1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
53 // Layout_task_runner methods.
55 // Lay out the sections. This is called after all the input objects
59 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
61 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
66 // Now we know the final size of the output file and we know where
67 // each piece of information goes.
69 if (this->mapfile_
!= NULL
)
71 this->mapfile_
->print_discarded_sections(this->input_objects_
);
72 this->layout_
->print_to_mapfile(this->mapfile_
);
75 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
76 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
77 of
->set_is_temporary();
80 // Queue up the final set of tasks.
81 gold::queue_final_tasks(this->options_
, this->input_objects_
,
82 this->symtab_
, this->layout_
, workqueue
, of
);
87 Layout::Layout(const General_options
& options
, Script_options
* script_options
)
89 script_options_(script_options
),
97 unattached_section_list_(),
98 sections_are_attached_(false),
99 special_output_list_(),
100 section_headers_(NULL
),
102 relro_segment_(NULL
),
103 symtab_section_(NULL
),
104 symtab_xindex_(NULL
),
105 dynsym_section_(NULL
),
106 dynsym_xindex_(NULL
),
107 dynamic_section_(NULL
),
109 eh_frame_section_(NULL
),
110 eh_frame_data_(NULL
),
111 added_eh_frame_data_(false),
112 eh_frame_hdr_section_(NULL
),
113 build_id_note_(NULL
),
117 output_file_size_(-1),
118 input_requires_executable_stack_(false),
119 input_with_gnu_stack_note_(false),
120 input_without_gnu_stack_note_(false),
121 has_static_tls_(false),
122 any_postprocessing_sections_(false)
124 // Make space for more than enough segments for a typical file.
125 // This is just for efficiency--it's OK if we wind up needing more.
126 this->segment_list_
.reserve(12);
128 // We expect two unattached Output_data objects: the file header and
129 // the segment headers.
130 this->special_output_list_
.reserve(2);
133 // Hash a key we use to look up an output section mapping.
136 Layout::Hash_key::operator()(const Layout::Key
& k
) const
138 return k
.first
+ k
.second
.first
+ k
.second
.second
;
141 // Return whether PREFIX is a prefix of STR.
144 is_prefix_of(const char* prefix
, const char* str
)
146 return strncmp(prefix
, str
, strlen(prefix
)) == 0;
149 // Returns whether the given section is in the list of
150 // debug-sections-used-by-some-version-of-gdb. Currently,
151 // we've checked versions of gdb up to and including 6.7.1.
153 static const char* gdb_sections
[] =
155 // ".debug_aranges", // not used by gdb as of 6.7.1
161 // ".debug_pubnames", // not used by gdb as of 6.7.1
166 static const char* lines_only_debug_sections
[] =
168 // ".debug_aranges", // not used by gdb as of 6.7.1
174 // ".debug_pubnames", // not used by gdb as of 6.7.1
180 is_gdb_debug_section(const char* str
)
182 // We can do this faster: binary search or a hashtable. But why bother?
183 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
184 if (strcmp(str
, gdb_sections
[i
]) == 0)
190 is_lines_only_debug_section(const char* str
)
192 // We can do this faster: binary search or a hashtable. But why bother?
194 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
196 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
201 // Whether to include this section in the link.
203 template<int size
, bool big_endian
>
205 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
206 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
208 switch (shdr
.get_sh_type())
210 case elfcpp::SHT_NULL
:
211 case elfcpp::SHT_SYMTAB
:
212 case elfcpp::SHT_DYNSYM
:
213 case elfcpp::SHT_HASH
:
214 case elfcpp::SHT_DYNAMIC
:
215 case elfcpp::SHT_SYMTAB_SHNDX
:
218 case elfcpp::SHT_STRTAB
:
219 // Discard the sections which have special meanings in the ELF
220 // ABI. Keep others (e.g., .stabstr). We could also do this by
221 // checking the sh_link fields of the appropriate sections.
222 return (strcmp(name
, ".dynstr") != 0
223 && strcmp(name
, ".strtab") != 0
224 && strcmp(name
, ".shstrtab") != 0);
226 case elfcpp::SHT_RELA
:
227 case elfcpp::SHT_REL
:
228 case elfcpp::SHT_GROUP
:
229 // If we are emitting relocations these should be handled
231 gold_assert(!parameters
->options().relocatable()
232 && !parameters
->options().emit_relocs());
235 case elfcpp::SHT_PROGBITS
:
236 if (parameters
->options().strip_debug()
237 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
239 if (is_debug_info_section(name
))
242 if (parameters
->options().strip_debug_non_line()
243 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
245 // Debugging sections can only be recognized by name.
246 if (is_prefix_of(".debug", name
)
247 && !is_lines_only_debug_section(name
))
250 if (parameters
->options().strip_debug_gdb()
251 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
253 // Debugging sections can only be recognized by name.
254 if (is_prefix_of(".debug", name
)
255 && !is_gdb_debug_section(name
))
265 // Return an output section named NAME, or NULL if there is none.
268 Layout::find_output_section(const char* name
) const
270 for (Section_list::const_iterator p
= this->section_list_
.begin();
271 p
!= this->section_list_
.end();
273 if (strcmp((*p
)->name(), name
) == 0)
278 // Return an output segment of type TYPE, with segment flags SET set
279 // and segment flags CLEAR clear. Return NULL if there is none.
282 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
283 elfcpp::Elf_Word clear
) const
285 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
286 p
!= this->segment_list_
.end();
288 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
289 && ((*p
)->flags() & set
) == set
290 && ((*p
)->flags() & clear
) == 0)
295 // Return the output section to use for section NAME with type TYPE
296 // and section flags FLAGS. NAME must be canonicalized in the string
297 // pool, and NAME_KEY is the key.
300 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
301 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
303 elfcpp::Elf_Xword lookup_flags
= flags
;
305 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
306 // read-write with read-only sections. Some other ELF linkers do
307 // not do this. FIXME: Perhaps there should be an option
309 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
311 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
312 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
313 std::pair
<Section_name_map::iterator
, bool> ins(
314 this->section_name_map_
.insert(v
));
317 return ins
.first
->second
;
320 // This is the first time we've seen this name/type/flags
321 // combination. For compatibility with the GNU linker, we
322 // combine sections with contents and zero flags with sections
323 // with non-zero flags. This is a workaround for cases where
324 // assembler code forgets to set section flags. FIXME: Perhaps
325 // there should be an option to control this.
326 Output_section
* os
= NULL
;
328 if (type
== elfcpp::SHT_PROGBITS
)
332 Output_section
* same_name
= this->find_output_section(name
);
333 if (same_name
!= NULL
334 && same_name
->type() == elfcpp::SHT_PROGBITS
335 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
338 else if ((flags
& elfcpp::SHF_TLS
) == 0)
340 elfcpp::Elf_Xword zero_flags
= 0;
341 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
342 Section_name_map::iterator p
=
343 this->section_name_map_
.find(zero_key
);
344 if (p
!= this->section_name_map_
.end())
350 os
= this->make_output_section(name
, type
, flags
);
351 ins
.first
->second
= os
;
356 // Pick the output section to use for section NAME, in input file
357 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
358 // linker created section. IS_INPUT_SECTION is true if we are
359 // choosing an output section for an input section found in a input
360 // file. This will return NULL if the input section should be
364 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
365 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
366 bool is_input_section
)
368 // We should not see any input sections after we have attached
369 // sections to segments.
370 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
372 // Some flags in the input section should not be automatically
373 // copied to the output section.
374 flags
&= ~ (elfcpp::SHF_INFO_LINK
375 | elfcpp::SHF_LINK_ORDER
378 | elfcpp::SHF_STRINGS
);
380 if (this->script_options_
->saw_sections_clause())
382 // We are using a SECTIONS clause, so the output section is
383 // chosen based only on the name.
385 Script_sections
* ss
= this->script_options_
->script_sections();
386 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
387 Output_section
** output_section_slot
;
388 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
391 // The SECTIONS clause says to discard this input section.
395 // If this is an orphan section--one not mentioned in the linker
396 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
397 // default processing below.
399 if (output_section_slot
!= NULL
)
401 if (*output_section_slot
!= NULL
)
402 return *output_section_slot
;
404 // We don't put sections found in the linker script into
405 // SECTION_NAME_MAP_. That keeps us from getting confused
406 // if an orphan section is mapped to a section with the same
407 // name as one in the linker script.
409 name
= this->namepool_
.add(name
, false, NULL
);
411 Output_section
* os
= this->make_output_section(name
, type
, flags
);
412 os
->set_found_in_sections_clause();
413 *output_section_slot
= os
;
418 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
420 // Turn NAME from the name of the input section into the name of the
423 size_t len
= strlen(name
);
424 if (is_input_section
&& !parameters
->options().relocatable())
425 name
= Layout::output_section_name(name
, &len
);
427 Stringpool::Key name_key
;
428 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
430 // Find or make the output section. The output section is selected
431 // based on the section name, type, and flags.
432 return this->get_output_section(name
, name_key
, type
, flags
);
435 // Return the output section to use for input section SHNDX, with name
436 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
437 // index of a relocation section which applies to this section, or 0
438 // if none, or -1U if more than one. RELOC_TYPE is the type of the
439 // relocation section if there is one. Set *OFF to the offset of this
440 // input section without the output section. Return NULL if the
441 // section should be discarded. Set *OFF to -1 if the section
442 // contents should not be written directly to the output file, but
443 // will instead receive special handling.
445 template<int size
, bool big_endian
>
447 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
448 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
449 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
453 if (!this->include_section(object
, name
, shdr
))
458 // In a relocatable link a grouped section must not be combined with
459 // any other sections.
460 if (parameters
->options().relocatable()
461 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
463 name
= this->namepool_
.add(name
, true, NULL
);
464 os
= this->make_output_section(name
, shdr
.get_sh_type(),
465 shdr
.get_sh_flags());
469 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
470 shdr
.get_sh_flags(), true);
475 // By default the GNU linker sorts input sections whose names match
476 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
477 // are sorted by name. This is used to implement constructor
478 // priority ordering. We are compatible.
479 if (!this->script_options_
->saw_sections_clause()
480 && (is_prefix_of(".ctors.", name
)
481 || is_prefix_of(".dtors.", name
)
482 || is_prefix_of(".init_array.", name
)
483 || is_prefix_of(".fini_array.", name
)))
484 os
->set_must_sort_attached_input_sections();
486 // FIXME: Handle SHF_LINK_ORDER somewhere.
488 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
489 this->script_options_
->saw_sections_clause());
494 // Handle a relocation section when doing a relocatable link.
496 template<int size
, bool big_endian
>
498 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
500 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
501 Output_section
* data_section
,
502 Relocatable_relocs
* rr
)
504 gold_assert(parameters
->options().relocatable()
505 || parameters
->options().emit_relocs());
507 int sh_type
= shdr
.get_sh_type();
510 if (sh_type
== elfcpp::SHT_REL
)
512 else if (sh_type
== elfcpp::SHT_RELA
)
516 name
+= data_section
->name();
518 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
523 os
->set_should_link_to_symtab();
524 os
->set_info_section(data_section
);
526 Output_section_data
* posd
;
527 if (sh_type
== elfcpp::SHT_REL
)
529 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
530 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
534 else if (sh_type
== elfcpp::SHT_RELA
)
536 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
537 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
544 os
->add_output_section_data(posd
);
545 rr
->set_output_data(posd
);
550 // Handle a group section when doing a relocatable link.
552 template<int size
, bool big_endian
>
554 Layout::layout_group(Symbol_table
* symtab
,
555 Sized_relobj
<size
, big_endian
>* object
,
557 const char* group_section_name
,
558 const char* signature
,
559 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
560 elfcpp::Elf_Word flags
,
561 std::vector
<unsigned int>* shndxes
)
563 gold_assert(parameters
->options().relocatable());
564 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
565 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
566 Output_section
* os
= this->make_output_section(group_section_name
,
568 shdr
.get_sh_flags());
570 // We need to find a symbol with the signature in the symbol table.
571 // If we don't find one now, we need to look again later.
572 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
574 os
->set_info_symndx(sym
);
577 // We will wind up using a symbol whose name is the signature.
578 // So just put the signature in the symbol name pool to save it.
579 signature
= symtab
->canonicalize_name(signature
);
580 this->group_signatures_
.push_back(Group_signature(os
, signature
));
583 os
->set_should_link_to_symtab();
586 section_size_type entry_count
=
587 convert_to_section_size_type(shdr
.get_sh_size() / 4);
588 Output_section_data
* posd
=
589 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
591 os
->add_output_section_data(posd
);
594 // Special GNU handling of sections name .eh_frame. They will
595 // normally hold exception frame data as defined by the C++ ABI
596 // (http://codesourcery.com/cxx-abi/).
598 template<int size
, bool big_endian
>
600 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
601 const unsigned char* symbols
,
603 const unsigned char* symbol_names
,
604 off_t symbol_names_size
,
606 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
607 unsigned int reloc_shndx
, unsigned int reloc_type
,
610 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
611 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
613 const char* const name
= ".eh_frame";
614 Output_section
* os
= this->choose_output_section(object
,
616 elfcpp::SHT_PROGBITS
,
622 if (this->eh_frame_section_
== NULL
)
624 this->eh_frame_section_
= os
;
625 this->eh_frame_data_
= new Eh_frame();
627 if (this->options_
.eh_frame_hdr())
629 Output_section
* hdr_os
=
630 this->choose_output_section(NULL
,
632 elfcpp::SHT_PROGBITS
,
638 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
639 this->eh_frame_data_
);
640 hdr_os
->add_output_section_data(hdr_posd
);
642 hdr_os
->set_after_input_sections();
644 if (!this->script_options_
->saw_phdrs_clause())
646 Output_segment
* hdr_oseg
;
647 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
649 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
652 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
657 gold_assert(this->eh_frame_section_
== os
);
659 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
668 os
->update_flags_for_input_section(shdr
.get_sh_flags());
670 // We found a .eh_frame section we are going to optimize, so now
671 // we can add the set of optimized sections to the output
672 // section. We need to postpone adding this until we've found a
673 // section we can optimize so that the .eh_frame section in
674 // crtbegin.o winds up at the start of the output section.
675 if (!this->added_eh_frame_data_
)
677 os
->add_output_section_data(this->eh_frame_data_
);
678 this->added_eh_frame_data_
= true;
684 // We couldn't handle this .eh_frame section for some reason.
685 // Add it as a normal section.
686 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
687 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
688 saw_sections_clause
);
694 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
695 // the output section.
698 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
699 elfcpp::Elf_Xword flags
,
700 Output_section_data
* posd
)
702 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
705 os
->add_output_section_data(posd
);
709 // Map section flags to segment flags.
712 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
714 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
715 if ((flags
& elfcpp::SHF_WRITE
) != 0)
717 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
722 // Sometimes we compress sections. This is typically done for
723 // sections that are not part of normal program execution (such as
724 // .debug_* sections), and where the readers of these sections know
725 // how to deal with compressed sections. (To make it easier for them,
726 // we will rename the ouput section in such cases from .foo to
727 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
728 // doesn't say for certain whether we'll compress -- it depends on
729 // commandline options as well -- just whether this section is a
730 // candidate for compression.
733 is_compressible_debug_section(const char* secname
)
735 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
738 // Make a new Output_section, and attach it to segments as
742 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
743 elfcpp::Elf_Xword flags
)
746 if ((flags
& elfcpp::SHF_ALLOC
) == 0
747 && strcmp(this->options_
.compress_debug_sections(), "none") != 0
748 && is_compressible_debug_section(name
))
749 os
= new Output_compressed_section(&this->options_
, name
, type
, flags
);
751 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
752 && this->options_
.strip_debug_non_line()
753 && strcmp(".debug_abbrev", name
) == 0)
755 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
757 if (this->debug_info_
)
758 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
760 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
761 && this->options_
.strip_debug_non_line()
762 && strcmp(".debug_info", name
) == 0)
764 os
= this->debug_info_
= new Output_reduced_debug_info_section(
766 if (this->debug_abbrev_
)
767 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
770 os
= new Output_section(name
, type
, flags
);
772 this->section_list_
.push_back(os
);
774 // The GNU linker by default sorts some sections by priority, so we
775 // do the same. We need to know that this might happen before we
776 // attach any input sections.
777 if (!this->script_options_
->saw_sections_clause()
778 && (strcmp(name
, ".ctors") == 0
779 || strcmp(name
, ".dtors") == 0
780 || strcmp(name
, ".init_array") == 0
781 || strcmp(name
, ".fini_array") == 0))
782 os
->set_may_sort_attached_input_sections();
784 // With -z relro, we have to recognize the special sections by name.
785 // There is no other way.
786 if (!this->script_options_
->saw_sections_clause()
787 && parameters
->options().relro()
788 && type
== elfcpp::SHT_PROGBITS
789 && (flags
& elfcpp::SHF_ALLOC
) != 0
790 && (flags
& elfcpp::SHF_WRITE
) != 0)
792 if (strcmp(name
, ".data.rel.ro") == 0)
794 else if (strcmp(name
, ".data.rel.ro.local") == 0)
797 os
->set_is_relro_local();
801 // If we have already attached the sections to segments, then we
802 // need to attach this one now. This happens for sections created
803 // directly by the linker.
804 if (this->sections_are_attached_
)
805 this->attach_section_to_segment(os
);
810 // Attach output sections to segments. This is called after we have
811 // seen all the input sections.
814 Layout::attach_sections_to_segments()
816 for (Section_list::iterator p
= this->section_list_
.begin();
817 p
!= this->section_list_
.end();
819 this->attach_section_to_segment(*p
);
821 this->sections_are_attached_
= true;
824 // Attach an output section to a segment.
827 Layout::attach_section_to_segment(Output_section
* os
)
829 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
830 this->unattached_section_list_
.push_back(os
);
832 this->attach_allocated_section_to_segment(os
);
835 // Attach an allocated output section to a segment.
838 Layout::attach_allocated_section_to_segment(Output_section
* os
)
840 elfcpp::Elf_Xword flags
= os
->flags();
841 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
843 if (parameters
->options().relocatable())
846 // If we have a SECTIONS clause, we can't handle the attachment to
847 // segments until after we've seen all the sections.
848 if (this->script_options_
->saw_sections_clause())
851 gold_assert(!this->script_options_
->saw_phdrs_clause());
853 // This output section goes into a PT_LOAD segment.
855 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
857 // In general the only thing we really care about for PT_LOAD
858 // segments is whether or not they are writable, so that is how we
859 // search for them. People who need segments sorted on some other
860 // basis will have to use a linker script.
862 Segment_list::const_iterator p
;
863 for (p
= this->segment_list_
.begin();
864 p
!= this->segment_list_
.end();
867 if ((*p
)->type() == elfcpp::PT_LOAD
868 && ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
))
870 // If -Tbss was specified, we need to separate the data
872 if (this->options_
.user_set_Tbss())
874 if ((os
->type() == elfcpp::SHT_NOBITS
)
875 == (*p
)->has_any_data_sections())
879 (*p
)->add_output_section(os
, seg_flags
);
884 if (p
== this->segment_list_
.end())
886 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
888 oseg
->add_output_section(os
, seg_flags
);
891 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
893 if (os
->type() == elfcpp::SHT_NOTE
)
895 // See if we already have an equivalent PT_NOTE segment.
896 for (p
= this->segment_list_
.begin();
897 p
!= segment_list_
.end();
900 if ((*p
)->type() == elfcpp::PT_NOTE
901 && (((*p
)->flags() & elfcpp::PF_W
)
902 == (seg_flags
& elfcpp::PF_W
)))
904 (*p
)->add_output_section(os
, seg_flags
);
909 if (p
== this->segment_list_
.end())
911 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
913 oseg
->add_output_section(os
, seg_flags
);
917 // If we see a loadable SHF_TLS section, we create a PT_TLS
918 // segment. There can only be one such segment.
919 if ((flags
& elfcpp::SHF_TLS
) != 0)
921 if (this->tls_segment_
== NULL
)
922 this->tls_segment_
= this->make_output_segment(elfcpp::PT_TLS
,
924 this->tls_segment_
->add_output_section(os
, seg_flags
);
927 // If -z relro is in effect, and we see a relro section, we create a
928 // PT_GNU_RELRO segment. There can only be one such segment.
929 if (os
->is_relro() && parameters
->options().relro())
931 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
932 if (this->relro_segment_
== NULL
)
933 this->relro_segment_
= this->make_output_segment(elfcpp::PT_GNU_RELRO
,
935 this->relro_segment_
->add_output_section(os
, seg_flags
);
939 // Make an output section for a script.
942 Layout::make_output_section_for_script(const char* name
)
944 name
= this->namepool_
.add(name
, false, NULL
);
945 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
947 os
->set_found_in_sections_clause();
951 // Return the number of segments we expect to see.
954 Layout::expected_segment_count() const
956 size_t ret
= this->segment_list_
.size();
958 // If we didn't see a SECTIONS clause in a linker script, we should
959 // already have the complete list of segments. Otherwise we ask the
960 // SECTIONS clause how many segments it expects, and add in the ones
961 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
963 if (!this->script_options_
->saw_sections_clause())
967 const Script_sections
* ss
= this->script_options_
->script_sections();
968 return ret
+ ss
->expected_segment_count(this);
972 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
973 // is whether we saw a .note.GNU-stack section in the object file.
974 // GNU_STACK_FLAGS is the section flags. The flags give the
975 // protection required for stack memory. We record this in an
976 // executable as a PT_GNU_STACK segment. If an object file does not
977 // have a .note.GNU-stack segment, we must assume that it is an old
978 // object. On some targets that will force an executable stack.
981 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
984 this->input_without_gnu_stack_note_
= true;
987 this->input_with_gnu_stack_note_
= true;
988 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
989 this->input_requires_executable_stack_
= true;
993 // Create the dynamic sections which are needed before we read the
997 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
999 if (parameters
->doing_static_link())
1002 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1003 elfcpp::SHT_DYNAMIC
,
1005 | elfcpp::SHF_WRITE
),
1007 this->dynamic_section_
->set_is_relro();
1009 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
1010 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1011 elfcpp::STV_HIDDEN
, 0, false, false);
1013 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1015 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1018 // For each output section whose name can be represented as C symbol,
1019 // define __start and __stop symbols for the section. This is a GNU
1023 Layout::define_section_symbols(Symbol_table
* symtab
)
1025 for (Section_list::const_iterator p
= this->section_list_
.begin();
1026 p
!= this->section_list_
.end();
1029 const char* const name
= (*p
)->name();
1030 if (name
[strspn(name
,
1032 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1033 "abcdefghijklmnopqrstuvwxyz"
1037 const std::string
name_string(name
);
1038 const std::string
start_name("__start_" + name_string
);
1039 const std::string
stop_name("__stop_" + name_string
);
1041 symtab
->define_in_output_data(start_name
.c_str(),
1048 elfcpp::STV_DEFAULT
,
1050 false, // offset_is_from_end
1051 true); // only_if_ref
1053 symtab
->define_in_output_data(stop_name
.c_str(),
1060 elfcpp::STV_DEFAULT
,
1062 true, // offset_is_from_end
1063 true); // only_if_ref
1068 // Define symbols for group signatures.
1071 Layout::define_group_signatures(Symbol_table
* symtab
)
1073 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1074 p
!= this->group_signatures_
.end();
1077 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1079 p
->section
->set_info_symndx(sym
);
1082 // Force the name of the group section to the group
1083 // signature, and use the group's section symbol as the
1084 // signature symbol.
1085 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1087 const char* name
= this->namepool_
.add(p
->signature
,
1089 p
->section
->set_name(name
);
1091 p
->section
->set_needs_symtab_index();
1092 p
->section
->set_info_section_symndx(p
->section
);
1096 this->group_signatures_
.clear();
1099 // Find the first read-only PT_LOAD segment, creating one if
1103 Layout::find_first_load_seg()
1105 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1106 p
!= this->segment_list_
.end();
1109 if ((*p
)->type() == elfcpp::PT_LOAD
1110 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1111 && ((*p
)->flags() & elfcpp::PF_W
) == 0)
1115 gold_assert(!this->script_options_
->saw_phdrs_clause());
1117 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1122 // Finalize the layout. When this is called, we have created all the
1123 // output sections and all the output segments which are based on
1124 // input sections. We have several things to do, and we have to do
1125 // them in the right order, so that we get the right results correctly
1128 // 1) Finalize the list of output segments and create the segment
1131 // 2) Finalize the dynamic symbol table and associated sections.
1133 // 3) Determine the final file offset of all the output segments.
1135 // 4) Determine the final file offset of all the SHF_ALLOC output
1138 // 5) Create the symbol table sections and the section name table
1141 // 6) Finalize the symbol table: set symbol values to their final
1142 // value and make a final determination of which symbols are going
1143 // into the output symbol table.
1145 // 7) Create the section table header.
1147 // 8) Determine the final file offset of all the output sections which
1148 // are not SHF_ALLOC, including the section table header.
1150 // 9) Finalize the ELF file header.
1152 // This function returns the size of the output file.
1155 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1156 Target
* target
, const Task
* task
)
1158 target
->finalize_sections(this);
1160 this->count_local_symbols(task
, input_objects
);
1162 this->create_gold_note();
1163 this->create_executable_stack_info(target
);
1164 this->create_build_id();
1166 Output_segment
* phdr_seg
= NULL
;
1167 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1169 // There was a dynamic object in the link. We need to create
1170 // some information for the dynamic linker.
1172 // Create the PT_PHDR segment which will hold the program
1174 if (!this->script_options_
->saw_phdrs_clause())
1175 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1177 // Create the dynamic symbol table, including the hash table.
1178 Output_section
* dynstr
;
1179 std::vector
<Symbol
*> dynamic_symbols
;
1180 unsigned int local_dynamic_count
;
1181 Versions
versions(*this->script_options()->version_script_info(),
1183 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1184 &local_dynamic_count
, &dynamic_symbols
,
1187 // Create the .interp section to hold the name of the
1188 // interpreter, and put it in a PT_INTERP segment.
1189 if (!parameters
->options().shared())
1190 this->create_interp(target
);
1192 // Finish the .dynamic section to hold the dynamic data, and put
1193 // it in a PT_DYNAMIC segment.
1194 this->finish_dynamic_section(input_objects
, symtab
);
1196 // We should have added everything we need to the dynamic string
1198 this->dynpool_
.set_string_offsets();
1200 // Create the version sections. We can't do this until the
1201 // dynamic string table is complete.
1202 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1203 dynamic_symbols
, dynstr
);
1206 // If there is a SECTIONS clause, put all the input sections into
1207 // the required order.
1208 Output_segment
* load_seg
;
1209 if (this->script_options_
->saw_sections_clause())
1210 load_seg
= this->set_section_addresses_from_script(symtab
);
1211 else if (parameters
->options().relocatable())
1214 load_seg
= this->find_first_load_seg();
1216 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
1219 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
1221 // Lay out the segment headers.
1222 Output_segment_headers
* segment_headers
;
1223 if (parameters
->options().relocatable())
1224 segment_headers
= NULL
;
1227 segment_headers
= new Output_segment_headers(this->segment_list_
);
1228 if (load_seg
!= NULL
)
1229 load_seg
->add_initial_output_data(segment_headers
);
1230 if (phdr_seg
!= NULL
)
1231 phdr_seg
->add_initial_output_data(segment_headers
);
1234 // Lay out the file header.
1235 Output_file_header
* file_header
;
1236 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1237 this->options_
.entry());
1238 if (load_seg
!= NULL
)
1239 load_seg
->add_initial_output_data(file_header
);
1241 this->special_output_list_
.push_back(file_header
);
1242 if (segment_headers
!= NULL
)
1243 this->special_output_list_
.push_back(segment_headers
);
1245 if (this->script_options_
->saw_phdrs_clause()
1246 && !parameters
->options().relocatable())
1248 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1249 // clause in a linker script.
1250 Script_sections
* ss
= this->script_options_
->script_sections();
1251 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1254 // We set the output section indexes in set_segment_offsets and
1255 // set_section_indexes.
1256 unsigned int shndx
= 1;
1258 // Set the file offsets of all the segments, and all the sections
1261 if (!parameters
->options().relocatable())
1262 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1264 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1266 // Set the file offsets of all the non-data sections we've seen so
1267 // far which don't have to wait for the input sections. We need
1268 // this in order to finalize local symbols in non-allocated
1270 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1272 // Set the section indexes of all unallocated sections seen so far,
1273 // in case any of them are somehow referenced by a symbol.
1274 shndx
= this->set_section_indexes(shndx
);
1276 // Create the symbol table sections.
1277 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1278 if (!parameters
->doing_static_link())
1279 this->assign_local_dynsym_offsets(input_objects
);
1281 // Process any symbol assignments from a linker script. This must
1282 // be called after the symbol table has been finalized.
1283 this->script_options_
->finalize_symbols(symtab
, this);
1285 // Create the .shstrtab section.
1286 Output_section
* shstrtab_section
= this->create_shstrtab();
1288 // Set the file offsets of the rest of the non-data sections which
1289 // don't have to wait for the input sections.
1290 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1292 // Now that all sections have been created, set the section indexes
1293 // for any sections which haven't been done yet.
1294 shndx
= this->set_section_indexes(shndx
);
1296 // Create the section table header.
1297 this->create_shdrs(shstrtab_section
, &off
);
1299 // If there are no sections which require postprocessing, we can
1300 // handle the section names now, and avoid a resize later.
1301 if (!this->any_postprocessing_sections_
)
1302 off
= this->set_section_offsets(off
,
1303 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1305 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1307 // Now we know exactly where everything goes in the output file
1308 // (except for non-allocated sections which require postprocessing).
1309 Output_data::layout_complete();
1311 this->output_file_size_
= off
;
1316 // Create a note header following the format defined in the ELF ABI.
1317 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1318 // descriptor. ALLOCATE is true if the section should be allocated in
1319 // memory. This returns the new note section. It sets
1320 // *TRAILING_PADDING to the number of trailing zero bytes required.
1323 Layout::create_note(const char* name
, int note_type
, size_t descsz
,
1324 bool allocate
, size_t* trailing_padding
)
1326 // Authorities all agree that the values in a .note field should
1327 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1328 // they differ on what the alignment is for 64-bit binaries.
1329 // The GABI says unambiguously they take 8-byte alignment:
1330 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1331 // Other documentation says alignment should always be 4 bytes:
1332 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1333 // GNU ld and GNU readelf both support the latter (at least as of
1334 // version 2.16.91), and glibc always generates the latter for
1335 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1337 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1338 const int size
= parameters
->target().get_size();
1340 const int size
= 32;
1343 // The contents of the .note section.
1344 size_t namesz
= strlen(name
) + 1;
1345 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1346 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1348 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1350 unsigned char* buffer
= new unsigned char[notehdrsz
];
1351 memset(buffer
, 0, notehdrsz
);
1353 bool is_big_endian
= parameters
->target().is_big_endian();
1359 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1360 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1361 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1365 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1366 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1367 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1370 else if (size
== 64)
1374 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1375 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1376 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1380 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1381 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1382 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1388 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1390 const char* note_name
= this->namepool_
.add(".note", false, NULL
);
1391 elfcpp::Elf_Xword flags
= 0;
1393 flags
= elfcpp::SHF_ALLOC
;
1394 Output_section
* os
= this->make_output_section(note_name
,
1397 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1400 os
->add_output_section_data(posd
);
1402 *trailing_padding
= aligned_descsz
- descsz
;
1407 // For an executable or shared library, create a note to record the
1408 // version of gold used to create the binary.
1411 Layout::create_gold_note()
1413 if (parameters
->options().relocatable())
1416 std::string desc
= std::string("gold ") + gold::get_version_string();
1418 size_t trailing_padding
;
1419 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1420 desc
.size(), false, &trailing_padding
);
1422 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1423 os
->add_output_section_data(posd
);
1425 if (trailing_padding
> 0)
1427 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1428 os
->add_output_section_data(posd
);
1432 // Record whether the stack should be executable. This can be set
1433 // from the command line using the -z execstack or -z noexecstack
1434 // options. Otherwise, if any input file has a .note.GNU-stack
1435 // section with the SHF_EXECINSTR flag set, the stack should be
1436 // executable. Otherwise, if at least one input file a
1437 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1438 // section, we use the target default for whether the stack should be
1439 // executable. Otherwise, we don't generate a stack note. When
1440 // generating a object file, we create a .note.GNU-stack section with
1441 // the appropriate marking. When generating an executable or shared
1442 // library, we create a PT_GNU_STACK segment.
1445 Layout::create_executable_stack_info(const Target
* target
)
1447 bool is_stack_executable
;
1448 if (this->options_
.is_execstack_set())
1449 is_stack_executable
= this->options_
.is_stack_executable();
1450 else if (!this->input_with_gnu_stack_note_
)
1454 if (this->input_requires_executable_stack_
)
1455 is_stack_executable
= true;
1456 else if (this->input_without_gnu_stack_note_
)
1457 is_stack_executable
= target
->is_default_stack_executable();
1459 is_stack_executable
= false;
1462 if (parameters
->options().relocatable())
1464 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1465 elfcpp::Elf_Xword flags
= 0;
1466 if (is_stack_executable
)
1467 flags
|= elfcpp::SHF_EXECINSTR
;
1468 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1472 if (this->script_options_
->saw_phdrs_clause())
1474 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1475 if (is_stack_executable
)
1476 flags
|= elfcpp::PF_X
;
1477 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1481 // If --build-id was used, set up the build ID note.
1484 Layout::create_build_id()
1486 if (!parameters
->options().user_set_build_id())
1489 const char* style
= parameters
->options().build_id();
1490 if (strcmp(style
, "none") == 0)
1493 // Set DESCSZ to the size of the note descriptor. When possible,
1494 // set DESC to the note descriptor contents.
1497 if (strcmp(style
, "md5") == 0)
1499 else if (strcmp(style
, "sha1") == 0)
1501 else if (strcmp(style
, "uuid") == 0)
1503 const size_t uuidsz
= 128 / 8;
1505 char buffer
[uuidsz
];
1506 memset(buffer
, 0, uuidsz
);
1508 int descriptor
= ::open("/dev/urandom", O_RDONLY
);
1510 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1514 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1515 ::close(descriptor
);
1517 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1518 else if (static_cast<size_t>(got
) != uuidsz
)
1519 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1523 desc
.assign(buffer
, uuidsz
);
1526 else if (strncmp(style
, "0x", 2) == 0)
1529 const char* p
= style
+ 2;
1532 if (hex_p(p
[0]) && hex_p(p
[1]))
1534 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1538 else if (*p
== '-' || *p
== ':')
1541 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1544 descsz
= desc
.size();
1547 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1550 size_t trailing_padding
;
1551 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1552 descsz
, true, &trailing_padding
);
1556 // We know the value already, so we fill it in now.
1557 gold_assert(desc
.size() == descsz
);
1559 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1560 os
->add_output_section_data(posd
);
1562 if (trailing_padding
!= 0)
1564 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1565 os
->add_output_section_data(posd
);
1570 // We need to compute a checksum after we have completed the
1572 gold_assert(trailing_padding
== 0);
1573 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
1574 os
->add_output_section_data(this->build_id_note_
);
1575 os
->set_after_input_sections();
1579 // Return whether SEG1 should be before SEG2 in the output file. This
1580 // is based entirely on the segment type and flags. When this is
1581 // called the segment addresses has normally not yet been set.
1584 Layout::segment_precedes(const Output_segment
* seg1
,
1585 const Output_segment
* seg2
)
1587 elfcpp::Elf_Word type1
= seg1
->type();
1588 elfcpp::Elf_Word type2
= seg2
->type();
1590 // The single PT_PHDR segment is required to precede any loadable
1591 // segment. We simply make it always first.
1592 if (type1
== elfcpp::PT_PHDR
)
1594 gold_assert(type2
!= elfcpp::PT_PHDR
);
1597 if (type2
== elfcpp::PT_PHDR
)
1600 // The single PT_INTERP segment is required to precede any loadable
1601 // segment. We simply make it always second.
1602 if (type1
== elfcpp::PT_INTERP
)
1604 gold_assert(type2
!= elfcpp::PT_INTERP
);
1607 if (type2
== elfcpp::PT_INTERP
)
1610 // We then put PT_LOAD segments before any other segments.
1611 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1613 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1616 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1617 // segment, because that is where the dynamic linker expects to find
1618 // it (this is just for efficiency; other positions would also work
1620 if (type1
== elfcpp::PT_TLS
1621 && type2
!= elfcpp::PT_TLS
1622 && type2
!= elfcpp::PT_GNU_RELRO
)
1624 if (type2
== elfcpp::PT_TLS
1625 && type1
!= elfcpp::PT_TLS
1626 && type1
!= elfcpp::PT_GNU_RELRO
)
1629 // We put the PT_GNU_RELRO segment last, because that is where the
1630 // dynamic linker expects to find it (as with PT_TLS, this is just
1632 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
1634 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
1637 const elfcpp::Elf_Word flags1
= seg1
->flags();
1638 const elfcpp::Elf_Word flags2
= seg2
->flags();
1640 // The order of non-PT_LOAD segments is unimportant. We simply sort
1641 // by the numeric segment type and flags values. There should not
1642 // be more than one segment with the same type and flags.
1643 if (type1
!= elfcpp::PT_LOAD
)
1646 return type1
< type2
;
1647 gold_assert(flags1
!= flags2
);
1648 return flags1
< flags2
;
1651 // If the addresses are set already, sort by load address.
1652 if (seg1
->are_addresses_set())
1654 if (!seg2
->are_addresses_set())
1657 unsigned int section_count1
= seg1
->output_section_count();
1658 unsigned int section_count2
= seg2
->output_section_count();
1659 if (section_count1
== 0 && section_count2
> 0)
1661 if (section_count1
> 0 && section_count2
== 0)
1664 uint64_t paddr1
= seg1
->first_section_load_address();
1665 uint64_t paddr2
= seg2
->first_section_load_address();
1666 if (paddr1
!= paddr2
)
1667 return paddr1
< paddr2
;
1669 else if (seg2
->are_addresses_set())
1672 // We sort PT_LOAD segments based on the flags. Readonly segments
1673 // come before writable segments. Then writable segments with data
1674 // come before writable segments without data. Then executable
1675 // segments come before non-executable segments. Then the unlikely
1676 // case of a non-readable segment comes before the normal case of a
1677 // readable segment. If there are multiple segments with the same
1678 // type and flags, we require that the address be set, and we sort
1679 // by virtual address and then physical address.
1680 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1681 return (flags1
& elfcpp::PF_W
) == 0;
1682 if ((flags1
& elfcpp::PF_W
) != 0
1683 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1684 return seg1
->has_any_data_sections();
1685 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1686 return (flags1
& elfcpp::PF_X
) != 0;
1687 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1688 return (flags1
& elfcpp::PF_R
) == 0;
1690 // We shouldn't get here--we shouldn't create segments which we
1691 // can't distinguish.
1695 // Set the file offsets of all the segments, and all the sections they
1696 // contain. They have all been created. LOAD_SEG must be be laid out
1697 // first. Return the offset of the data to follow.
1700 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1701 unsigned int *pshndx
)
1703 // Sort them into the final order.
1704 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1705 Layout::Compare_segments());
1707 // Find the PT_LOAD segments, and set their addresses and offsets
1708 // and their section's addresses and offsets.
1710 if (this->options_
.user_set_Ttext())
1711 addr
= this->options_
.Ttext();
1712 else if (parameters
->options().shared())
1715 addr
= target
->default_text_segment_address();
1718 // If LOAD_SEG is NULL, then the file header and segment headers
1719 // will not be loadable. But they still need to be at offset 0 in
1720 // the file. Set their offsets now.
1721 if (load_seg
== NULL
)
1723 for (Data_list::iterator p
= this->special_output_list_
.begin();
1724 p
!= this->special_output_list_
.end();
1727 off
= align_address(off
, (*p
)->addralign());
1728 (*p
)->set_address_and_file_offset(0, off
);
1729 off
+= (*p
)->data_size();
1733 bool was_readonly
= false;
1734 for (Segment_list::iterator p
= this->segment_list_
.begin();
1735 p
!= this->segment_list_
.end();
1738 if ((*p
)->type() == elfcpp::PT_LOAD
)
1740 if (load_seg
!= NULL
&& load_seg
!= *p
)
1744 bool are_addresses_set
= (*p
)->are_addresses_set();
1745 if (are_addresses_set
)
1747 // When it comes to setting file offsets, we care about
1748 // the physical address.
1749 addr
= (*p
)->paddr();
1751 else if (this->options_
.user_set_Tdata()
1752 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1753 && (!this->options_
.user_set_Tbss()
1754 || (*p
)->has_any_data_sections()))
1756 addr
= this->options_
.Tdata();
1757 are_addresses_set
= true;
1759 else if (this->options_
.user_set_Tbss()
1760 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1761 && !(*p
)->has_any_data_sections())
1763 addr
= this->options_
.Tbss();
1764 are_addresses_set
= true;
1767 uint64_t orig_addr
= addr
;
1768 uint64_t orig_off
= off
;
1770 uint64_t aligned_addr
= 0;
1771 uint64_t abi_pagesize
= target
->abi_pagesize();
1773 // FIXME: This should depend on the -n and -N options.
1774 (*p
)->set_minimum_p_align(target
->common_pagesize());
1776 if (are_addresses_set
)
1778 // Adjust the file offset to the same address modulo the
1780 uint64_t unsigned_off
= off
;
1781 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1782 | (addr
& (abi_pagesize
- 1)));
1783 if (aligned_off
< unsigned_off
)
1784 aligned_off
+= abi_pagesize
;
1789 // If the last segment was readonly, and this one is
1790 // not, then skip the address forward one page,
1791 // maintaining the same position within the page. This
1792 // lets us store both segments overlapping on a single
1793 // page in the file, but the loader will put them on
1794 // different pages in memory.
1796 addr
= align_address(addr
, (*p
)->maximum_alignment());
1797 aligned_addr
= addr
;
1799 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1801 if ((addr
& (abi_pagesize
- 1)) != 0)
1802 addr
= addr
+ abi_pagesize
;
1805 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1808 unsigned int shndx_hold
= *pshndx
;
1809 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
1812 // Now that we know the size of this segment, we may be able
1813 // to save a page in memory, at the cost of wasting some
1814 // file space, by instead aligning to the start of a new
1815 // page. Here we use the real machine page size rather than
1816 // the ABI mandated page size.
1818 if (!are_addresses_set
&& aligned_addr
!= addr
)
1820 uint64_t common_pagesize
= target
->common_pagesize();
1821 uint64_t first_off
= (common_pagesize
1823 & (common_pagesize
- 1)));
1824 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1827 && ((aligned_addr
& ~ (common_pagesize
- 1))
1828 != (new_addr
& ~ (common_pagesize
- 1)))
1829 && first_off
+ last_off
<= common_pagesize
)
1831 *pshndx
= shndx_hold
;
1832 addr
= align_address(aligned_addr
, common_pagesize
);
1833 addr
= align_address(addr
, (*p
)->maximum_alignment());
1834 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1835 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
1842 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1843 was_readonly
= true;
1847 // Handle the non-PT_LOAD segments, setting their offsets from their
1848 // section's offsets.
1849 for (Segment_list::iterator p
= this->segment_list_
.begin();
1850 p
!= this->segment_list_
.end();
1853 if ((*p
)->type() != elfcpp::PT_LOAD
)
1857 // Set the TLS offsets for each section in the PT_TLS segment.
1858 if (this->tls_segment_
!= NULL
)
1859 this->tls_segment_
->set_tls_offsets();
1864 // Set the offsets of all the allocated sections when doing a
1865 // relocatable link. This does the same jobs as set_segment_offsets,
1866 // only for a relocatable link.
1869 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
1870 unsigned int *pshndx
)
1874 file_header
->set_address_and_file_offset(0, 0);
1875 off
+= file_header
->data_size();
1877 for (Section_list::iterator p
= this->section_list_
.begin();
1878 p
!= this->section_list_
.end();
1881 // We skip unallocated sections here, except that group sections
1882 // have to come first.
1883 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
1884 && (*p
)->type() != elfcpp::SHT_GROUP
)
1887 off
= align_address(off
, (*p
)->addralign());
1889 // The linker script might have set the address.
1890 if (!(*p
)->is_address_valid())
1891 (*p
)->set_address(0);
1892 (*p
)->set_file_offset(off
);
1893 (*p
)->finalize_data_size();
1894 off
+= (*p
)->data_size();
1896 (*p
)->set_out_shndx(*pshndx
);
1903 // Set the file offset of all the sections not associated with a
1907 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
1909 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1910 p
!= this->unattached_section_list_
.end();
1913 // The symtab section is handled in create_symtab_sections.
1914 if (*p
== this->symtab_section_
)
1917 // If we've already set the data size, don't set it again.
1918 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
1921 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1922 && (*p
)->requires_postprocessing())
1924 (*p
)->create_postprocessing_buffer();
1925 this->any_postprocessing_sections_
= true;
1928 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1929 && (*p
)->after_input_sections())
1931 else if (pass
== POSTPROCESSING_SECTIONS_PASS
1932 && (!(*p
)->after_input_sections()
1933 || (*p
)->type() == elfcpp::SHT_STRTAB
))
1935 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1936 && (!(*p
)->after_input_sections()
1937 || (*p
)->type() != elfcpp::SHT_STRTAB
))
1940 off
= align_address(off
, (*p
)->addralign());
1941 (*p
)->set_file_offset(off
);
1942 (*p
)->finalize_data_size();
1943 off
+= (*p
)->data_size();
1945 // At this point the name must be set.
1946 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
1947 this->namepool_
.add((*p
)->name(), false, NULL
);
1952 // Set the section indexes of all the sections not associated with a
1956 Layout::set_section_indexes(unsigned int shndx
)
1958 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1959 p
!= this->unattached_section_list_
.end();
1962 if (!(*p
)->has_out_shndx())
1964 (*p
)->set_out_shndx(shndx
);
1971 // Set the section addresses according to the linker script. This is
1972 // only called when we see a SECTIONS clause. This returns the
1973 // program segment which should hold the file header and segment
1974 // headers, if any. It will return NULL if they should not be in a
1978 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
1980 Script_sections
* ss
= this->script_options_
->script_sections();
1981 gold_assert(ss
->saw_sections_clause());
1983 // Place each orphaned output section in the script.
1984 for (Section_list::iterator p
= this->section_list_
.begin();
1985 p
!= this->section_list_
.end();
1988 if (!(*p
)->found_in_sections_clause())
1989 ss
->place_orphan(*p
);
1992 return this->script_options_
->set_section_addresses(symtab
, this);
1995 // Count the local symbols in the regular symbol table and the dynamic
1996 // symbol table, and build the respective string pools.
1999 Layout::count_local_symbols(const Task
* task
,
2000 const Input_objects
* input_objects
)
2002 // First, figure out an upper bound on the number of symbols we'll
2003 // be inserting into each pool. This helps us create the pools with
2004 // the right size, to avoid unnecessary hashtable resizing.
2005 unsigned int symbol_count
= 0;
2006 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2007 p
!= input_objects
->relobj_end();
2009 symbol_count
+= (*p
)->local_symbol_count();
2011 // Go from "upper bound" to "estimate." We overcount for two
2012 // reasons: we double-count symbols that occur in more than one
2013 // object file, and we count symbols that are dropped from the
2014 // output. Add it all together and assume we overcount by 100%.
2017 // We assume all symbols will go into both the sympool and dynpool.
2018 this->sympool_
.reserve(symbol_count
);
2019 this->dynpool_
.reserve(symbol_count
);
2021 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2022 p
!= input_objects
->relobj_end();
2025 Task_lock_obj
<Object
> tlo(task
, *p
);
2026 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2030 // Create the symbol table sections. Here we also set the final
2031 // values of the symbols. At this point all the loadable sections are
2032 // fully laid out. SHNUM is the number of sections so far.
2035 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2036 Symbol_table
* symtab
,
2042 if (parameters
->target().get_size() == 32)
2044 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2047 else if (parameters
->target().get_size() == 64)
2049 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2056 off
= align_address(off
, align
);
2057 off_t startoff
= off
;
2059 // Save space for the dummy symbol at the start of the section. We
2060 // never bother to write this out--it will just be left as zero.
2062 unsigned int local_symbol_index
= 1;
2064 // Add STT_SECTION symbols for each Output section which needs one.
2065 for (Section_list::iterator p
= this->section_list_
.begin();
2066 p
!= this->section_list_
.end();
2069 if (!(*p
)->needs_symtab_index())
2070 (*p
)->set_symtab_index(-1U);
2073 (*p
)->set_symtab_index(local_symbol_index
);
2074 ++local_symbol_index
;
2079 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2080 p
!= input_objects
->relobj_end();
2083 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2085 off
+= (index
- local_symbol_index
) * symsize
;
2086 local_symbol_index
= index
;
2089 unsigned int local_symcount
= local_symbol_index
;
2090 gold_assert(local_symcount
* symsize
== off
- startoff
);
2093 size_t dyn_global_index
;
2095 if (this->dynsym_section_
== NULL
)
2098 dyn_global_index
= 0;
2103 dyn_global_index
= this->dynsym_section_
->info();
2104 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2105 dynoff
= this->dynsym_section_
->offset() + locsize
;
2106 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2107 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2108 == this->dynsym_section_
->data_size() - locsize
);
2111 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2112 &this->sympool_
, &local_symcount
);
2114 if (!parameters
->options().strip_all())
2116 this->sympool_
.set_string_offsets();
2118 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2119 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2122 this->symtab_section_
= osymtab
;
2124 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2127 osymtab
->add_output_section_data(pos
);
2129 // We generate a .symtab_shndx section if we have more than
2130 // SHN_LORESERVE sections. Technically it is possible that we
2131 // don't need one, because it is possible that there are no
2132 // symbols in any of sections with indexes larger than
2133 // SHN_LORESERVE. That is probably unusual, though, and it is
2134 // easier to always create one than to compute section indexes
2135 // twice (once here, once when writing out the symbols).
2136 if (shnum
>= elfcpp::SHN_LORESERVE
)
2138 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2140 Output_section
* osymtab_xindex
=
2141 this->make_output_section(symtab_xindex_name
,
2142 elfcpp::SHT_SYMTAB_SHNDX
, 0);
2144 size_t symcount
= (off
- startoff
) / symsize
;
2145 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2147 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2149 osymtab_xindex
->set_link_section(osymtab
);
2150 osymtab_xindex
->set_addralign(4);
2151 osymtab_xindex
->set_entsize(4);
2153 osymtab_xindex
->set_after_input_sections();
2155 // This tells the driver code to wait until the symbol table
2156 // has written out before writing out the postprocessing
2157 // sections, including the .symtab_shndx section.
2158 this->any_postprocessing_sections_
= true;
2161 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2162 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2166 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2167 ostrtab
->add_output_section_data(pstr
);
2169 osymtab
->set_file_offset(startoff
);
2170 osymtab
->finalize_data_size();
2171 osymtab
->set_link_section(ostrtab
);
2172 osymtab
->set_info(local_symcount
);
2173 osymtab
->set_entsize(symsize
);
2179 // Create the .shstrtab section, which holds the names of the
2180 // sections. At the time this is called, we have created all the
2181 // output sections except .shstrtab itself.
2184 Layout::create_shstrtab()
2186 // FIXME: We don't need to create a .shstrtab section if we are
2187 // stripping everything.
2189 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2191 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2193 // We can't write out this section until we've set all the section
2194 // names, and we don't set the names of compressed output sections
2195 // until relocations are complete.
2196 os
->set_after_input_sections();
2198 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2199 os
->add_output_section_data(posd
);
2204 // Create the section headers. SIZE is 32 or 64. OFF is the file
2208 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2210 Output_section_headers
* oshdrs
;
2211 oshdrs
= new Output_section_headers(this,
2212 &this->segment_list_
,
2213 &this->section_list_
,
2214 &this->unattached_section_list_
,
2217 off_t off
= align_address(*poff
, oshdrs
->addralign());
2218 oshdrs
->set_address_and_file_offset(0, off
);
2219 off
+= oshdrs
->data_size();
2221 this->section_headers_
= oshdrs
;
2224 // Count the allocated sections.
2227 Layout::allocated_output_section_count() const
2229 size_t section_count
= 0;
2230 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2231 p
!= this->segment_list_
.end();
2233 section_count
+= (*p
)->output_section_count();
2234 return section_count
;
2237 // Create the dynamic symbol table.
2240 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2241 Symbol_table
* symtab
,
2242 Output_section
**pdynstr
,
2243 unsigned int* plocal_dynamic_count
,
2244 std::vector
<Symbol
*>* pdynamic_symbols
,
2245 Versions
* pversions
)
2247 // Count all the symbols in the dynamic symbol table, and set the
2248 // dynamic symbol indexes.
2250 // Skip symbol 0, which is always all zeroes.
2251 unsigned int index
= 1;
2253 // Add STT_SECTION symbols for each Output section which needs one.
2254 for (Section_list::iterator p
= this->section_list_
.begin();
2255 p
!= this->section_list_
.end();
2258 if (!(*p
)->needs_dynsym_index())
2259 (*p
)->set_dynsym_index(-1U);
2262 (*p
)->set_dynsym_index(index
);
2267 // Count the local symbols that need to go in the dynamic symbol table,
2268 // and set the dynamic symbol indexes.
2269 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2270 p
!= input_objects
->relobj_end();
2273 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2277 unsigned int local_symcount
= index
;
2278 *plocal_dynamic_count
= local_symcount
;
2280 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2281 &this->dynpool_
, pversions
);
2285 const int size
= parameters
->target().get_size();
2288 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2291 else if (size
== 64)
2293 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2299 // Create the dynamic symbol table section.
2301 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2306 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2309 dynsym
->add_output_section_data(odata
);
2311 dynsym
->set_info(local_symcount
);
2312 dynsym
->set_entsize(symsize
);
2313 dynsym
->set_addralign(align
);
2315 this->dynsym_section_
= dynsym
;
2317 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2318 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2319 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2321 // If there are more than SHN_LORESERVE allocated sections, we
2322 // create a .dynsym_shndx section. It is possible that we don't
2323 // need one, because it is possible that there are no dynamic
2324 // symbols in any of the sections with indexes larger than
2325 // SHN_LORESERVE. This is probably unusual, though, and at this
2326 // time we don't know the actual section indexes so it is
2327 // inconvenient to check.
2328 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2330 Output_section
* dynsym_xindex
=
2331 this->choose_output_section(NULL
, ".dynsym_shndx",
2332 elfcpp::SHT_SYMTAB_SHNDX
,
2336 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2338 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2340 dynsym_xindex
->set_link_section(dynsym
);
2341 dynsym_xindex
->set_addralign(4);
2342 dynsym_xindex
->set_entsize(4);
2344 dynsym_xindex
->set_after_input_sections();
2346 // This tells the driver code to wait until the symbol table has
2347 // written out before writing out the postprocessing sections,
2348 // including the .dynsym_shndx section.
2349 this->any_postprocessing_sections_
= true;
2352 // Create the dynamic string table section.
2354 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2359 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2360 dynstr
->add_output_section_data(strdata
);
2362 dynsym
->set_link_section(dynstr
);
2363 this->dynamic_section_
->set_link_section(dynstr
);
2365 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2366 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2370 // Create the hash tables.
2372 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2373 || strcmp(parameters
->options().hash_style(), "both") == 0)
2375 unsigned char* phash
;
2376 unsigned int hashlen
;
2377 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2380 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2385 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2389 hashsec
->add_output_section_data(hashdata
);
2391 hashsec
->set_link_section(dynsym
);
2392 hashsec
->set_entsize(4);
2394 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2397 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2398 || strcmp(parameters
->options().hash_style(), "both") == 0)
2400 unsigned char* phash
;
2401 unsigned int hashlen
;
2402 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2405 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2406 elfcpp::SHT_GNU_HASH
,
2410 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2414 hashsec
->add_output_section_data(hashdata
);
2416 hashsec
->set_link_section(dynsym
);
2417 hashsec
->set_entsize(4);
2419 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2423 // Assign offsets to each local portion of the dynamic symbol table.
2426 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2428 Output_section
* dynsym
= this->dynsym_section_
;
2429 gold_assert(dynsym
!= NULL
);
2431 off_t off
= dynsym
->offset();
2433 // Skip the dummy symbol at the start of the section.
2434 off
+= dynsym
->entsize();
2436 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2437 p
!= input_objects
->relobj_end();
2440 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2441 off
+= count
* dynsym
->entsize();
2445 // Create the version sections.
2448 Layout::create_version_sections(const Versions
* versions
,
2449 const Symbol_table
* symtab
,
2450 unsigned int local_symcount
,
2451 const std::vector
<Symbol
*>& dynamic_symbols
,
2452 const Output_section
* dynstr
)
2454 if (!versions
->any_defs() && !versions
->any_needs())
2457 switch (parameters
->size_and_endianness())
2459 #ifdef HAVE_TARGET_32_LITTLE
2460 case Parameters::TARGET_32_LITTLE
:
2461 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2463 dynamic_symbols
, dynstr
);
2466 #ifdef HAVE_TARGET_32_BIG
2467 case Parameters::TARGET_32_BIG
:
2468 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2470 dynamic_symbols
, dynstr
);
2473 #ifdef HAVE_TARGET_64_LITTLE
2474 case Parameters::TARGET_64_LITTLE
:
2475 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2477 dynamic_symbols
, dynstr
);
2480 #ifdef HAVE_TARGET_64_BIG
2481 case Parameters::TARGET_64_BIG
:
2482 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2484 dynamic_symbols
, dynstr
);
2492 // Create the version sections, sized version.
2494 template<int size
, bool big_endian
>
2496 Layout::sized_create_version_sections(
2497 const Versions
* versions
,
2498 const Symbol_table
* symtab
,
2499 unsigned int local_symcount
,
2500 const std::vector
<Symbol
*>& dynamic_symbols
,
2501 const Output_section
* dynstr
)
2503 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2504 elfcpp::SHT_GNU_versym
,
2508 unsigned char* vbuf
;
2510 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2515 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
2518 vsec
->add_output_section_data(vdata
);
2519 vsec
->set_entsize(2);
2520 vsec
->set_link_section(this->dynsym_section_
);
2522 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2523 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2525 if (versions
->any_defs())
2527 Output_section
* vdsec
;
2528 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2529 elfcpp::SHT_GNU_verdef
,
2533 unsigned char* vdbuf
;
2534 unsigned int vdsize
;
2535 unsigned int vdentries
;
2536 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2537 &vdsize
, &vdentries
);
2539 Output_section_data
* vddata
=
2540 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
2542 vdsec
->add_output_section_data(vddata
);
2543 vdsec
->set_link_section(dynstr
);
2544 vdsec
->set_info(vdentries
);
2546 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2547 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2550 if (versions
->any_needs())
2552 Output_section
* vnsec
;
2553 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2554 elfcpp::SHT_GNU_verneed
,
2558 unsigned char* vnbuf
;
2559 unsigned int vnsize
;
2560 unsigned int vnentries
;
2561 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2565 Output_section_data
* vndata
=
2566 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
2568 vnsec
->add_output_section_data(vndata
);
2569 vnsec
->set_link_section(dynstr
);
2570 vnsec
->set_info(vnentries
);
2572 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2573 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2577 // Create the .interp section and PT_INTERP segment.
2580 Layout::create_interp(const Target
* target
)
2582 const char* interp
= this->options_
.dynamic_linker();
2585 interp
= target
->dynamic_linker();
2586 gold_assert(interp
!= NULL
);
2589 size_t len
= strlen(interp
) + 1;
2591 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2593 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2594 elfcpp::SHT_PROGBITS
,
2597 osec
->add_output_section_data(odata
);
2599 if (!this->script_options_
->saw_phdrs_clause())
2601 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2603 oseg
->add_output_section(osec
, elfcpp::PF_R
);
2607 // Finish the .dynamic section and PT_DYNAMIC segment.
2610 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2611 const Symbol_table
* symtab
)
2613 if (!this->script_options_
->saw_phdrs_clause())
2615 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2618 oseg
->add_output_section(this->dynamic_section_
,
2619 elfcpp::PF_R
| elfcpp::PF_W
);
2622 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2624 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2625 p
!= input_objects
->dynobj_end();
2628 // FIXME: Handle --as-needed.
2629 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2632 if (parameters
->options().shared())
2634 const char* soname
= this->options_
.soname();
2636 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2639 // FIXME: Support --init and --fini.
2640 Symbol
* sym
= symtab
->lookup("_init");
2641 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2642 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2644 sym
= symtab
->lookup("_fini");
2645 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2646 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2648 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2650 // Add a DT_RPATH entry if needed.
2651 const General_options::Dir_list
& rpath(this->options_
.rpath());
2654 std::string rpath_val
;
2655 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2659 if (rpath_val
.empty())
2660 rpath_val
= p
->name();
2663 // Eliminate duplicates.
2664 General_options::Dir_list::const_iterator q
;
2665 for (q
= rpath
.begin(); q
!= p
; ++q
)
2666 if (q
->name() == p
->name())
2671 rpath_val
+= p
->name();
2676 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2677 if (parameters
->options().enable_new_dtags())
2678 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
2681 // Look for text segments that have dynamic relocations.
2682 bool have_textrel
= false;
2683 if (!this->script_options_
->saw_sections_clause())
2685 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2686 p
!= this->segment_list_
.end();
2689 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2690 && (*p
)->dynamic_reloc_count() > 0)
2692 have_textrel
= true;
2699 // We don't know the section -> segment mapping, so we are
2700 // conservative and just look for readonly sections with
2701 // relocations. If those sections wind up in writable segments,
2702 // then we have created an unnecessary DT_TEXTREL entry.
2703 for (Section_list::const_iterator p
= this->section_list_
.begin();
2704 p
!= this->section_list_
.end();
2707 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2708 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2709 && ((*p
)->dynamic_reloc_count() > 0))
2711 have_textrel
= true;
2717 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2718 // post-link tools can easily modify these flags if desired.
2719 unsigned int flags
= 0;
2722 // Add a DT_TEXTREL for compatibility with older loaders.
2723 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2724 flags
|= elfcpp::DF_TEXTREL
;
2726 if (parameters
->options().shared() && this->has_static_tls())
2727 flags
|= elfcpp::DF_STATIC_TLS
;
2728 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2731 if (parameters
->options().initfirst())
2732 flags
|= elfcpp::DF_1_INITFIRST
;
2733 if (parameters
->options().interpose())
2734 flags
|= elfcpp::DF_1_INTERPOSE
;
2735 if (parameters
->options().loadfltr())
2736 flags
|= elfcpp::DF_1_LOADFLTR
;
2737 if (parameters
->options().nodefaultlib())
2738 flags
|= elfcpp::DF_1_NODEFLIB
;
2739 if (parameters
->options().nodelete())
2740 flags
|= elfcpp::DF_1_NODELETE
;
2741 if (parameters
->options().nodlopen())
2742 flags
|= elfcpp::DF_1_NOOPEN
;
2743 if (parameters
->options().nodump())
2744 flags
|= elfcpp::DF_1_NODUMP
;
2745 if (!parameters
->options().shared())
2746 flags
&= ~(elfcpp::DF_1_INITFIRST
2747 | elfcpp::DF_1_NODELETE
2748 | elfcpp::DF_1_NOOPEN
);
2750 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
2753 // The mapping of .gnu.linkonce section names to real section names.
2755 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2756 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
2758 MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2759 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Before "d".
2760 MAPPING_INIT("t", ".text"),
2761 MAPPING_INIT("r", ".rodata"),
2762 MAPPING_INIT("d", ".data"),
2763 MAPPING_INIT("b", ".bss"),
2764 MAPPING_INIT("s", ".sdata"),
2765 MAPPING_INIT("sb", ".sbss"),
2766 MAPPING_INIT("s2", ".sdata2"),
2767 MAPPING_INIT("sb2", ".sbss2"),
2768 MAPPING_INIT("wi", ".debug_info"),
2769 MAPPING_INIT("td", ".tdata"),
2770 MAPPING_INIT("tb", ".tbss"),
2771 MAPPING_INIT("lr", ".lrodata"),
2772 MAPPING_INIT("l", ".ldata"),
2773 MAPPING_INIT("lb", ".lbss"),
2777 const int Layout::linkonce_mapping_count
=
2778 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
2780 // Return the name of the output section to use for a .gnu.linkonce
2781 // section. This is based on the default ELF linker script of the old
2782 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2783 // to ".text". Set *PLEN to the length of the name. *PLEN is
2784 // initialized to the length of NAME.
2787 Layout::linkonce_output_name(const char* name
, size_t *plen
)
2789 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
2793 const Linkonce_mapping
* plm
= linkonce_mapping
;
2794 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
2796 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
2805 // Choose the output section name to use given an input section name.
2806 // Set *PLEN to the length of the name. *PLEN is initialized to the
2810 Layout::output_section_name(const char* name
, size_t* plen
)
2812 if (Layout::is_linkonce(name
))
2814 // .gnu.linkonce sections are laid out as though they were named
2815 // for the sections are placed into.
2816 return Layout::linkonce_output_name(name
, plen
);
2819 // gcc 4.3 generates the following sorts of section names when it
2820 // needs a section name specific to a function:
2826 // .data.rel.local.FN
2828 // .data.rel.ro.local.FN
2835 // The GNU linker maps all of those to the part before the .FN,
2836 // except that .data.rel.local.FN is mapped to .data, and
2837 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2838 // beginning with .data.rel.ro.local are grouped together.
2840 // For an anonymous namespace, the string FN can contain a '.'.
2842 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2843 // GNU linker maps to .rodata.
2845 // The .data.rel.ro sections enable a security feature triggered by
2846 // the -z relro option. Section which need to be relocated at
2847 // program startup time but which may be readonly after startup are
2848 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2849 // segment. The dynamic linker will make that segment writable,
2850 // perform relocations, and then make it read-only. FIXME: We do
2851 // not yet implement this optimization.
2853 // It is hard to handle this in a principled way.
2855 // These are the rules we follow:
2857 // If the section name has no initial '.', or no dot other than an
2858 // initial '.', we use the name unchanged (i.e., "mysection" and
2859 // ".text" are unchanged).
2861 // If the name starts with ".data.rel.ro.local" we use
2862 // ".data.rel.ro.local".
2864 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2866 // Otherwise, we drop the second '.' and everything that comes after
2867 // it (i.e., ".text.XXX" becomes ".text").
2869 const char* s
= name
;
2873 const char* sdot
= strchr(s
, '.');
2877 const char* const data_rel_ro_local
= ".data.rel.ro.local";
2878 if (strncmp(name
, data_rel_ro_local
, strlen(data_rel_ro_local
)) == 0)
2880 *plen
= strlen(data_rel_ro_local
);
2881 return data_rel_ro_local
;
2884 const char* const data_rel_ro
= ".data.rel.ro";
2885 if (strncmp(name
, data_rel_ro
, strlen(data_rel_ro
)) == 0)
2887 *plen
= strlen(data_rel_ro
);
2891 *plen
= sdot
- name
;
2895 // Record the signature of a comdat section, and return whether to
2896 // include it in the link. If GROUP is true, this is a regular
2897 // section group. If GROUP is false, this is a group signature
2898 // derived from the name of a linkonce section. We want linkonce
2899 // signatures and group signatures to block each other, but we don't
2900 // want a linkonce signature to block another linkonce signature.
2903 Layout::add_comdat(Relobj
* object
, unsigned int shndx
,
2904 const std::string
& signature
, bool group
)
2906 Kept_section
kept(object
, shndx
, group
);
2907 std::pair
<Signatures::iterator
, bool> ins(
2908 this->signatures_
.insert(std::make_pair(signature
, kept
)));
2912 // This is the first time we've seen this signature.
2916 if (ins
.first
->second
.group_
)
2918 // We've already seen a real section group with this signature.
2923 // This is a real section group, and we've already seen a
2924 // linkonce section with this signature. Record that we've seen
2925 // a section group, and don't include this section group.
2926 ins
.first
->second
.group_
= true;
2931 // We've already seen a linkonce section and this is a linkonce
2932 // section. These don't block each other--this may be the same
2933 // symbol name with different section types.
2938 // Find the given comdat signature, and return the object and section
2939 // index of the kept group.
2941 Layout::find_kept_object(const std::string
& signature
,
2942 unsigned int* pshndx
) const
2944 Signatures::const_iterator p
= this->signatures_
.find(signature
);
2945 if (p
== this->signatures_
.end())
2948 *pshndx
= p
->second
.shndx_
;
2949 return p
->second
.object_
;
2952 // Store the allocated sections into the section list.
2955 Layout::get_allocated_sections(Section_list
* section_list
) const
2957 for (Section_list::const_iterator p
= this->section_list_
.begin();
2958 p
!= this->section_list_
.end();
2960 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
2961 section_list
->push_back(*p
);
2964 // Create an output segment.
2967 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
2969 gold_assert(!parameters
->options().relocatable());
2970 Output_segment
* oseg
= new Output_segment(type
, flags
);
2971 this->segment_list_
.push_back(oseg
);
2975 // Write out the Output_sections. Most won't have anything to write,
2976 // since most of the data will come from input sections which are
2977 // handled elsewhere. But some Output_sections do have Output_data.
2980 Layout::write_output_sections(Output_file
* of
) const
2982 for (Section_list::const_iterator p
= this->section_list_
.begin();
2983 p
!= this->section_list_
.end();
2986 if (!(*p
)->after_input_sections())
2991 // Write out data not associated with a section or the symbol table.
2994 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
2996 if (!parameters
->options().strip_all())
2998 const Output_section
* symtab_section
= this->symtab_section_
;
2999 for (Section_list::const_iterator p
= this->section_list_
.begin();
3000 p
!= this->section_list_
.end();
3003 if ((*p
)->needs_symtab_index())
3005 gold_assert(symtab_section
!= NULL
);
3006 unsigned int index
= (*p
)->symtab_index();
3007 gold_assert(index
> 0 && index
!= -1U);
3008 off_t off
= (symtab_section
->offset()
3009 + index
* symtab_section
->entsize());
3010 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3015 const Output_section
* dynsym_section
= this->dynsym_section_
;
3016 for (Section_list::const_iterator p
= this->section_list_
.begin();
3017 p
!= this->section_list_
.end();
3020 if ((*p
)->needs_dynsym_index())
3022 gold_assert(dynsym_section
!= NULL
);
3023 unsigned int index
= (*p
)->dynsym_index();
3024 gold_assert(index
> 0 && index
!= -1U);
3025 off_t off
= (dynsym_section
->offset()
3026 + index
* dynsym_section
->entsize());
3027 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3031 // Write out the Output_data which are not in an Output_section.
3032 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3033 p
!= this->special_output_list_
.end();
3038 // Write out the Output_sections which can only be written after the
3039 // input sections are complete.
3042 Layout::write_sections_after_input_sections(Output_file
* of
)
3044 // Determine the final section offsets, and thus the final output
3045 // file size. Note we finalize the .shstrab last, to allow the
3046 // after_input_section sections to modify their section-names before
3048 if (this->any_postprocessing_sections_
)
3050 off_t off
= this->output_file_size_
;
3051 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3053 // Now that we've finalized the names, we can finalize the shstrab.
3055 this->set_section_offsets(off
,
3056 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3058 if (off
> this->output_file_size_
)
3061 this->output_file_size_
= off
;
3065 for (Section_list::const_iterator p
= this->section_list_
.begin();
3066 p
!= this->section_list_
.end();
3069 if ((*p
)->after_input_sections())
3073 this->section_headers_
->write(of
);
3076 // If the build ID requires computing a checksum, do so here, and
3077 // write it out. We compute a checksum over the entire file because
3078 // that is simplest.
3081 Layout::write_build_id(Output_file
* of
) const
3083 if (this->build_id_note_
== NULL
)
3086 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3088 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3089 this->build_id_note_
->data_size());
3091 const char* style
= parameters
->options().build_id();
3092 if (strcmp(style
, "sha1") == 0)
3095 sha1_init_ctx(&ctx
);
3096 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3097 sha1_finish_ctx(&ctx
, ov
);
3099 else if (strcmp(style
, "md5") == 0)
3103 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3104 md5_finish_ctx(&ctx
, ov
);
3109 of
->write_output_view(this->build_id_note_
->offset(),
3110 this->build_id_note_
->data_size(),
3113 of
->free_input_view(0, this->output_file_size_
, iv
);
3116 // Write out a binary file. This is called after the link is
3117 // complete. IN is the temporary output file we used to generate the
3118 // ELF code. We simply walk through the segments, read them from
3119 // their file offset in IN, and write them to their load address in
3120 // the output file. FIXME: with a bit more work, we could support
3121 // S-records and/or Intel hex format here.
3124 Layout::write_binary(Output_file
* in
) const
3126 gold_assert(this->options_
.oformat_enum()
3127 == General_options::OBJECT_FORMAT_BINARY
);
3129 // Get the size of the binary file.
3130 uint64_t max_load_address
= 0;
3131 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3132 p
!= this->segment_list_
.end();
3135 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3137 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3138 if (max_paddr
> max_load_address
)
3139 max_load_address
= max_paddr
;
3143 Output_file
out(parameters
->options().output_file_name());
3144 out
.open(max_load_address
);
3146 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3147 p
!= this->segment_list_
.end();
3150 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3152 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3154 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3156 memcpy(vout
, vin
, (*p
)->filesz());
3157 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3158 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3165 // Print the output sections to the map file.
3168 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3170 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3171 p
!= this->segment_list_
.end();
3173 (*p
)->print_sections_to_mapfile(mapfile
);
3176 // Print statistical information to stderr. This is used for --stats.
3179 Layout::print_stats() const
3181 this->namepool_
.print_stats("section name pool");
3182 this->sympool_
.print_stats("output symbol name pool");
3183 this->dynpool_
.print_stats("dynamic name pool");
3185 for (Section_list::const_iterator p
= this->section_list_
.begin();
3186 p
!= this->section_list_
.end();
3188 (*p
)->print_merge_stats();
3191 // Write_sections_task methods.
3193 // We can always run this task.
3196 Write_sections_task::is_runnable()
3201 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3205 Write_sections_task::locks(Task_locker
* tl
)
3207 tl
->add(this, this->output_sections_blocker_
);
3208 tl
->add(this, this->final_blocker_
);
3211 // Run the task--write out the data.
3214 Write_sections_task::run(Workqueue
*)
3216 this->layout_
->write_output_sections(this->of_
);
3219 // Write_data_task methods.
3221 // We can always run this task.
3224 Write_data_task::is_runnable()
3229 // We need to unlock FINAL_BLOCKER when finished.
3232 Write_data_task::locks(Task_locker
* tl
)
3234 tl
->add(this, this->final_blocker_
);
3237 // Run the task--write out the data.
3240 Write_data_task::run(Workqueue
*)
3242 this->layout_
->write_data(this->symtab_
, this->of_
);
3245 // Write_symbols_task methods.
3247 // We can always run this task.
3250 Write_symbols_task::is_runnable()
3255 // We need to unlock FINAL_BLOCKER when finished.
3258 Write_symbols_task::locks(Task_locker
* tl
)
3260 tl
->add(this, this->final_blocker_
);
3263 // Run the task--write out the symbols.
3266 Write_symbols_task::run(Workqueue
*)
3268 this->symtab_
->write_globals(this->input_objects_
, this->sympool_
,
3269 this->dynpool_
, this->layout_
->symtab_xindex(),
3270 this->layout_
->dynsym_xindex(), this->of_
);
3273 // Write_after_input_sections_task methods.
3275 // We can only run this task after the input sections have completed.
3278 Write_after_input_sections_task::is_runnable()
3280 if (this->input_sections_blocker_
->is_blocked())
3281 return this->input_sections_blocker_
;
3285 // We need to unlock FINAL_BLOCKER when finished.
3288 Write_after_input_sections_task::locks(Task_locker
* tl
)
3290 tl
->add(this, this->final_blocker_
);
3296 Write_after_input_sections_task::run(Workqueue
*)
3298 this->layout_
->write_sections_after_input_sections(this->of_
);
3301 // Close_task_runner methods.
3303 // Run the task--close the file.
3306 Close_task_runner::run(Workqueue
*, const Task
*)
3308 // If we need to compute a checksum for the BUILD if, we do so here.
3309 this->layout_
->write_build_id(this->of_
);
3311 // If we've been asked to create a binary file, we do so here.
3312 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3313 this->layout_
->write_binary(this->of_
);
3318 // Instantiate the templates we need. We could use the configure
3319 // script to restrict this to only the ones for implemented targets.
3321 #ifdef HAVE_TARGET_32_LITTLE
3324 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3326 const elfcpp::Shdr
<32, false>& shdr
,
3327 unsigned int, unsigned int, off_t
*);
3330 #ifdef HAVE_TARGET_32_BIG
3333 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3335 const elfcpp::Shdr
<32, true>& shdr
,
3336 unsigned int, unsigned int, off_t
*);
3339 #ifdef HAVE_TARGET_64_LITTLE
3342 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3344 const elfcpp::Shdr
<64, false>& shdr
,
3345 unsigned int, unsigned int, off_t
*);
3348 #ifdef HAVE_TARGET_64_BIG
3351 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3353 const elfcpp::Shdr
<64, true>& shdr
,
3354 unsigned int, unsigned int, off_t
*);
3357 #ifdef HAVE_TARGET_32_LITTLE
3360 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3361 unsigned int reloc_shndx
,
3362 const elfcpp::Shdr
<32, false>& shdr
,
3363 Output_section
* data_section
,
3364 Relocatable_relocs
* rr
);
3367 #ifdef HAVE_TARGET_32_BIG
3370 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3371 unsigned int reloc_shndx
,
3372 const elfcpp::Shdr
<32, true>& shdr
,
3373 Output_section
* data_section
,
3374 Relocatable_relocs
* rr
);
3377 #ifdef HAVE_TARGET_64_LITTLE
3380 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3381 unsigned int reloc_shndx
,
3382 const elfcpp::Shdr
<64, false>& shdr
,
3383 Output_section
* data_section
,
3384 Relocatable_relocs
* rr
);
3387 #ifdef HAVE_TARGET_64_BIG
3390 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3391 unsigned int reloc_shndx
,
3392 const elfcpp::Shdr
<64, true>& shdr
,
3393 Output_section
* data_section
,
3394 Relocatable_relocs
* rr
);
3397 #ifdef HAVE_TARGET_32_LITTLE
3400 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3401 Sized_relobj
<32, false>* object
,
3403 const char* group_section_name
,
3404 const char* signature
,
3405 const elfcpp::Shdr
<32, false>& shdr
,
3406 elfcpp::Elf_Word flags
,
3407 std::vector
<unsigned int>* shndxes
);
3410 #ifdef HAVE_TARGET_32_BIG
3413 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3414 Sized_relobj
<32, true>* object
,
3416 const char* group_section_name
,
3417 const char* signature
,
3418 const elfcpp::Shdr
<32, true>& shdr
,
3419 elfcpp::Elf_Word flags
,
3420 std::vector
<unsigned int>* shndxes
);
3423 #ifdef HAVE_TARGET_64_LITTLE
3426 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3427 Sized_relobj
<64, false>* object
,
3429 const char* group_section_name
,
3430 const char* signature
,
3431 const elfcpp::Shdr
<64, false>& shdr
,
3432 elfcpp::Elf_Word flags
,
3433 std::vector
<unsigned int>* shndxes
);
3436 #ifdef HAVE_TARGET_64_BIG
3439 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3440 Sized_relobj
<64, true>* object
,
3442 const char* group_section_name
,
3443 const char* signature
,
3444 const elfcpp::Shdr
<64, true>& shdr
,
3445 elfcpp::Elf_Word flags
,
3446 std::vector
<unsigned int>* shndxes
);
3449 #ifdef HAVE_TARGET_32_LITTLE
3452 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3453 const unsigned char* symbols
,
3455 const unsigned char* symbol_names
,
3456 off_t symbol_names_size
,
3458 const elfcpp::Shdr
<32, false>& shdr
,
3459 unsigned int reloc_shndx
,
3460 unsigned int reloc_type
,
3464 #ifdef HAVE_TARGET_32_BIG
3467 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3468 const unsigned char* symbols
,
3470 const unsigned char* symbol_names
,
3471 off_t symbol_names_size
,
3473 const elfcpp::Shdr
<32, true>& shdr
,
3474 unsigned int reloc_shndx
,
3475 unsigned int reloc_type
,
3479 #ifdef HAVE_TARGET_64_LITTLE
3482 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3483 const unsigned char* symbols
,
3485 const unsigned char* symbol_names
,
3486 off_t symbol_names_size
,
3488 const elfcpp::Shdr
<64, false>& shdr
,
3489 unsigned int reloc_shndx
,
3490 unsigned int reloc_type
,
3494 #ifdef HAVE_TARGET_64_BIG
3497 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
3498 const unsigned char* symbols
,
3500 const unsigned char* symbol_names
,
3501 off_t symbol_names_size
,
3503 const elfcpp::Shdr
<64, true>& shdr
,
3504 unsigned int reloc_shndx
,
3505 unsigned int reloc_type
,
3509 } // End namespace gold.