ld/testsuite/
[binutils.git] / gas / config / tc-i386.c
blob5d2a24a26a9fdfd8afe6b92daadd27ce0d22a1b3
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GAS, the GNU Assembler.
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
52 #endif
54 #ifndef DEFAULT_ARCH
55 #define DEFAULT_ARCH "i386"
56 #endif
58 #ifndef INLINE
59 #if __GNUC__ >= 2
60 #define INLINE __inline__
61 #else
62 #define INLINE
63 #endif
64 #endif
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
80 #ifdef TE_PE
81 static void pe_directive_secrel PARAMS ((int));
82 #endif
83 static void signed_cons PARAMS ((int));
84 static char *output_invalid PARAMS ((int c));
85 static int i386_operand PARAMS ((char *operand_string));
86 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
87 static const reg_entry *parse_register PARAMS ((char *reg_string,
88 char **end_op));
89 static char *parse_insn PARAMS ((char *, char *));
90 static char *parse_operands PARAMS ((char *, const char *));
91 static void swap_operands PARAMS ((void));
92 static void swap_imm_operands PARAMS ((void));
93 static void optimize_imm PARAMS ((void));
94 static void optimize_disp PARAMS ((void));
95 static int match_template PARAMS ((void));
96 static int check_string PARAMS ((void));
97 static int process_suffix PARAMS ((void));
98 static int check_byte_reg PARAMS ((void));
99 static int check_long_reg PARAMS ((void));
100 static int check_qword_reg PARAMS ((void));
101 static int check_word_reg PARAMS ((void));
102 static int finalize_imm PARAMS ((void));
103 static int process_operands PARAMS ((void));
104 static const seg_entry *build_modrm_byte PARAMS ((void));
105 static void output_insn PARAMS ((void));
106 static void output_branch PARAMS ((void));
107 static void output_jump PARAMS ((void));
108 static void output_interseg_jump PARAMS ((void));
109 static void output_imm PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
111 static void output_disp PARAMS ((fragS *insn_start_frag,
112 offsetT insn_start_off));
113 #ifndef I386COFF
114 static void s_bss PARAMS ((int));
115 #endif
116 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
117 static void handle_large_common (int small ATTRIBUTE_UNUSED);
118 #endif
120 static const char *default_arch = DEFAULT_ARCH;
122 /* 'md_assemble ()' gathers together information and puts it into a
123 i386_insn. */
125 union i386_op
127 expressionS *disps;
128 expressionS *imms;
129 const reg_entry *regs;
132 struct _i386_insn
134 /* TM holds the template for the insn were currently assembling. */
135 template tm;
137 /* SUFFIX holds the instruction mnemonic suffix if given.
138 (e.g. 'l' for 'movl') */
139 char suffix;
141 /* OPERANDS gives the number of given operands. */
142 unsigned int operands;
144 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
145 of given register, displacement, memory operands and immediate
146 operands. */
147 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
149 /* TYPES [i] is the type (see above #defines) which tells us how to
150 use OP[i] for the corresponding operand. */
151 unsigned int types[MAX_OPERANDS];
153 /* Displacement expression, immediate expression, or register for each
154 operand. */
155 union i386_op op[MAX_OPERANDS];
157 /* Flags for operands. */
158 unsigned int flags[MAX_OPERANDS];
159 #define Operand_PCrel 1
161 /* Relocation type for operand */
162 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
164 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
165 the base index byte below. */
166 const reg_entry *base_reg;
167 const reg_entry *index_reg;
168 unsigned int log2_scale_factor;
170 /* SEG gives the seg_entries of this insn. They are zero unless
171 explicit segment overrides are given. */
172 const seg_entry *seg[2];
174 /* PREFIX holds all the given prefix opcodes (usually null).
175 PREFIXES is the number of prefix opcodes. */
176 unsigned int prefixes;
177 unsigned char prefix[MAX_PREFIXES];
179 /* RM and SIB are the modrm byte and the sib byte where the
180 addressing modes of this insn are encoded. */
182 modrm_byte rm;
183 rex_byte rex;
184 sib_byte sib;
187 typedef struct _i386_insn i386_insn;
189 /* List of chars besides those in app.c:symbol_chars that can start an
190 operand. Used to prevent the scrubber eating vital white-space. */
191 const char extra_symbol_chars[] = "*%-(["
192 #ifdef LEX_AT
194 #endif
195 #ifdef LEX_QM
197 #endif
200 #if (defined (TE_I386AIX) \
201 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
202 && !defined (TE_GNU) \
203 && !defined (TE_LINUX) \
204 && !defined (TE_NETWARE) \
205 && !defined (TE_FreeBSD) \
206 && !defined (TE_NetBSD)))
207 /* This array holds the chars that always start a comment. If the
208 pre-processor is disabled, these aren't very useful. The option
209 --divide will remove '/' from this list. */
210 const char *i386_comment_chars = "#/";
211 #define SVR4_COMMENT_CHARS 1
212 #define PREFIX_SEPARATOR '\\'
214 #else
215 const char *i386_comment_chars = "#";
216 #define PREFIX_SEPARATOR '/'
217 #endif
219 /* This array holds the chars that only start a comment at the beginning of
220 a line. If the line seems to have the form '# 123 filename'
221 .line and .file directives will appear in the pre-processed output.
222 Note that input_file.c hand checks for '#' at the beginning of the
223 first line of the input file. This is because the compiler outputs
224 #NO_APP at the beginning of its output.
225 Also note that comments started like this one will always work if
226 '/' isn't otherwise defined. */
227 const char line_comment_chars[] = "#/";
229 const char line_separator_chars[] = ";";
231 /* Chars that can be used to separate mant from exp in floating point
232 nums. */
233 const char EXP_CHARS[] = "eE";
235 /* Chars that mean this number is a floating point constant
236 As in 0f12.456
237 or 0d1.2345e12. */
238 const char FLT_CHARS[] = "fFdDxX";
240 /* Tables for lexical analysis. */
241 static char mnemonic_chars[256];
242 static char register_chars[256];
243 static char operand_chars[256];
244 static char identifier_chars[256];
245 static char digit_chars[256];
247 /* Lexical macros. */
248 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
249 #define is_operand_char(x) (operand_chars[(unsigned char) x])
250 #define is_register_char(x) (register_chars[(unsigned char) x])
251 #define is_space_char(x) ((x) == ' ')
252 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
253 #define is_digit_char(x) (digit_chars[(unsigned char) x])
255 /* All non-digit non-letter characters that may occur in an operand. */
256 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
258 /* md_assemble() always leaves the strings it's passed unaltered. To
259 effect this we maintain a stack of saved characters that we've smashed
260 with '\0's (indicating end of strings for various sub-fields of the
261 assembler instruction). */
262 static char save_stack[32];
263 static char *save_stack_p;
264 #define END_STRING_AND_SAVE(s) \
265 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
266 #define RESTORE_END_STRING(s) \
267 do { *(s) = *--save_stack_p; } while (0)
269 /* The instruction we're assembling. */
270 static i386_insn i;
272 /* Possible templates for current insn. */
273 static const templates *current_templates;
275 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
276 static expressionS disp_expressions[2], im_expressions[2];
278 /* Current operand we are working on. */
279 static int this_operand;
281 /* We support four different modes. FLAG_CODE variable is used to distinguish
282 these. */
284 enum flag_code {
285 CODE_32BIT,
286 CODE_16BIT,
287 CODE_64BIT };
288 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
290 static enum flag_code flag_code;
291 static unsigned int object_64bit;
292 static int use_rela_relocations = 0;
294 /* The names used to print error messages. */
295 static const char *flag_code_names[] =
297 "32",
298 "16",
299 "64"
302 /* 1 for intel syntax,
303 0 if att syntax. */
304 static int intel_syntax = 0;
306 /* 1 if register prefix % not required. */
307 static int allow_naked_reg = 0;
309 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
310 leave, push, and pop instructions so that gcc has the same stack
311 frame as in 32 bit mode. */
312 static char stackop_size = '\0';
314 /* Non-zero to optimize code alignment. */
315 int optimize_align_code = 1;
317 /* Non-zero to quieten some warnings. */
318 static int quiet_warnings = 0;
320 /* CPU name. */
321 static const char *cpu_arch_name = NULL;
322 static const char *cpu_sub_arch_name = NULL;
324 /* CPU feature flags. */
325 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
327 /* If we have selected a cpu we are generating instructions for. */
328 static int cpu_arch_tune_set = 0;
330 /* Cpu we are generating instructions for. */
331 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
333 /* CPU feature flags of cpu we are generating instructions for. */
334 static unsigned int cpu_arch_tune_flags = 0;
336 /* CPU instruction set architecture used. */
337 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
339 /* CPU feature flags of instruction set architecture used. */
340 static unsigned int cpu_arch_isa_flags = 0;
342 /* If set, conditional jumps are not automatically promoted to handle
343 larger than a byte offset. */
344 static unsigned int no_cond_jump_promotion = 0;
346 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
347 static symbolS *GOT_symbol;
349 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
350 unsigned int x86_dwarf2_return_column;
352 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
353 int x86_cie_data_alignment;
355 /* Interface to relax_segment.
356 There are 3 major relax states for 386 jump insns because the
357 different types of jumps add different sizes to frags when we're
358 figuring out what sort of jump to choose to reach a given label. */
360 /* Types. */
361 #define UNCOND_JUMP 0
362 #define COND_JUMP 1
363 #define COND_JUMP86 2
365 /* Sizes. */
366 #define CODE16 1
367 #define SMALL 0
368 #define SMALL16 (SMALL | CODE16)
369 #define BIG 2
370 #define BIG16 (BIG | CODE16)
372 #ifndef INLINE
373 #ifdef __GNUC__
374 #define INLINE __inline__
375 #else
376 #define INLINE
377 #endif
378 #endif
380 #define ENCODE_RELAX_STATE(type, size) \
381 ((relax_substateT) (((type) << 2) | (size)))
382 #define TYPE_FROM_RELAX_STATE(s) \
383 ((s) >> 2)
384 #define DISP_SIZE_FROM_RELAX_STATE(s) \
385 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
387 /* This table is used by relax_frag to promote short jumps to long
388 ones where necessary. SMALL (short) jumps may be promoted to BIG
389 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
390 don't allow a short jump in a 32 bit code segment to be promoted to
391 a 16 bit offset jump because it's slower (requires data size
392 prefix), and doesn't work, unless the destination is in the bottom
393 64k of the code segment (The top 16 bits of eip are zeroed). */
395 const relax_typeS md_relax_table[] =
397 /* The fields are:
398 1) most positive reach of this state,
399 2) most negative reach of this state,
400 3) how many bytes this mode will have in the variable part of the frag
401 4) which index into the table to try if we can't fit into this one. */
403 /* UNCOND_JUMP states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
406 /* dword jmp adds 4 bytes to frag:
407 0 extra opcode bytes, 4 displacement bytes. */
408 {0, 0, 4, 0},
409 /* word jmp adds 2 byte2 to frag:
410 0 extra opcode bytes, 2 displacement bytes. */
411 {0, 0, 2, 0},
413 /* COND_JUMP states. */
414 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
415 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
416 /* dword conditionals adds 5 bytes to frag:
417 1 extra opcode byte, 4 displacement bytes. */
418 {0, 0, 5, 0},
419 /* word conditionals add 3 bytes to frag:
420 1 extra opcode byte, 2 displacement bytes. */
421 {0, 0, 3, 0},
423 /* COND_JUMP86 states. */
424 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
425 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
426 /* dword conditionals adds 5 bytes to frag:
427 1 extra opcode byte, 4 displacement bytes. */
428 {0, 0, 5, 0},
429 /* word conditionals add 4 bytes to frag:
430 1 displacement byte and a 3 byte long branch insn. */
431 {0, 0, 4, 0}
434 static const arch_entry cpu_arch[] =
436 {"generic32", PROCESSOR_GENERIC32,
437 Cpu186|Cpu286|Cpu386},
438 {"generic64", PROCESSOR_GENERIC64,
439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
440 |CpuMMX2|CpuSSE|CpuSSE2},
441 {"i8086", PROCESSOR_UNKNOWN,
443 {"i186", PROCESSOR_UNKNOWN,
444 Cpu186},
445 {"i286", PROCESSOR_UNKNOWN,
446 Cpu186|Cpu286},
447 {"i386", PROCESSOR_GENERIC32,
448 Cpu186|Cpu286|Cpu386},
449 {"i486", PROCESSOR_I486,
450 Cpu186|Cpu286|Cpu386|Cpu486},
451 {"i586", PROCESSOR_PENTIUM,
452 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
453 {"i686", PROCESSOR_PENTIUMPRO,
454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
455 {"pentium", PROCESSOR_PENTIUM,
456 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
457 {"pentiumpro",PROCESSOR_PENTIUMPRO,
458 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
459 {"pentiumii", PROCESSOR_PENTIUMPRO,
460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
461 {"pentiumiii",PROCESSOR_PENTIUMPRO,
462 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
463 {"pentium4", PROCESSOR_PENTIUM4,
464 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
465 |CpuMMX2|CpuSSE|CpuSSE2},
466 {"prescott", PROCESSOR_NOCONA,
467 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
468 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
469 {"nocona", PROCESSOR_NOCONA,
470 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
471 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
472 {"yonah", PROCESSOR_CORE,
473 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
474 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
475 {"core", PROCESSOR_CORE,
476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
477 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
478 {"merom", PROCESSOR_CORE2,
479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
480 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
481 {"core2", PROCESSOR_CORE2,
482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
483 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
484 {"k6", PROCESSOR_K6,
485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
486 {"k6_2", PROCESSOR_K6,
487 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
488 {"athlon", PROCESSOR_ATHLON,
489 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
490 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
491 {"sledgehammer", PROCESSOR_K8,
492 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
493 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
494 {"opteron", PROCESSOR_K8,
495 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
496 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
497 {"k8", PROCESSOR_K8,
498 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
499 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
500 {"amdfam10", PROCESSOR_AMDFAM10,
501 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
502 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
503 |CpuABM},
504 {".mmx", PROCESSOR_UNKNOWN,
505 CpuMMX},
506 {".sse", PROCESSOR_UNKNOWN,
507 CpuMMX|CpuMMX2|CpuSSE},
508 {".sse2", PROCESSOR_UNKNOWN,
509 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
510 {".sse3", PROCESSOR_UNKNOWN,
511 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
512 {".ssse3", PROCESSOR_UNKNOWN,
513 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
514 {".3dnow", PROCESSOR_UNKNOWN,
515 CpuMMX|Cpu3dnow},
516 {".3dnowa", PROCESSOR_UNKNOWN,
517 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
518 {".padlock", PROCESSOR_UNKNOWN,
519 CpuPadLock},
520 {".pacifica", PROCESSOR_UNKNOWN,
521 CpuSVME},
522 {".svme", PROCESSOR_UNKNOWN,
523 CpuSVME},
524 {".sse4a", PROCESSOR_UNKNOWN,
525 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
526 {".abm", PROCESSOR_UNKNOWN,
527 CpuABM}
530 const pseudo_typeS md_pseudo_table[] =
532 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
533 {"align", s_align_bytes, 0},
534 #else
535 {"align", s_align_ptwo, 0},
536 #endif
537 {"arch", set_cpu_arch, 0},
538 #ifndef I386COFF
539 {"bss", s_bss, 0},
540 #endif
541 {"ffloat", float_cons, 'f'},
542 {"dfloat", float_cons, 'd'},
543 {"tfloat", float_cons, 'x'},
544 {"value", cons, 2},
545 {"slong", signed_cons, 4},
546 {"noopt", s_ignore, 0},
547 {"optim", s_ignore, 0},
548 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
549 {"code16", set_code_flag, CODE_16BIT},
550 {"code32", set_code_flag, CODE_32BIT},
551 {"code64", set_code_flag, CODE_64BIT},
552 {"intel_syntax", set_intel_syntax, 1},
553 {"att_syntax", set_intel_syntax, 0},
554 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
555 {"largecomm", handle_large_common, 0},
556 #else
557 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
558 {"loc", dwarf2_directive_loc, 0},
559 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
560 #endif
561 #ifdef TE_PE
562 {"secrel32", pe_directive_secrel, 0},
563 #endif
564 {0, 0, 0}
567 /* For interface with expression (). */
568 extern char *input_line_pointer;
570 /* Hash table for instruction mnemonic lookup. */
571 static struct hash_control *op_hash;
573 /* Hash table for register lookup. */
574 static struct hash_control *reg_hash;
576 void
577 i386_align_code (fragP, count)
578 fragS *fragP;
579 int count;
581 /* Various efficient no-op patterns for aligning code labels.
582 Note: Don't try to assemble the instructions in the comments.
583 0L and 0w are not legal. */
584 static const char f32_1[] =
585 {0x90}; /* nop */
586 static const char f32_2[] =
587 {0x66,0x90}; /* xchg %ax,%ax */
588 static const char f32_3[] =
589 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
590 static const char f32_4[] =
591 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
592 static const char f32_5[] =
593 {0x90, /* nop */
594 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
595 static const char f32_6[] =
596 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
597 static const char f32_7[] =
598 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
599 static const char f32_8[] =
600 {0x90, /* nop */
601 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
602 static const char f32_9[] =
603 {0x89,0xf6, /* movl %esi,%esi */
604 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
605 static const char f32_10[] =
606 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_11[] =
609 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f32_12[] =
612 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
613 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
614 static const char f32_13[] =
615 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
616 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
617 static const char f32_14[] =
618 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
619 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
620 static const char f32_15[] =
621 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
622 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
623 static const char f16_3[] =
624 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
625 static const char f16_4[] =
626 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
627 static const char f16_5[] =
628 {0x90, /* nop */
629 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
630 static const char f16_6[] =
631 {0x89,0xf6, /* mov %si,%si */
632 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
633 static const char f16_7[] =
634 {0x8d,0x74,0x00, /* lea 0(%si),%si */
635 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
636 static const char f16_8[] =
637 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
638 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
639 static const char *const f32_patt[] = {
640 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
641 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
643 static const char *const f16_patt[] = {
644 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
645 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
647 /* nopl (%[re]ax) */
648 static const char alt_3[] =
649 {0x0f,0x1f,0x00};
650 /* nopl 0(%[re]ax) */
651 static const char alt_4[] =
652 {0x0f,0x1f,0x40,0x00};
653 /* nopl 0(%[re]ax,%[re]ax,1) */
654 static const char alt_5[] =
655 {0x0f,0x1f,0x44,0x00,0x00};
656 /* nopw 0(%[re]ax,%[re]ax,1) */
657 static const char alt_6[] =
658 {0x66,0x0f,0x1f,0x44,0x00,0x00};
659 /* nopl 0L(%[re]ax) */
660 static const char alt_7[] =
661 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
662 /* nopl 0L(%[re]ax,%[re]ax,1) */
663 static const char alt_8[] =
664 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
665 /* nopw 0L(%[re]ax,%[re]ax,1) */
666 static const char alt_9[] =
667 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
668 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
669 static const char alt_10[] =
670 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
671 /* data16
672 nopw %cs:0L(%[re]ax,%[re]ax,1) */
673 static const char alt_long_11[] =
674 {0x66,
675 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
676 /* data16
677 data16
678 nopw %cs:0L(%[re]ax,%[re]ax,1) */
679 static const char alt_long_12[] =
680 {0x66,
681 0x66,
682 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
683 /* data16
684 data16
685 data16
686 nopw %cs:0L(%[re]ax,%[re]ax,1) */
687 static const char alt_long_13[] =
688 {0x66,
689 0x66,
690 0x66,
691 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
692 /* data16
693 data16
694 data16
695 data16
696 nopw %cs:0L(%[re]ax,%[re]ax,1) */
697 static const char alt_long_14[] =
698 {0x66,
699 0x66,
700 0x66,
701 0x66,
702 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
703 /* data16
704 data16
705 data16
706 data16
707 data16
708 nopw %cs:0L(%[re]ax,%[re]ax,1) */
709 static const char alt_long_15[] =
710 {0x66,
711 0x66,
712 0x66,
713 0x66,
714 0x66,
715 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
716 /* nopl 0(%[re]ax,%[re]ax,1)
717 nopw 0(%[re]ax,%[re]ax,1) */
718 static const char alt_short_11[] =
719 {0x0f,0x1f,0x44,0x00,0x00,
720 0x66,0x0f,0x1f,0x44,0x00,0x00};
721 /* nopw 0(%[re]ax,%[re]ax,1)
722 nopw 0(%[re]ax,%[re]ax,1) */
723 static const char alt_short_12[] =
724 {0x66,0x0f,0x1f,0x44,0x00,0x00,
725 0x66,0x0f,0x1f,0x44,0x00,0x00};
726 /* nopw 0(%[re]ax,%[re]ax,1)
727 nopl 0L(%[re]ax) */
728 static const char alt_short_13[] =
729 {0x66,0x0f,0x1f,0x44,0x00,0x00,
730 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
731 /* nopl 0L(%[re]ax)
732 nopl 0L(%[re]ax) */
733 static const char alt_short_14[] =
734 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
735 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
736 /* nopl 0L(%[re]ax)
737 nopl 0L(%[re]ax,%[re]ax,1) */
738 static const char alt_short_15[] =
739 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
740 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
741 static const char *const alt_short_patt[] = {
742 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
743 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
744 alt_short_14, alt_short_15
746 static const char *const alt_long_patt[] = {
747 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
748 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
749 alt_long_14, alt_long_15
752 if (count <= 0 || count > 15)
753 return;
755 /* We need to decide which NOP sequence to use for 32bit and
756 64bit. When -mtune= is used:
758 1. For PROCESSOR_I486, PROCESSOR_PENTIUM and PROCESSOR_GENERIC32,
759 f32_patt will be used.
760 2. For PROCESSOR_K8 and PROCESSOR_AMDFAM10 in 64bit, NOPs with 0x66 prefix will be used.
761 3. For PROCESSOR_CORE2, alt_long_patt will be used.
762 4. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
763 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_K6, PROCESSOR_ATHLON
764 and PROCESSOR_GENERIC64, alt_short_patt will be used.
766 When -mtune= isn't used, alt_short_patt will be used if
767 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will be used.
769 When -march= or .arch is used, we can't use anything beyond
770 cpu_arch_isa_flags. */
772 if (flag_code == CODE_16BIT)
774 memcpy (fragP->fr_literal + fragP->fr_fix,
775 f16_patt[count - 1], count);
776 if (count > 8)
777 /* Adjust jump offset. */
778 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
780 else if (flag_code == CODE_64BIT && cpu_arch_tune == PROCESSOR_K8)
782 int i;
783 int nnops = (count + 3) / 4;
784 int len = count / nnops;
785 int remains = count - nnops * len;
786 int pos = 0;
788 /* The recommended way to pad 64bit code is to use NOPs preceded
789 by maximally four 0x66 prefixes. Balance the size of nops. */
790 for (i = 0; i < remains; i++)
792 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
793 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
794 pos += len + 1;
796 for (; i < nnops; i++)
798 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
799 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
800 pos += len;
803 else
805 const char *const *patt = NULL;
807 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
809 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
810 switch (cpu_arch_tune)
812 case PROCESSOR_UNKNOWN:
813 /* We use cpu_arch_isa_flags to check if we SHOULD
814 optimize for Cpu686. */
815 if ((cpu_arch_isa_flags & Cpu686) != 0)
816 patt = alt_short_patt;
817 else
818 patt = f32_patt;
819 break;
820 case PROCESSOR_CORE2:
821 patt = alt_long_patt;
822 break;
823 case PROCESSOR_PENTIUMPRO:
824 case PROCESSOR_PENTIUM4:
825 case PROCESSOR_NOCONA:
826 case PROCESSOR_CORE:
827 case PROCESSOR_K6:
828 case PROCESSOR_ATHLON:
829 case PROCESSOR_K8:
830 case PROCESSOR_GENERIC64:
831 case PROCESSOR_AMDFAM10:
832 patt = alt_short_patt;
833 break;
834 case PROCESSOR_I486:
835 case PROCESSOR_PENTIUM:
836 case PROCESSOR_GENERIC32:
837 patt = f32_patt;
838 break;
841 else
843 switch (cpu_arch_tune)
845 case PROCESSOR_UNKNOWN:
846 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
847 PROCESSOR_UNKNOWN. */
848 abort ();
849 break;
851 case PROCESSOR_I486:
852 case PROCESSOR_PENTIUM:
853 case PROCESSOR_PENTIUMPRO:
854 case PROCESSOR_PENTIUM4:
855 case PROCESSOR_NOCONA:
856 case PROCESSOR_CORE:
857 case PROCESSOR_K6:
858 case PROCESSOR_ATHLON:
859 case PROCESSOR_K8:
860 case PROCESSOR_AMDFAM10:
861 case PROCESSOR_GENERIC32:
862 /* We use cpu_arch_isa_flags to check if we CAN optimize
863 for Cpu686. */
864 if ((cpu_arch_isa_flags & Cpu686) != 0)
865 patt = alt_short_patt;
866 else
867 patt = f32_patt;
868 break;
869 case PROCESSOR_CORE2:
870 if ((cpu_arch_isa_flags & Cpu686) != 0)
871 patt = alt_long_patt;
872 else
873 patt = f32_patt;
874 break;
875 case PROCESSOR_GENERIC64:
876 patt = alt_short_patt;
877 break;
881 memcpy (fragP->fr_literal + fragP->fr_fix,
882 patt[count - 1], count);
884 fragP->fr_var = count;
887 static INLINE unsigned int
888 mode_from_disp_size (t)
889 unsigned int t;
891 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
894 static INLINE int
895 fits_in_signed_byte (num)
896 offsetT num;
898 return (num >= -128) && (num <= 127);
901 static INLINE int
902 fits_in_unsigned_byte (num)
903 offsetT num;
905 return (num & 0xff) == num;
908 static INLINE int
909 fits_in_unsigned_word (num)
910 offsetT num;
912 return (num & 0xffff) == num;
915 static INLINE int
916 fits_in_signed_word (num)
917 offsetT num;
919 return (-32768 <= num) && (num <= 32767);
921 static INLINE int
922 fits_in_signed_long (num)
923 offsetT num ATTRIBUTE_UNUSED;
925 #ifndef BFD64
926 return 1;
927 #else
928 return (!(((offsetT) -1 << 31) & num)
929 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
930 #endif
931 } /* fits_in_signed_long() */
932 static INLINE int
933 fits_in_unsigned_long (num)
934 offsetT num ATTRIBUTE_UNUSED;
936 #ifndef BFD64
937 return 1;
938 #else
939 return (num & (((offsetT) 2 << 31) - 1)) == num;
940 #endif
941 } /* fits_in_unsigned_long() */
943 static int
944 smallest_imm_type (num)
945 offsetT num;
947 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
949 /* This code is disabled on the 486 because all the Imm1 forms
950 in the opcode table are slower on the i486. They're the
951 versions with the implicitly specified single-position
952 displacement, which has another syntax if you really want to
953 use that form. */
954 if (num == 1)
955 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
957 return (fits_in_signed_byte (num)
958 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
959 : fits_in_unsigned_byte (num)
960 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
961 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
962 ? (Imm16 | Imm32 | Imm32S | Imm64)
963 : fits_in_signed_long (num)
964 ? (Imm32 | Imm32S | Imm64)
965 : fits_in_unsigned_long (num)
966 ? (Imm32 | Imm64)
967 : Imm64);
970 static offsetT
971 offset_in_range (val, size)
972 offsetT val;
973 int size;
975 addressT mask;
977 switch (size)
979 case 1: mask = ((addressT) 1 << 8) - 1; break;
980 case 2: mask = ((addressT) 1 << 16) - 1; break;
981 case 4: mask = ((addressT) 2 << 31) - 1; break;
982 #ifdef BFD64
983 case 8: mask = ((addressT) 2 << 63) - 1; break;
984 #endif
985 default: abort ();
988 /* If BFD64, sign extend val. */
989 if (!use_rela_relocations)
990 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
991 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
993 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
995 char buf1[40], buf2[40];
997 sprint_value (buf1, val);
998 sprint_value (buf2, val & mask);
999 as_warn (_("%s shortened to %s"), buf1, buf2);
1001 return val & mask;
1004 /* Returns 0 if attempting to add a prefix where one from the same
1005 class already exists, 1 if non rep/repne added, 2 if rep/repne
1006 added. */
1007 static int
1008 add_prefix (prefix)
1009 unsigned int prefix;
1011 int ret = 1;
1012 unsigned int q;
1014 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1015 && flag_code == CODE_64BIT)
1017 if ((i.prefix[REX_PREFIX] & prefix & REX_MODE64)
1018 || ((i.prefix[REX_PREFIX] & (REX_EXTX | REX_EXTY | REX_EXTZ))
1019 && (prefix & (REX_EXTX | REX_EXTY | REX_EXTZ))))
1020 ret = 0;
1021 q = REX_PREFIX;
1023 else
1025 switch (prefix)
1027 default:
1028 abort ();
1030 case CS_PREFIX_OPCODE:
1031 case DS_PREFIX_OPCODE:
1032 case ES_PREFIX_OPCODE:
1033 case FS_PREFIX_OPCODE:
1034 case GS_PREFIX_OPCODE:
1035 case SS_PREFIX_OPCODE:
1036 q = SEG_PREFIX;
1037 break;
1039 case REPNE_PREFIX_OPCODE:
1040 case REPE_PREFIX_OPCODE:
1041 ret = 2;
1042 /* fall thru */
1043 case LOCK_PREFIX_OPCODE:
1044 q = LOCKREP_PREFIX;
1045 break;
1047 case FWAIT_OPCODE:
1048 q = WAIT_PREFIX;
1049 break;
1051 case ADDR_PREFIX_OPCODE:
1052 q = ADDR_PREFIX;
1053 break;
1055 case DATA_PREFIX_OPCODE:
1056 q = DATA_PREFIX;
1057 break;
1059 if (i.prefix[q] != 0)
1060 ret = 0;
1063 if (ret)
1065 if (!i.prefix[q])
1066 ++i.prefixes;
1067 i.prefix[q] |= prefix;
1069 else
1070 as_bad (_("same type of prefix used twice"));
1072 return ret;
1075 static void
1076 set_code_flag (value)
1077 int value;
1079 flag_code = value;
1080 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1081 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1082 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1084 as_bad (_("64bit mode not supported on this CPU."));
1086 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1088 as_bad (_("32bit mode not supported on this CPU."));
1090 stackop_size = '\0';
1093 static void
1094 set_16bit_gcc_code_flag (new_code_flag)
1095 int new_code_flag;
1097 flag_code = new_code_flag;
1098 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1099 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1100 stackop_size = LONG_MNEM_SUFFIX;
1103 static void
1104 set_intel_syntax (syntax_flag)
1105 int syntax_flag;
1107 /* Find out if register prefixing is specified. */
1108 int ask_naked_reg = 0;
1110 SKIP_WHITESPACE ();
1111 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1113 char *string = input_line_pointer;
1114 int e = get_symbol_end ();
1116 if (strcmp (string, "prefix") == 0)
1117 ask_naked_reg = 1;
1118 else if (strcmp (string, "noprefix") == 0)
1119 ask_naked_reg = -1;
1120 else
1121 as_bad (_("bad argument to syntax directive."));
1122 *input_line_pointer = e;
1124 demand_empty_rest_of_line ();
1126 intel_syntax = syntax_flag;
1128 if (ask_naked_reg == 0)
1129 allow_naked_reg = (intel_syntax
1130 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1131 else
1132 allow_naked_reg = (ask_naked_reg < 0);
1134 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1135 identifier_chars['$'] = intel_syntax ? '$' : 0;
1138 static void
1139 set_cpu_arch (dummy)
1140 int dummy ATTRIBUTE_UNUSED;
1142 SKIP_WHITESPACE ();
1144 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1146 char *string = input_line_pointer;
1147 int e = get_symbol_end ();
1148 unsigned int i;
1150 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1152 if (strcmp (string, cpu_arch[i].name) == 0)
1154 if (*string != '.')
1156 cpu_arch_name = cpu_arch[i].name;
1157 cpu_sub_arch_name = NULL;
1158 cpu_arch_flags = (cpu_arch[i].flags
1159 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
1160 cpu_arch_isa = cpu_arch[i].type;
1161 cpu_arch_isa_flags = cpu_arch[i].flags;
1162 if (!cpu_arch_tune_set)
1164 cpu_arch_tune = cpu_arch_isa;
1165 cpu_arch_tune_flags = cpu_arch_isa_flags;
1167 break;
1169 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1171 cpu_sub_arch_name = cpu_arch[i].name;
1172 cpu_arch_flags |= cpu_arch[i].flags;
1174 *input_line_pointer = e;
1175 demand_empty_rest_of_line ();
1176 return;
1179 if (i >= ARRAY_SIZE (cpu_arch))
1180 as_bad (_("no such architecture: `%s'"), string);
1182 *input_line_pointer = e;
1184 else
1185 as_bad (_("missing cpu architecture"));
1187 no_cond_jump_promotion = 0;
1188 if (*input_line_pointer == ','
1189 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1191 char *string = ++input_line_pointer;
1192 int e = get_symbol_end ();
1194 if (strcmp (string, "nojumps") == 0)
1195 no_cond_jump_promotion = 1;
1196 else if (strcmp (string, "jumps") == 0)
1198 else
1199 as_bad (_("no such architecture modifier: `%s'"), string);
1201 *input_line_pointer = e;
1204 demand_empty_rest_of_line ();
1207 unsigned long
1208 i386_mach ()
1210 if (!strcmp (default_arch, "x86_64"))
1211 return bfd_mach_x86_64;
1212 else if (!strcmp (default_arch, "i386"))
1213 return bfd_mach_i386_i386;
1214 else
1215 as_fatal (_("Unknown architecture"));
1218 void
1219 md_begin ()
1221 const char *hash_err;
1223 /* Initialize op_hash hash table. */
1224 op_hash = hash_new ();
1227 const template *optab;
1228 templates *core_optab;
1230 /* Setup for loop. */
1231 optab = i386_optab;
1232 core_optab = (templates *) xmalloc (sizeof (templates));
1233 core_optab->start = optab;
1235 while (1)
1237 ++optab;
1238 if (optab->name == NULL
1239 || strcmp (optab->name, (optab - 1)->name) != 0)
1241 /* different name --> ship out current template list;
1242 add to hash table; & begin anew. */
1243 core_optab->end = optab;
1244 hash_err = hash_insert (op_hash,
1245 (optab - 1)->name,
1246 (PTR) core_optab);
1247 if (hash_err)
1249 as_fatal (_("Internal Error: Can't hash %s: %s"),
1250 (optab - 1)->name,
1251 hash_err);
1253 if (optab->name == NULL)
1254 break;
1255 core_optab = (templates *) xmalloc (sizeof (templates));
1256 core_optab->start = optab;
1261 /* Initialize reg_hash hash table. */
1262 reg_hash = hash_new ();
1264 const reg_entry *regtab;
1266 for (regtab = i386_regtab;
1267 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
1268 regtab++)
1270 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1271 if (hash_err)
1272 as_fatal (_("Internal Error: Can't hash %s: %s"),
1273 regtab->reg_name,
1274 hash_err);
1278 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1280 int c;
1281 char *p;
1283 for (c = 0; c < 256; c++)
1285 if (ISDIGIT (c))
1287 digit_chars[c] = c;
1288 mnemonic_chars[c] = c;
1289 register_chars[c] = c;
1290 operand_chars[c] = c;
1292 else if (ISLOWER (c))
1294 mnemonic_chars[c] = c;
1295 register_chars[c] = c;
1296 operand_chars[c] = c;
1298 else if (ISUPPER (c))
1300 mnemonic_chars[c] = TOLOWER (c);
1301 register_chars[c] = mnemonic_chars[c];
1302 operand_chars[c] = c;
1305 if (ISALPHA (c) || ISDIGIT (c))
1306 identifier_chars[c] = c;
1307 else if (c >= 128)
1309 identifier_chars[c] = c;
1310 operand_chars[c] = c;
1314 #ifdef LEX_AT
1315 identifier_chars['@'] = '@';
1316 #endif
1317 #ifdef LEX_QM
1318 identifier_chars['?'] = '?';
1319 operand_chars['?'] = '?';
1320 #endif
1321 digit_chars['-'] = '-';
1322 mnemonic_chars['-'] = '-';
1323 identifier_chars['_'] = '_';
1324 identifier_chars['.'] = '.';
1326 for (p = operand_special_chars; *p != '\0'; p++)
1327 operand_chars[(unsigned char) *p] = *p;
1330 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1331 if (IS_ELF)
1333 record_alignment (text_section, 2);
1334 record_alignment (data_section, 2);
1335 record_alignment (bss_section, 2);
1337 #endif
1339 if (flag_code == CODE_64BIT)
1341 x86_dwarf2_return_column = 16;
1342 x86_cie_data_alignment = -8;
1344 else
1346 x86_dwarf2_return_column = 8;
1347 x86_cie_data_alignment = -4;
1351 void
1352 i386_print_statistics (file)
1353 FILE *file;
1355 hash_print_statistics (file, "i386 opcode", op_hash);
1356 hash_print_statistics (file, "i386 register", reg_hash);
1359 #ifdef DEBUG386
1361 /* Debugging routines for md_assemble. */
1362 static void pi PARAMS ((char *, i386_insn *));
1363 static void pte PARAMS ((template *));
1364 static void pt PARAMS ((unsigned int));
1365 static void pe PARAMS ((expressionS *));
1366 static void ps PARAMS ((symbolS *));
1368 static void
1369 pi (line, x)
1370 char *line;
1371 i386_insn *x;
1373 unsigned int i;
1375 fprintf (stdout, "%s: template ", line);
1376 pte (&x->tm);
1377 fprintf (stdout, " address: base %s index %s scale %x\n",
1378 x->base_reg ? x->base_reg->reg_name : "none",
1379 x->index_reg ? x->index_reg->reg_name : "none",
1380 x->log2_scale_factor);
1381 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1382 x->rm.mode, x->rm.reg, x->rm.regmem);
1383 fprintf (stdout, " sib: base %x index %x scale %x\n",
1384 x->sib.base, x->sib.index, x->sib.scale);
1385 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1386 (x->rex & REX_MODE64) != 0,
1387 (x->rex & REX_EXTX) != 0,
1388 (x->rex & REX_EXTY) != 0,
1389 (x->rex & REX_EXTZ) != 0);
1390 for (i = 0; i < x->operands; i++)
1392 fprintf (stdout, " #%d: ", i + 1);
1393 pt (x->types[i]);
1394 fprintf (stdout, "\n");
1395 if (x->types[i]
1396 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1397 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1398 if (x->types[i] & Imm)
1399 pe (x->op[i].imms);
1400 if (x->types[i] & Disp)
1401 pe (x->op[i].disps);
1405 static void
1406 pte (t)
1407 template *t;
1409 unsigned int i;
1410 fprintf (stdout, " %d operands ", t->operands);
1411 fprintf (stdout, "opcode %x ", t->base_opcode);
1412 if (t->extension_opcode != None)
1413 fprintf (stdout, "ext %x ", t->extension_opcode);
1414 if (t->opcode_modifier & D)
1415 fprintf (stdout, "D");
1416 if (t->opcode_modifier & W)
1417 fprintf (stdout, "W");
1418 fprintf (stdout, "\n");
1419 for (i = 0; i < t->operands; i++)
1421 fprintf (stdout, " #%d type ", i + 1);
1422 pt (t->operand_types[i]);
1423 fprintf (stdout, "\n");
1427 static void
1428 pe (e)
1429 expressionS *e;
1431 fprintf (stdout, " operation %d\n", e->X_op);
1432 fprintf (stdout, " add_number %ld (%lx)\n",
1433 (long) e->X_add_number, (long) e->X_add_number);
1434 if (e->X_add_symbol)
1436 fprintf (stdout, " add_symbol ");
1437 ps (e->X_add_symbol);
1438 fprintf (stdout, "\n");
1440 if (e->X_op_symbol)
1442 fprintf (stdout, " op_symbol ");
1443 ps (e->X_op_symbol);
1444 fprintf (stdout, "\n");
1448 static void
1449 ps (s)
1450 symbolS *s;
1452 fprintf (stdout, "%s type %s%s",
1453 S_GET_NAME (s),
1454 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1455 segment_name (S_GET_SEGMENT (s)));
1458 static struct type_name
1460 unsigned int mask;
1461 char *tname;
1463 const type_names[] =
1465 { Reg8, "r8" },
1466 { Reg16, "r16" },
1467 { Reg32, "r32" },
1468 { Reg64, "r64" },
1469 { Imm8, "i8" },
1470 { Imm8S, "i8s" },
1471 { Imm16, "i16" },
1472 { Imm32, "i32" },
1473 { Imm32S, "i32s" },
1474 { Imm64, "i64" },
1475 { Imm1, "i1" },
1476 { BaseIndex, "BaseIndex" },
1477 { Disp8, "d8" },
1478 { Disp16, "d16" },
1479 { Disp32, "d32" },
1480 { Disp32S, "d32s" },
1481 { Disp64, "d64" },
1482 { InOutPortReg, "InOutPortReg" },
1483 { ShiftCount, "ShiftCount" },
1484 { Control, "control reg" },
1485 { Test, "test reg" },
1486 { Debug, "debug reg" },
1487 { FloatReg, "FReg" },
1488 { FloatAcc, "FAcc" },
1489 { SReg2, "SReg2" },
1490 { SReg3, "SReg3" },
1491 { Acc, "Acc" },
1492 { JumpAbsolute, "Jump Absolute" },
1493 { RegMMX, "rMMX" },
1494 { RegXMM, "rXMM" },
1495 { EsSeg, "es" },
1496 { 0, "" }
1499 static void
1500 pt (t)
1501 unsigned int t;
1503 const struct type_name *ty;
1505 for (ty = type_names; ty->mask; ty++)
1506 if (t & ty->mask)
1507 fprintf (stdout, "%s, ", ty->tname);
1508 fflush (stdout);
1511 #endif /* DEBUG386 */
1513 static bfd_reloc_code_real_type
1514 reloc (unsigned int size,
1515 int pcrel,
1516 int sign,
1517 bfd_reloc_code_real_type other)
1519 if (other != NO_RELOC)
1521 reloc_howto_type *reloc;
1523 if (size == 8)
1524 switch (other)
1526 case BFD_RELOC_X86_64_GOT32:
1527 return BFD_RELOC_X86_64_GOT64;
1528 break;
1529 case BFD_RELOC_X86_64_PLTOFF64:
1530 return BFD_RELOC_X86_64_PLTOFF64;
1531 break;
1532 case BFD_RELOC_X86_64_GOTPC32:
1533 other = BFD_RELOC_X86_64_GOTPC64;
1534 break;
1535 case BFD_RELOC_X86_64_GOTPCREL:
1536 other = BFD_RELOC_X86_64_GOTPCREL64;
1537 break;
1538 case BFD_RELOC_X86_64_TPOFF32:
1539 other = BFD_RELOC_X86_64_TPOFF64;
1540 break;
1541 case BFD_RELOC_X86_64_DTPOFF32:
1542 other = BFD_RELOC_X86_64_DTPOFF64;
1543 break;
1544 default:
1545 break;
1548 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1549 if (size == 4 && flag_code != CODE_64BIT)
1550 sign = -1;
1552 reloc = bfd_reloc_type_lookup (stdoutput, other);
1553 if (!reloc)
1554 as_bad (_("unknown relocation (%u)"), other);
1555 else if (size != bfd_get_reloc_size (reloc))
1556 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1557 bfd_get_reloc_size (reloc),
1558 size);
1559 else if (pcrel && !reloc->pc_relative)
1560 as_bad (_("non-pc-relative relocation for pc-relative field"));
1561 else if ((reloc->complain_on_overflow == complain_overflow_signed
1562 && !sign)
1563 || (reloc->complain_on_overflow == complain_overflow_unsigned
1564 && sign > 0))
1565 as_bad (_("relocated field and relocation type differ in signedness"));
1566 else
1567 return other;
1568 return NO_RELOC;
1571 if (pcrel)
1573 if (!sign)
1574 as_bad (_("there are no unsigned pc-relative relocations"));
1575 switch (size)
1577 case 1: return BFD_RELOC_8_PCREL;
1578 case 2: return BFD_RELOC_16_PCREL;
1579 case 4: return BFD_RELOC_32_PCREL;
1580 case 8: return BFD_RELOC_64_PCREL;
1582 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1584 else
1586 if (sign > 0)
1587 switch (size)
1589 case 4: return BFD_RELOC_X86_64_32S;
1591 else
1592 switch (size)
1594 case 1: return BFD_RELOC_8;
1595 case 2: return BFD_RELOC_16;
1596 case 4: return BFD_RELOC_32;
1597 case 8: return BFD_RELOC_64;
1599 as_bad (_("cannot do %s %u byte relocation"),
1600 sign > 0 ? "signed" : "unsigned", size);
1603 abort ();
1604 return BFD_RELOC_NONE;
1607 /* Here we decide which fixups can be adjusted to make them relative to
1608 the beginning of the section instead of the symbol. Basically we need
1609 to make sure that the dynamic relocations are done correctly, so in
1610 some cases we force the original symbol to be used. */
1613 tc_i386_fix_adjustable (fixP)
1614 fixS *fixP ATTRIBUTE_UNUSED;
1616 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1617 if (!IS_ELF)
1618 return 1;
1620 /* Don't adjust pc-relative references to merge sections in 64-bit
1621 mode. */
1622 if (use_rela_relocations
1623 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1624 && fixP->fx_pcrel)
1625 return 0;
1627 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1628 and changed later by validate_fix. */
1629 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1630 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1631 return 0;
1633 /* adjust_reloc_syms doesn't know about the GOT. */
1634 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1635 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1636 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1637 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1638 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1639 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1640 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1641 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1642 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1643 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1644 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1645 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1646 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1647 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1648 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1649 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1650 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1651 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1652 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1653 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1654 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1655 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1656 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1657 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1658 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1659 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1660 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1661 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1662 return 0;
1663 #endif
1664 return 1;
1667 static int intel_float_operand PARAMS ((const char *mnemonic));
1669 static int
1670 intel_float_operand (mnemonic)
1671 const char *mnemonic;
1673 /* Note that the value returned is meaningful only for opcodes with (memory)
1674 operands, hence the code here is free to improperly handle opcodes that
1675 have no operands (for better performance and smaller code). */
1677 if (mnemonic[0] != 'f')
1678 return 0; /* non-math */
1680 switch (mnemonic[1])
1682 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1683 the fs segment override prefix not currently handled because no
1684 call path can make opcodes without operands get here */
1685 case 'i':
1686 return 2 /* integer op */;
1687 case 'l':
1688 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1689 return 3; /* fldcw/fldenv */
1690 break;
1691 case 'n':
1692 if (mnemonic[2] != 'o' /* fnop */)
1693 return 3; /* non-waiting control op */
1694 break;
1695 case 'r':
1696 if (mnemonic[2] == 's')
1697 return 3; /* frstor/frstpm */
1698 break;
1699 case 's':
1700 if (mnemonic[2] == 'a')
1701 return 3; /* fsave */
1702 if (mnemonic[2] == 't')
1704 switch (mnemonic[3])
1706 case 'c': /* fstcw */
1707 case 'd': /* fstdw */
1708 case 'e': /* fstenv */
1709 case 's': /* fsts[gw] */
1710 return 3;
1713 break;
1714 case 'x':
1715 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1716 return 0; /* fxsave/fxrstor are not really math ops */
1717 break;
1720 return 1;
1723 /* This is the guts of the machine-dependent assembler. LINE points to a
1724 machine dependent instruction. This function is supposed to emit
1725 the frags/bytes it assembles to. */
1727 void
1728 md_assemble (line)
1729 char *line;
1731 int j;
1732 char mnemonic[MAX_MNEM_SIZE];
1734 /* Initialize globals. */
1735 memset (&i, '\0', sizeof (i));
1736 for (j = 0; j < MAX_OPERANDS; j++)
1737 i.reloc[j] = NO_RELOC;
1738 memset (disp_expressions, '\0', sizeof (disp_expressions));
1739 memset (im_expressions, '\0', sizeof (im_expressions));
1740 save_stack_p = save_stack;
1742 /* First parse an instruction mnemonic & call i386_operand for the operands.
1743 We assume that the scrubber has arranged it so that line[0] is the valid
1744 start of a (possibly prefixed) mnemonic. */
1746 line = parse_insn (line, mnemonic);
1747 if (line == NULL)
1748 return;
1750 line = parse_operands (line, mnemonic);
1751 if (line == NULL)
1752 return;
1754 /* The order of the immediates should be reversed
1755 for 2 immediates extrq and insertq instructions */
1756 if ((i.imm_operands == 2) &&
1757 ((strcmp (mnemonic, "extrq") == 0)
1758 || (strcmp (mnemonic, "insertq") == 0)))
1760 swap_imm_operands ();
1761 /* "extrq" and insertq" are the only two instructions whose operands
1762 have to be reversed even though they have two immediate operands.
1764 if (intel_syntax)
1765 swap_operands ();
1768 /* Now we've parsed the mnemonic into a set of templates, and have the
1769 operands at hand. */
1771 /* All intel opcodes have reversed operands except for "bound" and
1772 "enter". We also don't reverse intersegment "jmp" and "call"
1773 instructions with 2 immediate operands so that the immediate segment
1774 precedes the offset, as it does when in AT&T mode. */
1775 if (intel_syntax && i.operands > 1
1776 && (strcmp (mnemonic, "bound") != 0)
1777 && (strcmp (mnemonic, "invlpga") != 0)
1778 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1779 swap_operands ();
1781 if (i.imm_operands)
1782 optimize_imm ();
1784 /* Don't optimize displacement for movabs since it only takes 64bit
1785 displacement. */
1786 if (i.disp_operands
1787 && (flag_code != CODE_64BIT
1788 || strcmp (mnemonic, "movabs") != 0))
1789 optimize_disp ();
1791 /* Next, we find a template that matches the given insn,
1792 making sure the overlap of the given operands types is consistent
1793 with the template operand types. */
1795 if (!match_template ())
1796 return;
1798 if (intel_syntax)
1800 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1801 if (SYSV386_COMPAT
1802 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1803 i.tm.base_opcode ^= FloatR;
1805 /* Zap movzx and movsx suffix. The suffix may have been set from
1806 "word ptr" or "byte ptr" on the source operand, but we'll use
1807 the suffix later to choose the destination register. */
1808 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1810 if (i.reg_operands < 2
1811 && !i.suffix
1812 && (~i.tm.opcode_modifier
1813 & (No_bSuf
1814 | No_wSuf
1815 | No_lSuf
1816 | No_sSuf
1817 | No_xSuf
1818 | No_qSuf)))
1819 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1821 i.suffix = 0;
1825 if (i.tm.opcode_modifier & FWait)
1826 if (!add_prefix (FWAIT_OPCODE))
1827 return;
1829 /* Check string instruction segment overrides. */
1830 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1832 if (!check_string ())
1833 return;
1836 if (!process_suffix ())
1837 return;
1839 /* Make still unresolved immediate matches conform to size of immediate
1840 given in i.suffix. */
1841 if (!finalize_imm ())
1842 return;
1844 if (i.types[0] & Imm1)
1845 i.imm_operands = 0; /* kludge for shift insns. */
1846 if (i.types[0] & ImplicitRegister)
1847 i.reg_operands--;
1848 if (i.types[1] & ImplicitRegister)
1849 i.reg_operands--;
1850 if (i.types[2] & ImplicitRegister)
1851 i.reg_operands--;
1853 if (i.tm.opcode_modifier & ImmExt)
1855 expressionS *exp;
1857 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1859 /* These Intel Prescott New Instructions have the fixed
1860 operands with an opcode suffix which is coded in the same
1861 place as an 8-bit immediate field would be. Here we check
1862 those operands and remove them afterwards. */
1863 unsigned int x;
1865 for (x = 0; x < i.operands; x++)
1866 if (i.op[x].regs->reg_num != x)
1867 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1868 i.op[x].regs->reg_name, x + 1, i.tm.name);
1869 i.operands = 0;
1872 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1873 opcode suffix which is coded in the same place as an 8-bit
1874 immediate field would be. Here we fake an 8-bit immediate
1875 operand from the opcode suffix stored in tm.extension_opcode. */
1877 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1879 exp = &im_expressions[i.imm_operands++];
1880 i.op[i.operands].imms = exp;
1881 i.types[i.operands++] = Imm8;
1882 exp->X_op = O_constant;
1883 exp->X_add_number = i.tm.extension_opcode;
1884 i.tm.extension_opcode = None;
1887 /* For insns with operands there are more diddles to do to the opcode. */
1888 if (i.operands)
1890 if (!process_operands ())
1891 return;
1893 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1895 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1896 as_warn (_("translating to `%sp'"), i.tm.name);
1899 /* Handle conversion of 'int $3' --> special int3 insn. */
1900 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1902 i.tm.base_opcode = INT3_OPCODE;
1903 i.imm_operands = 0;
1906 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1907 && i.op[0].disps->X_op == O_constant)
1909 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1910 the absolute address given by the constant. Since ix86 jumps and
1911 calls are pc relative, we need to generate a reloc. */
1912 i.op[0].disps->X_add_symbol = &abs_symbol;
1913 i.op[0].disps->X_op = O_symbol;
1916 if ((i.tm.opcode_modifier & Rex64) != 0)
1917 i.rex |= REX_MODE64;
1919 /* For 8 bit registers we need an empty rex prefix. Also if the
1920 instruction already has a prefix, we need to convert old
1921 registers to new ones. */
1923 if (((i.types[0] & Reg8) != 0
1924 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1925 || ((i.types[1] & Reg8) != 0
1926 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1927 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1928 && i.rex != 0))
1930 int x;
1932 i.rex |= REX_OPCODE;
1933 for (x = 0; x < 2; x++)
1935 /* Look for 8 bit operand that uses old registers. */
1936 if ((i.types[x] & Reg8) != 0
1937 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1939 /* In case it is "hi" register, give up. */
1940 if (i.op[x].regs->reg_num > 3)
1941 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1942 i.op[x].regs->reg_name);
1944 /* Otherwise it is equivalent to the extended register.
1945 Since the encoding doesn't change this is merely
1946 cosmetic cleanup for debug output. */
1948 i.op[x].regs = i.op[x].regs + 8;
1953 if (i.rex != 0)
1954 add_prefix (REX_OPCODE | i.rex);
1956 /* We are ready to output the insn. */
1957 output_insn ();
1960 static char *
1961 parse_insn (line, mnemonic)
1962 char *line;
1963 char *mnemonic;
1965 char *l = line;
1966 char *token_start = l;
1967 char *mnem_p;
1968 int supported;
1969 const template *t;
1971 /* Non-zero if we found a prefix only acceptable with string insns. */
1972 const char *expecting_string_instruction = NULL;
1974 while (1)
1976 mnem_p = mnemonic;
1977 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1979 mnem_p++;
1980 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1982 as_bad (_("no such instruction: `%s'"), token_start);
1983 return NULL;
1985 l++;
1987 if (!is_space_char (*l)
1988 && *l != END_OF_INSN
1989 && (intel_syntax
1990 || (*l != PREFIX_SEPARATOR
1991 && *l != ',')))
1993 as_bad (_("invalid character %s in mnemonic"),
1994 output_invalid (*l));
1995 return NULL;
1997 if (token_start == l)
1999 if (!intel_syntax && *l == PREFIX_SEPARATOR)
2000 as_bad (_("expecting prefix; got nothing"));
2001 else
2002 as_bad (_("expecting mnemonic; got nothing"));
2003 return NULL;
2006 /* Look up instruction (or prefix) via hash table. */
2007 current_templates = hash_find (op_hash, mnemonic);
2009 if (*l != END_OF_INSN
2010 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2011 && current_templates
2012 && (current_templates->start->opcode_modifier & IsPrefix))
2014 if (current_templates->start->cpu_flags
2015 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
2017 as_bad ((flag_code != CODE_64BIT
2018 ? _("`%s' is only supported in 64-bit mode")
2019 : _("`%s' is not supported in 64-bit mode")),
2020 current_templates->start->name);
2021 return NULL;
2023 /* If we are in 16-bit mode, do not allow addr16 or data16.
2024 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2025 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
2026 && flag_code != CODE_64BIT
2027 && (((current_templates->start->opcode_modifier & Size32) != 0)
2028 ^ (flag_code == CODE_16BIT)))
2030 as_bad (_("redundant %s prefix"),
2031 current_templates->start->name);
2032 return NULL;
2034 /* Add prefix, checking for repeated prefixes. */
2035 switch (add_prefix (current_templates->start->base_opcode))
2037 case 0:
2038 return NULL;
2039 case 2:
2040 expecting_string_instruction = current_templates->start->name;
2041 break;
2043 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2044 token_start = ++l;
2046 else
2047 break;
2050 if (!current_templates)
2052 /* See if we can get a match by trimming off a suffix. */
2053 switch (mnem_p[-1])
2055 case WORD_MNEM_SUFFIX:
2056 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2057 i.suffix = SHORT_MNEM_SUFFIX;
2058 else
2059 case BYTE_MNEM_SUFFIX:
2060 case QWORD_MNEM_SUFFIX:
2061 i.suffix = mnem_p[-1];
2062 mnem_p[-1] = '\0';
2063 current_templates = hash_find (op_hash, mnemonic);
2064 break;
2065 case SHORT_MNEM_SUFFIX:
2066 case LONG_MNEM_SUFFIX:
2067 if (!intel_syntax)
2069 i.suffix = mnem_p[-1];
2070 mnem_p[-1] = '\0';
2071 current_templates = hash_find (op_hash, mnemonic);
2073 break;
2075 /* Intel Syntax. */
2076 case 'd':
2077 if (intel_syntax)
2079 if (intel_float_operand (mnemonic) == 1)
2080 i.suffix = SHORT_MNEM_SUFFIX;
2081 else
2082 i.suffix = LONG_MNEM_SUFFIX;
2083 mnem_p[-1] = '\0';
2084 current_templates = hash_find (op_hash, mnemonic);
2086 break;
2088 if (!current_templates)
2090 as_bad (_("no such instruction: `%s'"), token_start);
2091 return NULL;
2095 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2097 /* Check for a branch hint. We allow ",pt" and ",pn" for
2098 predict taken and predict not taken respectively.
2099 I'm not sure that branch hints actually do anything on loop
2100 and jcxz insns (JumpByte) for current Pentium4 chips. They
2101 may work in the future and it doesn't hurt to accept them
2102 now. */
2103 if (l[0] == ',' && l[1] == 'p')
2105 if (l[2] == 't')
2107 if (!add_prefix (DS_PREFIX_OPCODE))
2108 return NULL;
2109 l += 3;
2111 else if (l[2] == 'n')
2113 if (!add_prefix (CS_PREFIX_OPCODE))
2114 return NULL;
2115 l += 3;
2119 /* Any other comma loses. */
2120 if (*l == ',')
2122 as_bad (_("invalid character %s in mnemonic"),
2123 output_invalid (*l));
2124 return NULL;
2127 /* Check if instruction is supported on specified architecture. */
2128 supported = 0;
2129 for (t = current_templates->start; t < current_templates->end; ++t)
2131 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2132 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2133 supported |= 1;
2134 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2135 supported |= 2;
2137 if (!(supported & 2))
2139 as_bad (flag_code == CODE_64BIT
2140 ? _("`%s' is not supported in 64-bit mode")
2141 : _("`%s' is only supported in 64-bit mode"),
2142 current_templates->start->name);
2143 return NULL;
2145 if (!(supported & 1))
2147 as_warn (_("`%s' is not supported on `%s%s'"),
2148 current_templates->start->name,
2149 cpu_arch_name,
2150 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2152 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2154 as_warn (_("use .code16 to ensure correct addressing mode"));
2157 /* Check for rep/repne without a string instruction. */
2158 if (expecting_string_instruction)
2160 static templates override;
2162 for (t = current_templates->start; t < current_templates->end; ++t)
2163 if (t->opcode_modifier & IsString)
2164 break;
2165 if (t >= current_templates->end)
2167 as_bad (_("expecting string instruction after `%s'"),
2168 expecting_string_instruction);
2169 return NULL;
2171 for (override.start = t; t < current_templates->end; ++t)
2172 if (!(t->opcode_modifier & IsString))
2173 break;
2174 override.end = t;
2175 current_templates = &override;
2178 return l;
2181 static char *
2182 parse_operands (l, mnemonic)
2183 char *l;
2184 const char *mnemonic;
2186 char *token_start;
2188 /* 1 if operand is pending after ','. */
2189 unsigned int expecting_operand = 0;
2191 /* Non-zero if operand parens not balanced. */
2192 unsigned int paren_not_balanced;
2194 while (*l != END_OF_INSN)
2196 /* Skip optional white space before operand. */
2197 if (is_space_char (*l))
2198 ++l;
2199 if (!is_operand_char (*l) && *l != END_OF_INSN)
2201 as_bad (_("invalid character %s before operand %d"),
2202 output_invalid (*l),
2203 i.operands + 1);
2204 return NULL;
2206 token_start = l; /* after white space */
2207 paren_not_balanced = 0;
2208 while (paren_not_balanced || *l != ',')
2210 if (*l == END_OF_INSN)
2212 if (paren_not_balanced)
2214 if (!intel_syntax)
2215 as_bad (_("unbalanced parenthesis in operand %d."),
2216 i.operands + 1);
2217 else
2218 as_bad (_("unbalanced brackets in operand %d."),
2219 i.operands + 1);
2220 return NULL;
2222 else
2223 break; /* we are done */
2225 else if (!is_operand_char (*l) && !is_space_char (*l))
2227 as_bad (_("invalid character %s in operand %d"),
2228 output_invalid (*l),
2229 i.operands + 1);
2230 return NULL;
2232 if (!intel_syntax)
2234 if (*l == '(')
2235 ++paren_not_balanced;
2236 if (*l == ')')
2237 --paren_not_balanced;
2239 else
2241 if (*l == '[')
2242 ++paren_not_balanced;
2243 if (*l == ']')
2244 --paren_not_balanced;
2246 l++;
2248 if (l != token_start)
2249 { /* Yes, we've read in another operand. */
2250 unsigned int operand_ok;
2251 this_operand = i.operands++;
2252 if (i.operands > MAX_OPERANDS)
2254 as_bad (_("spurious operands; (%d operands/instruction max)"),
2255 MAX_OPERANDS);
2256 return NULL;
2258 /* Now parse operand adding info to 'i' as we go along. */
2259 END_STRING_AND_SAVE (l);
2261 if (intel_syntax)
2262 operand_ok =
2263 i386_intel_operand (token_start,
2264 intel_float_operand (mnemonic));
2265 else
2266 operand_ok = i386_operand (token_start);
2268 RESTORE_END_STRING (l);
2269 if (!operand_ok)
2270 return NULL;
2272 else
2274 if (expecting_operand)
2276 expecting_operand_after_comma:
2277 as_bad (_("expecting operand after ','; got nothing"));
2278 return NULL;
2280 if (*l == ',')
2282 as_bad (_("expecting operand before ','; got nothing"));
2283 return NULL;
2287 /* Now *l must be either ',' or END_OF_INSN. */
2288 if (*l == ',')
2290 if (*++l == END_OF_INSN)
2292 /* Just skip it, if it's \n complain. */
2293 goto expecting_operand_after_comma;
2295 expecting_operand = 1;
2298 return l;
2301 static void
2302 swap_imm_operands ()
2304 union i386_op temp_op;
2305 unsigned int temp_type;
2306 enum bfd_reloc_code_real temp_reloc;
2307 int xchg1 = 0;
2308 int xchg2 = 1;
2310 temp_type = i.types[xchg2];
2311 i.types[xchg2] = i.types[xchg1];
2312 i.types[xchg1] = temp_type;
2313 temp_op = i.op[xchg2];
2314 i.op[xchg2] = i.op[xchg1];
2315 i.op[xchg1] = temp_op;
2316 temp_reloc = i.reloc[xchg2];
2317 i.reloc[xchg2] = i.reloc[xchg1];
2318 i.reloc[xchg1] = temp_reloc;
2322 static void
2323 swap_operands ()
2325 union i386_op temp_op;
2326 unsigned int temp_type;
2327 enum bfd_reloc_code_real temp_reloc;
2328 int xchg1 = 0;
2329 int xchg2 = 0;
2331 if (i.operands == 4)
2332 /* There will be two exchanges in a 4 operand instruction.
2333 First exchange is the done inside this block.(1st and 4rth operand)
2334 The next exchange is done outside this block.(2nd and 3rd operand) */
2336 xchg1 = 0;
2337 xchg2 = 3;
2338 temp_type = i.types[xchg2];
2339 i.types[xchg2] = i.types[xchg1];
2340 i.types[xchg1] = temp_type;
2341 temp_op = i.op[xchg2];
2342 i.op[xchg2] = i.op[xchg1];
2343 i.op[xchg1] = temp_op;
2344 temp_reloc = i.reloc[xchg2];
2345 i.reloc[xchg2] = i.reloc[xchg1];
2346 i.reloc[xchg1] = temp_reloc;
2347 xchg1 = 1;
2348 xchg2 = 2;
2351 if (i.operands == 2)
2353 xchg1 = 0;
2354 xchg2 = 1;
2356 else if (i.operands == 3)
2358 xchg1 = 0;
2359 xchg2 = 2;
2361 temp_type = i.types[xchg2];
2362 i.types[xchg2] = i.types[xchg1];
2363 i.types[xchg1] = temp_type;
2364 temp_op = i.op[xchg2];
2365 i.op[xchg2] = i.op[xchg1];
2366 i.op[xchg1] = temp_op;
2367 temp_reloc = i.reloc[xchg2];
2368 i.reloc[xchg2] = i.reloc[xchg1];
2369 i.reloc[xchg1] = temp_reloc;
2371 if (i.mem_operands == 2)
2373 const seg_entry *temp_seg;
2374 temp_seg = i.seg[0];
2375 i.seg[0] = i.seg[1];
2376 i.seg[1] = temp_seg;
2380 /* Try to ensure constant immediates are represented in the smallest
2381 opcode possible. */
2382 static void
2383 optimize_imm ()
2385 char guess_suffix = 0;
2386 int op;
2388 if (i.suffix)
2389 guess_suffix = i.suffix;
2390 else if (i.reg_operands)
2392 /* Figure out a suffix from the last register operand specified.
2393 We can't do this properly yet, ie. excluding InOutPortReg,
2394 but the following works for instructions with immediates.
2395 In any case, we can't set i.suffix yet. */
2396 for (op = i.operands; --op >= 0;)
2397 if (i.types[op] & Reg)
2399 if (i.types[op] & Reg8)
2400 guess_suffix = BYTE_MNEM_SUFFIX;
2401 else if (i.types[op] & Reg16)
2402 guess_suffix = WORD_MNEM_SUFFIX;
2403 else if (i.types[op] & Reg32)
2404 guess_suffix = LONG_MNEM_SUFFIX;
2405 else if (i.types[op] & Reg64)
2406 guess_suffix = QWORD_MNEM_SUFFIX;
2407 break;
2410 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2411 guess_suffix = WORD_MNEM_SUFFIX;
2413 for (op = i.operands; --op >= 0;)
2414 if (i.types[op] & Imm)
2416 switch (i.op[op].imms->X_op)
2418 case O_constant:
2419 /* If a suffix is given, this operand may be shortened. */
2420 switch (guess_suffix)
2422 case LONG_MNEM_SUFFIX:
2423 i.types[op] |= Imm32 | Imm64;
2424 break;
2425 case WORD_MNEM_SUFFIX:
2426 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2427 break;
2428 case BYTE_MNEM_SUFFIX:
2429 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2430 break;
2433 /* If this operand is at most 16 bits, convert it
2434 to a signed 16 bit number before trying to see
2435 whether it will fit in an even smaller size.
2436 This allows a 16-bit operand such as $0xffe0 to
2437 be recognised as within Imm8S range. */
2438 if ((i.types[op] & Imm16)
2439 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2441 i.op[op].imms->X_add_number =
2442 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2444 if ((i.types[op] & Imm32)
2445 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2446 == 0))
2448 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2449 ^ ((offsetT) 1 << 31))
2450 - ((offsetT) 1 << 31));
2452 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2454 /* We must avoid matching of Imm32 templates when 64bit
2455 only immediate is available. */
2456 if (guess_suffix == QWORD_MNEM_SUFFIX)
2457 i.types[op] &= ~Imm32;
2458 break;
2460 case O_absent:
2461 case O_register:
2462 abort ();
2464 /* Symbols and expressions. */
2465 default:
2466 /* Convert symbolic operand to proper sizes for matching, but don't
2467 prevent matching a set of insns that only supports sizes other
2468 than those matching the insn suffix. */
2470 unsigned int mask, allowed = 0;
2471 const template *t;
2473 for (t = current_templates->start; t < current_templates->end; ++t)
2474 allowed |= t->operand_types[op];
2475 switch (guess_suffix)
2477 case QWORD_MNEM_SUFFIX:
2478 mask = Imm64 | Imm32S;
2479 break;
2480 case LONG_MNEM_SUFFIX:
2481 mask = Imm32;
2482 break;
2483 case WORD_MNEM_SUFFIX:
2484 mask = Imm16;
2485 break;
2486 case BYTE_MNEM_SUFFIX:
2487 mask = Imm8;
2488 break;
2489 default:
2490 mask = 0;
2491 break;
2493 if (mask & allowed)
2494 i.types[op] &= mask;
2496 break;
2501 /* Try to use the smallest displacement type too. */
2502 static void
2503 optimize_disp ()
2505 int op;
2507 for (op = i.operands; --op >= 0;)
2508 if (i.types[op] & Disp)
2510 if (i.op[op].disps->X_op == O_constant)
2512 offsetT disp = i.op[op].disps->X_add_number;
2514 if ((i.types[op] & Disp16)
2515 && (disp & ~(offsetT) 0xffff) == 0)
2517 /* If this operand is at most 16 bits, convert
2518 to a signed 16 bit number and don't use 64bit
2519 displacement. */
2520 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2521 i.types[op] &= ~Disp64;
2523 if ((i.types[op] & Disp32)
2524 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2526 /* If this operand is at most 32 bits, convert
2527 to a signed 32 bit number and don't use 64bit
2528 displacement. */
2529 disp &= (((offsetT) 2 << 31) - 1);
2530 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2531 i.types[op] &= ~Disp64;
2533 if (!disp && (i.types[op] & BaseIndex))
2535 i.types[op] &= ~Disp;
2536 i.op[op].disps = 0;
2537 i.disp_operands--;
2539 else if (flag_code == CODE_64BIT)
2541 if (fits_in_signed_long (disp))
2543 i.types[op] &= ~Disp64;
2544 i.types[op] |= Disp32S;
2546 if (fits_in_unsigned_long (disp))
2547 i.types[op] |= Disp32;
2549 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2550 && fits_in_signed_byte (disp))
2551 i.types[op] |= Disp8;
2553 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2554 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2556 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2557 i.op[op].disps, 0, i.reloc[op]);
2558 i.types[op] &= ~Disp;
2560 else
2561 /* We only support 64bit displacement on constants. */
2562 i.types[op] &= ~Disp64;
2566 static int
2567 match_template ()
2569 /* Points to template once we've found it. */
2570 const template *t;
2571 unsigned int overlap0, overlap1, overlap2;
2572 unsigned int found_reverse_match;
2573 int suffix_check;
2574 unsigned int operand_types [3];
2575 int addr_prefix_disp;
2577 #define MATCH(overlap, given, template) \
2578 ((overlap & ~JumpAbsolute) \
2579 && (((given) & (BaseIndex | JumpAbsolute)) \
2580 == ((overlap) & (BaseIndex | JumpAbsolute))))
2582 /* If given types r0 and r1 are registers they must be of the same type
2583 unless the expected operand type register overlap is null.
2584 Note that Acc in a template matches every size of reg. */
2585 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2586 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2587 || ((g0) & Reg) == ((g1) & Reg) \
2588 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2590 overlap0 = 0;
2591 overlap1 = 0;
2592 overlap2 = 0;
2593 found_reverse_match = 0;
2594 operand_types [0] = 0;
2595 operand_types [1] = 0;
2596 operand_types [2] = 0;
2597 addr_prefix_disp = -1;
2598 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2599 ? No_bSuf
2600 : (i.suffix == WORD_MNEM_SUFFIX
2601 ? No_wSuf
2602 : (i.suffix == SHORT_MNEM_SUFFIX
2603 ? No_sSuf
2604 : (i.suffix == LONG_MNEM_SUFFIX
2605 ? No_lSuf
2606 : (i.suffix == QWORD_MNEM_SUFFIX
2607 ? No_qSuf
2608 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2609 ? No_xSuf : 0))))));
2611 for (t = current_templates->start; t < current_templates->end; t++)
2613 addr_prefix_disp = -1;
2615 /* Must have right number of operands. */
2616 if (i.operands != t->operands)
2617 continue;
2619 /* Check the suffix, except for some instructions in intel mode. */
2620 if ((t->opcode_modifier & suffix_check)
2621 && !(intel_syntax
2622 && (t->opcode_modifier & IgnoreSize)))
2623 continue;
2625 operand_types [0] = t->operand_types [0];
2626 operand_types [1] = t->operand_types [1];
2627 operand_types [2] = t->operand_types [2];
2629 /* In general, don't allow 64-bit operands in 32-bit mode. */
2630 if (i.suffix == QWORD_MNEM_SUFFIX
2631 && flag_code != CODE_64BIT
2632 && (intel_syntax
2633 ? (!(t->opcode_modifier & IgnoreSize)
2634 && !intel_float_operand (t->name))
2635 : intel_float_operand (t->name) != 2)
2636 && (!(operand_types[0] & (RegMMX | RegXMM))
2637 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2638 && (t->base_opcode != 0x0fc7
2639 || t->extension_opcode != 1 /* cmpxchg8b */))
2640 continue;
2642 /* Do not verify operands when there are none. */
2643 else if (!t->operands)
2645 if (t->cpu_flags & ~cpu_arch_flags)
2646 continue;
2647 /* We've found a match; break out of loop. */
2648 break;
2651 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2652 into Disp32/Disp16/Disp32 operand. */
2653 if (i.prefix[ADDR_PREFIX] != 0)
2655 unsigned int j, DispOn = 0, DispOff = 0;
2657 switch (flag_code)
2659 case CODE_16BIT:
2660 DispOn = Disp32;
2661 DispOff = Disp16;
2662 break;
2663 case CODE_32BIT:
2664 DispOn = Disp16;
2665 DispOff = Disp32;
2666 break;
2667 case CODE_64BIT:
2668 DispOn = Disp32;
2669 DispOff = Disp64;
2670 break;
2673 for (j = 0; j < 3; j++)
2675 /* There should be only one Disp operand. */
2676 if ((operand_types[j] & DispOff))
2678 addr_prefix_disp = j;
2679 operand_types[j] |= DispOn;
2680 operand_types[j] &= ~DispOff;
2681 break;
2686 overlap0 = i.types[0] & operand_types[0];
2687 switch (t->operands)
2689 case 1:
2690 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2691 continue;
2692 break;
2693 case 2:
2694 case 3:
2695 overlap1 = i.types[1] & operand_types[1];
2696 if (!MATCH (overlap0, i.types[0], operand_types[0])
2697 || !MATCH (overlap1, i.types[1], operand_types[1])
2698 /* monitor in SSE3 is a very special case. The first
2699 register and the second register may have different
2700 sizes. */
2701 || !((t->base_opcode == 0x0f01
2702 && t->extension_opcode == 0xc8)
2703 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2704 operand_types[0],
2705 overlap1, i.types[1],
2706 operand_types[1])))
2708 /* Check if other direction is valid ... */
2709 if ((t->opcode_modifier & (D | FloatD)) == 0)
2710 continue;
2712 /* Try reversing direction of operands. */
2713 overlap0 = i.types[0] & operand_types[1];
2714 overlap1 = i.types[1] & operand_types[0];
2715 if (!MATCH (overlap0, i.types[0], operand_types[1])
2716 || !MATCH (overlap1, i.types[1], operand_types[0])
2717 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2718 operand_types[1],
2719 overlap1, i.types[1],
2720 operand_types[0]))
2722 /* Does not match either direction. */
2723 continue;
2725 /* found_reverse_match holds which of D or FloatDR
2726 we've found. */
2727 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2729 /* Found a forward 2 operand match here. */
2730 else if (t->operands == 3)
2732 /* Here we make use of the fact that there are no
2733 reverse match 3 operand instructions, and all 3
2734 operand instructions only need to be checked for
2735 register consistency between operands 2 and 3. */
2736 overlap2 = i.types[2] & operand_types[2];
2737 if (!MATCH (overlap2, i.types[2], operand_types[2])
2738 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2739 operand_types[1],
2740 overlap2, i.types[2],
2741 operand_types[2]))
2743 continue;
2745 /* Found either forward/reverse 2 or 3 operand match here:
2746 slip through to break. */
2748 if (t->cpu_flags & ~cpu_arch_flags)
2750 found_reverse_match = 0;
2751 continue;
2753 /* We've found a match; break out of loop. */
2754 break;
2757 if (t == current_templates->end)
2759 /* We found no match. */
2760 as_bad (_("suffix or operands invalid for `%s'"),
2761 current_templates->start->name);
2762 return 0;
2765 if (!quiet_warnings)
2767 if (!intel_syntax
2768 && ((i.types[0] & JumpAbsolute)
2769 != (operand_types[0] & JumpAbsolute)))
2771 as_warn (_("indirect %s without `*'"), t->name);
2774 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2775 == (IsPrefix | IgnoreSize))
2777 /* Warn them that a data or address size prefix doesn't
2778 affect assembly of the next line of code. */
2779 as_warn (_("stand-alone `%s' prefix"), t->name);
2783 /* Copy the template we found. */
2784 i.tm = *t;
2786 if (addr_prefix_disp != -1)
2787 i.tm.operand_types[addr_prefix_disp]
2788 = operand_types[addr_prefix_disp];
2790 if (found_reverse_match)
2792 /* If we found a reverse match we must alter the opcode
2793 direction bit. found_reverse_match holds bits to change
2794 (different for int & float insns). */
2796 i.tm.base_opcode ^= found_reverse_match;
2798 i.tm.operand_types[0] = operand_types[1];
2799 i.tm.operand_types[1] = operand_types[0];
2802 return 1;
2805 static int
2806 check_string ()
2808 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2809 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2811 if (i.seg[0] != NULL && i.seg[0] != &es)
2813 as_bad (_("`%s' operand %d must use `%%es' segment"),
2814 i.tm.name,
2815 mem_op + 1);
2816 return 0;
2818 /* There's only ever one segment override allowed per instruction.
2819 This instruction possibly has a legal segment override on the
2820 second operand, so copy the segment to where non-string
2821 instructions store it, allowing common code. */
2822 i.seg[0] = i.seg[1];
2824 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2826 if (i.seg[1] != NULL && i.seg[1] != &es)
2828 as_bad (_("`%s' operand %d must use `%%es' segment"),
2829 i.tm.name,
2830 mem_op + 2);
2831 return 0;
2834 return 1;
2837 static int
2838 process_suffix (void)
2840 /* If matched instruction specifies an explicit instruction mnemonic
2841 suffix, use it. */
2842 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2844 if (i.tm.opcode_modifier & Size16)
2845 i.suffix = WORD_MNEM_SUFFIX;
2846 else if (i.tm.opcode_modifier & Size64)
2847 i.suffix = QWORD_MNEM_SUFFIX;
2848 else
2849 i.suffix = LONG_MNEM_SUFFIX;
2851 else if (i.reg_operands)
2853 /* If there's no instruction mnemonic suffix we try to invent one
2854 based on register operands. */
2855 if (!i.suffix)
2857 /* We take i.suffix from the last register operand specified,
2858 Destination register type is more significant than source
2859 register type. */
2860 int op;
2862 for (op = i.operands; --op >= 0;)
2863 if ((i.types[op] & Reg)
2864 && !(i.tm.operand_types[op] & InOutPortReg))
2866 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2867 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2868 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2869 LONG_MNEM_SUFFIX);
2870 break;
2873 else if (i.suffix == BYTE_MNEM_SUFFIX)
2875 if (!check_byte_reg ())
2876 return 0;
2878 else if (i.suffix == LONG_MNEM_SUFFIX)
2880 if (!check_long_reg ())
2881 return 0;
2883 else if (i.suffix == QWORD_MNEM_SUFFIX)
2885 if (!check_qword_reg ())
2886 return 0;
2888 else if (i.suffix == WORD_MNEM_SUFFIX)
2890 if (!check_word_reg ())
2891 return 0;
2893 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2894 /* Do nothing if the instruction is going to ignore the prefix. */
2896 else
2897 abort ();
2899 else if ((i.tm.opcode_modifier & DefaultSize)
2900 && !i.suffix
2901 /* exclude fldenv/frstor/fsave/fstenv */
2902 && (i.tm.opcode_modifier & No_sSuf))
2904 i.suffix = stackop_size;
2906 else if (intel_syntax
2907 && !i.suffix
2908 && ((i.tm.operand_types[0] & JumpAbsolute)
2909 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2910 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2911 && i.tm.extension_opcode <= 3)))
2913 switch (flag_code)
2915 case CODE_64BIT:
2916 if (!(i.tm.opcode_modifier & No_qSuf))
2918 i.suffix = QWORD_MNEM_SUFFIX;
2919 break;
2921 case CODE_32BIT:
2922 if (!(i.tm.opcode_modifier & No_lSuf))
2923 i.suffix = LONG_MNEM_SUFFIX;
2924 break;
2925 case CODE_16BIT:
2926 if (!(i.tm.opcode_modifier & No_wSuf))
2927 i.suffix = WORD_MNEM_SUFFIX;
2928 break;
2932 if (!i.suffix)
2934 if (!intel_syntax)
2936 if (i.tm.opcode_modifier & W)
2938 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2939 return 0;
2942 else
2944 unsigned int suffixes = (~i.tm.opcode_modifier
2945 & (No_bSuf
2946 | No_wSuf
2947 | No_lSuf
2948 | No_sSuf
2949 | No_xSuf
2950 | No_qSuf));
2952 if ((i.tm.opcode_modifier & W)
2953 || ((suffixes & (suffixes - 1))
2954 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2956 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2957 return 0;
2962 /* Change the opcode based on the operand size given by i.suffix;
2963 We don't need to change things for byte insns. */
2965 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2967 /* It's not a byte, select word/dword operation. */
2968 if (i.tm.opcode_modifier & W)
2970 if (i.tm.opcode_modifier & ShortForm)
2971 i.tm.base_opcode |= 8;
2972 else
2973 i.tm.base_opcode |= 1;
2976 /* Now select between word & dword operations via the operand
2977 size prefix, except for instructions that will ignore this
2978 prefix anyway. */
2979 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2981 /* monitor in SSE3 is a very special case. The default size
2982 of AX is the size of mode. The address size override
2983 prefix will change the size of AX. */
2984 if (i.op->regs[0].reg_type &
2985 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2986 if (!add_prefix (ADDR_PREFIX_OPCODE))
2987 return 0;
2989 else if (i.suffix != QWORD_MNEM_SUFFIX
2990 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2991 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2992 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2993 || (flag_code == CODE_64BIT
2994 && (i.tm.opcode_modifier & JumpByte))))
2996 unsigned int prefix = DATA_PREFIX_OPCODE;
2998 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2999 prefix = ADDR_PREFIX_OPCODE;
3001 if (!add_prefix (prefix))
3002 return 0;
3005 /* Set mode64 for an operand. */
3006 if (i.suffix == QWORD_MNEM_SUFFIX
3007 && flag_code == CODE_64BIT
3008 && (i.tm.opcode_modifier & NoRex64) == 0)
3010 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3011 need rex64. */
3012 if (i.operands != 2
3013 || i.types [0] != (Acc | Reg64)
3014 || i.types [1] != (Acc | Reg64)
3015 || strcmp (i.tm.name, "xchg") != 0)
3016 i.rex |= REX_MODE64;
3019 /* Size floating point instruction. */
3020 if (i.suffix == LONG_MNEM_SUFFIX)
3021 if (i.tm.opcode_modifier & FloatMF)
3022 i.tm.base_opcode ^= 4;
3025 return 1;
3028 static int
3029 check_byte_reg (void)
3031 int op;
3033 for (op = i.operands; --op >= 0;)
3035 /* If this is an eight bit register, it's OK. If it's the 16 or
3036 32 bit version of an eight bit register, we will just use the
3037 low portion, and that's OK too. */
3038 if (i.types[op] & Reg8)
3039 continue;
3041 /* movzx and movsx should not generate this warning. */
3042 if (intel_syntax
3043 && (i.tm.base_opcode == 0xfb7
3044 || i.tm.base_opcode == 0xfb6
3045 || i.tm.base_opcode == 0x63
3046 || i.tm.base_opcode == 0xfbe
3047 || i.tm.base_opcode == 0xfbf))
3048 continue;
3050 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3052 /* Prohibit these changes in the 64bit mode, since the
3053 lowering is more complicated. */
3054 if (flag_code == CODE_64BIT
3055 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3057 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3058 i.op[op].regs->reg_name,
3059 i.suffix);
3060 return 0;
3062 #if REGISTER_WARNINGS
3063 if (!quiet_warnings
3064 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3065 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3066 (i.op[op].regs + (i.types[op] & Reg16
3067 ? REGNAM_AL - REGNAM_AX
3068 : REGNAM_AL - REGNAM_EAX))->reg_name,
3069 i.op[op].regs->reg_name,
3070 i.suffix);
3071 #endif
3072 continue;
3074 /* Any other register is bad. */
3075 if (i.types[op] & (Reg | RegMMX | RegXMM
3076 | SReg2 | SReg3
3077 | Control | Debug | Test
3078 | FloatReg | FloatAcc))
3080 as_bad (_("`%%%s' not allowed with `%s%c'"),
3081 i.op[op].regs->reg_name,
3082 i.tm.name,
3083 i.suffix);
3084 return 0;
3087 return 1;
3090 static int
3091 check_long_reg ()
3093 int op;
3095 for (op = i.operands; --op >= 0;)
3096 /* Reject eight bit registers, except where the template requires
3097 them. (eg. movzb) */
3098 if ((i.types[op] & Reg8) != 0
3099 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3101 as_bad (_("`%%%s' not allowed with `%s%c'"),
3102 i.op[op].regs->reg_name,
3103 i.tm.name,
3104 i.suffix);
3105 return 0;
3107 /* Warn if the e prefix on a general reg is missing. */
3108 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3109 && (i.types[op] & Reg16) != 0
3110 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3112 /* Prohibit these changes in the 64bit mode, since the
3113 lowering is more complicated. */
3114 if (flag_code == CODE_64BIT)
3116 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3117 i.op[op].regs->reg_name,
3118 i.suffix);
3119 return 0;
3121 #if REGISTER_WARNINGS
3122 else
3123 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3124 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3125 i.op[op].regs->reg_name,
3126 i.suffix);
3127 #endif
3129 /* Warn if the r prefix on a general reg is missing. */
3130 else if ((i.types[op] & Reg64) != 0
3131 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3133 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3134 i.op[op].regs->reg_name,
3135 i.suffix);
3136 return 0;
3138 return 1;
3141 static int
3142 check_qword_reg ()
3144 int op;
3146 for (op = i.operands; --op >= 0; )
3147 /* Reject eight bit registers, except where the template requires
3148 them. (eg. movzb) */
3149 if ((i.types[op] & Reg8) != 0
3150 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3152 as_bad (_("`%%%s' not allowed with `%s%c'"),
3153 i.op[op].regs->reg_name,
3154 i.tm.name,
3155 i.suffix);
3156 return 0;
3158 /* Warn if the e prefix on a general reg is missing. */
3159 else if (((i.types[op] & Reg16) != 0
3160 || (i.types[op] & Reg32) != 0)
3161 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3163 /* Prohibit these changes in the 64bit mode, since the
3164 lowering is more complicated. */
3165 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3166 i.op[op].regs->reg_name,
3167 i.suffix);
3168 return 0;
3170 return 1;
3173 static int
3174 check_word_reg ()
3176 int op;
3177 for (op = i.operands; --op >= 0;)
3178 /* Reject eight bit registers, except where the template requires
3179 them. (eg. movzb) */
3180 if ((i.types[op] & Reg8) != 0
3181 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3183 as_bad (_("`%%%s' not allowed with `%s%c'"),
3184 i.op[op].regs->reg_name,
3185 i.tm.name,
3186 i.suffix);
3187 return 0;
3189 /* Warn if the e prefix on a general reg is present. */
3190 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3191 && (i.types[op] & Reg32) != 0
3192 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3194 /* Prohibit these changes in the 64bit mode, since the
3195 lowering is more complicated. */
3196 if (flag_code == CODE_64BIT)
3198 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
3199 i.op[op].regs->reg_name,
3200 i.suffix);
3201 return 0;
3203 else
3204 #if REGISTER_WARNINGS
3205 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3206 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3207 i.op[op].regs->reg_name,
3208 i.suffix);
3209 #endif
3211 return 1;
3214 static int
3215 finalize_imm ()
3217 unsigned int overlap0, overlap1, overlap2;
3219 overlap0 = i.types[0] & i.tm.operand_types[0];
3220 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3221 && overlap0 != Imm8 && overlap0 != Imm8S
3222 && overlap0 != Imm16 && overlap0 != Imm32S
3223 && overlap0 != Imm32 && overlap0 != Imm64)
3225 if (i.suffix)
3227 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3228 ? Imm8 | Imm8S
3229 : (i.suffix == WORD_MNEM_SUFFIX
3230 ? Imm16
3231 : (i.suffix == QWORD_MNEM_SUFFIX
3232 ? Imm64 | Imm32S
3233 : Imm32)));
3235 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3236 || overlap0 == (Imm16 | Imm32)
3237 || overlap0 == (Imm16 | Imm32S))
3239 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3240 ? Imm16 : Imm32S);
3242 if (overlap0 != Imm8 && overlap0 != Imm8S
3243 && overlap0 != Imm16 && overlap0 != Imm32S
3244 && overlap0 != Imm32 && overlap0 != Imm64)
3246 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
3247 return 0;
3250 i.types[0] = overlap0;
3252 overlap1 = i.types[1] & i.tm.operand_types[1];
3253 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3254 && overlap1 != Imm8 && overlap1 != Imm8S
3255 && overlap1 != Imm16 && overlap1 != Imm32S
3256 && overlap1 != Imm32 && overlap1 != Imm64)
3258 if (i.suffix)
3260 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3261 ? Imm8 | Imm8S
3262 : (i.suffix == WORD_MNEM_SUFFIX
3263 ? Imm16
3264 : (i.suffix == QWORD_MNEM_SUFFIX
3265 ? Imm64 | Imm32S
3266 : Imm32)));
3268 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3269 || overlap1 == (Imm16 | Imm32)
3270 || overlap1 == (Imm16 | Imm32S))
3272 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3273 ? Imm16 : Imm32S);
3275 if (overlap1 != Imm8 && overlap1 != Imm8S
3276 && overlap1 != Imm16 && overlap1 != Imm32S
3277 && overlap1 != Imm32 && overlap1 != Imm64)
3279 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
3280 return 0;
3283 i.types[1] = overlap1;
3285 overlap2 = i.types[2] & i.tm.operand_types[2];
3286 assert ((overlap2 & Imm) == 0);
3287 i.types[2] = overlap2;
3289 return 1;
3292 static int
3293 process_operands ()
3295 /* Default segment register this instruction will use for memory
3296 accesses. 0 means unknown. This is only for optimizing out
3297 unnecessary segment overrides. */
3298 const seg_entry *default_seg = 0;
3300 /* The imul $imm, %reg instruction is converted into
3301 imul $imm, %reg, %reg, and the clr %reg instruction
3302 is converted into xor %reg, %reg. */
3303 if (i.tm.opcode_modifier & regKludge)
3305 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3306 /* Pretend we saw the extra register operand. */
3307 assert (i.op[first_reg_op + 1].regs == 0);
3308 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3309 i.types[first_reg_op + 1] = i.types[first_reg_op];
3310 i.reg_operands = 2;
3313 if (i.tm.opcode_modifier & ShortForm)
3315 /* The register or float register operand is in operand 0 or 1. */
3316 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3317 /* Register goes in low 3 bits of opcode. */
3318 i.tm.base_opcode |= i.op[op].regs->reg_num;
3319 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3320 i.rex |= REX_EXTZ;
3321 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3323 /* Warn about some common errors, but press on regardless.
3324 The first case can be generated by gcc (<= 2.8.1). */
3325 if (i.operands == 2)
3327 /* Reversed arguments on faddp, fsubp, etc. */
3328 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
3329 i.op[1].regs->reg_name,
3330 i.op[0].regs->reg_name);
3332 else
3334 /* Extraneous `l' suffix on fp insn. */
3335 as_warn (_("translating to `%s %%%s'"), i.tm.name,
3336 i.op[0].regs->reg_name);
3340 else if (i.tm.opcode_modifier & Modrm)
3342 /* The opcode is completed (modulo i.tm.extension_opcode which
3343 must be put into the modrm byte). Now, we make the modrm and
3344 index base bytes based on all the info we've collected. */
3346 default_seg = build_modrm_byte ();
3348 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
3350 if (i.tm.base_opcode == POP_SEG_SHORT
3351 && i.op[0].regs->reg_num == 1)
3353 as_bad (_("you can't `pop %%cs'"));
3354 return 0;
3356 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3357 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3358 i.rex |= REX_EXTZ;
3360 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
3362 default_seg = &ds;
3364 else if ((i.tm.opcode_modifier & IsString) != 0)
3366 /* For the string instructions that allow a segment override
3367 on one of their operands, the default segment is ds. */
3368 default_seg = &ds;
3371 if ((i.tm.base_opcode == 0x8d /* lea */
3372 || (i.tm.cpu_flags & CpuSVME))
3373 && i.seg[0] && !quiet_warnings)
3374 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3376 /* If a segment was explicitly specified, and the specified segment
3377 is not the default, use an opcode prefix to select it. If we
3378 never figured out what the default segment is, then default_seg
3379 will be zero at this point, and the specified segment prefix will
3380 always be used. */
3381 if ((i.seg[0]) && (i.seg[0] != default_seg))
3383 if (!add_prefix (i.seg[0]->seg_prefix))
3384 return 0;
3386 return 1;
3389 static const seg_entry *
3390 build_modrm_byte ()
3392 const seg_entry *default_seg = 0;
3394 /* i.reg_operands MUST be the number of real register operands;
3395 implicit registers do not count. */
3396 if (i.reg_operands == 2)
3398 unsigned int source, dest;
3399 source = ((i.types[0]
3400 & (Reg | RegMMX | RegXMM
3401 | SReg2 | SReg3
3402 | Control | Debug | Test))
3403 ? 0 : 1);
3405 /* In 4 operands instructions with 2 immediate operands, the first two are immediate
3406 bytes and hence source operand will be in the next byte after the immediates */
3407 if ((i.operands == 4)&&(i.imm_operands=2)) source++;
3408 dest = source + 1;
3410 i.rm.mode = 3;
3411 /* One of the register operands will be encoded in the i.tm.reg
3412 field, the other in the combined i.tm.mode and i.tm.regmem
3413 fields. If no form of this instruction supports a memory
3414 destination operand, then we assume the source operand may
3415 sometimes be a memory operand and so we need to store the
3416 destination in the i.rm.reg field. */
3417 if ((i.tm.operand_types[dest] & AnyMem) == 0)
3419 i.rm.reg = i.op[dest].regs->reg_num;
3420 i.rm.regmem = i.op[source].regs->reg_num;
3421 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3422 i.rex |= REX_EXTX;
3423 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3424 i.rex |= REX_EXTZ;
3426 else
3428 i.rm.reg = i.op[source].regs->reg_num;
3429 i.rm.regmem = i.op[dest].regs->reg_num;
3430 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3431 i.rex |= REX_EXTZ;
3432 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3433 i.rex |= REX_EXTX;
3435 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
3437 if (!((i.types[0] | i.types[1]) & Control))
3438 abort ();
3439 i.rex &= ~(REX_EXTX | REX_EXTZ);
3440 add_prefix (LOCK_PREFIX_OPCODE);
3443 else
3444 { /* If it's not 2 reg operands... */
3445 if (i.mem_operands)
3447 unsigned int fake_zero_displacement = 0;
3448 unsigned int op = ((i.types[0] & AnyMem)
3450 : (i.types[1] & AnyMem) ? 1 : 2);
3452 default_seg = &ds;
3454 if (i.base_reg == 0)
3456 i.rm.mode = 0;
3457 if (!i.disp_operands)
3458 fake_zero_displacement = 1;
3459 if (i.index_reg == 0)
3461 /* Operand is just <disp> */
3462 if (flag_code == CODE_64BIT)
3464 /* 64bit mode overwrites the 32bit absolute
3465 addressing by RIP relative addressing and
3466 absolute addressing is encoded by one of the
3467 redundant SIB forms. */
3468 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3469 i.sib.base = NO_BASE_REGISTER;
3470 i.sib.index = NO_INDEX_REGISTER;
3471 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
3473 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
3475 i.rm.regmem = NO_BASE_REGISTER_16;
3476 i.types[op] = Disp16;
3478 else
3480 i.rm.regmem = NO_BASE_REGISTER;
3481 i.types[op] = Disp32;
3484 else /* !i.base_reg && i.index_reg */
3486 i.sib.index = i.index_reg->reg_num;
3487 i.sib.base = NO_BASE_REGISTER;
3488 i.sib.scale = i.log2_scale_factor;
3489 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3490 i.types[op] &= ~Disp;
3491 if (flag_code != CODE_64BIT)
3492 i.types[op] |= Disp32; /* Must be 32 bit */
3493 else
3494 i.types[op] |= Disp32S;
3495 if ((i.index_reg->reg_flags & RegRex) != 0)
3496 i.rex |= REX_EXTY;
3499 /* RIP addressing for 64bit mode. */
3500 else if (i.base_reg->reg_type == BaseIndex)
3502 i.rm.regmem = NO_BASE_REGISTER;
3503 i.types[op] &= ~ Disp;
3504 i.types[op] |= Disp32S;
3505 i.flags[op] = Operand_PCrel;
3506 if (! i.disp_operands)
3507 fake_zero_displacement = 1;
3509 else if (i.base_reg->reg_type & Reg16)
3511 switch (i.base_reg->reg_num)
3513 case 3: /* (%bx) */
3514 if (i.index_reg == 0)
3515 i.rm.regmem = 7;
3516 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3517 i.rm.regmem = i.index_reg->reg_num - 6;
3518 break;
3519 case 5: /* (%bp) */
3520 default_seg = &ss;
3521 if (i.index_reg == 0)
3523 i.rm.regmem = 6;
3524 if ((i.types[op] & Disp) == 0)
3526 /* fake (%bp) into 0(%bp) */
3527 i.types[op] |= Disp8;
3528 fake_zero_displacement = 1;
3531 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3532 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3533 break;
3534 default: /* (%si) -> 4 or (%di) -> 5 */
3535 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3537 i.rm.mode = mode_from_disp_size (i.types[op]);
3539 else /* i.base_reg and 32/64 bit mode */
3541 if (flag_code == CODE_64BIT
3542 && (i.types[op] & Disp))
3543 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
3545 i.rm.regmem = i.base_reg->reg_num;
3546 if ((i.base_reg->reg_flags & RegRex) != 0)
3547 i.rex |= REX_EXTZ;
3548 i.sib.base = i.base_reg->reg_num;
3549 /* x86-64 ignores REX prefix bit here to avoid decoder
3550 complications. */
3551 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3553 default_seg = &ss;
3554 if (i.disp_operands == 0)
3556 fake_zero_displacement = 1;
3557 i.types[op] |= Disp8;
3560 else if (i.base_reg->reg_num == ESP_REG_NUM)
3562 default_seg = &ss;
3564 i.sib.scale = i.log2_scale_factor;
3565 if (i.index_reg == 0)
3567 /* <disp>(%esp) becomes two byte modrm with no index
3568 register. We've already stored the code for esp
3569 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3570 Any base register besides %esp will not use the
3571 extra modrm byte. */
3572 i.sib.index = NO_INDEX_REGISTER;
3573 #if !SCALE1_WHEN_NO_INDEX
3574 /* Another case where we force the second modrm byte. */
3575 if (i.log2_scale_factor)
3576 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3577 #endif
3579 else
3581 i.sib.index = i.index_reg->reg_num;
3582 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3583 if ((i.index_reg->reg_flags & RegRex) != 0)
3584 i.rex |= REX_EXTY;
3587 if (i.disp_operands
3588 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3589 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3590 i.rm.mode = 0;
3591 else
3592 i.rm.mode = mode_from_disp_size (i.types[op]);
3595 if (fake_zero_displacement)
3597 /* Fakes a zero displacement assuming that i.types[op]
3598 holds the correct displacement size. */
3599 expressionS *exp;
3601 assert (i.op[op].disps == 0);
3602 exp = &disp_expressions[i.disp_operands++];
3603 i.op[op].disps = exp;
3604 exp->X_op = O_constant;
3605 exp->X_add_number = 0;
3606 exp->X_add_symbol = (symbolS *) 0;
3607 exp->X_op_symbol = (symbolS *) 0;
3611 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3612 (if any) based on i.tm.extension_opcode. Again, we must be
3613 careful to make sure that segment/control/debug/test/MMX
3614 registers are coded into the i.rm.reg field. */
3615 if (i.reg_operands)
3617 unsigned int op =
3618 ((i.types[0]
3619 & (Reg | RegMMX | RegXMM
3620 | SReg2 | SReg3
3621 | Control | Debug | Test))
3623 : ((i.types[1]
3624 & (Reg | RegMMX | RegXMM
3625 | SReg2 | SReg3
3626 | Control | Debug | Test))
3628 : 2));
3629 /* If there is an extension opcode to put here, the register
3630 number must be put into the regmem field. */
3631 if (i.tm.extension_opcode != None)
3633 i.rm.regmem = i.op[op].regs->reg_num;
3634 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3635 i.rex |= REX_EXTZ;
3637 else
3639 i.rm.reg = i.op[op].regs->reg_num;
3640 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3641 i.rex |= REX_EXTX;
3644 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3645 must set it to 3 to indicate this is a register operand
3646 in the regmem field. */
3647 if (!i.mem_operands)
3648 i.rm.mode = 3;
3651 /* Fill in i.rm.reg field with extension opcode (if any). */
3652 if (i.tm.extension_opcode != None)
3653 i.rm.reg = i.tm.extension_opcode;
3655 return default_seg;
3658 static void
3659 output_branch ()
3661 char *p;
3662 int code16;
3663 int prefix;
3664 relax_substateT subtype;
3665 symbolS *sym;
3666 offsetT off;
3668 code16 = 0;
3669 if (flag_code == CODE_16BIT)
3670 code16 = CODE16;
3672 prefix = 0;
3673 if (i.prefix[DATA_PREFIX] != 0)
3675 prefix = 1;
3676 i.prefixes -= 1;
3677 code16 ^= CODE16;
3679 /* Pentium4 branch hints. */
3680 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3681 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3683 prefix++;
3684 i.prefixes--;
3686 if (i.prefix[REX_PREFIX] != 0)
3688 prefix++;
3689 i.prefixes--;
3692 if (i.prefixes != 0 && !intel_syntax)
3693 as_warn (_("skipping prefixes on this instruction"));
3695 /* It's always a symbol; End frag & setup for relax.
3696 Make sure there is enough room in this frag for the largest
3697 instruction we may generate in md_convert_frag. This is 2
3698 bytes for the opcode and room for the prefix and largest
3699 displacement. */
3700 frag_grow (prefix + 2 + 4);
3701 /* Prefix and 1 opcode byte go in fr_fix. */
3702 p = frag_more (prefix + 1);
3703 if (i.prefix[DATA_PREFIX] != 0)
3704 *p++ = DATA_PREFIX_OPCODE;
3705 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3706 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3707 *p++ = i.prefix[SEG_PREFIX];
3708 if (i.prefix[REX_PREFIX] != 0)
3709 *p++ = i.prefix[REX_PREFIX];
3710 *p = i.tm.base_opcode;
3712 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3713 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3714 else if ((cpu_arch_flags & Cpu386) != 0)
3715 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3716 else
3717 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3718 subtype |= code16;
3720 sym = i.op[0].disps->X_add_symbol;
3721 off = i.op[0].disps->X_add_number;
3723 if (i.op[0].disps->X_op != O_constant
3724 && i.op[0].disps->X_op != O_symbol)
3726 /* Handle complex expressions. */
3727 sym = make_expr_symbol (i.op[0].disps);
3728 off = 0;
3731 /* 1 possible extra opcode + 4 byte displacement go in var part.
3732 Pass reloc in fr_var. */
3733 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3736 static void
3737 output_jump ()
3739 char *p;
3740 int size;
3741 fixS *fixP;
3743 if (i.tm.opcode_modifier & JumpByte)
3745 /* This is a loop or jecxz type instruction. */
3746 size = 1;
3747 if (i.prefix[ADDR_PREFIX] != 0)
3749 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3750 i.prefixes -= 1;
3752 /* Pentium4 branch hints. */
3753 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3754 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3756 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3757 i.prefixes--;
3760 else
3762 int code16;
3764 code16 = 0;
3765 if (flag_code == CODE_16BIT)
3766 code16 = CODE16;
3768 if (i.prefix[DATA_PREFIX] != 0)
3770 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3771 i.prefixes -= 1;
3772 code16 ^= CODE16;
3775 size = 4;
3776 if (code16)
3777 size = 2;
3780 if (i.prefix[REX_PREFIX] != 0)
3782 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3783 i.prefixes -= 1;
3786 if (i.prefixes != 0 && !intel_syntax)
3787 as_warn (_("skipping prefixes on this instruction"));
3789 p = frag_more (1 + size);
3790 *p++ = i.tm.base_opcode;
3792 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3793 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3795 /* All jumps handled here are signed, but don't use a signed limit
3796 check for 32 and 16 bit jumps as we want to allow wrap around at
3797 4G and 64k respectively. */
3798 if (size == 1)
3799 fixP->fx_signed = 1;
3802 static void
3803 output_interseg_jump ()
3805 char *p;
3806 int size;
3807 int prefix;
3808 int code16;
3810 code16 = 0;
3811 if (flag_code == CODE_16BIT)
3812 code16 = CODE16;
3814 prefix = 0;
3815 if (i.prefix[DATA_PREFIX] != 0)
3817 prefix = 1;
3818 i.prefixes -= 1;
3819 code16 ^= CODE16;
3821 if (i.prefix[REX_PREFIX] != 0)
3823 prefix++;
3824 i.prefixes -= 1;
3827 size = 4;
3828 if (code16)
3829 size = 2;
3831 if (i.prefixes != 0 && !intel_syntax)
3832 as_warn (_("skipping prefixes on this instruction"));
3834 /* 1 opcode; 2 segment; offset */
3835 p = frag_more (prefix + 1 + 2 + size);
3837 if (i.prefix[DATA_PREFIX] != 0)
3838 *p++ = DATA_PREFIX_OPCODE;
3840 if (i.prefix[REX_PREFIX] != 0)
3841 *p++ = i.prefix[REX_PREFIX];
3843 *p++ = i.tm.base_opcode;
3844 if (i.op[1].imms->X_op == O_constant)
3846 offsetT n = i.op[1].imms->X_add_number;
3848 if (size == 2
3849 && !fits_in_unsigned_word (n)
3850 && !fits_in_signed_word (n))
3852 as_bad (_("16-bit jump out of range"));
3853 return;
3855 md_number_to_chars (p, n, size);
3857 else
3858 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3859 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3860 if (i.op[0].imms->X_op != O_constant)
3861 as_bad (_("can't handle non absolute segment in `%s'"),
3862 i.tm.name);
3863 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3866 static void
3867 output_insn ()
3869 fragS *insn_start_frag;
3870 offsetT insn_start_off;
3872 /* Tie dwarf2 debug info to the address at the start of the insn.
3873 We can't do this after the insn has been output as the current
3874 frag may have been closed off. eg. by frag_var. */
3875 dwarf2_emit_insn (0);
3877 insn_start_frag = frag_now;
3878 insn_start_off = frag_now_fix ();
3880 /* Output jumps. */
3881 if (i.tm.opcode_modifier & Jump)
3882 output_branch ();
3883 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3884 output_jump ();
3885 else if (i.tm.opcode_modifier & JumpInterSegment)
3886 output_interseg_jump ();
3887 else
3889 /* Output normal instructions here. */
3890 char *p;
3891 unsigned char *q;
3892 unsigned int prefix;
3894 /* All opcodes on i386 have either 1 or 2 bytes. Supplemental
3895 Streaming SIMD extensions 3 Instructions have 3 bytes. We may
3896 use one more higher byte to specify a prefix the instruction
3897 requires. */
3898 if ((i.tm.cpu_flags & CpuSSSE3) != 0)
3900 if (i.tm.base_opcode & 0xff000000)
3902 prefix = (i.tm.base_opcode >> 24) & 0xff;
3903 goto check_prefix;
3906 else if ((i.tm.base_opcode & 0xff0000) != 0)
3908 prefix = (i.tm.base_opcode >> 16) & 0xff;
3909 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3911 check_prefix:
3912 if (prefix != REPE_PREFIX_OPCODE
3913 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3914 add_prefix (prefix);
3916 else
3917 add_prefix (prefix);
3920 /* The prefix bytes. */
3921 for (q = i.prefix;
3922 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3923 q++)
3925 if (*q)
3927 p = frag_more (1);
3928 md_number_to_chars (p, (valueT) *q, 1);
3932 /* Now the opcode; be careful about word order here! */
3933 if (fits_in_unsigned_byte (i.tm.base_opcode))
3935 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3937 else
3939 if ((i.tm.cpu_flags & CpuSSSE3) != 0)
3941 p = frag_more (3);
3942 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3944 else
3945 p = frag_more (2);
3947 /* Put out high byte first: can't use md_number_to_chars! */
3948 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3949 *p = i.tm.base_opcode & 0xff;
3952 /* Now the modrm byte and sib byte (if present). */
3953 if (i.tm.opcode_modifier & Modrm)
3955 p = frag_more (1);
3956 md_number_to_chars (p,
3957 (valueT) (i.rm.regmem << 0
3958 | i.rm.reg << 3
3959 | i.rm.mode << 6),
3961 /* If i.rm.regmem == ESP (4)
3962 && i.rm.mode != (Register mode)
3963 && not 16 bit
3964 ==> need second modrm byte. */
3965 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3966 && i.rm.mode != 3
3967 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3969 p = frag_more (1);
3970 md_number_to_chars (p,
3971 (valueT) (i.sib.base << 0
3972 | i.sib.index << 3
3973 | i.sib.scale << 6),
3978 if (i.disp_operands)
3979 output_disp (insn_start_frag, insn_start_off);
3981 if (i.imm_operands)
3982 output_imm (insn_start_frag, insn_start_off);
3985 #ifdef DEBUG386
3986 if (flag_debug)
3988 pi ("" /*line*/, &i);
3990 #endif /* DEBUG386 */
3993 static void
3994 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
3996 char *p;
3997 unsigned int n;
3999 for (n = 0; n < i.operands; n++)
4001 if (i.types[n] & Disp)
4003 if (i.op[n].disps->X_op == O_constant)
4005 int size;
4006 offsetT val;
4008 size = 4;
4009 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4011 size = 2;
4012 if (i.types[n] & Disp8)
4013 size = 1;
4014 if (i.types[n] & Disp64)
4015 size = 8;
4017 val = offset_in_range (i.op[n].disps->X_add_number,
4018 size);
4019 p = frag_more (size);
4020 md_number_to_chars (p, val, size);
4022 else
4024 enum bfd_reloc_code_real reloc_type;
4025 int size = 4;
4026 int sign = 0;
4027 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4029 /* The PC relative address is computed relative
4030 to the instruction boundary, so in case immediate
4031 fields follows, we need to adjust the value. */
4032 if (pcrel && i.imm_operands)
4034 int imm_size = 4;
4035 unsigned int n1;
4037 for (n1 = 0; n1 < i.operands; n1++)
4038 if (i.types[n1] & Imm)
4040 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
4042 imm_size = 2;
4043 if (i.types[n1] & (Imm8 | Imm8S))
4044 imm_size = 1;
4045 if (i.types[n1] & Imm64)
4046 imm_size = 8;
4048 break;
4050 /* We should find the immediate. */
4051 if (n1 == i.operands)
4052 abort ();
4053 i.op[n].disps->X_add_number -= imm_size;
4056 if (i.types[n] & Disp32S)
4057 sign = 1;
4059 if (i.types[n] & (Disp16 | Disp64))
4061 size = 2;
4062 if (i.types[n] & Disp64)
4063 size = 8;
4066 p = frag_more (size);
4067 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4068 if (GOT_symbol
4069 && GOT_symbol == i.op[n].disps->X_add_symbol
4070 && (((reloc_type == BFD_RELOC_32
4071 || reloc_type == BFD_RELOC_X86_64_32S
4072 || (reloc_type == BFD_RELOC_64
4073 && object_64bit))
4074 && (i.op[n].disps->X_op == O_symbol
4075 || (i.op[n].disps->X_op == O_add
4076 && ((symbol_get_value_expression
4077 (i.op[n].disps->X_op_symbol)->X_op)
4078 == O_subtract))))
4079 || reloc_type == BFD_RELOC_32_PCREL))
4081 offsetT add;
4083 if (insn_start_frag == frag_now)
4084 add = (p - frag_now->fr_literal) - insn_start_off;
4085 else
4087 fragS *fr;
4089 add = insn_start_frag->fr_fix - insn_start_off;
4090 for (fr = insn_start_frag->fr_next;
4091 fr && fr != frag_now; fr = fr->fr_next)
4092 add += fr->fr_fix;
4093 add += p - frag_now->fr_literal;
4096 if (!object_64bit)
4098 reloc_type = BFD_RELOC_386_GOTPC;
4099 i.op[n].imms->X_add_number += add;
4101 else if (reloc_type == BFD_RELOC_64)
4102 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4103 else
4104 /* Don't do the adjustment for x86-64, as there
4105 the pcrel addressing is relative to the _next_
4106 insn, and that is taken care of in other code. */
4107 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4109 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4110 i.op[n].disps, pcrel, reloc_type);
4116 static void
4117 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4119 char *p;
4120 unsigned int n;
4122 for (n = 0; n < i.operands; n++)
4124 if (i.types[n] & Imm)
4126 if (i.op[n].imms->X_op == O_constant)
4128 int size;
4129 offsetT val;
4131 size = 4;
4132 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4134 size = 2;
4135 if (i.types[n] & (Imm8 | Imm8S))
4136 size = 1;
4137 else if (i.types[n] & Imm64)
4138 size = 8;
4140 val = offset_in_range (i.op[n].imms->X_add_number,
4141 size);
4142 p = frag_more (size);
4143 md_number_to_chars (p, val, size);
4145 else
4147 /* Not absolute_section.
4148 Need a 32-bit fixup (don't support 8bit
4149 non-absolute imms). Try to support other
4150 sizes ... */
4151 enum bfd_reloc_code_real reloc_type;
4152 int size = 4;
4153 int sign = 0;
4155 if ((i.types[n] & (Imm32S))
4156 && (i.suffix == QWORD_MNEM_SUFFIX
4157 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4158 sign = 1;
4159 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4161 size = 2;
4162 if (i.types[n] & (Imm8 | Imm8S))
4163 size = 1;
4164 if (i.types[n] & Imm64)
4165 size = 8;
4168 p = frag_more (size);
4169 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4171 /* This is tough to explain. We end up with this one if we
4172 * have operands that look like
4173 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4174 * obtain the absolute address of the GOT, and it is strongly
4175 * preferable from a performance point of view to avoid using
4176 * a runtime relocation for this. The actual sequence of
4177 * instructions often look something like:
4179 * call .L66
4180 * .L66:
4181 * popl %ebx
4182 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4184 * The call and pop essentially return the absolute address
4185 * of the label .L66 and store it in %ebx. The linker itself
4186 * will ultimately change the first operand of the addl so
4187 * that %ebx points to the GOT, but to keep things simple, the
4188 * .o file must have this operand set so that it generates not
4189 * the absolute address of .L66, but the absolute address of
4190 * itself. This allows the linker itself simply treat a GOTPC
4191 * relocation as asking for a pcrel offset to the GOT to be
4192 * added in, and the addend of the relocation is stored in the
4193 * operand field for the instruction itself.
4195 * Our job here is to fix the operand so that it would add
4196 * the correct offset so that %ebx would point to itself. The
4197 * thing that is tricky is that .-.L66 will point to the
4198 * beginning of the instruction, so we need to further modify
4199 * the operand so that it will point to itself. There are
4200 * other cases where you have something like:
4202 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4204 * and here no correction would be required. Internally in
4205 * the assembler we treat operands of this form as not being
4206 * pcrel since the '.' is explicitly mentioned, and I wonder
4207 * whether it would simplify matters to do it this way. Who
4208 * knows. In earlier versions of the PIC patches, the
4209 * pcrel_adjust field was used to store the correction, but
4210 * since the expression is not pcrel, I felt it would be
4211 * confusing to do it this way. */
4213 if ((reloc_type == BFD_RELOC_32
4214 || reloc_type == BFD_RELOC_X86_64_32S
4215 || reloc_type == BFD_RELOC_64)
4216 && GOT_symbol
4217 && GOT_symbol == i.op[n].imms->X_add_symbol
4218 && (i.op[n].imms->X_op == O_symbol
4219 || (i.op[n].imms->X_op == O_add
4220 && ((symbol_get_value_expression
4221 (i.op[n].imms->X_op_symbol)->X_op)
4222 == O_subtract))))
4224 offsetT add;
4226 if (insn_start_frag == frag_now)
4227 add = (p - frag_now->fr_literal) - insn_start_off;
4228 else
4230 fragS *fr;
4232 add = insn_start_frag->fr_fix - insn_start_off;
4233 for (fr = insn_start_frag->fr_next;
4234 fr && fr != frag_now; fr = fr->fr_next)
4235 add += fr->fr_fix;
4236 add += p - frag_now->fr_literal;
4239 if (!object_64bit)
4240 reloc_type = BFD_RELOC_386_GOTPC;
4241 else if (size == 4)
4242 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4243 else if (size == 8)
4244 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4245 i.op[n].imms->X_add_number += add;
4247 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4248 i.op[n].imms, 0, reloc_type);
4254 /* x86_cons_fix_new is called via the expression parsing code when a
4255 reloc is needed. We use this hook to get the correct .got reloc. */
4256 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4257 static int cons_sign = -1;
4259 void
4260 x86_cons_fix_new (fragS *frag,
4261 unsigned int off,
4262 unsigned int len,
4263 expressionS *exp)
4265 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4267 got_reloc = NO_RELOC;
4269 #ifdef TE_PE
4270 if (exp->X_op == O_secrel)
4272 exp->X_op = O_symbol;
4273 r = BFD_RELOC_32_SECREL;
4275 #endif
4277 fix_new_exp (frag, off, len, exp, 0, r);
4280 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4281 # define lex_got(reloc, adjust, types) NULL
4282 #else
4283 /* Parse operands of the form
4284 <symbol>@GOTOFF+<nnn>
4285 and similar .plt or .got references.
4287 If we find one, set up the correct relocation in RELOC and copy the
4288 input string, minus the `@GOTOFF' into a malloc'd buffer for
4289 parsing by the calling routine. Return this buffer, and if ADJUST
4290 is non-null set it to the length of the string we removed from the
4291 input line. Otherwise return NULL. */
4292 static char *
4293 lex_got (enum bfd_reloc_code_real *reloc,
4294 int *adjust,
4295 unsigned int *types)
4297 /* Some of the relocations depend on the size of what field is to
4298 be relocated. But in our callers i386_immediate and i386_displacement
4299 we don't yet know the operand size (this will be set by insn
4300 matching). Hence we record the word32 relocation here,
4301 and adjust the reloc according to the real size in reloc(). */
4302 static const struct {
4303 const char *str;
4304 const enum bfd_reloc_code_real rel[2];
4305 const unsigned int types64;
4306 } gotrel[] = {
4307 { "PLTOFF", { 0, BFD_RELOC_X86_64_PLTOFF64 }, Imm64 },
4308 { "PLT", { BFD_RELOC_386_PLT32, BFD_RELOC_X86_64_PLT32 }, Imm32|Imm32S|Disp32 },
4309 { "GOTPLT", { 0, BFD_RELOC_X86_64_GOTPLT64 }, Imm64|Disp64 },
4310 { "GOTOFF", { BFD_RELOC_386_GOTOFF, BFD_RELOC_X86_64_GOTOFF64 }, Imm64|Disp64 },
4311 { "GOTPCREL", { 0, BFD_RELOC_X86_64_GOTPCREL }, Imm32|Imm32S|Disp32 },
4312 { "TLSGD", { BFD_RELOC_386_TLS_GD, BFD_RELOC_X86_64_TLSGD }, Imm32|Imm32S|Disp32 },
4313 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0 }, 0 },
4314 { "TLSLD", { 0, BFD_RELOC_X86_64_TLSLD }, Imm32|Imm32S|Disp32 },
4315 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, BFD_RELOC_X86_64_GOTTPOFF }, Imm32|Imm32S|Disp32 },
4316 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, BFD_RELOC_X86_64_TPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
4317 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0 }, 0 },
4318 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, BFD_RELOC_X86_64_DTPOFF32 }, Imm32|Imm32S|Imm64|Disp32|Disp64 },
4319 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0 }, 0 },
4320 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0 }, 0 },
4321 { "GOT", { BFD_RELOC_386_GOT32, BFD_RELOC_X86_64_GOT32 }, Imm32|Imm32S|Disp32|Imm64 },
4322 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC, BFD_RELOC_X86_64_GOTPC32_TLSDESC }, Imm32|Imm32S|Disp32 },
4323 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL, BFD_RELOC_X86_64_TLSDESC_CALL }, Imm32|Imm32S|Disp32 }
4325 char *cp;
4326 unsigned int j;
4328 if (!IS_ELF)
4329 return NULL;
4331 for (cp = input_line_pointer; *cp != '@'; cp++)
4332 if (is_end_of_line[(unsigned char) *cp])
4333 return NULL;
4335 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4337 int len;
4339 len = strlen (gotrel[j].str);
4340 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4342 if (gotrel[j].rel[object_64bit] != 0)
4344 int first, second;
4345 char *tmpbuf, *past_reloc;
4347 *reloc = gotrel[j].rel[object_64bit];
4348 if (adjust)
4349 *adjust = len;
4351 if (types)
4353 if (flag_code != CODE_64BIT)
4354 *types = Imm32|Disp32;
4355 else
4356 *types = gotrel[j].types64;
4359 if (GOT_symbol == NULL)
4360 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4362 /* Replace the relocation token with ' ', so that
4363 errors like foo@GOTOFF1 will be detected. */
4365 /* The length of the first part of our input line. */
4366 first = cp - input_line_pointer;
4368 /* The second part goes from after the reloc token until
4369 (and including) an end_of_line char. Don't use strlen
4370 here as the end_of_line char may not be a NUL. */
4371 past_reloc = cp + 1 + len;
4372 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4374 second = cp - past_reloc;
4376 /* Allocate and copy string. The trailing NUL shouldn't
4377 be necessary, but be safe. */
4378 tmpbuf = xmalloc (first + second + 2);
4379 memcpy (tmpbuf, input_line_pointer, first);
4380 tmpbuf[first] = ' ';
4381 memcpy (tmpbuf + first + 1, past_reloc, second);
4382 tmpbuf[first + second + 1] = '\0';
4383 return tmpbuf;
4386 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4387 gotrel[j].str, 1 << (5 + object_64bit));
4388 return NULL;
4392 /* Might be a symbol version string. Don't as_bad here. */
4393 return NULL;
4396 void
4397 x86_cons (exp, size)
4398 expressionS *exp;
4399 int size;
4401 if (size == 4 || (object_64bit && size == 8))
4403 /* Handle @GOTOFF and the like in an expression. */
4404 char *save;
4405 char *gotfree_input_line;
4406 int adjust;
4408 save = input_line_pointer;
4409 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4410 if (gotfree_input_line)
4411 input_line_pointer = gotfree_input_line;
4413 expression (exp);
4415 if (gotfree_input_line)
4417 /* expression () has merrily parsed up to the end of line,
4418 or a comma - in the wrong buffer. Transfer how far
4419 input_line_pointer has moved to the right buffer. */
4420 input_line_pointer = (save
4421 + (input_line_pointer - gotfree_input_line)
4422 + adjust);
4423 free (gotfree_input_line);
4426 else
4427 expression (exp);
4429 #endif
4431 static void signed_cons (int size)
4433 if (flag_code == CODE_64BIT)
4434 cons_sign = 1;
4435 cons (size);
4436 cons_sign = -1;
4439 #ifdef TE_PE
4440 static void
4441 pe_directive_secrel (dummy)
4442 int dummy ATTRIBUTE_UNUSED;
4444 expressionS exp;
4448 expression (&exp);
4449 if (exp.X_op == O_symbol)
4450 exp.X_op = O_secrel;
4452 emit_expr (&exp, 4);
4454 while (*input_line_pointer++ == ',');
4456 input_line_pointer--;
4457 demand_empty_rest_of_line ();
4459 #endif
4461 static int i386_immediate PARAMS ((char *));
4463 static int
4464 i386_immediate (imm_start)
4465 char *imm_start;
4467 char *save_input_line_pointer;
4468 char *gotfree_input_line;
4469 segT exp_seg = 0;
4470 expressionS *exp;
4471 unsigned int types = ~0U;
4473 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4475 as_bad (_("only 1 or 2 immediate operands are allowed"));
4476 return 0;
4479 exp = &im_expressions[i.imm_operands++];
4480 i.op[this_operand].imms = exp;
4482 if (is_space_char (*imm_start))
4483 ++imm_start;
4485 save_input_line_pointer = input_line_pointer;
4486 input_line_pointer = imm_start;
4488 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4489 if (gotfree_input_line)
4490 input_line_pointer = gotfree_input_line;
4492 exp_seg = expression (exp);
4494 SKIP_WHITESPACE ();
4495 if (*input_line_pointer)
4496 as_bad (_("junk `%s' after expression"), input_line_pointer);
4498 input_line_pointer = save_input_line_pointer;
4499 if (gotfree_input_line)
4500 free (gotfree_input_line);
4502 if (exp->X_op == O_absent || exp->X_op == O_big)
4504 /* Missing or bad expr becomes absolute 0. */
4505 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4506 imm_start);
4507 exp->X_op = O_constant;
4508 exp->X_add_number = 0;
4509 exp->X_add_symbol = (symbolS *) 0;
4510 exp->X_op_symbol = (symbolS *) 0;
4512 else if (exp->X_op == O_constant)
4514 /* Size it properly later. */
4515 i.types[this_operand] |= Imm64;
4516 /* If BFD64, sign extend val. */
4517 if (!use_rela_relocations)
4518 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4519 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4521 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4522 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4523 && exp_seg != absolute_section
4524 && exp_seg != text_section
4525 && exp_seg != data_section
4526 && exp_seg != bss_section
4527 && exp_seg != undefined_section
4528 && !bfd_is_com_section (exp_seg))
4530 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4531 return 0;
4533 #endif
4534 else if (!intel_syntax && exp->X_op == O_register)
4536 as_bad (_("illegal immediate register operand %s"), imm_start);
4537 return 0;
4539 else
4541 /* This is an address. The size of the address will be
4542 determined later, depending on destination register,
4543 suffix, or the default for the section. */
4544 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4545 i.types[this_operand] &= types;
4548 return 1;
4551 static char *i386_scale PARAMS ((char *));
4553 static char *
4554 i386_scale (scale)
4555 char *scale;
4557 offsetT val;
4558 char *save = input_line_pointer;
4560 input_line_pointer = scale;
4561 val = get_absolute_expression ();
4563 switch (val)
4565 case 1:
4566 i.log2_scale_factor = 0;
4567 break;
4568 case 2:
4569 i.log2_scale_factor = 1;
4570 break;
4571 case 4:
4572 i.log2_scale_factor = 2;
4573 break;
4574 case 8:
4575 i.log2_scale_factor = 3;
4576 break;
4577 default:
4579 char sep = *input_line_pointer;
4581 *input_line_pointer = '\0';
4582 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4583 scale);
4584 *input_line_pointer = sep;
4585 input_line_pointer = save;
4586 return NULL;
4589 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4591 as_warn (_("scale factor of %d without an index register"),
4592 1 << i.log2_scale_factor);
4593 #if SCALE1_WHEN_NO_INDEX
4594 i.log2_scale_factor = 0;
4595 #endif
4597 scale = input_line_pointer;
4598 input_line_pointer = save;
4599 return scale;
4602 static int i386_displacement PARAMS ((char *, char *));
4604 static int
4605 i386_displacement (disp_start, disp_end)
4606 char *disp_start;
4607 char *disp_end;
4609 expressionS *exp;
4610 segT exp_seg = 0;
4611 char *save_input_line_pointer;
4612 char *gotfree_input_line;
4613 int bigdisp, override;
4614 unsigned int types = Disp;
4616 if ((i.types[this_operand] & JumpAbsolute)
4617 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4619 bigdisp = Disp32;
4620 override = (i.prefix[ADDR_PREFIX] != 0);
4622 else
4624 /* For PC-relative branches, the width of the displacement
4625 is dependent upon data size, not address size. */
4626 bigdisp = 0;
4627 override = (i.prefix[DATA_PREFIX] != 0);
4629 if (flag_code == CODE_64BIT)
4631 if (!bigdisp)
4632 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4633 ? Disp16
4634 : Disp32S | Disp32);
4635 else if (!override)
4636 bigdisp = Disp64 | Disp32S | Disp32;
4638 else
4640 if (!bigdisp)
4642 if (!override)
4643 override = (i.suffix == (flag_code != CODE_16BIT
4644 ? WORD_MNEM_SUFFIX
4645 : LONG_MNEM_SUFFIX));
4646 bigdisp = Disp32;
4648 if ((flag_code == CODE_16BIT) ^ override)
4649 bigdisp = Disp16;
4651 i.types[this_operand] |= bigdisp;
4653 exp = &disp_expressions[i.disp_operands];
4654 i.op[this_operand].disps = exp;
4655 i.disp_operands++;
4656 save_input_line_pointer = input_line_pointer;
4657 input_line_pointer = disp_start;
4658 END_STRING_AND_SAVE (disp_end);
4660 #ifndef GCC_ASM_O_HACK
4661 #define GCC_ASM_O_HACK 0
4662 #endif
4663 #if GCC_ASM_O_HACK
4664 END_STRING_AND_SAVE (disp_end + 1);
4665 if ((i.types[this_operand] & BaseIndex) != 0
4666 && displacement_string_end[-1] == '+')
4668 /* This hack is to avoid a warning when using the "o"
4669 constraint within gcc asm statements.
4670 For instance:
4672 #define _set_tssldt_desc(n,addr,limit,type) \
4673 __asm__ __volatile__ ( \
4674 "movw %w2,%0\n\t" \
4675 "movw %w1,2+%0\n\t" \
4676 "rorl $16,%1\n\t" \
4677 "movb %b1,4+%0\n\t" \
4678 "movb %4,5+%0\n\t" \
4679 "movb $0,6+%0\n\t" \
4680 "movb %h1,7+%0\n\t" \
4681 "rorl $16,%1" \
4682 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4684 This works great except that the output assembler ends
4685 up looking a bit weird if it turns out that there is
4686 no offset. You end up producing code that looks like:
4688 #APP
4689 movw $235,(%eax)
4690 movw %dx,2+(%eax)
4691 rorl $16,%edx
4692 movb %dl,4+(%eax)
4693 movb $137,5+(%eax)
4694 movb $0,6+(%eax)
4695 movb %dh,7+(%eax)
4696 rorl $16,%edx
4697 #NO_APP
4699 So here we provide the missing zero. */
4701 *displacement_string_end = '0';
4703 #endif
4704 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4705 if (gotfree_input_line)
4706 input_line_pointer = gotfree_input_line;
4708 exp_seg = expression (exp);
4710 SKIP_WHITESPACE ();
4711 if (*input_line_pointer)
4712 as_bad (_("junk `%s' after expression"), input_line_pointer);
4713 #if GCC_ASM_O_HACK
4714 RESTORE_END_STRING (disp_end + 1);
4715 #endif
4716 RESTORE_END_STRING (disp_end);
4717 input_line_pointer = save_input_line_pointer;
4718 if (gotfree_input_line)
4719 free (gotfree_input_line);
4721 /* We do this to make sure that the section symbol is in
4722 the symbol table. We will ultimately change the relocation
4723 to be relative to the beginning of the section. */
4724 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4725 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4726 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4728 if (exp->X_op != O_symbol)
4730 as_bad (_("bad expression used with @%s"),
4731 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4732 ? "GOTPCREL"
4733 : "GOTOFF"));
4734 return 0;
4737 if (S_IS_LOCAL (exp->X_add_symbol)
4738 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4739 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4740 exp->X_op = O_subtract;
4741 exp->X_op_symbol = GOT_symbol;
4742 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4743 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4744 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4745 i.reloc[this_operand] = BFD_RELOC_64;
4746 else
4747 i.reloc[this_operand] = BFD_RELOC_32;
4750 if (exp->X_op == O_absent || exp->X_op == O_big)
4752 /* Missing or bad expr becomes absolute 0. */
4753 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4754 disp_start);
4755 exp->X_op = O_constant;
4756 exp->X_add_number = 0;
4757 exp->X_add_symbol = (symbolS *) 0;
4758 exp->X_op_symbol = (symbolS *) 0;
4761 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4762 if (exp->X_op != O_constant
4763 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4764 && exp_seg != absolute_section
4765 && exp_seg != text_section
4766 && exp_seg != data_section
4767 && exp_seg != bss_section
4768 && exp_seg != undefined_section
4769 && !bfd_is_com_section (exp_seg))
4771 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4772 return 0;
4774 #endif
4776 if (!(i.types[this_operand] & ~Disp))
4777 i.types[this_operand] &= types;
4779 return 1;
4782 static int i386_index_check PARAMS ((const char *));
4784 /* Make sure the memory operand we've been dealt is valid.
4785 Return 1 on success, 0 on a failure. */
4787 static int
4788 i386_index_check (operand_string)
4789 const char *operand_string;
4791 int ok;
4792 #if INFER_ADDR_PREFIX
4793 int fudged = 0;
4795 tryprefix:
4796 #endif
4797 ok = 1;
4798 if ((current_templates->start->cpu_flags & CpuSVME)
4799 && current_templates->end[-1].operand_types[0] == AnyMem)
4801 /* Memory operands of SVME insns are special in that they only allow
4802 rAX as their memory address and ignore any segment override. */
4803 unsigned RegXX;
4805 /* SKINIT is even more restrictive: it always requires EAX. */
4806 if (strcmp (current_templates->start->name, "skinit") == 0)
4807 RegXX = Reg32;
4808 else if (flag_code == CODE_64BIT)
4809 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4810 else
4811 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4812 ? Reg16
4813 : Reg32);
4814 if (!i.base_reg
4815 || !(i.base_reg->reg_type & Acc)
4816 || !(i.base_reg->reg_type & RegXX)
4817 || i.index_reg
4818 || (i.types[0] & Disp))
4819 ok = 0;
4821 else if (flag_code == CODE_64BIT)
4823 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4825 if ((i.base_reg
4826 && ((i.base_reg->reg_type & RegXX) == 0)
4827 && (i.base_reg->reg_type != BaseIndex
4828 || i.index_reg))
4829 || (i.index_reg
4830 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4831 != (RegXX | BaseIndex))))
4832 ok = 0;
4834 else
4836 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4838 /* 16bit checks. */
4839 if ((i.base_reg
4840 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4841 != (Reg16 | BaseIndex)))
4842 || (i.index_reg
4843 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4844 != (Reg16 | BaseIndex))
4845 || !(i.base_reg
4846 && i.base_reg->reg_num < 6
4847 && i.index_reg->reg_num >= 6
4848 && i.log2_scale_factor == 0))))
4849 ok = 0;
4851 else
4853 /* 32bit checks. */
4854 if ((i.base_reg
4855 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4856 || (i.index_reg
4857 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4858 != (Reg32 | BaseIndex))))
4859 ok = 0;
4862 if (!ok)
4864 #if INFER_ADDR_PREFIX
4865 if (i.prefix[ADDR_PREFIX] == 0)
4867 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4868 i.prefixes += 1;
4869 /* Change the size of any displacement too. At most one of
4870 Disp16 or Disp32 is set.
4871 FIXME. There doesn't seem to be any real need for separate
4872 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4873 Removing them would probably clean up the code quite a lot. */
4874 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4875 i.types[this_operand] ^= (Disp16 | Disp32);
4876 fudged = 1;
4877 goto tryprefix;
4879 if (fudged)
4880 as_bad (_("`%s' is not a valid base/index expression"),
4881 operand_string);
4882 else
4883 #endif
4884 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4885 operand_string,
4886 flag_code_names[flag_code]);
4888 return ok;
4891 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4892 on error. */
4894 static int
4895 i386_operand (operand_string)
4896 char *operand_string;
4898 const reg_entry *r;
4899 char *end_op;
4900 char *op_string = operand_string;
4902 if (is_space_char (*op_string))
4903 ++op_string;
4905 /* We check for an absolute prefix (differentiating,
4906 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4907 if (*op_string == ABSOLUTE_PREFIX)
4909 ++op_string;
4910 if (is_space_char (*op_string))
4911 ++op_string;
4912 i.types[this_operand] |= JumpAbsolute;
4915 /* Check if operand is a register. */
4916 if ((r = parse_register (op_string, &end_op)) != NULL)
4918 /* Check for a segment override by searching for ':' after a
4919 segment register. */
4920 op_string = end_op;
4921 if (is_space_char (*op_string))
4922 ++op_string;
4923 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4925 switch (r->reg_num)
4927 case 0:
4928 i.seg[i.mem_operands] = &es;
4929 break;
4930 case 1:
4931 i.seg[i.mem_operands] = &cs;
4932 break;
4933 case 2:
4934 i.seg[i.mem_operands] = &ss;
4935 break;
4936 case 3:
4937 i.seg[i.mem_operands] = &ds;
4938 break;
4939 case 4:
4940 i.seg[i.mem_operands] = &fs;
4941 break;
4942 case 5:
4943 i.seg[i.mem_operands] = &gs;
4944 break;
4947 /* Skip the ':' and whitespace. */
4948 ++op_string;
4949 if (is_space_char (*op_string))
4950 ++op_string;
4952 if (!is_digit_char (*op_string)
4953 && !is_identifier_char (*op_string)
4954 && *op_string != '('
4955 && *op_string != ABSOLUTE_PREFIX)
4957 as_bad (_("bad memory operand `%s'"), op_string);
4958 return 0;
4960 /* Handle case of %es:*foo. */
4961 if (*op_string == ABSOLUTE_PREFIX)
4963 ++op_string;
4964 if (is_space_char (*op_string))
4965 ++op_string;
4966 i.types[this_operand] |= JumpAbsolute;
4968 goto do_memory_reference;
4970 if (*op_string)
4972 as_bad (_("junk `%s' after register"), op_string);
4973 return 0;
4975 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4976 i.op[this_operand].regs = r;
4977 i.reg_operands++;
4979 else if (*op_string == REGISTER_PREFIX)
4981 as_bad (_("bad register name `%s'"), op_string);
4982 return 0;
4984 else if (*op_string == IMMEDIATE_PREFIX)
4986 ++op_string;
4987 if (i.types[this_operand] & JumpAbsolute)
4989 as_bad (_("immediate operand illegal with absolute jump"));
4990 return 0;
4992 if (!i386_immediate (op_string))
4993 return 0;
4995 else if (is_digit_char (*op_string)
4996 || is_identifier_char (*op_string)
4997 || *op_string == '(')
4999 /* This is a memory reference of some sort. */
5000 char *base_string;
5002 /* Start and end of displacement string expression (if found). */
5003 char *displacement_string_start;
5004 char *displacement_string_end;
5006 do_memory_reference:
5007 if ((i.mem_operands == 1
5008 && (current_templates->start->opcode_modifier & IsString) == 0)
5009 || i.mem_operands == 2)
5011 as_bad (_("too many memory references for `%s'"),
5012 current_templates->start->name);
5013 return 0;
5016 /* Check for base index form. We detect the base index form by
5017 looking for an ')' at the end of the operand, searching
5018 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5019 after the '('. */
5020 base_string = op_string + strlen (op_string);
5022 --base_string;
5023 if (is_space_char (*base_string))
5024 --base_string;
5026 /* If we only have a displacement, set-up for it to be parsed later. */
5027 displacement_string_start = op_string;
5028 displacement_string_end = base_string + 1;
5030 if (*base_string == ')')
5032 char *temp_string;
5033 unsigned int parens_balanced = 1;
5034 /* We've already checked that the number of left & right ()'s are
5035 equal, so this loop will not be infinite. */
5038 base_string--;
5039 if (*base_string == ')')
5040 parens_balanced++;
5041 if (*base_string == '(')
5042 parens_balanced--;
5044 while (parens_balanced);
5046 temp_string = base_string;
5048 /* Skip past '(' and whitespace. */
5049 ++base_string;
5050 if (is_space_char (*base_string))
5051 ++base_string;
5053 if (*base_string == ','
5054 || ((i.base_reg = parse_register (base_string, &end_op)) != NULL))
5056 displacement_string_end = temp_string;
5058 i.types[this_operand] |= BaseIndex;
5060 if (i.base_reg)
5062 base_string = end_op;
5063 if (is_space_char (*base_string))
5064 ++base_string;
5067 /* There may be an index reg or scale factor here. */
5068 if (*base_string == ',')
5070 ++base_string;
5071 if (is_space_char (*base_string))
5072 ++base_string;
5074 if ((i.index_reg = parse_register (base_string, &end_op)) != NULL)
5076 base_string = end_op;
5077 if (is_space_char (*base_string))
5078 ++base_string;
5079 if (*base_string == ',')
5081 ++base_string;
5082 if (is_space_char (*base_string))
5083 ++base_string;
5085 else if (*base_string != ')')
5087 as_bad (_("expecting `,' or `)' after index register in `%s'"),
5088 operand_string);
5089 return 0;
5092 else if (*base_string == REGISTER_PREFIX)
5094 as_bad (_("bad register name `%s'"), base_string);
5095 return 0;
5098 /* Check for scale factor. */
5099 if (*base_string != ')')
5101 char *end_scale = i386_scale (base_string);
5103 if (!end_scale)
5104 return 0;
5106 base_string = end_scale;
5107 if (is_space_char (*base_string))
5108 ++base_string;
5109 if (*base_string != ')')
5111 as_bad (_("expecting `)' after scale factor in `%s'"),
5112 operand_string);
5113 return 0;
5116 else if (!i.index_reg)
5118 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
5119 *base_string);
5120 return 0;
5123 else if (*base_string != ')')
5125 as_bad (_("expecting `,' or `)' after base register in `%s'"),
5126 operand_string);
5127 return 0;
5130 else if (*base_string == REGISTER_PREFIX)
5132 as_bad (_("bad register name `%s'"), base_string);
5133 return 0;
5137 /* If there's an expression beginning the operand, parse it,
5138 assuming displacement_string_start and
5139 displacement_string_end are meaningful. */
5140 if (displacement_string_start != displacement_string_end)
5142 if (!i386_displacement (displacement_string_start,
5143 displacement_string_end))
5144 return 0;
5147 /* Special case for (%dx) while doing input/output op. */
5148 if (i.base_reg
5149 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5150 && i.index_reg == 0
5151 && i.log2_scale_factor == 0
5152 && i.seg[i.mem_operands] == 0
5153 && (i.types[this_operand] & Disp) == 0)
5155 i.types[this_operand] = InOutPortReg;
5156 return 1;
5159 if (i386_index_check (operand_string) == 0)
5160 return 0;
5161 i.mem_operands++;
5163 else
5165 /* It's not a memory operand; argh! */
5166 as_bad (_("invalid char %s beginning operand %d `%s'"),
5167 output_invalid (*op_string),
5168 this_operand + 1,
5169 op_string);
5170 return 0;
5172 return 1; /* Normal return. */
5175 /* md_estimate_size_before_relax()
5177 Called just before relax() for rs_machine_dependent frags. The x86
5178 assembler uses these frags to handle variable size jump
5179 instructions.
5181 Any symbol that is now undefined will not become defined.
5182 Return the correct fr_subtype in the frag.
5183 Return the initial "guess for variable size of frag" to caller.
5184 The guess is actually the growth beyond the fixed part. Whatever
5185 we do to grow the fixed or variable part contributes to our
5186 returned value. */
5189 md_estimate_size_before_relax (fragP, segment)
5190 fragS *fragP;
5191 segT segment;
5193 /* We've already got fragP->fr_subtype right; all we have to do is
5194 check for un-relaxable symbols. On an ELF system, we can't relax
5195 an externally visible symbol, because it may be overridden by a
5196 shared library. */
5197 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5198 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5199 || (IS_ELF
5200 && (S_IS_EXTERNAL (fragP->fr_symbol)
5201 || S_IS_WEAK (fragP->fr_symbol)))
5202 #endif
5205 /* Symbol is undefined in this segment, or we need to keep a
5206 reloc so that weak symbols can be overridden. */
5207 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5208 enum bfd_reloc_code_real reloc_type;
5209 unsigned char *opcode;
5210 int old_fr_fix;
5212 if (fragP->fr_var != NO_RELOC)
5213 reloc_type = fragP->fr_var;
5214 else if (size == 2)
5215 reloc_type = BFD_RELOC_16_PCREL;
5216 else
5217 reloc_type = BFD_RELOC_32_PCREL;
5219 old_fr_fix = fragP->fr_fix;
5220 opcode = (unsigned char *) fragP->fr_opcode;
5222 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5224 case UNCOND_JUMP:
5225 /* Make jmp (0xeb) a (d)word displacement jump. */
5226 opcode[0] = 0xe9;
5227 fragP->fr_fix += size;
5228 fix_new (fragP, old_fr_fix, size,
5229 fragP->fr_symbol,
5230 fragP->fr_offset, 1,
5231 reloc_type);
5232 break;
5234 case COND_JUMP86:
5235 if (size == 2
5236 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5238 /* Negate the condition, and branch past an
5239 unconditional jump. */
5240 opcode[0] ^= 1;
5241 opcode[1] = 3;
5242 /* Insert an unconditional jump. */
5243 opcode[2] = 0xe9;
5244 /* We added two extra opcode bytes, and have a two byte
5245 offset. */
5246 fragP->fr_fix += 2 + 2;
5247 fix_new (fragP, old_fr_fix + 2, 2,
5248 fragP->fr_symbol,
5249 fragP->fr_offset, 1,
5250 reloc_type);
5251 break;
5253 /* Fall through. */
5255 case COND_JUMP:
5256 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5258 fixS *fixP;
5260 fragP->fr_fix += 1;
5261 fixP = fix_new (fragP, old_fr_fix, 1,
5262 fragP->fr_symbol,
5263 fragP->fr_offset, 1,
5264 BFD_RELOC_8_PCREL);
5265 fixP->fx_signed = 1;
5266 break;
5269 /* This changes the byte-displacement jump 0x7N
5270 to the (d)word-displacement jump 0x0f,0x8N. */
5271 opcode[1] = opcode[0] + 0x10;
5272 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5273 /* We've added an opcode byte. */
5274 fragP->fr_fix += 1 + size;
5275 fix_new (fragP, old_fr_fix + 1, size,
5276 fragP->fr_symbol,
5277 fragP->fr_offset, 1,
5278 reloc_type);
5279 break;
5281 default:
5282 BAD_CASE (fragP->fr_subtype);
5283 break;
5285 frag_wane (fragP);
5286 return fragP->fr_fix - old_fr_fix;
5289 /* Guess size depending on current relax state. Initially the relax
5290 state will correspond to a short jump and we return 1, because
5291 the variable part of the frag (the branch offset) is one byte
5292 long. However, we can relax a section more than once and in that
5293 case we must either set fr_subtype back to the unrelaxed state,
5294 or return the value for the appropriate branch. */
5295 return md_relax_table[fragP->fr_subtype].rlx_length;
5298 /* Called after relax() is finished.
5300 In: Address of frag.
5301 fr_type == rs_machine_dependent.
5302 fr_subtype is what the address relaxed to.
5304 Out: Any fixSs and constants are set up.
5305 Caller will turn frag into a ".space 0". */
5307 void
5308 md_convert_frag (abfd, sec, fragP)
5309 bfd *abfd ATTRIBUTE_UNUSED;
5310 segT sec ATTRIBUTE_UNUSED;
5311 fragS *fragP;
5313 unsigned char *opcode;
5314 unsigned char *where_to_put_displacement = NULL;
5315 offsetT target_address;
5316 offsetT opcode_address;
5317 unsigned int extension = 0;
5318 offsetT displacement_from_opcode_start;
5320 opcode = (unsigned char *) fragP->fr_opcode;
5322 /* Address we want to reach in file space. */
5323 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5325 /* Address opcode resides at in file space. */
5326 opcode_address = fragP->fr_address + fragP->fr_fix;
5328 /* Displacement from opcode start to fill into instruction. */
5329 displacement_from_opcode_start = target_address - opcode_address;
5331 if ((fragP->fr_subtype & BIG) == 0)
5333 /* Don't have to change opcode. */
5334 extension = 1; /* 1 opcode + 1 displacement */
5335 where_to_put_displacement = &opcode[1];
5337 else
5339 if (no_cond_jump_promotion
5340 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5341 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
5343 switch (fragP->fr_subtype)
5345 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5346 extension = 4; /* 1 opcode + 4 displacement */
5347 opcode[0] = 0xe9;
5348 where_to_put_displacement = &opcode[1];
5349 break;
5351 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5352 extension = 2; /* 1 opcode + 2 displacement */
5353 opcode[0] = 0xe9;
5354 where_to_put_displacement = &opcode[1];
5355 break;
5357 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5358 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5359 extension = 5; /* 2 opcode + 4 displacement */
5360 opcode[1] = opcode[0] + 0x10;
5361 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5362 where_to_put_displacement = &opcode[2];
5363 break;
5365 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5366 extension = 3; /* 2 opcode + 2 displacement */
5367 opcode[1] = opcode[0] + 0x10;
5368 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5369 where_to_put_displacement = &opcode[2];
5370 break;
5372 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5373 extension = 4;
5374 opcode[0] ^= 1;
5375 opcode[1] = 3;
5376 opcode[2] = 0xe9;
5377 where_to_put_displacement = &opcode[3];
5378 break;
5380 default:
5381 BAD_CASE (fragP->fr_subtype);
5382 break;
5386 /* If size if less then four we are sure that the operand fits,
5387 but if it's 4, then it could be that the displacement is larger
5388 then -/+ 2GB. */
5389 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5390 && object_64bit
5391 && ((addressT) (displacement_from_opcode_start - extension
5392 + ((addressT) 1 << 31))
5393 > (((addressT) 2 << 31) - 1)))
5395 as_bad_where (fragP->fr_file, fragP->fr_line,
5396 _("jump target out of range"));
5397 /* Make us emit 0. */
5398 displacement_from_opcode_start = extension;
5400 /* Now put displacement after opcode. */
5401 md_number_to_chars ((char *) where_to_put_displacement,
5402 (valueT) (displacement_from_opcode_start - extension),
5403 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5404 fragP->fr_fix += extension;
5407 /* Size of byte displacement jmp. */
5408 int md_short_jump_size = 2;
5410 /* Size of dword displacement jmp. */
5411 int md_long_jump_size = 5;
5413 void
5414 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5415 char *ptr;
5416 addressT from_addr, to_addr;
5417 fragS *frag ATTRIBUTE_UNUSED;
5418 symbolS *to_symbol ATTRIBUTE_UNUSED;
5420 offsetT offset;
5422 offset = to_addr - (from_addr + 2);
5423 /* Opcode for byte-disp jump. */
5424 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5425 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5428 void
5429 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5430 char *ptr;
5431 addressT from_addr, to_addr;
5432 fragS *frag ATTRIBUTE_UNUSED;
5433 symbolS *to_symbol ATTRIBUTE_UNUSED;
5435 offsetT offset;
5437 offset = to_addr - (from_addr + 5);
5438 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5439 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5442 /* Apply a fixup (fixS) to segment data, once it has been determined
5443 by our caller that we have all the info we need to fix it up.
5445 On the 386, immediates, displacements, and data pointers are all in
5446 the same (little-endian) format, so we don't need to care about which
5447 we are handling. */
5449 void
5450 md_apply_fix (fixP, valP, seg)
5451 /* The fix we're to put in. */
5452 fixS *fixP;
5453 /* Pointer to the value of the bits. */
5454 valueT *valP;
5455 /* Segment fix is from. */
5456 segT seg ATTRIBUTE_UNUSED;
5458 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5459 valueT value = *valP;
5461 #if !defined (TE_Mach)
5462 if (fixP->fx_pcrel)
5464 switch (fixP->fx_r_type)
5466 default:
5467 break;
5469 case BFD_RELOC_64:
5470 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5471 break;
5472 case BFD_RELOC_32:
5473 case BFD_RELOC_X86_64_32S:
5474 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5475 break;
5476 case BFD_RELOC_16:
5477 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5478 break;
5479 case BFD_RELOC_8:
5480 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5481 break;
5485 if (fixP->fx_addsy != NULL
5486 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5487 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5488 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5489 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5490 && !use_rela_relocations)
5492 /* This is a hack. There should be a better way to handle this.
5493 This covers for the fact that bfd_install_relocation will
5494 subtract the current location (for partial_inplace, PC relative
5495 relocations); see more below. */
5496 #ifndef OBJ_AOUT
5497 if (IS_ELF
5498 #ifdef TE_PE
5499 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5500 #endif
5502 value += fixP->fx_where + fixP->fx_frag->fr_address;
5503 #endif
5504 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5505 if (IS_ELF)
5507 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5509 if ((sym_seg == seg
5510 || (symbol_section_p (fixP->fx_addsy)
5511 && sym_seg != absolute_section))
5512 && !generic_force_reloc (fixP))
5514 /* Yes, we add the values in twice. This is because
5515 bfd_install_relocation subtracts them out again. I think
5516 bfd_install_relocation is broken, but I don't dare change
5517 it. FIXME. */
5518 value += fixP->fx_where + fixP->fx_frag->fr_address;
5521 #endif
5522 #if defined (OBJ_COFF) && defined (TE_PE)
5523 /* For some reason, the PE format does not store a
5524 section address offset for a PC relative symbol. */
5525 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5526 || S_IS_WEAK (fixP->fx_addsy))
5527 value += md_pcrel_from (fixP);
5528 #endif
5531 /* Fix a few things - the dynamic linker expects certain values here,
5532 and we must not disappoint it. */
5533 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5534 if (IS_ELF && fixP->fx_addsy)
5535 switch (fixP->fx_r_type)
5537 case BFD_RELOC_386_PLT32:
5538 case BFD_RELOC_X86_64_PLT32:
5539 /* Make the jump instruction point to the address of the operand. At
5540 runtime we merely add the offset to the actual PLT entry. */
5541 value = -4;
5542 break;
5544 case BFD_RELOC_386_TLS_GD:
5545 case BFD_RELOC_386_TLS_LDM:
5546 case BFD_RELOC_386_TLS_IE_32:
5547 case BFD_RELOC_386_TLS_IE:
5548 case BFD_RELOC_386_TLS_GOTIE:
5549 case BFD_RELOC_386_TLS_GOTDESC:
5550 case BFD_RELOC_X86_64_TLSGD:
5551 case BFD_RELOC_X86_64_TLSLD:
5552 case BFD_RELOC_X86_64_GOTTPOFF:
5553 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5554 value = 0; /* Fully resolved at runtime. No addend. */
5555 /* Fallthrough */
5556 case BFD_RELOC_386_TLS_LE:
5557 case BFD_RELOC_386_TLS_LDO_32:
5558 case BFD_RELOC_386_TLS_LE_32:
5559 case BFD_RELOC_X86_64_DTPOFF32:
5560 case BFD_RELOC_X86_64_DTPOFF64:
5561 case BFD_RELOC_X86_64_TPOFF32:
5562 case BFD_RELOC_X86_64_TPOFF64:
5563 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5564 break;
5566 case BFD_RELOC_386_TLS_DESC_CALL:
5567 case BFD_RELOC_X86_64_TLSDESC_CALL:
5568 value = 0; /* Fully resolved at runtime. No addend. */
5569 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5570 fixP->fx_done = 0;
5571 return;
5573 case BFD_RELOC_386_GOT32:
5574 case BFD_RELOC_X86_64_GOT32:
5575 value = 0; /* Fully resolved at runtime. No addend. */
5576 break;
5578 case BFD_RELOC_VTABLE_INHERIT:
5579 case BFD_RELOC_VTABLE_ENTRY:
5580 fixP->fx_done = 0;
5581 return;
5583 default:
5584 break;
5586 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5587 *valP = value;
5588 #endif /* !defined (TE_Mach) */
5590 /* Are we finished with this relocation now? */
5591 if (fixP->fx_addsy == NULL)
5592 fixP->fx_done = 1;
5593 else if (use_rela_relocations)
5595 fixP->fx_no_overflow = 1;
5596 /* Remember value for tc_gen_reloc. */
5597 fixP->fx_addnumber = value;
5598 value = 0;
5601 md_number_to_chars (p, value, fixP->fx_size);
5604 #define MAX_LITTLENUMS 6
5606 /* Turn the string pointed to by litP into a floating point constant
5607 of type TYPE, and emit the appropriate bytes. The number of
5608 LITTLENUMS emitted is stored in *SIZEP. An error message is
5609 returned, or NULL on OK. */
5611 char *
5612 md_atof (type, litP, sizeP)
5613 int type;
5614 char *litP;
5615 int *sizeP;
5617 int prec;
5618 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5619 LITTLENUM_TYPE *wordP;
5620 char *t;
5622 switch (type)
5624 case 'f':
5625 case 'F':
5626 prec = 2;
5627 break;
5629 case 'd':
5630 case 'D':
5631 prec = 4;
5632 break;
5634 case 'x':
5635 case 'X':
5636 prec = 5;
5637 break;
5639 default:
5640 *sizeP = 0;
5641 return _("Bad call to md_atof ()");
5643 t = atof_ieee (input_line_pointer, type, words);
5644 if (t)
5645 input_line_pointer = t;
5647 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5648 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5649 the bigendian 386. */
5650 for (wordP = words + prec - 1; prec--;)
5652 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5653 litP += sizeof (LITTLENUM_TYPE);
5655 return 0;
5658 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5660 static char *
5661 output_invalid (c)
5662 int c;
5664 if (ISPRINT (c))
5665 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5666 "'%c'", c);
5667 else
5668 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5669 "(0x%x)", (unsigned char) c);
5670 return output_invalid_buf;
5673 /* REG_STRING starts *before* REGISTER_PREFIX. */
5675 static const reg_entry *
5676 parse_real_register (char *reg_string, char **end_op)
5678 char *s = reg_string;
5679 char *p;
5680 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5681 const reg_entry *r;
5683 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5684 if (*s == REGISTER_PREFIX)
5685 ++s;
5687 if (is_space_char (*s))
5688 ++s;
5690 p = reg_name_given;
5691 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5693 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5694 return (const reg_entry *) NULL;
5695 s++;
5698 /* For naked regs, make sure that we are not dealing with an identifier.
5699 This prevents confusing an identifier like `eax_var' with register
5700 `eax'. */
5701 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5702 return (const reg_entry *) NULL;
5704 *end_op = s;
5706 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5708 /* Handle floating point regs, allowing spaces in the (i) part. */
5709 if (r == i386_regtab /* %st is first entry of table */)
5711 if (is_space_char (*s))
5712 ++s;
5713 if (*s == '(')
5715 ++s;
5716 if (is_space_char (*s))
5717 ++s;
5718 if (*s >= '0' && *s <= '7')
5720 r = &i386_float_regtab[*s - '0'];
5721 ++s;
5722 if (is_space_char (*s))
5723 ++s;
5724 if (*s == ')')
5726 *end_op = s + 1;
5727 return r;
5730 /* We have "%st(" then garbage. */
5731 return (const reg_entry *) NULL;
5735 if (r != NULL
5736 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5737 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5738 && flag_code != CODE_64BIT)
5739 return (const reg_entry *) NULL;
5741 return r;
5744 /* REG_STRING starts *before* REGISTER_PREFIX. */
5746 static const reg_entry *
5747 parse_register (char *reg_string, char **end_op)
5749 const reg_entry *r;
5751 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5752 r = parse_real_register (reg_string, end_op);
5753 else
5754 r = NULL;
5755 if (!r)
5757 char *save = input_line_pointer;
5758 char c;
5759 symbolS *symbolP;
5761 input_line_pointer = reg_string;
5762 c = get_symbol_end ();
5763 symbolP = symbol_find (reg_string);
5764 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5766 const expressionS *e = symbol_get_value_expression (symbolP);
5768 know (e->X_op == O_register);
5769 know (e->X_add_number >= 0 && (valueT) e->X_add_number < ARRAY_SIZE (i386_regtab));
5770 r = i386_regtab + e->X_add_number;
5771 *end_op = input_line_pointer;
5773 *input_line_pointer = c;
5774 input_line_pointer = save;
5776 return r;
5780 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5782 const reg_entry *r;
5783 char *end = input_line_pointer;
5785 *end = *nextcharP;
5786 r = parse_register (name, &input_line_pointer);
5787 if (r && end <= input_line_pointer)
5789 *nextcharP = *input_line_pointer;
5790 *input_line_pointer = 0;
5791 e->X_op = O_register;
5792 e->X_add_number = r - i386_regtab;
5793 return 1;
5795 input_line_pointer = end;
5796 *end = 0;
5797 return 0;
5800 void
5801 md_operand (expressionS *e)
5803 if (*input_line_pointer == REGISTER_PREFIX)
5805 char *end;
5806 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5808 if (r)
5810 e->X_op = O_register;
5811 e->X_add_number = r - i386_regtab;
5812 input_line_pointer = end;
5818 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5819 const char *md_shortopts = "kVQ:sqn";
5820 #else
5821 const char *md_shortopts = "qn";
5822 #endif
5824 #define OPTION_32 (OPTION_MD_BASE + 0)
5825 #define OPTION_64 (OPTION_MD_BASE + 1)
5826 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5827 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5828 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5830 struct option md_longopts[] =
5832 {"32", no_argument, NULL, OPTION_32},
5833 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5834 {"64", no_argument, NULL, OPTION_64},
5835 #endif
5836 {"divide", no_argument, NULL, OPTION_DIVIDE},
5837 {"march", required_argument, NULL, OPTION_MARCH},
5838 {"mtune", required_argument, NULL, OPTION_MTUNE},
5839 {NULL, no_argument, NULL, 0}
5841 size_t md_longopts_size = sizeof (md_longopts);
5844 md_parse_option (int c, char *arg)
5846 unsigned int i;
5848 switch (c)
5850 case 'n':
5851 optimize_align_code = 0;
5852 break;
5854 case 'q':
5855 quiet_warnings = 1;
5856 break;
5858 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5859 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5860 should be emitted or not. FIXME: Not implemented. */
5861 case 'Q':
5862 break;
5864 /* -V: SVR4 argument to print version ID. */
5865 case 'V':
5866 print_version_id ();
5867 break;
5869 /* -k: Ignore for FreeBSD compatibility. */
5870 case 'k':
5871 break;
5873 case 's':
5874 /* -s: On i386 Solaris, this tells the native assembler to use
5875 .stab instead of .stab.excl. We always use .stab anyhow. */
5876 break;
5877 #endif
5878 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5879 case OPTION_64:
5881 const char **list, **l;
5883 list = bfd_target_list ();
5884 for (l = list; *l != NULL; l++)
5885 if ( strncmp (*l, "elf64-x86-64", 12) == 0
5886 || strcmp (*l, "coff-x86-64") == 0
5887 || strcmp (*l, "pe-x86-64") == 0
5888 || strcmp (*l, "pei-x86-64") == 0)
5890 default_arch = "x86_64";
5891 break;
5893 if (*l == NULL)
5894 as_fatal (_("No compiled in support for x86_64"));
5895 free (list);
5897 break;
5898 #endif
5900 case OPTION_32:
5901 default_arch = "i386";
5902 break;
5904 case OPTION_DIVIDE:
5905 #ifdef SVR4_COMMENT_CHARS
5907 char *n, *t;
5908 const char *s;
5910 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
5911 t = n;
5912 for (s = i386_comment_chars; *s != '\0'; s++)
5913 if (*s != '/')
5914 *t++ = *s;
5915 *t = '\0';
5916 i386_comment_chars = n;
5918 #endif
5919 break;
5921 case OPTION_MARCH:
5922 if (*arg == '.')
5923 as_fatal (_("Invalid -march= option: `%s'"), arg);
5924 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
5926 if (strcmp (arg, cpu_arch [i].name) == 0)
5928 cpu_arch_isa = cpu_arch[i].type;
5929 cpu_arch_isa_flags = cpu_arch[i].flags;
5930 if (!cpu_arch_tune_set)
5932 cpu_arch_tune = cpu_arch_isa;
5933 cpu_arch_tune_flags = cpu_arch_isa_flags;
5935 break;
5938 if (i >= ARRAY_SIZE (cpu_arch))
5939 as_fatal (_("Invalid -march= option: `%s'"), arg);
5940 break;
5942 case OPTION_MTUNE:
5943 if (*arg == '.')
5944 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
5945 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
5947 if (strcmp (arg, cpu_arch [i].name) == 0)
5949 cpu_arch_tune_set = 1;
5950 cpu_arch_tune = cpu_arch [i].type;
5951 cpu_arch_tune_flags = cpu_arch[i].flags;
5952 break;
5955 if (i >= ARRAY_SIZE (cpu_arch))
5956 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
5957 break;
5959 default:
5960 return 0;
5962 return 1;
5965 void
5966 md_show_usage (stream)
5967 FILE *stream;
5969 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5970 fprintf (stream, _("\
5971 -Q ignored\n\
5972 -V print assembler version number\n\
5973 -k ignored\n"));
5974 #endif
5975 fprintf (stream, _("\
5976 -n Do not optimize code alignment\n\
5977 -q quieten some warnings\n"));
5978 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5979 fprintf (stream, _("\
5980 -s ignored\n"));
5981 #endif
5982 #ifdef SVR4_COMMENT_CHARS
5983 fprintf (stream, _("\
5984 --divide do not treat `/' as a comment character\n"));
5985 #else
5986 fprintf (stream, _("\
5987 --divide ignored\n"));
5988 #endif
5989 fprintf (stream, _("\
5990 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
5991 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
5992 core, core2, k6, athlon, k8, generic32, generic64\n"));
5996 #if defined(TE_PEP)
5997 const char *
5998 x86_64_target_format (void)
6000 if (strcmp (default_arch, "x86_64") == 0)
6002 set_code_flag (CODE_64BIT);
6003 return COFF_TARGET_FORMAT;
6005 else if (strcmp (default_arch, "i386") == 0)
6007 set_code_flag (CODE_32BIT);
6008 return "coff-i386";
6011 as_fatal (_("Unknown architecture"));
6012 return NULL;
6014 #endif
6016 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6017 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6019 /* Pick the target format to use. */
6021 const char *
6022 i386_target_format ()
6024 if (!strcmp (default_arch, "x86_64"))
6026 set_code_flag (CODE_64BIT);
6027 if (cpu_arch_isa_flags == 0)
6028 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6029 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6030 |CpuSSE|CpuSSE2;
6031 if (cpu_arch_tune_flags == 0)
6032 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6033 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6034 |CpuSSE|CpuSSE2;
6036 else if (!strcmp (default_arch, "i386"))
6038 set_code_flag (CODE_32BIT);
6039 if (cpu_arch_isa_flags == 0)
6040 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6041 if (cpu_arch_tune_flags == 0)
6042 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6044 else
6045 as_fatal (_("Unknown architecture"));
6046 switch (OUTPUT_FLAVOR)
6048 #ifdef OBJ_MAYBE_AOUT
6049 case bfd_target_aout_flavour:
6050 return AOUT_TARGET_FORMAT;
6051 #endif
6052 #ifdef OBJ_MAYBE_COFF
6053 case bfd_target_coff_flavour:
6054 return "coff-i386";
6055 #endif
6056 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6057 case bfd_target_elf_flavour:
6059 if (flag_code == CODE_64BIT)
6061 object_64bit = 1;
6062 use_rela_relocations = 1;
6064 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6066 #endif
6067 default:
6068 abort ();
6069 return NULL;
6073 #endif /* OBJ_MAYBE_ more than one */
6075 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6076 void i386_elf_emit_arch_note ()
6078 if (IS_ELF && cpu_arch_name != NULL)
6080 char *p;
6081 asection *seg = now_seg;
6082 subsegT subseg = now_subseg;
6083 Elf_Internal_Note i_note;
6084 Elf_External_Note e_note;
6085 asection *note_secp;
6086 int len;
6088 /* Create the .note section. */
6089 note_secp = subseg_new (".note", 0);
6090 bfd_set_section_flags (stdoutput,
6091 note_secp,
6092 SEC_HAS_CONTENTS | SEC_READONLY);
6094 /* Process the arch string. */
6095 len = strlen (cpu_arch_name);
6097 i_note.namesz = len + 1;
6098 i_note.descsz = 0;
6099 i_note.type = NT_ARCH;
6100 p = frag_more (sizeof (e_note.namesz));
6101 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6102 p = frag_more (sizeof (e_note.descsz));
6103 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6104 p = frag_more (sizeof (e_note.type));
6105 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6106 p = frag_more (len + 1);
6107 strcpy (p, cpu_arch_name);
6109 frag_align (2, 0, 0);
6111 subseg_set (seg, subseg);
6114 #endif
6116 symbolS *
6117 md_undefined_symbol (name)
6118 char *name;
6120 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6121 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6122 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6123 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6125 if (!GOT_symbol)
6127 if (symbol_find (name))
6128 as_bad (_("GOT already in symbol table"));
6129 GOT_symbol = symbol_new (name, undefined_section,
6130 (valueT) 0, &zero_address_frag);
6132 return GOT_symbol;
6134 return 0;
6137 /* Round up a section size to the appropriate boundary. */
6139 valueT
6140 md_section_align (segment, size)
6141 segT segment ATTRIBUTE_UNUSED;
6142 valueT size;
6144 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6145 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6147 /* For a.out, force the section size to be aligned. If we don't do
6148 this, BFD will align it for us, but it will not write out the
6149 final bytes of the section. This may be a bug in BFD, but it is
6150 easier to fix it here since that is how the other a.out targets
6151 work. */
6152 int align;
6154 align = bfd_get_section_alignment (stdoutput, segment);
6155 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6157 #endif
6159 return size;
6162 /* On the i386, PC-relative offsets are relative to the start of the
6163 next instruction. That is, the address of the offset, plus its
6164 size, since the offset is always the last part of the insn. */
6166 long
6167 md_pcrel_from (fixP)
6168 fixS *fixP;
6170 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6173 #ifndef I386COFF
6175 static void
6176 s_bss (ignore)
6177 int ignore ATTRIBUTE_UNUSED;
6179 int temp;
6181 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6182 if (IS_ELF)
6183 obj_elf_section_change_hook ();
6184 #endif
6185 temp = get_absolute_expression ();
6186 subseg_set (bss_section, (subsegT) temp);
6187 demand_empty_rest_of_line ();
6190 #endif
6192 void
6193 i386_validate_fix (fixp)
6194 fixS *fixp;
6196 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6198 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6200 if (!object_64bit)
6201 abort ();
6202 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6204 else
6206 if (!object_64bit)
6207 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6208 else
6209 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6211 fixp->fx_subsy = 0;
6215 arelent *
6216 tc_gen_reloc (section, fixp)
6217 asection *section ATTRIBUTE_UNUSED;
6218 fixS *fixp;
6220 arelent *rel;
6221 bfd_reloc_code_real_type code;
6223 switch (fixp->fx_r_type)
6225 case BFD_RELOC_X86_64_PLT32:
6226 case BFD_RELOC_X86_64_GOT32:
6227 case BFD_RELOC_X86_64_GOTPCREL:
6228 case BFD_RELOC_386_PLT32:
6229 case BFD_RELOC_386_GOT32:
6230 case BFD_RELOC_386_GOTOFF:
6231 case BFD_RELOC_386_GOTPC:
6232 case BFD_RELOC_386_TLS_GD:
6233 case BFD_RELOC_386_TLS_LDM:
6234 case BFD_RELOC_386_TLS_LDO_32:
6235 case BFD_RELOC_386_TLS_IE_32:
6236 case BFD_RELOC_386_TLS_IE:
6237 case BFD_RELOC_386_TLS_GOTIE:
6238 case BFD_RELOC_386_TLS_LE_32:
6239 case BFD_RELOC_386_TLS_LE:
6240 case BFD_RELOC_386_TLS_GOTDESC:
6241 case BFD_RELOC_386_TLS_DESC_CALL:
6242 case BFD_RELOC_X86_64_TLSGD:
6243 case BFD_RELOC_X86_64_TLSLD:
6244 case BFD_RELOC_X86_64_DTPOFF32:
6245 case BFD_RELOC_X86_64_DTPOFF64:
6246 case BFD_RELOC_X86_64_GOTTPOFF:
6247 case BFD_RELOC_X86_64_TPOFF32:
6248 case BFD_RELOC_X86_64_TPOFF64:
6249 case BFD_RELOC_X86_64_GOTOFF64:
6250 case BFD_RELOC_X86_64_GOTPC32:
6251 case BFD_RELOC_X86_64_GOT64:
6252 case BFD_RELOC_X86_64_GOTPCREL64:
6253 case BFD_RELOC_X86_64_GOTPC64:
6254 case BFD_RELOC_X86_64_GOTPLT64:
6255 case BFD_RELOC_X86_64_PLTOFF64:
6256 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6257 case BFD_RELOC_X86_64_TLSDESC_CALL:
6258 case BFD_RELOC_RVA:
6259 case BFD_RELOC_VTABLE_ENTRY:
6260 case BFD_RELOC_VTABLE_INHERIT:
6261 #ifdef TE_PE
6262 case BFD_RELOC_32_SECREL:
6263 #endif
6264 code = fixp->fx_r_type;
6265 break;
6266 case BFD_RELOC_X86_64_32S:
6267 if (!fixp->fx_pcrel)
6269 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6270 code = fixp->fx_r_type;
6271 break;
6273 default:
6274 if (fixp->fx_pcrel)
6276 switch (fixp->fx_size)
6278 default:
6279 as_bad_where (fixp->fx_file, fixp->fx_line,
6280 _("can not do %d byte pc-relative relocation"),
6281 fixp->fx_size);
6282 code = BFD_RELOC_32_PCREL;
6283 break;
6284 case 1: code = BFD_RELOC_8_PCREL; break;
6285 case 2: code = BFD_RELOC_16_PCREL; break;
6286 case 4: code = BFD_RELOC_32_PCREL; break;
6287 #ifdef BFD64
6288 case 8: code = BFD_RELOC_64_PCREL; break;
6289 #endif
6292 else
6294 switch (fixp->fx_size)
6296 default:
6297 as_bad_where (fixp->fx_file, fixp->fx_line,
6298 _("can not do %d byte relocation"),
6299 fixp->fx_size);
6300 code = BFD_RELOC_32;
6301 break;
6302 case 1: code = BFD_RELOC_8; break;
6303 case 2: code = BFD_RELOC_16; break;
6304 case 4: code = BFD_RELOC_32; break;
6305 #ifdef BFD64
6306 case 8: code = BFD_RELOC_64; break;
6307 #endif
6310 break;
6313 if ((code == BFD_RELOC_32
6314 || code == BFD_RELOC_32_PCREL
6315 || code == BFD_RELOC_X86_64_32S)
6316 && GOT_symbol
6317 && fixp->fx_addsy == GOT_symbol)
6319 if (!object_64bit)
6320 code = BFD_RELOC_386_GOTPC;
6321 else
6322 code = BFD_RELOC_X86_64_GOTPC32;
6324 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6325 && GOT_symbol
6326 && fixp->fx_addsy == GOT_symbol)
6328 code = BFD_RELOC_X86_64_GOTPC64;
6331 rel = (arelent *) xmalloc (sizeof (arelent));
6332 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6333 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6335 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6337 if (!use_rela_relocations)
6339 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6340 vtable entry to be used in the relocation's section offset. */
6341 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6342 rel->address = fixp->fx_offset;
6344 rel->addend = 0;
6346 /* Use the rela in 64bit mode. */
6347 else
6349 if (!fixp->fx_pcrel)
6350 rel->addend = fixp->fx_offset;
6351 else
6352 switch (code)
6354 case BFD_RELOC_X86_64_PLT32:
6355 case BFD_RELOC_X86_64_GOT32:
6356 case BFD_RELOC_X86_64_GOTPCREL:
6357 case BFD_RELOC_X86_64_TLSGD:
6358 case BFD_RELOC_X86_64_TLSLD:
6359 case BFD_RELOC_X86_64_GOTTPOFF:
6360 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6361 case BFD_RELOC_X86_64_TLSDESC_CALL:
6362 rel->addend = fixp->fx_offset - fixp->fx_size;
6363 break;
6364 default:
6365 rel->addend = (section->vma
6366 - fixp->fx_size
6367 + fixp->fx_addnumber
6368 + md_pcrel_from (fixp));
6369 break;
6373 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6374 if (rel->howto == NULL)
6376 as_bad_where (fixp->fx_file, fixp->fx_line,
6377 _("cannot represent relocation type %s"),
6378 bfd_get_reloc_code_name (code));
6379 /* Set howto to a garbage value so that we can keep going. */
6380 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6381 assert (rel->howto != NULL);
6384 return rel;
6388 /* Parse operands using Intel syntax. This implements a recursive descent
6389 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6390 Programmer's Guide.
6392 FIXME: We do not recognize the full operand grammar defined in the MASM
6393 documentation. In particular, all the structure/union and
6394 high-level macro operands are missing.
6396 Uppercase words are terminals, lower case words are non-terminals.
6397 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6398 bars '|' denote choices. Most grammar productions are implemented in
6399 functions called 'intel_<production>'.
6401 Initial production is 'expr'.
6403 addOp + | -
6405 alpha [a-zA-Z]
6407 binOp & | AND | \| | OR | ^ | XOR
6409 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6411 constant digits [[ radixOverride ]]
6413 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6415 digits decdigit
6416 | digits decdigit
6417 | digits hexdigit
6419 decdigit [0-9]
6421 e04 e04 addOp e05
6422 | e05
6424 e05 e05 binOp e06
6425 | e06
6427 e06 e06 mulOp e09
6428 | e09
6430 e09 OFFSET e10
6431 | SHORT e10
6432 | + e10
6433 | - e10
6434 | ~ e10
6435 | NOT e10
6436 | e09 PTR e10
6437 | e09 : e10
6438 | e10
6440 e10 e10 [ expr ]
6441 | e11
6443 e11 ( expr )
6444 | [ expr ]
6445 | constant
6446 | dataType
6447 | id
6449 | register
6451 => expr expr cmpOp e04
6452 | e04
6454 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6455 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6457 hexdigit a | b | c | d | e | f
6458 | A | B | C | D | E | F
6460 id alpha
6461 | id alpha
6462 | id decdigit
6464 mulOp * | / | % | MOD | << | SHL | >> | SHR
6466 quote " | '
6468 register specialRegister
6469 | gpRegister
6470 | byteRegister
6472 segmentRegister CS | DS | ES | FS | GS | SS
6474 specialRegister CR0 | CR2 | CR3 | CR4
6475 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6476 | TR3 | TR4 | TR5 | TR6 | TR7
6478 We simplify the grammar in obvious places (e.g., register parsing is
6479 done by calling parse_register) and eliminate immediate left recursion
6480 to implement a recursive-descent parser.
6482 expr e04 expr'
6484 expr' cmpOp e04 expr'
6485 | Empty
6487 e04 e05 e04'
6489 e04' addOp e05 e04'
6490 | Empty
6492 e05 e06 e05'
6494 e05' binOp e06 e05'
6495 | Empty
6497 e06 e09 e06'
6499 e06' mulOp e09 e06'
6500 | Empty
6502 e09 OFFSET e10 e09'
6503 | SHORT e10'
6504 | + e10'
6505 | - e10'
6506 | ~ e10'
6507 | NOT e10'
6508 | e10 e09'
6510 e09' PTR e10 e09'
6511 | : e10 e09'
6512 | Empty
6514 e10 e11 e10'
6516 e10' [ expr ] e10'
6517 | Empty
6519 e11 ( expr )
6520 | [ expr ]
6521 | BYTE
6522 | WORD
6523 | DWORD
6524 | FWORD
6525 | QWORD
6526 | TBYTE
6527 | OWORD
6528 | XMMWORD
6531 | register
6532 | id
6533 | constant */
6535 /* Parsing structure for the intel syntax parser. Used to implement the
6536 semantic actions for the operand grammar. */
6537 struct intel_parser_s
6539 char *op_string; /* The string being parsed. */
6540 int got_a_float; /* Whether the operand is a float. */
6541 int op_modifier; /* Operand modifier. */
6542 int is_mem; /* 1 if operand is memory reference. */
6543 int in_offset; /* >=1 if parsing operand of offset. */
6544 int in_bracket; /* >=1 if parsing operand in brackets. */
6545 const reg_entry *reg; /* Last register reference found. */
6546 char *disp; /* Displacement string being built. */
6547 char *next_operand; /* Resume point when splitting operands. */
6550 static struct intel_parser_s intel_parser;
6552 /* Token structure for parsing intel syntax. */
6553 struct intel_token
6555 int code; /* Token code. */
6556 const reg_entry *reg; /* Register entry for register tokens. */
6557 char *str; /* String representation. */
6560 static struct intel_token cur_token, prev_token;
6562 /* Token codes for the intel parser. Since T_SHORT is already used
6563 by COFF, undefine it first to prevent a warning. */
6564 #define T_NIL -1
6565 #define T_CONST 1
6566 #define T_REG 2
6567 #define T_BYTE 3
6568 #define T_WORD 4
6569 #define T_DWORD 5
6570 #define T_FWORD 6
6571 #define T_QWORD 7
6572 #define T_TBYTE 8
6573 #define T_XMMWORD 9
6574 #undef T_SHORT
6575 #define T_SHORT 10
6576 #define T_OFFSET 11
6577 #define T_PTR 12
6578 #define T_ID 13
6579 #define T_SHL 14
6580 #define T_SHR 15
6582 /* Prototypes for intel parser functions. */
6583 static int intel_match_token PARAMS ((int code));
6584 static void intel_get_token PARAMS ((void));
6585 static void intel_putback_token PARAMS ((void));
6586 static int intel_expr PARAMS ((void));
6587 static int intel_e04 PARAMS ((void));
6588 static int intel_e05 PARAMS ((void));
6589 static int intel_e06 PARAMS ((void));
6590 static int intel_e09 PARAMS ((void));
6591 static int intel_bracket_expr PARAMS ((void));
6592 static int intel_e10 PARAMS ((void));
6593 static int intel_e11 PARAMS ((void));
6595 static int
6596 i386_intel_operand (operand_string, got_a_float)
6597 char *operand_string;
6598 int got_a_float;
6600 int ret;
6601 char *p;
6603 p = intel_parser.op_string = xstrdup (operand_string);
6604 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6606 for (;;)
6608 /* Initialize token holders. */
6609 cur_token.code = prev_token.code = T_NIL;
6610 cur_token.reg = prev_token.reg = NULL;
6611 cur_token.str = prev_token.str = NULL;
6613 /* Initialize parser structure. */
6614 intel_parser.got_a_float = got_a_float;
6615 intel_parser.op_modifier = 0;
6616 intel_parser.is_mem = 0;
6617 intel_parser.in_offset = 0;
6618 intel_parser.in_bracket = 0;
6619 intel_parser.reg = NULL;
6620 intel_parser.disp[0] = '\0';
6621 intel_parser.next_operand = NULL;
6623 /* Read the first token and start the parser. */
6624 intel_get_token ();
6625 ret = intel_expr ();
6627 if (!ret)
6628 break;
6630 if (cur_token.code != T_NIL)
6632 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6633 current_templates->start->name, cur_token.str);
6634 ret = 0;
6636 /* If we found a memory reference, hand it over to i386_displacement
6637 to fill in the rest of the operand fields. */
6638 else if (intel_parser.is_mem)
6640 if ((i.mem_operands == 1
6641 && (current_templates->start->opcode_modifier & IsString) == 0)
6642 || i.mem_operands == 2)
6644 as_bad (_("too many memory references for '%s'"),
6645 current_templates->start->name);
6646 ret = 0;
6648 else
6650 char *s = intel_parser.disp;
6651 i.mem_operands++;
6653 if (!quiet_warnings && intel_parser.is_mem < 0)
6654 /* See the comments in intel_bracket_expr. */
6655 as_warn (_("Treating `%s' as memory reference"), operand_string);
6657 /* Add the displacement expression. */
6658 if (*s != '\0')
6659 ret = i386_displacement (s, s + strlen (s));
6660 if (ret)
6662 /* Swap base and index in 16-bit memory operands like
6663 [si+bx]. Since i386_index_check is also used in AT&T
6664 mode we have to do that here. */
6665 if (i.base_reg
6666 && i.index_reg
6667 && (i.base_reg->reg_type & Reg16)
6668 && (i.index_reg->reg_type & Reg16)
6669 && i.base_reg->reg_num >= 6
6670 && i.index_reg->reg_num < 6)
6672 const reg_entry *base = i.index_reg;
6674 i.index_reg = i.base_reg;
6675 i.base_reg = base;
6677 ret = i386_index_check (operand_string);
6682 /* Constant and OFFSET expressions are handled by i386_immediate. */
6683 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6684 || intel_parser.reg == NULL)
6685 ret = i386_immediate (intel_parser.disp);
6687 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6688 ret = 0;
6689 if (!ret || !intel_parser.next_operand)
6690 break;
6691 intel_parser.op_string = intel_parser.next_operand;
6692 this_operand = i.operands++;
6695 free (p);
6696 free (intel_parser.disp);
6698 return ret;
6701 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6703 /* expr e04 expr'
6705 expr' cmpOp e04 expr'
6706 | Empty */
6707 static int
6708 intel_expr ()
6710 /* XXX Implement the comparison operators. */
6711 return intel_e04 ();
6714 /* e04 e05 e04'
6716 e04' addOp e05 e04'
6717 | Empty */
6718 static int
6719 intel_e04 ()
6721 int nregs = -1;
6723 for (;;)
6725 if (!intel_e05())
6726 return 0;
6728 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6729 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6731 if (cur_token.code == '+')
6732 nregs = -1;
6733 else if (cur_token.code == '-')
6734 nregs = NUM_ADDRESS_REGS;
6735 else
6736 return 1;
6738 strcat (intel_parser.disp, cur_token.str);
6739 intel_match_token (cur_token.code);
6743 /* e05 e06 e05'
6745 e05' binOp e06 e05'
6746 | Empty */
6747 static int
6748 intel_e05 ()
6750 int nregs = ~NUM_ADDRESS_REGS;
6752 for (;;)
6754 if (!intel_e06())
6755 return 0;
6757 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
6759 char str[2];
6761 str[0] = cur_token.code;
6762 str[1] = 0;
6763 strcat (intel_parser.disp, str);
6765 else
6766 break;
6768 intel_match_token (cur_token.code);
6770 if (nregs < 0)
6771 nregs = ~nregs;
6773 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6774 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6775 return 1;
6778 /* e06 e09 e06'
6780 e06' mulOp e09 e06'
6781 | Empty */
6782 static int
6783 intel_e06 ()
6785 int nregs = ~NUM_ADDRESS_REGS;
6787 for (;;)
6789 if (!intel_e09())
6790 return 0;
6792 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
6794 char str[2];
6796 str[0] = cur_token.code;
6797 str[1] = 0;
6798 strcat (intel_parser.disp, str);
6800 else if (cur_token.code == T_SHL)
6801 strcat (intel_parser.disp, "<<");
6802 else if (cur_token.code == T_SHR)
6803 strcat (intel_parser.disp, ">>");
6804 else
6805 break;
6807 intel_match_token (cur_token.code);
6809 if (nregs < 0)
6810 nregs = ~nregs;
6812 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6813 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6814 return 1;
6817 /* e09 OFFSET e09
6818 | SHORT e09
6819 | + e09
6820 | - e09
6821 | ~ e09
6822 | NOT e09
6823 | e10 e09'
6825 e09' PTR e10 e09'
6826 | : e10 e09'
6827 | Empty */
6828 static int
6829 intel_e09 ()
6831 int nregs = ~NUM_ADDRESS_REGS;
6832 int in_offset = 0;
6834 for (;;)
6836 /* Don't consume constants here. */
6837 if (cur_token.code == '+' || cur_token.code == '-')
6839 /* Need to look one token ahead - if the next token
6840 is a constant, the current token is its sign. */
6841 int next_code;
6843 intel_match_token (cur_token.code);
6844 next_code = cur_token.code;
6845 intel_putback_token ();
6846 if (next_code == T_CONST)
6847 break;
6850 /* e09 OFFSET e09 */
6851 if (cur_token.code == T_OFFSET)
6853 if (!in_offset++)
6854 ++intel_parser.in_offset;
6857 /* e09 SHORT e09 */
6858 else if (cur_token.code == T_SHORT)
6859 intel_parser.op_modifier |= 1 << T_SHORT;
6861 /* e09 + e09 */
6862 else if (cur_token.code == '+')
6863 strcat (intel_parser.disp, "+");
6865 /* e09 - e09
6866 | ~ e09
6867 | NOT e09 */
6868 else if (cur_token.code == '-' || cur_token.code == '~')
6870 char str[2];
6872 if (nregs < 0)
6873 nregs = ~nregs;
6874 str[0] = cur_token.code;
6875 str[1] = 0;
6876 strcat (intel_parser.disp, str);
6879 /* e09 e10 e09' */
6880 else
6881 break;
6883 intel_match_token (cur_token.code);
6886 for (;;)
6888 if (!intel_e10 ())
6889 return 0;
6891 /* e09' PTR e10 e09' */
6892 if (cur_token.code == T_PTR)
6894 char suffix;
6896 if (prev_token.code == T_BYTE)
6897 suffix = BYTE_MNEM_SUFFIX;
6899 else if (prev_token.code == T_WORD)
6901 if (current_templates->start->name[0] == 'l'
6902 && current_templates->start->name[2] == 's'
6903 && current_templates->start->name[3] == 0)
6904 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6905 else if (intel_parser.got_a_float == 2) /* "fi..." */
6906 suffix = SHORT_MNEM_SUFFIX;
6907 else
6908 suffix = WORD_MNEM_SUFFIX;
6911 else if (prev_token.code == T_DWORD)
6913 if (current_templates->start->name[0] == 'l'
6914 && current_templates->start->name[2] == 's'
6915 && current_templates->start->name[3] == 0)
6916 suffix = WORD_MNEM_SUFFIX;
6917 else if (flag_code == CODE_16BIT
6918 && (current_templates->start->opcode_modifier
6919 & (Jump | JumpDword)))
6920 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6921 else if (intel_parser.got_a_float == 1) /* "f..." */
6922 suffix = SHORT_MNEM_SUFFIX;
6923 else
6924 suffix = LONG_MNEM_SUFFIX;
6927 else if (prev_token.code == T_FWORD)
6929 if (current_templates->start->name[0] == 'l'
6930 && current_templates->start->name[2] == 's'
6931 && current_templates->start->name[3] == 0)
6932 suffix = LONG_MNEM_SUFFIX;
6933 else if (!intel_parser.got_a_float)
6935 if (flag_code == CODE_16BIT)
6936 add_prefix (DATA_PREFIX_OPCODE);
6937 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6939 else
6940 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6943 else if (prev_token.code == T_QWORD)
6945 if (intel_parser.got_a_float == 1) /* "f..." */
6946 suffix = LONG_MNEM_SUFFIX;
6947 else
6948 suffix = QWORD_MNEM_SUFFIX;
6951 else if (prev_token.code == T_TBYTE)
6953 if (intel_parser.got_a_float == 1)
6954 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6955 else
6956 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6959 else if (prev_token.code == T_XMMWORD)
6961 /* XXX ignored for now, but accepted since gcc uses it */
6962 suffix = 0;
6965 else
6967 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6968 return 0;
6971 /* Operands for jump/call using 'ptr' notation denote absolute
6972 addresses. */
6973 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
6974 i.types[this_operand] |= JumpAbsolute;
6976 if (current_templates->start->base_opcode == 0x8d /* lea */)
6978 else if (!i.suffix)
6979 i.suffix = suffix;
6980 else if (i.suffix != suffix)
6982 as_bad (_("Conflicting operand modifiers"));
6983 return 0;
6988 /* e09' : e10 e09' */
6989 else if (cur_token.code == ':')
6991 if (prev_token.code != T_REG)
6993 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6994 segment/group identifier (which we don't have), using comma
6995 as the operand separator there is even less consistent, since
6996 there all branches only have a single operand. */
6997 if (this_operand != 0
6998 || intel_parser.in_offset
6999 || intel_parser.in_bracket
7000 || (!(current_templates->start->opcode_modifier
7001 & (Jump|JumpDword|JumpInterSegment))
7002 && !(current_templates->start->operand_types[0]
7003 & JumpAbsolute)))
7004 return intel_match_token (T_NIL);
7005 /* Remember the start of the 2nd operand and terminate 1st
7006 operand here.
7007 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7008 another expression), but it gets at least the simplest case
7009 (a plain number or symbol on the left side) right. */
7010 intel_parser.next_operand = intel_parser.op_string;
7011 *--intel_parser.op_string = '\0';
7012 return intel_match_token (':');
7016 /* e09' Empty */
7017 else
7018 break;
7020 intel_match_token (cur_token.code);
7024 if (in_offset)
7026 --intel_parser.in_offset;
7027 if (nregs < 0)
7028 nregs = ~nregs;
7029 if (NUM_ADDRESS_REGS > nregs)
7031 as_bad (_("Invalid operand to `OFFSET'"));
7032 return 0;
7034 intel_parser.op_modifier |= 1 << T_OFFSET;
7037 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7038 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7039 return 1;
7042 static int
7043 intel_bracket_expr ()
7045 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7046 const char *start = intel_parser.op_string;
7047 int len;
7049 if (i.op[this_operand].regs)
7050 return intel_match_token (T_NIL);
7052 intel_match_token ('[');
7054 /* Mark as a memory operand only if it's not already known to be an
7055 offset expression. If it's an offset expression, we need to keep
7056 the brace in. */
7057 if (!intel_parser.in_offset)
7059 ++intel_parser.in_bracket;
7061 /* Operands for jump/call inside brackets denote absolute addresses. */
7062 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7063 i.types[this_operand] |= JumpAbsolute;
7065 /* Unfortunately gas always diverged from MASM in a respect that can't
7066 be easily fixed without risking to break code sequences likely to be
7067 encountered (the testsuite even check for this): MASM doesn't consider
7068 an expression inside brackets unconditionally as a memory reference.
7069 When that is e.g. a constant, an offset expression, or the sum of the
7070 two, this is still taken as a constant load. gas, however, always
7071 treated these as memory references. As a compromise, we'll try to make
7072 offset expressions inside brackets work the MASM way (since that's
7073 less likely to be found in real world code), but make constants alone
7074 continue to work the traditional gas way. In either case, issue a
7075 warning. */
7076 intel_parser.op_modifier &= ~was_offset;
7078 else
7079 strcat (intel_parser.disp, "[");
7081 /* Add a '+' to the displacement string if necessary. */
7082 if (*intel_parser.disp != '\0'
7083 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7084 strcat (intel_parser.disp, "+");
7086 if (intel_expr ()
7087 && (len = intel_parser.op_string - start - 1,
7088 intel_match_token (']')))
7090 /* Preserve brackets when the operand is an offset expression. */
7091 if (intel_parser.in_offset)
7092 strcat (intel_parser.disp, "]");
7093 else
7095 --intel_parser.in_bracket;
7096 if (i.base_reg || i.index_reg)
7097 intel_parser.is_mem = 1;
7098 if (!intel_parser.is_mem)
7100 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7101 /* Defer the warning until all of the operand was parsed. */
7102 intel_parser.is_mem = -1;
7103 else if (!quiet_warnings)
7104 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
7107 intel_parser.op_modifier |= was_offset;
7109 return 1;
7111 return 0;
7114 /* e10 e11 e10'
7116 e10' [ expr ] e10'
7117 | Empty */
7118 static int
7119 intel_e10 ()
7121 if (!intel_e11 ())
7122 return 0;
7124 while (cur_token.code == '[')
7126 if (!intel_bracket_expr ())
7127 return 0;
7130 return 1;
7133 /* e11 ( expr )
7134 | [ expr ]
7135 | BYTE
7136 | WORD
7137 | DWORD
7138 | FWORD
7139 | QWORD
7140 | TBYTE
7141 | OWORD
7142 | XMMWORD
7145 | register
7146 | id
7147 | constant */
7148 static int
7149 intel_e11 ()
7151 switch (cur_token.code)
7153 /* e11 ( expr ) */
7154 case '(':
7155 intel_match_token ('(');
7156 strcat (intel_parser.disp, "(");
7158 if (intel_expr () && intel_match_token (')'))
7160 strcat (intel_parser.disp, ")");
7161 return 1;
7163 return 0;
7165 /* e11 [ expr ] */
7166 case '[':
7167 return intel_bracket_expr ();
7169 /* e11 $
7170 | . */
7171 case '.':
7172 strcat (intel_parser.disp, cur_token.str);
7173 intel_match_token (cur_token.code);
7175 /* Mark as a memory operand only if it's not already known to be an
7176 offset expression. */
7177 if (!intel_parser.in_offset)
7178 intel_parser.is_mem = 1;
7180 return 1;
7182 /* e11 register */
7183 case T_REG:
7185 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7187 intel_match_token (T_REG);
7189 /* Check for segment change. */
7190 if (cur_token.code == ':')
7192 if (!(reg->reg_type & (SReg2 | SReg3)))
7194 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
7195 return 0;
7197 else if (i.seg[i.mem_operands])
7198 as_warn (_("Extra segment override ignored"));
7199 else
7201 if (!intel_parser.in_offset)
7202 intel_parser.is_mem = 1;
7203 switch (reg->reg_num)
7205 case 0:
7206 i.seg[i.mem_operands] = &es;
7207 break;
7208 case 1:
7209 i.seg[i.mem_operands] = &cs;
7210 break;
7211 case 2:
7212 i.seg[i.mem_operands] = &ss;
7213 break;
7214 case 3:
7215 i.seg[i.mem_operands] = &ds;
7216 break;
7217 case 4:
7218 i.seg[i.mem_operands] = &fs;
7219 break;
7220 case 5:
7221 i.seg[i.mem_operands] = &gs;
7222 break;
7227 /* Not a segment register. Check for register scaling. */
7228 else if (cur_token.code == '*')
7230 if (!intel_parser.in_bracket)
7232 as_bad (_("Register scaling only allowed in memory operands"));
7233 return 0;
7236 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7237 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7238 else if (i.index_reg)
7239 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7241 /* What follows must be a valid scale. */
7242 intel_match_token ('*');
7243 i.index_reg = reg;
7244 i.types[this_operand] |= BaseIndex;
7246 /* Set the scale after setting the register (otherwise,
7247 i386_scale will complain) */
7248 if (cur_token.code == '+' || cur_token.code == '-')
7250 char *str, sign = cur_token.code;
7251 intel_match_token (cur_token.code);
7252 if (cur_token.code != T_CONST)
7254 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7255 cur_token.str);
7256 return 0;
7258 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7259 strcpy (str + 1, cur_token.str);
7260 *str = sign;
7261 if (!i386_scale (str))
7262 return 0;
7263 free (str);
7265 else if (!i386_scale (cur_token.str))
7266 return 0;
7267 intel_match_token (cur_token.code);
7270 /* No scaling. If this is a memory operand, the register is either a
7271 base register (first occurrence) or an index register (second
7272 occurrence). */
7273 else if (intel_parser.in_bracket)
7276 if (!i.base_reg)
7277 i.base_reg = reg;
7278 else if (!i.index_reg)
7279 i.index_reg = reg;
7280 else
7282 as_bad (_("Too many register references in memory operand"));
7283 return 0;
7286 i.types[this_operand] |= BaseIndex;
7289 /* It's neither base nor index. */
7290 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7292 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7293 i.op[this_operand].regs = reg;
7294 i.reg_operands++;
7296 else
7298 as_bad (_("Invalid use of register"));
7299 return 0;
7302 /* Since registers are not part of the displacement string (except
7303 when we're parsing offset operands), we may need to remove any
7304 preceding '+' from the displacement string. */
7305 if (*intel_parser.disp != '\0'
7306 && !intel_parser.in_offset)
7308 char *s = intel_parser.disp;
7309 s += strlen (s) - 1;
7310 if (*s == '+')
7311 *s = '\0';
7314 return 1;
7317 /* e11 BYTE
7318 | WORD
7319 | DWORD
7320 | FWORD
7321 | QWORD
7322 | TBYTE
7323 | OWORD
7324 | XMMWORD */
7325 case T_BYTE:
7326 case T_WORD:
7327 case T_DWORD:
7328 case T_FWORD:
7329 case T_QWORD:
7330 case T_TBYTE:
7331 case T_XMMWORD:
7332 intel_match_token (cur_token.code);
7334 if (cur_token.code == T_PTR)
7335 return 1;
7337 /* It must have been an identifier. */
7338 intel_putback_token ();
7339 cur_token.code = T_ID;
7340 /* FALLTHRU */
7342 /* e11 id
7343 | constant */
7344 case T_ID:
7345 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7347 symbolS *symbolP;
7349 /* The identifier represents a memory reference only if it's not
7350 preceded by an offset modifier and if it's not an equate. */
7351 symbolP = symbol_find(cur_token.str);
7352 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7353 intel_parser.is_mem = 1;
7355 /* FALLTHRU */
7357 case T_CONST:
7358 case '-':
7359 case '+':
7361 char *save_str, sign = 0;
7363 /* Allow constants that start with `+' or `-'. */
7364 if (cur_token.code == '-' || cur_token.code == '+')
7366 sign = cur_token.code;
7367 intel_match_token (cur_token.code);
7368 if (cur_token.code != T_CONST)
7370 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7371 cur_token.str);
7372 return 0;
7376 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7377 strcpy (save_str + !!sign, cur_token.str);
7378 if (sign)
7379 *save_str = sign;
7381 /* Get the next token to check for register scaling. */
7382 intel_match_token (cur_token.code);
7384 /* Check if this constant is a scaling factor for an index register. */
7385 if (cur_token.code == '*')
7387 if (intel_match_token ('*') && cur_token.code == T_REG)
7389 const reg_entry *reg = cur_token.reg;
7391 if (!intel_parser.in_bracket)
7393 as_bad (_("Register scaling only allowed in memory operands"));
7394 return 0;
7397 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
7398 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7399 else if (i.index_reg)
7400 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7402 /* The constant is followed by `* reg', so it must be
7403 a valid scale. */
7404 i.index_reg = reg;
7405 i.types[this_operand] |= BaseIndex;
7407 /* Set the scale after setting the register (otherwise,
7408 i386_scale will complain) */
7409 if (!i386_scale (save_str))
7410 return 0;
7411 intel_match_token (T_REG);
7413 /* Since registers are not part of the displacement
7414 string, we may need to remove any preceding '+' from
7415 the displacement string. */
7416 if (*intel_parser.disp != '\0')
7418 char *s = intel_parser.disp;
7419 s += strlen (s) - 1;
7420 if (*s == '+')
7421 *s = '\0';
7424 free (save_str);
7426 return 1;
7429 /* The constant was not used for register scaling. Since we have
7430 already consumed the token following `*' we now need to put it
7431 back in the stream. */
7432 intel_putback_token ();
7435 /* Add the constant to the displacement string. */
7436 strcat (intel_parser.disp, save_str);
7437 free (save_str);
7439 return 1;
7443 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7444 return 0;
7447 /* Match the given token against cur_token. If they match, read the next
7448 token from the operand string. */
7449 static int
7450 intel_match_token (code)
7451 int code;
7453 if (cur_token.code == code)
7455 intel_get_token ();
7456 return 1;
7458 else
7460 as_bad (_("Unexpected token `%s'"), cur_token.str);
7461 return 0;
7465 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7466 static void
7467 intel_get_token ()
7469 char *end_op;
7470 const reg_entry *reg;
7471 struct intel_token new_token;
7473 new_token.code = T_NIL;
7474 new_token.reg = NULL;
7475 new_token.str = NULL;
7477 /* Free the memory allocated to the previous token and move
7478 cur_token to prev_token. */
7479 if (prev_token.str)
7480 free (prev_token.str);
7482 prev_token = cur_token;
7484 /* Skip whitespace. */
7485 while (is_space_char (*intel_parser.op_string))
7486 intel_parser.op_string++;
7488 /* Return an empty token if we find nothing else on the line. */
7489 if (*intel_parser.op_string == '\0')
7491 cur_token = new_token;
7492 return;
7495 /* The new token cannot be larger than the remainder of the operand
7496 string. */
7497 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7498 new_token.str[0] = '\0';
7500 if (strchr ("0123456789", *intel_parser.op_string))
7502 char *p = new_token.str;
7503 char *q = intel_parser.op_string;
7504 new_token.code = T_CONST;
7506 /* Allow any kind of identifier char to encompass floating point and
7507 hexadecimal numbers. */
7508 while (is_identifier_char (*q))
7509 *p++ = *q++;
7510 *p = '\0';
7512 /* Recognize special symbol names [0-9][bf]. */
7513 if (strlen (intel_parser.op_string) == 2
7514 && (intel_parser.op_string[1] == 'b'
7515 || intel_parser.op_string[1] == 'f'))
7516 new_token.code = T_ID;
7519 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7521 size_t len = end_op - intel_parser.op_string;
7523 new_token.code = T_REG;
7524 new_token.reg = reg;
7526 memcpy (new_token.str, intel_parser.op_string, len);
7527 new_token.str[len] = '\0';
7530 else if (is_identifier_char (*intel_parser.op_string))
7532 char *p = new_token.str;
7533 char *q = intel_parser.op_string;
7535 /* A '.' or '$' followed by an identifier char is an identifier.
7536 Otherwise, it's operator '.' followed by an expression. */
7537 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7539 new_token.code = '.';
7540 new_token.str[0] = '.';
7541 new_token.str[1] = '\0';
7543 else
7545 while (is_identifier_char (*q) || *q == '@')
7546 *p++ = *q++;
7547 *p = '\0';
7549 if (strcasecmp (new_token.str, "NOT") == 0)
7550 new_token.code = '~';
7552 else if (strcasecmp (new_token.str, "MOD") == 0)
7553 new_token.code = '%';
7555 else if (strcasecmp (new_token.str, "AND") == 0)
7556 new_token.code = '&';
7558 else if (strcasecmp (new_token.str, "OR") == 0)
7559 new_token.code = '|';
7561 else if (strcasecmp (new_token.str, "XOR") == 0)
7562 new_token.code = '^';
7564 else if (strcasecmp (new_token.str, "SHL") == 0)
7565 new_token.code = T_SHL;
7567 else if (strcasecmp (new_token.str, "SHR") == 0)
7568 new_token.code = T_SHR;
7570 else if (strcasecmp (new_token.str, "BYTE") == 0)
7571 new_token.code = T_BYTE;
7573 else if (strcasecmp (new_token.str, "WORD") == 0)
7574 new_token.code = T_WORD;
7576 else if (strcasecmp (new_token.str, "DWORD") == 0)
7577 new_token.code = T_DWORD;
7579 else if (strcasecmp (new_token.str, "FWORD") == 0)
7580 new_token.code = T_FWORD;
7582 else if (strcasecmp (new_token.str, "QWORD") == 0)
7583 new_token.code = T_QWORD;
7585 else if (strcasecmp (new_token.str, "TBYTE") == 0
7586 /* XXX remove (gcc still uses it) */
7587 || strcasecmp (new_token.str, "XWORD") == 0)
7588 new_token.code = T_TBYTE;
7590 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7591 || strcasecmp (new_token.str, "OWORD") == 0)
7592 new_token.code = T_XMMWORD;
7594 else if (strcasecmp (new_token.str, "PTR") == 0)
7595 new_token.code = T_PTR;
7597 else if (strcasecmp (new_token.str, "SHORT") == 0)
7598 new_token.code = T_SHORT;
7600 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7602 new_token.code = T_OFFSET;
7604 /* ??? This is not mentioned in the MASM grammar but gcc
7605 makes use of it with -mintel-syntax. OFFSET may be
7606 followed by FLAT: */
7607 if (strncasecmp (q, " FLAT:", 6) == 0)
7608 strcat (new_token.str, " FLAT:");
7611 /* ??? This is not mentioned in the MASM grammar. */
7612 else if (strcasecmp (new_token.str, "FLAT") == 0)
7614 new_token.code = T_OFFSET;
7615 if (*q == ':')
7616 strcat (new_token.str, ":");
7617 else
7618 as_bad (_("`:' expected"));
7621 else
7622 new_token.code = T_ID;
7626 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7628 new_token.code = *intel_parser.op_string;
7629 new_token.str[0] = *intel_parser.op_string;
7630 new_token.str[1] = '\0';
7633 else if (strchr ("<>", *intel_parser.op_string)
7634 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7636 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7637 new_token.str[0] = *intel_parser.op_string;
7638 new_token.str[1] = *intel_parser.op_string;
7639 new_token.str[2] = '\0';
7642 else
7643 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7645 intel_parser.op_string += strlen (new_token.str);
7646 cur_token = new_token;
7649 /* Put cur_token back into the token stream and make cur_token point to
7650 prev_token. */
7651 static void
7652 intel_putback_token ()
7654 if (cur_token.code != T_NIL)
7656 intel_parser.op_string -= strlen (cur_token.str);
7657 free (cur_token.str);
7659 cur_token = prev_token;
7661 /* Forget prev_token. */
7662 prev_token.code = T_NIL;
7663 prev_token.reg = NULL;
7664 prev_token.str = NULL;
7668 tc_x86_regname_to_dw2regnum (char *regname)
7670 unsigned int regnum;
7671 unsigned int regnames_count;
7672 static const char *const regnames_32[] =
7674 "eax", "ecx", "edx", "ebx",
7675 "esp", "ebp", "esi", "edi",
7676 "eip", "eflags", NULL,
7677 "st0", "st1", "st2", "st3",
7678 "st4", "st5", "st6", "st7",
7679 NULL, NULL,
7680 "xmm0", "xmm1", "xmm2", "xmm3",
7681 "xmm4", "xmm5", "xmm6", "xmm7",
7682 "mm0", "mm1", "mm2", "mm3",
7683 "mm4", "mm5", "mm6", "mm7",
7684 "fcw", "fsw", "mxcsr",
7685 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7686 "tr", "ldtr"
7688 static const char *const regnames_64[] =
7690 "rax", "rdx", "rcx", "rbx",
7691 "rsi", "rdi", "rbp", "rsp",
7692 "r8", "r9", "r10", "r11",
7693 "r12", "r13", "r14", "r15",
7694 "rip",
7695 "xmm0", "xmm1", "xmm2", "xmm3",
7696 "xmm4", "xmm5", "xmm6", "xmm7",
7697 "xmm8", "xmm9", "xmm10", "xmm11",
7698 "xmm12", "xmm13", "xmm14", "xmm15",
7699 "st0", "st1", "st2", "st3",
7700 "st4", "st5", "st6", "st7",
7701 "mm0", "mm1", "mm2", "mm3",
7702 "mm4", "mm5", "mm6", "mm7",
7703 "rflags",
7704 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7705 "fs.base", "gs.base", NULL, NULL,
7706 "tr", "ldtr",
7707 "mxcsr", "fcw", "fsw"
7709 const char *const *regnames;
7711 if (flag_code == CODE_64BIT)
7713 regnames = regnames_64;
7714 regnames_count = ARRAY_SIZE (regnames_64);
7716 else
7718 regnames = regnames_32;
7719 regnames_count = ARRAY_SIZE (regnames_32);
7722 for (regnum = 0; regnum < regnames_count; regnum++)
7723 if (regnames[regnum] != NULL
7724 && strcmp (regname, regnames[regnum]) == 0)
7725 return regnum;
7727 return -1;
7730 void
7731 tc_x86_frame_initial_instructions (void)
7733 static unsigned int sp_regno;
7735 if (!sp_regno)
7736 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7737 ? "rsp" : "esp");
7739 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7740 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7744 i386_elf_section_type (const char *str, size_t len)
7746 if (flag_code == CODE_64BIT
7747 && len == sizeof ("unwind") - 1
7748 && strncmp (str, "unwind", 6) == 0)
7749 return SHT_X86_64_UNWIND;
7751 return -1;
7754 #ifdef TE_PE
7755 void
7756 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7758 expressionS expr;
7760 expr.X_op = O_secrel;
7761 expr.X_add_symbol = symbol;
7762 expr.X_add_number = 0;
7763 emit_expr (&expr, size);
7765 #endif
7767 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7768 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7771 x86_64_section_letter (int letter, char **ptr_msg)
7773 if (flag_code == CODE_64BIT)
7775 if (letter == 'l')
7776 return SHF_X86_64_LARGE;
7778 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7780 else
7781 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7782 return -1;
7786 x86_64_section_word (char *str, size_t len)
7788 if (len == 5 && flag_code == CODE_64BIT && strncmp (str, "large", 5) == 0)
7789 return SHF_X86_64_LARGE;
7791 return -1;
7794 static void
7795 handle_large_common (int small ATTRIBUTE_UNUSED)
7797 if (flag_code != CODE_64BIT)
7799 s_comm_internal (0, elf_common_parse);
7800 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7802 else
7804 static segT lbss_section;
7805 asection *saved_com_section_ptr = elf_com_section_ptr;
7806 asection *saved_bss_section = bss_section;
7808 if (lbss_section == NULL)
7810 flagword applicable;
7811 segT seg = now_seg;
7812 subsegT subseg = now_subseg;
7814 /* The .lbss section is for local .largecomm symbols. */
7815 lbss_section = subseg_new (".lbss", 0);
7816 applicable = bfd_applicable_section_flags (stdoutput);
7817 bfd_set_section_flags (stdoutput, lbss_section,
7818 applicable & SEC_ALLOC);
7819 seg_info (lbss_section)->bss = 1;
7821 subseg_set (seg, subseg);
7824 elf_com_section_ptr = &_bfd_elf_large_com_section;
7825 bss_section = lbss_section;
7827 s_comm_internal (0, elf_common_parse);
7829 elf_com_section_ptr = saved_com_section_ptr;
7830 bss_section = saved_bss_section;
7833 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */