1 /* ELF executable support for BFD.
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
34 /* For sparc64-cross-sparc32. */
42 #include "libiberty.h"
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean
assign_file_positions_except_relocs (bfd
*, struct bfd_link_info
*);
46 static bfd_boolean
prep_headers (bfd
*);
47 static bfd_boolean
swap_out_syms (bfd
*, struct bfd_strtab_hash
**, int) ;
48 static bfd_boolean
elfcore_read_notes (bfd
*, file_ptr
, bfd_size_type
) ;
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
54 /* Swap in a Verdef structure. */
57 _bfd_elf_swap_verdef_in (bfd
*abfd
,
58 const Elf_External_Verdef
*src
,
59 Elf_Internal_Verdef
*dst
)
61 dst
->vd_version
= H_GET_16 (abfd
, src
->vd_version
);
62 dst
->vd_flags
= H_GET_16 (abfd
, src
->vd_flags
);
63 dst
->vd_ndx
= H_GET_16 (abfd
, src
->vd_ndx
);
64 dst
->vd_cnt
= H_GET_16 (abfd
, src
->vd_cnt
);
65 dst
->vd_hash
= H_GET_32 (abfd
, src
->vd_hash
);
66 dst
->vd_aux
= H_GET_32 (abfd
, src
->vd_aux
);
67 dst
->vd_next
= H_GET_32 (abfd
, src
->vd_next
);
70 /* Swap out a Verdef structure. */
73 _bfd_elf_swap_verdef_out (bfd
*abfd
,
74 const Elf_Internal_Verdef
*src
,
75 Elf_External_Verdef
*dst
)
77 H_PUT_16 (abfd
, src
->vd_version
, dst
->vd_version
);
78 H_PUT_16 (abfd
, src
->vd_flags
, dst
->vd_flags
);
79 H_PUT_16 (abfd
, src
->vd_ndx
, dst
->vd_ndx
);
80 H_PUT_16 (abfd
, src
->vd_cnt
, dst
->vd_cnt
);
81 H_PUT_32 (abfd
, src
->vd_hash
, dst
->vd_hash
);
82 H_PUT_32 (abfd
, src
->vd_aux
, dst
->vd_aux
);
83 H_PUT_32 (abfd
, src
->vd_next
, dst
->vd_next
);
86 /* Swap in a Verdaux structure. */
89 _bfd_elf_swap_verdaux_in (bfd
*abfd
,
90 const Elf_External_Verdaux
*src
,
91 Elf_Internal_Verdaux
*dst
)
93 dst
->vda_name
= H_GET_32 (abfd
, src
->vda_name
);
94 dst
->vda_next
= H_GET_32 (abfd
, src
->vda_next
);
97 /* Swap out a Verdaux structure. */
100 _bfd_elf_swap_verdaux_out (bfd
*abfd
,
101 const Elf_Internal_Verdaux
*src
,
102 Elf_External_Verdaux
*dst
)
104 H_PUT_32 (abfd
, src
->vda_name
, dst
->vda_name
);
105 H_PUT_32 (abfd
, src
->vda_next
, dst
->vda_next
);
108 /* Swap in a Verneed structure. */
111 _bfd_elf_swap_verneed_in (bfd
*abfd
,
112 const Elf_External_Verneed
*src
,
113 Elf_Internal_Verneed
*dst
)
115 dst
->vn_version
= H_GET_16 (abfd
, src
->vn_version
);
116 dst
->vn_cnt
= H_GET_16 (abfd
, src
->vn_cnt
);
117 dst
->vn_file
= H_GET_32 (abfd
, src
->vn_file
);
118 dst
->vn_aux
= H_GET_32 (abfd
, src
->vn_aux
);
119 dst
->vn_next
= H_GET_32 (abfd
, src
->vn_next
);
122 /* Swap out a Verneed structure. */
125 _bfd_elf_swap_verneed_out (bfd
*abfd
,
126 const Elf_Internal_Verneed
*src
,
127 Elf_External_Verneed
*dst
)
129 H_PUT_16 (abfd
, src
->vn_version
, dst
->vn_version
);
130 H_PUT_16 (abfd
, src
->vn_cnt
, dst
->vn_cnt
);
131 H_PUT_32 (abfd
, src
->vn_file
, dst
->vn_file
);
132 H_PUT_32 (abfd
, src
->vn_aux
, dst
->vn_aux
);
133 H_PUT_32 (abfd
, src
->vn_next
, dst
->vn_next
);
136 /* Swap in a Vernaux structure. */
139 _bfd_elf_swap_vernaux_in (bfd
*abfd
,
140 const Elf_External_Vernaux
*src
,
141 Elf_Internal_Vernaux
*dst
)
143 dst
->vna_hash
= H_GET_32 (abfd
, src
->vna_hash
);
144 dst
->vna_flags
= H_GET_16 (abfd
, src
->vna_flags
);
145 dst
->vna_other
= H_GET_16 (abfd
, src
->vna_other
);
146 dst
->vna_name
= H_GET_32 (abfd
, src
->vna_name
);
147 dst
->vna_next
= H_GET_32 (abfd
, src
->vna_next
);
150 /* Swap out a Vernaux structure. */
153 _bfd_elf_swap_vernaux_out (bfd
*abfd
,
154 const Elf_Internal_Vernaux
*src
,
155 Elf_External_Vernaux
*dst
)
157 H_PUT_32 (abfd
, src
->vna_hash
, dst
->vna_hash
);
158 H_PUT_16 (abfd
, src
->vna_flags
, dst
->vna_flags
);
159 H_PUT_16 (abfd
, src
->vna_other
, dst
->vna_other
);
160 H_PUT_32 (abfd
, src
->vna_name
, dst
->vna_name
);
161 H_PUT_32 (abfd
, src
->vna_next
, dst
->vna_next
);
164 /* Swap in a Versym structure. */
167 _bfd_elf_swap_versym_in (bfd
*abfd
,
168 const Elf_External_Versym
*src
,
169 Elf_Internal_Versym
*dst
)
171 dst
->vs_vers
= H_GET_16 (abfd
, src
->vs_vers
);
174 /* Swap out a Versym structure. */
177 _bfd_elf_swap_versym_out (bfd
*abfd
,
178 const Elf_Internal_Versym
*src
,
179 Elf_External_Versym
*dst
)
181 H_PUT_16 (abfd
, src
->vs_vers
, dst
->vs_vers
);
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
188 bfd_elf_hash (const char *namearg
)
190 const unsigned char *name
= (const unsigned char *) namearg
;
195 while ((ch
= *name
++) != '\0')
198 if ((g
= (h
& 0xf0000000)) != 0)
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
206 return h
& 0xffffffff;
210 bfd_elf_mkobject (bfd
*abfd
)
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd
) = bfd_zalloc (abfd
, sizeof (struct elf_obj_tdata
));
215 if (elf_tdata (abfd
) == 0)
217 /* Since everything is done at close time, do we need any
224 bfd_elf_mkcorefile (bfd
*abfd
)
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd
);
231 bfd_elf_get_str_section (bfd
*abfd
, unsigned int shindex
)
233 Elf_Internal_Shdr
**i_shdrp
;
234 bfd_byte
*shstrtab
= NULL
;
236 bfd_size_type shstrtabsize
;
238 i_shdrp
= elf_elfsections (abfd
);
239 if (i_shdrp
== 0 || i_shdrp
[shindex
] == 0)
242 shstrtab
= i_shdrp
[shindex
]->contents
;
243 if (shstrtab
== NULL
)
245 /* No cached one, attempt to read, and cache what we read. */
246 offset
= i_shdrp
[shindex
]->sh_offset
;
247 shstrtabsize
= i_shdrp
[shindex
]->sh_size
;
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize
+ 1 == 0
252 || (shstrtab
= bfd_alloc (abfd
, shstrtabsize
+ 1)) == NULL
253 || bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
255 else if (bfd_bread (shstrtab
, shstrtabsize
, abfd
) != shstrtabsize
)
257 if (bfd_get_error () != bfd_error_system_call
)
258 bfd_set_error (bfd_error_file_truncated
);
262 shstrtab
[shstrtabsize
] = '\0';
263 i_shdrp
[shindex
]->contents
= shstrtab
;
265 return (char *) shstrtab
;
269 bfd_elf_string_from_elf_section (bfd
*abfd
,
270 unsigned int shindex
,
271 unsigned int strindex
)
273 Elf_Internal_Shdr
*hdr
;
278 hdr
= elf_elfsections (abfd
)[shindex
];
280 if (hdr
->contents
== NULL
281 && bfd_elf_get_str_section (abfd
, shindex
) == NULL
)
284 if (strindex
>= hdr
->sh_size
)
286 unsigned int shstrndx
= elf_elfheader(abfd
)->e_shstrndx
;
287 (*_bfd_error_handler
)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd
, strindex
, (unsigned long) hdr
->sh_size
,
290 (shindex
== shstrndx
&& strindex
== hdr
->sh_name
292 : bfd_elf_string_from_elf_section (abfd
, shstrndx
, hdr
->sh_name
)));
296 return ((char *) hdr
->contents
) + strindex
;
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
306 bfd_elf_get_elf_syms (bfd
*ibfd
,
307 Elf_Internal_Shdr
*symtab_hdr
,
310 Elf_Internal_Sym
*intsym_buf
,
312 Elf_External_Sym_Shndx
*extshndx_buf
)
314 Elf_Internal_Shdr
*shndx_hdr
;
316 const bfd_byte
*esym
;
317 Elf_External_Sym_Shndx
*alloc_extshndx
;
318 Elf_External_Sym_Shndx
*shndx
;
319 Elf_Internal_Sym
*isym
;
320 Elf_Internal_Sym
*isymend
;
321 const struct elf_backend_data
*bed
;
329 /* Normal syms might have section extension entries. */
331 if (symtab_hdr
== &elf_tdata (ibfd
)->symtab_hdr
)
332 shndx_hdr
= &elf_tdata (ibfd
)->symtab_shndx_hdr
;
334 /* Read the symbols. */
336 alloc_extshndx
= NULL
;
337 bed
= get_elf_backend_data (ibfd
);
338 extsym_size
= bed
->s
->sizeof_sym
;
339 amt
= symcount
* extsym_size
;
340 pos
= symtab_hdr
->sh_offset
+ symoffset
* extsym_size
;
341 if (extsym_buf
== NULL
)
343 alloc_ext
= bfd_malloc2 (symcount
, extsym_size
);
344 extsym_buf
= alloc_ext
;
346 if (extsym_buf
== NULL
347 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
348 || bfd_bread (extsym_buf
, amt
, ibfd
) != amt
)
354 if (shndx_hdr
== NULL
|| shndx_hdr
->sh_size
== 0)
358 amt
= symcount
* sizeof (Elf_External_Sym_Shndx
);
359 pos
= shndx_hdr
->sh_offset
+ symoffset
* sizeof (Elf_External_Sym_Shndx
);
360 if (extshndx_buf
== NULL
)
362 alloc_extshndx
= bfd_malloc2 (symcount
,
363 sizeof (Elf_External_Sym_Shndx
));
364 extshndx_buf
= alloc_extshndx
;
366 if (extshndx_buf
== NULL
367 || bfd_seek (ibfd
, pos
, SEEK_SET
) != 0
368 || bfd_bread (extshndx_buf
, amt
, ibfd
) != amt
)
375 if (intsym_buf
== NULL
)
377 intsym_buf
= bfd_malloc2 (symcount
, sizeof (Elf_Internal_Sym
));
378 if (intsym_buf
== NULL
)
382 /* Convert the symbols to internal form. */
383 isymend
= intsym_buf
+ symcount
;
384 for (esym
= extsym_buf
, isym
= intsym_buf
, shndx
= extshndx_buf
;
386 esym
+= extsym_size
, isym
++, shndx
= shndx
!= NULL
? shndx
+ 1 : NULL
)
387 (*bed
->s
->swap_symbol_in
) (ibfd
, esym
, shndx
, isym
);
390 if (alloc_ext
!= NULL
)
392 if (alloc_extshndx
!= NULL
)
393 free (alloc_extshndx
);
398 /* Look up a symbol name. */
400 bfd_elf_sym_name (bfd
*abfd
,
401 Elf_Internal_Shdr
*symtab_hdr
,
402 Elf_Internal_Sym
*isym
,
406 unsigned int iname
= isym
->st_name
;
407 unsigned int shindex
= symtab_hdr
->sh_link
;
409 if (iname
== 0 && ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym
->st_shndx
< elf_numsections (abfd
)
412 && !(isym
->st_shndx
>= SHN_LORESERVE
&& isym
->st_shndx
<= SHN_HIRESERVE
))
414 iname
= elf_elfsections (abfd
)[isym
->st_shndx
]->sh_name
;
415 shindex
= elf_elfheader (abfd
)->e_shstrndx
;
418 name
= bfd_elf_string_from_elf_section (abfd
, shindex
, iname
);
421 else if (sym_sec
&& *name
== '\0')
422 name
= bfd_section_name (abfd
, sym_sec
);
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
431 typedef union elf_internal_group
{
432 Elf_Internal_Shdr
*shdr
;
434 } Elf_Internal_Group
;
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
440 group_signature (bfd
*abfd
, Elf_Internal_Shdr
*ghdr
)
442 Elf_Internal_Shdr
*hdr
;
443 unsigned char esym
[sizeof (Elf64_External_Sym
)];
444 Elf_External_Sym_Shndx eshndx
;
445 Elf_Internal_Sym isym
;
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr
= elf_elfsections (abfd
) [ghdr
->sh_link
];
450 if (hdr
->sh_type
!= SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd
, ghdr
->sh_link
))
454 /* Go read the symbol. */
455 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
456 if (bfd_elf_get_elf_syms (abfd
, hdr
, 1, ghdr
->sh_info
,
457 &isym
, esym
, &eshndx
) == NULL
)
460 return bfd_elf_sym_name (abfd
, hdr
, &isym
, NULL
);
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
466 setup_group (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*newsect
)
468 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
474 unsigned int i
, shnum
;
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum
= elf_numsections (abfd
);
480 for (i
= 0; i
< shnum
; i
++)
482 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
483 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
489 num_group
= (unsigned) -1;
490 elf_tdata (abfd
)->num_group
= num_group
;
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
498 elf_tdata (abfd
)->num_group
= num_group
;
499 elf_tdata (abfd
)->group_sect_ptr
500 = bfd_alloc2 (abfd
, num_group
, sizeof (Elf_Internal_Shdr
*));
501 if (elf_tdata (abfd
)->group_sect_ptr
== NULL
)
505 for (i
= 0; i
< shnum
; i
++)
507 Elf_Internal_Shdr
*shdr
= elf_elfsections (abfd
)[i
];
508 if (shdr
->sh_type
== SHT_GROUP
&& shdr
->sh_size
>= 8)
511 Elf_Internal_Group
*dest
;
513 /* Add to list of sections. */
514 elf_tdata (abfd
)->group_sect_ptr
[num_group
] = shdr
;
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest
) >= 4);
519 amt
= shdr
->sh_size
* sizeof (*dest
) / 4;
520 shdr
->contents
= bfd_alloc2 (abfd
, shdr
->sh_size
,
522 if (shdr
->contents
== NULL
523 || bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0
524 || (bfd_bread (shdr
->contents
, shdr
->sh_size
, abfd
)
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
532 src
= shdr
->contents
+ shdr
->sh_size
;
533 dest
= (Elf_Internal_Group
*) (shdr
->contents
+ amt
);
540 idx
= H_GET_32 (abfd
, src
);
541 if (src
== shdr
->contents
)
544 if (shdr
->bfd_section
!= NULL
&& (idx
& GRP_COMDAT
))
545 shdr
->bfd_section
->flags
546 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
551 ((*_bfd_error_handler
)
552 (_("%B: invalid SHT_GROUP entry"), abfd
));
555 dest
->shdr
= elf_elfsections (abfd
)[idx
];
562 if (num_group
!= (unsigned) -1)
566 for (i
= 0; i
< num_group
; i
++)
568 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
569 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
570 unsigned int n_elt
= shdr
->sh_size
/ 4;
572 /* Look through this group's sections to see if current
573 section is a member. */
575 if ((++idx
)->shdr
== hdr
)
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
582 idx
= (Elf_Internal_Group
*) shdr
->contents
;
583 n_elt
= shdr
->sh_size
/ 4;
585 if ((s
= (++idx
)->shdr
->bfd_section
) != NULL
586 && elf_next_in_group (s
) != NULL
)
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect
) = elf_group_name (s
);
593 elf_next_in_group (newsect
) = elf_next_in_group (s
);
594 elf_next_in_group (s
) = newsect
;
600 gname
= group_signature (abfd
, shdr
);
603 elf_group_name (newsect
) = gname
;
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect
) = newsect
;
609 /* If the group section has been created, point to the
611 if (shdr
->bfd_section
!= NULL
)
612 elf_next_in_group (shdr
->bfd_section
) = newsect
;
620 if (elf_group_name (newsect
) == NULL
)
622 (*_bfd_error_handler
) (_("%B: no group info for section %A"),
629 _bfd_elf_setup_sections (bfd
*abfd
)
632 unsigned int num_group
= elf_tdata (abfd
)->num_group
;
633 bfd_boolean result
= TRUE
;
636 /* Process SHF_LINK_ORDER. */
637 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
639 Elf_Internal_Shdr
*this_hdr
= &elf_section_data (s
)->this_hdr
;
640 if ((this_hdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
642 unsigned int elfsec
= this_hdr
->sh_link
;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
648 const struct elf_backend_data
*bed
649 = get_elf_backend_data (abfd
);
650 if (bed
->link_order_error_handler
)
651 bed
->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
659 this_hdr
= elf_elfsections (abfd
)[elfsec
];
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link
= this_hdr
->bfd_section
;
667 (*_bfd_error_handler
)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s
->owner
, s
, elfsec
);
673 elf_linked_to_section (s
) = link
;
678 /* Process section groups. */
679 if (num_group
== (unsigned) -1)
682 for (i
= 0; i
< num_group
; i
++)
684 Elf_Internal_Shdr
*shdr
= elf_tdata (abfd
)->group_sect_ptr
[i
];
685 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) shdr
->contents
;
686 unsigned int n_elt
= shdr
->sh_size
/ 4;
689 if ((++idx
)->shdr
->bfd_section
)
690 elf_sec_group (idx
->shdr
->bfd_section
) = shdr
->bfd_section
;
691 else if (idx
->shdr
->sh_type
== SHT_RELA
692 || idx
->shdr
->sh_type
== SHT_REL
)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
698 shdr
->bfd_section
->size
-= 4;
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler
)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
705 (unsigned int) idx
->shdr
->sh_type
,
706 bfd_elf_string_from_elf_section (abfd
,
707 (elf_elfheader (abfd
)
710 shdr
->bfd_section
->name
);
718 bfd_elf_is_group_section (bfd
*abfd ATTRIBUTE_UNUSED
, const asection
*sec
)
720 return elf_next_in_group (sec
) != NULL
;
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
727 _bfd_elf_make_section_from_shdr (bfd
*abfd
,
728 Elf_Internal_Shdr
*hdr
,
734 const struct elf_backend_data
*bed
;
736 if (hdr
->bfd_section
!= NULL
)
738 BFD_ASSERT (strcmp (name
,
739 bfd_get_section_name (abfd
, hdr
->bfd_section
)) == 0);
743 newsect
= bfd_make_section_anyway (abfd
, name
);
747 hdr
->bfd_section
= newsect
;
748 elf_section_data (newsect
)->this_hdr
= *hdr
;
749 elf_section_data (newsect
)->this_idx
= shindex
;
751 /* Always use the real type/flags. */
752 elf_section_type (newsect
) = hdr
->sh_type
;
753 elf_section_flags (newsect
) = hdr
->sh_flags
;
755 newsect
->filepos
= hdr
->sh_offset
;
757 if (! bfd_set_section_vma (abfd
, newsect
, hdr
->sh_addr
)
758 || ! bfd_set_section_size (abfd
, newsect
, hdr
->sh_size
)
759 || ! bfd_set_section_alignment (abfd
, newsect
,
760 bfd_log2 ((bfd_vma
) hdr
->sh_addralign
)))
763 flags
= SEC_NO_FLAGS
;
764 if (hdr
->sh_type
!= SHT_NOBITS
)
765 flags
|= SEC_HAS_CONTENTS
;
766 if (hdr
->sh_type
== SHT_GROUP
)
767 flags
|= SEC_GROUP
| SEC_EXCLUDE
;
768 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
771 if (hdr
->sh_type
!= SHT_NOBITS
)
774 if ((hdr
->sh_flags
& SHF_WRITE
) == 0)
775 flags
|= SEC_READONLY
;
776 if ((hdr
->sh_flags
& SHF_EXECINSTR
) != 0)
778 else if ((flags
& SEC_LOAD
) != 0)
780 if ((hdr
->sh_flags
& SHF_MERGE
) != 0)
783 newsect
->entsize
= hdr
->sh_entsize
;
784 if ((hdr
->sh_flags
& SHF_STRINGS
) != 0)
785 flags
|= SEC_STRINGS
;
787 if (hdr
->sh_flags
& SHF_GROUP
)
788 if (!setup_group (abfd
, hdr
, newsect
))
790 if ((hdr
->sh_flags
& SHF_TLS
) != 0)
791 flags
|= SEC_THREAD_LOCAL
;
793 if ((flags
& SEC_ALLOC
) == 0)
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
801 } debug_sections
[] =
803 { "debug", 5 }, /* 'd' */
804 { NULL
, 0 }, /* 'e' */
805 { NULL
, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL
, 0 }, /* 'h' */
808 { NULL
, 0 }, /* 'i' */
809 { NULL
, 0 }, /* 'j' */
810 { NULL
, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL
, 0 }, /* 'm' */
813 { NULL
, 0 }, /* 'n' */
814 { NULL
, 0 }, /* 'o' */
815 { NULL
, 0 }, /* 'p' */
816 { NULL
, 0 }, /* 'q' */
817 { NULL
, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
823 int i
= name
[1] - 'd';
825 && i
< (int) ARRAY_SIZE (debug_sections
)
826 && debug_sections
[i
].name
!= NULL
827 && strncmp (&name
[1], debug_sections
[i
].name
,
828 debug_sections
[i
].len
) == 0)
829 flags
|= SEC_DEBUGGING
;
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name
, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect
) == NULL
)
841 flags
|= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
843 bed
= get_elf_backend_data (abfd
);
844 if (bed
->elf_backend_section_flags
)
845 if (! bed
->elf_backend_section_flags (&flags
, hdr
))
848 if (! bfd_set_section_flags (abfd
, newsect
, flags
))
851 if ((flags
& SEC_ALLOC
) != 0)
853 Elf_Internal_Phdr
*phdr
;
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr
= elf_tdata (abfd
)->phdr
;
860 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
862 if (phdr
->p_paddr
!= 0)
865 if (i
< elf_elfheader (abfd
)->e_phnum
)
867 phdr
= elf_tdata (abfd
)->phdr
;
868 for (i
= 0; i
< elf_elfheader (abfd
)->e_phnum
; i
++, phdr
++)
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr
->p_type
== PT_LOAD
883 && (bfd_vma
) hdr
->sh_offset
>= phdr
->p_offset
884 && (hdr
->sh_offset
+ hdr
->sh_size
885 <= phdr
->p_offset
+ phdr
->p_memsz
)
886 && ((flags
& SEC_LOAD
) == 0
887 || (hdr
->sh_offset
+ hdr
->sh_size
888 <= phdr
->p_offset
+ phdr
->p_filesz
)))
890 if ((flags
& SEC_LOAD
) == 0)
891 newsect
->lma
= (phdr
->p_paddr
892 + hdr
->sh_addr
- phdr
->p_vaddr
);
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect
->lma
= (phdr
->p_paddr
902 + hdr
->sh_offset
- phdr
->p_offset
);
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr
->sh_addr
>= phdr
->p_vaddr
909 && (hdr
->sh_addr
+ hdr
->sh_size
910 <= phdr
->p_vaddr
+ phdr
->p_memsz
))
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
935 struct elf_internal_shdr
*
936 bfd_elf_find_section (bfd
*abfd
, char *name
)
938 Elf_Internal_Shdr
**i_shdrp
;
943 i_shdrp
= elf_elfsections (abfd
);
946 shstrtab
= bfd_elf_get_str_section (abfd
,
947 elf_elfheader (abfd
)->e_shstrndx
);
948 if (shstrtab
!= NULL
)
950 max
= elf_numsections (abfd
);
951 for (i
= 1; i
< max
; i
++)
952 if (!strcmp (&shstrtab
[i_shdrp
[i
]->sh_name
], name
))
959 const char *const bfd_elf_section_type_names
[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
,
977 arelent
*reloc_entry
,
979 void *data ATTRIBUTE_UNUSED
,
980 asection
*input_section
,
982 char **error_message ATTRIBUTE_UNUSED
)
984 if (output_bfd
!= NULL
985 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
986 && (! reloc_entry
->howto
->partial_inplace
987 || reloc_entry
->addend
== 0))
989 reloc_entry
->address
+= input_section
->output_offset
;
993 return bfd_reloc_continue
;
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
999 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
1002 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
1003 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
1006 /* Finish SHF_MERGE section merging. */
1009 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
1014 if (!is_elf_hash_table (info
->hash
))
1017 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
1018 if ((ibfd
->flags
& DYNAMIC
) == 0)
1019 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
1020 if ((sec
->flags
& SEC_MERGE
) != 0
1021 && !bfd_is_abs_section (sec
->output_section
))
1023 struct bfd_elf_section_data
*secdata
;
1025 secdata
= elf_section_data (sec
);
1026 if (! _bfd_add_merge_section (abfd
,
1027 &elf_hash_table (info
)->merge_info
,
1028 sec
, &secdata
->sec_info
))
1030 else if (secdata
->sec_info
)
1031 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
1034 if (elf_hash_table (info
)->merge_info
!= NULL
)
1035 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
1036 merge_sections_remove_hook
);
1041 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
1043 sec
->output_section
= bfd_abs_section_ptr
;
1044 sec
->output_offset
= sec
->vma
;
1045 if (!is_elf_hash_table (info
->hash
))
1048 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
1051 /* Copy the program header and other data from one object module to
1055 _bfd_elf_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
1057 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
1061 BFD_ASSERT (!elf_flags_init (obfd
)
1062 || (elf_elfheader (obfd
)->e_flags
1063 == elf_elfheader (ibfd
)->e_flags
));
1065 elf_gp (obfd
) = elf_gp (ibfd
);
1066 elf_elfheader (obfd
)->e_flags
= elf_elfheader (ibfd
)->e_flags
;
1067 elf_flags_init (obfd
) = TRUE
;
1071 /* Print out the program headers. */
1074 _bfd_elf_print_private_bfd_data (bfd
*abfd
, void *farg
)
1077 Elf_Internal_Phdr
*p
;
1079 bfd_byte
*dynbuf
= NULL
;
1081 p
= elf_tdata (abfd
)->phdr
;
1086 fprintf (f
, _("\nProgram Header:\n"));
1087 c
= elf_elfheader (abfd
)->e_phnum
;
1088 for (i
= 0; i
< c
; i
++, p
++)
1095 case PT_NULL
: pt
= "NULL"; break;
1096 case PT_LOAD
: pt
= "LOAD"; break;
1097 case PT_DYNAMIC
: pt
= "DYNAMIC"; break;
1098 case PT_INTERP
: pt
= "INTERP"; break;
1099 case PT_NOTE
: pt
= "NOTE"; break;
1100 case PT_SHLIB
: pt
= "SHLIB"; break;
1101 case PT_PHDR
: pt
= "PHDR"; break;
1102 case PT_TLS
: pt
= "TLS"; break;
1103 case PT_GNU_EH_FRAME
: pt
= "EH_FRAME"; break;
1104 case PT_GNU_STACK
: pt
= "STACK"; break;
1105 case PT_GNU_RELRO
: pt
= "RELRO"; break;
1106 default: sprintf (buf
, "0x%lx", p
->p_type
); pt
= buf
; break;
1108 fprintf (f
, "%8s off 0x", pt
);
1109 bfd_fprintf_vma (abfd
, f
, p
->p_offset
);
1110 fprintf (f
, " vaddr 0x");
1111 bfd_fprintf_vma (abfd
, f
, p
->p_vaddr
);
1112 fprintf (f
, " paddr 0x");
1113 bfd_fprintf_vma (abfd
, f
, p
->p_paddr
);
1114 fprintf (f
, " align 2**%u\n", bfd_log2 (p
->p_align
));
1115 fprintf (f
, " filesz 0x");
1116 bfd_fprintf_vma (abfd
, f
, p
->p_filesz
);
1117 fprintf (f
, " memsz 0x");
1118 bfd_fprintf_vma (abfd
, f
, p
->p_memsz
);
1119 fprintf (f
, " flags %c%c%c",
1120 (p
->p_flags
& PF_R
) != 0 ? 'r' : '-',
1121 (p
->p_flags
& PF_W
) != 0 ? 'w' : '-',
1122 (p
->p_flags
& PF_X
) != 0 ? 'x' : '-');
1123 if ((p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
)) != 0)
1124 fprintf (f
, " %lx", p
->p_flags
&~ (unsigned) (PF_R
| PF_W
| PF_X
));
1129 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1133 unsigned long shlink
;
1134 bfd_byte
*extdyn
, *extdynend
;
1136 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1138 fprintf (f
, _("\nDynamic Section:\n"));
1140 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1143 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1146 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1148 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1149 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1152 extdynend
= extdyn
+ s
->size
;
1153 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1155 Elf_Internal_Dyn dyn
;
1158 bfd_boolean stringp
;
1160 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1162 if (dyn
.d_tag
== DT_NULL
)
1169 sprintf (ab
, "0x%lx", (unsigned long) dyn
.d_tag
);
1173 case DT_NEEDED
: name
= "NEEDED"; stringp
= TRUE
; break;
1174 case DT_PLTRELSZ
: name
= "PLTRELSZ"; break;
1175 case DT_PLTGOT
: name
= "PLTGOT"; break;
1176 case DT_HASH
: name
= "HASH"; break;
1177 case DT_STRTAB
: name
= "STRTAB"; break;
1178 case DT_SYMTAB
: name
= "SYMTAB"; break;
1179 case DT_RELA
: name
= "RELA"; break;
1180 case DT_RELASZ
: name
= "RELASZ"; break;
1181 case DT_RELAENT
: name
= "RELAENT"; break;
1182 case DT_STRSZ
: name
= "STRSZ"; break;
1183 case DT_SYMENT
: name
= "SYMENT"; break;
1184 case DT_INIT
: name
= "INIT"; break;
1185 case DT_FINI
: name
= "FINI"; break;
1186 case DT_SONAME
: name
= "SONAME"; stringp
= TRUE
; break;
1187 case DT_RPATH
: name
= "RPATH"; stringp
= TRUE
; break;
1188 case DT_SYMBOLIC
: name
= "SYMBOLIC"; break;
1189 case DT_REL
: name
= "REL"; break;
1190 case DT_RELSZ
: name
= "RELSZ"; break;
1191 case DT_RELENT
: name
= "RELENT"; break;
1192 case DT_PLTREL
: name
= "PLTREL"; break;
1193 case DT_DEBUG
: name
= "DEBUG"; break;
1194 case DT_TEXTREL
: name
= "TEXTREL"; break;
1195 case DT_JMPREL
: name
= "JMPREL"; break;
1196 case DT_BIND_NOW
: name
= "BIND_NOW"; break;
1197 case DT_INIT_ARRAY
: name
= "INIT_ARRAY"; break;
1198 case DT_FINI_ARRAY
: name
= "FINI_ARRAY"; break;
1199 case DT_INIT_ARRAYSZ
: name
= "INIT_ARRAYSZ"; break;
1200 case DT_FINI_ARRAYSZ
: name
= "FINI_ARRAYSZ"; break;
1201 case DT_RUNPATH
: name
= "RUNPATH"; stringp
= TRUE
; break;
1202 case DT_FLAGS
: name
= "FLAGS"; break;
1203 case DT_PREINIT_ARRAY
: name
= "PREINIT_ARRAY"; break;
1204 case DT_PREINIT_ARRAYSZ
: name
= "PREINIT_ARRAYSZ"; break;
1205 case DT_CHECKSUM
: name
= "CHECKSUM"; break;
1206 case DT_PLTPADSZ
: name
= "PLTPADSZ"; break;
1207 case DT_MOVEENT
: name
= "MOVEENT"; break;
1208 case DT_MOVESZ
: name
= "MOVESZ"; break;
1209 case DT_FEATURE
: name
= "FEATURE"; break;
1210 case DT_POSFLAG_1
: name
= "POSFLAG_1"; break;
1211 case DT_SYMINSZ
: name
= "SYMINSZ"; break;
1212 case DT_SYMINENT
: name
= "SYMINENT"; break;
1213 case DT_CONFIG
: name
= "CONFIG"; stringp
= TRUE
; break;
1214 case DT_DEPAUDIT
: name
= "DEPAUDIT"; stringp
= TRUE
; break;
1215 case DT_AUDIT
: name
= "AUDIT"; stringp
= TRUE
; break;
1216 case DT_PLTPAD
: name
= "PLTPAD"; break;
1217 case DT_MOVETAB
: name
= "MOVETAB"; break;
1218 case DT_SYMINFO
: name
= "SYMINFO"; break;
1219 case DT_RELACOUNT
: name
= "RELACOUNT"; break;
1220 case DT_RELCOUNT
: name
= "RELCOUNT"; break;
1221 case DT_FLAGS_1
: name
= "FLAGS_1"; break;
1222 case DT_VERSYM
: name
= "VERSYM"; break;
1223 case DT_VERDEF
: name
= "VERDEF"; break;
1224 case DT_VERDEFNUM
: name
= "VERDEFNUM"; break;
1225 case DT_VERNEED
: name
= "VERNEED"; break;
1226 case DT_VERNEEDNUM
: name
= "VERNEEDNUM"; break;
1227 case DT_AUXILIARY
: name
= "AUXILIARY"; stringp
= TRUE
; break;
1228 case DT_USED
: name
= "USED"; break;
1229 case DT_FILTER
: name
= "FILTER"; stringp
= TRUE
; break;
1232 fprintf (f
, " %-11s ", name
);
1234 fprintf (f
, "0x%lx", (unsigned long) dyn
.d_un
.d_val
);
1238 unsigned int tagv
= dyn
.d_un
.d_val
;
1240 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1243 fprintf (f
, "%s", string
);
1252 if ((elf_dynverdef (abfd
) != 0 && elf_tdata (abfd
)->verdef
== NULL
)
1253 || (elf_dynverref (abfd
) != 0 && elf_tdata (abfd
)->verref
== NULL
))
1255 if (! _bfd_elf_slurp_version_tables (abfd
, FALSE
))
1259 if (elf_dynverdef (abfd
) != 0)
1261 Elf_Internal_Verdef
*t
;
1263 fprintf (f
, _("\nVersion definitions:\n"));
1264 for (t
= elf_tdata (abfd
)->verdef
; t
!= NULL
; t
= t
->vd_nextdef
)
1266 fprintf (f
, "%d 0x%2.2x 0x%8.8lx %s\n", t
->vd_ndx
,
1267 t
->vd_flags
, t
->vd_hash
,
1268 t
->vd_nodename
? t
->vd_nodename
: "<corrupt>");
1269 if (t
->vd_auxptr
!= NULL
&& t
->vd_auxptr
->vda_nextptr
!= NULL
)
1271 Elf_Internal_Verdaux
*a
;
1274 for (a
= t
->vd_auxptr
->vda_nextptr
;
1278 a
->vda_nodename
? a
->vda_nodename
: "<corrupt>");
1284 if (elf_dynverref (abfd
) != 0)
1286 Elf_Internal_Verneed
*t
;
1288 fprintf (f
, _("\nVersion References:\n"));
1289 for (t
= elf_tdata (abfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1291 Elf_Internal_Vernaux
*a
;
1293 fprintf (f
, _(" required from %s:\n"),
1294 t
->vn_filename
? t
->vn_filename
: "<corrupt>");
1295 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1296 fprintf (f
, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a
->vna_hash
,
1297 a
->vna_flags
, a
->vna_other
,
1298 a
->vna_nodename
? a
->vna_nodename
: "<corrupt>");
1310 /* Display ELF-specific fields of a symbol. */
1313 bfd_elf_print_symbol (bfd
*abfd
,
1316 bfd_print_symbol_type how
)
1321 case bfd_print_symbol_name
:
1322 fprintf (file
, "%s", symbol
->name
);
1324 case bfd_print_symbol_more
:
1325 fprintf (file
, "elf ");
1326 bfd_fprintf_vma (abfd
, file
, symbol
->value
);
1327 fprintf (file
, " %lx", (long) symbol
->flags
);
1329 case bfd_print_symbol_all
:
1331 const char *section_name
;
1332 const char *name
= NULL
;
1333 const struct elf_backend_data
*bed
;
1334 unsigned char st_other
;
1337 section_name
= symbol
->section
? symbol
->section
->name
: "(*none*)";
1339 bed
= get_elf_backend_data (abfd
);
1340 if (bed
->elf_backend_print_symbol_all
)
1341 name
= (*bed
->elf_backend_print_symbol_all
) (abfd
, filep
, symbol
);
1345 name
= symbol
->name
;
1346 bfd_print_symbol_vandf (abfd
, file
, symbol
);
1349 fprintf (file
, " %s\t", section_name
);
1350 /* Print the "other" value for a symbol. For common symbols,
1351 we've already printed the size; now print the alignment.
1352 For other symbols, we have no specified alignment, and
1353 we've printed the address; now print the size. */
1354 if (bfd_is_com_section (symbol
->section
))
1355 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
1357 val
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_size
;
1358 bfd_fprintf_vma (abfd
, file
, val
);
1360 /* If we have version information, print it. */
1361 if (elf_tdata (abfd
)->dynversym_section
!= 0
1362 && (elf_tdata (abfd
)->dynverdef_section
!= 0
1363 || elf_tdata (abfd
)->dynverref_section
!= 0))
1365 unsigned int vernum
;
1366 const char *version_string
;
1368 vernum
= ((elf_symbol_type
*) symbol
)->version
& VERSYM_VERSION
;
1371 version_string
= "";
1372 else if (vernum
== 1)
1373 version_string
= "Base";
1374 else if (vernum
<= elf_tdata (abfd
)->cverdefs
)
1376 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
1379 Elf_Internal_Verneed
*t
;
1381 version_string
= "";
1382 for (t
= elf_tdata (abfd
)->verref
;
1386 Elf_Internal_Vernaux
*a
;
1388 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1390 if (a
->vna_other
== vernum
)
1392 version_string
= a
->vna_nodename
;
1399 if ((((elf_symbol_type
*) symbol
)->version
& VERSYM_HIDDEN
) == 0)
1400 fprintf (file
, " %-11s", version_string
);
1405 fprintf (file
, " (%s)", version_string
);
1406 for (i
= 10 - strlen (version_string
); i
> 0; --i
)
1411 /* If the st_other field is not zero, print it. */
1412 st_other
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_other
;
1417 case STV_INTERNAL
: fprintf (file
, " .internal"); break;
1418 case STV_HIDDEN
: fprintf (file
, " .hidden"); break;
1419 case STV_PROTECTED
: fprintf (file
, " .protected"); break;
1421 /* Some other non-defined flags are also present, so print
1423 fprintf (file
, " 0x%02x", (unsigned int) st_other
);
1426 fprintf (file
, " %s", name
);
1432 /* Create an entry in an ELF linker hash table. */
1434 struct bfd_hash_entry
*
1435 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1436 struct bfd_hash_table
*table
,
1439 /* Allocate the structure if it has not already been allocated by a
1443 entry
= bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
1448 /* Call the allocation method of the superclass. */
1449 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
1452 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
1453 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
1455 /* Set local fields. */
1458 ret
->got
= htab
->init_got_refcount
;
1459 ret
->plt
= htab
->init_plt_refcount
;
1460 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
1461 - offsetof (struct elf_link_hash_entry
, size
)));
1462 /* Assume that we have been called by a non-ELF symbol reader.
1463 This flag is then reset by the code which reads an ELF input
1464 file. This ensures that a symbol created by a non-ELF symbol
1465 reader will have the flag set correctly. */
1472 /* Copy data from an indirect symbol to its direct symbol, hiding the
1473 old indirect symbol. Also used for copying flags to a weakdef. */
1476 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
1477 struct elf_link_hash_entry
*dir
,
1478 struct elf_link_hash_entry
*ind
)
1480 struct elf_link_hash_table
*htab
;
1482 /* Copy down any references that we may have already seen to the
1483 symbol which just became indirect. */
1485 dir
->ref_dynamic
|= ind
->ref_dynamic
;
1486 dir
->ref_regular
|= ind
->ref_regular
;
1487 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
1488 dir
->non_got_ref
|= ind
->non_got_ref
;
1489 dir
->needs_plt
|= ind
->needs_plt
;
1490 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
1492 if (ind
->root
.type
!= bfd_link_hash_indirect
)
1495 /* Copy over the global and procedure linkage table refcount entries.
1496 These may have been already set up by a check_relocs routine. */
1497 htab
= elf_hash_table (info
);
1498 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
1500 if (dir
->got
.refcount
< 0)
1501 dir
->got
.refcount
= 0;
1502 dir
->got
.refcount
+= ind
->got
.refcount
;
1503 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
1506 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
1508 if (dir
->plt
.refcount
< 0)
1509 dir
->plt
.refcount
= 0;
1510 dir
->plt
.refcount
+= ind
->plt
.refcount
;
1511 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
1514 if (ind
->dynindx
!= -1)
1516 if (dir
->dynindx
!= -1)
1517 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
1518 dir
->dynindx
= ind
->dynindx
;
1519 dir
->dynstr_index
= ind
->dynstr_index
;
1521 ind
->dynstr_index
= 0;
1526 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
1527 struct elf_link_hash_entry
*h
,
1528 bfd_boolean force_local
)
1530 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
1534 h
->forced_local
= 1;
1535 if (h
->dynindx
!= -1)
1538 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1544 /* Initialize an ELF linker hash table. */
1547 _bfd_elf_link_hash_table_init
1548 (struct elf_link_hash_table
*table
,
1550 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
1551 struct bfd_hash_table
*,
1555 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
1557 table
->dynamic_sections_created
= FALSE
;
1558 table
->dynobj
= NULL
;
1559 table
->init_got_refcount
.refcount
= can_refcount
- 1;
1560 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
1561 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
1562 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
1563 /* The first dynamic symbol is a dummy. */
1564 table
->dynsymcount
= 1;
1565 table
->dynstr
= NULL
;
1566 table
->bucketcount
= 0;
1567 table
->needed
= NULL
;
1569 table
->merge_info
= NULL
;
1570 memset (&table
->stab_info
, 0, sizeof (table
->stab_info
));
1571 memset (&table
->eh_info
, 0, sizeof (table
->eh_info
));
1572 table
->dynlocal
= NULL
;
1573 table
->runpath
= NULL
;
1574 table
->tls_sec
= NULL
;
1575 table
->tls_size
= 0;
1576 table
->loaded
= NULL
;
1577 table
->is_relocatable_executable
= FALSE
;
1579 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
);
1580 table
->root
.type
= bfd_link_elf_hash_table
;
1585 /* Create an ELF linker hash table. */
1587 struct bfd_link_hash_table
*
1588 _bfd_elf_link_hash_table_create (bfd
*abfd
)
1590 struct elf_link_hash_table
*ret
;
1591 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
1593 ret
= bfd_malloc (amt
);
1597 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
))
1606 /* This is a hook for the ELF emulation code in the generic linker to
1607 tell the backend linker what file name to use for the DT_NEEDED
1608 entry for a dynamic object. */
1611 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
1613 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1614 && bfd_get_format (abfd
) == bfd_object
)
1615 elf_dt_name (abfd
) = name
;
1619 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
1622 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1623 && bfd_get_format (abfd
) == bfd_object
)
1624 lib_class
= elf_dyn_lib_class (abfd
);
1631 bfd_elf_set_dyn_lib_class (bfd
*abfd
, int lib_class
)
1633 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1634 && bfd_get_format (abfd
) == bfd_object
)
1635 elf_dyn_lib_class (abfd
) = lib_class
;
1638 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1639 the linker ELF emulation code. */
1641 struct bfd_link_needed_list
*
1642 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1643 struct bfd_link_info
*info
)
1645 if (! is_elf_hash_table (info
->hash
))
1647 return elf_hash_table (info
)->needed
;
1650 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1651 hook for the linker ELF emulation code. */
1653 struct bfd_link_needed_list
*
1654 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
1655 struct bfd_link_info
*info
)
1657 if (! is_elf_hash_table (info
->hash
))
1659 return elf_hash_table (info
)->runpath
;
1662 /* Get the name actually used for a dynamic object for a link. This
1663 is the SONAME entry if there is one. Otherwise, it is the string
1664 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1667 bfd_elf_get_dt_soname (bfd
*abfd
)
1669 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
1670 && bfd_get_format (abfd
) == bfd_object
)
1671 return elf_dt_name (abfd
);
1675 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1676 the ELF linker emulation code. */
1679 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
1680 struct bfd_link_needed_list
**pneeded
)
1683 bfd_byte
*dynbuf
= NULL
;
1685 unsigned long shlink
;
1686 bfd_byte
*extdyn
, *extdynend
;
1688 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
1692 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
1693 || bfd_get_format (abfd
) != bfd_object
)
1696 s
= bfd_get_section_by_name (abfd
, ".dynamic");
1697 if (s
== NULL
|| s
->size
== 0)
1700 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
1703 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
1707 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
1709 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
1710 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
1713 extdynend
= extdyn
+ s
->size
;
1714 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
1716 Elf_Internal_Dyn dyn
;
1718 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
1720 if (dyn
.d_tag
== DT_NULL
)
1723 if (dyn
.d_tag
== DT_NEEDED
)
1726 struct bfd_link_needed_list
*l
;
1727 unsigned int tagv
= dyn
.d_un
.d_val
;
1730 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
1735 l
= bfd_alloc (abfd
, amt
);
1756 /* Allocate an ELF string table--force the first byte to be zero. */
1758 struct bfd_strtab_hash
*
1759 _bfd_elf_stringtab_init (void)
1761 struct bfd_strtab_hash
*ret
;
1763 ret
= _bfd_stringtab_init ();
1768 loc
= _bfd_stringtab_add (ret
, "", TRUE
, FALSE
);
1769 BFD_ASSERT (loc
== 0 || loc
== (bfd_size_type
) -1);
1770 if (loc
== (bfd_size_type
) -1)
1772 _bfd_stringtab_free (ret
);
1779 /* ELF .o/exec file reading */
1781 /* Create a new bfd section from an ELF section header. */
1784 bfd_section_from_shdr (bfd
*abfd
, unsigned int shindex
)
1786 Elf_Internal_Shdr
*hdr
= elf_elfsections (abfd
)[shindex
];
1787 Elf_Internal_Ehdr
*ehdr
= elf_elfheader (abfd
);
1788 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1791 name
= bfd_elf_string_from_elf_section (abfd
,
1792 elf_elfheader (abfd
)->e_shstrndx
,
1797 switch (hdr
->sh_type
)
1800 /* Inactive section. Throw it away. */
1803 case SHT_PROGBITS
: /* Normal section with contents. */
1804 case SHT_NOBITS
: /* .bss section. */
1805 case SHT_HASH
: /* .hash section. */
1806 case SHT_NOTE
: /* .note section. */
1807 case SHT_INIT_ARRAY
: /* .init_array section. */
1808 case SHT_FINI_ARRAY
: /* .fini_array section. */
1809 case SHT_PREINIT_ARRAY
: /* .preinit_array section. */
1810 case SHT_GNU_LIBLIST
: /* .gnu.liblist section. */
1811 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1813 case SHT_DYNAMIC
: /* Dynamic linking information. */
1814 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
1816 if (hdr
->sh_link
> elf_numsections (abfd
)
1817 || elf_elfsections (abfd
)[hdr
->sh_link
] == NULL
)
1819 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_STRTAB
)
1821 Elf_Internal_Shdr
*dynsymhdr
;
1823 /* The shared libraries distributed with hpux11 have a bogus
1824 sh_link field for the ".dynamic" section. Find the
1825 string table for the ".dynsym" section instead. */
1826 if (elf_dynsymtab (abfd
) != 0)
1828 dynsymhdr
= elf_elfsections (abfd
)[elf_dynsymtab (abfd
)];
1829 hdr
->sh_link
= dynsymhdr
->sh_link
;
1833 unsigned int i
, num_sec
;
1835 num_sec
= elf_numsections (abfd
);
1836 for (i
= 1; i
< num_sec
; i
++)
1838 dynsymhdr
= elf_elfsections (abfd
)[i
];
1839 if (dynsymhdr
->sh_type
== SHT_DYNSYM
)
1841 hdr
->sh_link
= dynsymhdr
->sh_link
;
1849 case SHT_SYMTAB
: /* A symbol table */
1850 if (elf_onesymtab (abfd
) == shindex
)
1853 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1855 BFD_ASSERT (elf_onesymtab (abfd
) == 0);
1856 elf_onesymtab (abfd
) = shindex
;
1857 elf_tdata (abfd
)->symtab_hdr
= *hdr
;
1858 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1859 abfd
->flags
|= HAS_SYMS
;
1861 /* Sometimes a shared object will map in the symbol table. If
1862 SHF_ALLOC is set, and this is a shared object, then we also
1863 treat this section as a BFD section. We can not base the
1864 decision purely on SHF_ALLOC, because that flag is sometimes
1865 set in a relocatable object file, which would confuse the
1867 if ((hdr
->sh_flags
& SHF_ALLOC
) != 0
1868 && (abfd
->flags
& DYNAMIC
) != 0
1869 && ! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1873 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1874 can't read symbols without that section loaded as well. It
1875 is most likely specified by the next section header. */
1876 if (elf_elfsections (abfd
)[elf_symtab_shndx (abfd
)]->sh_link
!= shindex
)
1878 unsigned int i
, num_sec
;
1880 num_sec
= elf_numsections (abfd
);
1881 for (i
= shindex
+ 1; i
< num_sec
; i
++)
1883 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1884 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1885 && hdr2
->sh_link
== shindex
)
1889 for (i
= 1; i
< shindex
; i
++)
1891 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1892 if (hdr2
->sh_type
== SHT_SYMTAB_SHNDX
1893 && hdr2
->sh_link
== shindex
)
1897 return bfd_section_from_shdr (abfd
, i
);
1901 case SHT_DYNSYM
: /* A dynamic symbol table */
1902 if (elf_dynsymtab (abfd
) == shindex
)
1905 if (hdr
->sh_entsize
!= bed
->s
->sizeof_sym
)
1907 BFD_ASSERT (elf_dynsymtab (abfd
) == 0);
1908 elf_dynsymtab (abfd
) = shindex
;
1909 elf_tdata (abfd
)->dynsymtab_hdr
= *hdr
;
1910 elf_elfsections (abfd
)[shindex
] = hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
1911 abfd
->flags
|= HAS_SYMS
;
1913 /* Besides being a symbol table, we also treat this as a regular
1914 section, so that objcopy can handle it. */
1915 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1917 case SHT_SYMTAB_SHNDX
: /* Symbol section indices when >64k sections */
1918 if (elf_symtab_shndx (abfd
) == shindex
)
1921 BFD_ASSERT (elf_symtab_shndx (abfd
) == 0);
1922 elf_symtab_shndx (abfd
) = shindex
;
1923 elf_tdata (abfd
)->symtab_shndx_hdr
= *hdr
;
1924 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->symtab_shndx_hdr
;
1927 case SHT_STRTAB
: /* A string table */
1928 if (hdr
->bfd_section
!= NULL
)
1930 if (ehdr
->e_shstrndx
== shindex
)
1932 elf_tdata (abfd
)->shstrtab_hdr
= *hdr
;
1933 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->shstrtab_hdr
;
1936 if (elf_elfsections (abfd
)[elf_onesymtab (abfd
)]->sh_link
== shindex
)
1939 elf_tdata (abfd
)->strtab_hdr
= *hdr
;
1940 elf_elfsections (abfd
)[shindex
] = &elf_tdata (abfd
)->strtab_hdr
;
1943 if (elf_elfsections (abfd
)[elf_dynsymtab (abfd
)]->sh_link
== shindex
)
1946 elf_tdata (abfd
)->dynstrtab_hdr
= *hdr
;
1947 hdr
= &elf_tdata (abfd
)->dynstrtab_hdr
;
1948 elf_elfsections (abfd
)[shindex
] = hdr
;
1949 /* We also treat this as a regular section, so that objcopy
1951 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
1955 /* If the string table isn't one of the above, then treat it as a
1956 regular section. We need to scan all the headers to be sure,
1957 just in case this strtab section appeared before the above. */
1958 if (elf_onesymtab (abfd
) == 0 || elf_dynsymtab (abfd
) == 0)
1960 unsigned int i
, num_sec
;
1962 num_sec
= elf_numsections (abfd
);
1963 for (i
= 1; i
< num_sec
; i
++)
1965 Elf_Internal_Shdr
*hdr2
= elf_elfsections (abfd
)[i
];
1966 if (hdr2
->sh_link
== shindex
)
1968 /* Prevent endless recursion on broken objects. */
1971 if (! bfd_section_from_shdr (abfd
, i
))
1973 if (elf_onesymtab (abfd
) == i
)
1975 if (elf_dynsymtab (abfd
) == i
)
1976 goto dynsymtab_strtab
;
1980 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
1984 /* *These* do a lot of work -- but build no sections! */
1986 asection
*target_sect
;
1987 Elf_Internal_Shdr
*hdr2
;
1988 unsigned int num_sec
= elf_numsections (abfd
);
1991 != (bfd_size_type
) (hdr
->sh_type
== SHT_REL
1992 ? bed
->s
->sizeof_rel
: bed
->s
->sizeof_rela
))
1995 /* Check for a bogus link to avoid crashing. */
1996 if ((hdr
->sh_link
>= SHN_LORESERVE
&& hdr
->sh_link
<= SHN_HIRESERVE
)
1997 || hdr
->sh_link
>= num_sec
)
1999 ((*_bfd_error_handler
)
2000 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2001 abfd
, hdr
->sh_link
, name
, shindex
));
2002 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2006 /* For some incomprehensible reason Oracle distributes
2007 libraries for Solaris in which some of the objects have
2008 bogus sh_link fields. It would be nice if we could just
2009 reject them, but, unfortunately, some people need to use
2010 them. We scan through the section headers; if we find only
2011 one suitable symbol table, we clobber the sh_link to point
2012 to it. I hope this doesn't break anything. */
2013 if (elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_SYMTAB
2014 && elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
!= SHT_DYNSYM
)
2020 for (scan
= 1; scan
< num_sec
; scan
++)
2022 if (elf_elfsections (abfd
)[scan
]->sh_type
== SHT_SYMTAB
2023 || elf_elfsections (abfd
)[scan
]->sh_type
== SHT_DYNSYM
)
2034 hdr
->sh_link
= found
;
2037 /* Get the symbol table. */
2038 if ((elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_SYMTAB
2039 || elf_elfsections (abfd
)[hdr
->sh_link
]->sh_type
== SHT_DYNSYM
)
2040 && ! bfd_section_from_shdr (abfd
, hdr
->sh_link
))
2043 /* If this reloc section does not use the main symbol table we
2044 don't treat it as a reloc section. BFD can't adequately
2045 represent such a section, so at least for now, we don't
2046 try. We just present it as a normal section. We also
2047 can't use it as a reloc section if it points to the null
2048 section, an invalid section, or another reloc section. */
2049 if (hdr
->sh_link
!= elf_onesymtab (abfd
)
2050 || hdr
->sh_info
== SHN_UNDEF
2051 || (hdr
->sh_info
>= SHN_LORESERVE
&& hdr
->sh_info
<= SHN_HIRESERVE
)
2052 || hdr
->sh_info
>= num_sec
2053 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_REL
2054 || elf_elfsections (abfd
)[hdr
->sh_info
]->sh_type
== SHT_RELA
)
2055 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
,
2058 if (! bfd_section_from_shdr (abfd
, hdr
->sh_info
))
2060 target_sect
= bfd_section_from_elf_index (abfd
, hdr
->sh_info
);
2061 if (target_sect
== NULL
)
2064 if ((target_sect
->flags
& SEC_RELOC
) == 0
2065 || target_sect
->reloc_count
== 0)
2066 hdr2
= &elf_section_data (target_sect
)->rel_hdr
;
2070 BFD_ASSERT (elf_section_data (target_sect
)->rel_hdr2
== NULL
);
2071 amt
= sizeof (*hdr2
);
2072 hdr2
= bfd_alloc (abfd
, amt
);
2073 elf_section_data (target_sect
)->rel_hdr2
= hdr2
;
2076 elf_elfsections (abfd
)[shindex
] = hdr2
;
2077 target_sect
->reloc_count
+= NUM_SHDR_ENTRIES (hdr
);
2078 target_sect
->flags
|= SEC_RELOC
;
2079 target_sect
->relocation
= NULL
;
2080 target_sect
->rel_filepos
= hdr
->sh_offset
;
2081 /* In the section to which the relocations apply, mark whether
2082 its relocations are of the REL or RELA variety. */
2083 if (hdr
->sh_size
!= 0)
2084 target_sect
->use_rela_p
= hdr
->sh_type
== SHT_RELA
;
2085 abfd
->flags
|= HAS_RELOC
;
2090 case SHT_GNU_verdef
:
2091 elf_dynverdef (abfd
) = shindex
;
2092 elf_tdata (abfd
)->dynverdef_hdr
= *hdr
;
2093 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2096 case SHT_GNU_versym
:
2097 if (hdr
->sh_entsize
!= sizeof (Elf_External_Versym
))
2099 elf_dynversym (abfd
) = shindex
;
2100 elf_tdata (abfd
)->dynversym_hdr
= *hdr
;
2101 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2104 case SHT_GNU_verneed
:
2105 elf_dynverref (abfd
) = shindex
;
2106 elf_tdata (abfd
)->dynverref_hdr
= *hdr
;
2107 return _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
);
2114 /* We need a BFD section for objcopy and relocatable linking,
2115 and it's handy to have the signature available as the section
2117 if (hdr
->sh_entsize
!= GRP_ENTRY_SIZE
)
2119 name
= group_signature (abfd
, hdr
);
2122 if (!_bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
2124 if (hdr
->contents
!= NULL
)
2126 Elf_Internal_Group
*idx
= (Elf_Internal_Group
*) hdr
->contents
;
2127 unsigned int n_elt
= hdr
->sh_size
/ 4;
2130 if (idx
->flags
& GRP_COMDAT
)
2131 hdr
->bfd_section
->flags
2132 |= SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_DISCARD
;
2134 /* We try to keep the same section order as it comes in. */
2136 while (--n_elt
!= 0)
2137 if ((s
= (--idx
)->shdr
->bfd_section
) != NULL
2138 && elf_next_in_group (s
) != NULL
)
2140 elf_next_in_group (hdr
->bfd_section
) = s
;
2147 /* Check for any processor-specific section types. */
2148 return bed
->elf_backend_section_from_shdr (abfd
, hdr
, name
,
2155 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2156 Return SEC for sections that have no elf section, and NULL on error. */
2159 bfd_section_from_r_symndx (bfd
*abfd
,
2160 struct sym_sec_cache
*cache
,
2162 unsigned long r_symndx
)
2164 Elf_Internal_Shdr
*symtab_hdr
;
2165 unsigned char esym
[sizeof (Elf64_External_Sym
)];
2166 Elf_External_Sym_Shndx eshndx
;
2167 Elf_Internal_Sym isym
;
2168 unsigned int ent
= r_symndx
% LOCAL_SYM_CACHE_SIZE
;
2170 if (cache
->abfd
== abfd
&& cache
->indx
[ent
] == r_symndx
)
2171 return cache
->sec
[ent
];
2173 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2174 if (bfd_elf_get_elf_syms (abfd
, symtab_hdr
, 1, r_symndx
,
2175 &isym
, esym
, &eshndx
) == NULL
)
2178 if (cache
->abfd
!= abfd
)
2180 memset (cache
->indx
, -1, sizeof (cache
->indx
));
2183 cache
->indx
[ent
] = r_symndx
;
2184 cache
->sec
[ent
] = sec
;
2185 if ((isym
.st_shndx
!= SHN_UNDEF
&& isym
.st_shndx
< SHN_LORESERVE
)
2186 || isym
.st_shndx
> SHN_HIRESERVE
)
2189 s
= bfd_section_from_elf_index (abfd
, isym
.st_shndx
);
2191 cache
->sec
[ent
] = s
;
2193 return cache
->sec
[ent
];
2196 /* Given an ELF section number, retrieve the corresponding BFD
2200 bfd_section_from_elf_index (bfd
*abfd
, unsigned int index
)
2202 if (index
>= elf_numsections (abfd
))
2204 return elf_elfsections (abfd
)[index
]->bfd_section
;
2207 static const struct bfd_elf_special_section special_sections_b
[] =
2209 { ".bss", 4, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2210 { NULL
, 0, 0, 0, 0 }
2213 static const struct bfd_elf_special_section special_sections_c
[] =
2215 { ".comment", 8, 0, SHT_PROGBITS
, 0 },
2216 { NULL
, 0, 0, 0, 0 }
2219 static const struct bfd_elf_special_section special_sections_d
[] =
2221 { ".data", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2222 { ".data1", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2223 { ".debug", 6, 0, SHT_PROGBITS
, 0 },
2224 { ".debug_line", 11, 0, SHT_PROGBITS
, 0 },
2225 { ".debug_info", 11, 0, SHT_PROGBITS
, 0 },
2226 { ".debug_abbrev", 13, 0, SHT_PROGBITS
, 0 },
2227 { ".debug_aranges", 14, 0, SHT_PROGBITS
, 0 },
2228 { ".dynamic", 8, 0, SHT_DYNAMIC
, SHF_ALLOC
},
2229 { ".dynstr", 7, 0, SHT_STRTAB
, SHF_ALLOC
},
2230 { ".dynsym", 7, 0, SHT_DYNSYM
, SHF_ALLOC
},
2231 { NULL
, 0, 0, 0, 0 }
2234 static const struct bfd_elf_special_section special_sections_f
[] =
2236 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2237 { ".fini_array", 11, 0, SHT_FINI_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2238 { NULL
, 0, 0, 0, 0 }
2241 static const struct bfd_elf_special_section special_sections_g
[] =
2243 { ".gnu.linkonce.b",15, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
},
2244 { ".got", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2245 { ".gnu.version", 12, 0, SHT_GNU_versym
, 0 },
2246 { ".gnu.version_d", 14, 0, SHT_GNU_verdef
, 0 },
2247 { ".gnu.version_r", 14, 0, SHT_GNU_verneed
, 0 },
2248 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST
, SHF_ALLOC
},
2249 { ".gnu.conflict", 13, 0, SHT_RELA
, SHF_ALLOC
},
2250 { NULL
, 0, 0, 0, 0 }
2253 static const struct bfd_elf_special_section special_sections_h
[] =
2255 { ".hash", 5, 0, SHT_HASH
, SHF_ALLOC
},
2256 { NULL
, 0, 0, 0, 0 }
2259 static const struct bfd_elf_special_section special_sections_i
[] =
2261 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2262 { ".init_array", 11, 0, SHT_INIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2263 { ".interp", 7, 0, SHT_PROGBITS
, 0 },
2264 { NULL
, 0, 0, 0, 0 }
2267 static const struct bfd_elf_special_section special_sections_l
[] =
2269 { ".line", 5, 0, SHT_PROGBITS
, 0 },
2270 { NULL
, 0, 0, 0, 0 }
2273 static const struct bfd_elf_special_section special_sections_n
[] =
2275 { ".note.GNU-stack",15, 0, SHT_PROGBITS
, 0 },
2276 { ".note", 5, -1, SHT_NOTE
, 0 },
2277 { NULL
, 0, 0, 0, 0 }
2280 static const struct bfd_elf_special_section special_sections_p
[] =
2282 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
+ SHF_WRITE
},
2283 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2284 { NULL
, 0, 0, 0, 0 }
2287 static const struct bfd_elf_special_section special_sections_r
[] =
2289 { ".rodata", 7, -2, SHT_PROGBITS
, SHF_ALLOC
},
2290 { ".rodata1", 8, 0, SHT_PROGBITS
, SHF_ALLOC
},
2291 { ".rela", 5, -1, SHT_RELA
, 0 },
2292 { ".rel", 4, -1, SHT_REL
, 0 },
2293 { NULL
, 0, 0, 0, 0 }
2296 static const struct bfd_elf_special_section special_sections_s
[] =
2298 { ".shstrtab", 9, 0, SHT_STRTAB
, 0 },
2299 { ".strtab", 7, 0, SHT_STRTAB
, 0 },
2300 { ".symtab", 7, 0, SHT_SYMTAB
, 0 },
2301 { ".stabstr", 5, 3, SHT_STRTAB
, 0 },
2302 { NULL
, 0, 0, 0, 0 }
2305 static const struct bfd_elf_special_section special_sections_t
[] =
2307 { ".text", 5, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_EXECINSTR
},
2308 { ".tbss", 5, -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2309 { ".tdata", 6, -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_TLS
},
2310 { NULL
, 0, 0, 0, 0 }
2313 static const struct bfd_elf_special_section
*special_sections
[] =
2315 special_sections_b
, /* 'b' */
2316 special_sections_c
, /* 'b' */
2317 special_sections_d
, /* 'd' */
2319 special_sections_f
, /* 'f' */
2320 special_sections_g
, /* 'g' */
2321 special_sections_h
, /* 'h' */
2322 special_sections_i
, /* 'i' */
2325 special_sections_l
, /* 'l' */
2327 special_sections_n
, /* 'n' */
2329 special_sections_p
, /* 'p' */
2331 special_sections_r
, /* 'r' */
2332 special_sections_s
, /* 's' */
2333 special_sections_t
, /* 't' */
2336 const struct bfd_elf_special_section
*
2337 _bfd_elf_get_special_section (const char *name
,
2338 const struct bfd_elf_special_section
*spec
,
2344 len
= strlen (name
);
2346 for (i
= 0; spec
[i
].prefix
!= NULL
; i
++)
2349 int prefix_len
= spec
[i
].prefix_length
;
2351 if (len
< prefix_len
)
2353 if (memcmp (name
, spec
[i
].prefix
, prefix_len
) != 0)
2356 suffix_len
= spec
[i
].suffix_length
;
2357 if (suffix_len
<= 0)
2359 if (name
[prefix_len
] != 0)
2361 if (suffix_len
== 0)
2363 if (name
[prefix_len
] != '.'
2364 && (suffix_len
== -2
2365 || (rela
&& spec
[i
].type
== SHT_REL
)))
2371 if (len
< prefix_len
+ suffix_len
)
2373 if (memcmp (name
+ len
- suffix_len
,
2374 spec
[i
].prefix
+ prefix_len
,
2384 const struct bfd_elf_special_section
*
2385 _bfd_elf_get_sec_type_attr (bfd
*abfd
, asection
*sec
)
2388 const struct bfd_elf_special_section
*spec
;
2389 const struct elf_backend_data
*bed
;
2391 /* See if this is one of the special sections. */
2392 if (sec
->name
== NULL
)
2395 bed
= get_elf_backend_data (abfd
);
2396 spec
= bed
->special_sections
;
2399 spec
= _bfd_elf_get_special_section (sec
->name
,
2400 bed
->special_sections
,
2406 if (sec
->name
[0] != '.')
2409 i
= sec
->name
[1] - 'b';
2410 if (i
< 0 || i
> 't' - 'b')
2413 spec
= special_sections
[i
];
2418 return _bfd_elf_get_special_section (sec
->name
, spec
, sec
->use_rela_p
);
2422 _bfd_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
2424 struct bfd_elf_section_data
*sdata
;
2425 const struct elf_backend_data
*bed
;
2426 const struct bfd_elf_special_section
*ssect
;
2428 sdata
= (struct bfd_elf_section_data
*) sec
->used_by_bfd
;
2431 sdata
= bfd_zalloc (abfd
, sizeof (*sdata
));
2434 sec
->used_by_bfd
= sdata
;
2437 /* Indicate whether or not this section should use RELA relocations. */
2438 bed
= get_elf_backend_data (abfd
);
2439 sec
->use_rela_p
= bed
->default_use_rela_p
;
2441 /* When we read a file, we don't need section type and flags unless
2442 it is a linker created section. They will be overridden in
2443 _bfd_elf_make_section_from_shdr anyway. */
2444 if (abfd
->direction
!= read_direction
2445 || (sec
->flags
& SEC_LINKER_CREATED
) != 0)
2447 ssect
= (*bed
->get_sec_type_attr
) (abfd
, sec
);
2450 elf_section_type (sec
) = ssect
->type
;
2451 elf_section_flags (sec
) = ssect
->attr
;
2458 /* Create a new bfd section from an ELF program header.
2460 Since program segments have no names, we generate a synthetic name
2461 of the form segment<NUM>, where NUM is generally the index in the
2462 program header table. For segments that are split (see below) we
2463 generate the names segment<NUM>a and segment<NUM>b.
2465 Note that some program segments may have a file size that is different than
2466 (less than) the memory size. All this means is that at execution the
2467 system must allocate the amount of memory specified by the memory size,
2468 but only initialize it with the first "file size" bytes read from the
2469 file. This would occur for example, with program segments consisting
2470 of combined data+bss.
2472 To handle the above situation, this routine generates TWO bfd sections
2473 for the single program segment. The first has the length specified by
2474 the file size of the segment, and the second has the length specified
2475 by the difference between the two sizes. In effect, the segment is split
2476 into it's initialized and uninitialized parts.
2481 _bfd_elf_make_section_from_phdr (bfd
*abfd
,
2482 Elf_Internal_Phdr
*hdr
,
2484 const char *typename
)
2492 split
= ((hdr
->p_memsz
> 0)
2493 && (hdr
->p_filesz
> 0)
2494 && (hdr
->p_memsz
> hdr
->p_filesz
));
2495 sprintf (namebuf
, "%s%d%s", typename
, index
, split
? "a" : "");
2496 len
= strlen (namebuf
) + 1;
2497 name
= bfd_alloc (abfd
, len
);
2500 memcpy (name
, namebuf
, len
);
2501 newsect
= bfd_make_section (abfd
, name
);
2502 if (newsect
== NULL
)
2504 newsect
->vma
= hdr
->p_vaddr
;
2505 newsect
->lma
= hdr
->p_paddr
;
2506 newsect
->size
= hdr
->p_filesz
;
2507 newsect
->filepos
= hdr
->p_offset
;
2508 newsect
->flags
|= SEC_HAS_CONTENTS
;
2509 newsect
->alignment_power
= bfd_log2 (hdr
->p_align
);
2510 if (hdr
->p_type
== PT_LOAD
)
2512 newsect
->flags
|= SEC_ALLOC
;
2513 newsect
->flags
|= SEC_LOAD
;
2514 if (hdr
->p_flags
& PF_X
)
2516 /* FIXME: all we known is that it has execute PERMISSION,
2518 newsect
->flags
|= SEC_CODE
;
2521 if (!(hdr
->p_flags
& PF_W
))
2523 newsect
->flags
|= SEC_READONLY
;
2528 sprintf (namebuf
, "%s%db", typename
, index
);
2529 len
= strlen (namebuf
) + 1;
2530 name
= bfd_alloc (abfd
, len
);
2533 memcpy (name
, namebuf
, len
);
2534 newsect
= bfd_make_section (abfd
, name
);
2535 if (newsect
== NULL
)
2537 newsect
->vma
= hdr
->p_vaddr
+ hdr
->p_filesz
;
2538 newsect
->lma
= hdr
->p_paddr
+ hdr
->p_filesz
;
2539 newsect
->size
= hdr
->p_memsz
- hdr
->p_filesz
;
2540 if (hdr
->p_type
== PT_LOAD
)
2542 newsect
->flags
|= SEC_ALLOC
;
2543 if (hdr
->p_flags
& PF_X
)
2544 newsect
->flags
|= SEC_CODE
;
2546 if (!(hdr
->p_flags
& PF_W
))
2547 newsect
->flags
|= SEC_READONLY
;
2554 bfd_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
)
2556 const struct elf_backend_data
*bed
;
2558 switch (hdr
->p_type
)
2561 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "null");
2564 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "load");
2567 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "dynamic");
2570 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "interp");
2573 if (! _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "note"))
2575 if (! elfcore_read_notes (abfd
, hdr
->p_offset
, hdr
->p_filesz
))
2580 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "shlib");
2583 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "phdr");
2585 case PT_GNU_EH_FRAME
:
2586 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
,
2590 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "stack");
2593 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, "relro");
2596 /* Check for any processor-specific program segment types. */
2597 bed
= get_elf_backend_data (abfd
);
2598 return bed
->elf_backend_section_from_phdr (abfd
, hdr
, index
, "proc");
2602 /* Initialize REL_HDR, the section-header for new section, containing
2603 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2604 relocations; otherwise, we use REL relocations. */
2607 _bfd_elf_init_reloc_shdr (bfd
*abfd
,
2608 Elf_Internal_Shdr
*rel_hdr
,
2610 bfd_boolean use_rela_p
)
2613 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2614 bfd_size_type amt
= sizeof ".rela" + strlen (asect
->name
);
2616 name
= bfd_alloc (abfd
, amt
);
2619 sprintf (name
, "%s%s", use_rela_p
? ".rela" : ".rel", asect
->name
);
2621 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
), name
,
2623 if (rel_hdr
->sh_name
== (unsigned int) -1)
2625 rel_hdr
->sh_type
= use_rela_p
? SHT_RELA
: SHT_REL
;
2626 rel_hdr
->sh_entsize
= (use_rela_p
2627 ? bed
->s
->sizeof_rela
2628 : bed
->s
->sizeof_rel
);
2629 rel_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
2630 rel_hdr
->sh_flags
= 0;
2631 rel_hdr
->sh_addr
= 0;
2632 rel_hdr
->sh_size
= 0;
2633 rel_hdr
->sh_offset
= 0;
2638 /* Set up an ELF internal section header for a section. */
2641 elf_fake_sections (bfd
*abfd
, asection
*asect
, void *failedptrarg
)
2643 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2644 bfd_boolean
*failedptr
= failedptrarg
;
2645 Elf_Internal_Shdr
*this_hdr
;
2649 /* We already failed; just get out of the bfd_map_over_sections
2654 this_hdr
= &elf_section_data (asect
)->this_hdr
;
2656 this_hdr
->sh_name
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2657 asect
->name
, FALSE
);
2658 if (this_hdr
->sh_name
== (unsigned int) -1)
2664 /* Don't clear sh_flags. Assembler may set additional bits. */
2666 if ((asect
->flags
& SEC_ALLOC
) != 0
2667 || asect
->user_set_vma
)
2668 this_hdr
->sh_addr
= asect
->vma
;
2670 this_hdr
->sh_addr
= 0;
2672 this_hdr
->sh_offset
= 0;
2673 this_hdr
->sh_size
= asect
->size
;
2674 this_hdr
->sh_link
= 0;
2675 this_hdr
->sh_addralign
= 1 << asect
->alignment_power
;
2676 /* The sh_entsize and sh_info fields may have been set already by
2677 copy_private_section_data. */
2679 this_hdr
->bfd_section
= asect
;
2680 this_hdr
->contents
= NULL
;
2682 /* If the section type is unspecified, we set it based on
2684 if (this_hdr
->sh_type
== SHT_NULL
)
2686 if ((asect
->flags
& SEC_GROUP
) != 0)
2687 this_hdr
->sh_type
= SHT_GROUP
;
2688 else if ((asect
->flags
& SEC_ALLOC
) != 0
2689 && (((asect
->flags
& (SEC_LOAD
| SEC_HAS_CONTENTS
)) == 0)
2690 || (asect
->flags
& SEC_NEVER_LOAD
) != 0))
2691 this_hdr
->sh_type
= SHT_NOBITS
;
2693 this_hdr
->sh_type
= SHT_PROGBITS
;
2696 switch (this_hdr
->sh_type
)
2702 case SHT_INIT_ARRAY
:
2703 case SHT_FINI_ARRAY
:
2704 case SHT_PREINIT_ARRAY
:
2711 this_hdr
->sh_entsize
= bed
->s
->sizeof_hash_entry
;
2715 this_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
2719 this_hdr
->sh_entsize
= bed
->s
->sizeof_dyn
;
2723 if (get_elf_backend_data (abfd
)->may_use_rela_p
)
2724 this_hdr
->sh_entsize
= bed
->s
->sizeof_rela
;
2728 if (get_elf_backend_data (abfd
)->may_use_rel_p
)
2729 this_hdr
->sh_entsize
= bed
->s
->sizeof_rel
;
2732 case SHT_GNU_versym
:
2733 this_hdr
->sh_entsize
= sizeof (Elf_External_Versym
);
2736 case SHT_GNU_verdef
:
2737 this_hdr
->sh_entsize
= 0;
2738 /* objcopy or strip will copy over sh_info, but may not set
2739 cverdefs. The linker will set cverdefs, but sh_info will be
2741 if (this_hdr
->sh_info
== 0)
2742 this_hdr
->sh_info
= elf_tdata (abfd
)->cverdefs
;
2744 BFD_ASSERT (elf_tdata (abfd
)->cverdefs
== 0
2745 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverdefs
);
2748 case SHT_GNU_verneed
:
2749 this_hdr
->sh_entsize
= 0;
2750 /* objcopy or strip will copy over sh_info, but may not set
2751 cverrefs. The linker will set cverrefs, but sh_info will be
2753 if (this_hdr
->sh_info
== 0)
2754 this_hdr
->sh_info
= elf_tdata (abfd
)->cverrefs
;
2756 BFD_ASSERT (elf_tdata (abfd
)->cverrefs
== 0
2757 || this_hdr
->sh_info
== elf_tdata (abfd
)->cverrefs
);
2761 this_hdr
->sh_entsize
= 4;
2765 if ((asect
->flags
& SEC_ALLOC
) != 0)
2766 this_hdr
->sh_flags
|= SHF_ALLOC
;
2767 if ((asect
->flags
& SEC_READONLY
) == 0)
2768 this_hdr
->sh_flags
|= SHF_WRITE
;
2769 if ((asect
->flags
& SEC_CODE
) != 0)
2770 this_hdr
->sh_flags
|= SHF_EXECINSTR
;
2771 if ((asect
->flags
& SEC_MERGE
) != 0)
2773 this_hdr
->sh_flags
|= SHF_MERGE
;
2774 this_hdr
->sh_entsize
= asect
->entsize
;
2775 if ((asect
->flags
& SEC_STRINGS
) != 0)
2776 this_hdr
->sh_flags
|= SHF_STRINGS
;
2778 if ((asect
->flags
& SEC_GROUP
) == 0 && elf_group_name (asect
) != NULL
)
2779 this_hdr
->sh_flags
|= SHF_GROUP
;
2780 if ((asect
->flags
& SEC_THREAD_LOCAL
) != 0)
2782 this_hdr
->sh_flags
|= SHF_TLS
;
2783 if (asect
->size
== 0
2784 && (asect
->flags
& SEC_HAS_CONTENTS
) == 0)
2786 struct bfd_link_order
*o
= asect
->map_tail
.link_order
;
2788 this_hdr
->sh_size
= 0;
2791 this_hdr
->sh_size
= o
->offset
+ o
->size
;
2792 if (this_hdr
->sh_size
!= 0)
2793 this_hdr
->sh_type
= SHT_NOBITS
;
2798 /* Check for processor-specific section types. */
2799 if (bed
->elf_backend_fake_sections
2800 && !(*bed
->elf_backend_fake_sections
) (abfd
, this_hdr
, asect
))
2803 /* If the section has relocs, set up a section header for the
2804 SHT_REL[A] section. If two relocation sections are required for
2805 this section, it is up to the processor-specific back-end to
2806 create the other. */
2807 if ((asect
->flags
& SEC_RELOC
) != 0
2808 && !_bfd_elf_init_reloc_shdr (abfd
,
2809 &elf_section_data (asect
)->rel_hdr
,
2815 /* Fill in the contents of a SHT_GROUP section. */
2818 bfd_elf_set_group_contents (bfd
*abfd
, asection
*sec
, void *failedptrarg
)
2820 bfd_boolean
*failedptr
= failedptrarg
;
2821 unsigned long symindx
;
2822 asection
*elt
, *first
;
2826 /* Ignore linker created group section. See elfNN_ia64_object_p in
2828 if (((sec
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) != SEC_GROUP
)
2833 if (elf_group_id (sec
) != NULL
)
2834 symindx
= elf_group_id (sec
)->udata
.i
;
2838 /* If called from the assembler, swap_out_syms will have set up
2839 elf_section_syms; If called for "ld -r", use target_index. */
2840 if (elf_section_syms (abfd
) != NULL
)
2841 symindx
= elf_section_syms (abfd
)[sec
->index
]->udata
.i
;
2843 symindx
= sec
->target_index
;
2845 elf_section_data (sec
)->this_hdr
.sh_info
= symindx
;
2847 /* The contents won't be allocated for "ld -r" or objcopy. */
2849 if (sec
->contents
== NULL
)
2852 sec
->contents
= bfd_alloc (abfd
, sec
->size
);
2854 /* Arrange for the section to be written out. */
2855 elf_section_data (sec
)->this_hdr
.contents
= sec
->contents
;
2856 if (sec
->contents
== NULL
)
2863 loc
= sec
->contents
+ sec
->size
;
2865 /* Get the pointer to the first section in the group that gas
2866 squirreled away here. objcopy arranges for this to be set to the
2867 start of the input section group. */
2868 first
= elt
= elf_next_in_group (sec
);
2870 /* First element is a flag word. Rest of section is elf section
2871 indices for all the sections of the group. Write them backwards
2872 just to keep the group in the same order as given in .section
2873 directives, not that it matters. */
2882 s
= s
->output_section
;
2885 idx
= elf_section_data (s
)->this_idx
;
2886 H_PUT_32 (abfd
, idx
, loc
);
2887 elt
= elf_next_in_group (elt
);
2892 if ((loc
-= 4) != sec
->contents
)
2895 H_PUT_32 (abfd
, sec
->flags
& SEC_LINK_ONCE
? GRP_COMDAT
: 0, loc
);
2898 /* Assign all ELF section numbers. The dummy first section is handled here
2899 too. The link/info pointers for the standard section types are filled
2900 in here too, while we're at it. */
2903 assign_section_numbers (bfd
*abfd
, struct bfd_link_info
*link_info
)
2905 struct elf_obj_tdata
*t
= elf_tdata (abfd
);
2907 unsigned int section_number
, secn
;
2908 Elf_Internal_Shdr
**i_shdrp
;
2909 struct bfd_elf_section_data
*d
;
2913 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd
));
2915 /* SHT_GROUP sections are in relocatable files only. */
2916 if (link_info
== NULL
|| link_info
->relocatable
)
2918 /* Put SHT_GROUP sections first. */
2919 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2921 d
= elf_section_data (sec
);
2923 if (d
->this_hdr
.sh_type
== SHT_GROUP
)
2925 if (sec
->flags
& SEC_LINKER_CREATED
)
2927 /* Remove the linker created SHT_GROUP sections. */
2928 bfd_section_list_remove (abfd
, sec
);
2929 abfd
->section_count
--;
2933 if (section_number
== SHN_LORESERVE
)
2934 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2935 d
->this_idx
= section_number
++;
2941 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
2943 d
= elf_section_data (sec
);
2945 if (d
->this_hdr
.sh_type
!= SHT_GROUP
)
2947 if (section_number
== SHN_LORESERVE
)
2948 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2949 d
->this_idx
= section_number
++;
2951 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->this_hdr
.sh_name
);
2952 if ((sec
->flags
& SEC_RELOC
) == 0)
2956 if (section_number
== SHN_LORESERVE
)
2957 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2958 d
->rel_idx
= section_number
++;
2959 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr
.sh_name
);
2964 if (section_number
== SHN_LORESERVE
)
2965 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2966 d
->rel_idx2
= section_number
++;
2967 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), d
->rel_hdr2
->sh_name
);
2973 if (section_number
== SHN_LORESERVE
)
2974 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2975 t
->shstrtab_section
= section_number
++;
2976 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->shstrtab_hdr
.sh_name
);
2977 elf_elfheader (abfd
)->e_shstrndx
= t
->shstrtab_section
;
2979 if (bfd_get_symcount (abfd
) > 0)
2981 if (section_number
== SHN_LORESERVE
)
2982 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2983 t
->symtab_section
= section_number
++;
2984 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->symtab_hdr
.sh_name
);
2985 if (section_number
> SHN_LORESERVE
- 2)
2987 if (section_number
== SHN_LORESERVE
)
2988 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2989 t
->symtab_shndx_section
= section_number
++;
2990 t
->symtab_shndx_hdr
.sh_name
2991 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd
),
2992 ".symtab_shndx", FALSE
);
2993 if (t
->symtab_shndx_hdr
.sh_name
== (unsigned int) -1)
2996 if (section_number
== SHN_LORESERVE
)
2997 section_number
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
2998 t
->strtab_section
= section_number
++;
2999 _bfd_elf_strtab_addref (elf_shstrtab (abfd
), t
->strtab_hdr
.sh_name
);
3002 _bfd_elf_strtab_finalize (elf_shstrtab (abfd
));
3003 t
->shstrtab_hdr
.sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3005 elf_numsections (abfd
) = section_number
;
3006 elf_elfheader (abfd
)->e_shnum
= section_number
;
3007 if (section_number
> SHN_LORESERVE
)
3008 elf_elfheader (abfd
)->e_shnum
-= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
3010 /* Set up the list of section header pointers, in agreement with the
3012 i_shdrp
= bfd_zalloc2 (abfd
, section_number
, sizeof (Elf_Internal_Shdr
*));
3013 if (i_shdrp
== NULL
)
3016 i_shdrp
[0] = bfd_zalloc (abfd
, sizeof (Elf_Internal_Shdr
));
3017 if (i_shdrp
[0] == NULL
)
3019 bfd_release (abfd
, i_shdrp
);
3023 elf_elfsections (abfd
) = i_shdrp
;
3025 i_shdrp
[t
->shstrtab_section
] = &t
->shstrtab_hdr
;
3026 if (bfd_get_symcount (abfd
) > 0)
3028 i_shdrp
[t
->symtab_section
] = &t
->symtab_hdr
;
3029 if (elf_numsections (abfd
) > SHN_LORESERVE
)
3031 i_shdrp
[t
->symtab_shndx_section
] = &t
->symtab_shndx_hdr
;
3032 t
->symtab_shndx_hdr
.sh_link
= t
->symtab_section
;
3034 i_shdrp
[t
->strtab_section
] = &t
->strtab_hdr
;
3035 t
->symtab_hdr
.sh_link
= t
->strtab_section
;
3038 for (sec
= abfd
->sections
; sec
; sec
= sec
->next
)
3040 struct bfd_elf_section_data
*d
= elf_section_data (sec
);
3044 i_shdrp
[d
->this_idx
] = &d
->this_hdr
;
3045 if (d
->rel_idx
!= 0)
3046 i_shdrp
[d
->rel_idx
] = &d
->rel_hdr
;
3047 if (d
->rel_idx2
!= 0)
3048 i_shdrp
[d
->rel_idx2
] = d
->rel_hdr2
;
3050 /* Fill in the sh_link and sh_info fields while we're at it. */
3052 /* sh_link of a reloc section is the section index of the symbol
3053 table. sh_info is the section index of the section to which
3054 the relocation entries apply. */
3055 if (d
->rel_idx
!= 0)
3057 d
->rel_hdr
.sh_link
= t
->symtab_section
;
3058 d
->rel_hdr
.sh_info
= d
->this_idx
;
3060 if (d
->rel_idx2
!= 0)
3062 d
->rel_hdr2
->sh_link
= t
->symtab_section
;
3063 d
->rel_hdr2
->sh_info
= d
->this_idx
;
3066 /* We need to set up sh_link for SHF_LINK_ORDER. */
3067 if ((d
->this_hdr
.sh_flags
& SHF_LINK_ORDER
) != 0)
3069 s
= elf_linked_to_section (sec
);
3072 /* elf_linked_to_section points to the input section. */
3073 if (link_info
!= NULL
)
3075 /* Check discarded linkonce section. */
3076 if (elf_discarded_section (s
))
3079 (*_bfd_error_handler
)
3080 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3081 abfd
, d
->this_hdr
.bfd_section
,
3083 /* Point to the kept section if it has the same
3084 size as the discarded one. */
3085 kept
= _bfd_elf_check_kept_section (s
);
3088 bfd_set_error (bfd_error_bad_value
);
3094 s
= s
->output_section
;
3095 BFD_ASSERT (s
!= NULL
);
3099 /* Handle objcopy. */
3100 if (s
->output_section
== NULL
)
3102 (*_bfd_error_handler
)
3103 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3104 abfd
, d
->this_hdr
.bfd_section
, s
, s
->owner
);
3105 bfd_set_error (bfd_error_bad_value
);
3108 s
= s
->output_section
;
3110 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3115 The Intel C compiler generates SHT_IA_64_UNWIND with
3116 SHF_LINK_ORDER. But it doesn't set the sh_link or
3117 sh_info fields. Hence we could get the situation
3119 const struct elf_backend_data
*bed
3120 = get_elf_backend_data (abfd
);
3121 if (bed
->link_order_error_handler
)
3122 bed
->link_order_error_handler
3123 (_("%B: warning: sh_link not set for section `%A'"),
3128 switch (d
->this_hdr
.sh_type
)
3132 /* A reloc section which we are treating as a normal BFD
3133 section. sh_link is the section index of the symbol
3134 table. sh_info is the section index of the section to
3135 which the relocation entries apply. We assume that an
3136 allocated reloc section uses the dynamic symbol table.
3137 FIXME: How can we be sure? */
3138 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3140 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3142 /* We look up the section the relocs apply to by name. */
3144 if (d
->this_hdr
.sh_type
== SHT_REL
)
3148 s
= bfd_get_section_by_name (abfd
, name
);
3150 d
->this_hdr
.sh_info
= elf_section_data (s
)->this_idx
;
3154 /* We assume that a section named .stab*str is a stabs
3155 string section. We look for a section with the same name
3156 but without the trailing ``str'', and set its sh_link
3157 field to point to this section. */
3158 if (strncmp (sec
->name
, ".stab", sizeof ".stab" - 1) == 0
3159 && strcmp (sec
->name
+ strlen (sec
->name
) - 3, "str") == 0)
3164 len
= strlen (sec
->name
);
3165 alc
= bfd_malloc (len
- 2);
3168 memcpy (alc
, sec
->name
, len
- 3);
3169 alc
[len
- 3] = '\0';
3170 s
= bfd_get_section_by_name (abfd
, alc
);
3174 elf_section_data (s
)->this_hdr
.sh_link
= d
->this_idx
;
3176 /* This is a .stab section. */
3177 if (elf_section_data (s
)->this_hdr
.sh_entsize
== 0)
3178 elf_section_data (s
)->this_hdr
.sh_entsize
3179 = 4 + 2 * bfd_get_arch_size (abfd
) / 8;
3186 case SHT_GNU_verneed
:
3187 case SHT_GNU_verdef
:
3188 /* sh_link is the section header index of the string table
3189 used for the dynamic entries, or the symbol table, or the
3191 s
= bfd_get_section_by_name (abfd
, ".dynstr");
3193 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3196 case SHT_GNU_LIBLIST
:
3197 /* sh_link is the section header index of the prelink library
3199 used for the dynamic entries, or the symbol table, or the
3201 s
= bfd_get_section_by_name (abfd
, (sec
->flags
& SEC_ALLOC
)
3202 ? ".dynstr" : ".gnu.libstr");
3204 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3208 case SHT_GNU_versym
:
3209 /* sh_link is the section header index of the symbol table
3210 this hash table or version table is for. */
3211 s
= bfd_get_section_by_name (abfd
, ".dynsym");
3213 d
->this_hdr
.sh_link
= elf_section_data (s
)->this_idx
;
3217 d
->this_hdr
.sh_link
= t
->symtab_section
;
3221 for (secn
= 1; secn
< section_number
; ++secn
)
3222 if (i_shdrp
[secn
] == NULL
)
3223 i_shdrp
[secn
] = i_shdrp
[0];
3225 i_shdrp
[secn
]->sh_name
= _bfd_elf_strtab_offset (elf_shstrtab (abfd
),
3226 i_shdrp
[secn
]->sh_name
);
3230 /* Map symbol from it's internal number to the external number, moving
3231 all local symbols to be at the head of the list. */
3234 sym_is_global (bfd
*abfd
, asymbol
*sym
)
3236 /* If the backend has a special mapping, use it. */
3237 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3238 if (bed
->elf_backend_sym_is_global
)
3239 return (*bed
->elf_backend_sym_is_global
) (abfd
, sym
);
3241 return ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
3242 || bfd_is_und_section (bfd_get_section (sym
))
3243 || bfd_is_com_section (bfd_get_section (sym
)));
3247 elf_map_symbols (bfd
*abfd
)
3249 unsigned int symcount
= bfd_get_symcount (abfd
);
3250 asymbol
**syms
= bfd_get_outsymbols (abfd
);
3251 asymbol
**sect_syms
;
3252 unsigned int num_locals
= 0;
3253 unsigned int num_globals
= 0;
3254 unsigned int num_locals2
= 0;
3255 unsigned int num_globals2
= 0;
3262 fprintf (stderr
, "elf_map_symbols\n");
3266 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3268 if (max_index
< asect
->index
)
3269 max_index
= asect
->index
;
3273 sect_syms
= bfd_zalloc2 (abfd
, max_index
, sizeof (asymbol
*));
3274 if (sect_syms
== NULL
)
3276 elf_section_syms (abfd
) = sect_syms
;
3277 elf_num_section_syms (abfd
) = max_index
;
3279 /* Init sect_syms entries for any section symbols we have already
3280 decided to output. */
3281 for (idx
= 0; idx
< symcount
; idx
++)
3283 asymbol
*sym
= syms
[idx
];
3285 if ((sym
->flags
& BSF_SECTION_SYM
) != 0
3292 if (sec
->owner
!= NULL
)
3294 if (sec
->owner
!= abfd
)
3296 if (sec
->output_offset
!= 0)
3299 sec
= sec
->output_section
;
3301 /* Empty sections in the input files may have had a
3302 section symbol created for them. (See the comment
3303 near the end of _bfd_generic_link_output_symbols in
3304 linker.c). If the linker script discards such
3305 sections then we will reach this point. Since we know
3306 that we cannot avoid this case, we detect it and skip
3307 the abort and the assignment to the sect_syms array.
3308 To reproduce this particular case try running the
3309 linker testsuite test ld-scripts/weak.exp for an ELF
3310 port that uses the generic linker. */
3311 if (sec
->owner
== NULL
)
3314 BFD_ASSERT (sec
->owner
== abfd
);
3316 sect_syms
[sec
->index
] = syms
[idx
];
3321 /* Classify all of the symbols. */
3322 for (idx
= 0; idx
< symcount
; idx
++)
3324 if (!sym_is_global (abfd
, syms
[idx
]))
3330 /* We will be adding a section symbol for each BFD section. Most normal
3331 sections will already have a section symbol in outsymbols, but
3332 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3333 at least in that case. */
3334 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3336 if (sect_syms
[asect
->index
] == NULL
)
3338 if (!sym_is_global (abfd
, asect
->symbol
))
3345 /* Now sort the symbols so the local symbols are first. */
3346 new_syms
= bfd_alloc2 (abfd
, num_locals
+ num_globals
, sizeof (asymbol
*));
3348 if (new_syms
== NULL
)
3351 for (idx
= 0; idx
< symcount
; idx
++)
3353 asymbol
*sym
= syms
[idx
];
3356 if (!sym_is_global (abfd
, sym
))
3359 i
= num_locals
+ num_globals2
++;
3361 sym
->udata
.i
= i
+ 1;
3363 for (asect
= abfd
->sections
; asect
; asect
= asect
->next
)
3365 if (sect_syms
[asect
->index
] == NULL
)
3367 asymbol
*sym
= asect
->symbol
;
3370 sect_syms
[asect
->index
] = sym
;
3371 if (!sym_is_global (abfd
, sym
))
3374 i
= num_locals
+ num_globals2
++;
3376 sym
->udata
.i
= i
+ 1;
3380 bfd_set_symtab (abfd
, new_syms
, num_locals
+ num_globals
);
3382 elf_num_locals (abfd
) = num_locals
;
3383 elf_num_globals (abfd
) = num_globals
;
3387 /* Align to the maximum file alignment that could be required for any
3388 ELF data structure. */
3390 static inline file_ptr
3391 align_file_position (file_ptr off
, int align
)
3393 return (off
+ align
- 1) & ~(align
- 1);
3396 /* Assign a file position to a section, optionally aligning to the
3397 required section alignment. */
3400 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr
*i_shdrp
,
3408 al
= i_shdrp
->sh_addralign
;
3410 offset
= BFD_ALIGN (offset
, al
);
3412 i_shdrp
->sh_offset
= offset
;
3413 if (i_shdrp
->bfd_section
!= NULL
)
3414 i_shdrp
->bfd_section
->filepos
= offset
;
3415 if (i_shdrp
->sh_type
!= SHT_NOBITS
)
3416 offset
+= i_shdrp
->sh_size
;
3420 /* Compute the file positions we are going to put the sections at, and
3421 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3422 is not NULL, this is being called by the ELF backend linker. */
3425 _bfd_elf_compute_section_file_positions (bfd
*abfd
,
3426 struct bfd_link_info
*link_info
)
3428 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
3430 struct bfd_strtab_hash
*strtab
= NULL
;
3431 Elf_Internal_Shdr
*shstrtab_hdr
;
3433 if (abfd
->output_has_begun
)
3436 /* Do any elf backend specific processing first. */
3437 if (bed
->elf_backend_begin_write_processing
)
3438 (*bed
->elf_backend_begin_write_processing
) (abfd
, link_info
);
3440 if (! prep_headers (abfd
))
3443 /* Post process the headers if necessary. */
3444 if (bed
->elf_backend_post_process_headers
)
3445 (*bed
->elf_backend_post_process_headers
) (abfd
, link_info
);
3448 bfd_map_over_sections (abfd
, elf_fake_sections
, &failed
);
3452 if (!assign_section_numbers (abfd
, link_info
))
3455 /* The backend linker builds symbol table information itself. */
3456 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3458 /* Non-zero if doing a relocatable link. */
3459 int relocatable_p
= ! (abfd
->flags
& (EXEC_P
| DYNAMIC
));
3461 if (! swap_out_syms (abfd
, &strtab
, relocatable_p
))
3465 if (link_info
== NULL
)
3467 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
3472 shstrtab_hdr
= &elf_tdata (abfd
)->shstrtab_hdr
;
3473 /* sh_name was set in prep_headers. */
3474 shstrtab_hdr
->sh_type
= SHT_STRTAB
;
3475 shstrtab_hdr
->sh_flags
= 0;
3476 shstrtab_hdr
->sh_addr
= 0;
3477 shstrtab_hdr
->sh_size
= _bfd_elf_strtab_size (elf_shstrtab (abfd
));
3478 shstrtab_hdr
->sh_entsize
= 0;
3479 shstrtab_hdr
->sh_link
= 0;
3480 shstrtab_hdr
->sh_info
= 0;
3481 /* sh_offset is set in assign_file_positions_except_relocs. */
3482 shstrtab_hdr
->sh_addralign
= 1;
3484 if (!assign_file_positions_except_relocs (abfd
, link_info
))
3487 if (link_info
== NULL
&& bfd_get_symcount (abfd
) > 0)
3490 Elf_Internal_Shdr
*hdr
;
3492 off
= elf_tdata (abfd
)->next_file_pos
;
3494 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3495 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3497 hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
3498 if (hdr
->sh_size
!= 0)
3499 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3501 hdr
= &elf_tdata (abfd
)->strtab_hdr
;
3502 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
3504 elf_tdata (abfd
)->next_file_pos
= off
;
3506 /* Now that we know where the .strtab section goes, write it
3508 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
3509 || ! _bfd_stringtab_emit (abfd
, strtab
))
3511 _bfd_stringtab_free (strtab
);
3514 abfd
->output_has_begun
= TRUE
;
3519 /* Create a mapping from a set of sections to a program segment. */
3521 static struct elf_segment_map
*
3522 make_mapping (bfd
*abfd
,
3523 asection
**sections
,
3528 struct elf_segment_map
*m
;
3533 amt
= sizeof (struct elf_segment_map
);
3534 amt
+= (to
- from
- 1) * sizeof (asection
*);
3535 m
= bfd_zalloc (abfd
, amt
);
3539 m
->p_type
= PT_LOAD
;
3540 for (i
= from
, hdrpp
= sections
+ from
; i
< to
; i
++, hdrpp
++)
3541 m
->sections
[i
- from
] = *hdrpp
;
3542 m
->count
= to
- from
;
3544 if (from
== 0 && phdr
)
3546 /* Include the headers in the first PT_LOAD segment. */
3547 m
->includes_filehdr
= 1;
3548 m
->includes_phdrs
= 1;
3554 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3557 struct elf_segment_map
*
3558 _bfd_elf_make_dynamic_segment (bfd
*abfd
, asection
*dynsec
)
3560 struct elf_segment_map
*m
;
3562 m
= bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
3566 m
->p_type
= PT_DYNAMIC
;
3568 m
->sections
[0] = dynsec
;
3573 /* Set up a mapping from BFD sections to program segments. */
3576 map_sections_to_segments (bfd
*abfd
)
3578 asection
**sections
= NULL
;
3582 struct elf_segment_map
*mfirst
;
3583 struct elf_segment_map
**pm
;
3584 struct elf_segment_map
*m
;
3587 unsigned int phdr_index
;
3588 bfd_vma maxpagesize
;
3590 bfd_boolean phdr_in_segment
= TRUE
;
3591 bfd_boolean writable
;
3593 asection
*first_tls
= NULL
;
3594 asection
*dynsec
, *eh_frame_hdr
;
3597 if (elf_tdata (abfd
)->segment_map
!= NULL
)
3600 if (bfd_count_sections (abfd
) == 0)
3603 /* Select the allocated sections, and sort them. */
3605 sections
= bfd_malloc2 (bfd_count_sections (abfd
), sizeof (asection
*));
3606 if (sections
== NULL
)
3610 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3612 if ((s
->flags
& SEC_ALLOC
) != 0)
3618 BFD_ASSERT (i
<= bfd_count_sections (abfd
));
3621 qsort (sections
, (size_t) count
, sizeof (asection
*), elf_sort_sections
);
3623 /* Build the mapping. */
3628 /* If we have a .interp section, then create a PT_PHDR segment for
3629 the program headers and a PT_INTERP segment for the .interp
3631 s
= bfd_get_section_by_name (abfd
, ".interp");
3632 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
3634 amt
= sizeof (struct elf_segment_map
);
3635 m
= bfd_zalloc (abfd
, amt
);
3639 m
->p_type
= PT_PHDR
;
3640 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3641 m
->p_flags
= PF_R
| PF_X
;
3642 m
->p_flags_valid
= 1;
3643 m
->includes_phdrs
= 1;
3648 amt
= sizeof (struct elf_segment_map
);
3649 m
= bfd_zalloc (abfd
, amt
);
3653 m
->p_type
= PT_INTERP
;
3661 /* Look through the sections. We put sections in the same program
3662 segment when the start of the second section can be placed within
3663 a few bytes of the end of the first section. */
3667 maxpagesize
= get_elf_backend_data (abfd
)->maxpagesize
;
3669 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
3671 && (dynsec
->flags
& SEC_LOAD
) == 0)
3674 /* Deal with -Ttext or something similar such that the first section
3675 is not adjacent to the program headers. This is an
3676 approximation, since at this point we don't know exactly how many
3677 program headers we will need. */
3680 bfd_size_type phdr_size
;
3682 phdr_size
= elf_tdata (abfd
)->program_header_size
;
3684 phdr_size
= get_elf_backend_data (abfd
)->s
->sizeof_phdr
;
3685 if ((abfd
->flags
& D_PAGED
) == 0
3686 || sections
[0]->lma
< phdr_size
3687 || sections
[0]->lma
% maxpagesize
< phdr_size
% maxpagesize
)
3688 phdr_in_segment
= FALSE
;
3691 for (i
= 0, hdrpp
= sections
; i
< count
; i
++, hdrpp
++)
3694 bfd_boolean new_segment
;
3698 /* See if this section and the last one will fit in the same
3701 if (last_hdr
== NULL
)
3703 /* If we don't have a segment yet, then we don't need a new
3704 one (we build the last one after this loop). */
3705 new_segment
= FALSE
;
3707 else if (last_hdr
->lma
- last_hdr
->vma
!= hdr
->lma
- hdr
->vma
)
3709 /* If this section has a different relation between the
3710 virtual address and the load address, then we need a new
3714 else if (BFD_ALIGN (last_hdr
->lma
+ last_size
, maxpagesize
)
3715 < BFD_ALIGN (hdr
->lma
, maxpagesize
))
3717 /* If putting this section in this segment would force us to
3718 skip a page in the segment, then we need a new segment. */
3721 else if ((last_hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) == 0
3722 && (hdr
->flags
& (SEC_LOAD
| SEC_THREAD_LOCAL
)) != 0)
3724 /* We don't want to put a loadable section after a
3725 nonloadable section in the same segment.
3726 Consider .tbss sections as loadable for this purpose. */
3729 else if ((abfd
->flags
& D_PAGED
) == 0)
3731 /* If the file is not demand paged, which means that we
3732 don't require the sections to be correctly aligned in the
3733 file, then there is no other reason for a new segment. */
3734 new_segment
= FALSE
;
3737 && (hdr
->flags
& SEC_READONLY
) == 0
3738 && (((last_hdr
->lma
+ last_size
- 1)
3739 & ~(maxpagesize
- 1))
3740 != (hdr
->lma
& ~(maxpagesize
- 1))))
3742 /* We don't want to put a writable section in a read only
3743 segment, unless they are on the same page in memory
3744 anyhow. We already know that the last section does not
3745 bring us past the current section on the page, so the
3746 only case in which the new section is not on the same
3747 page as the previous section is when the previous section
3748 ends precisely on a page boundary. */
3753 /* Otherwise, we can use the same segment. */
3754 new_segment
= FALSE
;
3759 if ((hdr
->flags
& SEC_READONLY
) == 0)
3762 /* .tbss sections effectively have zero size. */
3763 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3764 last_size
= hdr
->size
;
3770 /* We need a new program segment. We must create a new program
3771 header holding all the sections from phdr_index until hdr. */
3773 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3780 if ((hdr
->flags
& SEC_READONLY
) == 0)
3786 /* .tbss sections effectively have zero size. */
3787 if ((hdr
->flags
& (SEC_THREAD_LOCAL
| SEC_LOAD
)) != SEC_THREAD_LOCAL
)
3788 last_size
= hdr
->size
;
3792 phdr_in_segment
= FALSE
;
3795 /* Create a final PT_LOAD program segment. */
3796 if (last_hdr
!= NULL
)
3798 m
= make_mapping (abfd
, sections
, phdr_index
, i
, phdr_in_segment
);
3806 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3809 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
3816 /* For each loadable .note section, add a PT_NOTE segment. We don't
3817 use bfd_get_section_by_name, because if we link together
3818 nonloadable .note sections and loadable .note sections, we will
3819 generate two .note sections in the output file. FIXME: Using
3820 names for section types is bogus anyhow. */
3821 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3823 if ((s
->flags
& SEC_LOAD
) != 0
3824 && strncmp (s
->name
, ".note", 5) == 0)
3826 amt
= sizeof (struct elf_segment_map
);
3827 m
= bfd_zalloc (abfd
, amt
);
3831 m
->p_type
= PT_NOTE
;
3838 if (s
->flags
& SEC_THREAD_LOCAL
)
3846 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3851 amt
= sizeof (struct elf_segment_map
);
3852 amt
+= (tls_count
- 1) * sizeof (asection
*);
3853 m
= bfd_zalloc (abfd
, amt
);
3858 m
->count
= tls_count
;
3859 /* Mandated PF_R. */
3861 m
->p_flags_valid
= 1;
3862 for (i
= 0; i
< tls_count
; ++i
)
3864 BFD_ASSERT (first_tls
->flags
& SEC_THREAD_LOCAL
);
3865 m
->sections
[i
] = first_tls
;
3866 first_tls
= first_tls
->next
;
3873 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3875 eh_frame_hdr
= elf_tdata (abfd
)->eh_frame_hdr
;
3876 if (eh_frame_hdr
!= NULL
3877 && (eh_frame_hdr
->output_section
->flags
& SEC_LOAD
) != 0)
3879 amt
= sizeof (struct elf_segment_map
);
3880 m
= bfd_zalloc (abfd
, amt
);
3884 m
->p_type
= PT_GNU_EH_FRAME
;
3886 m
->sections
[0] = eh_frame_hdr
->output_section
;
3892 if (elf_tdata (abfd
)->stack_flags
)
3894 amt
= sizeof (struct elf_segment_map
);
3895 m
= bfd_zalloc (abfd
, amt
);
3899 m
->p_type
= PT_GNU_STACK
;
3900 m
->p_flags
= elf_tdata (abfd
)->stack_flags
;
3901 m
->p_flags_valid
= 1;
3907 if (elf_tdata (abfd
)->relro
)
3909 amt
= sizeof (struct elf_segment_map
);
3910 m
= bfd_zalloc (abfd
, amt
);
3914 m
->p_type
= PT_GNU_RELRO
;
3916 m
->p_flags_valid
= 1;
3925 elf_tdata (abfd
)->segment_map
= mfirst
;
3929 if (sections
!= NULL
)
3934 /* Sort sections by address. */
3937 elf_sort_sections (const void *arg1
, const void *arg2
)
3939 const asection
*sec1
= *(const asection
**) arg1
;
3940 const asection
*sec2
= *(const asection
**) arg2
;
3941 bfd_size_type size1
, size2
;
3943 /* Sort by LMA first, since this is the address used to
3944 place the section into a segment. */
3945 if (sec1
->lma
< sec2
->lma
)
3947 else if (sec1
->lma
> sec2
->lma
)
3950 /* Then sort by VMA. Normally the LMA and the VMA will be
3951 the same, and this will do nothing. */
3952 if (sec1
->vma
< sec2
->vma
)
3954 else if (sec1
->vma
> sec2
->vma
)
3957 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3959 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3965 /* If the indicies are the same, do not return 0
3966 here, but continue to try the next comparison. */
3967 if (sec1
->target_index
- sec2
->target_index
!= 0)
3968 return sec1
->target_index
- sec2
->target_index
;
3973 else if (TOEND (sec2
))
3978 /* Sort by size, to put zero sized sections
3979 before others at the same address. */
3981 size1
= (sec1
->flags
& SEC_LOAD
) ? sec1
->size
: 0;
3982 size2
= (sec2
->flags
& SEC_LOAD
) ? sec2
->size
: 0;
3989 return sec1
->target_index
- sec2
->target_index
;
3992 /* Ian Lance Taylor writes:
3994 We shouldn't be using % with a negative signed number. That's just
3995 not good. We have to make sure either that the number is not
3996 negative, or that the number has an unsigned type. When the types
3997 are all the same size they wind up as unsigned. When file_ptr is a
3998 larger signed type, the arithmetic winds up as signed long long,
4001 What we're trying to say here is something like ``increase OFF by
4002 the least amount that will cause it to be equal to the VMA modulo
4004 /* In other words, something like:
4006 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4007 off_offset = off % bed->maxpagesize;
4008 if (vma_offset < off_offset)
4009 adjustment = vma_offset + bed->maxpagesize - off_offset;
4011 adjustment = vma_offset - off_offset;
4013 which can can be collapsed into the expression below. */
4016 vma_page_aligned_bias (bfd_vma vma
, ufile_ptr off
, bfd_vma maxpagesize
)
4018 return ((vma
- off
) % maxpagesize
);
4021 /* Assign file positions to the sections based on the mapping from
4022 sections to segments. This function also sets up some fields in
4023 the file header, and writes out the program headers. */
4026 assign_file_positions_for_segments (bfd
*abfd
, struct bfd_link_info
*link_info
)
4028 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4030 struct elf_segment_map
*m
;
4032 Elf_Internal_Phdr
*phdrs
;
4034 bfd_vma filehdr_vaddr
, filehdr_paddr
;
4035 bfd_vma phdrs_vaddr
, phdrs_paddr
;
4036 Elf_Internal_Phdr
*p
;
4038 if (elf_tdata (abfd
)->segment_map
== NULL
)
4040 if (! map_sections_to_segments (abfd
))
4045 /* The placement algorithm assumes that non allocated sections are
4046 not in PT_LOAD segments. We ensure this here by removing such
4047 sections from the segment map. We also remove excluded
4049 for (m
= elf_tdata (abfd
)->segment_map
;
4053 unsigned int new_count
;
4057 for (i
= 0; i
< m
->count
; i
++)
4059 if ((m
->sections
[i
]->flags
& SEC_EXCLUDE
) == 0
4060 && ((m
->sections
[i
]->flags
& SEC_ALLOC
) != 0
4061 || m
->p_type
!= PT_LOAD
))
4064 m
->sections
[new_count
] = m
->sections
[i
];
4070 if (new_count
!= m
->count
)
4071 m
->count
= new_count
;
4075 if (bed
->elf_backend_modify_segment_map
)
4077 if (! (*bed
->elf_backend_modify_segment_map
) (abfd
, link_info
))
4082 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4085 elf_elfheader (abfd
)->e_phoff
= bed
->s
->sizeof_ehdr
;
4086 elf_elfheader (abfd
)->e_phentsize
= bed
->s
->sizeof_phdr
;
4087 elf_elfheader (abfd
)->e_phnum
= count
;
4091 elf_tdata (abfd
)->next_file_pos
= bed
->s
->sizeof_ehdr
;
4095 /* If we already counted the number of program segments, make sure
4096 that we allocated enough space. This happens when SIZEOF_HEADERS
4097 is used in a linker script. */
4098 alloc
= elf_tdata (abfd
)->program_header_size
/ bed
->s
->sizeof_phdr
;
4099 if (alloc
!= 0 && count
> alloc
)
4101 ((*_bfd_error_handler
)
4102 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4103 abfd
, alloc
, count
));
4104 bfd_set_error (bfd_error_bad_value
);
4111 phdrs
= bfd_alloc2 (abfd
, alloc
, sizeof (Elf_Internal_Phdr
));
4115 off
= bed
->s
->sizeof_ehdr
;
4116 off
+= alloc
* bed
->s
->sizeof_phdr
;
4123 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4130 /* If elf_segment_map is not from map_sections_to_segments, the
4131 sections may not be correctly ordered. NOTE: sorting should
4132 not be done to the PT_NOTE section of a corefile, which may
4133 contain several pseudo-sections artificially created by bfd.
4134 Sorting these pseudo-sections breaks things badly. */
4136 && !(elf_elfheader (abfd
)->e_type
== ET_CORE
4137 && m
->p_type
== PT_NOTE
))
4138 qsort (m
->sections
, (size_t) m
->count
, sizeof (asection
*),
4141 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4142 number of sections with contents contributing to both p_filesz
4143 and p_memsz, followed by a number of sections with no contents
4144 that just contribute to p_memsz. In this loop, OFF tracks next
4145 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4146 an adjustment we use for segments that have no file contents
4147 but need zero filled memory allocation. */
4149 p
->p_type
= m
->p_type
;
4150 p
->p_flags
= m
->p_flags
;
4152 if (p
->p_type
== PT_LOAD
4155 bfd_size_type align
;
4157 unsigned int align_power
= 0;
4159 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4161 unsigned int secalign
;
4163 secalign
= bfd_get_section_alignment (abfd
, *secpp
);
4164 if (secalign
> align_power
)
4165 align_power
= secalign
;
4167 align
= (bfd_size_type
) 1 << align_power
;
4169 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> align
)
4170 align
= bed
->maxpagesize
;
4172 adjust
= vma_page_aligned_bias (m
->sections
[0]->vma
, off
, align
);
4175 && !m
->includes_filehdr
4176 && !m
->includes_phdrs
4177 && (ufile_ptr
) off
>= align
)
4179 /* If the first section isn't loadable, the same holds for
4180 any other sections. Since the segment won't need file
4181 space, we can make p_offset overlap some prior segment.
4182 However, .tbss is special. If a segment starts with
4183 .tbss, we need to look at the next section to decide
4184 whether the segment has any loadable sections. */
4186 while ((m
->sections
[i
]->flags
& SEC_LOAD
) == 0)
4188 if ((m
->sections
[i
]->flags
& SEC_THREAD_LOCAL
) == 0
4192 voff
= adjust
- align
;
4198 /* Make sure the .dynamic section is the first section in the
4199 PT_DYNAMIC segment. */
4200 else if (p
->p_type
== PT_DYNAMIC
4202 && strcmp (m
->sections
[0]->name
, ".dynamic") != 0)
4205 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4207 bfd_set_error (bfd_error_bad_value
);
4214 p
->p_vaddr
= m
->sections
[0]->vma
;
4216 if (m
->p_paddr_valid
)
4217 p
->p_paddr
= m
->p_paddr
;
4218 else if (m
->count
== 0)
4221 p
->p_paddr
= m
->sections
[0]->lma
;
4223 if (p
->p_type
== PT_LOAD
4224 && (abfd
->flags
& D_PAGED
) != 0)
4225 p
->p_align
= bed
->maxpagesize
;
4226 else if (m
->count
== 0)
4227 p
->p_align
= 1 << bed
->s
->log_file_align
;
4235 if (m
->includes_filehdr
)
4237 if (! m
->p_flags_valid
)
4240 p
->p_filesz
= bed
->s
->sizeof_ehdr
;
4241 p
->p_memsz
= bed
->s
->sizeof_ehdr
;
4244 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4246 if (p
->p_vaddr
< (bfd_vma
) off
)
4248 (*_bfd_error_handler
)
4249 (_("%B: Not enough room for program headers, try linking with -N"),
4251 bfd_set_error (bfd_error_bad_value
);
4256 if (! m
->p_paddr_valid
)
4259 if (p
->p_type
== PT_LOAD
)
4261 filehdr_vaddr
= p
->p_vaddr
;
4262 filehdr_paddr
= p
->p_paddr
;
4266 if (m
->includes_phdrs
)
4268 if (! m
->p_flags_valid
)
4271 if (m
->includes_filehdr
)
4273 if (p
->p_type
== PT_LOAD
)
4275 phdrs_vaddr
= p
->p_vaddr
+ bed
->s
->sizeof_ehdr
;
4276 phdrs_paddr
= p
->p_paddr
+ bed
->s
->sizeof_ehdr
;
4281 p
->p_offset
= bed
->s
->sizeof_ehdr
;
4285 BFD_ASSERT (p
->p_type
== PT_LOAD
);
4286 p
->p_vaddr
-= off
- p
->p_offset
;
4287 if (! m
->p_paddr_valid
)
4288 p
->p_paddr
-= off
- p
->p_offset
;
4291 if (p
->p_type
== PT_LOAD
)
4293 phdrs_vaddr
= p
->p_vaddr
;
4294 phdrs_paddr
= p
->p_paddr
;
4297 phdrs_vaddr
= bed
->maxpagesize
+ bed
->s
->sizeof_ehdr
;
4300 p
->p_filesz
+= alloc
* bed
->s
->sizeof_phdr
;
4301 p
->p_memsz
+= alloc
* bed
->s
->sizeof_phdr
;
4304 if (p
->p_type
== PT_LOAD
4305 || (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
))
4307 if (! m
->includes_filehdr
&& ! m
->includes_phdrs
)
4308 p
->p_offset
= off
+ voff
;
4313 adjust
= off
- (p
->p_offset
+ p
->p_filesz
);
4314 p
->p_filesz
+= adjust
;
4315 p
->p_memsz
+= adjust
;
4319 for (i
= 0, secpp
= m
->sections
; i
< m
->count
; i
++, secpp
++)
4323 bfd_size_type align
;
4327 align
= 1 << bfd_get_section_alignment (abfd
, sec
);
4329 if (p
->p_type
== PT_LOAD
4330 || p
->p_type
== PT_TLS
)
4332 bfd_signed_vma adjust
;
4334 if ((flags
& SEC_LOAD
) != 0)
4336 adjust
= sec
->lma
- (p
->p_paddr
+ p
->p_filesz
);
4339 (*_bfd_error_handler
)
4340 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4341 abfd
, sec
, (unsigned long) sec
->lma
);
4345 p
->p_filesz
+= adjust
;
4346 p
->p_memsz
+= adjust
;
4348 /* .tbss is special. It doesn't contribute to p_memsz of
4350 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4351 || p
->p_type
== PT_TLS
)
4353 /* The section VMA must equal the file position
4354 modulo the page size. */
4355 bfd_size_type page
= align
;
4356 if ((abfd
->flags
& D_PAGED
) != 0 && bed
->maxpagesize
> page
)
4357 page
= bed
->maxpagesize
;
4358 adjust
= vma_page_aligned_bias (sec
->vma
,
4359 p
->p_vaddr
+ p
->p_memsz
,
4361 p
->p_memsz
+= adjust
;
4365 if (p
->p_type
== PT_NOTE
&& bfd_get_format (abfd
) == bfd_core
)
4367 /* The section at i == 0 is the one that actually contains
4373 p
->p_filesz
= sec
->size
;
4379 /* The rest are fake sections that shouldn't be written. */
4388 if (p
->p_type
== PT_LOAD
)
4391 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4392 1997, and the exact reason for it isn't clear. One
4393 plausible explanation is that it is to work around
4394 a problem we have with linker scripts using data
4395 statements in NOLOAD sections. I don't think it
4396 makes a great deal of sense to have such a section
4397 assigned to a PT_LOAD segment, but apparently
4398 people do this. The data statement results in a
4399 bfd_data_link_order being built, and these need
4400 section contents to write into. Eventually, we get
4401 to _bfd_elf_write_object_contents which writes any
4402 section with contents to the output. Make room
4403 here for the write, so that following segments are
4405 if ((flags
& SEC_LOAD
) != 0
4406 || (flags
& SEC_HAS_CONTENTS
) != 0)
4410 if ((flags
& SEC_LOAD
) != 0)
4412 p
->p_filesz
+= sec
->size
;
4413 p
->p_memsz
+= sec
->size
;
4415 /* PR ld/594: Sections in note segments which are not loaded
4416 contribute to the file size but not the in-memory size. */
4417 else if (p
->p_type
== PT_NOTE
4418 && (flags
& SEC_HAS_CONTENTS
) != 0)
4419 p
->p_filesz
+= sec
->size
;
4421 /* .tbss is special. It doesn't contribute to p_memsz of
4423 else if ((flags
& SEC_THREAD_LOCAL
) == 0
4424 || p
->p_type
== PT_TLS
)
4425 p
->p_memsz
+= sec
->size
;
4427 if (p
->p_type
== PT_TLS
4429 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
4431 struct bfd_link_order
*o
= sec
->map_tail
.link_order
;
4433 p
->p_memsz
+= o
->offset
+ o
->size
;
4436 if (align
> p
->p_align
4437 && (p
->p_type
!= PT_LOAD
|| (abfd
->flags
& D_PAGED
) == 0))
4441 if (! m
->p_flags_valid
)
4444 if ((flags
& SEC_CODE
) != 0)
4446 if ((flags
& SEC_READONLY
) == 0)
4452 /* Now that we have set the section file positions, we can set up
4453 the file positions for the non PT_LOAD segments. */
4454 for (m
= elf_tdata (abfd
)->segment_map
, p
= phdrs
;
4458 if (p
->p_type
!= PT_LOAD
&& m
->count
> 0)
4460 BFD_ASSERT (! m
->includes_filehdr
&& ! m
->includes_phdrs
);
4461 /* If the section has not yet been assigned a file position,
4462 do so now. The ARM BPABI requires that .dynamic section
4463 not be marked SEC_ALLOC because it is not part of any
4464 PT_LOAD segment, so it will not be processed above. */
4465 if (p
->p_type
== PT_DYNAMIC
&& m
->sections
[0]->filepos
== 0)
4468 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4471 while (i_shdrpp
[i
]->bfd_section
!= m
->sections
[0])
4473 off
= (_bfd_elf_assign_file_position_for_section
4474 (i_shdrpp
[i
], off
, TRUE
));
4475 p
->p_filesz
= m
->sections
[0]->size
;
4477 p
->p_offset
= m
->sections
[0]->filepos
;
4481 if (m
->includes_filehdr
)
4483 p
->p_vaddr
= filehdr_vaddr
;
4484 if (! m
->p_paddr_valid
)
4485 p
->p_paddr
= filehdr_paddr
;
4487 else if (m
->includes_phdrs
)
4489 p
->p_vaddr
= phdrs_vaddr
;
4490 if (! m
->p_paddr_valid
)
4491 p
->p_paddr
= phdrs_paddr
;
4493 else if (p
->p_type
== PT_GNU_RELRO
)
4495 Elf_Internal_Phdr
*lp
;
4497 for (lp
= phdrs
; lp
< phdrs
+ count
; ++lp
)
4499 if (lp
->p_type
== PT_LOAD
4500 && lp
->p_vaddr
<= link_info
->relro_end
4501 && lp
->p_vaddr
>= link_info
->relro_start
4502 && lp
->p_vaddr
+ lp
->p_filesz
4503 >= link_info
->relro_end
)
4507 if (lp
< phdrs
+ count
4508 && link_info
->relro_end
> lp
->p_vaddr
)
4510 p
->p_vaddr
= lp
->p_vaddr
;
4511 p
->p_paddr
= lp
->p_paddr
;
4512 p
->p_offset
= lp
->p_offset
;
4513 p
->p_filesz
= link_info
->relro_end
- lp
->p_vaddr
;
4514 p
->p_memsz
= p
->p_filesz
;
4516 p
->p_flags
= (lp
->p_flags
& ~PF_W
);
4520 memset (p
, 0, sizeof *p
);
4521 p
->p_type
= PT_NULL
;
4527 /* Clear out any program headers we allocated but did not use. */
4528 for (; count
< alloc
; count
++, p
++)
4530 memset (p
, 0, sizeof *p
);
4531 p
->p_type
= PT_NULL
;
4534 elf_tdata (abfd
)->phdr
= phdrs
;
4536 elf_tdata (abfd
)->next_file_pos
= off
;
4538 /* Write out the program headers. */
4539 if (bfd_seek (abfd
, (bfd_signed_vma
) bed
->s
->sizeof_ehdr
, SEEK_SET
) != 0
4540 || bed
->s
->write_out_phdrs (abfd
, phdrs
, alloc
) != 0)
4546 /* Get the size of the program header.
4548 If this is called by the linker before any of the section VMA's are set, it
4549 can't calculate the correct value for a strange memory layout. This only
4550 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4551 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4552 data segment (exclusive of .interp and .dynamic).
4554 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4555 will be two segments. */
4557 static bfd_size_type
4558 get_program_header_size (bfd
*abfd
)
4562 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4564 /* We can't return a different result each time we're called. */
4565 if (elf_tdata (abfd
)->program_header_size
!= 0)
4566 return elf_tdata (abfd
)->program_header_size
;
4568 if (elf_tdata (abfd
)->segment_map
!= NULL
)
4570 struct elf_segment_map
*m
;
4573 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
4575 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4576 return elf_tdata (abfd
)->program_header_size
;
4579 /* Assume we will need exactly two PT_LOAD segments: one for text
4580 and one for data. */
4583 s
= bfd_get_section_by_name (abfd
, ".interp");
4584 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
4586 /* If we have a loadable interpreter section, we need a
4587 PT_INTERP segment. In this case, assume we also need a
4588 PT_PHDR segment, although that may not be true for all
4593 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
4595 /* We need a PT_DYNAMIC segment. */
4599 if (elf_tdata (abfd
)->eh_frame_hdr
)
4601 /* We need a PT_GNU_EH_FRAME segment. */
4605 if (elf_tdata (abfd
)->stack_flags
)
4607 /* We need a PT_GNU_STACK segment. */
4611 if (elf_tdata (abfd
)->relro
)
4613 /* We need a PT_GNU_RELRO segment. */
4617 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4619 if ((s
->flags
& SEC_LOAD
) != 0
4620 && strncmp (s
->name
, ".note", 5) == 0)
4622 /* We need a PT_NOTE segment. */
4627 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4629 if (s
->flags
& SEC_THREAD_LOCAL
)
4631 /* We need a PT_TLS segment. */
4637 /* Let the backend count up any program headers it might need. */
4638 if (bed
->elf_backend_additional_program_headers
)
4642 a
= (*bed
->elf_backend_additional_program_headers
) (abfd
);
4648 elf_tdata (abfd
)->program_header_size
= segs
* bed
->s
->sizeof_phdr
;
4649 return elf_tdata (abfd
)->program_header_size
;
4652 /* Work out the file positions of all the sections. This is called by
4653 _bfd_elf_compute_section_file_positions. All the section sizes and
4654 VMAs must be known before this is called.
4656 Reloc sections come in two flavours: Those processed specially as
4657 "side-channel" data attached to a section to which they apply, and
4658 those that bfd doesn't process as relocations. The latter sort are
4659 stored in a normal bfd section by bfd_section_from_shdr. We don't
4660 consider the former sort here, unless they form part of the loadable
4661 image. Reloc sections not assigned here will be handled later by
4662 assign_file_positions_for_relocs.
4664 We also don't set the positions of the .symtab and .strtab here. */
4667 assign_file_positions_except_relocs (bfd
*abfd
,
4668 struct bfd_link_info
*link_info
)
4670 struct elf_obj_tdata
* const tdata
= elf_tdata (abfd
);
4671 Elf_Internal_Ehdr
* const i_ehdrp
= elf_elfheader (abfd
);
4672 Elf_Internal_Shdr
** const i_shdrpp
= elf_elfsections (abfd
);
4673 unsigned int num_sec
= elf_numsections (abfd
);
4675 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4677 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0
4678 && bfd_get_format (abfd
) != bfd_core
)
4680 Elf_Internal_Shdr
**hdrpp
;
4683 /* Start after the ELF header. */
4684 off
= i_ehdrp
->e_ehsize
;
4686 /* We are not creating an executable, which means that we are
4687 not creating a program header, and that the actual order of
4688 the sections in the file is unimportant. */
4689 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4691 Elf_Internal_Shdr
*hdr
;
4694 if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4695 && hdr
->bfd_section
== NULL
)
4696 || i
== tdata
->symtab_section
4697 || i
== tdata
->symtab_shndx_section
4698 || i
== tdata
->strtab_section
)
4700 hdr
->sh_offset
= -1;
4703 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4705 if (i
== SHN_LORESERVE
- 1)
4707 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4708 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4715 Elf_Internal_Shdr
**hdrpp
;
4717 /* Assign file positions for the loaded sections based on the
4718 assignment of sections to segments. */
4719 if (! assign_file_positions_for_segments (abfd
, link_info
))
4722 /* Assign file positions for the other sections. */
4724 off
= elf_tdata (abfd
)->next_file_pos
;
4725 for (i
= 1, hdrpp
= i_shdrpp
+ 1; i
< num_sec
; i
++, hdrpp
++)
4727 Elf_Internal_Shdr
*hdr
;
4730 if (hdr
->bfd_section
!= NULL
4731 && hdr
->bfd_section
->filepos
!= 0)
4732 hdr
->sh_offset
= hdr
->bfd_section
->filepos
;
4733 else if ((hdr
->sh_flags
& SHF_ALLOC
) != 0)
4735 ((*_bfd_error_handler
)
4736 (_("%B: warning: allocated section `%s' not in segment"),
4738 (hdr
->bfd_section
== NULL
4740 : hdr
->bfd_section
->name
)));
4741 if ((abfd
->flags
& D_PAGED
) != 0)
4742 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4745 off
+= vma_page_aligned_bias (hdr
->sh_addr
, off
,
4747 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
,
4750 else if (((hdr
->sh_type
== SHT_REL
|| hdr
->sh_type
== SHT_RELA
)
4751 && hdr
->bfd_section
== NULL
)
4752 || hdr
== i_shdrpp
[tdata
->symtab_section
]
4753 || hdr
== i_shdrpp
[tdata
->symtab_shndx_section
]
4754 || hdr
== i_shdrpp
[tdata
->strtab_section
])
4755 hdr
->sh_offset
= -1;
4757 off
= _bfd_elf_assign_file_position_for_section (hdr
, off
, TRUE
);
4759 if (i
== SHN_LORESERVE
- 1)
4761 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4762 hdrpp
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4767 /* Place the section headers. */
4768 off
= align_file_position (off
, 1 << bed
->s
->log_file_align
);
4769 i_ehdrp
->e_shoff
= off
;
4770 off
+= i_ehdrp
->e_shnum
* i_ehdrp
->e_shentsize
;
4772 elf_tdata (abfd
)->next_file_pos
= off
;
4778 prep_headers (bfd
*abfd
)
4780 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
4781 Elf_Internal_Phdr
*i_phdrp
= 0; /* Program header table, internal form */
4782 Elf_Internal_Shdr
**i_shdrp
; /* Section header table, internal form */
4783 struct elf_strtab_hash
*shstrtab
;
4784 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4786 i_ehdrp
= elf_elfheader (abfd
);
4787 i_shdrp
= elf_elfsections (abfd
);
4789 shstrtab
= _bfd_elf_strtab_init ();
4790 if (shstrtab
== NULL
)
4793 elf_shstrtab (abfd
) = shstrtab
;
4795 i_ehdrp
->e_ident
[EI_MAG0
] = ELFMAG0
;
4796 i_ehdrp
->e_ident
[EI_MAG1
] = ELFMAG1
;
4797 i_ehdrp
->e_ident
[EI_MAG2
] = ELFMAG2
;
4798 i_ehdrp
->e_ident
[EI_MAG3
] = ELFMAG3
;
4800 i_ehdrp
->e_ident
[EI_CLASS
] = bed
->s
->elfclass
;
4801 i_ehdrp
->e_ident
[EI_DATA
] =
4802 bfd_big_endian (abfd
) ? ELFDATA2MSB
: ELFDATA2LSB
;
4803 i_ehdrp
->e_ident
[EI_VERSION
] = bed
->s
->ev_current
;
4805 if ((abfd
->flags
& DYNAMIC
) != 0)
4806 i_ehdrp
->e_type
= ET_DYN
;
4807 else if ((abfd
->flags
& EXEC_P
) != 0)
4808 i_ehdrp
->e_type
= ET_EXEC
;
4809 else if (bfd_get_format (abfd
) == bfd_core
)
4810 i_ehdrp
->e_type
= ET_CORE
;
4812 i_ehdrp
->e_type
= ET_REL
;
4814 switch (bfd_get_arch (abfd
))
4816 case bfd_arch_unknown
:
4817 i_ehdrp
->e_machine
= EM_NONE
;
4820 /* There used to be a long list of cases here, each one setting
4821 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4822 in the corresponding bfd definition. To avoid duplication,
4823 the switch was removed. Machines that need special handling
4824 can generally do it in elf_backend_final_write_processing(),
4825 unless they need the information earlier than the final write.
4826 Such need can generally be supplied by replacing the tests for
4827 e_machine with the conditions used to determine it. */
4829 i_ehdrp
->e_machine
= bed
->elf_machine_code
;
4832 i_ehdrp
->e_version
= bed
->s
->ev_current
;
4833 i_ehdrp
->e_ehsize
= bed
->s
->sizeof_ehdr
;
4835 /* No program header, for now. */
4836 i_ehdrp
->e_phoff
= 0;
4837 i_ehdrp
->e_phentsize
= 0;
4838 i_ehdrp
->e_phnum
= 0;
4840 /* Each bfd section is section header entry. */
4841 i_ehdrp
->e_entry
= bfd_get_start_address (abfd
);
4842 i_ehdrp
->e_shentsize
= bed
->s
->sizeof_shdr
;
4844 /* If we're building an executable, we'll need a program header table. */
4845 if (abfd
->flags
& EXEC_P
)
4846 /* It all happens later. */
4850 i_ehdrp
->e_phentsize
= 0;
4852 i_ehdrp
->e_phoff
= 0;
4855 elf_tdata (abfd
)->symtab_hdr
.sh_name
=
4856 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".symtab", FALSE
);
4857 elf_tdata (abfd
)->strtab_hdr
.sh_name
=
4858 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".strtab", FALSE
);
4859 elf_tdata (abfd
)->shstrtab_hdr
.sh_name
=
4860 (unsigned int) _bfd_elf_strtab_add (shstrtab
, ".shstrtab", FALSE
);
4861 if (elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4862 || elf_tdata (abfd
)->symtab_hdr
.sh_name
== (unsigned int) -1
4863 || elf_tdata (abfd
)->shstrtab_hdr
.sh_name
== (unsigned int) -1)
4869 /* Assign file positions for all the reloc sections which are not part
4870 of the loadable file image. */
4873 _bfd_elf_assign_file_positions_for_relocs (bfd
*abfd
)
4876 unsigned int i
, num_sec
;
4877 Elf_Internal_Shdr
**shdrpp
;
4879 off
= elf_tdata (abfd
)->next_file_pos
;
4881 num_sec
= elf_numsections (abfd
);
4882 for (i
= 1, shdrpp
= elf_elfsections (abfd
) + 1; i
< num_sec
; i
++, shdrpp
++)
4884 Elf_Internal_Shdr
*shdrp
;
4887 if ((shdrp
->sh_type
== SHT_REL
|| shdrp
->sh_type
== SHT_RELA
)
4888 && shdrp
->sh_offset
== -1)
4889 off
= _bfd_elf_assign_file_position_for_section (shdrp
, off
, TRUE
);
4892 elf_tdata (abfd
)->next_file_pos
= off
;
4896 _bfd_elf_write_object_contents (bfd
*abfd
)
4898 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
4899 Elf_Internal_Ehdr
*i_ehdrp
;
4900 Elf_Internal_Shdr
**i_shdrp
;
4902 unsigned int count
, num_sec
;
4904 if (! abfd
->output_has_begun
4905 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
4908 i_shdrp
= elf_elfsections (abfd
);
4909 i_ehdrp
= elf_elfheader (abfd
);
4912 bfd_map_over_sections (abfd
, bed
->s
->write_relocs
, &failed
);
4916 _bfd_elf_assign_file_positions_for_relocs (abfd
);
4918 /* After writing the headers, we need to write the sections too... */
4919 num_sec
= elf_numsections (abfd
);
4920 for (count
= 1; count
< num_sec
; count
++)
4922 if (bed
->elf_backend_section_processing
)
4923 (*bed
->elf_backend_section_processing
) (abfd
, i_shdrp
[count
]);
4924 if (i_shdrp
[count
]->contents
)
4926 bfd_size_type amt
= i_shdrp
[count
]->sh_size
;
4928 if (bfd_seek (abfd
, i_shdrp
[count
]->sh_offset
, SEEK_SET
) != 0
4929 || bfd_bwrite (i_shdrp
[count
]->contents
, amt
, abfd
) != amt
)
4932 if (count
== SHN_LORESERVE
- 1)
4933 count
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
4936 /* Write out the section header names. */
4937 if (elf_shstrtab (abfd
) != NULL
4938 && (bfd_seek (abfd
, elf_tdata (abfd
)->shstrtab_hdr
.sh_offset
, SEEK_SET
) != 0
4939 || ! _bfd_elf_strtab_emit (abfd
, elf_shstrtab (abfd
))))
4942 if (bed
->elf_backend_final_write_processing
)
4943 (*bed
->elf_backend_final_write_processing
) (abfd
,
4944 elf_tdata (abfd
)->linker
);
4946 return bed
->s
->write_shdrs_and_ehdr (abfd
);
4950 _bfd_elf_write_corefile_contents (bfd
*abfd
)
4952 /* Hopefully this can be done just like an object file. */
4953 return _bfd_elf_write_object_contents (abfd
);
4956 /* Given a section, search the header to find them. */
4959 _bfd_elf_section_from_bfd_section (bfd
*abfd
, struct bfd_section
*asect
)
4961 const struct elf_backend_data
*bed
;
4964 if (elf_section_data (asect
) != NULL
4965 && elf_section_data (asect
)->this_idx
!= 0)
4966 return elf_section_data (asect
)->this_idx
;
4968 if (bfd_is_abs_section (asect
))
4970 else if (bfd_is_com_section (asect
))
4972 else if (bfd_is_und_section (asect
))
4977 bed
= get_elf_backend_data (abfd
);
4978 if (bed
->elf_backend_section_from_bfd_section
)
4982 if ((*bed
->elf_backend_section_from_bfd_section
) (abfd
, asect
, &retval
))
4987 bfd_set_error (bfd_error_nonrepresentable_section
);
4992 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4996 _bfd_elf_symbol_from_bfd_symbol (bfd
*abfd
, asymbol
**asym_ptr_ptr
)
4998 asymbol
*asym_ptr
= *asym_ptr_ptr
;
5000 flagword flags
= asym_ptr
->flags
;
5002 /* When gas creates relocations against local labels, it creates its
5003 own symbol for the section, but does put the symbol into the
5004 symbol chain, so udata is 0. When the linker is generating
5005 relocatable output, this section symbol may be for one of the
5006 input sections rather than the output section. */
5007 if (asym_ptr
->udata
.i
== 0
5008 && (flags
& BSF_SECTION_SYM
)
5009 && asym_ptr
->section
)
5013 if (asym_ptr
->section
->output_section
!= NULL
)
5014 indx
= asym_ptr
->section
->output_section
->index
;
5016 indx
= asym_ptr
->section
->index
;
5017 if (indx
< elf_num_section_syms (abfd
)
5018 && elf_section_syms (abfd
)[indx
] != NULL
)
5019 asym_ptr
->udata
.i
= elf_section_syms (abfd
)[indx
]->udata
.i
;
5022 idx
= asym_ptr
->udata
.i
;
5026 /* This case can occur when using --strip-symbol on a symbol
5027 which is used in a relocation entry. */
5028 (*_bfd_error_handler
)
5029 (_("%B: symbol `%s' required but not present"),
5030 abfd
, bfd_asymbol_name (asym_ptr
));
5031 bfd_set_error (bfd_error_no_symbols
);
5038 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5039 (long) asym_ptr
, asym_ptr
->name
, idx
, flags
,
5040 elf_symbol_flags (flags
));
5048 /* Rewrite program header information. */
5051 rewrite_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5053 Elf_Internal_Ehdr
*iehdr
;
5054 struct elf_segment_map
*map
;
5055 struct elf_segment_map
*map_first
;
5056 struct elf_segment_map
**pointer_to_map
;
5057 Elf_Internal_Phdr
*segment
;
5060 unsigned int num_segments
;
5061 bfd_boolean phdr_included
= FALSE
;
5062 bfd_vma maxpagesize
;
5063 struct elf_segment_map
*phdr_adjust_seg
= NULL
;
5064 unsigned int phdr_adjust_num
= 0;
5065 const struct elf_backend_data
*bed
;
5067 bed
= get_elf_backend_data (ibfd
);
5068 iehdr
= elf_elfheader (ibfd
);
5071 pointer_to_map
= &map_first
;
5073 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5074 maxpagesize
= get_elf_backend_data (obfd
)->maxpagesize
;
5076 /* Returns the end address of the segment + 1. */
5077 #define SEGMENT_END(segment, start) \
5078 (start + (segment->p_memsz > segment->p_filesz \
5079 ? segment->p_memsz : segment->p_filesz))
5081 #define SECTION_SIZE(section, segment) \
5082 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5083 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5084 ? section->size : 0)
5086 /* Returns TRUE if the given section is contained within
5087 the given segment. VMA addresses are compared. */
5088 #define IS_CONTAINED_BY_VMA(section, segment) \
5089 (section->vma >= segment->p_vaddr \
5090 && (section->vma + SECTION_SIZE (section, segment) \
5091 <= (SEGMENT_END (segment, segment->p_vaddr))))
5093 /* Returns TRUE if the given section is contained within
5094 the given segment. LMA addresses are compared. */
5095 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5096 (section->lma >= base \
5097 && (section->lma + SECTION_SIZE (section, segment) \
5098 <= SEGMENT_END (segment, base)))
5100 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5101 #define IS_COREFILE_NOTE(p, s) \
5102 (p->p_type == PT_NOTE \
5103 && bfd_get_format (ibfd) == bfd_core \
5104 && s->vma == 0 && s->lma == 0 \
5105 && (bfd_vma) s->filepos >= p->p_offset \
5106 && ((bfd_vma) s->filepos + s->size \
5107 <= p->p_offset + p->p_filesz))
5109 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5110 linker, which generates a PT_INTERP section with p_vaddr and
5111 p_memsz set to 0. */
5112 #define IS_SOLARIS_PT_INTERP(p, s) \
5114 && p->p_paddr == 0 \
5115 && p->p_memsz == 0 \
5116 && p->p_filesz > 0 \
5117 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5119 && (bfd_vma) s->filepos >= p->p_offset \
5120 && ((bfd_vma) s->filepos + s->size \
5121 <= p->p_offset + p->p_filesz))
5123 /* Decide if the given section should be included in the given segment.
5124 A section will be included if:
5125 1. It is within the address space of the segment -- we use the LMA
5126 if that is set for the segment and the VMA otherwise,
5127 2. It is an allocated segment,
5128 3. There is an output section associated with it,
5129 4. The section has not already been allocated to a previous segment.
5130 5. PT_GNU_STACK segments do not include any sections.
5131 6. PT_TLS segment includes only SHF_TLS sections.
5132 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5133 8. PT_DYNAMIC should not contain empty sections at the beginning
5134 (with the possible exception of .dynamic). */
5135 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5136 ((((segment->p_paddr \
5137 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5138 : IS_CONTAINED_BY_VMA (section, segment)) \
5139 && (section->flags & SEC_ALLOC) != 0) \
5140 || IS_COREFILE_NOTE (segment, section)) \
5141 && section->output_section != NULL \
5142 && segment->p_type != PT_GNU_STACK \
5143 && (segment->p_type != PT_TLS \
5144 || (section->flags & SEC_THREAD_LOCAL)) \
5145 && (segment->p_type == PT_LOAD \
5146 || segment->p_type == PT_TLS \
5147 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5148 && (segment->p_type != PT_DYNAMIC \
5149 || SECTION_SIZE (section, segment) > 0 \
5150 || (segment->p_paddr \
5151 ? segment->p_paddr != section->lma \
5152 : segment->p_vaddr != section->vma) \
5153 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5155 && ! section->segment_mark)
5157 /* Returns TRUE iff seg1 starts after the end of seg2. */
5158 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5159 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5161 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5162 their VMA address ranges and their LMA address ranges overlap.
5163 It is possible to have overlapping VMA ranges without overlapping LMA
5164 ranges. RedBoot images for example can have both .data and .bss mapped
5165 to the same VMA range, but with the .data section mapped to a different
5167 #define SEGMENT_OVERLAPS(seg1, seg2) \
5168 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5169 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5170 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5171 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5173 /* Initialise the segment mark field. */
5174 for (section
= ibfd
->sections
; section
!= NULL
; section
= section
->next
)
5175 section
->segment_mark
= FALSE
;
5177 /* Scan through the segments specified in the program header
5178 of the input BFD. For this first scan we look for overlaps
5179 in the loadable segments. These can be created by weird
5180 parameters to objcopy. Also, fix some solaris weirdness. */
5181 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5186 Elf_Internal_Phdr
*segment2
;
5188 if (segment
->p_type
== PT_INTERP
)
5189 for (section
= ibfd
->sections
; section
; section
= section
->next
)
5190 if (IS_SOLARIS_PT_INTERP (segment
, section
))
5192 /* Mininal change so that the normal section to segment
5193 assignment code will work. */
5194 segment
->p_vaddr
= section
->vma
;
5198 if (segment
->p_type
!= PT_LOAD
)
5201 /* Determine if this segment overlaps any previous segments. */
5202 for (j
= 0, segment2
= elf_tdata (ibfd
)->phdr
; j
< i
; j
++, segment2
++)
5204 bfd_signed_vma extra_length
;
5206 if (segment2
->p_type
!= PT_LOAD
5207 || ! SEGMENT_OVERLAPS (segment
, segment2
))
5210 /* Merge the two segments together. */
5211 if (segment2
->p_vaddr
< segment
->p_vaddr
)
5213 /* Extend SEGMENT2 to include SEGMENT and then delete
5216 SEGMENT_END (segment
, segment
->p_vaddr
)
5217 - SEGMENT_END (segment2
, segment2
->p_vaddr
);
5219 if (extra_length
> 0)
5221 segment2
->p_memsz
+= extra_length
;
5222 segment2
->p_filesz
+= extra_length
;
5225 segment
->p_type
= PT_NULL
;
5227 /* Since we have deleted P we must restart the outer loop. */
5229 segment
= elf_tdata (ibfd
)->phdr
;
5234 /* Extend SEGMENT to include SEGMENT2 and then delete
5237 SEGMENT_END (segment2
, segment2
->p_vaddr
)
5238 - SEGMENT_END (segment
, segment
->p_vaddr
);
5240 if (extra_length
> 0)
5242 segment
->p_memsz
+= extra_length
;
5243 segment
->p_filesz
+= extra_length
;
5246 segment2
->p_type
= PT_NULL
;
5251 /* The second scan attempts to assign sections to segments. */
5252 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5256 unsigned int section_count
;
5257 asection
** sections
;
5258 asection
* output_section
;
5260 bfd_vma matching_lma
;
5261 bfd_vma suggested_lma
;
5265 if (segment
->p_type
== PT_NULL
)
5268 /* Compute how many sections might be placed into this segment. */
5269 for (section
= ibfd
->sections
, section_count
= 0;
5271 section
= section
->next
)
5272 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5275 /* Allocate a segment map big enough to contain
5276 all of the sections we have selected. */
5277 amt
= sizeof (struct elf_segment_map
);
5278 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5279 map
= bfd_alloc (obfd
, amt
);
5283 /* Initialise the fields of the segment map. Default to
5284 using the physical address of the segment in the input BFD. */
5286 map
->p_type
= segment
->p_type
;
5287 map
->p_flags
= segment
->p_flags
;
5288 map
->p_flags_valid
= 1;
5289 map
->p_paddr
= segment
->p_paddr
;
5290 map
->p_paddr_valid
= 1;
5292 /* Determine if this segment contains the ELF file header
5293 and if it contains the program headers themselves. */
5294 map
->includes_filehdr
= (segment
->p_offset
== 0
5295 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5297 map
->includes_phdrs
= 0;
5299 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5301 map
->includes_phdrs
=
5302 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5303 && (segment
->p_offset
+ segment
->p_filesz
5304 >= ((bfd_vma
) iehdr
->e_phoff
5305 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5307 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5308 phdr_included
= TRUE
;
5311 if (section_count
== 0)
5313 /* Special segments, such as the PT_PHDR segment, may contain
5314 no sections, but ordinary, loadable segments should contain
5315 something. They are allowed by the ELF spec however, so only
5316 a warning is produced. */
5317 if (segment
->p_type
== PT_LOAD
)
5318 (*_bfd_error_handler
)
5319 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5323 *pointer_to_map
= map
;
5324 pointer_to_map
= &map
->next
;
5329 /* Now scan the sections in the input BFD again and attempt
5330 to add their corresponding output sections to the segment map.
5331 The problem here is how to handle an output section which has
5332 been moved (ie had its LMA changed). There are four possibilities:
5334 1. None of the sections have been moved.
5335 In this case we can continue to use the segment LMA from the
5338 2. All of the sections have been moved by the same amount.
5339 In this case we can change the segment's LMA to match the LMA
5340 of the first section.
5342 3. Some of the sections have been moved, others have not.
5343 In this case those sections which have not been moved can be
5344 placed in the current segment which will have to have its size,
5345 and possibly its LMA changed, and a new segment or segments will
5346 have to be created to contain the other sections.
5348 4. The sections have been moved, but not by the same amount.
5349 In this case we can change the segment's LMA to match the LMA
5350 of the first section and we will have to create a new segment
5351 or segments to contain the other sections.
5353 In order to save time, we allocate an array to hold the section
5354 pointers that we are interested in. As these sections get assigned
5355 to a segment, they are removed from this array. */
5357 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5358 to work around this long long bug. */
5359 sections
= bfd_malloc2 (section_count
, sizeof (asection
*));
5360 if (sections
== NULL
)
5363 /* Step One: Scan for segment vs section LMA conflicts.
5364 Also add the sections to the section array allocated above.
5365 Also add the sections to the current segment. In the common
5366 case, where the sections have not been moved, this means that
5367 we have completely filled the segment, and there is nothing
5373 for (j
= 0, section
= ibfd
->sections
;
5375 section
= section
->next
)
5377 if (INCLUDE_SECTION_IN_SEGMENT (section
, segment
, bed
))
5379 output_section
= section
->output_section
;
5381 sections
[j
++] = section
;
5383 /* The Solaris native linker always sets p_paddr to 0.
5384 We try to catch that case here, and set it to the
5385 correct value. Note - some backends require that
5386 p_paddr be left as zero. */
5387 if (segment
->p_paddr
== 0
5388 && segment
->p_vaddr
!= 0
5389 && (! bed
->want_p_paddr_set_to_zero
)
5391 && output_section
->lma
!= 0
5392 && (output_section
->vma
== (segment
->p_vaddr
5393 + (map
->includes_filehdr
5396 + (map
->includes_phdrs
5398 * iehdr
->e_phentsize
)
5400 map
->p_paddr
= segment
->p_vaddr
;
5402 /* Match up the physical address of the segment with the
5403 LMA address of the output section. */
5404 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5405 || IS_COREFILE_NOTE (segment
, section
)
5406 || (bed
->want_p_paddr_set_to_zero
&&
5407 IS_CONTAINED_BY_VMA (output_section
, segment
))
5410 if (matching_lma
== 0)
5411 matching_lma
= output_section
->lma
;
5413 /* We assume that if the section fits within the segment
5414 then it does not overlap any other section within that
5416 map
->sections
[isec
++] = output_section
;
5418 else if (suggested_lma
== 0)
5419 suggested_lma
= output_section
->lma
;
5423 BFD_ASSERT (j
== section_count
);
5425 /* Step Two: Adjust the physical address of the current segment,
5427 if (isec
== section_count
)
5429 /* All of the sections fitted within the segment as currently
5430 specified. This is the default case. Add the segment to
5431 the list of built segments and carry on to process the next
5432 program header in the input BFD. */
5433 map
->count
= section_count
;
5434 *pointer_to_map
= map
;
5435 pointer_to_map
= &map
->next
;
5442 if (matching_lma
!= 0)
5444 /* At least one section fits inside the current segment.
5445 Keep it, but modify its physical address to match the
5446 LMA of the first section that fitted. */
5447 map
->p_paddr
= matching_lma
;
5451 /* None of the sections fitted inside the current segment.
5452 Change the current segment's physical address to match
5453 the LMA of the first section. */
5454 map
->p_paddr
= suggested_lma
;
5457 /* Offset the segment physical address from the lma
5458 to allow for space taken up by elf headers. */
5459 if (map
->includes_filehdr
)
5460 map
->p_paddr
-= iehdr
->e_ehsize
;
5462 if (map
->includes_phdrs
)
5464 map
->p_paddr
-= iehdr
->e_phnum
* iehdr
->e_phentsize
;
5466 /* iehdr->e_phnum is just an estimate of the number
5467 of program headers that we will need. Make a note
5468 here of the number we used and the segment we chose
5469 to hold these headers, so that we can adjust the
5470 offset when we know the correct value. */
5471 phdr_adjust_num
= iehdr
->e_phnum
;
5472 phdr_adjust_seg
= map
;
5476 /* Step Three: Loop over the sections again, this time assigning
5477 those that fit to the current segment and removing them from the
5478 sections array; but making sure not to leave large gaps. Once all
5479 possible sections have been assigned to the current segment it is
5480 added to the list of built segments and if sections still remain
5481 to be assigned, a new segment is constructed before repeating
5489 /* Fill the current segment with sections that fit. */
5490 for (j
= 0; j
< section_count
; j
++)
5492 section
= sections
[j
];
5494 if (section
== NULL
)
5497 output_section
= section
->output_section
;
5499 BFD_ASSERT (output_section
!= NULL
);
5501 if (IS_CONTAINED_BY_LMA (output_section
, segment
, map
->p_paddr
)
5502 || IS_COREFILE_NOTE (segment
, section
))
5504 if (map
->count
== 0)
5506 /* If the first section in a segment does not start at
5507 the beginning of the segment, then something is
5509 if (output_section
->lma
!=
5511 + (map
->includes_filehdr
? iehdr
->e_ehsize
: 0)
5512 + (map
->includes_phdrs
5513 ? iehdr
->e_phnum
* iehdr
->e_phentsize
5519 asection
* prev_sec
;
5521 prev_sec
= map
->sections
[map
->count
- 1];
5523 /* If the gap between the end of the previous section
5524 and the start of this section is more than
5525 maxpagesize then we need to start a new segment. */
5526 if ((BFD_ALIGN (prev_sec
->lma
+ prev_sec
->size
,
5528 < BFD_ALIGN (output_section
->lma
, maxpagesize
))
5529 || ((prev_sec
->lma
+ prev_sec
->size
)
5530 > output_section
->lma
))
5532 if (suggested_lma
== 0)
5533 suggested_lma
= output_section
->lma
;
5539 map
->sections
[map
->count
++] = output_section
;
5542 section
->segment_mark
= TRUE
;
5544 else if (suggested_lma
== 0)
5545 suggested_lma
= output_section
->lma
;
5548 BFD_ASSERT (map
->count
> 0);
5550 /* Add the current segment to the list of built segments. */
5551 *pointer_to_map
= map
;
5552 pointer_to_map
= &map
->next
;
5554 if (isec
< section_count
)
5556 /* We still have not allocated all of the sections to
5557 segments. Create a new segment here, initialise it
5558 and carry on looping. */
5559 amt
= sizeof (struct elf_segment_map
);
5560 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5561 map
= bfd_alloc (obfd
, amt
);
5568 /* Initialise the fields of the segment map. Set the physical
5569 physical address to the LMA of the first section that has
5570 not yet been assigned. */
5572 map
->p_type
= segment
->p_type
;
5573 map
->p_flags
= segment
->p_flags
;
5574 map
->p_flags_valid
= 1;
5575 map
->p_paddr
= suggested_lma
;
5576 map
->p_paddr_valid
= 1;
5577 map
->includes_filehdr
= 0;
5578 map
->includes_phdrs
= 0;
5581 while (isec
< section_count
);
5586 /* The Solaris linker creates program headers in which all the
5587 p_paddr fields are zero. When we try to objcopy or strip such a
5588 file, we get confused. Check for this case, and if we find it
5589 reset the p_paddr_valid fields. */
5590 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5591 if (map
->p_paddr
!= 0)
5594 for (map
= map_first
; map
!= NULL
; map
= map
->next
)
5595 map
->p_paddr_valid
= 0;
5597 elf_tdata (obfd
)->segment_map
= map_first
;
5599 /* If we had to estimate the number of program headers that were
5600 going to be needed, then check our estimate now and adjust
5601 the offset if necessary. */
5602 if (phdr_adjust_seg
!= NULL
)
5606 for (count
= 0, map
= map_first
; map
!= NULL
; map
= map
->next
)
5609 if (count
> phdr_adjust_num
)
5610 phdr_adjust_seg
->p_paddr
5611 -= (count
- phdr_adjust_num
) * iehdr
->e_phentsize
;
5616 #undef IS_CONTAINED_BY_VMA
5617 #undef IS_CONTAINED_BY_LMA
5618 #undef IS_COREFILE_NOTE
5619 #undef IS_SOLARIS_PT_INTERP
5620 #undef INCLUDE_SECTION_IN_SEGMENT
5621 #undef SEGMENT_AFTER_SEGMENT
5622 #undef SEGMENT_OVERLAPS
5626 /* Copy ELF program header information. */
5629 copy_elf_program_header (bfd
*ibfd
, bfd
*obfd
)
5631 Elf_Internal_Ehdr
*iehdr
;
5632 struct elf_segment_map
*map
;
5633 struct elf_segment_map
*map_first
;
5634 struct elf_segment_map
**pointer_to_map
;
5635 Elf_Internal_Phdr
*segment
;
5637 unsigned int num_segments
;
5638 bfd_boolean phdr_included
= FALSE
;
5640 iehdr
= elf_elfheader (ibfd
);
5643 pointer_to_map
= &map_first
;
5645 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5646 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5651 unsigned int section_count
;
5653 Elf_Internal_Shdr
*this_hdr
;
5655 /* FIXME: Do we need to copy PT_NULL segment? */
5656 if (segment
->p_type
== PT_NULL
)
5659 /* Compute how many sections are in this segment. */
5660 for (section
= ibfd
->sections
, section_count
= 0;
5662 section
= section
->next
)
5664 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5665 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5669 /* Allocate a segment map big enough to contain
5670 all of the sections we have selected. */
5671 amt
= sizeof (struct elf_segment_map
);
5672 if (section_count
!= 0)
5673 amt
+= ((bfd_size_type
) section_count
- 1) * sizeof (asection
*);
5674 map
= bfd_alloc (obfd
, amt
);
5678 /* Initialize the fields of the output segment map with the
5681 map
->p_type
= segment
->p_type
;
5682 map
->p_flags
= segment
->p_flags
;
5683 map
->p_flags_valid
= 1;
5684 map
->p_paddr
= segment
->p_paddr
;
5685 map
->p_paddr_valid
= 1;
5687 /* Determine if this segment contains the ELF file header
5688 and if it contains the program headers themselves. */
5689 map
->includes_filehdr
= (segment
->p_offset
== 0
5690 && segment
->p_filesz
>= iehdr
->e_ehsize
);
5692 map
->includes_phdrs
= 0;
5693 if (! phdr_included
|| segment
->p_type
!= PT_LOAD
)
5695 map
->includes_phdrs
=
5696 (segment
->p_offset
<= (bfd_vma
) iehdr
->e_phoff
5697 && (segment
->p_offset
+ segment
->p_filesz
5698 >= ((bfd_vma
) iehdr
->e_phoff
5699 + iehdr
->e_phnum
* iehdr
->e_phentsize
)));
5701 if (segment
->p_type
== PT_LOAD
&& map
->includes_phdrs
)
5702 phdr_included
= TRUE
;
5705 if (section_count
!= 0)
5707 unsigned int isec
= 0;
5709 for (section
= ibfd
->sections
;
5711 section
= section
->next
)
5713 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5714 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5715 map
->sections
[isec
++] = section
->output_section
;
5719 map
->count
= section_count
;
5720 *pointer_to_map
= map
;
5721 pointer_to_map
= &map
->next
;
5724 elf_tdata (obfd
)->segment_map
= map_first
;
5728 /* Copy private BFD data. This copies or rewrites ELF program header
5732 copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
5734 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5735 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5738 if (elf_tdata (ibfd
)->phdr
== NULL
)
5741 if (ibfd
->xvec
== obfd
->xvec
)
5743 /* Check if any sections in the input BFD covered by ELF program
5744 header are changed. */
5745 Elf_Internal_Phdr
*segment
;
5746 asection
*section
, *osec
;
5747 unsigned int i
, num_segments
;
5748 Elf_Internal_Shdr
*this_hdr
;
5750 /* Initialize the segment mark field. */
5751 for (section
= obfd
->sections
; section
!= NULL
;
5752 section
= section
->next
)
5753 section
->segment_mark
= FALSE
;
5755 num_segments
= elf_elfheader (ibfd
)->e_phnum
;
5756 for (i
= 0, segment
= elf_tdata (ibfd
)->phdr
;
5760 for (section
= ibfd
->sections
;
5761 section
!= NULL
; section
= section
->next
)
5763 /* We mark the output section so that we know it comes
5764 from the input BFD. */
5765 osec
= section
->output_section
;
5767 osec
->segment_mark
= TRUE
;
5769 /* Check if this section is covered by the segment. */
5770 this_hdr
= &(elf_section_data(section
)->this_hdr
);
5771 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr
, segment
))
5773 /* FIXME: Check if its output section is changed or
5774 removed. What else do we need to check? */
5776 || section
->flags
!= osec
->flags
5777 || section
->lma
!= osec
->lma
5778 || section
->vma
!= osec
->vma
5779 || section
->size
!= osec
->size
5780 || section
->rawsize
!= osec
->rawsize
5781 || section
->alignment_power
!= osec
->alignment_power
)
5787 /* Check to see if any output section doesn't come from the
5789 for (section
= obfd
->sections
; section
!= NULL
;
5790 section
= section
->next
)
5792 if (section
->segment_mark
== FALSE
)
5795 section
->segment_mark
= FALSE
;
5798 return copy_elf_program_header (ibfd
, obfd
);
5802 return rewrite_elf_program_header (ibfd
, obfd
);
5805 /* Initialize private output section information from input section. */
5808 _bfd_elf_init_private_section_data (bfd
*ibfd
,
5812 struct bfd_link_info
*link_info
)
5815 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5816 bfd_boolean need_group
= link_info
== NULL
|| link_info
->relocatable
;
5818 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5819 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5822 /* FIXME: What if the output ELF section type has been set to
5823 something different? */
5824 if (elf_section_type (osec
) == SHT_NULL
)
5825 elf_section_type (osec
) = elf_section_type (isec
);
5827 /* Set things up for objcopy and relocatable link. The output
5828 SHT_GROUP section will have its elf_next_in_group pointing back
5829 to the input group members. Ignore linker created group section.
5830 See elfNN_ia64_object_p in elfxx-ia64.c. */
5834 if (elf_sec_group (isec
) == NULL
5835 || (elf_sec_group (isec
)->flags
& SEC_LINKER_CREATED
) == 0)
5837 if (elf_section_flags (isec
) & SHF_GROUP
)
5838 elf_section_flags (osec
) |= SHF_GROUP
;
5839 elf_next_in_group (osec
) = elf_next_in_group (isec
);
5840 elf_group_name (osec
) = elf_group_name (isec
);
5844 ihdr
= &elf_section_data (isec
)->this_hdr
;
5846 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5847 don't use the output section of the linked-to section since it
5848 may be NULL at this point. */
5849 if ((ihdr
->sh_flags
& SHF_LINK_ORDER
) != 0)
5851 ohdr
= &elf_section_data (osec
)->this_hdr
;
5852 ohdr
->sh_flags
|= SHF_LINK_ORDER
;
5853 elf_linked_to_section (osec
) = elf_linked_to_section (isec
);
5856 osec
->use_rela_p
= isec
->use_rela_p
;
5861 /* Copy private section information. This copies over the entsize
5862 field, and sometimes the info field. */
5865 _bfd_elf_copy_private_section_data (bfd
*ibfd
,
5870 Elf_Internal_Shdr
*ihdr
, *ohdr
;
5872 if (ibfd
->xvec
->flavour
!= bfd_target_elf_flavour
5873 || obfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
5876 ihdr
= &elf_section_data (isec
)->this_hdr
;
5877 ohdr
= &elf_section_data (osec
)->this_hdr
;
5879 ohdr
->sh_entsize
= ihdr
->sh_entsize
;
5881 if (ihdr
->sh_type
== SHT_SYMTAB
5882 || ihdr
->sh_type
== SHT_DYNSYM
5883 || ihdr
->sh_type
== SHT_GNU_verneed
5884 || ihdr
->sh_type
== SHT_GNU_verdef
)
5885 ohdr
->sh_info
= ihdr
->sh_info
;
5887 return _bfd_elf_init_private_section_data (ibfd
, isec
, obfd
, osec
,
5891 /* Copy private header information. */
5894 _bfd_elf_copy_private_header_data (bfd
*ibfd
, bfd
*obfd
)
5896 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5897 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5900 /* Copy over private BFD data if it has not already been copied.
5901 This must be done here, rather than in the copy_private_bfd_data
5902 entry point, because the latter is called after the section
5903 contents have been set, which means that the program headers have
5904 already been worked out. */
5905 if (elf_tdata (obfd
)->segment_map
== NULL
&& elf_tdata (ibfd
)->phdr
!= NULL
)
5907 if (! copy_private_bfd_data (ibfd
, obfd
))
5914 /* Copy private symbol information. If this symbol is in a section
5915 which we did not map into a BFD section, try to map the section
5916 index correctly. We use special macro definitions for the mapped
5917 section indices; these definitions are interpreted by the
5918 swap_out_syms function. */
5920 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5921 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5922 #define MAP_STRTAB (SHN_HIOS + 3)
5923 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5924 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5927 _bfd_elf_copy_private_symbol_data (bfd
*ibfd
,
5932 elf_symbol_type
*isym
, *osym
;
5934 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
5935 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
5938 isym
= elf_symbol_from (ibfd
, isymarg
);
5939 osym
= elf_symbol_from (obfd
, osymarg
);
5943 && bfd_is_abs_section (isym
->symbol
.section
))
5947 shndx
= isym
->internal_elf_sym
.st_shndx
;
5948 if (shndx
== elf_onesymtab (ibfd
))
5949 shndx
= MAP_ONESYMTAB
;
5950 else if (shndx
== elf_dynsymtab (ibfd
))
5951 shndx
= MAP_DYNSYMTAB
;
5952 else if (shndx
== elf_tdata (ibfd
)->strtab_section
)
5954 else if (shndx
== elf_tdata (ibfd
)->shstrtab_section
)
5955 shndx
= MAP_SHSTRTAB
;
5956 else if (shndx
== elf_tdata (ibfd
)->symtab_shndx_section
)
5957 shndx
= MAP_SYM_SHNDX
;
5958 osym
->internal_elf_sym
.st_shndx
= shndx
;
5964 /* Swap out the symbols. */
5967 swap_out_syms (bfd
*abfd
,
5968 struct bfd_strtab_hash
**sttp
,
5971 const struct elf_backend_data
*bed
;
5974 struct bfd_strtab_hash
*stt
;
5975 Elf_Internal_Shdr
*symtab_hdr
;
5976 Elf_Internal_Shdr
*symtab_shndx_hdr
;
5977 Elf_Internal_Shdr
*symstrtab_hdr
;
5978 bfd_byte
*outbound_syms
;
5979 bfd_byte
*outbound_shndx
;
5982 bfd_boolean name_local_sections
;
5984 if (!elf_map_symbols (abfd
))
5987 /* Dump out the symtabs. */
5988 stt
= _bfd_elf_stringtab_init ();
5992 bed
= get_elf_backend_data (abfd
);
5993 symcount
= bfd_get_symcount (abfd
);
5994 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
5995 symtab_hdr
->sh_type
= SHT_SYMTAB
;
5996 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
5997 symtab_hdr
->sh_size
= symtab_hdr
->sh_entsize
* (symcount
+ 1);
5998 symtab_hdr
->sh_info
= elf_num_locals (abfd
) + 1;
5999 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
6001 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
6002 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6004 outbound_syms
= bfd_alloc2 (abfd
, 1 + symcount
, bed
->s
->sizeof_sym
);
6005 if (outbound_syms
== NULL
)
6007 _bfd_stringtab_free (stt
);
6010 symtab_hdr
->contents
= outbound_syms
;
6012 outbound_shndx
= NULL
;
6013 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
6014 if (symtab_shndx_hdr
->sh_name
!= 0)
6016 amt
= (bfd_size_type
) (1 + symcount
) * sizeof (Elf_External_Sym_Shndx
);
6017 outbound_shndx
= bfd_zalloc2 (abfd
, 1 + symcount
,
6018 sizeof (Elf_External_Sym_Shndx
));
6019 if (outbound_shndx
== NULL
)
6021 _bfd_stringtab_free (stt
);
6025 symtab_shndx_hdr
->contents
= outbound_shndx
;
6026 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
6027 symtab_shndx_hdr
->sh_size
= amt
;
6028 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
6029 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
6032 /* Now generate the data (for "contents"). */
6034 /* Fill in zeroth symbol and swap it out. */
6035 Elf_Internal_Sym sym
;
6041 sym
.st_shndx
= SHN_UNDEF
;
6042 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6043 outbound_syms
+= bed
->s
->sizeof_sym
;
6044 if (outbound_shndx
!= NULL
)
6045 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6049 = (bed
->elf_backend_name_local_section_symbols
6050 && bed
->elf_backend_name_local_section_symbols (abfd
));
6052 syms
= bfd_get_outsymbols (abfd
);
6053 for (idx
= 0; idx
< symcount
; idx
++)
6055 Elf_Internal_Sym sym
;
6056 bfd_vma value
= syms
[idx
]->value
;
6057 elf_symbol_type
*type_ptr
;
6058 flagword flags
= syms
[idx
]->flags
;
6061 if (!name_local_sections
6062 && (flags
& (BSF_SECTION_SYM
| BSF_GLOBAL
)) == BSF_SECTION_SYM
)
6064 /* Local section symbols have no name. */
6069 sym
.st_name
= (unsigned long) _bfd_stringtab_add (stt
,
6072 if (sym
.st_name
== (unsigned long) -1)
6074 _bfd_stringtab_free (stt
);
6079 type_ptr
= elf_symbol_from (abfd
, syms
[idx
]);
6081 if ((flags
& BSF_SECTION_SYM
) == 0
6082 && bfd_is_com_section (syms
[idx
]->section
))
6084 /* ELF common symbols put the alignment into the `value' field,
6085 and the size into the `size' field. This is backwards from
6086 how BFD handles it, so reverse it here. */
6087 sym
.st_size
= value
;
6088 if (type_ptr
== NULL
6089 || type_ptr
->internal_elf_sym
.st_value
== 0)
6090 sym
.st_value
= value
>= 16 ? 16 : (1 << bfd_log2 (value
));
6092 sym
.st_value
= type_ptr
->internal_elf_sym
.st_value
;
6093 sym
.st_shndx
= _bfd_elf_section_from_bfd_section
6094 (abfd
, syms
[idx
]->section
);
6098 asection
*sec
= syms
[idx
]->section
;
6101 if (sec
->output_section
)
6103 value
+= sec
->output_offset
;
6104 sec
= sec
->output_section
;
6107 /* Don't add in the section vma for relocatable output. */
6108 if (! relocatable_p
)
6110 sym
.st_value
= value
;
6111 sym
.st_size
= type_ptr
? type_ptr
->internal_elf_sym
.st_size
: 0;
6113 if (bfd_is_abs_section (sec
)
6115 && type_ptr
->internal_elf_sym
.st_shndx
!= 0)
6117 /* This symbol is in a real ELF section which we did
6118 not create as a BFD section. Undo the mapping done
6119 by copy_private_symbol_data. */
6120 shndx
= type_ptr
->internal_elf_sym
.st_shndx
;
6124 shndx
= elf_onesymtab (abfd
);
6127 shndx
= elf_dynsymtab (abfd
);
6130 shndx
= elf_tdata (abfd
)->strtab_section
;
6133 shndx
= elf_tdata (abfd
)->shstrtab_section
;
6136 shndx
= elf_tdata (abfd
)->symtab_shndx_section
;
6144 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
6150 /* Writing this would be a hell of a lot easier if
6151 we had some decent documentation on bfd, and
6152 knew what to expect of the library, and what to
6153 demand of applications. For example, it
6154 appears that `objcopy' might not set the
6155 section of a symbol to be a section that is
6156 actually in the output file. */
6157 sec2
= bfd_get_section_by_name (abfd
, sec
->name
);
6160 _bfd_error_handler (_("\
6161 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6162 syms
[idx
]->name
? syms
[idx
]->name
: "<Local sym>",
6164 bfd_set_error (bfd_error_invalid_operation
);
6165 _bfd_stringtab_free (stt
);
6169 shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec2
);
6170 BFD_ASSERT (shndx
!= -1);
6174 sym
.st_shndx
= shndx
;
6177 if ((flags
& BSF_THREAD_LOCAL
) != 0)
6179 else if ((flags
& BSF_FUNCTION
) != 0)
6181 else if ((flags
& BSF_OBJECT
) != 0)
6186 if (syms
[idx
]->section
->flags
& SEC_THREAD_LOCAL
)
6189 /* Processor-specific types. */
6190 if (type_ptr
!= NULL
6191 && bed
->elf_backend_get_symbol_type
)
6192 type
= ((*bed
->elf_backend_get_symbol_type
)
6193 (&type_ptr
->internal_elf_sym
, type
));
6195 if (flags
& BSF_SECTION_SYM
)
6197 if (flags
& BSF_GLOBAL
)
6198 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
6200 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
6202 else if (bfd_is_com_section (syms
[idx
]->section
))
6203 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, type
);
6204 else if (bfd_is_und_section (syms
[idx
]->section
))
6205 sym
.st_info
= ELF_ST_INFO (((flags
& BSF_WEAK
)
6209 else if (flags
& BSF_FILE
)
6210 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
6213 int bind
= STB_LOCAL
;
6215 if (flags
& BSF_LOCAL
)
6217 else if (flags
& BSF_WEAK
)
6219 else if (flags
& BSF_GLOBAL
)
6222 sym
.st_info
= ELF_ST_INFO (bind
, type
);
6225 if (type_ptr
!= NULL
)
6226 sym
.st_other
= type_ptr
->internal_elf_sym
.st_other
;
6230 bed
->s
->swap_symbol_out (abfd
, &sym
, outbound_syms
, outbound_shndx
);
6231 outbound_syms
+= bed
->s
->sizeof_sym
;
6232 if (outbound_shndx
!= NULL
)
6233 outbound_shndx
+= sizeof (Elf_External_Sym_Shndx
);
6237 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (stt
);
6238 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
6240 symstrtab_hdr
->sh_flags
= 0;
6241 symstrtab_hdr
->sh_addr
= 0;
6242 symstrtab_hdr
->sh_entsize
= 0;
6243 symstrtab_hdr
->sh_link
= 0;
6244 symstrtab_hdr
->sh_info
= 0;
6245 symstrtab_hdr
->sh_addralign
= 1;
6250 /* Return the number of bytes required to hold the symtab vector.
6252 Note that we base it on the count plus 1, since we will null terminate
6253 the vector allocated based on this size. However, the ELF symbol table
6254 always has a dummy entry as symbol #0, so it ends up even. */
6257 _bfd_elf_get_symtab_upper_bound (bfd
*abfd
)
6261 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->symtab_hdr
;
6263 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6264 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6266 symtab_size
-= sizeof (asymbol
*);
6272 _bfd_elf_get_dynamic_symtab_upper_bound (bfd
*abfd
)
6276 Elf_Internal_Shdr
*hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
6278 if (elf_dynsymtab (abfd
) == 0)
6280 bfd_set_error (bfd_error_invalid_operation
);
6284 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
6285 symtab_size
= (symcount
+ 1) * (sizeof (asymbol
*));
6287 symtab_size
-= sizeof (asymbol
*);
6293 _bfd_elf_get_reloc_upper_bound (bfd
*abfd ATTRIBUTE_UNUSED
,
6296 return (asect
->reloc_count
+ 1) * sizeof (arelent
*);
6299 /* Canonicalize the relocs. */
6302 _bfd_elf_canonicalize_reloc (bfd
*abfd
,
6309 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6311 if (! bed
->s
->slurp_reloc_table (abfd
, section
, symbols
, FALSE
))
6314 tblptr
= section
->relocation
;
6315 for (i
= 0; i
< section
->reloc_count
; i
++)
6316 *relptr
++ = tblptr
++;
6320 return section
->reloc_count
;
6324 _bfd_elf_canonicalize_symtab (bfd
*abfd
, asymbol
**allocation
)
6326 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6327 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, FALSE
);
6330 bfd_get_symcount (abfd
) = symcount
;
6335 _bfd_elf_canonicalize_dynamic_symtab (bfd
*abfd
,
6336 asymbol
**allocation
)
6338 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
6339 long symcount
= bed
->s
->slurp_symbol_table (abfd
, allocation
, TRUE
);
6342 bfd_get_dynamic_symcount (abfd
) = symcount
;
6346 /* Return the size required for the dynamic reloc entries. Any loadable
6347 section that was actually installed in the BFD, and has type SHT_REL
6348 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6349 dynamic reloc section. */
6352 _bfd_elf_get_dynamic_reloc_upper_bound (bfd
*abfd
)
6357 if (elf_dynsymtab (abfd
) == 0)
6359 bfd_set_error (bfd_error_invalid_operation
);
6363 ret
= sizeof (arelent
*);
6364 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6365 if ((s
->flags
& SEC_LOAD
) != 0
6366 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6367 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6368 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6369 ret
+= ((s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
)
6370 * sizeof (arelent
*));
6375 /* Canonicalize the dynamic relocation entries. Note that we return the
6376 dynamic relocations as a single block, although they are actually
6377 associated with particular sections; the interface, which was
6378 designed for SunOS style shared libraries, expects that there is only
6379 one set of dynamic relocs. Any loadable section that was actually
6380 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6381 dynamic symbol table, is considered to be a dynamic reloc section. */
6384 _bfd_elf_canonicalize_dynamic_reloc (bfd
*abfd
,
6388 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
6392 if (elf_dynsymtab (abfd
) == 0)
6394 bfd_set_error (bfd_error_invalid_operation
);
6398 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
6400 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
6402 if ((s
->flags
& SEC_LOAD
) != 0
6403 && elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
6404 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_REL
6405 || elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
6410 if (! (*slurp_relocs
) (abfd
, s
, syms
, TRUE
))
6412 count
= s
->size
/ elf_section_data (s
)->this_hdr
.sh_entsize
;
6414 for (i
= 0; i
< count
; i
++)
6425 /* Read in the version information. */
6428 _bfd_elf_slurp_version_tables (bfd
*abfd
, bfd_boolean default_imported_symver
)
6430 bfd_byte
*contents
= NULL
;
6431 unsigned int freeidx
= 0;
6433 if (elf_dynverref (abfd
) != 0)
6435 Elf_Internal_Shdr
*hdr
;
6436 Elf_External_Verneed
*everneed
;
6437 Elf_Internal_Verneed
*iverneed
;
6439 bfd_byte
*contents_end
;
6441 hdr
= &elf_tdata (abfd
)->dynverref_hdr
;
6443 elf_tdata (abfd
)->verref
= bfd_zalloc2 (abfd
, hdr
->sh_info
,
6444 sizeof (Elf_Internal_Verneed
));
6445 if (elf_tdata (abfd
)->verref
== NULL
)
6448 elf_tdata (abfd
)->cverrefs
= hdr
->sh_info
;
6450 contents
= bfd_malloc (hdr
->sh_size
);
6451 if (contents
== NULL
)
6453 error_return_verref
:
6454 elf_tdata (abfd
)->verref
= NULL
;
6455 elf_tdata (abfd
)->cverrefs
= 0;
6458 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6459 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6460 goto error_return_verref
;
6462 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verneed
))
6463 goto error_return_verref
;
6465 BFD_ASSERT (sizeof (Elf_External_Verneed
)
6466 == sizeof (Elf_External_Vernaux
));
6467 contents_end
= contents
+ hdr
->sh_size
- sizeof (Elf_External_Verneed
);
6468 everneed
= (Elf_External_Verneed
*) contents
;
6469 iverneed
= elf_tdata (abfd
)->verref
;
6470 for (i
= 0; i
< hdr
->sh_info
; i
++, iverneed
++)
6472 Elf_External_Vernaux
*evernaux
;
6473 Elf_Internal_Vernaux
*ivernaux
;
6476 _bfd_elf_swap_verneed_in (abfd
, everneed
, iverneed
);
6478 iverneed
->vn_bfd
= abfd
;
6480 iverneed
->vn_filename
=
6481 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6483 if (iverneed
->vn_filename
== NULL
)
6484 goto error_return_verref
;
6486 if (iverneed
->vn_cnt
== 0)
6487 iverneed
->vn_auxptr
= NULL
;
6490 iverneed
->vn_auxptr
= bfd_alloc2 (abfd
, iverneed
->vn_cnt
,
6491 sizeof (Elf_Internal_Vernaux
));
6492 if (iverneed
->vn_auxptr
== NULL
)
6493 goto error_return_verref
;
6496 if (iverneed
->vn_aux
6497 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6498 goto error_return_verref
;
6500 evernaux
= ((Elf_External_Vernaux
*)
6501 ((bfd_byte
*) everneed
+ iverneed
->vn_aux
));
6502 ivernaux
= iverneed
->vn_auxptr
;
6503 for (j
= 0; j
< iverneed
->vn_cnt
; j
++, ivernaux
++)
6505 _bfd_elf_swap_vernaux_in (abfd
, evernaux
, ivernaux
);
6507 ivernaux
->vna_nodename
=
6508 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6509 ivernaux
->vna_name
);
6510 if (ivernaux
->vna_nodename
== NULL
)
6511 goto error_return_verref
;
6513 if (j
+ 1 < iverneed
->vn_cnt
)
6514 ivernaux
->vna_nextptr
= ivernaux
+ 1;
6516 ivernaux
->vna_nextptr
= NULL
;
6518 if (ivernaux
->vna_next
6519 > (size_t) (contents_end
- (bfd_byte
*) evernaux
))
6520 goto error_return_verref
;
6522 evernaux
= ((Elf_External_Vernaux
*)
6523 ((bfd_byte
*) evernaux
+ ivernaux
->vna_next
));
6525 if (ivernaux
->vna_other
> freeidx
)
6526 freeidx
= ivernaux
->vna_other
;
6529 if (i
+ 1 < hdr
->sh_info
)
6530 iverneed
->vn_nextref
= iverneed
+ 1;
6532 iverneed
->vn_nextref
= NULL
;
6534 if (iverneed
->vn_next
6535 > (size_t) (contents_end
- (bfd_byte
*) everneed
))
6536 goto error_return_verref
;
6538 everneed
= ((Elf_External_Verneed
*)
6539 ((bfd_byte
*) everneed
+ iverneed
->vn_next
));
6546 if (elf_dynverdef (abfd
) != 0)
6548 Elf_Internal_Shdr
*hdr
;
6549 Elf_External_Verdef
*everdef
;
6550 Elf_Internal_Verdef
*iverdef
;
6551 Elf_Internal_Verdef
*iverdefarr
;
6552 Elf_Internal_Verdef iverdefmem
;
6554 unsigned int maxidx
;
6555 bfd_byte
*contents_end_def
, *contents_end_aux
;
6557 hdr
= &elf_tdata (abfd
)->dynverdef_hdr
;
6559 contents
= bfd_malloc (hdr
->sh_size
);
6560 if (contents
== NULL
)
6562 if (bfd_seek (abfd
, hdr
->sh_offset
, SEEK_SET
) != 0
6563 || bfd_bread (contents
, hdr
->sh_size
, abfd
) != hdr
->sh_size
)
6566 if (hdr
->sh_info
&& hdr
->sh_size
< sizeof (Elf_External_Verdef
))
6569 BFD_ASSERT (sizeof (Elf_External_Verdef
)
6570 >= sizeof (Elf_External_Verdaux
));
6571 contents_end_def
= contents
+ hdr
->sh_size
6572 - sizeof (Elf_External_Verdef
);
6573 contents_end_aux
= contents
+ hdr
->sh_size
6574 - sizeof (Elf_External_Verdaux
);
6576 /* We know the number of entries in the section but not the maximum
6577 index. Therefore we have to run through all entries and find
6579 everdef
= (Elf_External_Verdef
*) contents
;
6581 for (i
= 0; i
< hdr
->sh_info
; ++i
)
6583 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6585 if ((iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
)) > maxidx
)
6586 maxidx
= iverdefmem
.vd_ndx
& ((unsigned) VERSYM_VERSION
);
6588 if (iverdefmem
.vd_next
6589 > (size_t) (contents_end_def
- (bfd_byte
*) everdef
))
6592 everdef
= ((Elf_External_Verdef
*)
6593 ((bfd_byte
*) everdef
+ iverdefmem
.vd_next
));
6596 if (default_imported_symver
)
6598 if (freeidx
> maxidx
)
6603 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, maxidx
,
6604 sizeof (Elf_Internal_Verdef
));
6605 if (elf_tdata (abfd
)->verdef
== NULL
)
6608 elf_tdata (abfd
)->cverdefs
= maxidx
;
6610 everdef
= (Elf_External_Verdef
*) contents
;
6611 iverdefarr
= elf_tdata (abfd
)->verdef
;
6612 for (i
= 0; i
< hdr
->sh_info
; i
++)
6614 Elf_External_Verdaux
*everdaux
;
6615 Elf_Internal_Verdaux
*iverdaux
;
6618 _bfd_elf_swap_verdef_in (abfd
, everdef
, &iverdefmem
);
6620 if ((iverdefmem
.vd_ndx
& VERSYM_VERSION
) == 0)
6622 error_return_verdef
:
6623 elf_tdata (abfd
)->verdef
= NULL
;
6624 elf_tdata (abfd
)->cverdefs
= 0;
6628 iverdef
= &iverdefarr
[(iverdefmem
.vd_ndx
& VERSYM_VERSION
) - 1];
6629 memcpy (iverdef
, &iverdefmem
, sizeof (Elf_Internal_Verdef
));
6631 iverdef
->vd_bfd
= abfd
;
6633 if (iverdef
->vd_cnt
== 0)
6634 iverdef
->vd_auxptr
= NULL
;
6637 iverdef
->vd_auxptr
= bfd_alloc2 (abfd
, iverdef
->vd_cnt
,
6638 sizeof (Elf_Internal_Verdaux
));
6639 if (iverdef
->vd_auxptr
== NULL
)
6640 goto error_return_verdef
;
6644 > (size_t) (contents_end_aux
- (bfd_byte
*) everdef
))
6645 goto error_return_verdef
;
6647 everdaux
= ((Elf_External_Verdaux
*)
6648 ((bfd_byte
*) everdef
+ iverdef
->vd_aux
));
6649 iverdaux
= iverdef
->vd_auxptr
;
6650 for (j
= 0; j
< iverdef
->vd_cnt
; j
++, iverdaux
++)
6652 _bfd_elf_swap_verdaux_in (abfd
, everdaux
, iverdaux
);
6654 iverdaux
->vda_nodename
=
6655 bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
6656 iverdaux
->vda_name
);
6657 if (iverdaux
->vda_nodename
== NULL
)
6658 goto error_return_verdef
;
6660 if (j
+ 1 < iverdef
->vd_cnt
)
6661 iverdaux
->vda_nextptr
= iverdaux
+ 1;
6663 iverdaux
->vda_nextptr
= NULL
;
6665 if (iverdaux
->vda_next
6666 > (size_t) (contents_end_aux
- (bfd_byte
*) everdaux
))
6667 goto error_return_verdef
;
6669 everdaux
= ((Elf_External_Verdaux
*)
6670 ((bfd_byte
*) everdaux
+ iverdaux
->vda_next
));
6673 if (iverdef
->vd_cnt
)
6674 iverdef
->vd_nodename
= iverdef
->vd_auxptr
->vda_nodename
;
6676 if ((size_t) (iverdef
- iverdefarr
) + 1 < maxidx
)
6677 iverdef
->vd_nextdef
= iverdef
+ 1;
6679 iverdef
->vd_nextdef
= NULL
;
6681 everdef
= ((Elf_External_Verdef
*)
6682 ((bfd_byte
*) everdef
+ iverdef
->vd_next
));
6688 else if (default_imported_symver
)
6695 elf_tdata (abfd
)->verdef
= bfd_zalloc2 (abfd
, freeidx
,
6696 sizeof (Elf_Internal_Verdef
));
6697 if (elf_tdata (abfd
)->verdef
== NULL
)
6700 elf_tdata (abfd
)->cverdefs
= freeidx
;
6703 /* Create a default version based on the soname. */
6704 if (default_imported_symver
)
6706 Elf_Internal_Verdef
*iverdef
;
6707 Elf_Internal_Verdaux
*iverdaux
;
6709 iverdef
= &elf_tdata (abfd
)->verdef
[freeidx
- 1];;
6711 iverdef
->vd_version
= VER_DEF_CURRENT
;
6712 iverdef
->vd_flags
= 0;
6713 iverdef
->vd_ndx
= freeidx
;
6714 iverdef
->vd_cnt
= 1;
6716 iverdef
->vd_bfd
= abfd
;
6718 iverdef
->vd_nodename
= bfd_elf_get_dt_soname (abfd
);
6719 if (iverdef
->vd_nodename
== NULL
)
6720 goto error_return_verdef
;
6721 iverdef
->vd_nextdef
= NULL
;
6722 iverdef
->vd_auxptr
= bfd_alloc (abfd
, sizeof (Elf_Internal_Verdaux
));
6723 if (iverdef
->vd_auxptr
== NULL
)
6724 goto error_return_verdef
;
6726 iverdaux
= iverdef
->vd_auxptr
;
6727 iverdaux
->vda_nodename
= iverdef
->vd_nodename
;
6728 iverdaux
->vda_nextptr
= NULL
;
6734 if (contents
!= NULL
)
6740 _bfd_elf_make_empty_symbol (bfd
*abfd
)
6742 elf_symbol_type
*newsym
;
6743 bfd_size_type amt
= sizeof (elf_symbol_type
);
6745 newsym
= bfd_zalloc (abfd
, amt
);
6750 newsym
->symbol
.the_bfd
= abfd
;
6751 return &newsym
->symbol
;
6756 _bfd_elf_get_symbol_info (bfd
*abfd ATTRIBUTE_UNUSED
,
6760 bfd_symbol_info (symbol
, ret
);
6763 /* Return whether a symbol name implies a local symbol. Most targets
6764 use this function for the is_local_label_name entry point, but some
6768 _bfd_elf_is_local_label_name (bfd
*abfd ATTRIBUTE_UNUSED
,
6771 /* Normal local symbols start with ``.L''. */
6772 if (name
[0] == '.' && name
[1] == 'L')
6775 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6776 DWARF debugging symbols starting with ``..''. */
6777 if (name
[0] == '.' && name
[1] == '.')
6780 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6781 emitting DWARF debugging output. I suspect this is actually a
6782 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6783 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6784 underscore to be emitted on some ELF targets). For ease of use,
6785 we treat such symbols as local. */
6786 if (name
[0] == '_' && name
[1] == '.' && name
[2] == 'L' && name
[3] == '_')
6793 _bfd_elf_get_lineno (bfd
*abfd ATTRIBUTE_UNUSED
,
6794 asymbol
*symbol ATTRIBUTE_UNUSED
)
6801 _bfd_elf_set_arch_mach (bfd
*abfd
,
6802 enum bfd_architecture arch
,
6803 unsigned long machine
)
6805 /* If this isn't the right architecture for this backend, and this
6806 isn't the generic backend, fail. */
6807 if (arch
!= get_elf_backend_data (abfd
)->arch
6808 && arch
!= bfd_arch_unknown
6809 && get_elf_backend_data (abfd
)->arch
!= bfd_arch_unknown
)
6812 return bfd_default_set_arch_mach (abfd
, arch
, machine
);
6815 /* Find the function to a particular section and offset,
6816 for error reporting. */
6819 elf_find_function (bfd
*abfd ATTRIBUTE_UNUSED
,
6823 const char **filename_ptr
,
6824 const char **functionname_ptr
)
6826 const char *filename
;
6827 asymbol
*func
, *file
;
6830 /* ??? Given multiple file symbols, it is impossible to reliably
6831 choose the right file name for global symbols. File symbols are
6832 local symbols, and thus all file symbols must sort before any
6833 global symbols. The ELF spec may be interpreted to say that a
6834 file symbol must sort before other local symbols, but currently
6835 ld -r doesn't do this. So, for ld -r output, it is possible to
6836 make a better choice of file name for local symbols by ignoring
6837 file symbols appearing after a given local symbol. */
6838 enum { nothing_seen
, symbol_seen
, file_after_symbol_seen
} state
;
6844 state
= nothing_seen
;
6846 for (p
= symbols
; *p
!= NULL
; p
++)
6850 q
= (elf_symbol_type
*) *p
;
6852 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
6858 if (state
== symbol_seen
)
6859 state
= file_after_symbol_seen
;
6863 if (bfd_get_section (&q
->symbol
) == section
6864 && q
->symbol
.value
>= low_func
6865 && q
->symbol
.value
<= offset
)
6867 func
= (asymbol
*) q
;
6868 low_func
= q
->symbol
.value
;
6871 && (ELF_ST_BIND (q
->internal_elf_sym
.st_info
) == STB_LOCAL
6872 || state
!= file_after_symbol_seen
))
6873 filename
= bfd_asymbol_name (file
);
6877 if (state
== nothing_seen
)
6878 state
= symbol_seen
;
6885 *filename_ptr
= filename
;
6886 if (functionname_ptr
)
6887 *functionname_ptr
= bfd_asymbol_name (func
);
6892 /* Find the nearest line to a particular section and offset,
6893 for error reporting. */
6896 _bfd_elf_find_nearest_line (bfd
*abfd
,
6900 const char **filename_ptr
,
6901 const char **functionname_ptr
,
6902 unsigned int *line_ptr
)
6906 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
6907 filename_ptr
, functionname_ptr
,
6910 if (!*functionname_ptr
)
6911 elf_find_function (abfd
, section
, symbols
, offset
,
6912 *filename_ptr
? NULL
: filename_ptr
,
6918 if (_bfd_dwarf2_find_nearest_line (abfd
, section
, symbols
, offset
,
6919 filename_ptr
, functionname_ptr
,
6921 &elf_tdata (abfd
)->dwarf2_find_line_info
))
6923 if (!*functionname_ptr
)
6924 elf_find_function (abfd
, section
, symbols
, offset
,
6925 *filename_ptr
? NULL
: filename_ptr
,
6931 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
6932 &found
, filename_ptr
,
6933 functionname_ptr
, line_ptr
,
6934 &elf_tdata (abfd
)->line_info
))
6936 if (found
&& (*functionname_ptr
|| *line_ptr
))
6939 if (symbols
== NULL
)
6942 if (! elf_find_function (abfd
, section
, symbols
, offset
,
6943 filename_ptr
, functionname_ptr
))
6950 /* Find the line for a symbol. */
6953 _bfd_elf_find_line (bfd
*abfd
, asymbol
**symbols
, asymbol
*symbol
,
6954 const char **filename_ptr
, unsigned int *line_ptr
)
6956 return _bfd_dwarf2_find_line (abfd
, symbols
, symbol
,
6957 filename_ptr
, line_ptr
, 0,
6958 &elf_tdata (abfd
)->dwarf2_find_line_info
);
6961 /* After a call to bfd_find_nearest_line, successive calls to
6962 bfd_find_inliner_info can be used to get source information about
6963 each level of function inlining that terminated at the address
6964 passed to bfd_find_nearest_line. Currently this is only supported
6965 for DWARF2 with appropriate DWARF3 extensions. */
6968 _bfd_elf_find_inliner_info (bfd
*abfd
,
6969 const char **filename_ptr
,
6970 const char **functionname_ptr
,
6971 unsigned int *line_ptr
)
6974 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
6975 functionname_ptr
, line_ptr
,
6976 & elf_tdata (abfd
)->dwarf2_find_line_info
);
6981 _bfd_elf_sizeof_headers (bfd
*abfd
, bfd_boolean reloc
)
6985 ret
= get_elf_backend_data (abfd
)->s
->sizeof_ehdr
;
6987 ret
+= get_program_header_size (abfd
);
6992 _bfd_elf_set_section_contents (bfd
*abfd
,
6994 const void *location
,
6996 bfd_size_type count
)
6998 Elf_Internal_Shdr
*hdr
;
7001 if (! abfd
->output_has_begun
7002 && ! _bfd_elf_compute_section_file_positions (abfd
, NULL
))
7005 hdr
= &elf_section_data (section
)->this_hdr
;
7006 pos
= hdr
->sh_offset
+ offset
;
7007 if (bfd_seek (abfd
, pos
, SEEK_SET
) != 0
7008 || bfd_bwrite (location
, count
, abfd
) != count
)
7015 _bfd_elf_no_info_to_howto (bfd
*abfd ATTRIBUTE_UNUSED
,
7016 arelent
*cache_ptr ATTRIBUTE_UNUSED
,
7017 Elf_Internal_Rela
*dst ATTRIBUTE_UNUSED
)
7022 /* Try to convert a non-ELF reloc into an ELF one. */
7025 _bfd_elf_validate_reloc (bfd
*abfd
, arelent
*areloc
)
7027 /* Check whether we really have an ELF howto. */
7029 if ((*areloc
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
)
7031 bfd_reloc_code_real_type code
;
7032 reloc_howto_type
*howto
;
7034 /* Alien reloc: Try to determine its type to replace it with an
7035 equivalent ELF reloc. */
7037 if (areloc
->howto
->pc_relative
)
7039 switch (areloc
->howto
->bitsize
)
7042 code
= BFD_RELOC_8_PCREL
;
7045 code
= BFD_RELOC_12_PCREL
;
7048 code
= BFD_RELOC_16_PCREL
;
7051 code
= BFD_RELOC_24_PCREL
;
7054 code
= BFD_RELOC_32_PCREL
;
7057 code
= BFD_RELOC_64_PCREL
;
7063 howto
= bfd_reloc_type_lookup (abfd
, code
);
7065 if (areloc
->howto
->pcrel_offset
!= howto
->pcrel_offset
)
7067 if (howto
->pcrel_offset
)
7068 areloc
->addend
+= areloc
->address
;
7070 areloc
->addend
-= areloc
->address
; /* addend is unsigned!! */
7075 switch (areloc
->howto
->bitsize
)
7081 code
= BFD_RELOC_14
;
7084 code
= BFD_RELOC_16
;
7087 code
= BFD_RELOC_26
;
7090 code
= BFD_RELOC_32
;
7093 code
= BFD_RELOC_64
;
7099 howto
= bfd_reloc_type_lookup (abfd
, code
);
7103 areloc
->howto
= howto
;
7111 (*_bfd_error_handler
)
7112 (_("%B: unsupported relocation type %s"),
7113 abfd
, areloc
->howto
->name
);
7114 bfd_set_error (bfd_error_bad_value
);
7119 _bfd_elf_close_and_cleanup (bfd
*abfd
)
7121 if (bfd_get_format (abfd
) == bfd_object
)
7123 if (elf_shstrtab (abfd
) != NULL
)
7124 _bfd_elf_strtab_free (elf_shstrtab (abfd
));
7125 _bfd_dwarf2_cleanup_debug_info (abfd
);
7128 return _bfd_generic_close_and_cleanup (abfd
);
7131 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7132 in the relocation's offset. Thus we cannot allow any sort of sanity
7133 range-checking to interfere. There is nothing else to do in processing
7136 bfd_reloc_status_type
7137 _bfd_elf_rel_vtable_reloc_fn
7138 (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*re ATTRIBUTE_UNUSED
,
7139 struct bfd_symbol
*symbol ATTRIBUTE_UNUSED
,
7140 void *data ATTRIBUTE_UNUSED
, asection
*is ATTRIBUTE_UNUSED
,
7141 bfd
*obfd ATTRIBUTE_UNUSED
, char **errmsg ATTRIBUTE_UNUSED
)
7143 return bfd_reloc_ok
;
7146 /* Elf core file support. Much of this only works on native
7147 toolchains, since we rely on knowing the
7148 machine-dependent procfs structure in order to pick
7149 out details about the corefile. */
7151 #ifdef HAVE_SYS_PROCFS_H
7152 # include <sys/procfs.h>
7155 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7158 elfcore_make_pid (bfd
*abfd
)
7160 return ((elf_tdata (abfd
)->core_lwpid
<< 16)
7161 + (elf_tdata (abfd
)->core_pid
));
7164 /* If there isn't a section called NAME, make one, using
7165 data from SECT. Note, this function will generate a
7166 reference to NAME, so you shouldn't deallocate or
7170 elfcore_maybe_make_sect (bfd
*abfd
, char *name
, asection
*sect
)
7174 if (bfd_get_section_by_name (abfd
, name
) != NULL
)
7177 sect2
= bfd_make_section (abfd
, name
);
7181 sect2
->size
= sect
->size
;
7182 sect2
->filepos
= sect
->filepos
;
7183 sect2
->flags
= sect
->flags
;
7184 sect2
->alignment_power
= sect
->alignment_power
;
7188 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7189 actually creates up to two pseudosections:
7190 - For the single-threaded case, a section named NAME, unless
7191 such a section already exists.
7192 - For the multi-threaded case, a section named "NAME/PID", where
7193 PID is elfcore_make_pid (abfd).
7194 Both pseudosections have identical contents. */
7196 _bfd_elfcore_make_pseudosection (bfd
*abfd
,
7202 char *threaded_name
;
7206 /* Build the section name. */
7208 sprintf (buf
, "%s/%d", name
, elfcore_make_pid (abfd
));
7209 len
= strlen (buf
) + 1;
7210 threaded_name
= bfd_alloc (abfd
, len
);
7211 if (threaded_name
== NULL
)
7213 memcpy (threaded_name
, buf
, len
);
7215 sect
= bfd_make_section_anyway (abfd
, threaded_name
);
7219 sect
->filepos
= filepos
;
7220 sect
->flags
= SEC_HAS_CONTENTS
;
7221 sect
->alignment_power
= 2;
7223 return elfcore_maybe_make_sect (abfd
, name
, sect
);
7226 /* prstatus_t exists on:
7228 linux 2.[01] + glibc
7232 #if defined (HAVE_PRSTATUS_T)
7235 elfcore_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7240 if (note
->descsz
== sizeof (prstatus_t
))
7244 size
= sizeof (prstat
.pr_reg
);
7245 offset
= offsetof (prstatus_t
, pr_reg
);
7246 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7248 /* Do not overwrite the core signal if it
7249 has already been set by another thread. */
7250 if (elf_tdata (abfd
)->core_signal
== 0)
7251 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7252 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7254 /* pr_who exists on:
7257 pr_who doesn't exist on:
7260 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7261 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7264 #if defined (HAVE_PRSTATUS32_T)
7265 else if (note
->descsz
== sizeof (prstatus32_t
))
7267 /* 64-bit host, 32-bit corefile */
7268 prstatus32_t prstat
;
7270 size
= sizeof (prstat
.pr_reg
);
7271 offset
= offsetof (prstatus32_t
, pr_reg
);
7272 memcpy (&prstat
, note
->descdata
, sizeof (prstat
));
7274 /* Do not overwrite the core signal if it
7275 has already been set by another thread. */
7276 if (elf_tdata (abfd
)->core_signal
== 0)
7277 elf_tdata (abfd
)->core_signal
= prstat
.pr_cursig
;
7278 elf_tdata (abfd
)->core_pid
= prstat
.pr_pid
;
7280 /* pr_who exists on:
7283 pr_who doesn't exist on:
7286 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7287 elf_tdata (abfd
)->core_lwpid
= prstat
.pr_who
;
7290 #endif /* HAVE_PRSTATUS32_T */
7293 /* Fail - we don't know how to handle any other
7294 note size (ie. data object type). */
7298 /* Make a ".reg/999" section and a ".reg" section. */
7299 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
7300 size
, note
->descpos
+ offset
);
7302 #endif /* defined (HAVE_PRSTATUS_T) */
7304 /* Create a pseudosection containing the exact contents of NOTE. */
7306 elfcore_make_note_pseudosection (bfd
*abfd
,
7308 Elf_Internal_Note
*note
)
7310 return _bfd_elfcore_make_pseudosection (abfd
, name
,
7311 note
->descsz
, note
->descpos
);
7314 /* There isn't a consistent prfpregset_t across platforms,
7315 but it doesn't matter, because we don't have to pick this
7316 data structure apart. */
7319 elfcore_grok_prfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7321 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7324 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7325 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7329 elfcore_grok_prxfpreg (bfd
*abfd
, Elf_Internal_Note
*note
)
7331 return elfcore_make_note_pseudosection (abfd
, ".reg-xfp", note
);
7334 #if defined (HAVE_PRPSINFO_T)
7335 typedef prpsinfo_t elfcore_psinfo_t
;
7336 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7337 typedef prpsinfo32_t elfcore_psinfo32_t
;
7341 #if defined (HAVE_PSINFO_T)
7342 typedef psinfo_t elfcore_psinfo_t
;
7343 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7344 typedef psinfo32_t elfcore_psinfo32_t
;
7348 /* return a malloc'ed copy of a string at START which is at
7349 most MAX bytes long, possibly without a terminating '\0'.
7350 the copy will always have a terminating '\0'. */
7353 _bfd_elfcore_strndup (bfd
*abfd
, char *start
, size_t max
)
7356 char *end
= memchr (start
, '\0', max
);
7364 dups
= bfd_alloc (abfd
, len
+ 1);
7368 memcpy (dups
, start
, len
);
7374 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7376 elfcore_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7378 if (note
->descsz
== sizeof (elfcore_psinfo_t
))
7380 elfcore_psinfo_t psinfo
;
7382 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7384 elf_tdata (abfd
)->core_program
7385 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7386 sizeof (psinfo
.pr_fname
));
7388 elf_tdata (abfd
)->core_command
7389 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7390 sizeof (psinfo
.pr_psargs
));
7392 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7393 else if (note
->descsz
== sizeof (elfcore_psinfo32_t
))
7395 /* 64-bit host, 32-bit corefile */
7396 elfcore_psinfo32_t psinfo
;
7398 memcpy (&psinfo
, note
->descdata
, sizeof (psinfo
));
7400 elf_tdata (abfd
)->core_program
7401 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_fname
,
7402 sizeof (psinfo
.pr_fname
));
7404 elf_tdata (abfd
)->core_command
7405 = _bfd_elfcore_strndup (abfd
, psinfo
.pr_psargs
,
7406 sizeof (psinfo
.pr_psargs
));
7412 /* Fail - we don't know how to handle any other
7413 note size (ie. data object type). */
7417 /* Note that for some reason, a spurious space is tacked
7418 onto the end of the args in some (at least one anyway)
7419 implementations, so strip it off if it exists. */
7422 char *command
= elf_tdata (abfd
)->core_command
;
7423 int n
= strlen (command
);
7425 if (0 < n
&& command
[n
- 1] == ' ')
7426 command
[n
- 1] = '\0';
7431 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7433 #if defined (HAVE_PSTATUS_T)
7435 elfcore_grok_pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7437 if (note
->descsz
== sizeof (pstatus_t
)
7438 #if defined (HAVE_PXSTATUS_T)
7439 || note
->descsz
== sizeof (pxstatus_t
)
7445 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7447 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7449 #if defined (HAVE_PSTATUS32_T)
7450 else if (note
->descsz
== sizeof (pstatus32_t
))
7452 /* 64-bit host, 32-bit corefile */
7455 memcpy (&pstat
, note
->descdata
, sizeof (pstat
));
7457 elf_tdata (abfd
)->core_pid
= pstat
.pr_pid
;
7460 /* Could grab some more details from the "representative"
7461 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7462 NT_LWPSTATUS note, presumably. */
7466 #endif /* defined (HAVE_PSTATUS_T) */
7468 #if defined (HAVE_LWPSTATUS_T)
7470 elfcore_grok_lwpstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7472 lwpstatus_t lwpstat
;
7478 if (note
->descsz
!= sizeof (lwpstat
)
7479 #if defined (HAVE_LWPXSTATUS_T)
7480 && note
->descsz
!= sizeof (lwpxstatus_t
)
7485 memcpy (&lwpstat
, note
->descdata
, sizeof (lwpstat
));
7487 elf_tdata (abfd
)->core_lwpid
= lwpstat
.pr_lwpid
;
7488 elf_tdata (abfd
)->core_signal
= lwpstat
.pr_cursig
;
7490 /* Make a ".reg/999" section. */
7492 sprintf (buf
, ".reg/%d", elfcore_make_pid (abfd
));
7493 len
= strlen (buf
) + 1;
7494 name
= bfd_alloc (abfd
, len
);
7497 memcpy (name
, buf
, len
);
7499 sect
= bfd_make_section_anyway (abfd
, name
);
7503 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7504 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
);
7505 sect
->filepos
= note
->descpos
7506 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.gregs
);
7509 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7510 sect
->size
= sizeof (lwpstat
.pr_reg
);
7511 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_reg
);
7514 sect
->flags
= SEC_HAS_CONTENTS
;
7515 sect
->alignment_power
= 2;
7517 if (!elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7520 /* Make a ".reg2/999" section */
7522 sprintf (buf
, ".reg2/%d", elfcore_make_pid (abfd
));
7523 len
= strlen (buf
) + 1;
7524 name
= bfd_alloc (abfd
, len
);
7527 memcpy (name
, buf
, len
);
7529 sect
= bfd_make_section_anyway (abfd
, name
);
7533 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7534 sect
->size
= sizeof (lwpstat
.pr_context
.uc_mcontext
.fpregs
);
7535 sect
->filepos
= note
->descpos
7536 + offsetof (lwpstatus_t
, pr_context
.uc_mcontext
.fpregs
);
7539 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7540 sect
->size
= sizeof (lwpstat
.pr_fpreg
);
7541 sect
->filepos
= note
->descpos
+ offsetof (lwpstatus_t
, pr_fpreg
);
7544 sect
->flags
= SEC_HAS_CONTENTS
;
7545 sect
->alignment_power
= 2;
7547 return elfcore_maybe_make_sect (abfd
, ".reg2", sect
);
7549 #endif /* defined (HAVE_LWPSTATUS_T) */
7551 #if defined (HAVE_WIN32_PSTATUS_T)
7553 elfcore_grok_win32pstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
7559 win32_pstatus_t pstatus
;
7561 if (note
->descsz
< sizeof (pstatus
))
7564 memcpy (&pstatus
, note
->descdata
, sizeof (pstatus
));
7566 switch (pstatus
.data_type
)
7568 case NOTE_INFO_PROCESS
:
7569 /* FIXME: need to add ->core_command. */
7570 elf_tdata (abfd
)->core_signal
= pstatus
.data
.process_info
.signal
;
7571 elf_tdata (abfd
)->core_pid
= pstatus
.data
.process_info
.pid
;
7574 case NOTE_INFO_THREAD
:
7575 /* Make a ".reg/999" section. */
7576 sprintf (buf
, ".reg/%ld", (long) pstatus
.data
.thread_info
.tid
);
7578 len
= strlen (buf
) + 1;
7579 name
= bfd_alloc (abfd
, len
);
7583 memcpy (name
, buf
, len
);
7585 sect
= bfd_make_section_anyway (abfd
, name
);
7589 sect
->size
= sizeof (pstatus
.data
.thread_info
.thread_context
);
7590 sect
->filepos
= (note
->descpos
7591 + offsetof (struct win32_pstatus
,
7592 data
.thread_info
.thread_context
));
7593 sect
->flags
= SEC_HAS_CONTENTS
;
7594 sect
->alignment_power
= 2;
7596 if (pstatus
.data
.thread_info
.is_active_thread
)
7597 if (! elfcore_maybe_make_sect (abfd
, ".reg", sect
))
7601 case NOTE_INFO_MODULE
:
7602 /* Make a ".module/xxxxxxxx" section. */
7603 sprintf (buf
, ".module/%08lx",
7604 (long) pstatus
.data
.module_info
.base_address
);
7606 len
= strlen (buf
) + 1;
7607 name
= bfd_alloc (abfd
, len
);
7611 memcpy (name
, buf
, len
);
7613 sect
= bfd_make_section_anyway (abfd
, name
);
7618 sect
->size
= note
->descsz
;
7619 sect
->filepos
= note
->descpos
;
7620 sect
->flags
= SEC_HAS_CONTENTS
;
7621 sect
->alignment_power
= 2;
7630 #endif /* HAVE_WIN32_PSTATUS_T */
7633 elfcore_grok_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7635 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7643 if (bed
->elf_backend_grok_prstatus
)
7644 if ((*bed
->elf_backend_grok_prstatus
) (abfd
, note
))
7646 #if defined (HAVE_PRSTATUS_T)
7647 return elfcore_grok_prstatus (abfd
, note
);
7652 #if defined (HAVE_PSTATUS_T)
7654 return elfcore_grok_pstatus (abfd
, note
);
7657 #if defined (HAVE_LWPSTATUS_T)
7659 return elfcore_grok_lwpstatus (abfd
, note
);
7662 case NT_FPREGSET
: /* FIXME: rename to NT_PRFPREG */
7663 return elfcore_grok_prfpreg (abfd
, note
);
7665 #if defined (HAVE_WIN32_PSTATUS_T)
7666 case NT_WIN32PSTATUS
:
7667 return elfcore_grok_win32pstatus (abfd
, note
);
7670 case NT_PRXFPREG
: /* Linux SSE extension */
7671 if (note
->namesz
== 6
7672 && strcmp (note
->namedata
, "LINUX") == 0)
7673 return elfcore_grok_prxfpreg (abfd
, note
);
7679 if (bed
->elf_backend_grok_psinfo
)
7680 if ((*bed
->elf_backend_grok_psinfo
) (abfd
, note
))
7682 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7683 return elfcore_grok_psinfo (abfd
, note
);
7690 asection
*sect
= bfd_make_section_anyway (abfd
, ".auxv");
7694 sect
->size
= note
->descsz
;
7695 sect
->filepos
= note
->descpos
;
7696 sect
->flags
= SEC_HAS_CONTENTS
;
7697 sect
->alignment_power
= 1 + bfd_get_arch_size (abfd
) / 32;
7705 elfcore_netbsd_get_lwpid (Elf_Internal_Note
*note
, int *lwpidp
)
7709 cp
= strchr (note
->namedata
, '@');
7712 *lwpidp
= atoi(cp
+ 1);
7719 elfcore_grok_netbsd_procinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
7722 /* Signal number at offset 0x08. */
7723 elf_tdata (abfd
)->core_signal
7724 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x08);
7726 /* Process ID at offset 0x50. */
7727 elf_tdata (abfd
)->core_pid
7728 = bfd_h_get_32 (abfd
, (bfd_byte
*) note
->descdata
+ 0x50);
7730 /* Command name at 0x7c (max 32 bytes, including nul). */
7731 elf_tdata (abfd
)->core_command
7732 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 0x7c, 31);
7734 return elfcore_make_note_pseudosection (abfd
, ".note.netbsdcore.procinfo",
7739 elfcore_grok_netbsd_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7743 if (elfcore_netbsd_get_lwpid (note
, &lwp
))
7744 elf_tdata (abfd
)->core_lwpid
= lwp
;
7746 if (note
->type
== NT_NETBSDCORE_PROCINFO
)
7748 /* NetBSD-specific core "procinfo". Note that we expect to
7749 find this note before any of the others, which is fine,
7750 since the kernel writes this note out first when it
7751 creates a core file. */
7753 return elfcore_grok_netbsd_procinfo (abfd
, note
);
7756 /* As of Jan 2002 there are no other machine-independent notes
7757 defined for NetBSD core files. If the note type is less
7758 than the start of the machine-dependent note types, we don't
7761 if (note
->type
< NT_NETBSDCORE_FIRSTMACH
)
7765 switch (bfd_get_arch (abfd
))
7767 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7768 PT_GETFPREGS == mach+2. */
7770 case bfd_arch_alpha
:
7771 case bfd_arch_sparc
:
7774 case NT_NETBSDCORE_FIRSTMACH
+0:
7775 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7777 case NT_NETBSDCORE_FIRSTMACH
+2:
7778 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7784 /* On all other arch's, PT_GETREGS == mach+1 and
7785 PT_GETFPREGS == mach+3. */
7790 case NT_NETBSDCORE_FIRSTMACH
+1:
7791 return elfcore_make_note_pseudosection (abfd
, ".reg", note
);
7793 case NT_NETBSDCORE_FIRSTMACH
+3:
7794 return elfcore_make_note_pseudosection (abfd
, ".reg2", note
);
7804 elfcore_grok_nto_status (bfd
*abfd
, Elf_Internal_Note
*note
, pid_t
*tid
)
7806 void *ddata
= note
->descdata
;
7813 /* nto_procfs_status 'pid' field is at offset 0. */
7814 elf_tdata (abfd
)->core_pid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
);
7816 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7817 *tid
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 4);
7819 /* nto_procfs_status 'flags' field is at offset 8. */
7820 flags
= bfd_get_32 (abfd
, (bfd_byte
*) ddata
+ 8);
7822 /* nto_procfs_status 'what' field is at offset 14. */
7823 if ((sig
= bfd_get_16 (abfd
, (bfd_byte
*) ddata
+ 14)) > 0)
7825 elf_tdata (abfd
)->core_signal
= sig
;
7826 elf_tdata (abfd
)->core_lwpid
= *tid
;
7829 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7830 do not come from signals so we make sure we set the current
7831 thread just in case. */
7832 if (flags
& 0x00000080)
7833 elf_tdata (abfd
)->core_lwpid
= *tid
;
7835 /* Make a ".qnx_core_status/%d" section. */
7836 sprintf (buf
, ".qnx_core_status/%ld", (long) *tid
);
7838 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7843 sect
= bfd_make_section_anyway (abfd
, name
);
7847 sect
->size
= note
->descsz
;
7848 sect
->filepos
= note
->descpos
;
7849 sect
->flags
= SEC_HAS_CONTENTS
;
7850 sect
->alignment_power
= 2;
7852 return (elfcore_maybe_make_sect (abfd
, ".qnx_core_status", sect
));
7856 elfcore_grok_nto_regs (bfd
*abfd
,
7857 Elf_Internal_Note
*note
,
7865 /* Make a "(base)/%d" section. */
7866 sprintf (buf
, "%s/%ld", base
, (long) tid
);
7868 name
= bfd_alloc (abfd
, strlen (buf
) + 1);
7873 sect
= bfd_make_section_anyway (abfd
, name
);
7877 sect
->size
= note
->descsz
;
7878 sect
->filepos
= note
->descpos
;
7879 sect
->flags
= SEC_HAS_CONTENTS
;
7880 sect
->alignment_power
= 2;
7882 /* This is the current thread. */
7883 if (elf_tdata (abfd
)->core_lwpid
== tid
)
7884 return elfcore_maybe_make_sect (abfd
, base
, sect
);
7889 #define BFD_QNT_CORE_INFO 7
7890 #define BFD_QNT_CORE_STATUS 8
7891 #define BFD_QNT_CORE_GREG 9
7892 #define BFD_QNT_CORE_FPREG 10
7895 elfcore_grok_nto_note (bfd
*abfd
, Elf_Internal_Note
*note
)
7897 /* Every GREG section has a STATUS section before it. Store the
7898 tid from the previous call to pass down to the next gregs
7900 static pid_t tid
= 1;
7904 case BFD_QNT_CORE_INFO
:
7905 return elfcore_make_note_pseudosection (abfd
, ".qnx_core_info", note
);
7906 case BFD_QNT_CORE_STATUS
:
7907 return elfcore_grok_nto_status (abfd
, note
, &tid
);
7908 case BFD_QNT_CORE_GREG
:
7909 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg");
7910 case BFD_QNT_CORE_FPREG
:
7911 return elfcore_grok_nto_regs (abfd
, note
, tid
, ".reg2");
7917 /* Function: elfcore_write_note
7924 size of data for note
7927 End of buffer containing note. */
7930 elfcore_write_note (bfd
*abfd
,
7938 Elf_External_Note
*xnp
;
7948 const struct elf_backend_data
*bed
;
7950 namesz
= strlen (name
) + 1;
7951 bed
= get_elf_backend_data (abfd
);
7952 pad
= -namesz
& ((1 << bed
->s
->log_file_align
) - 1);
7955 newspace
= 12 + namesz
+ pad
+ size
;
7957 p
= realloc (buf
, *bufsiz
+ newspace
);
7959 *bufsiz
+= newspace
;
7960 xnp
= (Elf_External_Note
*) dest
;
7961 H_PUT_32 (abfd
, namesz
, xnp
->namesz
);
7962 H_PUT_32 (abfd
, size
, xnp
->descsz
);
7963 H_PUT_32 (abfd
, type
, xnp
->type
);
7967 memcpy (dest
, name
, namesz
);
7975 memcpy (dest
, input
, size
);
7979 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7981 elfcore_write_prpsinfo (bfd
*abfd
,
7988 char *note_name
= "CORE";
7990 #if defined (HAVE_PSINFO_T)
7992 note_type
= NT_PSINFO
;
7995 note_type
= NT_PRPSINFO
;
7998 memset (&data
, 0, sizeof (data
));
7999 strncpy (data
.pr_fname
, fname
, sizeof (data
.pr_fname
));
8000 strncpy (data
.pr_psargs
, psargs
, sizeof (data
.pr_psargs
));
8001 return elfcore_write_note (abfd
, buf
, bufsiz
,
8002 note_name
, note_type
, &data
, sizeof (data
));
8004 #endif /* PSINFO_T or PRPSINFO_T */
8006 #if defined (HAVE_PRSTATUS_T)
8008 elfcore_write_prstatus (bfd
*abfd
,
8016 char *note_name
= "CORE";
8018 memset (&prstat
, 0, sizeof (prstat
));
8019 prstat
.pr_pid
= pid
;
8020 prstat
.pr_cursig
= cursig
;
8021 memcpy (&prstat
.pr_reg
, gregs
, sizeof (prstat
.pr_reg
));
8022 return elfcore_write_note (abfd
, buf
, bufsiz
,
8023 note_name
, NT_PRSTATUS
, &prstat
, sizeof (prstat
));
8025 #endif /* HAVE_PRSTATUS_T */
8027 #if defined (HAVE_LWPSTATUS_T)
8029 elfcore_write_lwpstatus (bfd
*abfd
,
8036 lwpstatus_t lwpstat
;
8037 char *note_name
= "CORE";
8039 memset (&lwpstat
, 0, sizeof (lwpstat
));
8040 lwpstat
.pr_lwpid
= pid
>> 16;
8041 lwpstat
.pr_cursig
= cursig
;
8042 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8043 memcpy (lwpstat
.pr_reg
, gregs
, sizeof (lwpstat
.pr_reg
));
8044 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8046 memcpy (lwpstat
.pr_context
.uc_mcontext
.gregs
,
8047 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.gregs
));
8049 memcpy (lwpstat
.pr_context
.uc_mcontext
.__gregs
,
8050 gregs
, sizeof (lwpstat
.pr_context
.uc_mcontext
.__gregs
));
8053 return elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8054 NT_LWPSTATUS
, &lwpstat
, sizeof (lwpstat
));
8056 #endif /* HAVE_LWPSTATUS_T */
8058 #if defined (HAVE_PSTATUS_T)
8060 elfcore_write_pstatus (bfd
*abfd
,
8064 int cursig ATTRIBUTE_UNUSED
,
8065 const void *gregs ATTRIBUTE_UNUSED
)
8068 char *note_name
= "CORE";
8070 memset (&pstat
, 0, sizeof (pstat
));
8071 pstat
.pr_pid
= pid
& 0xffff;
8072 buf
= elfcore_write_note (abfd
, buf
, bufsiz
, note_name
,
8073 NT_PSTATUS
, &pstat
, sizeof (pstat
));
8076 #endif /* HAVE_PSTATUS_T */
8079 elfcore_write_prfpreg (bfd
*abfd
,
8085 char *note_name
= "CORE";
8086 return elfcore_write_note (abfd
, buf
, bufsiz
,
8087 note_name
, NT_FPREGSET
, fpregs
, size
);
8091 elfcore_write_prxfpreg (bfd
*abfd
,
8094 const void *xfpregs
,
8097 char *note_name
= "LINUX";
8098 return elfcore_write_note (abfd
, buf
, bufsiz
,
8099 note_name
, NT_PRXFPREG
, xfpregs
, size
);
8103 elfcore_read_notes (bfd
*abfd
, file_ptr offset
, bfd_size_type size
)
8111 if (bfd_seek (abfd
, offset
, SEEK_SET
) != 0)
8114 buf
= bfd_malloc (size
);
8118 if (bfd_bread (buf
, size
, abfd
) != size
)
8126 while (p
< buf
+ size
)
8128 /* FIXME: bad alignment assumption. */
8129 Elf_External_Note
*xnp
= (Elf_External_Note
*) p
;
8130 Elf_Internal_Note in
;
8132 in
.type
= H_GET_32 (abfd
, xnp
->type
);
8134 in
.namesz
= H_GET_32 (abfd
, xnp
->namesz
);
8135 in
.namedata
= xnp
->name
;
8137 in
.descsz
= H_GET_32 (abfd
, xnp
->descsz
);
8138 in
.descdata
= in
.namedata
+ BFD_ALIGN (in
.namesz
, 4);
8139 in
.descpos
= offset
+ (in
.descdata
- buf
);
8141 if (strncmp (in
.namedata
, "NetBSD-CORE", 11) == 0)
8143 if (! elfcore_grok_netbsd_note (abfd
, &in
))
8146 else if (strncmp (in
.namedata
, "QNX", 3) == 0)
8148 if (! elfcore_grok_nto_note (abfd
, &in
))
8153 if (! elfcore_grok_note (abfd
, &in
))
8157 p
= in
.descdata
+ BFD_ALIGN (in
.descsz
, 4);
8164 /* Providing external access to the ELF program header table. */
8166 /* Return an upper bound on the number of bytes required to store a
8167 copy of ABFD's program header table entries. Return -1 if an error
8168 occurs; bfd_get_error will return an appropriate code. */
8171 bfd_get_elf_phdr_upper_bound (bfd
*abfd
)
8173 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8175 bfd_set_error (bfd_error_wrong_format
);
8179 return elf_elfheader (abfd
)->e_phnum
* sizeof (Elf_Internal_Phdr
);
8182 /* Copy ABFD's program header table entries to *PHDRS. The entries
8183 will be stored as an array of Elf_Internal_Phdr structures, as
8184 defined in include/elf/internal.h. To find out how large the
8185 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8187 Return the number of program header table entries read, or -1 if an
8188 error occurs; bfd_get_error will return an appropriate code. */
8191 bfd_get_elf_phdrs (bfd
*abfd
, void *phdrs
)
8195 if (abfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8197 bfd_set_error (bfd_error_wrong_format
);
8201 num_phdrs
= elf_elfheader (abfd
)->e_phnum
;
8202 memcpy (phdrs
, elf_tdata (abfd
)->phdr
,
8203 num_phdrs
* sizeof (Elf_Internal_Phdr
));
8209 _bfd_elf_sprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, char *buf
, bfd_vma value
)
8212 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8214 i_ehdrp
= elf_elfheader (abfd
);
8215 if (i_ehdrp
== NULL
)
8216 sprintf_vma (buf
, value
);
8219 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8221 #if BFD_HOST_64BIT_LONG
8222 sprintf (buf
, "%016lx", value
);
8224 sprintf (buf
, "%08lx%08lx", _bfd_int64_high (value
),
8225 _bfd_int64_low (value
));
8229 sprintf (buf
, "%08lx", (unsigned long) (value
& 0xffffffff));
8232 sprintf_vma (buf
, value
);
8237 _bfd_elf_fprintf_vma (bfd
*abfd ATTRIBUTE_UNUSED
, void *stream
, bfd_vma value
)
8240 Elf_Internal_Ehdr
*i_ehdrp
; /* Elf file header, internal form */
8242 i_ehdrp
= elf_elfheader (abfd
);
8243 if (i_ehdrp
== NULL
)
8244 fprintf_vma ((FILE *) stream
, value
);
8247 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
8249 #if BFD_HOST_64BIT_LONG
8250 fprintf ((FILE *) stream
, "%016lx", value
);
8252 fprintf ((FILE *) stream
, "%08lx%08lx",
8253 _bfd_int64_high (value
), _bfd_int64_low (value
));
8257 fprintf ((FILE *) stream
, "%08lx",
8258 (unsigned long) (value
& 0xffffffff));
8261 fprintf_vma ((FILE *) stream
, value
);
8265 enum elf_reloc_type_class
8266 _bfd_elf_reloc_type_class (const Elf_Internal_Rela
*rela ATTRIBUTE_UNUSED
)
8268 return reloc_class_normal
;
8271 /* For RELA architectures, return the relocation value for a
8272 relocation against a local symbol. */
8275 _bfd_elf_rela_local_sym (bfd
*abfd
,
8276 Elf_Internal_Sym
*sym
,
8278 Elf_Internal_Rela
*rel
)
8280 asection
*sec
= *psec
;
8283 relocation
= (sec
->output_section
->vma
8284 + sec
->output_offset
8286 if ((sec
->flags
& SEC_MERGE
)
8287 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
8288 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
8291 _bfd_merged_section_offset (abfd
, psec
,
8292 elf_section_data (sec
)->sec_info
,
8293 sym
->st_value
+ rel
->r_addend
);
8296 /* If we have changed the section, and our original section is
8297 marked with SEC_EXCLUDE, it means that the original
8298 SEC_MERGE section has been completely subsumed in some
8299 other SEC_MERGE section. In this case, we need to leave
8300 some info around for --emit-relocs. */
8301 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
8302 sec
->kept_section
= *psec
;
8305 rel
->r_addend
-= relocation
;
8306 rel
->r_addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
8312 _bfd_elf_rel_local_sym (bfd
*abfd
,
8313 Elf_Internal_Sym
*sym
,
8317 asection
*sec
= *psec
;
8319 if (sec
->sec_info_type
!= ELF_INFO_TYPE_MERGE
)
8320 return sym
->st_value
+ addend
;
8322 return _bfd_merged_section_offset (abfd
, psec
,
8323 elf_section_data (sec
)->sec_info
,
8324 sym
->st_value
+ addend
);
8328 _bfd_elf_section_offset (bfd
*abfd
,
8329 struct bfd_link_info
*info
,
8333 switch (sec
->sec_info_type
)
8335 case ELF_INFO_TYPE_STABS
:
8336 return _bfd_stab_section_offset (sec
, elf_section_data (sec
)->sec_info
,
8338 case ELF_INFO_TYPE_EH_FRAME
:
8339 return _bfd_elf_eh_frame_section_offset (abfd
, info
, sec
, offset
);
8345 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8346 reconstruct an ELF file by reading the segments out of remote memory
8347 based on the ELF file header at EHDR_VMA and the ELF program headers it
8348 points to. If not null, *LOADBASEP is filled in with the difference
8349 between the VMAs from which the segments were read, and the VMAs the
8350 file headers (and hence BFD's idea of each section's VMA) put them at.
8352 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8353 remote memory at target address VMA into the local buffer at MYADDR; it
8354 should return zero on success or an `errno' code on failure. TEMPL must
8355 be a BFD for an ELF target with the word size and byte order found in
8356 the remote memory. */
8359 bfd_elf_bfd_from_remote_memory
8363 int (*target_read_memory
) (bfd_vma
, bfd_byte
*, int))
8365 return (*get_elf_backend_data (templ
)->elf_backend_bfd_from_remote_memory
)
8366 (templ
, ehdr_vma
, loadbasep
, target_read_memory
);
8370 _bfd_elf_get_synthetic_symtab (bfd
*abfd
,
8371 long symcount ATTRIBUTE_UNUSED
,
8372 asymbol
**syms ATTRIBUTE_UNUSED
,
8377 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8380 const char *relplt_name
;
8381 bfd_boolean (*slurp_relocs
) (bfd
*, asection
*, asymbol
**, bfd_boolean
);
8385 Elf_Internal_Shdr
*hdr
;
8391 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
8394 if (dynsymcount
<= 0)
8397 if (!bed
->plt_sym_val
)
8400 relplt_name
= bed
->relplt_name
;
8401 if (relplt_name
== NULL
)
8402 relplt_name
= bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt";
8403 relplt
= bfd_get_section_by_name (abfd
, relplt_name
);
8407 hdr
= &elf_section_data (relplt
)->this_hdr
;
8408 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
8409 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
8412 plt
= bfd_get_section_by_name (abfd
, ".plt");
8416 slurp_relocs
= get_elf_backend_data (abfd
)->s
->slurp_reloc_table
;
8417 if (! (*slurp_relocs
) (abfd
, relplt
, dynsyms
, TRUE
))
8420 count
= relplt
->size
/ hdr
->sh_entsize
;
8421 size
= count
* sizeof (asymbol
);
8422 p
= relplt
->relocation
;
8423 for (i
= 0; i
< count
; i
++, s
++, p
++)
8424 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
8426 s
= *ret
= bfd_malloc (size
);
8430 names
= (char *) (s
+ count
);
8431 p
= relplt
->relocation
;
8433 for (i
= 0; i
< count
; i
++, s
++, p
++)
8438 addr
= bed
->plt_sym_val (i
, plt
, p
);
8439 if (addr
== (bfd_vma
) -1)
8442 *s
= **p
->sym_ptr_ptr
;
8443 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8444 we are defining a symbol, ensure one of them is set. */
8445 if ((s
->flags
& BSF_LOCAL
) == 0)
8446 s
->flags
|= BSF_GLOBAL
;
8448 s
->value
= addr
- plt
->vma
;
8450 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
8451 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
8453 memcpy (names
, "@plt", sizeof ("@plt"));
8454 names
+= sizeof ("@plt");
8461 /* Sort symbol by binding and section. We want to put definitions
8462 sorted by section at the beginning. */
8465 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
8467 const Elf_Internal_Sym
*s1
;
8468 const Elf_Internal_Sym
*s2
;
8471 /* Make sure that undefined symbols are at the end. */
8472 s1
= (const Elf_Internal_Sym
*) arg1
;
8473 if (s1
->st_shndx
== SHN_UNDEF
)
8475 s2
= (const Elf_Internal_Sym
*) arg2
;
8476 if (s2
->st_shndx
== SHN_UNDEF
)
8479 /* Sorted by section index. */
8480 shndx
= s1
->st_shndx
- s2
->st_shndx
;
8484 /* Sorted by binding. */
8485 return ELF_ST_BIND (s1
->st_info
) - ELF_ST_BIND (s2
->st_info
);
8490 Elf_Internal_Sym
*sym
;
8495 elf_sym_name_compare (const void *arg1
, const void *arg2
)
8497 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
8498 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
8499 return strcmp (s1
->name
, s2
->name
);
8502 /* Check if 2 sections define the same set of local and global
8506 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
)
8509 const struct elf_backend_data
*bed1
, *bed2
;
8510 Elf_Internal_Shdr
*hdr1
, *hdr2
;
8511 bfd_size_type symcount1
, symcount2
;
8512 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
8513 Elf_Internal_Sym
*isymstart1
= NULL
, *isymstart2
= NULL
, *isym
;
8514 Elf_Internal_Sym
*isymend
;
8515 struct elf_symbol
*symp
, *symtable1
= NULL
, *symtable2
= NULL
;
8516 bfd_size_type count1
, count2
, i
;
8523 /* If both are .gnu.linkonce sections, they have to have the same
8525 if (strncmp (sec1
->name
, ".gnu.linkonce",
8526 sizeof ".gnu.linkonce" - 1) == 0
8527 && strncmp (sec2
->name
, ".gnu.linkonce",
8528 sizeof ".gnu.linkonce" - 1) == 0)
8529 return strcmp (sec1
->name
+ sizeof ".gnu.linkonce",
8530 sec2
->name
+ sizeof ".gnu.linkonce") == 0;
8532 /* Both sections have to be in ELF. */
8533 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
8534 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
8537 if (elf_section_type (sec1
) != elf_section_type (sec2
))
8540 if ((elf_section_flags (sec1
) & SHF_GROUP
) != 0
8541 && (elf_section_flags (sec2
) & SHF_GROUP
) != 0)
8543 /* If both are members of section groups, they have to have the
8545 if (strcmp (elf_group_name (sec1
), elf_group_name (sec2
)) != 0)
8549 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
8550 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
8551 if (shndx1
== -1 || shndx2
== -1)
8554 bed1
= get_elf_backend_data (bfd1
);
8555 bed2
= get_elf_backend_data (bfd2
);
8556 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
8557 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
8558 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
8559 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
8561 if (symcount1
== 0 || symcount2
== 0)
8564 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
8566 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
8570 if (isymbuf1
== NULL
|| isymbuf2
== NULL
)
8573 /* Sort symbols by binding and section. Global definitions are at
8575 qsort (isymbuf1
, symcount1
, sizeof (Elf_Internal_Sym
),
8576 elf_sort_elf_symbol
);
8577 qsort (isymbuf2
, symcount2
, sizeof (Elf_Internal_Sym
),
8578 elf_sort_elf_symbol
);
8580 /* Count definitions in the section. */
8582 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
;
8583 isym
< isymend
; isym
++)
8585 if (isym
->st_shndx
== (unsigned int) shndx1
)
8592 if (count1
&& isym
->st_shndx
!= (unsigned int) shndx1
)
8597 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
;
8598 isym
< isymend
; isym
++)
8600 if (isym
->st_shndx
== (unsigned int) shndx2
)
8607 if (count2
&& isym
->st_shndx
!= (unsigned int) shndx2
)
8611 if (count1
== 0 || count2
== 0 || count1
!= count2
)
8614 symtable1
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8615 symtable2
= bfd_malloc (count1
* sizeof (struct elf_symbol
));
8617 if (symtable1
== NULL
|| symtable2
== NULL
)
8621 for (isym
= isymstart1
, isymend
= isym
+ count1
;
8622 isym
< isymend
; isym
++)
8625 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
8632 for (isym
= isymstart2
, isymend
= isym
+ count1
;
8633 isym
< isymend
; isym
++)
8636 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
8642 /* Sort symbol by name. */
8643 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
8644 elf_sym_name_compare
);
8645 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
8646 elf_sym_name_compare
);
8648 for (i
= 0; i
< count1
; i
++)
8649 /* Two symbols must have the same binding, type and name. */
8650 if (symtable1
[i
].sym
->st_info
!= symtable2
[i
].sym
->st_info
8651 || symtable1
[i
].sym
->st_other
!= symtable2
[i
].sym
->st_other
8652 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
8670 /* It is only used by x86-64 so far. */
8671 asection _bfd_elf_large_com_section
8672 = BFD_FAKE_SECTION (_bfd_elf_large_com_section
,
8673 SEC_IS_COMMON
, NULL
, NULL
, "LARGE_COMMON",
8676 /* Return TRUE if 2 section types are compatible. */
8679 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
8680 bfd
*bbfd
, const asection
*bsec
)
8684 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
8685 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
8688 return elf_section_type (asec
) == elf_section_type (bsec
);