* elf.c (elf_fake_sections): Undo change of 1999-05-10.
[binutils.git] / bfd / coff-h8300.c
blob74a4ec3962a80abf68f33a4850ac6312461cef87
1 /* BFD back-end for Hitachi H8/300 COFF binaries.
2 Copyright 1990, 91, 92, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
3 Written by Steve Chamberlain, <sac@cygnus.com>.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "bfdlink.h"
25 #include "genlink.h"
26 #include "coff/h8300.h"
27 #include "coff/internal.h"
28 #include "libcoff.h"
30 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
32 /* We derive a hash table from the basic BFD hash table to
33 hold entries in the function vector. Aside from the
34 info stored by the basic hash table, we need the offset
35 of a particular entry within the hash table as well as
36 the offset where we'll add the next entry. */
38 struct funcvec_hash_entry
40 /* The basic hash table entry. */
41 struct bfd_hash_entry root;
43 /* The offset within the vectors section where
44 this entry lives. */
45 bfd_vma offset;
48 struct funcvec_hash_table
50 /* The basic hash table. */
51 struct bfd_hash_table root;
53 bfd *abfd;
55 /* Offset at which we'll add the next entry. */
56 unsigned int offset;
59 static struct bfd_hash_entry *
60 funcvec_hash_newfunc
61 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
63 static boolean
64 funcvec_hash_table_init
65 PARAMS ((struct funcvec_hash_table *, bfd *,
66 struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *,
67 struct bfd_hash_table *,
68 const char *))));
70 /* To lookup a value in the function vector hash table. */
71 #define funcvec_hash_lookup(table, string, create, copy) \
72 ((struct funcvec_hash_entry *) \
73 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
75 /* The derived h8300 COFF linker table. Note it's derived from
76 the generic linker hash table, not the COFF backend linker hash
77 table! We use this to attach additional data structures we
78 need while linking on the h8300. */
79 struct h8300_coff_link_hash_table
81 /* The main hash table. */
82 struct generic_link_hash_table root;
84 /* Section for the vectors table. This gets attached to a
85 random input bfd, we keep it here for easy access. */
86 asection *vectors_sec;
88 /* Hash table of the functions we need to enter into the function
89 vector. */
90 struct funcvec_hash_table *funcvec_hash_table;
93 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create
94 PARAMS ((bfd *));
96 /* Get the H8/300 COFF linker hash table from a link_info structure. */
98 #define h8300_coff_hash_table(p) \
99 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
101 /* Initialize fields within a funcvec hash table entry. Called whenever
102 a new entry is added to the funcvec hash table. */
104 static struct bfd_hash_entry *
105 funcvec_hash_newfunc (entry, gen_table, string)
106 struct bfd_hash_entry *entry;
107 struct bfd_hash_table *gen_table;
108 const char *string;
110 struct funcvec_hash_entry *ret;
111 struct funcvec_hash_table *table;
113 ret = (struct funcvec_hash_entry *) entry;
114 table = (struct funcvec_hash_table *) gen_table;
116 /* Allocate the structure if it has not already been allocated by a
117 subclass. */
118 if (ret == NULL)
119 ret = ((struct funcvec_hash_entry *)
120 bfd_hash_allocate (gen_table,
121 sizeof (struct funcvec_hash_entry)));
122 if (ret == NULL)
123 return NULL;
125 /* Call the allocation method of the superclass. */
126 ret = ((struct funcvec_hash_entry *)
127 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
129 if (ret == NULL)
130 return NULL;
132 /* Note where this entry will reside in the function vector table. */
133 ret->offset = table->offset;
135 /* Bump the offset at which we store entries in the function
136 vector. We'd like to bump up the size of the vectors section,
137 but it's not easily available here. */
138 if (bfd_get_mach (table->abfd) == bfd_mach_h8300)
139 table->offset += 2;
140 else if (bfd_get_mach (table->abfd) == bfd_mach_h8300h
141 || bfd_get_mach (table->abfd) == bfd_mach_h8300s)
142 table->offset += 4;
143 else
144 return NULL;
146 /* Everything went OK. */
147 return (struct bfd_hash_entry *) ret;
150 /* Initialize the function vector hash table. */
152 static boolean
153 funcvec_hash_table_init (table, abfd, newfunc)
154 struct funcvec_hash_table *table;
155 bfd *abfd;
156 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
157 struct bfd_hash_table *,
158 const char *));
160 /* Initialize our local fields, then call the generic initialization
161 routine. */
162 table->offset = 0;
163 table->abfd = abfd;
164 return (bfd_hash_table_init (&table->root, newfunc));
167 /* Create the derived linker hash table. We use a derived hash table
168 basically to hold "static" information during an h8/300 coff link
169 without using static variables. */
171 static struct bfd_link_hash_table *
172 h8300_coff_link_hash_table_create (abfd)
173 bfd *abfd;
175 struct h8300_coff_link_hash_table *ret;
176 ret = ((struct h8300_coff_link_hash_table *)
177 bfd_alloc (abfd, sizeof (struct h8300_coff_link_hash_table)));
178 if (ret == NULL)
179 return NULL;
180 if (!_bfd_link_hash_table_init (&ret->root.root, abfd, _bfd_generic_link_hash_newfunc))
182 bfd_release (abfd, ret);
183 return NULL;
186 /* Initialize our data. */
187 ret->vectors_sec = NULL;
188 ret->funcvec_hash_table = NULL;
190 /* OK. Everything's intialized, return the base pointer. */
191 return &ret->root.root;
194 /* special handling for H8/300 relocs.
195 We only come here for pcrel stuff and return normally if not an -r link.
196 When doing -r, we can't do any arithmetic for the pcrel stuff, because
197 the code in reloc.c assumes that we can manipulate the targets of
198 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
199 which means that the gap after the instruction may not be enough to
200 contain the offset required for the branch, so we have to use the only
201 the addend until the final link */
203 static bfd_reloc_status_type
204 special (abfd, reloc_entry, symbol, data, input_section, output_bfd,
205 error_message)
206 bfd *abfd;
207 arelent *reloc_entry;
208 asymbol *symbol;
209 PTR data;
210 asection *input_section;
211 bfd *output_bfd;
212 char **error_message;
214 if (output_bfd == (bfd *) NULL)
215 return bfd_reloc_continue;
217 return bfd_reloc_ok;
220 static reloc_howto_type howto_table[] =
222 HOWTO (R_RELBYTE, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8", false, 0x000000ff, 0x000000ff, false),
223 HOWTO (R_RELWORD, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16", false, 0x0000ffff, 0x0000ffff, false),
224 HOWTO (R_RELLONG, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "32", false, 0xffffffff, 0xffffffff, false),
225 HOWTO (R_PCRBYTE, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8", false, 0x000000ff, 0x000000ff, true),
226 HOWTO (R_PCRWORD, 0, 1, 16, true, 0, complain_overflow_signed, special, "DISP16", false, 0x0000ffff, 0x0000ffff, true),
227 HOWTO (R_PCRLONG, 0, 2, 32, true, 0, complain_overflow_signed, special, "DISP32", false, 0xffffffff, 0xffffffff, true),
228 HOWTO (R_MOV16B1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", false, 0x0000ffff, 0x0000ffff, false),
229 HOWTO (R_MOV16B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", false, 0x000000ff, 0x000000ff, false),
230 HOWTO (R_JMP1, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "16/pcrel", false, 0x0000ffff, 0x0000ffff, false),
231 HOWTO (R_JMP2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pcrecl/16", false, 0x000000ff, 0x000000ff, false),
232 HOWTO (R_JMPL1, 0, 2, 32, false, 0, complain_overflow_bitfield, special, "24/pcrell", false, 0x00ffffff, 0x00ffffff, false),
233 HOWTO (R_JMPL2, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "pc8/24", false, 0x000000ff, 0x000000ff, false),
234 HOWTO (R_MOV24B1, 0, 1, 32, false, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", false, 0xffffffff, 0xffffffff, false),
235 HOWTO (R_MOV24B2, 0, 1, 8, false, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", false, 0x0000ffff, 0x0000ffff, false),
237 /* An indirect reference to a function. This causes the function's address
238 to be added to the function vector in lo-mem and puts the address of
239 the function vector's entry in the jsr instruction. */
240 HOWTO (R_MEM_INDIRECT, 0, 0, 8, false, 0, complain_overflow_bitfield, special, "8/indirect", false, 0x000000ff, 0x000000ff, false),
242 /* Internal reloc for relaxing. This is created when a 16bit pc-relative
243 branch is turned into an 8bit pc-relative branch. */
244 HOWTO (R_PCRWORD_B, 0, 0, 8, true, 0, complain_overflow_bitfield, special, "relaxed bCC:16", false, 0x000000ff, 0x000000ff, false),
246 HOWTO (R_MOVL1, 0, 2, 32, false, 0, complain_overflow_bitfield,special, "32/24 relaxable move", false, 0xffffffff, 0xffffffff, false),
248 HOWTO (R_MOVL2, 0, 1, 16, false, 0, complain_overflow_bitfield, special, "32/24 relaxed move", false, 0x0000ffff, 0x0000ffff, false),
250 HOWTO (R_BCC_INV, 0, 0, 8, true, 0, complain_overflow_signed, special, "DISP8 inverted", false, 0x000000ff, 0x000000ff, true),
252 HOWTO (R_JMP_DEL, 0, 0, 8, true, 0, complain_overflow_signed, special, "Deleted jump", false, 0x000000ff, 0x000000ff, true),
256 /* Turn a howto into a reloc number */
258 #define SELECT_RELOC(x,howto) \
259 { x.r_type = select_reloc(howto); }
261 #define BADMAG(x) (H8300BADMAG(x) && H8300HBADMAG(x) && H8300SBADMAG(x))
262 #define H8300 1 /* Customize coffcode.h */
263 #define __A_MAGIC_SET__
267 /* Code to swap in the reloc */
268 #define SWAP_IN_RELOC_OFFSET bfd_h_get_32
269 #define SWAP_OUT_RELOC_OFFSET bfd_h_put_32
270 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
271 dst->r_stuff[0] = 'S'; \
272 dst->r_stuff[1] = 'C';
275 static int
276 select_reloc (howto)
277 reloc_howto_type *howto;
279 return howto->type;
282 /* Code to turn a r_type into a howto ptr, uses the above howto table
285 static void
286 rtype2howto (internal, dst)
287 arelent *internal;
288 struct internal_reloc *dst;
290 switch (dst->r_type)
292 case R_RELBYTE:
293 internal->howto = howto_table + 0;
294 break;
295 case R_RELWORD:
296 internal->howto = howto_table + 1;
297 break;
298 case R_RELLONG:
299 internal->howto = howto_table + 2;
300 break;
301 case R_PCRBYTE:
302 internal->howto = howto_table + 3;
303 break;
304 case R_PCRWORD:
305 internal->howto = howto_table + 4;
306 break;
307 case R_PCRLONG:
308 internal->howto = howto_table + 5;
309 break;
310 case R_MOV16B1:
311 internal->howto = howto_table + 6;
312 break;
313 case R_MOV16B2:
314 internal->howto = howto_table + 7;
315 break;
316 case R_JMP1:
317 internal->howto = howto_table + 8;
318 break;
319 case R_JMP2:
320 internal->howto = howto_table + 9;
321 break;
322 case R_JMPL1:
323 internal->howto = howto_table + 10;
324 break;
325 case R_JMPL2:
326 internal->howto = howto_table + 11;
327 break;
328 case R_MOV24B1:
329 internal->howto = howto_table + 12;
330 break;
331 case R_MOV24B2:
332 internal->howto = howto_table + 13;
333 break;
334 case R_MEM_INDIRECT:
335 internal->howto = howto_table + 14;
336 break;
337 case R_PCRWORD_B:
338 internal->howto = howto_table + 15;
339 break;
340 case R_MOVL1:
341 internal->howto = howto_table + 16;
342 break;
343 case R_MOVL2:
344 internal->howto = howto_table + 17;
345 break;
346 case R_BCC_INV:
347 internal->howto = howto_table + 18;
348 break;
349 case R_JMP_DEL:
350 internal->howto = howto_table + 19;
351 break;
352 default:
353 abort ();
354 break;
358 #define RTYPE2HOWTO(internal, relocentry) rtype2howto(internal,relocentry)
361 /* Perform any necessary magic to the addend in a reloc entry */
364 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
365 cache_ptr->addend = ext_reloc.r_offset;
368 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
369 reloc_processing(relent, reloc, symbols, abfd, section)
371 static void
372 reloc_processing (relent, reloc, symbols, abfd, section)
373 arelent * relent;
374 struct internal_reloc *reloc;
375 asymbol ** symbols;
376 bfd * abfd;
377 asection * section;
379 relent->address = reloc->r_vaddr;
380 rtype2howto (relent, reloc);
382 if (((int) reloc->r_symndx) > 0)
384 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
386 else
388 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
393 relent->addend = reloc->r_offset;
395 relent->address -= section->vma;
396 /* relent->section = 0;*/
399 static boolean
400 h8300_symbol_address_p (abfd, input_section, address)
401 bfd *abfd;
402 asection *input_section;
403 bfd_vma address;
405 asymbol **s;
407 s = _bfd_generic_link_get_symbols (abfd);
408 BFD_ASSERT (s != (asymbol **) NULL);
410 /* Search all the symbols for one in INPUT_SECTION with
411 address ADDRESS. */
412 while (*s)
414 asymbol *p = *s;
415 if (p->section == input_section
416 && (input_section->output_section->vma
417 + input_section->output_offset
418 + p->value) == address)
419 return true;
420 s++;
422 return false;
426 /* If RELOC represents a relaxable instruction/reloc, change it into
427 the relaxed reloc, notify the linker that symbol addresses
428 have changed (bfd_perform_slip) and return how much the current
429 section has shrunk by.
431 FIXME: Much of this code has knowledge of the ordering of entries
432 in the howto table. This needs to be fixed. */
434 static int
435 h8300_reloc16_estimate(abfd, input_section, reloc, shrink, link_info)
436 bfd *abfd;
437 asection *input_section;
438 arelent *reloc;
439 unsigned int shrink;
440 struct bfd_link_info *link_info;
442 bfd_vma value;
443 bfd_vma dot;
444 bfd_vma gap;
445 static asection *last_input_section = NULL;
446 static arelent *last_reloc = NULL;
448 /* The address of the thing to be relocated will have moved back by
449 the size of the shrink - but we don't change reloc->address here,
450 since we need it to know where the relocation lives in the source
451 uncooked section. */
452 bfd_vma address = reloc->address - shrink;
454 if (input_section != last_input_section)
455 last_reloc = NULL;
457 /* Only examine the relocs which might be relaxable. */
458 switch (reloc->howto->type)
461 /* This is the 16/24 bit absolute branch which could become an 8 bit
462 pc-relative branch. */
463 case R_JMP1:
464 case R_JMPL1:
465 /* Get the address of the target of this branch. */
466 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
468 /* Get the address of the next instruction (not the reloc). */
469 dot = (input_section->output_section->vma
470 + input_section->output_offset + address);
472 /* Adjust for R_JMP1 vs R_JMPL1. */
473 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
475 /* Compute the distance from this insn to the branch target. */
476 gap = value - dot;
478 /* If the distance is within -128..+128 inclusive, then we can relax
479 this jump. +128 is valid since the target will move two bytes
480 closer if we do relax this branch. */
481 if ((int)gap >= -128 && (int)gap <= 128 )
484 /* It's possible we may be able to eliminate this branch entirely;
485 if the previous instruction is a branch around this instruction,
486 and there's no label at this instruction, then we can reverse
487 the condition on the previous branch and eliminate this jump.
489 original: new:
490 bCC lab1 bCC' lab2
491 jmp lab2
492 lab1: lab1:
494 This saves 4 bytes instead of two, and should be relatively
495 common. */
497 if (gap <= 126
498 && last_reloc
499 && last_reloc->howto->type == R_PCRBYTE)
501 bfd_vma last_value;
502 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
503 input_section) + 1;
505 if (last_value == dot + 2
506 && last_reloc->address + 1 == reloc->address
507 && ! h8300_symbol_address_p (abfd, input_section, dot - 2))
509 reloc->howto = howto_table + 19;
510 last_reloc->howto = howto_table + 18;
511 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
512 last_reloc->addend = reloc->addend;
513 shrink += 4;
514 bfd_perform_slip (abfd, 4, input_section, address);
515 break;
519 /* Change the reloc type. */
520 reloc->howto = reloc->howto + 1;
522 /* This shrinks this section by two bytes. */
523 shrink += 2;
524 bfd_perform_slip(abfd, 2, input_section, address);
526 break;
528 /* This is the 16 bit pc-relative branch which could become an 8 bit
529 pc-relative branch. */
530 case R_PCRWORD:
531 /* Get the address of the target of this branch, add one to the value
532 because the addend field in PCrel jumps is off by -1. */
533 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section) + 1;
535 /* Get the address of the next instruction if we were to relax. */
536 dot = input_section->output_section->vma +
537 input_section->output_offset + address;
539 /* Compute the distance from this insn to the branch target. */
540 gap = value - dot;
542 /* If the distance is within -128..+128 inclusive, then we can relax
543 this jump. +128 is valid since the target will move two bytes
544 closer if we do relax this branch. */
545 if ((int)gap >= -128 && (int)gap <= 128 )
547 /* Change the reloc type. */
548 reloc->howto = howto_table + 15;
550 /* This shrinks this section by two bytes. */
551 shrink += 2;
552 bfd_perform_slip(abfd, 2, input_section, address);
554 break;
556 /* This is a 16 bit absolute address in a mov.b insn, which can
557 become an 8 bit absolute address if it's in the right range. */
558 case R_MOV16B1:
559 /* Get the address of the data referenced by this mov.b insn. */
560 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
562 /* The address is in 0xff00..0xffff inclusive on the h8300 or
563 0xffff00..0xffffff inclusive on the h8300h, then we can
564 relax this mov.b */
565 if ((bfd_get_mach (abfd) == bfd_mach_h8300
566 && value >= 0xff00
567 && value <= 0xffff)
568 || ((bfd_get_mach (abfd) == bfd_mach_h8300h
569 || bfd_get_mach (abfd) == bfd_mach_h8300s)
570 && value >= 0xffff00
571 && value <= 0xffffff))
573 /* Change the reloc type. */
574 reloc->howto = reloc->howto + 1;
576 /* This shrinks this section by two bytes. */
577 shrink += 2;
578 bfd_perform_slip(abfd, 2, input_section, address);
580 break;
582 /* Similarly for a 24 bit absolute address in a mov.b. Note that
583 if we can't relax this into an 8 bit absolute, we'll fall through
584 and try to relax it into a 16bit absolute. */
585 case R_MOV24B1:
586 /* Get the address of the data referenced by this mov.b insn. */
587 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
589 /* The address is in 0xffff00..0xffffff inclusive on the h8300h,
590 then we can relax this mov.b */
591 if ((bfd_get_mach (abfd) == bfd_mach_h8300h
592 || bfd_get_mach (abfd) == bfd_mach_h8300s)
593 && value >= 0xffff00
594 && value <= 0xffffff)
596 /* Change the reloc type. */
597 reloc->howto = reloc->howto + 1;
599 /* This shrinks this section by four bytes. */
600 shrink += 4;
601 bfd_perform_slip(abfd, 4, input_section, address);
603 /* Done with this reloc. */
604 break;
607 /* FALLTHROUGH and try to turn the 32/24 bit reloc into a 16 bit
608 reloc. */
610 /* This is a 24/32 bit absolute address in a mov insn, which can
611 become an 16 bit absolute address if it's in the right range. */
612 case R_MOVL1:
613 /* Get the address of the data referenced by this mov insn. */
614 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
616 /* If this address is in 0x0000..0x7fff inclusive or
617 0xff8000..0xffffff inclusive, then it can be relaxed. */
618 if (value <= 0x7fff || value >= 0xff8000)
620 /* Change the reloc type. */
621 reloc->howto = howto_table + 17;
623 /* This shrinks this section by two bytes. */
624 shrink += 2;
625 bfd_perform_slip(abfd, 2, input_section, address);
627 break;
629 /* No other reloc types represent relaxing opportunities. */
630 default:
631 break;
634 last_reloc = reloc;
635 last_input_section = input_section;
636 return shrink;
640 /* Handle relocations for the H8/300, including relocs for relaxed
641 instructions.
643 FIXME: Not all relocations check for overflow! */
645 static void
646 h8300_reloc16_extra_cases (abfd, link_info, link_order, reloc, data, src_ptr,
647 dst_ptr)
648 bfd *abfd;
649 struct bfd_link_info *link_info;
650 struct bfd_link_order *link_order;
651 arelent *reloc;
652 bfd_byte *data;
653 unsigned int *src_ptr;
654 unsigned int *dst_ptr;
656 unsigned int src_address = *src_ptr;
657 unsigned int dst_address = *dst_ptr;
658 asection *input_section = link_order->u.indirect.section;
659 bfd_vma value;
660 bfd_vma dot;
661 int gap,tmp;
663 switch (reloc->howto->type)
666 /* Generic 8bit pc-relative relocation. */
667 case R_PCRBYTE:
668 /* Get the address of the target of this branch. */
669 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
671 dot = (link_order->offset
672 + dst_address
673 + link_order->u.indirect.section->output_section->vma);
675 gap = value - dot;
677 /* Sanity check. */
678 if (gap < -128 || gap > 126)
680 if (! ((*link_info->callbacks->reloc_overflow)
681 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
682 reloc->howto->name, reloc->addend, input_section->owner,
683 input_section, reloc->address)))
684 abort ();
687 /* Everything looks OK. Apply the relocation and update the
688 src/dst address appropriately. */
690 bfd_put_8 (abfd, gap, data + dst_address);
691 dst_address++;
692 src_address++;
694 /* All done. */
695 break;
697 /* Generic 16bit pc-relative relocation. */
698 case R_PCRWORD:
699 /* Get the address of the target of this branch. */
700 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
702 /* Get the address of the instruction (not the reloc). */
703 dot = (link_order->offset
704 + dst_address
705 + link_order->u.indirect.section->output_section->vma + 1);
707 gap = value - dot;
709 /* Sanity check. */
710 if (gap > 32766 || gap < -32768)
712 if (! ((*link_info->callbacks->reloc_overflow)
713 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
714 reloc->howto->name, reloc->addend, input_section->owner,
715 input_section, reloc->address)))
716 abort ();
719 /* Everything looks OK. Apply the relocation and update the
720 src/dst address appropriately. */
722 bfd_put_16 (abfd, gap, data + dst_address);
723 dst_address += 2;
724 src_address += 2;
726 /* All done. */
727 break;
729 /* Generic 8bit absolute relocation. */
730 case R_RELBYTE:
731 /* Get the address of the object referenced by this insn. */
732 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
734 /* Sanity check. */
735 if (value <= 0xff
736 || (value >= 0x0000ff00 && value <= 0x0000ffff)
737 || (value >= 0x00ffff00 && value <= 0x00ffffff)
738 || (value >= 0xffffff00 && value <= 0xffffffff))
740 /* Everything looks OK. Apply the relocation and update the
741 src/dst address appropriately. */
743 bfd_put_8 (abfd, value & 0xff, data + dst_address);
744 dst_address += 1;
745 src_address += 1;
747 else
749 if (! ((*link_info->callbacks->reloc_overflow)
750 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
751 reloc->howto->name, reloc->addend, input_section->owner,
752 input_section, reloc->address)))
753 abort ();
756 /* All done. */
757 break;
759 /* Various simple 16bit absolute relocations. */
760 case R_MOV16B1:
761 case R_JMP1:
762 case R_RELWORD:
763 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
764 bfd_put_16 (abfd, value, data + dst_address);
765 dst_address += 2;
766 src_address += 2;
767 break;
769 /* Various simple 24/32bit absolute relocations. */
770 case R_MOV24B1:
771 case R_MOVL1:
772 case R_RELLONG:
773 /* Get the address of the target of this branch. */
774 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section),
775 bfd_put_32 (abfd, value, data + dst_address);
776 dst_address += 4;
777 src_address += 4;
778 break;
780 /* Another 24/32bit absolute relocation. */
781 case R_JMPL1:
782 /* Get the address of the target of this branch. */
783 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
785 value = ((value & 0x00ffffff)
786 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
787 bfd_put_32 (abfd, value, data + dst_address);
788 dst_address += 4;
789 src_address += 4;
790 break;
792 /* A 16bit abolute relocation that was formerlly a 24/32bit
793 absolute relocation. */
794 case R_MOVL2:
795 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
797 /* Sanity check. */
798 if (value < 0x8000 || value > 0xff8000)
800 /* Insert the 16bit value into the proper location. */
801 bfd_put_16 (abfd, value, data + dst_address);
803 /* Fix the opcode. For all the move insns, we simply
804 need to turn off bit 0x20 in the previous byte. */
805 data[dst_address - 1] &= ~0x20;
806 dst_address += 2;
807 src_address += 4;
809 else
811 if (! ((*link_info->callbacks->reloc_overflow)
812 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
813 reloc->howto->name, reloc->addend, input_section->owner,
814 input_section, reloc->address)))
815 abort ();
817 break;
819 /* A 16bit absolute branch that is now an 8-bit pc-relative branch. */
820 case R_JMP2:
821 /* Get the address of the target of this branch. */
822 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
824 /* Get the address of the next instruction. */
825 dot = (link_order->offset
826 + dst_address
827 + link_order->u.indirect.section->output_section->vma + 1);
829 gap = value - dot;
831 /* Sanity check. */
832 if (gap < -128 || gap > 126)
834 if (! ((*link_info->callbacks->reloc_overflow)
835 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
836 reloc->howto->name, reloc->addend, input_section->owner,
837 input_section, reloc->address)))
838 abort ();
841 /* Now fix the instruction itself. */
842 switch (data[dst_address - 1])
844 case 0x5e:
845 /* jsr -> bsr */
846 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
847 break;
848 case 0x5a:
849 /* jmp ->bra */
850 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
851 break;
853 default:
854 abort ();
857 /* Write out the 8bit value. */
858 bfd_put_8 (abfd, gap, data + dst_address);
860 dst_address += 1;
861 src_address += 3;
863 break;
865 /* A 16bit pc-relative branch that is now an 8-bit pc-relative branch. */
866 case R_PCRWORD_B:
867 /* Get the address of the target of this branch. */
868 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
870 /* Get the address of the instruction (not the reloc). */
871 dot = (link_order->offset
872 + dst_address
873 + link_order->u.indirect.section->output_section->vma - 1);
875 gap = value - dot;
877 /* Sanity check. */
878 if (gap < -128 || gap > 126)
880 if (! ((*link_info->callbacks->reloc_overflow)
881 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
882 reloc->howto->name, reloc->addend, input_section->owner,
883 input_section, reloc->address)))
884 abort ();
887 /* Now fix the instruction. */
888 switch (data[dst_address - 2])
890 case 0x58:
891 /* bCC:16 -> bCC:8 */
892 /* Get the condition code from the original insn. */
893 tmp = data[dst_address - 1];
894 tmp &= 0xf0;
895 tmp >>= 4;
897 /* Now or in the high nibble of the opcode. */
898 tmp |= 0x40;
900 /* Write it. */
901 bfd_put_8 (abfd, tmp, data + dst_address - 2);
902 break;
904 default:
905 abort ();
908 /* Output the target. */
909 bfd_put_8 (abfd, gap, data + dst_address - 1);
911 /* We don't advance dst_address -- the 8bit reloc is applied at
912 dst_address - 1, so the next insn should begin at dst_address. */
913 src_address += 2;
915 break;
917 /* Similarly for a 24bit absolute that is now 8 bits. */
918 case R_JMPL2:
919 /* Get the address of the target of this branch. */
920 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
922 /* Get the address of the instruction (not the reloc). */
923 dot = (link_order->offset
924 + dst_address
925 + link_order->u.indirect.section->output_section->vma + 2);
927 gap = value - dot;
929 /* Fix the instruction. */
930 switch (data[src_address])
932 case 0x5e:
933 /* jsr -> bsr */
934 bfd_put_8 (abfd, 0x55, data + dst_address);
935 break;
936 case 0x5a:
937 /* jmp ->bra */
938 bfd_put_8 (abfd, 0x40, data + dst_address);
939 break;
940 default:
941 abort ();
944 bfd_put_8 (abfd, gap, data + dst_address + 1);
945 dst_address += 2;
946 src_address += 4;
948 break;
950 /* A 16bit absolute mov.b that is now an 8bit absolute mov.b. */
951 case R_MOV16B2:
952 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
954 /* Sanity check. */
955 if (data[dst_address - 2] != 0x6a)
956 abort ();
958 /* Fix up the opcode. */
959 switch (data[src_address-1] & 0xf0)
961 case 0x00:
962 data[dst_address - 2] = (data[src_address-1] & 0xf) | 0x20;
963 break;
964 case 0x80:
965 data[dst_address - 2] = (data[src_address-1] & 0xf) | 0x30;
966 break;
967 default:
968 abort ();
971 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
972 src_address += 2;
973 break;
975 /* Similarly for a 24bit mov.b */
976 case R_MOV24B2:
977 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
979 /* Sanity check. */
980 if (data[dst_address - 2] != 0x6a)
981 abort ();
983 /* Fix up the opcode. */
984 switch (data[src_address-1] & 0xf0)
986 case 0x20:
987 data[dst_address - 2] = (data[src_address-1] & 0xf) | 0x20;
988 break;
989 case 0xa0:
990 data[dst_address - 2] = (data[src_address-1] & 0xf) | 0x30;
991 break;
992 default:
993 abort ();
996 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
997 src_address += 4;
998 break;
1000 case R_BCC_INV:
1001 /* Get the address of the target of this branch. */
1002 value = bfd_coff_reloc16_get_value(reloc, link_info, input_section);
1004 dot = (link_order->offset
1005 + dst_address
1006 + link_order->u.indirect.section->output_section->vma) + 1;
1008 gap = value - dot;
1010 /* Sanity check. */
1011 if (gap < -128 || gap > 126)
1013 if (! ((*link_info->callbacks->reloc_overflow)
1014 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1015 reloc->howto->name, reloc->addend, input_section->owner,
1016 input_section, reloc->address)))
1017 abort ();
1020 /* Everything looks OK. Fix the condition in the instruction, apply
1021 the relocation, and update the src/dst address appropriately. */
1023 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1024 data + dst_address - 1);
1025 bfd_put_8 (abfd, gap, data + dst_address);
1026 dst_address++;
1027 src_address++;
1029 /* All done. */
1030 break;
1032 case R_JMP_DEL:
1033 src_address += 4;
1034 break;
1036 /* An 8bit memory indirect instruction (jmp/jsr).
1038 There's several things that need to be done to handle
1039 this relocation.
1041 If this is a reloc against the absolute symbol, then
1042 we should handle it just R_RELBYTE. Likewise if it's
1043 for a symbol with a value ge 0 and le 0xff.
1045 Otherwise it's a jump/call through the function vector,
1046 and the linker is expected to set up the function vector
1047 and put the right value into the jump/call instruction. */
1048 case R_MEM_INDIRECT:
1050 /* We need to find the symbol so we can determine it's
1051 address in the function vector table. */
1052 asymbol *symbol;
1053 bfd_vma value;
1054 const char *name;
1055 struct funcvec_hash_entry *h;
1056 asection *vectors_sec = h8300_coff_hash_table (link_info)->vectors_sec;
1058 /* First see if this is a reloc against the absolute symbol
1059 or against a symbol with a nonnegative value <= 0xff. */
1060 symbol = *(reloc->sym_ptr_ptr);
1061 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1062 if (symbol == bfd_abs_section_ptr->symbol
1063 || (value >= 0 && value <= 0xff))
1065 /* This should be handled in a manner very similar to
1066 R_RELBYTES. If the value is in range, then just slam
1067 the value into the right location. Else trigger a
1068 reloc overflow callback. */
1069 if (value >= 0 && value <= 0xff)
1071 bfd_put_8 (abfd, value, data + dst_address);
1072 dst_address += 1;
1073 src_address += 1;
1075 else
1077 if (! ((*link_info->callbacks->reloc_overflow)
1078 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1079 reloc->howto->name, reloc->addend, input_section->owner,
1080 input_section, reloc->address)))
1081 abort ();
1083 break;
1086 /* This is a jump/call through a function vector, and we're
1087 expected to create the function vector ourselves.
1089 First look up this symbol in the linker hash table -- we need
1090 the derived linker symbol which holds this symbol's index
1091 in the function vector. */
1092 name = symbol->name;
1093 if (symbol->flags & BSF_LOCAL)
1095 char *new_name = bfd_malloc (strlen (name) + 9);
1096 if (new_name == NULL)
1097 abort ();
1099 strcpy (new_name, name);
1100 sprintf (new_name + strlen (name), "_%08x",
1101 (int)symbol->section);
1102 name = new_name;
1105 h = funcvec_hash_lookup (h8300_coff_hash_table (link_info)->funcvec_hash_table,
1106 name, false, false);
1108 /* This shouldn't ever happen. If it does that means we've got
1109 data corruption of some kind. Aborting seems like a reasonable
1110 think to do here. */
1111 if (h == NULL || vectors_sec == NULL)
1112 abort ();
1114 /* Place the address of the function vector entry into the
1115 reloc's address. */
1116 bfd_put_8 (abfd,
1117 vectors_sec->output_offset + h->offset,
1118 data + dst_address);
1120 dst_address++;
1121 src_address++;
1123 /* Now create an entry in the function vector itself. */
1124 if (bfd_get_mach (input_section->owner) == bfd_mach_h8300)
1125 bfd_put_16 (abfd,
1126 bfd_coff_reloc16_get_value (reloc,
1127 link_info,
1128 input_section),
1129 vectors_sec->contents + h->offset);
1130 else if (bfd_get_mach (input_section->owner) == bfd_mach_h8300h
1131 || bfd_get_mach (input_section->owner) == bfd_mach_h8300s)
1132 bfd_put_32 (abfd,
1133 bfd_coff_reloc16_get_value (reloc,
1134 link_info,
1135 input_section),
1136 vectors_sec->contents + h->offset);
1137 else
1138 abort ();
1140 /* Gross. We've already written the contents of the vector section
1141 before we get here... So we write it again with the new data. */
1142 bfd_set_section_contents (vectors_sec->output_section->owner,
1143 vectors_sec->output_section,
1144 vectors_sec->contents,
1145 vectors_sec->output_offset,
1146 vectors_sec->_raw_size);
1147 break;
1150 default:
1151 abort ();
1152 break;
1156 *src_ptr = src_address;
1157 *dst_ptr = dst_address;
1161 /* Routine for the h8300 linker.
1163 This routine is necessary to handle the special R_MEM_INDIRECT
1164 relocs on the h8300. It's responsible for generating a vectors
1165 section and attaching it to an input bfd as well as sizing
1166 the vectors section. It also creates our vectors hash table.
1168 It uses the generic linker routines to actually add the symbols.
1169 from this BFD to the bfd linker hash table. It may add a few
1170 selected static symbols to the bfd linker hash table. */
1172 static boolean
1173 h8300_bfd_link_add_symbols(abfd, info)
1174 bfd *abfd;
1175 struct bfd_link_info *info;
1177 asection *sec;
1178 struct funcvec_hash_table *funcvec_hash_table;
1180 /* If we haven't created a vectors section, do so now. */
1181 if (!h8300_coff_hash_table (info)->vectors_sec)
1183 flagword flags;
1185 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1186 flags = (SEC_ALLOC | SEC_LOAD
1187 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1188 h8300_coff_hash_table (info)->vectors_sec = bfd_make_section (abfd,
1189 ".vectors");
1191 /* If the section wasn't created, or we couldn't set the flags,
1192 quit quickly now, rather than dieing a painful death later. */
1193 if (! h8300_coff_hash_table (info)->vectors_sec
1194 || ! bfd_set_section_flags (abfd,
1195 h8300_coff_hash_table(info)->vectors_sec,
1196 flags))
1197 return false;
1199 /* Also create the vector hash table. */
1200 funcvec_hash_table = ((struct funcvec_hash_table *)
1201 bfd_alloc (abfd, sizeof (struct funcvec_hash_table)));
1203 if (!funcvec_hash_table)
1204 return false;
1206 /* And initialize the funcvec hash table. */
1207 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1208 funcvec_hash_newfunc))
1210 bfd_release (abfd, funcvec_hash_table);
1211 return false;
1214 /* Store away a pointer to the funcvec hash table. */
1215 h8300_coff_hash_table (info)->funcvec_hash_table = funcvec_hash_table;
1218 /* Load up the function vector hash table. */
1219 funcvec_hash_table = h8300_coff_hash_table (info)->funcvec_hash_table;
1221 /* Add the symbols using the generic code. */
1222 _bfd_generic_link_add_symbols (abfd, info);
1224 /* Now scan the relocs for all the sections in this bfd; create
1225 additional space in the .vectors section as needed. */
1226 for (sec = abfd->sections; sec; sec = sec->next)
1228 long reloc_size, reloc_count, i;
1229 asymbol **symbols;
1230 arelent **relocs;
1232 /* Suck in the relocs, symbols & canonicalize them. */
1233 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1234 if (reloc_size <= 0)
1235 continue;
1237 relocs = (arelent **)bfd_malloc ((size_t)reloc_size);
1238 if (!relocs)
1239 return false;
1241 /* The symbols should have been read in by _bfd_generic link_add_symbols
1242 call abovec, so we can cheat and use the pointer to them that was
1243 saved in the above call. */
1244 symbols = _bfd_generic_link_get_symbols(abfd);
1245 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1246 if (reloc_count <= 0)
1248 free (relocs);
1249 continue;
1252 /* Now walk through all the relocations in this section. */
1253 for (i = 0; i < reloc_count; i++)
1255 arelent *reloc = relocs[i];
1256 asymbol *symbol = *(reloc->sym_ptr_ptr);
1257 const char *name;
1259 /* We've got an indirect reloc. See if we need to add it
1260 to the function vector table. At this point, we have
1261 to add a new entry for each unique symbol referenced
1262 by an R_MEM_INDIRECT relocation except for a reloc
1263 against the absolute section symbol. */
1264 if (reloc->howto->type == R_MEM_INDIRECT
1265 && symbol != bfd_abs_section_ptr->symbol)
1268 struct funcvec_hash_entry *h;
1270 name = symbol->name;
1271 if (symbol->flags & BSF_LOCAL)
1273 char *new_name = bfd_malloc (strlen (name) + 9);
1275 if (new_name == NULL)
1276 abort ();
1278 strcpy (new_name, name);
1279 sprintf (new_name + strlen (name), "_%08x",
1280 (int)symbol->section);
1281 name = new_name;
1284 /* Look this symbol up in the function vector hash table. */
1285 h = funcvec_hash_lookup (h8300_coff_hash_table (info)->funcvec_hash_table,
1286 name, false, false);
1289 /* If this symbol isn't already in the hash table, add
1290 it and bump up the size of the hash table. */
1291 if (h == NULL)
1293 h = funcvec_hash_lookup (h8300_coff_hash_table (info)->funcvec_hash_table,
1294 name, true, true);
1295 if (h == NULL)
1297 free (relocs);
1298 return false;
1301 /* Bump the size of the vectors section. Each vector
1302 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1303 if (bfd_get_mach (abfd) == bfd_mach_h8300)
1304 h8300_coff_hash_table (info)->vectors_sec->_raw_size += 2;
1305 else if (bfd_get_mach (abfd) == bfd_mach_h8300h
1306 || bfd_get_mach (abfd) == bfd_mach_h8300s)
1307 h8300_coff_hash_table (info)->vectors_sec->_raw_size += 4;
1312 /* We're done with the relocations, release them. */
1313 free (relocs);
1316 /* Now actually allocate some space for the function vector. It's
1317 wasteful to do this more than once, but this is easier. */
1318 if (h8300_coff_hash_table (info)->vectors_sec->_raw_size != 0)
1320 /* Free the old contents. */
1321 if (h8300_coff_hash_table (info)->vectors_sec->contents)
1322 free (h8300_coff_hash_table (info)->vectors_sec->contents);
1324 /* Allocate new contents. */
1325 h8300_coff_hash_table (info)->vectors_sec->contents
1326 = bfd_malloc (h8300_coff_hash_table (info)->vectors_sec->_raw_size);
1329 return true;
1332 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1333 #define coff_reloc16_estimate h8300_reloc16_estimate
1334 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1335 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1337 #define COFF_LONG_FILENAMES
1338 #include "coffcode.h"
1341 #undef coff_bfd_get_relocated_section_contents
1342 #undef coff_bfd_relax_section
1343 #define coff_bfd_get_relocated_section_contents \
1344 bfd_coff_reloc16_get_relocated_section_contents
1345 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1349 const bfd_target h8300coff_vec =
1351 "coff-h8300", /* name */
1352 bfd_target_coff_flavour,
1353 BFD_ENDIAN_BIG, /* data byte order is big */
1354 BFD_ENDIAN_BIG, /* header byte order is big */
1356 (HAS_RELOC | EXEC_P | /* object flags */
1357 HAS_LINENO | HAS_DEBUG |
1358 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE ),
1359 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */
1360 '_', /* leading char */
1361 '/', /* ar_pad_char */
1362 15, /* ar_max_namelen */
1363 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
1364 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
1365 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
1366 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
1367 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
1368 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
1370 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
1371 bfd_generic_archive_p, _bfd_dummy_target},
1372 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
1373 bfd_false},
1374 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
1375 _bfd_write_archive_contents, bfd_false},
1377 BFD_JUMP_TABLE_GENERIC (coff),
1378 BFD_JUMP_TABLE_COPY (coff),
1379 BFD_JUMP_TABLE_CORE (_bfd_nocore),
1380 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
1381 BFD_JUMP_TABLE_SYMBOLS (coff),
1382 BFD_JUMP_TABLE_RELOCS (coff),
1383 BFD_JUMP_TABLE_WRITE (coff),
1384 BFD_JUMP_TABLE_LINK (coff),
1385 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
1387 COFF_SWAP_TABLE,