600 profile says how often samples are taken.  The rule of thumb is that a
1601 run-time figure is accurate if it is considerably bigger than the sampling
1602 period.
1604 The actual amount of error can be predicted.
1605 For @var{n} samples, the @emph{expected} error
1606 is the square-root of @var{n}.  For example,
1607 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1608 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1609 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1610 or ten percent of the observed value.
1611 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1612 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1613 the expected error in @code{bar}'s run-time is 1 second,
1614 or one percent of the observed value.
1615 It is likely to
1616 vary this much @emph{on the average} from one profiling run to the next.
1617 (@emph{Sometimes} it will vary more.)
1619 This does not mean that a small run-time figure is devoid of information.
1620 If the program's @emph{total} run-time is large, a small run-time for one
1621 function does tell you that that function used an insignificant fraction of
1622 the whole program's time.  Usually this means it is not worth optimizing.
1624 One way to get more accuracy is to give your program more (but similar)
1625 input data so it will take longer.  Another way is to combine the data from
1626 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1628 @enumerate
1629 @item
1630 Run your program once.
1632 @item
1633 Issue the command @samp{mv gmon.out gmon.sum}.
1635 @item
1636 Run your program again, the same as before.
1638 @item
1639 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1641 @example
1642 gprof -s @var{executable-file} gmon.out gmon.sum
1643 @end example
1645 @item
1646 Repeat the last two steps as often as you wish.
1648 @item
1649 Analyze the cumulative data using this command:
1651 @example
1652 gprof @var{executable-file} gmon.sum > @var{output-file}
1653 @end example
1654 @end enumerate
1656 @node Assumptions
1657 @section Estimating @code{children} Times
1659 Some of the figures in the call graph are estimates---for example, the
1660 @code{children} time values and all the time figures in caller and
1661 subroutine lines.
1663 There is no direct information about these measurements in the profile
1664 data itself.  Instead, @code{gprof} estimates them by making an assumption
1665 about your program that might or might not be true.
1667 The assumption made is that the average time spent in each call to any
1668 function @code{foo} is not correlated with who called @code{foo}.  If
1669 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1670 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1671 @code{children} time, by assumption.
1673 This assumption is usually true enough, but for some programs it is far
1674 from true.  Suppose that @code{foo} returns very quickly when its argument
1675 is zero; suppose that @code{a} always passes zero as an argument, while
1676 other callers of @code{foo} pass other arguments.  In this program, all the
1677 time spent in @code{foo} is in the calls from callers other than @code{a}.
1678 But @code{gprof} has no way of knowing this; it will blindly and
1679 incorrectly charge 2 seconds of time in @code{foo} to the children of
1680 @code{a}.
1682 @c FIXME - has this been fixed?
1683 We hope some day to put more complete data into @file{gmon.out}, so that
1684 this assumption is no longer needed, if we can figure out how.  For the
1685 novice, the estimated figures are usually more useful than misleading.
1687 @node How do I?
1688 @chapter Answers to Common Questions
1690 @table @asis
1691 @item How can I get more exact information about hot spots in my program?
1693 Looking at the per-line call counts only tells part of the story.
1694 Because @code{gprof} can only report call times and counts by function,
1695 the best way to get finer-grained information on where the program
1696 is spending its time is to re-factor large functions into sequences
1697 of calls to smaller ones.  Beware however that this can introduce
1698 artificial hot spots since compiling with @samp{-pg} adds a significant
1699 overhead to function calls.  An alternative solution is to use a
1700 non-intrusive profiler, e.g.@: oprofile.
1702 @item How do I find which lines in my program were executed the most times?
1704 Use the @code{gcov} program.
1706 @item How do I find which lines in my program called a particular function?
1708 Use @samp{gprof -l} and lookup the function in the call graph.
1709 The callers will be broken down by function and line number.
1711 @item How do I analyze a program that runs for less than a second?
1713 Try using a shell script like this one:
1715 @example
1716 for i in `seq 1 100`; do
1717   fastprog
1718   mv gmon.out gmon.out.$i
1719 done
1721 gprof -s fastprog gmon.out.*
1723 gprof fastprog gmon.sum
1724 @end example
1726 If your program is completely deterministic, all the call counts
1727 will be simple multiples of 100 (i.e., a function called once in
1728 each run will appear with a call count of 100).
1730 @end table
1732 @node Incompatibilities
1733 @chapter Incompatibilities with Unix @code{gprof}
1735 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1736 file @file{gmon.out}, and provide essentially the same information.  But
1737 there are a few differences.
1739 @itemize @bullet
1740 @item
1741 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1742 for basic-block execution counts and non-realtime histograms.  A magic
1743 cookie and version number allows @code{gprof} to easily identify
1744 new style files.  Old BSD-style files can still be read.
1745 @xref{File Format, ,Profiling Data File Format}.
1747 @item
1748 For a recursive function, Unix @code{gprof} lists the function as a
1749 parent and as a child, with a @code{calls} field that lists the number
1750 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1751 the number of recursive calls in the primary line.
1753 @item
1754 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1755 @code{gprof} still lists it as a subroutine of functions that call it.
1757 @item
1758 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1759 in the form @samp{from/to}, instead of @samp{from to}.
1761 @item
1762 In the annotated source listing,
1763 if there are multiple basic blocks on the same line,
1764 @sc{gnu} @code{gprof} prints all of their counts, separated by commas.
1766 @ignore - it does this now
1767 @item
1768 The function names printed in @sc{gnu} @code{gprof} output do not include
1769 the leading underscores that are added internally to the front of all
1770 C identifiers on many operating systems.
1771 @end ignore
1773 @item
1774 The blurbs, field widths, and output formats are different.  @sc{gnu}
1775 @code{gprof} prints blurbs after the tables, so that you can see the
1776 tables without skipping the blurbs.
1777 @end itemize
1779 @node Details
1780 @chapter Details of Profiling
1782 @menu
1783 * Implementation::      How a program collects profiling information
1784 * File Format::         Format of @samp{gmon.out} files
1785 * Internals::           @code{gprof}'s internal operation
1786 * Debugging::           Using @code{gprof}'s @samp{-d} option
1787 @end menu
1789 @node Implementation
1790 @section Implementation of Profiling
1792 Profiling works by changing how every function in your program is compiled
1793 so that when it is called, it will stash away some information about where
1794 it was called from.  From this, the profiler can figure out what function
1795 called it, and can count how many times it was called.  This change is made
1796 by the compiler when your program is compiled with the @samp{-pg} option,
1797 which causes every function to call @code{mcount}
1798 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1799 as one of its first operations.
1801 The @code{mcount} routine, included in the profiling library,
1802 is responsible for recording in an in-memory call graph table
1803 both its parent routine (the child) and its parent's parent.  This is
1804 typically done by examining the stack frame to find both
1805 the address of the child, and the return address in the original parent.
1806 Since this is a very machine-dependent operation, @code{mcount}
1807 itself is typically a short assembly-language stub routine
1808 that extracts the required
1809 information, and then calls @code{__mcount_internal}
1810 (a normal C function) with two arguments---@code{frompc} and @code{selfpc}.
1811 @code{__mcount_internal} is responsible for maintaining
1812 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1813 and the number of times each of these call arcs was traversed.
1815 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1816 which allows a generic @code{mcount} function to extract the
1817 required information from the stack frame.  However, on some
1818 architectures, most notably the SPARC, using this builtin can be
1819 very computationally expensive, and an assembly language version
1820 of @code{mcount} is used for performance reasons.
1822 Number-of-calls information for library routines is collected by using a
1823 special version of the C library.  The programs in it are the same as in
1824 the usual C library, but they were compiled with @samp{-pg}.  If you
1825 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1826 profiling version of the library.
1828 Profiling also involves watching your program as it runs, and keeping a
1829 histogram of where the program counter happens to be every now and then.
1830 Typically the program counter is looked at around 100 times per second of
1831 run time, but the exact frequency may vary from system to system.
1833 This is done is one of two ways.  Most UNIX-like operating systems
1834 provide a @code{profil()} system call, which registers a memory
1835 array with the kernel, along with a scale
1836 factor that determines how the program's address space maps
1837 into the array.
1838 Typical scaling values cause every 2 to 8 bytes of address space
1839 to map into a single array slot.
1840 On every tick of the system clock
1841 (assuming the profiled program is running), the value of the
1842 program counter is examined and the corresponding slot in
1843 the memory array is incremented.  Since this is done in the kernel,
1844 which had to interrupt the process anyway to handle the clock
1845 interrupt, very little additional system overhead is required.
1847 However, some operating systems, most notably Linux 2.0 (and earlier),
1848 do not provide a @code{profil()} system call.  On such a system,
1849 arrangements are made for the kernel to periodically deliver
1850 a signal to the process (typically via @code{setitimer()}),
1851 which then performs the same operation of examining the
1852 program counter and incrementing a slot in the memory array.
1853 Since this method requires a signal to be delivered to
1854 user space every time a sample is taken, it uses considerably
1855 more overhead than kernel-based profiling.  Also, due to the
1856 added delay required to deliver the signal, this method is
1857 less accurate as well.
1859 A special startup routine allocates memory for the histogram and 
1860 either calls @code{profil()} or sets up
1861 a clock signal handler.
1862 This routine (@code{monstartup}) can be invoked in several ways.
1863 On Linux systems, a special profiling startup file @code{gcrt0.o},
1864 which invokes @code{monstartup} before @code{main},
1865 is used instead of the default @code{crt0.o}.
1866 Use of this special startup file is one of the effects
1867 of using @samp{gcc @dots{} -pg} to link.
1868 On SPARC systems, no special startup files are used.
1869 Rather, the @code{mcount} routine, when it is invoked for
1870 the first time (typically when @code{main} is called),
1871 calls @code{monstartup}.
1873 If the compiler's @samp{-a} option was used, basic-block counting
1874 is also enabled.  Each object file is then compiled with a static array
1875 of counts, initially zero.
1876 In the executable code, every time a new basic-block begins
1877 (i.e., when an @code{if} statement appears), an extra instruction
1878 is inserted to increment the corresponding count in the array.
1879 At compile time, a paired array was constructed that recorded
1880 the starting address of each basic-block.  Taken together,
1881 the two arrays record the starting address of every basic-block,
1882 along with the number of times it was executed.
1884 The profiling library also includes a function (@code{mcleanup}) which is
1885 typically registered using @code{atexit()} to be called as the
1886 program exits, and is responsible for writing the file @file{gmon.out}.
1887 Profiling is turned off, various headers are output, and the histogram
1888 is written, followed by the call-graph arcs and the basic-block counts.
1890 The output from @code{gprof} gives no indication of parts of your program that
1891 are limited by I/O or swapping bandwidth.  This is because samples of the
1892 program counter are taken at fixed intervals of the program's run time.
1893 Therefore, the
1894 time measurements in @code{gprof} output say nothing about time that your
1895 program was not running.  For example, a part of the program that creates
1896 so much data that it cannot all fit in physical memory at once may run very
1897 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1898 the other hand, sampling by run time has the advantage that the amount of
1899 load due to other users won't directly affect the output you get.
1901 @node File Format
1902 @section Profiling Data File Format
1904 The old BSD-derived file format used for profile data does not contain a
1905 magic cookie that allows to check whether a data file really is a
1906 @code{gprof} file.  Furthermore, it does not provide a version number, thus
1907 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1908 uses a new file format that provides these features.  For backward
1909 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1910 format, but not all features are supported with it.  For example,
1911 basic-block execution counts cannot be accommodated by the old file
1912 format.
1914 The new file format is defined in header file @file{gmon_out.h}.  It
1915 consists of a header containing the magic cookie and a version number,
1916 as well as some spare bytes available for future extensions.  All data
1917 in a profile data file is in the native format of the target for which
1918 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically
1919 to the byte-order in use.
1921 In the new file format, the header is followed by a sequence of
1922 records.  Currently, there are three different record types: histogram
1923 records, call-graph arc records, and basic-block execution count
1924 records.  Each file can contain any number of each record type.  When
1925 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1926 compatible with each other and compute the union of all records.  For
1927 example, for basic-block execution counts, the union is simply the sum
1928 of all execution counts for each basic-block.
1930 @subsection Histogram Records
1932 Histogram records consist of a header that is followed by an array of
1933 bins.  The header contains the text-segment range that the histogram
1934 spans, the size of the histogram in bytes (unlike in the old BSD
1935 format, this does not include the size of the header), the rate of the
1936 profiling clock, and the physical dimension that the bin counts
1937 represent after being scaled by the profiling clock rate.  The
1938 physical dimension is specified in two parts: a long name of up to 15
1939 characters and a single character abbreviation.  For example, a
1940 histogram representing real-time would specify the long name as
1941 ``seconds'' and the abbreviation as ``s''.  This feature is useful for
1942 architectures that support performance monitor hardware (which,
1943 fortunately, is becoming increasingly common).  For example, under DEC
1944 OSF/1, the ``uprofile'' command can be used to produce a histogram of,
1945 say, instruction cache misses.  In this case, the dimension in the
1946 histogram header could be set to ``i-cache misses'' and the abbreviation
1947 could be set to ``1'' (because it is simply a count, not a physical
1948 dimension).  Also, the profiling rate would have to be set to 1 in
1949 this case.
1951 Histogram bins are 16-bit numbers and each bin represent an equal
1952 amount of text-space.  For example, if the text-segment is one
1953 thousand bytes long and if there are ten bins in the histogram, each
1954 bin represents one hundred bytes.
1957 @subsection Call-Graph Records
1959 Call-graph records have a format that is identical to the one used in
1960 the BSD-derived file format.  It consists of an arc in the call graph
1961 and a count indicating the number of times the arc was traversed
1962 during program execution.  Arcs are specified by a pair of addresses:
1963 the first must be within caller's function and the second must be
1964 within the callee's function.  When performing profiling at the
1965 function level, these addresses can point anywhere within the
1966 respective function.  However, when profiling at the line-level, it is
1967 better if the addresses are as close to the call-site/entry-point as
1968 possible.  This will ensure that the line-level call-graph is able to
1969 identify exactly which line of source code performed calls to a
1970 function.
1972 @subsection Basic-Block Execution Count Records
1974 Basic-block execution count records consist of a header followed by a
1975 sequence of address/count pairs.  The header simply specifies the
1976 length of the sequence.  In an address/count pair, the address
1977 identifies a basic-block and the count specifies the number of times
1978 that basic-block was executed.  Any address within the basic-address can
1979 be used.
1981 @node Internals
1982 @section @code{gprof}'s Internal Operation
1984 Like most programs, @code{gprof} begins by processing its options.
1985 During this stage, it may building its symspec list
1986 (@code{sym_ids.c:@-sym_id_add}), if
1987 options are specified which use symspecs.
1988 @code{gprof} maintains a single linked list of symspecs,
1989 which will eventually get turned into 12 symbol tables,
1990 organized into six include/exclude pairs---one
1991 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
1992 the call graph arcs (INCL_ARCS/EXCL_ARCS),
1993 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
1994 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
1995 the annotated source listing (INCL_ANNO/EXCL_ANNO),
1996 and the execution count listing (INCL_EXEC/EXCL_EXEC).
1998 After option processing, @code{gprof} finishes
1999 building the symspec list by adding all the symspecs in
2000 @code{default_excluded_list} to the exclude lists
2001 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
2002 EXCL_FLAT as well.
2003 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
2005 Next, the BFD library is called to open the object file,
2006 verify that it is an object file,
2007 and read its symbol table (@code{core.c:@-core_init}),
2008 using @code{bfd_canonicalize_symtab} after mallocing
2009 an appropriately sized array of symbols.  At this point,
2010 function mappings are read (if the @samp{--file-ordering} option
2011 has been specified), and the core text space is read into
2012 memory (if the @samp{-c} option was given).
2014 @code{gprof}'s own symbol table, an array of Sym structures,
2015 is now built.
2016 This is done in one of two ways, by one of two routines, depending
2017 on whether line-by-line profiling (@samp{-l} option) has been
2018 enabled.
2019 For normal profiling, the BFD canonical symbol table is scanned.
2020 For line-by-line profiling, every
2021 text space address is examined, and a new symbol table entry
2022 gets created every time the line number changes.
2023 In either case, two passes are made through the symbol
2024 table---one to count the size of the symbol table required,
2025 and the other to actually read the symbols.  In between the
2026 two passes, a single array of type @code{Sym} is created of
2027 the appropriate length.
2028 Finally, @code{symtab.c:@-symtab_finalize}
2029 is called to sort the symbol table and remove duplicate entries
2030 (entries with the same memory address).
2032 The symbol table must be a contiguous array for two reasons.
2033 First, the @code{qsort} library function (which sorts an array)
2034 will be used to sort the symbol table.
2035 Also, the symbol lookup routine (@code{symtab.c:@-sym_lookup}),
2036 which finds symbols
2037 based on memory address, uses a binary search algorithm
2038 which requires the symbol table to be a sorted array.
2039 Function symbols are indicated with an @code{is_func} flag.
2040 Line number symbols have no special flags set.
2041 Additionally, a symbol can have an @code{is_static} flag
2042 to indicate that it is a local symbol.
2044 With the symbol table read, the symspecs can now be translated
2045 into Syms (@code{sym_ids.c:@-sym_id_parse}).  Remember that a single
2046 symspec can match multiple symbols.
2047 An array of symbol tables
2048 (@code{syms}) is created, each entry of which is a symbol table
2049 of Syms to be included or excluded from a particular listing.
2050 The master symbol table and the symspecs are examined by nested
2051 loops, and every symbol that matches a symspec is inserted
2052 into the appropriate syms table.  This is done twice, once to
2053 count the size of each required symbol table, and again to build
2054 the tables, which have been malloced between passes.
2055 From now on, to determine whether a symbol is on an include
2056 or exclude symspec list, @code{gprof} simply uses its
2057 standard symbol lookup routine on the appropriate table
2058 in the @code{syms} array.
2060 Now the profile data file(s) themselves are read
2061 (@code{gmon_io.c:@-gmon_out_read}),
2062 first by checking for a new-style @samp{gmon.out} header,
2063 then assuming this is an old-style BSD @samp{gmon.out}
2064 if the magic number test failed.
2066 New-style histogram records are read by @code{hist.c:@-hist_read_rec}.
2067 For the first histogram record, allocate a memory array to hold
2068 all the bins, and read them in.
2069 When multiple profile data files (or files with multiple histogram
2070 records) are read, the memory ranges of each pair of histogram records
2071 must be either equal, or non-overlapping.  For each pair of histogram
2072 records, the resolution (memory region size divided by the number of
2073 bins) must be the same.  The time unit must be the same for all 
2074 histogram records. If the above containts are met, all histograms
2075 for the same memory range are merged.
2077 As each call graph record is read (@code{call_graph.c:@-cg_read_rec}),
2078 the parent and child addresses
2079 are matched to symbol table entries, and a call graph arc is
2080 created by @code{cg_arcs.c:@-arc_add}, unless the arc fails a symspec
2081 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
2082 a linked list is maintained of the parent's child arcs, and of the child's
2083 parent arcs.
2084 Both the child's call count and the arc's call count are
2085 incremented by the record's call count.
2087 Basic-block records are read (@code{basic_blocks.c:@-bb_read_rec}),
2088 but only if line-by-line profiling has been selected.
2089 Each basic-block address is matched to a corresponding line
2090 symbol in the symbol table, and an entry made in the symbol's
2091 bb_addr and bb_calls arrays.  Again, if multiple basic-block
2092 records are present for the same address, the call counts
2093 are cumulative.
2095 A gmon.sum file is dumped, if requested (@code{gmon_io.c:@-gmon_out_write}).
2097 If histograms were present in the data files, assign them to symbols
2098 (@code{hist.c:@-hist_assign_samples}) by iterating over all the sample
2099 bins and assigning them to symbols.  Since the symbol table
2100 is sorted in order of ascending memory addresses, we can
2101 simple follow along in the symbol table as we make our pass
2102 over the sample bins.
2103 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
2104 Depending on the histogram
2105 scale factor, a sample bin may span multiple symbols,
2106 in which case a fraction of the sample count is allocated
2107 to each symbol, proportional to the degree of overlap.
2108 This effect is rare for normal profiling, but overlaps
2109 are more common during line-by-line profiling, and can
2110 cause each of two adjacent lines to be credited with half
2111 a hit, for example.
2113 If call graph data is present, @code{cg_arcs.c:@-cg_assemble} is called.
2114 First, if @samp{-c} was specified, a machine-dependent
2115 routine (@code{find_call}) scans through each symbol's machine code,
2116 looking for subroutine call instructions, and adding them
2117 to the call graph with a zero call count.
2118 A topological sort is performed by depth-first numbering
2119 all the symbols (@code{cg_dfn.c:@-cg_dfn}), so that
2120 children are always numbered less than their parents,
2121 then making a array of pointers into the symbol table and sorting it into
2122 numerical order, which is reverse topological
2123 order (children appear before parents).
2124 Cycles are also detected at this point, all members
2125 of which are assigned the same topological number.
2126 Two passes are now made through this sorted array of symbol pointers.
2127 The first pass, from end to beginning (parents to children),
2128 computes the fraction of child time to propagate to each parent
2129 and a print flag.
2130 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
2131 with a parent's include or exclude (print or no print) property
2132 being propagated to its children, unless they themselves explicitly appear
2133 in INCL_GRAPH or EXCL_GRAPH.
2134 A second pass, from beginning to end (children to parents) actually
2135 propagates the timings along the call graph, subject
2136 to a check against INCL_TIME/EXCL_TIME.
2137 With the print flag, fractions, and timings now stored in the symbol
2138 structures, the topological sort array is now discarded, and a
2139 new array of pointers is assembled, this time sorted by propagated time.
2141 Finally, print the various outputs the user requested, which is now fairly
2142 straightforward.  The call graph (@code{cg_print.c:@-cg_print}) and
2143 flat profile (@code{hist.c:@-hist_print}) are regurgitations of values
2144 already computed.  The annotated source listing
2145 (@code{basic_blocks.c:@-print_annotated_source}) uses basic-block
2146 information, if present, to label each line of code with call counts,
2147 otherwise only the function call counts are presented.
2149 The function ordering code is marginally well documented
2150 in the source code itself (@code{cg_print.c}).  Basically,
2151 the functions with the most use and the most parents are
2152 placed first, followed by other functions with the most use,
2153 followed by lower use functions, followed by unused functions
2154 at the end.
2156 @node Debugging
2157 @section Debugging @code{gprof}
2159 If @code{gprof} was compiled with debugging enabled,
2160 the @samp{-d} option triggers debugging output
2161 (to stdout) which can be helpful in understanding its operation.
2162 The debugging number specified is interpreted as a sum of the following
2163 options:
2165 @table @asis
2166 @item 2 - Topological sort
2167 Monitor depth-first numbering of symbols during call graph analysis
2168 @item 4 - Cycles
2169 Shows symbols as they are identified as cycle heads
2170 @item 16 - Tallying
2171 As the call graph arcs are read, show each arc and how
2172 the total calls to each function are tallied
2173 @item 32 - Call graph arc sorting
2174 Details sorting individual parents/children within each call graph entry
2175 @item 64 - Reading histogram and call graph records
2176 Shows address ranges of histograms as they are read, and each
2177 call graph arc
2178 @item 128 - Symbol table
2179 Reading, classifying, and sorting the symbol table from the object file.
2180 For line-by-line profiling (@samp{-l} option), also shows line numbers
2181 being assigned to memory addresses.
2182 @item 256 - Static call graph
2183 Trace operation of @samp{-c} option
2184 @item 512 - Symbol table and arc table lookups
2185 Detail operation of lookup routines
2186 @item 1024 - Call graph propagation
2187 Shows how function times are propagated along the call graph
2188 @item 2048 - Basic-blocks
2189 Shows basic-block records as they are read from profile data
2190 (only meaningful with @samp{-l} option)
2191 @item 4096 - Symspecs
2192 Shows symspec-to-symbol pattern matching operation
2193 @item 8192 - Annotate source
2194 Tracks operation of @samp{-A} option
2195 @end table
2197 @node GNU Free Documentation License
2198 @appendix GNU Free Documentation License
2199 @center Version 1.1, March 2000
2201 @display
2202 Copyright (C) 2000, 2003 Free Software Foundation, Inc.
2203 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
2205 Everyone is permitted to copy and distribute verbatim copies
2206 of this license document, but changing it is not allowed.
2207 @end display
2208 @sp 1
2209 @enumerate 0
2210 @item
2211 PREAMBLE
2213 The purpose of this License is to make a manual, textbook, or other
2214 written document ``free'' in the sense of freedom: to assure everyone
2215 the effective freedom to copy and redistribute it, with or without
2216 modifying it, either commercially or noncommercially.  Secondarily,
2217 this License preserves for the author and publisher a way to get
2218 credit for their work, while not being considered responsible for
2219 modifications made by others.
2221 This License is a kind of ``copyleft'', which means that derivative
2222 works of the document must themselves be free in the same sense.  It
2223 complements the GNU General Public License, which is a copyleft
2224 license designed for free software.
2226 We have designed this License in order to use it for manuals for free
2227 software, because free software needs free documentation: a free
2228 program should come with manuals providing the same freedoms that the
2229 software does.  But this License is not limited to software manuals;
2230 it can be used for any textual work, regardless of subject matter or
2231 whether it is published as a printed book.  We recommend this License
2232 principally for works whose purpose is instruction or reference.
2234 @sp 1
2235 @item
2236 APPLICABILITY AND DEFINITIONS
2238 This License applies to any manual or other work that contains a
2239 notice placed by the copyright holder saying it can be distributed
2240 under the terms of this License.  The ``Document'', below, refers to any
2241 such manual or work.  Any member of the public is a licensee, and is
2242 addressed as ``you.''
2244 A ``Modified Version'' of the Document means any work containing the
2245 Document or a portion of it, either copied verbatim, or with
2246 modifications and/or translated into another language.
2248 A ``Secondary Section'' is a named appendix or a front-matter section of
2249 the Document that deals exclusively with the relationship of the
2250 publishers or authors of the Document to the Document's overall subject
2251 (or to related matters) and contains nothing that could fall directly
2252 within that overall subject.  (For example, if the Document is in part a
2253 textbook of mathematics, a Secondary Section may not explain any
2254 mathematics.)  The relationship could be a matter of historical
2255 connection with the subject or with related matters, or of legal,
2256 commercial, philosophical, ethical or political position regarding
2257 them.
2259 The ``Invariant Sections'' are certain Secondary Sections whose titles
2260 are designated, as being those of Invariant Sections, in the notice
2261 that says that the Document is released under this License.
2263 The ``Cover Texts'' are certain short passages of text that are listed,
2264 as Front-Cover Texts or Back-Cover Texts, in the notice that says that
2265 the Document is released under this License.
2267 A ``Transparent'' copy of the Document means a machine-readable copy,
2268 represented in a format whose specification is available to the
2269 general public, whose contents can be viewed and edited directly and
2270 straightforwardly with generic text editors or (for images composed of
2271 pixels) generic paint programs or (for drawings) some widely available
2272 drawing editor, and that is suitable for input to text formatters or
2273 for automatic translation to a variety of formats suitable for input
2274 to text formatters.  A copy made in an otherwise Transparent file
2275 format whose markup has been designed to thwart or discourage
2276 subsequent modification by readers is not Transparent.  A copy that is
2277 not ``Transparent'' is called ``Opaque.''
2279 Examples of suitable formats for Transparent copies include plain
2280 ASCII without markup, Texinfo input format, LaTeX input format, SGML
2281 or XML using a publicly available DTD, and standard-conforming simple
2282 HTML designed for human modification.  Opaque formats include
2283 PostScript, PDF, proprietary formats that can be read and edited only
2284 by proprietary word processors, SGML or XML for which the DTD and/or
2285 processing tools are not generally available, and the
2286 machine-generated HTML produced by some word processors for output
2287 purposes only.
2289 The ``Title Page'' means, for a printed book, the title page itself,
2290 plus such following pages as are needed to hold, legibly, the material
2291 this License requires to appear in the title page.  For works in
2292 formats which do not have any title page as such, ``Title Page'' means
2293 the text near the most prominent appearance of the work's title,
2294 preceding the beginning of the body of the text.
2295 @sp 1
2296 @item
2297 VERBATIM COPYING
2299 You may copy and distribute the Document in any medium, either
2300 commercially or noncommercially, provided that this License, the
2301 copyright notices, and the license notice saying this License applies
2302 to the Document are reproduced in all copies, and that you add no other
2303 conditions whatsoever to those of this License.  You may not use
2304 technical measures to obstruct or control the reading or further
2305 copying of the copies you make or distribute.  However, you may accept
2306 compensation in exchange for copies.  If you distribute a large enough
2307 number of copies you must also follow the conditions in section 3.
2309 You may also lend copies, under the same conditions stated above, and
2310 you may publicly display copies.
2311 @sp 1
2312 @item
2313 COPYING IN QUANTITY
2315 If you publish printed copies of the Document numbering more than 100,
2316 and the Document's license notice requires Cover Texts, you must enclose
2317 the copies in covers that carry, clearly and legibly, all these Cover
2318 Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
2319 the back cover.  Both covers must also clearly and legibly identify
2320 you as the publisher of these copies.  The front cover must present
2321 the full title with all words of the title equally prominent and
2322 visible.  You may add other material on the covers in addition.
2323 Copying with changes limited to the covers, as long as they preserve
2324 the title of the Document and satisfy these conditions, can be treated
2325 as verbatim copying in other respects.
2327 If the required texts for either cover are too voluminous to fit
2328 legibly, you should put the first ones listed (as many as fit
2329 reasonably) on the actual cover, and continue the rest onto adjacent
2330 pages.
2332 If you publish or distribute Opaque copies of the Document numbering
2333 more than 100, you must either include a machine-readable Transparent
2334 copy along with each Opaque copy, or state in or with each Opaque copy
2335 a publicly-accessible computer-network location containing a complete
2336 Transparent copy of the Document, free of added material, which the
2337 general network-using public has access to download anonymously at no
2338 charge using public-standard network protocols.  If you use the latter
2339 option, you must take reasonably prudent steps, when you begin
2340 distribution of Opaque copies in quantity, to ensure that this
2341 Transparent copy will remain thus accessible at the stated location
2342 until at least one year after the last time you distribute an Opaque
2343 copy (directly or through your agents or retailers) of that edition to
2344 the public.
2346 It is requested, but not required, that you contact the authors of the
2347 Document well before redistributing any large number of copies, to give
2348 them a chance to provide you with an updated version of the Document.
2349 @sp 1
2350 @item
2351 MODIFICATIONS
2353 You may copy and distribute a Modified Version of the Document under
2354 the conditions of sections 2 and 3 above, provided that you release
2355 the Modified Version under precisely this License, with the Modified
2356 Version filling the role of the Document, thus licensing distribution
2357 and modification of the Modified Version to whoever possesses a copy
2358 of it.  In addition, you must do these things in the Modified Version:
2360 A. Use in the Title Page (and on the covers, if any) a title distinct
2361    from that of the Document, and from those of previous versions
2362    (which should, if there were any, be listed in the History section
2363    of the Document).  You may use the same title as a previous version
2364    if the original publisher of that version gives permission.@*
2365 B. List on the Title Page, as authors, one or more persons or entities
2366    responsible for authorship of the modifications in the Modified
2367    Version, together with at least five of the principal authors of the
2368    Document (all of its principal authors, if it has less than five).@*
2369 C. State on the Title page the name of the publisher of the
2370    Modified Version, as the publisher.@*
2371 D. Preserve all the copyright notices of the Document.@*
2372 E. Add an appropriate copyright notice for your modifications
2373    adjacent to the other copyright notices.@*
2374 F. Include, immediately after the copyright notices, a license notice
2375    giving the public permission to use the Modified Version under the
2376    terms of this License, in the form shown in the Addendum below.@*
2377 G. Preserve in that license notice the full lists of Invariant Sections
2378    and required Cover Texts given in the Document's license notice.@*
2379 H. Include an unaltered copy of this License.@*
2380 I. Preserve the section entitled ``History'', and its title, and add to
2381    it an item stating at least the title, year, new authors, and
2382    publisher of the Modified Version as given on the Title Page.  If
2383    there is no section entitled ``History'' in the Document, create one
2384    stating the title, year, authors, and publisher of the Document as
2385    given on its Title Page, then add an item describing the Modified
2386    Version as stated in the previous sentence.@*
2387 J. Preserve the network location, if any, given in the Document for
2388    public access to a Transparent copy of the Document, and likewise
2389    the network locations given in the Document for previous versions
2390    it was based on.  These may be placed in the ``History'' section.
2391    You may omit a network location for a work that was published at
2392    least four years before the Document itself, or if the original
2393    publisher of the version it refers to gives permission.@*
2394 K. In any section entitled ``Acknowledgements'' or ``Dedications'',
2395    preserve the section's title, and preserve in the section all the
2396    substance and tone of each of the contributor acknowledgements
2397    and/or dedications given therein.@*
2398 L. Preserve all the Invariant Sections of the Document,
2399    unaltered in their text and in their titles.  Section numbers
2400    or the equivalent are not considered part of the section titles.@*
2401 M. Delete any section entitled ``Endorsements.''  Such a section
2402    may not be included in the Modified Version.@*
2403 N. Do not retitle any existing section as ``Endorsements''
2404    or to conflict in title with any Invariant Section.@*
2405 @sp 1
2406 If the Modified Version includes new front-matter sections or
2407 appendices that qualify as Secondary Sections and contain no material
2408 copied from the Document, you may at your option designate some or all
2409 of these sections as invariant.  To do this, add their titles to the
2410 list of Invariant Sections in the Modified Version's license notice.
2411 These titles must be distinct from any other section titles.
2413 You may add a section entitled ``Endorsements'', provided it contains
2414 nothing but endorsements of your Modified Version by various
2415 parties--for example, statements of peer review or that the text has
2416 been approved by an organization as the authoritative definition of a
2417 standard.
2419 You may add a passage of up to five words as a Front-Cover Text, and a
2420 passage of up to 25 words as a Back-Cover Text, to the end of the list
2421 of Cover Texts in the Modified Version.  Only one passage of
2422 Front-Cover Text and one of Back-Cover Text may be added by (or
2423 through arrangements made by) any one entity.  If the Document already
2424 includes a cover text for the same cover, previously added by you or
2425 by arrangement made by the same entity you are acting on behalf of,
2426 you may not add another; but you may replace the old one, on explicit
2427 permission from the previous publisher that added the old one.
2429 The author(s) and publisher(s) of the Document do not by this License
2430 give permission to use their names for publicity for or to assert or
2431 imply endorsement of any Modified Version.
2432 @sp 1
2433 @item
2434 COMBINING DOCUMENTS
2436 You may combine the Document with other documents released under this
2437 License, under the terms defined in section 4 above for modified
2438 versions, provided that you include in the combination all of the
2439 Invariant Sections of all of the original documents, unmodified, and
2440 list them all as Invariant Sections of your combined work in its
2441 license notice.
2443 The combined work need only contain one copy of this License, and
2444 multiple identical Invariant Sections may be replaced with a single
2445 copy.  If there are multiple Invariant Sections with the same name but
2446 different contents, make the title of each such section unique by
2447 adding at the end of it, in parentheses, the name of the original
2448 author or publisher of that section if known, or else a unique number.
2449 Make the same adjustment to the section titles in the list of
2450 Invariant Sections in the license notice of the combined work.
2452 In the combination, you must combine any sections entitled ``History''
2453 in the various original documents, forming one section entitled
2454 ``History''; likewise combine any sections entitled ``Acknowledgements'',
2455 and any sections entitled ``Dedications.''  You must delete all sections
2456 entitled ``Endorsements.''
2457 @sp 1
2458 @item
2459 COLLECTIONS OF DOCUMENTS
2461 You may make a collection consisting of the Document and other documents
2462 released under this License, and replace the individual copies of this
2463 License in the various documents with a single copy that is included in
2464 the collection, provided that you follow the rules of this License for
2465 verbatim copying of each of the documents in all other respects.
2467 You may extract a single document from such a collection, and distribute
2468 it individually under this License, provided you insert a copy of this
2469 License into the extracted document, and follow this License in all
2470 other respects regarding verbatim copying of that document.
2471 @sp 1
2472 @item
2473 AGGREGATION WITH INDEPENDENT WORKS
2475 A compilation of the Document or its derivatives with other separate
2476 and independent documents or works, in or on a volume of a storage or
2477 distribution medium, does not as a whole count as a Modified Version
2478 of the Document, provided no compilation copyright is claimed for the
2479 compilation.  Such a compilation is called an ``aggregate'', and this
2480 License does not apply to the other self-contained works thus compiled
2481 with the Document, on account of their being thus compiled, if they
2482 are not themselves derivative works of the Document.
2484 If the Cover Text requirement of section 3 is applicable to these
2485 copies of the Document, then if the Document is less than one quarter
2486 of the entire aggregate, the Document's Cover Texts may be placed on
2487 covers that surround only the Document within the aggregate.
2488 Otherwise they must appear on covers around the whole aggregate.
2489 @sp 1
2490 @item
2491 TRANSLATION
2493 Translation is considered a kind of modification, so you may
2494 distribute translations of the Document under the terms of section 4.
2495 Replacing Invariant Sections with translations requires special
2496 permission from their copyright holders, but you may include
2497 translations of some or all Invariant Sections in addition to the
2498 original versions of these Invariant Sections.  You may include a
2499 translation of this License provided that you also include the
2500 original English version of this License.  In case of a disagreement
2501 between the translation and the original English version of this
2502 License, the original English version will prevail.
2503 @sp 1
2504 @item
2505 TERMINATION
2507 You may not copy, modify, sublicense, or distribute the Document except
2508 as expressly provided for under this License.  Any other attempt to
2509 copy, modify, sublicense or distribute the Document is void, and will
2510 automatically terminate your rights under this License.  However,
2511 parties who have received copies, or rights, from you under this
2512 License will not have their licenses terminated so long as such
2513 parties remain in full compliance.
2514 @sp 1
2515 @item
2516 FUTURE REVISIONS OF THIS LICENSE
2518 The Free Software Foundation may publish new, revised versions
2519 of the GNU Free Documentation License from time to time.  Such new
2520 versions will be similar in spirit to the present version, but may
2521 differ in detail to address new problems or concerns.  See
2522 http://www.gnu.org/copyleft/.
2524 Each version of the License is given a distinguishing version number.
2525 If the Document specifies that a particular numbered version of this
2526 License ``or any later version'' applies to it, you have the option of
2527 following the terms and conditions either of that specified version or
2528 of any later version that has been published (not as a draft) by the
2529 Free Software Foundation.  If the Document does not specify a version
2530 number of this License, you may choose any version ever published (not
2531 as a draft) by the Free Software Foundation.
2533 @end enumerate
2535 @unnumberedsec ADDENDUM: How to use this License for your documents
2537 To use this License in a document you have written, include a copy of
2538 the License in the document and put the following copyright and
2539 license notices just after the title page:
2541 @smallexample
2542 @group
2543 Copyright (C)  @var{year}  @var{your name}.
2544 Permission is granted to copy, distribute and/or modify this document
2545 under the terms of the GNU Free Documentation License, Version 1.1
2546 or any later version published by the Free Software Foundation;
2547 with the Invariant Sections being @var{list their titles}, with the
2548 Front-Cover Texts being @var{list}, and with the Back-Cover Texts being @var{list}.
2549 A copy of the license is included in the section entitled "GNU
2550 Free Documentation License."
2551 @end group
2552 @end smallexample
2554 If you have no Invariant Sections, write ``with no Invariant Sections''
2555 instead of saying which ones are invariant.  If you have no
2556 Front-Cover Texts, write ``no Front-Cover Texts'' instead of
2557 ``Front-Cover Texts being @var{list}''; likewise for Back-Cover Texts.
2559 If your document contains nontrivial examples of program code, we
2560 recommend releasing these examples in parallel under your choice of
2561 free software license, such as the GNU General Public License,
2562 to permit their use in free software.
2564 @bye
2566 NEEDS AN INDEX
2568 -T - "traditional BSD style": How is it different?  Should the
2569 differences be documented?
2571 example flat file adds up to 100.01%...
2573 note: time estimates now only go out to one decimal place (0.0), where
2574 they used to extend two (78.67).