2008-07-18 H.J. Lu <hongjiu.lu@intel.com>
[binutils.git] / gold / layout.cc
blob13518d66299fa232a777199a872d7fecb0221c79
1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
23 #include "gold.h"
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "layout.h"
50 namespace gold
53 // Layout_task_runner methods.
55 // Lay out the sections. This is called after all the input objects
56 // have been read.
58 void
59 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
61 off_t file_size = this->layout_->finalize(this->input_objects_,
62 this->symtab_,
63 this->target_,
64 task);
66 // Now we know the final size of the output file and we know where
67 // each piece of information goes.
69 if (this->mapfile_ != NULL)
71 this->mapfile_->print_discarded_sections(this->input_objects_);
72 this->layout_->print_to_mapfile(this->mapfile_);
75 Output_file* of = new Output_file(parameters->options().output_file_name());
76 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
77 of->set_is_temporary();
78 of->open(file_size);
80 // Queue up the final set of tasks.
81 gold::queue_final_tasks(this->options_, this->input_objects_,
82 this->symtab_, this->layout_, workqueue, of);
85 // Layout methods.
87 Layout::Layout(const General_options& options, Script_options* script_options)
88 : options_(options),
89 script_options_(script_options),
90 namepool_(),
91 sympool_(),
92 dynpool_(),
93 signatures_(),
94 section_name_map_(),
95 segment_list_(),
96 section_list_(),
97 unattached_section_list_(),
98 sections_are_attached_(false),
99 special_output_list_(),
100 section_headers_(NULL),
101 tls_segment_(NULL),
102 relro_segment_(NULL),
103 symtab_section_(NULL),
104 symtab_xindex_(NULL),
105 dynsym_section_(NULL),
106 dynsym_xindex_(NULL),
107 dynamic_section_(NULL),
108 dynamic_data_(NULL),
109 eh_frame_section_(NULL),
110 eh_frame_data_(NULL),
111 added_eh_frame_data_(false),
112 eh_frame_hdr_section_(NULL),
113 build_id_note_(NULL),
114 debug_abbrev_(NULL),
115 debug_info_(NULL),
116 group_signatures_(),
117 output_file_size_(-1),
118 input_requires_executable_stack_(false),
119 input_with_gnu_stack_note_(false),
120 input_without_gnu_stack_note_(false),
121 has_static_tls_(false),
122 any_postprocessing_sections_(false)
124 // Make space for more than enough segments for a typical file.
125 // This is just for efficiency--it's OK if we wind up needing more.
126 this->segment_list_.reserve(12);
128 // We expect two unattached Output_data objects: the file header and
129 // the segment headers.
130 this->special_output_list_.reserve(2);
133 // Hash a key we use to look up an output section mapping.
135 size_t
136 Layout::Hash_key::operator()(const Layout::Key& k) const
138 return k.first + k.second.first + k.second.second;
141 // Return whether PREFIX is a prefix of STR.
143 static inline bool
144 is_prefix_of(const char* prefix, const char* str)
146 return strncmp(prefix, str, strlen(prefix)) == 0;
149 // Returns whether the given section is in the list of
150 // debug-sections-used-by-some-version-of-gdb. Currently,
151 // we've checked versions of gdb up to and including 6.7.1.
153 static const char* gdb_sections[] =
154 { ".debug_abbrev",
155 // ".debug_aranges", // not used by gdb as of 6.7.1
156 ".debug_frame",
157 ".debug_info",
158 ".debug_line",
159 ".debug_loc",
160 ".debug_macinfo",
161 // ".debug_pubnames", // not used by gdb as of 6.7.1
162 ".debug_ranges",
163 ".debug_str",
166 static const char* lines_only_debug_sections[] =
167 { ".debug_abbrev",
168 // ".debug_aranges", // not used by gdb as of 6.7.1
169 // ".debug_frame",
170 ".debug_info",
171 ".debug_line",
172 // ".debug_loc",
173 // ".debug_macinfo",
174 // ".debug_pubnames", // not used by gdb as of 6.7.1
175 // ".debug_ranges",
176 ".debug_str",
179 static inline bool
180 is_gdb_debug_section(const char* str)
182 // We can do this faster: binary search or a hashtable. But why bother?
183 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
184 if (strcmp(str, gdb_sections[i]) == 0)
185 return true;
186 return false;
189 static inline bool
190 is_lines_only_debug_section(const char* str)
192 // We can do this faster: binary search or a hashtable. But why bother?
193 for (size_t i = 0;
194 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
195 ++i)
196 if (strcmp(str, lines_only_debug_sections[i]) == 0)
197 return true;
198 return false;
201 // Whether to include this section in the link.
203 template<int size, bool big_endian>
204 bool
205 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
206 const elfcpp::Shdr<size, big_endian>& shdr)
208 switch (shdr.get_sh_type())
210 case elfcpp::SHT_NULL:
211 case elfcpp::SHT_SYMTAB:
212 case elfcpp::SHT_DYNSYM:
213 case elfcpp::SHT_HASH:
214 case elfcpp::SHT_DYNAMIC:
215 case elfcpp::SHT_SYMTAB_SHNDX:
216 return false;
218 case elfcpp::SHT_STRTAB:
219 // Discard the sections which have special meanings in the ELF
220 // ABI. Keep others (e.g., .stabstr). We could also do this by
221 // checking the sh_link fields of the appropriate sections.
222 return (strcmp(name, ".dynstr") != 0
223 && strcmp(name, ".strtab") != 0
224 && strcmp(name, ".shstrtab") != 0);
226 case elfcpp::SHT_RELA:
227 case elfcpp::SHT_REL:
228 case elfcpp::SHT_GROUP:
229 // If we are emitting relocations these should be handled
230 // elsewhere.
231 gold_assert(!parameters->options().relocatable()
232 && !parameters->options().emit_relocs());
233 return false;
235 case elfcpp::SHT_PROGBITS:
236 if (parameters->options().strip_debug()
237 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
239 if (is_debug_info_section(name))
240 return false;
242 if (parameters->options().strip_debug_non_line()
243 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
245 // Debugging sections can only be recognized by name.
246 if (is_prefix_of(".debug", name)
247 && !is_lines_only_debug_section(name))
248 return false;
250 if (parameters->options().strip_debug_gdb()
251 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
253 // Debugging sections can only be recognized by name.
254 if (is_prefix_of(".debug", name)
255 && !is_gdb_debug_section(name))
256 return false;
258 return true;
260 default:
261 return true;
265 // Return an output section named NAME, or NULL if there is none.
267 Output_section*
268 Layout::find_output_section(const char* name) const
270 for (Section_list::const_iterator p = this->section_list_.begin();
271 p != this->section_list_.end();
272 ++p)
273 if (strcmp((*p)->name(), name) == 0)
274 return *p;
275 return NULL;
278 // Return an output segment of type TYPE, with segment flags SET set
279 // and segment flags CLEAR clear. Return NULL if there is none.
281 Output_segment*
282 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
283 elfcpp::Elf_Word clear) const
285 for (Segment_list::const_iterator p = this->segment_list_.begin();
286 p != this->segment_list_.end();
287 ++p)
288 if (static_cast<elfcpp::PT>((*p)->type()) == type
289 && ((*p)->flags() & set) == set
290 && ((*p)->flags() & clear) == 0)
291 return *p;
292 return NULL;
295 // Return the output section to use for section NAME with type TYPE
296 // and section flags FLAGS. NAME must be canonicalized in the string
297 // pool, and NAME_KEY is the key.
299 Output_section*
300 Layout::get_output_section(const char* name, Stringpool::Key name_key,
301 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
303 elfcpp::Elf_Xword lookup_flags = flags;
305 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
306 // read-write with read-only sections. Some other ELF linkers do
307 // not do this. FIXME: Perhaps there should be an option
308 // controlling this.
309 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
311 const Key key(name_key, std::make_pair(type, lookup_flags));
312 const std::pair<Key, Output_section*> v(key, NULL);
313 std::pair<Section_name_map::iterator, bool> ins(
314 this->section_name_map_.insert(v));
316 if (!ins.second)
317 return ins.first->second;
318 else
320 // This is the first time we've seen this name/type/flags
321 // combination. For compatibility with the GNU linker, we
322 // combine sections with contents and zero flags with sections
323 // with non-zero flags. This is a workaround for cases where
324 // assembler code forgets to set section flags. FIXME: Perhaps
325 // there should be an option to control this.
326 Output_section* os = NULL;
328 if (type == elfcpp::SHT_PROGBITS)
330 if (flags == 0)
332 Output_section* same_name = this->find_output_section(name);
333 if (same_name != NULL
334 && same_name->type() == elfcpp::SHT_PROGBITS
335 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
336 os = same_name;
338 else if ((flags & elfcpp::SHF_TLS) == 0)
340 elfcpp::Elf_Xword zero_flags = 0;
341 const Key zero_key(name_key, std::make_pair(type, zero_flags));
342 Section_name_map::iterator p =
343 this->section_name_map_.find(zero_key);
344 if (p != this->section_name_map_.end())
345 os = p->second;
349 if (os == NULL)
350 os = this->make_output_section(name, type, flags);
351 ins.first->second = os;
352 return os;
356 // Pick the output section to use for section NAME, in input file
357 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
358 // linker created section. IS_INPUT_SECTION is true if we are
359 // choosing an output section for an input section found in a input
360 // file. This will return NULL if the input section should be
361 // discarded.
363 Output_section*
364 Layout::choose_output_section(const Relobj* relobj, const char* name,
365 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
366 bool is_input_section)
368 // We should not see any input sections after we have attached
369 // sections to segments.
370 gold_assert(!is_input_section || !this->sections_are_attached_);
372 // Some flags in the input section should not be automatically
373 // copied to the output section.
374 flags &= ~ (elfcpp::SHF_INFO_LINK
375 | elfcpp::SHF_LINK_ORDER
376 | elfcpp::SHF_GROUP
377 | elfcpp::SHF_MERGE
378 | elfcpp::SHF_STRINGS);
380 if (this->script_options_->saw_sections_clause())
382 // We are using a SECTIONS clause, so the output section is
383 // chosen based only on the name.
385 Script_sections* ss = this->script_options_->script_sections();
386 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
387 Output_section** output_section_slot;
388 name = ss->output_section_name(file_name, name, &output_section_slot);
389 if (name == NULL)
391 // The SECTIONS clause says to discard this input section.
392 return NULL;
395 // If this is an orphan section--one not mentioned in the linker
396 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
397 // default processing below.
399 if (output_section_slot != NULL)
401 if (*output_section_slot != NULL)
402 return *output_section_slot;
404 // We don't put sections found in the linker script into
405 // SECTION_NAME_MAP_. That keeps us from getting confused
406 // if an orphan section is mapped to a section with the same
407 // name as one in the linker script.
409 name = this->namepool_.add(name, false, NULL);
411 Output_section* os = this->make_output_section(name, type, flags);
412 os->set_found_in_sections_clause();
413 *output_section_slot = os;
414 return os;
418 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
420 // Turn NAME from the name of the input section into the name of the
421 // output section.
423 size_t len = strlen(name);
424 if (is_input_section && !parameters->options().relocatable())
425 name = Layout::output_section_name(name, &len);
427 Stringpool::Key name_key;
428 name = this->namepool_.add_with_length(name, len, true, &name_key);
430 // Find or make the output section. The output section is selected
431 // based on the section name, type, and flags.
432 return this->get_output_section(name, name_key, type, flags);
435 // Return the output section to use for input section SHNDX, with name
436 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
437 // index of a relocation section which applies to this section, or 0
438 // if none, or -1U if more than one. RELOC_TYPE is the type of the
439 // relocation section if there is one. Set *OFF to the offset of this
440 // input section without the output section. Return NULL if the
441 // section should be discarded. Set *OFF to -1 if the section
442 // contents should not be written directly to the output file, but
443 // will instead receive special handling.
445 template<int size, bool big_endian>
446 Output_section*
447 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
448 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
449 unsigned int reloc_shndx, unsigned int, off_t* off)
451 *off = 0;
453 if (!this->include_section(object, name, shdr))
454 return NULL;
456 Output_section* os;
458 // In a relocatable link a grouped section must not be combined with
459 // any other sections.
460 if (parameters->options().relocatable()
461 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
463 name = this->namepool_.add(name, true, NULL);
464 os = this->make_output_section(name, shdr.get_sh_type(),
465 shdr.get_sh_flags());
467 else
469 os = this->choose_output_section(object, name, shdr.get_sh_type(),
470 shdr.get_sh_flags(), true);
471 if (os == NULL)
472 return NULL;
475 // By default the GNU linker sorts input sections whose names match
476 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
477 // are sorted by name. This is used to implement constructor
478 // priority ordering. We are compatible.
479 if (!this->script_options_->saw_sections_clause()
480 && (is_prefix_of(".ctors.", name)
481 || is_prefix_of(".dtors.", name)
482 || is_prefix_of(".init_array.", name)
483 || is_prefix_of(".fini_array.", name)))
484 os->set_must_sort_attached_input_sections();
486 // FIXME: Handle SHF_LINK_ORDER somewhere.
488 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
489 this->script_options_->saw_sections_clause());
491 return os;
494 // Handle a relocation section when doing a relocatable link.
496 template<int size, bool big_endian>
497 Output_section*
498 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
499 unsigned int,
500 const elfcpp::Shdr<size, big_endian>& shdr,
501 Output_section* data_section,
502 Relocatable_relocs* rr)
504 gold_assert(parameters->options().relocatable()
505 || parameters->options().emit_relocs());
507 int sh_type = shdr.get_sh_type();
509 std::string name;
510 if (sh_type == elfcpp::SHT_REL)
511 name = ".rel";
512 else if (sh_type == elfcpp::SHT_RELA)
513 name = ".rela";
514 else
515 gold_unreachable();
516 name += data_section->name();
518 Output_section* os = this->choose_output_section(object, name.c_str(),
519 sh_type,
520 shdr.get_sh_flags(),
521 false);
523 os->set_should_link_to_symtab();
524 os->set_info_section(data_section);
526 Output_section_data* posd;
527 if (sh_type == elfcpp::SHT_REL)
529 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
530 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
531 size,
532 big_endian>(rr);
534 else if (sh_type == elfcpp::SHT_RELA)
536 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
537 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
538 size,
539 big_endian>(rr);
541 else
542 gold_unreachable();
544 os->add_output_section_data(posd);
545 rr->set_output_data(posd);
547 return os;
550 // Handle a group section when doing a relocatable link.
552 template<int size, bool big_endian>
553 void
554 Layout::layout_group(Symbol_table* symtab,
555 Sized_relobj<size, big_endian>* object,
556 unsigned int,
557 const char* group_section_name,
558 const char* signature,
559 const elfcpp::Shdr<size, big_endian>& shdr,
560 elfcpp::Elf_Word flags,
561 std::vector<unsigned int>* shndxes)
563 gold_assert(parameters->options().relocatable());
564 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
565 group_section_name = this->namepool_.add(group_section_name, true, NULL);
566 Output_section* os = this->make_output_section(group_section_name,
567 elfcpp::SHT_GROUP,
568 shdr.get_sh_flags());
570 // We need to find a symbol with the signature in the symbol table.
571 // If we don't find one now, we need to look again later.
572 Symbol* sym = symtab->lookup(signature, NULL);
573 if (sym != NULL)
574 os->set_info_symndx(sym);
575 else
577 // We will wind up using a symbol whose name is the signature.
578 // So just put the signature in the symbol name pool to save it.
579 signature = symtab->canonicalize_name(signature);
580 this->group_signatures_.push_back(Group_signature(os, signature));
583 os->set_should_link_to_symtab();
584 os->set_entsize(4);
586 section_size_type entry_count =
587 convert_to_section_size_type(shdr.get_sh_size() / 4);
588 Output_section_data* posd =
589 new Output_data_group<size, big_endian>(object, entry_count, flags,
590 shndxes);
591 os->add_output_section_data(posd);
594 // Special GNU handling of sections name .eh_frame. They will
595 // normally hold exception frame data as defined by the C++ ABI
596 // (http://codesourcery.com/cxx-abi/).
598 template<int size, bool big_endian>
599 Output_section*
600 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
601 const unsigned char* symbols,
602 off_t symbols_size,
603 const unsigned char* symbol_names,
604 off_t symbol_names_size,
605 unsigned int shndx,
606 const elfcpp::Shdr<size, big_endian>& shdr,
607 unsigned int reloc_shndx, unsigned int reloc_type,
608 off_t* off)
610 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
611 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
613 const char* const name = ".eh_frame";
614 Output_section* os = this->choose_output_section(object,
615 name,
616 elfcpp::SHT_PROGBITS,
617 elfcpp::SHF_ALLOC,
618 false);
619 if (os == NULL)
620 return NULL;
622 if (this->eh_frame_section_ == NULL)
624 this->eh_frame_section_ = os;
625 this->eh_frame_data_ = new Eh_frame();
627 if (this->options_.eh_frame_hdr())
629 Output_section* hdr_os =
630 this->choose_output_section(NULL,
631 ".eh_frame_hdr",
632 elfcpp::SHT_PROGBITS,
633 elfcpp::SHF_ALLOC,
634 false);
636 if (hdr_os != NULL)
638 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
639 this->eh_frame_data_);
640 hdr_os->add_output_section_data(hdr_posd);
642 hdr_os->set_after_input_sections();
644 if (!this->script_options_->saw_phdrs_clause())
646 Output_segment* hdr_oseg;
647 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
648 elfcpp::PF_R);
649 hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
652 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
657 gold_assert(this->eh_frame_section_ == os);
659 if (this->eh_frame_data_->add_ehframe_input_section(object,
660 symbols,
661 symbols_size,
662 symbol_names,
663 symbol_names_size,
664 shndx,
665 reloc_shndx,
666 reloc_type))
668 os->update_flags_for_input_section(shdr.get_sh_flags());
670 // We found a .eh_frame section we are going to optimize, so now
671 // we can add the set of optimized sections to the output
672 // section. We need to postpone adding this until we've found a
673 // section we can optimize so that the .eh_frame section in
674 // crtbegin.o winds up at the start of the output section.
675 if (!this->added_eh_frame_data_)
677 os->add_output_section_data(this->eh_frame_data_);
678 this->added_eh_frame_data_ = true;
680 *off = -1;
682 else
684 // We couldn't handle this .eh_frame section for some reason.
685 // Add it as a normal section.
686 bool saw_sections_clause = this->script_options_->saw_sections_clause();
687 *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
688 saw_sections_clause);
691 return os;
694 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
695 // the output section.
697 Output_section*
698 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
699 elfcpp::Elf_Xword flags,
700 Output_section_data* posd)
702 Output_section* os = this->choose_output_section(NULL, name, type, flags,
703 false);
704 if (os != NULL)
705 os->add_output_section_data(posd);
706 return os;
709 // Map section flags to segment flags.
711 elfcpp::Elf_Word
712 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
714 elfcpp::Elf_Word ret = elfcpp::PF_R;
715 if ((flags & elfcpp::SHF_WRITE) != 0)
716 ret |= elfcpp::PF_W;
717 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
718 ret |= elfcpp::PF_X;
719 return ret;
722 // Sometimes we compress sections. This is typically done for
723 // sections that are not part of normal program execution (such as
724 // .debug_* sections), and where the readers of these sections know
725 // how to deal with compressed sections. (To make it easier for them,
726 // we will rename the ouput section in such cases from .foo to
727 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
728 // doesn't say for certain whether we'll compress -- it depends on
729 // commandline options as well -- just whether this section is a
730 // candidate for compression.
732 static bool
733 is_compressible_debug_section(const char* secname)
735 return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
738 // Make a new Output_section, and attach it to segments as
739 // appropriate.
741 Output_section*
742 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
743 elfcpp::Elf_Xword flags)
745 Output_section* os;
746 if ((flags & elfcpp::SHF_ALLOC) == 0
747 && strcmp(this->options_.compress_debug_sections(), "none") != 0
748 && is_compressible_debug_section(name))
749 os = new Output_compressed_section(&this->options_, name, type, flags);
751 else if ((flags & elfcpp::SHF_ALLOC) == 0
752 && this->options_.strip_debug_non_line()
753 && strcmp(".debug_abbrev", name) == 0)
755 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
756 name, type, flags);
757 if (this->debug_info_)
758 this->debug_info_->set_abbreviations(this->debug_abbrev_);
760 else if ((flags & elfcpp::SHF_ALLOC) == 0
761 && this->options_.strip_debug_non_line()
762 && strcmp(".debug_info", name) == 0)
764 os = this->debug_info_ = new Output_reduced_debug_info_section(
765 name, type, flags);
766 if (this->debug_abbrev_)
767 this->debug_info_->set_abbreviations(this->debug_abbrev_);
769 else
770 os = new Output_section(name, type, flags);
772 this->section_list_.push_back(os);
774 // The GNU linker by default sorts some sections by priority, so we
775 // do the same. We need to know that this might happen before we
776 // attach any input sections.
777 if (!this->script_options_->saw_sections_clause()
778 && (strcmp(name, ".ctors") == 0
779 || strcmp(name, ".dtors") == 0
780 || strcmp(name, ".init_array") == 0
781 || strcmp(name, ".fini_array") == 0))
782 os->set_may_sort_attached_input_sections();
784 // With -z relro, we have to recognize the special sections by name.
785 // There is no other way.
786 if (!this->script_options_->saw_sections_clause()
787 && parameters->options().relro()
788 && type == elfcpp::SHT_PROGBITS
789 && (flags & elfcpp::SHF_ALLOC) != 0
790 && (flags & elfcpp::SHF_WRITE) != 0)
792 if (strcmp(name, ".data.rel.ro") == 0)
793 os->set_is_relro();
794 else if (strcmp(name, ".data.rel.ro.local") == 0)
796 os->set_is_relro();
797 os->set_is_relro_local();
801 // If we have already attached the sections to segments, then we
802 // need to attach this one now. This happens for sections created
803 // directly by the linker.
804 if (this->sections_are_attached_)
805 this->attach_section_to_segment(os);
807 return os;
810 // Attach output sections to segments. This is called after we have
811 // seen all the input sections.
813 void
814 Layout::attach_sections_to_segments()
816 for (Section_list::iterator p = this->section_list_.begin();
817 p != this->section_list_.end();
818 ++p)
819 this->attach_section_to_segment(*p);
821 this->sections_are_attached_ = true;
824 // Attach an output section to a segment.
826 void
827 Layout::attach_section_to_segment(Output_section* os)
829 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
830 this->unattached_section_list_.push_back(os);
831 else
832 this->attach_allocated_section_to_segment(os);
835 // Attach an allocated output section to a segment.
837 void
838 Layout::attach_allocated_section_to_segment(Output_section* os)
840 elfcpp::Elf_Xword flags = os->flags();
841 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
843 if (parameters->options().relocatable())
844 return;
846 // If we have a SECTIONS clause, we can't handle the attachment to
847 // segments until after we've seen all the sections.
848 if (this->script_options_->saw_sections_clause())
849 return;
851 gold_assert(!this->script_options_->saw_phdrs_clause());
853 // This output section goes into a PT_LOAD segment.
855 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
857 // In general the only thing we really care about for PT_LOAD
858 // segments is whether or not they are writable, so that is how we
859 // search for them. People who need segments sorted on some other
860 // basis will have to use a linker script.
862 Segment_list::const_iterator p;
863 for (p = this->segment_list_.begin();
864 p != this->segment_list_.end();
865 ++p)
867 if ((*p)->type() == elfcpp::PT_LOAD
868 && ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W))
870 // If -Tbss was specified, we need to separate the data
871 // and BSS segments.
872 if (this->options_.user_set_Tbss())
874 if ((os->type() == elfcpp::SHT_NOBITS)
875 == (*p)->has_any_data_sections())
876 continue;
879 (*p)->add_output_section(os, seg_flags);
880 break;
884 if (p == this->segment_list_.end())
886 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
887 seg_flags);
888 oseg->add_output_section(os, seg_flags);
891 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
892 // segment.
893 if (os->type() == elfcpp::SHT_NOTE)
895 // See if we already have an equivalent PT_NOTE segment.
896 for (p = this->segment_list_.begin();
897 p != segment_list_.end();
898 ++p)
900 if ((*p)->type() == elfcpp::PT_NOTE
901 && (((*p)->flags() & elfcpp::PF_W)
902 == (seg_flags & elfcpp::PF_W)))
904 (*p)->add_output_section(os, seg_flags);
905 break;
909 if (p == this->segment_list_.end())
911 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
912 seg_flags);
913 oseg->add_output_section(os, seg_flags);
917 // If we see a loadable SHF_TLS section, we create a PT_TLS
918 // segment. There can only be one such segment.
919 if ((flags & elfcpp::SHF_TLS) != 0)
921 if (this->tls_segment_ == NULL)
922 this->tls_segment_ = this->make_output_segment(elfcpp::PT_TLS,
923 seg_flags);
924 this->tls_segment_->add_output_section(os, seg_flags);
927 // If -z relro is in effect, and we see a relro section, we create a
928 // PT_GNU_RELRO segment. There can only be one such segment.
929 if (os->is_relro() && parameters->options().relro())
931 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
932 if (this->relro_segment_ == NULL)
933 this->relro_segment_ = this->make_output_segment(elfcpp::PT_GNU_RELRO,
934 seg_flags);
935 this->relro_segment_->add_output_section(os, seg_flags);
939 // Make an output section for a script.
941 Output_section*
942 Layout::make_output_section_for_script(const char* name)
944 name = this->namepool_.add(name, false, NULL);
945 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
946 elfcpp::SHF_ALLOC);
947 os->set_found_in_sections_clause();
948 return os;
951 // Return the number of segments we expect to see.
953 size_t
954 Layout::expected_segment_count() const
956 size_t ret = this->segment_list_.size();
958 // If we didn't see a SECTIONS clause in a linker script, we should
959 // already have the complete list of segments. Otherwise we ask the
960 // SECTIONS clause how many segments it expects, and add in the ones
961 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
963 if (!this->script_options_->saw_sections_clause())
964 return ret;
965 else
967 const Script_sections* ss = this->script_options_->script_sections();
968 return ret + ss->expected_segment_count(this);
972 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
973 // is whether we saw a .note.GNU-stack section in the object file.
974 // GNU_STACK_FLAGS is the section flags. The flags give the
975 // protection required for stack memory. We record this in an
976 // executable as a PT_GNU_STACK segment. If an object file does not
977 // have a .note.GNU-stack segment, we must assume that it is an old
978 // object. On some targets that will force an executable stack.
980 void
981 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
983 if (!seen_gnu_stack)
984 this->input_without_gnu_stack_note_ = true;
985 else
987 this->input_with_gnu_stack_note_ = true;
988 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
989 this->input_requires_executable_stack_ = true;
993 // Create the dynamic sections which are needed before we read the
994 // relocs.
996 void
997 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
999 if (parameters->doing_static_link())
1000 return;
1002 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1003 elfcpp::SHT_DYNAMIC,
1004 (elfcpp::SHF_ALLOC
1005 | elfcpp::SHF_WRITE),
1006 false);
1007 this->dynamic_section_->set_is_relro();
1009 symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1010 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1011 elfcpp::STV_HIDDEN, 0, false, false);
1013 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1015 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1018 // For each output section whose name can be represented as C symbol,
1019 // define __start and __stop symbols for the section. This is a GNU
1020 // extension.
1022 void
1023 Layout::define_section_symbols(Symbol_table* symtab)
1025 for (Section_list::const_iterator p = this->section_list_.begin();
1026 p != this->section_list_.end();
1027 ++p)
1029 const char* const name = (*p)->name();
1030 if (name[strspn(name,
1031 ("0123456789"
1032 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1033 "abcdefghijklmnopqrstuvwxyz"
1034 "_"))]
1035 == '\0')
1037 const std::string name_string(name);
1038 const std::string start_name("__start_" + name_string);
1039 const std::string stop_name("__stop_" + name_string);
1041 symtab->define_in_output_data(start_name.c_str(),
1042 NULL, // version
1044 0, // value
1045 0, // symsize
1046 elfcpp::STT_NOTYPE,
1047 elfcpp::STB_GLOBAL,
1048 elfcpp::STV_DEFAULT,
1049 0, // nonvis
1050 false, // offset_is_from_end
1051 true); // only_if_ref
1053 symtab->define_in_output_data(stop_name.c_str(),
1054 NULL, // version
1056 0, // value
1057 0, // symsize
1058 elfcpp::STT_NOTYPE,
1059 elfcpp::STB_GLOBAL,
1060 elfcpp::STV_DEFAULT,
1061 0, // nonvis
1062 true, // offset_is_from_end
1063 true); // only_if_ref
1068 // Define symbols for group signatures.
1070 void
1071 Layout::define_group_signatures(Symbol_table* symtab)
1073 for (Group_signatures::iterator p = this->group_signatures_.begin();
1074 p != this->group_signatures_.end();
1075 ++p)
1077 Symbol* sym = symtab->lookup(p->signature, NULL);
1078 if (sym != NULL)
1079 p->section->set_info_symndx(sym);
1080 else
1082 // Force the name of the group section to the group
1083 // signature, and use the group's section symbol as the
1084 // signature symbol.
1085 if (strcmp(p->section->name(), p->signature) != 0)
1087 const char* name = this->namepool_.add(p->signature,
1088 true, NULL);
1089 p->section->set_name(name);
1091 p->section->set_needs_symtab_index();
1092 p->section->set_info_section_symndx(p->section);
1096 this->group_signatures_.clear();
1099 // Find the first read-only PT_LOAD segment, creating one if
1100 // necessary.
1102 Output_segment*
1103 Layout::find_first_load_seg()
1105 for (Segment_list::const_iterator p = this->segment_list_.begin();
1106 p != this->segment_list_.end();
1107 ++p)
1109 if ((*p)->type() == elfcpp::PT_LOAD
1110 && ((*p)->flags() & elfcpp::PF_R) != 0
1111 && ((*p)->flags() & elfcpp::PF_W) == 0)
1112 return *p;
1115 gold_assert(!this->script_options_->saw_phdrs_clause());
1117 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1118 elfcpp::PF_R);
1119 return load_seg;
1122 // Finalize the layout. When this is called, we have created all the
1123 // output sections and all the output segments which are based on
1124 // input sections. We have several things to do, and we have to do
1125 // them in the right order, so that we get the right results correctly
1126 // and efficiently.
1128 // 1) Finalize the list of output segments and create the segment
1129 // table header.
1131 // 2) Finalize the dynamic symbol table and associated sections.
1133 // 3) Determine the final file offset of all the output segments.
1135 // 4) Determine the final file offset of all the SHF_ALLOC output
1136 // sections.
1138 // 5) Create the symbol table sections and the section name table
1139 // section.
1141 // 6) Finalize the symbol table: set symbol values to their final
1142 // value and make a final determination of which symbols are going
1143 // into the output symbol table.
1145 // 7) Create the section table header.
1147 // 8) Determine the final file offset of all the output sections which
1148 // are not SHF_ALLOC, including the section table header.
1150 // 9) Finalize the ELF file header.
1152 // This function returns the size of the output file.
1154 off_t
1155 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1156 Target* target, const Task* task)
1158 target->finalize_sections(this);
1160 this->count_local_symbols(task, input_objects);
1162 this->create_gold_note();
1163 this->create_executable_stack_info(target);
1164 this->create_build_id();
1166 Output_segment* phdr_seg = NULL;
1167 if (!parameters->options().relocatable() && !parameters->doing_static_link())
1169 // There was a dynamic object in the link. We need to create
1170 // some information for the dynamic linker.
1172 // Create the PT_PHDR segment which will hold the program
1173 // headers.
1174 if (!this->script_options_->saw_phdrs_clause())
1175 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1177 // Create the dynamic symbol table, including the hash table.
1178 Output_section* dynstr;
1179 std::vector<Symbol*> dynamic_symbols;
1180 unsigned int local_dynamic_count;
1181 Versions versions(*this->script_options()->version_script_info(),
1182 &this->dynpool_);
1183 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1184 &local_dynamic_count, &dynamic_symbols,
1185 &versions);
1187 // Create the .interp section to hold the name of the
1188 // interpreter, and put it in a PT_INTERP segment.
1189 if (!parameters->options().shared())
1190 this->create_interp(target);
1192 // Finish the .dynamic section to hold the dynamic data, and put
1193 // it in a PT_DYNAMIC segment.
1194 this->finish_dynamic_section(input_objects, symtab);
1196 // We should have added everything we need to the dynamic string
1197 // table.
1198 this->dynpool_.set_string_offsets();
1200 // Create the version sections. We can't do this until the
1201 // dynamic string table is complete.
1202 this->create_version_sections(&versions, symtab, local_dynamic_count,
1203 dynamic_symbols, dynstr);
1206 // If there is a SECTIONS clause, put all the input sections into
1207 // the required order.
1208 Output_segment* load_seg;
1209 if (this->script_options_->saw_sections_clause())
1210 load_seg = this->set_section_addresses_from_script(symtab);
1211 else if (parameters->options().relocatable())
1212 load_seg = NULL;
1213 else
1214 load_seg = this->find_first_load_seg();
1216 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1217 load_seg = NULL;
1219 gold_assert(phdr_seg == NULL || load_seg != NULL);
1221 // Lay out the segment headers.
1222 Output_segment_headers* segment_headers;
1223 if (parameters->options().relocatable())
1224 segment_headers = NULL;
1225 else
1227 segment_headers = new Output_segment_headers(this->segment_list_);
1228 if (load_seg != NULL)
1229 load_seg->add_initial_output_data(segment_headers);
1230 if (phdr_seg != NULL)
1231 phdr_seg->add_initial_output_data(segment_headers);
1234 // Lay out the file header.
1235 Output_file_header* file_header;
1236 file_header = new Output_file_header(target, symtab, segment_headers,
1237 this->options_.entry());
1238 if (load_seg != NULL)
1239 load_seg->add_initial_output_data(file_header);
1241 this->special_output_list_.push_back(file_header);
1242 if (segment_headers != NULL)
1243 this->special_output_list_.push_back(segment_headers);
1245 if (this->script_options_->saw_phdrs_clause()
1246 && !parameters->options().relocatable())
1248 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1249 // clause in a linker script.
1250 Script_sections* ss = this->script_options_->script_sections();
1251 ss->put_headers_in_phdrs(file_header, segment_headers);
1254 // We set the output section indexes in set_segment_offsets and
1255 // set_section_indexes.
1256 unsigned int shndx = 1;
1258 // Set the file offsets of all the segments, and all the sections
1259 // they contain.
1260 off_t off;
1261 if (!parameters->options().relocatable())
1262 off = this->set_segment_offsets(target, load_seg, &shndx);
1263 else
1264 off = this->set_relocatable_section_offsets(file_header, &shndx);
1266 // Set the file offsets of all the non-data sections we've seen so
1267 // far which don't have to wait for the input sections. We need
1268 // this in order to finalize local symbols in non-allocated
1269 // sections.
1270 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1272 // Set the section indexes of all unallocated sections seen so far,
1273 // in case any of them are somehow referenced by a symbol.
1274 shndx = this->set_section_indexes(shndx);
1276 // Create the symbol table sections.
1277 this->create_symtab_sections(input_objects, symtab, shndx, &off);
1278 if (!parameters->doing_static_link())
1279 this->assign_local_dynsym_offsets(input_objects);
1281 // Process any symbol assignments from a linker script. This must
1282 // be called after the symbol table has been finalized.
1283 this->script_options_->finalize_symbols(symtab, this);
1285 // Create the .shstrtab section.
1286 Output_section* shstrtab_section = this->create_shstrtab();
1288 // Set the file offsets of the rest of the non-data sections which
1289 // don't have to wait for the input sections.
1290 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1292 // Now that all sections have been created, set the section indexes
1293 // for any sections which haven't been done yet.
1294 shndx = this->set_section_indexes(shndx);
1296 // Create the section table header.
1297 this->create_shdrs(shstrtab_section, &off);
1299 // If there are no sections which require postprocessing, we can
1300 // handle the section names now, and avoid a resize later.
1301 if (!this->any_postprocessing_sections_)
1302 off = this->set_section_offsets(off,
1303 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1305 file_header->set_section_info(this->section_headers_, shstrtab_section);
1307 // Now we know exactly where everything goes in the output file
1308 // (except for non-allocated sections which require postprocessing).
1309 Output_data::layout_complete();
1311 this->output_file_size_ = off;
1313 return off;
1316 // Create a note header following the format defined in the ELF ABI.
1317 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1318 // descriptor. ALLOCATE is true if the section should be allocated in
1319 // memory. This returns the new note section. It sets
1320 // *TRAILING_PADDING to the number of trailing zero bytes required.
1322 Output_section*
1323 Layout::create_note(const char* name, int note_type, size_t descsz,
1324 bool allocate, size_t* trailing_padding)
1326 // Authorities all agree that the values in a .note field should
1327 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1328 // they differ on what the alignment is for 64-bit binaries.
1329 // The GABI says unambiguously they take 8-byte alignment:
1330 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1331 // Other documentation says alignment should always be 4 bytes:
1332 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1333 // GNU ld and GNU readelf both support the latter (at least as of
1334 // version 2.16.91), and glibc always generates the latter for
1335 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1336 // here.
1337 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1338 const int size = parameters->target().get_size();
1339 #else
1340 const int size = 32;
1341 #endif
1343 // The contents of the .note section.
1344 size_t namesz = strlen(name) + 1;
1345 size_t aligned_namesz = align_address(namesz, size / 8);
1346 size_t aligned_descsz = align_address(descsz, size / 8);
1348 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1350 unsigned char* buffer = new unsigned char[notehdrsz];
1351 memset(buffer, 0, notehdrsz);
1353 bool is_big_endian = parameters->target().is_big_endian();
1355 if (size == 32)
1357 if (!is_big_endian)
1359 elfcpp::Swap<32, false>::writeval(buffer, namesz);
1360 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1361 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1363 else
1365 elfcpp::Swap<32, true>::writeval(buffer, namesz);
1366 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1367 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1370 else if (size == 64)
1372 if (!is_big_endian)
1374 elfcpp::Swap<64, false>::writeval(buffer, namesz);
1375 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1376 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1378 else
1380 elfcpp::Swap<64, true>::writeval(buffer, namesz);
1381 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1382 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1385 else
1386 gold_unreachable();
1388 memcpy(buffer + 3 * (size / 8), name, namesz);
1390 const char* note_name = this->namepool_.add(".note", false, NULL);
1391 elfcpp::Elf_Xword flags = 0;
1392 if (allocate)
1393 flags = elfcpp::SHF_ALLOC;
1394 Output_section* os = this->make_output_section(note_name,
1395 elfcpp::SHT_NOTE,
1396 flags);
1397 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1398 size / 8,
1399 "** note header");
1400 os->add_output_section_data(posd);
1402 *trailing_padding = aligned_descsz - descsz;
1404 return os;
1407 // For an executable or shared library, create a note to record the
1408 // version of gold used to create the binary.
1410 void
1411 Layout::create_gold_note()
1413 if (parameters->options().relocatable())
1414 return;
1416 std::string desc = std::string("gold ") + gold::get_version_string();
1418 size_t trailing_padding;
1419 Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1420 desc.size(), false, &trailing_padding);
1422 Output_section_data* posd = new Output_data_const(desc, 4);
1423 os->add_output_section_data(posd);
1425 if (trailing_padding > 0)
1427 posd = new Output_data_zero_fill(trailing_padding, 0);
1428 os->add_output_section_data(posd);
1432 // Record whether the stack should be executable. This can be set
1433 // from the command line using the -z execstack or -z noexecstack
1434 // options. Otherwise, if any input file has a .note.GNU-stack
1435 // section with the SHF_EXECINSTR flag set, the stack should be
1436 // executable. Otherwise, if at least one input file a
1437 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1438 // section, we use the target default for whether the stack should be
1439 // executable. Otherwise, we don't generate a stack note. When
1440 // generating a object file, we create a .note.GNU-stack section with
1441 // the appropriate marking. When generating an executable or shared
1442 // library, we create a PT_GNU_STACK segment.
1444 void
1445 Layout::create_executable_stack_info(const Target* target)
1447 bool is_stack_executable;
1448 if (this->options_.is_execstack_set())
1449 is_stack_executable = this->options_.is_stack_executable();
1450 else if (!this->input_with_gnu_stack_note_)
1451 return;
1452 else
1454 if (this->input_requires_executable_stack_)
1455 is_stack_executable = true;
1456 else if (this->input_without_gnu_stack_note_)
1457 is_stack_executable = target->is_default_stack_executable();
1458 else
1459 is_stack_executable = false;
1462 if (parameters->options().relocatable())
1464 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1465 elfcpp::Elf_Xword flags = 0;
1466 if (is_stack_executable)
1467 flags |= elfcpp::SHF_EXECINSTR;
1468 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1470 else
1472 if (this->script_options_->saw_phdrs_clause())
1473 return;
1474 int flags = elfcpp::PF_R | elfcpp::PF_W;
1475 if (is_stack_executable)
1476 flags |= elfcpp::PF_X;
1477 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1481 // If --build-id was used, set up the build ID note.
1483 void
1484 Layout::create_build_id()
1486 if (!parameters->options().user_set_build_id())
1487 return;
1489 const char* style = parameters->options().build_id();
1490 if (strcmp(style, "none") == 0)
1491 return;
1493 // Set DESCSZ to the size of the note descriptor. When possible,
1494 // set DESC to the note descriptor contents.
1495 size_t descsz;
1496 std::string desc;
1497 if (strcmp(style, "md5") == 0)
1498 descsz = 128 / 8;
1499 else if (strcmp(style, "sha1") == 0)
1500 descsz = 160 / 8;
1501 else if (strcmp(style, "uuid") == 0)
1503 const size_t uuidsz = 128 / 8;
1505 char buffer[uuidsz];
1506 memset(buffer, 0, uuidsz);
1508 int descriptor = ::open("/dev/urandom", O_RDONLY);
1509 if (descriptor < 0)
1510 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1511 strerror(errno));
1512 else
1514 ssize_t got = ::read(descriptor, buffer, uuidsz);
1515 ::close(descriptor);
1516 if (got < 0)
1517 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1518 else if (static_cast<size_t>(got) != uuidsz)
1519 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1520 uuidsz, got);
1523 desc.assign(buffer, uuidsz);
1524 descsz = uuidsz;
1526 else if (strncmp(style, "0x", 2) == 0)
1528 hex_init();
1529 const char* p = style + 2;
1530 while (*p != '\0')
1532 if (hex_p(p[0]) && hex_p(p[1]))
1534 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1535 desc += c;
1536 p += 2;
1538 else if (*p == '-' || *p == ':')
1539 ++p;
1540 else
1541 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1542 style);
1544 descsz = desc.size();
1546 else
1547 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1549 // Create the note.
1550 size_t trailing_padding;
1551 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1552 descsz, true, &trailing_padding);
1554 if (!desc.empty())
1556 // We know the value already, so we fill it in now.
1557 gold_assert(desc.size() == descsz);
1559 Output_section_data* posd = new Output_data_const(desc, 4);
1560 os->add_output_section_data(posd);
1562 if (trailing_padding != 0)
1564 posd = new Output_data_zero_fill(trailing_padding, 0);
1565 os->add_output_section_data(posd);
1568 else
1570 // We need to compute a checksum after we have completed the
1571 // link.
1572 gold_assert(trailing_padding == 0);
1573 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1574 os->add_output_section_data(this->build_id_note_);
1575 os->set_after_input_sections();
1579 // Return whether SEG1 should be before SEG2 in the output file. This
1580 // is based entirely on the segment type and flags. When this is
1581 // called the segment addresses has normally not yet been set.
1583 bool
1584 Layout::segment_precedes(const Output_segment* seg1,
1585 const Output_segment* seg2)
1587 elfcpp::Elf_Word type1 = seg1->type();
1588 elfcpp::Elf_Word type2 = seg2->type();
1590 // The single PT_PHDR segment is required to precede any loadable
1591 // segment. We simply make it always first.
1592 if (type1 == elfcpp::PT_PHDR)
1594 gold_assert(type2 != elfcpp::PT_PHDR);
1595 return true;
1597 if (type2 == elfcpp::PT_PHDR)
1598 return false;
1600 // The single PT_INTERP segment is required to precede any loadable
1601 // segment. We simply make it always second.
1602 if (type1 == elfcpp::PT_INTERP)
1604 gold_assert(type2 != elfcpp::PT_INTERP);
1605 return true;
1607 if (type2 == elfcpp::PT_INTERP)
1608 return false;
1610 // We then put PT_LOAD segments before any other segments.
1611 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1612 return true;
1613 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1614 return false;
1616 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1617 // segment, because that is where the dynamic linker expects to find
1618 // it (this is just for efficiency; other positions would also work
1619 // correctly).
1620 if (type1 == elfcpp::PT_TLS
1621 && type2 != elfcpp::PT_TLS
1622 && type2 != elfcpp::PT_GNU_RELRO)
1623 return false;
1624 if (type2 == elfcpp::PT_TLS
1625 && type1 != elfcpp::PT_TLS
1626 && type1 != elfcpp::PT_GNU_RELRO)
1627 return true;
1629 // We put the PT_GNU_RELRO segment last, because that is where the
1630 // dynamic linker expects to find it (as with PT_TLS, this is just
1631 // for efficiency).
1632 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1633 return false;
1634 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1635 return true;
1637 const elfcpp::Elf_Word flags1 = seg1->flags();
1638 const elfcpp::Elf_Word flags2 = seg2->flags();
1640 // The order of non-PT_LOAD segments is unimportant. We simply sort
1641 // by the numeric segment type and flags values. There should not
1642 // be more than one segment with the same type and flags.
1643 if (type1 != elfcpp::PT_LOAD)
1645 if (type1 != type2)
1646 return type1 < type2;
1647 gold_assert(flags1 != flags2);
1648 return flags1 < flags2;
1651 // If the addresses are set already, sort by load address.
1652 if (seg1->are_addresses_set())
1654 if (!seg2->are_addresses_set())
1655 return true;
1657 unsigned int section_count1 = seg1->output_section_count();
1658 unsigned int section_count2 = seg2->output_section_count();
1659 if (section_count1 == 0 && section_count2 > 0)
1660 return true;
1661 if (section_count1 > 0 && section_count2 == 0)
1662 return false;
1664 uint64_t paddr1 = seg1->first_section_load_address();
1665 uint64_t paddr2 = seg2->first_section_load_address();
1666 if (paddr1 != paddr2)
1667 return paddr1 < paddr2;
1669 else if (seg2->are_addresses_set())
1670 return false;
1672 // We sort PT_LOAD segments based on the flags. Readonly segments
1673 // come before writable segments. Then writable segments with data
1674 // come before writable segments without data. Then executable
1675 // segments come before non-executable segments. Then the unlikely
1676 // case of a non-readable segment comes before the normal case of a
1677 // readable segment. If there are multiple segments with the same
1678 // type and flags, we require that the address be set, and we sort
1679 // by virtual address and then physical address.
1680 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1681 return (flags1 & elfcpp::PF_W) == 0;
1682 if ((flags1 & elfcpp::PF_W) != 0
1683 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1684 return seg1->has_any_data_sections();
1685 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1686 return (flags1 & elfcpp::PF_X) != 0;
1687 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1688 return (flags1 & elfcpp::PF_R) == 0;
1690 // We shouldn't get here--we shouldn't create segments which we
1691 // can't distinguish.
1692 gold_unreachable();
1695 // Set the file offsets of all the segments, and all the sections they
1696 // contain. They have all been created. LOAD_SEG must be be laid out
1697 // first. Return the offset of the data to follow.
1699 off_t
1700 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1701 unsigned int *pshndx)
1703 // Sort them into the final order.
1704 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1705 Layout::Compare_segments());
1707 // Find the PT_LOAD segments, and set their addresses and offsets
1708 // and their section's addresses and offsets.
1709 uint64_t addr;
1710 if (this->options_.user_set_Ttext())
1711 addr = this->options_.Ttext();
1712 else if (parameters->options().shared())
1713 addr = 0;
1714 else
1715 addr = target->default_text_segment_address();
1716 off_t off = 0;
1718 // If LOAD_SEG is NULL, then the file header and segment headers
1719 // will not be loadable. But they still need to be at offset 0 in
1720 // the file. Set their offsets now.
1721 if (load_seg == NULL)
1723 for (Data_list::iterator p = this->special_output_list_.begin();
1724 p != this->special_output_list_.end();
1725 ++p)
1727 off = align_address(off, (*p)->addralign());
1728 (*p)->set_address_and_file_offset(0, off);
1729 off += (*p)->data_size();
1733 bool was_readonly = false;
1734 for (Segment_list::iterator p = this->segment_list_.begin();
1735 p != this->segment_list_.end();
1736 ++p)
1738 if ((*p)->type() == elfcpp::PT_LOAD)
1740 if (load_seg != NULL && load_seg != *p)
1741 gold_unreachable();
1742 load_seg = NULL;
1744 bool are_addresses_set = (*p)->are_addresses_set();
1745 if (are_addresses_set)
1747 // When it comes to setting file offsets, we care about
1748 // the physical address.
1749 addr = (*p)->paddr();
1751 else if (this->options_.user_set_Tdata()
1752 && ((*p)->flags() & elfcpp::PF_W) != 0
1753 && (!this->options_.user_set_Tbss()
1754 || (*p)->has_any_data_sections()))
1756 addr = this->options_.Tdata();
1757 are_addresses_set = true;
1759 else if (this->options_.user_set_Tbss()
1760 && ((*p)->flags() & elfcpp::PF_W) != 0
1761 && !(*p)->has_any_data_sections())
1763 addr = this->options_.Tbss();
1764 are_addresses_set = true;
1767 uint64_t orig_addr = addr;
1768 uint64_t orig_off = off;
1770 uint64_t aligned_addr = 0;
1771 uint64_t abi_pagesize = target->abi_pagesize();
1773 // FIXME: This should depend on the -n and -N options.
1774 (*p)->set_minimum_p_align(target->common_pagesize());
1776 if (are_addresses_set)
1778 // Adjust the file offset to the same address modulo the
1779 // page size.
1780 uint64_t unsigned_off = off;
1781 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1782 | (addr & (abi_pagesize - 1)));
1783 if (aligned_off < unsigned_off)
1784 aligned_off += abi_pagesize;
1785 off = aligned_off;
1787 else
1789 // If the last segment was readonly, and this one is
1790 // not, then skip the address forward one page,
1791 // maintaining the same position within the page. This
1792 // lets us store both segments overlapping on a single
1793 // page in the file, but the loader will put them on
1794 // different pages in memory.
1796 addr = align_address(addr, (*p)->maximum_alignment());
1797 aligned_addr = addr;
1799 if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1801 if ((addr & (abi_pagesize - 1)) != 0)
1802 addr = addr + abi_pagesize;
1805 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1808 unsigned int shndx_hold = *pshndx;
1809 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1810 &off, pshndx);
1812 // Now that we know the size of this segment, we may be able
1813 // to save a page in memory, at the cost of wasting some
1814 // file space, by instead aligning to the start of a new
1815 // page. Here we use the real machine page size rather than
1816 // the ABI mandated page size.
1818 if (!are_addresses_set && aligned_addr != addr)
1820 uint64_t common_pagesize = target->common_pagesize();
1821 uint64_t first_off = (common_pagesize
1822 - (aligned_addr
1823 & (common_pagesize - 1)));
1824 uint64_t last_off = new_addr & (common_pagesize - 1);
1825 if (first_off > 0
1826 && last_off > 0
1827 && ((aligned_addr & ~ (common_pagesize - 1))
1828 != (new_addr & ~ (common_pagesize - 1)))
1829 && first_off + last_off <= common_pagesize)
1831 *pshndx = shndx_hold;
1832 addr = align_address(aligned_addr, common_pagesize);
1833 addr = align_address(addr, (*p)->maximum_alignment());
1834 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1835 new_addr = (*p)->set_section_addresses(this, true, addr,
1836 &off, pshndx);
1840 addr = new_addr;
1842 if (((*p)->flags() & elfcpp::PF_W) == 0)
1843 was_readonly = true;
1847 // Handle the non-PT_LOAD segments, setting their offsets from their
1848 // section's offsets.
1849 for (Segment_list::iterator p = this->segment_list_.begin();
1850 p != this->segment_list_.end();
1851 ++p)
1853 if ((*p)->type() != elfcpp::PT_LOAD)
1854 (*p)->set_offset();
1857 // Set the TLS offsets for each section in the PT_TLS segment.
1858 if (this->tls_segment_ != NULL)
1859 this->tls_segment_->set_tls_offsets();
1861 return off;
1864 // Set the offsets of all the allocated sections when doing a
1865 // relocatable link. This does the same jobs as set_segment_offsets,
1866 // only for a relocatable link.
1868 off_t
1869 Layout::set_relocatable_section_offsets(Output_data* file_header,
1870 unsigned int *pshndx)
1872 off_t off = 0;
1874 file_header->set_address_and_file_offset(0, 0);
1875 off += file_header->data_size();
1877 for (Section_list::iterator p = this->section_list_.begin();
1878 p != this->section_list_.end();
1879 ++p)
1881 // We skip unallocated sections here, except that group sections
1882 // have to come first.
1883 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1884 && (*p)->type() != elfcpp::SHT_GROUP)
1885 continue;
1887 off = align_address(off, (*p)->addralign());
1889 // The linker script might have set the address.
1890 if (!(*p)->is_address_valid())
1891 (*p)->set_address(0);
1892 (*p)->set_file_offset(off);
1893 (*p)->finalize_data_size();
1894 off += (*p)->data_size();
1896 (*p)->set_out_shndx(*pshndx);
1897 ++*pshndx;
1900 return off;
1903 // Set the file offset of all the sections not associated with a
1904 // segment.
1906 off_t
1907 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1909 for (Section_list::iterator p = this->unattached_section_list_.begin();
1910 p != this->unattached_section_list_.end();
1911 ++p)
1913 // The symtab section is handled in create_symtab_sections.
1914 if (*p == this->symtab_section_)
1915 continue;
1917 // If we've already set the data size, don't set it again.
1918 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1919 continue;
1921 if (pass == BEFORE_INPUT_SECTIONS_PASS
1922 && (*p)->requires_postprocessing())
1924 (*p)->create_postprocessing_buffer();
1925 this->any_postprocessing_sections_ = true;
1928 if (pass == BEFORE_INPUT_SECTIONS_PASS
1929 && (*p)->after_input_sections())
1930 continue;
1931 else if (pass == POSTPROCESSING_SECTIONS_PASS
1932 && (!(*p)->after_input_sections()
1933 || (*p)->type() == elfcpp::SHT_STRTAB))
1934 continue;
1935 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1936 && (!(*p)->after_input_sections()
1937 || (*p)->type() != elfcpp::SHT_STRTAB))
1938 continue;
1940 off = align_address(off, (*p)->addralign());
1941 (*p)->set_file_offset(off);
1942 (*p)->finalize_data_size();
1943 off += (*p)->data_size();
1945 // At this point the name must be set.
1946 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1947 this->namepool_.add((*p)->name(), false, NULL);
1949 return off;
1952 // Set the section indexes of all the sections not associated with a
1953 // segment.
1955 unsigned int
1956 Layout::set_section_indexes(unsigned int shndx)
1958 for (Section_list::iterator p = this->unattached_section_list_.begin();
1959 p != this->unattached_section_list_.end();
1960 ++p)
1962 if (!(*p)->has_out_shndx())
1964 (*p)->set_out_shndx(shndx);
1965 ++shndx;
1968 return shndx;
1971 // Set the section addresses according to the linker script. This is
1972 // only called when we see a SECTIONS clause. This returns the
1973 // program segment which should hold the file header and segment
1974 // headers, if any. It will return NULL if they should not be in a
1975 // segment.
1977 Output_segment*
1978 Layout::set_section_addresses_from_script(Symbol_table* symtab)
1980 Script_sections* ss = this->script_options_->script_sections();
1981 gold_assert(ss->saw_sections_clause());
1983 // Place each orphaned output section in the script.
1984 for (Section_list::iterator p = this->section_list_.begin();
1985 p != this->section_list_.end();
1986 ++p)
1988 if (!(*p)->found_in_sections_clause())
1989 ss->place_orphan(*p);
1992 return this->script_options_->set_section_addresses(symtab, this);
1995 // Count the local symbols in the regular symbol table and the dynamic
1996 // symbol table, and build the respective string pools.
1998 void
1999 Layout::count_local_symbols(const Task* task,
2000 const Input_objects* input_objects)
2002 // First, figure out an upper bound on the number of symbols we'll
2003 // be inserting into each pool. This helps us create the pools with
2004 // the right size, to avoid unnecessary hashtable resizing.
2005 unsigned int symbol_count = 0;
2006 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2007 p != input_objects->relobj_end();
2008 ++p)
2009 symbol_count += (*p)->local_symbol_count();
2011 // Go from "upper bound" to "estimate." We overcount for two
2012 // reasons: we double-count symbols that occur in more than one
2013 // object file, and we count symbols that are dropped from the
2014 // output. Add it all together and assume we overcount by 100%.
2015 symbol_count /= 2;
2017 // We assume all symbols will go into both the sympool and dynpool.
2018 this->sympool_.reserve(symbol_count);
2019 this->dynpool_.reserve(symbol_count);
2021 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2022 p != input_objects->relobj_end();
2023 ++p)
2025 Task_lock_obj<Object> tlo(task, *p);
2026 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2030 // Create the symbol table sections. Here we also set the final
2031 // values of the symbols. At this point all the loadable sections are
2032 // fully laid out. SHNUM is the number of sections so far.
2034 void
2035 Layout::create_symtab_sections(const Input_objects* input_objects,
2036 Symbol_table* symtab,
2037 unsigned int shnum,
2038 off_t* poff)
2040 int symsize;
2041 unsigned int align;
2042 if (parameters->target().get_size() == 32)
2044 symsize = elfcpp::Elf_sizes<32>::sym_size;
2045 align = 4;
2047 else if (parameters->target().get_size() == 64)
2049 symsize = elfcpp::Elf_sizes<64>::sym_size;
2050 align = 8;
2052 else
2053 gold_unreachable();
2055 off_t off = *poff;
2056 off = align_address(off, align);
2057 off_t startoff = off;
2059 // Save space for the dummy symbol at the start of the section. We
2060 // never bother to write this out--it will just be left as zero.
2061 off += symsize;
2062 unsigned int local_symbol_index = 1;
2064 // Add STT_SECTION symbols for each Output section which needs one.
2065 for (Section_list::iterator p = this->section_list_.begin();
2066 p != this->section_list_.end();
2067 ++p)
2069 if (!(*p)->needs_symtab_index())
2070 (*p)->set_symtab_index(-1U);
2071 else
2073 (*p)->set_symtab_index(local_symbol_index);
2074 ++local_symbol_index;
2075 off += symsize;
2079 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2080 p != input_objects->relobj_end();
2081 ++p)
2083 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2084 off);
2085 off += (index - local_symbol_index) * symsize;
2086 local_symbol_index = index;
2089 unsigned int local_symcount = local_symbol_index;
2090 gold_assert(local_symcount * symsize == off - startoff);
2092 off_t dynoff;
2093 size_t dyn_global_index;
2094 size_t dyncount;
2095 if (this->dynsym_section_ == NULL)
2097 dynoff = 0;
2098 dyn_global_index = 0;
2099 dyncount = 0;
2101 else
2103 dyn_global_index = this->dynsym_section_->info();
2104 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2105 dynoff = this->dynsym_section_->offset() + locsize;
2106 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2107 gold_assert(static_cast<off_t>(dyncount * symsize)
2108 == this->dynsym_section_->data_size() - locsize);
2111 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2112 &this->sympool_, &local_symcount);
2114 if (!parameters->options().strip_all())
2116 this->sympool_.set_string_offsets();
2118 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2119 Output_section* osymtab = this->make_output_section(symtab_name,
2120 elfcpp::SHT_SYMTAB,
2122 this->symtab_section_ = osymtab;
2124 Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2125 align,
2126 "** symtab");
2127 osymtab->add_output_section_data(pos);
2129 // We generate a .symtab_shndx section if we have more than
2130 // SHN_LORESERVE sections. Technically it is possible that we
2131 // don't need one, because it is possible that there are no
2132 // symbols in any of sections with indexes larger than
2133 // SHN_LORESERVE. That is probably unusual, though, and it is
2134 // easier to always create one than to compute section indexes
2135 // twice (once here, once when writing out the symbols).
2136 if (shnum >= elfcpp::SHN_LORESERVE)
2138 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2139 false, NULL);
2140 Output_section* osymtab_xindex =
2141 this->make_output_section(symtab_xindex_name,
2142 elfcpp::SHT_SYMTAB_SHNDX, 0);
2144 size_t symcount = (off - startoff) / symsize;
2145 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2147 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2149 osymtab_xindex->set_link_section(osymtab);
2150 osymtab_xindex->set_addralign(4);
2151 osymtab_xindex->set_entsize(4);
2153 osymtab_xindex->set_after_input_sections();
2155 // This tells the driver code to wait until the symbol table
2156 // has written out before writing out the postprocessing
2157 // sections, including the .symtab_shndx section.
2158 this->any_postprocessing_sections_ = true;
2161 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2162 Output_section* ostrtab = this->make_output_section(strtab_name,
2163 elfcpp::SHT_STRTAB,
2166 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2167 ostrtab->add_output_section_data(pstr);
2169 osymtab->set_file_offset(startoff);
2170 osymtab->finalize_data_size();
2171 osymtab->set_link_section(ostrtab);
2172 osymtab->set_info(local_symcount);
2173 osymtab->set_entsize(symsize);
2175 *poff = off;
2179 // Create the .shstrtab section, which holds the names of the
2180 // sections. At the time this is called, we have created all the
2181 // output sections except .shstrtab itself.
2183 Output_section*
2184 Layout::create_shstrtab()
2186 // FIXME: We don't need to create a .shstrtab section if we are
2187 // stripping everything.
2189 const char* name = this->namepool_.add(".shstrtab", false, NULL);
2191 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2193 // We can't write out this section until we've set all the section
2194 // names, and we don't set the names of compressed output sections
2195 // until relocations are complete.
2196 os->set_after_input_sections();
2198 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2199 os->add_output_section_data(posd);
2201 return os;
2204 // Create the section headers. SIZE is 32 or 64. OFF is the file
2205 // offset.
2207 void
2208 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2210 Output_section_headers* oshdrs;
2211 oshdrs = new Output_section_headers(this,
2212 &this->segment_list_,
2213 &this->section_list_,
2214 &this->unattached_section_list_,
2215 &this->namepool_,
2216 shstrtab_section);
2217 off_t off = align_address(*poff, oshdrs->addralign());
2218 oshdrs->set_address_and_file_offset(0, off);
2219 off += oshdrs->data_size();
2220 *poff = off;
2221 this->section_headers_ = oshdrs;
2224 // Count the allocated sections.
2226 size_t
2227 Layout::allocated_output_section_count() const
2229 size_t section_count = 0;
2230 for (Segment_list::const_iterator p = this->segment_list_.begin();
2231 p != this->segment_list_.end();
2232 ++p)
2233 section_count += (*p)->output_section_count();
2234 return section_count;
2237 // Create the dynamic symbol table.
2239 void
2240 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2241 Symbol_table* symtab,
2242 Output_section **pdynstr,
2243 unsigned int* plocal_dynamic_count,
2244 std::vector<Symbol*>* pdynamic_symbols,
2245 Versions* pversions)
2247 // Count all the symbols in the dynamic symbol table, and set the
2248 // dynamic symbol indexes.
2250 // Skip symbol 0, which is always all zeroes.
2251 unsigned int index = 1;
2253 // Add STT_SECTION symbols for each Output section which needs one.
2254 for (Section_list::iterator p = this->section_list_.begin();
2255 p != this->section_list_.end();
2256 ++p)
2258 if (!(*p)->needs_dynsym_index())
2259 (*p)->set_dynsym_index(-1U);
2260 else
2262 (*p)->set_dynsym_index(index);
2263 ++index;
2267 // Count the local symbols that need to go in the dynamic symbol table,
2268 // and set the dynamic symbol indexes.
2269 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2270 p != input_objects->relobj_end();
2271 ++p)
2273 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2274 index = new_index;
2277 unsigned int local_symcount = index;
2278 *plocal_dynamic_count = local_symcount;
2280 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2281 &this->dynpool_, pversions);
2283 int symsize;
2284 unsigned int align;
2285 const int size = parameters->target().get_size();
2286 if (size == 32)
2288 symsize = elfcpp::Elf_sizes<32>::sym_size;
2289 align = 4;
2291 else if (size == 64)
2293 symsize = elfcpp::Elf_sizes<64>::sym_size;
2294 align = 8;
2296 else
2297 gold_unreachable();
2299 // Create the dynamic symbol table section.
2301 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2302 elfcpp::SHT_DYNSYM,
2303 elfcpp::SHF_ALLOC,
2304 false);
2306 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2307 align,
2308 "** dynsym");
2309 dynsym->add_output_section_data(odata);
2311 dynsym->set_info(local_symcount);
2312 dynsym->set_entsize(symsize);
2313 dynsym->set_addralign(align);
2315 this->dynsym_section_ = dynsym;
2317 Output_data_dynamic* const odyn = this->dynamic_data_;
2318 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2319 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2321 // If there are more than SHN_LORESERVE allocated sections, we
2322 // create a .dynsym_shndx section. It is possible that we don't
2323 // need one, because it is possible that there are no dynamic
2324 // symbols in any of the sections with indexes larger than
2325 // SHN_LORESERVE. This is probably unusual, though, and at this
2326 // time we don't know the actual section indexes so it is
2327 // inconvenient to check.
2328 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2330 Output_section* dynsym_xindex =
2331 this->choose_output_section(NULL, ".dynsym_shndx",
2332 elfcpp::SHT_SYMTAB_SHNDX,
2333 elfcpp::SHF_ALLOC,
2334 false);
2336 this->dynsym_xindex_ = new Output_symtab_xindex(index);
2338 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2340 dynsym_xindex->set_link_section(dynsym);
2341 dynsym_xindex->set_addralign(4);
2342 dynsym_xindex->set_entsize(4);
2344 dynsym_xindex->set_after_input_sections();
2346 // This tells the driver code to wait until the symbol table has
2347 // written out before writing out the postprocessing sections,
2348 // including the .dynsym_shndx section.
2349 this->any_postprocessing_sections_ = true;
2352 // Create the dynamic string table section.
2354 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2355 elfcpp::SHT_STRTAB,
2356 elfcpp::SHF_ALLOC,
2357 false);
2359 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2360 dynstr->add_output_section_data(strdata);
2362 dynsym->set_link_section(dynstr);
2363 this->dynamic_section_->set_link_section(dynstr);
2365 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2366 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2368 *pdynstr = dynstr;
2370 // Create the hash tables.
2372 if (strcmp(parameters->options().hash_style(), "sysv") == 0
2373 || strcmp(parameters->options().hash_style(), "both") == 0)
2375 unsigned char* phash;
2376 unsigned int hashlen;
2377 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2378 &phash, &hashlen);
2380 Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2381 elfcpp::SHT_HASH,
2382 elfcpp::SHF_ALLOC,
2383 false);
2385 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2386 hashlen,
2387 align,
2388 "** hash");
2389 hashsec->add_output_section_data(hashdata);
2391 hashsec->set_link_section(dynsym);
2392 hashsec->set_entsize(4);
2394 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2397 if (strcmp(parameters->options().hash_style(), "gnu") == 0
2398 || strcmp(parameters->options().hash_style(), "both") == 0)
2400 unsigned char* phash;
2401 unsigned int hashlen;
2402 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2403 &phash, &hashlen);
2405 Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2406 elfcpp::SHT_GNU_HASH,
2407 elfcpp::SHF_ALLOC,
2408 false);
2410 Output_section_data* hashdata = new Output_data_const_buffer(phash,
2411 hashlen,
2412 align,
2413 "** hash");
2414 hashsec->add_output_section_data(hashdata);
2416 hashsec->set_link_section(dynsym);
2417 hashsec->set_entsize(4);
2419 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2423 // Assign offsets to each local portion of the dynamic symbol table.
2425 void
2426 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2428 Output_section* dynsym = this->dynsym_section_;
2429 gold_assert(dynsym != NULL);
2431 off_t off = dynsym->offset();
2433 // Skip the dummy symbol at the start of the section.
2434 off += dynsym->entsize();
2436 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2437 p != input_objects->relobj_end();
2438 ++p)
2440 unsigned int count = (*p)->set_local_dynsym_offset(off);
2441 off += count * dynsym->entsize();
2445 // Create the version sections.
2447 void
2448 Layout::create_version_sections(const Versions* versions,
2449 const Symbol_table* symtab,
2450 unsigned int local_symcount,
2451 const std::vector<Symbol*>& dynamic_symbols,
2452 const Output_section* dynstr)
2454 if (!versions->any_defs() && !versions->any_needs())
2455 return;
2457 switch (parameters->size_and_endianness())
2459 #ifdef HAVE_TARGET_32_LITTLE
2460 case Parameters::TARGET_32_LITTLE:
2461 this->sized_create_version_sections<32, false>(versions, symtab,
2462 local_symcount,
2463 dynamic_symbols, dynstr);
2464 break;
2465 #endif
2466 #ifdef HAVE_TARGET_32_BIG
2467 case Parameters::TARGET_32_BIG:
2468 this->sized_create_version_sections<32, true>(versions, symtab,
2469 local_symcount,
2470 dynamic_symbols, dynstr);
2471 break;
2472 #endif
2473 #ifdef HAVE_TARGET_64_LITTLE
2474 case Parameters::TARGET_64_LITTLE:
2475 this->sized_create_version_sections<64, false>(versions, symtab,
2476 local_symcount,
2477 dynamic_symbols, dynstr);
2478 break;
2479 #endif
2480 #ifdef HAVE_TARGET_64_BIG
2481 case Parameters::TARGET_64_BIG:
2482 this->sized_create_version_sections<64, true>(versions, symtab,
2483 local_symcount,
2484 dynamic_symbols, dynstr);
2485 break;
2486 #endif
2487 default:
2488 gold_unreachable();
2492 // Create the version sections, sized version.
2494 template<int size, bool big_endian>
2495 void
2496 Layout::sized_create_version_sections(
2497 const Versions* versions,
2498 const Symbol_table* symtab,
2499 unsigned int local_symcount,
2500 const std::vector<Symbol*>& dynamic_symbols,
2501 const Output_section* dynstr)
2503 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2504 elfcpp::SHT_GNU_versym,
2505 elfcpp::SHF_ALLOC,
2506 false);
2508 unsigned char* vbuf;
2509 unsigned int vsize;
2510 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2511 local_symcount,
2512 dynamic_symbols,
2513 &vbuf, &vsize);
2515 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2516 "** versions");
2518 vsec->add_output_section_data(vdata);
2519 vsec->set_entsize(2);
2520 vsec->set_link_section(this->dynsym_section_);
2522 Output_data_dynamic* const odyn = this->dynamic_data_;
2523 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2525 if (versions->any_defs())
2527 Output_section* vdsec;
2528 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2529 elfcpp::SHT_GNU_verdef,
2530 elfcpp::SHF_ALLOC,
2531 false);
2533 unsigned char* vdbuf;
2534 unsigned int vdsize;
2535 unsigned int vdentries;
2536 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2537 &vdsize, &vdentries);
2539 Output_section_data* vddata =
2540 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2542 vdsec->add_output_section_data(vddata);
2543 vdsec->set_link_section(dynstr);
2544 vdsec->set_info(vdentries);
2546 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2547 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2550 if (versions->any_needs())
2552 Output_section* vnsec;
2553 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2554 elfcpp::SHT_GNU_verneed,
2555 elfcpp::SHF_ALLOC,
2556 false);
2558 unsigned char* vnbuf;
2559 unsigned int vnsize;
2560 unsigned int vnentries;
2561 versions->need_section_contents<size, big_endian>(&this->dynpool_,
2562 &vnbuf, &vnsize,
2563 &vnentries);
2565 Output_section_data* vndata =
2566 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2568 vnsec->add_output_section_data(vndata);
2569 vnsec->set_link_section(dynstr);
2570 vnsec->set_info(vnentries);
2572 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2573 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2577 // Create the .interp section and PT_INTERP segment.
2579 void
2580 Layout::create_interp(const Target* target)
2582 const char* interp = this->options_.dynamic_linker();
2583 if (interp == NULL)
2585 interp = target->dynamic_linker();
2586 gold_assert(interp != NULL);
2589 size_t len = strlen(interp) + 1;
2591 Output_section_data* odata = new Output_data_const(interp, len, 1);
2593 Output_section* osec = this->choose_output_section(NULL, ".interp",
2594 elfcpp::SHT_PROGBITS,
2595 elfcpp::SHF_ALLOC,
2596 false);
2597 osec->add_output_section_data(odata);
2599 if (!this->script_options_->saw_phdrs_clause())
2601 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2602 elfcpp::PF_R);
2603 oseg->add_output_section(osec, elfcpp::PF_R);
2607 // Finish the .dynamic section and PT_DYNAMIC segment.
2609 void
2610 Layout::finish_dynamic_section(const Input_objects* input_objects,
2611 const Symbol_table* symtab)
2613 if (!this->script_options_->saw_phdrs_clause())
2615 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2616 (elfcpp::PF_R
2617 | elfcpp::PF_W));
2618 oseg->add_output_section(this->dynamic_section_,
2619 elfcpp::PF_R | elfcpp::PF_W);
2622 Output_data_dynamic* const odyn = this->dynamic_data_;
2624 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2625 p != input_objects->dynobj_end();
2626 ++p)
2628 // FIXME: Handle --as-needed.
2629 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2632 if (parameters->options().shared())
2634 const char* soname = this->options_.soname();
2635 if (soname != NULL)
2636 odyn->add_string(elfcpp::DT_SONAME, soname);
2639 // FIXME: Support --init and --fini.
2640 Symbol* sym = symtab->lookup("_init");
2641 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2642 odyn->add_symbol(elfcpp::DT_INIT, sym);
2644 sym = symtab->lookup("_fini");
2645 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2646 odyn->add_symbol(elfcpp::DT_FINI, sym);
2648 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2650 // Add a DT_RPATH entry if needed.
2651 const General_options::Dir_list& rpath(this->options_.rpath());
2652 if (!rpath.empty())
2654 std::string rpath_val;
2655 for (General_options::Dir_list::const_iterator p = rpath.begin();
2656 p != rpath.end();
2657 ++p)
2659 if (rpath_val.empty())
2660 rpath_val = p->name();
2661 else
2663 // Eliminate duplicates.
2664 General_options::Dir_list::const_iterator q;
2665 for (q = rpath.begin(); q != p; ++q)
2666 if (q->name() == p->name())
2667 break;
2668 if (q == p)
2670 rpath_val += ':';
2671 rpath_val += p->name();
2676 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2677 if (parameters->options().enable_new_dtags())
2678 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2681 // Look for text segments that have dynamic relocations.
2682 bool have_textrel = false;
2683 if (!this->script_options_->saw_sections_clause())
2685 for (Segment_list::const_iterator p = this->segment_list_.begin();
2686 p != this->segment_list_.end();
2687 ++p)
2689 if (((*p)->flags() & elfcpp::PF_W) == 0
2690 && (*p)->dynamic_reloc_count() > 0)
2692 have_textrel = true;
2693 break;
2697 else
2699 // We don't know the section -> segment mapping, so we are
2700 // conservative and just look for readonly sections with
2701 // relocations. If those sections wind up in writable segments,
2702 // then we have created an unnecessary DT_TEXTREL entry.
2703 for (Section_list::const_iterator p = this->section_list_.begin();
2704 p != this->section_list_.end();
2705 ++p)
2707 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2708 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2709 && ((*p)->dynamic_reloc_count() > 0))
2711 have_textrel = true;
2712 break;
2717 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2718 // post-link tools can easily modify these flags if desired.
2719 unsigned int flags = 0;
2720 if (have_textrel)
2722 // Add a DT_TEXTREL for compatibility with older loaders.
2723 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2724 flags |= elfcpp::DF_TEXTREL;
2726 if (parameters->options().shared() && this->has_static_tls())
2727 flags |= elfcpp::DF_STATIC_TLS;
2728 odyn->add_constant(elfcpp::DT_FLAGS, flags);
2730 flags = 0;
2731 if (parameters->options().initfirst())
2732 flags |= elfcpp::DF_1_INITFIRST;
2733 if (parameters->options().interpose())
2734 flags |= elfcpp::DF_1_INTERPOSE;
2735 if (parameters->options().loadfltr())
2736 flags |= elfcpp::DF_1_LOADFLTR;
2737 if (parameters->options().nodefaultlib())
2738 flags |= elfcpp::DF_1_NODEFLIB;
2739 if (parameters->options().nodelete())
2740 flags |= elfcpp::DF_1_NODELETE;
2741 if (parameters->options().nodlopen())
2742 flags |= elfcpp::DF_1_NOOPEN;
2743 if (parameters->options().nodump())
2744 flags |= elfcpp::DF_1_NODUMP;
2745 if (!parameters->options().shared())
2746 flags &= ~(elfcpp::DF_1_INITFIRST
2747 | elfcpp::DF_1_NODELETE
2748 | elfcpp::DF_1_NOOPEN);
2749 if (flags)
2750 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2753 // The mapping of .gnu.linkonce section names to real section names.
2755 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2756 const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2758 MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2759 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Before "d".
2760 MAPPING_INIT("t", ".text"),
2761 MAPPING_INIT("r", ".rodata"),
2762 MAPPING_INIT("d", ".data"),
2763 MAPPING_INIT("b", ".bss"),
2764 MAPPING_INIT("s", ".sdata"),
2765 MAPPING_INIT("sb", ".sbss"),
2766 MAPPING_INIT("s2", ".sdata2"),
2767 MAPPING_INIT("sb2", ".sbss2"),
2768 MAPPING_INIT("wi", ".debug_info"),
2769 MAPPING_INIT("td", ".tdata"),
2770 MAPPING_INIT("tb", ".tbss"),
2771 MAPPING_INIT("lr", ".lrodata"),
2772 MAPPING_INIT("l", ".ldata"),
2773 MAPPING_INIT("lb", ".lbss"),
2775 #undef MAPPING_INIT
2777 const int Layout::linkonce_mapping_count =
2778 sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2780 // Return the name of the output section to use for a .gnu.linkonce
2781 // section. This is based on the default ELF linker script of the old
2782 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2783 // to ".text". Set *PLEN to the length of the name. *PLEN is
2784 // initialized to the length of NAME.
2786 const char*
2787 Layout::linkonce_output_name(const char* name, size_t *plen)
2789 const char* s = name + sizeof(".gnu.linkonce") - 1;
2790 if (*s != '.')
2791 return name;
2792 ++s;
2793 const Linkonce_mapping* plm = linkonce_mapping;
2794 for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2796 if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2798 *plen = plm->tolen;
2799 return plm->to;
2802 return name;
2805 // Choose the output section name to use given an input section name.
2806 // Set *PLEN to the length of the name. *PLEN is initialized to the
2807 // length of NAME.
2809 const char*
2810 Layout::output_section_name(const char* name, size_t* plen)
2812 if (Layout::is_linkonce(name))
2814 // .gnu.linkonce sections are laid out as though they were named
2815 // for the sections are placed into.
2816 return Layout::linkonce_output_name(name, plen);
2819 // gcc 4.3 generates the following sorts of section names when it
2820 // needs a section name specific to a function:
2821 // .text.FN
2822 // .rodata.FN
2823 // .sdata2.FN
2824 // .data.FN
2825 // .data.rel.FN
2826 // .data.rel.local.FN
2827 // .data.rel.ro.FN
2828 // .data.rel.ro.local.FN
2829 // .sdata.FN
2830 // .bss.FN
2831 // .sbss.FN
2832 // .tdata.FN
2833 // .tbss.FN
2835 // The GNU linker maps all of those to the part before the .FN,
2836 // except that .data.rel.local.FN is mapped to .data, and
2837 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2838 // beginning with .data.rel.ro.local are grouped together.
2840 // For an anonymous namespace, the string FN can contain a '.'.
2842 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2843 // GNU linker maps to .rodata.
2845 // The .data.rel.ro sections enable a security feature triggered by
2846 // the -z relro option. Section which need to be relocated at
2847 // program startup time but which may be readonly after startup are
2848 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2849 // segment. The dynamic linker will make that segment writable,
2850 // perform relocations, and then make it read-only. FIXME: We do
2851 // not yet implement this optimization.
2853 // It is hard to handle this in a principled way.
2855 // These are the rules we follow:
2857 // If the section name has no initial '.', or no dot other than an
2858 // initial '.', we use the name unchanged (i.e., "mysection" and
2859 // ".text" are unchanged).
2861 // If the name starts with ".data.rel.ro.local" we use
2862 // ".data.rel.ro.local".
2864 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2866 // Otherwise, we drop the second '.' and everything that comes after
2867 // it (i.e., ".text.XXX" becomes ".text").
2869 const char* s = name;
2870 if (*s != '.')
2871 return name;
2872 ++s;
2873 const char* sdot = strchr(s, '.');
2874 if (sdot == NULL)
2875 return name;
2877 const char* const data_rel_ro_local = ".data.rel.ro.local";
2878 if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2880 *plen = strlen(data_rel_ro_local);
2881 return data_rel_ro_local;
2884 const char* const data_rel_ro = ".data.rel.ro";
2885 if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2887 *plen = strlen(data_rel_ro);
2888 return data_rel_ro;
2891 *plen = sdot - name;
2892 return name;
2895 // Record the signature of a comdat section, and return whether to
2896 // include it in the link. If GROUP is true, this is a regular
2897 // section group. If GROUP is false, this is a group signature
2898 // derived from the name of a linkonce section. We want linkonce
2899 // signatures and group signatures to block each other, but we don't
2900 // want a linkonce signature to block another linkonce signature.
2902 bool
2903 Layout::add_comdat(Relobj* object, unsigned int shndx,
2904 const std::string& signature, bool group)
2906 Kept_section kept(object, shndx, group);
2907 std::pair<Signatures::iterator, bool> ins(
2908 this->signatures_.insert(std::make_pair(signature, kept)));
2910 if (ins.second)
2912 // This is the first time we've seen this signature.
2913 return true;
2916 if (ins.first->second.group_)
2918 // We've already seen a real section group with this signature.
2919 return false;
2921 else if (group)
2923 // This is a real section group, and we've already seen a
2924 // linkonce section with this signature. Record that we've seen
2925 // a section group, and don't include this section group.
2926 ins.first->second.group_ = true;
2927 return false;
2929 else
2931 // We've already seen a linkonce section and this is a linkonce
2932 // section. These don't block each other--this may be the same
2933 // symbol name with different section types.
2934 return true;
2938 // Find the given comdat signature, and return the object and section
2939 // index of the kept group.
2940 Relobj*
2941 Layout::find_kept_object(const std::string& signature,
2942 unsigned int* pshndx) const
2944 Signatures::const_iterator p = this->signatures_.find(signature);
2945 if (p == this->signatures_.end())
2946 return NULL;
2947 if (pshndx != NULL)
2948 *pshndx = p->second.shndx_;
2949 return p->second.object_;
2952 // Store the allocated sections into the section list.
2954 void
2955 Layout::get_allocated_sections(Section_list* section_list) const
2957 for (Section_list::const_iterator p = this->section_list_.begin();
2958 p != this->section_list_.end();
2959 ++p)
2960 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2961 section_list->push_back(*p);
2964 // Create an output segment.
2966 Output_segment*
2967 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2969 gold_assert(!parameters->options().relocatable());
2970 Output_segment* oseg = new Output_segment(type, flags);
2971 this->segment_list_.push_back(oseg);
2972 return oseg;
2975 // Write out the Output_sections. Most won't have anything to write,
2976 // since most of the data will come from input sections which are
2977 // handled elsewhere. But some Output_sections do have Output_data.
2979 void
2980 Layout::write_output_sections(Output_file* of) const
2982 for (Section_list::const_iterator p = this->section_list_.begin();
2983 p != this->section_list_.end();
2984 ++p)
2986 if (!(*p)->after_input_sections())
2987 (*p)->write(of);
2991 // Write out data not associated with a section or the symbol table.
2993 void
2994 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
2996 if (!parameters->options().strip_all())
2998 const Output_section* symtab_section = this->symtab_section_;
2999 for (Section_list::const_iterator p = this->section_list_.begin();
3000 p != this->section_list_.end();
3001 ++p)
3003 if ((*p)->needs_symtab_index())
3005 gold_assert(symtab_section != NULL);
3006 unsigned int index = (*p)->symtab_index();
3007 gold_assert(index > 0 && index != -1U);
3008 off_t off = (symtab_section->offset()
3009 + index * symtab_section->entsize());
3010 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3015 const Output_section* dynsym_section = this->dynsym_section_;
3016 for (Section_list::const_iterator p = this->section_list_.begin();
3017 p != this->section_list_.end();
3018 ++p)
3020 if ((*p)->needs_dynsym_index())
3022 gold_assert(dynsym_section != NULL);
3023 unsigned int index = (*p)->dynsym_index();
3024 gold_assert(index > 0 && index != -1U);
3025 off_t off = (dynsym_section->offset()
3026 + index * dynsym_section->entsize());
3027 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3031 // Write out the Output_data which are not in an Output_section.
3032 for (Data_list::const_iterator p = this->special_output_list_.begin();
3033 p != this->special_output_list_.end();
3034 ++p)
3035 (*p)->write(of);
3038 // Write out the Output_sections which can only be written after the
3039 // input sections are complete.
3041 void
3042 Layout::write_sections_after_input_sections(Output_file* of)
3044 // Determine the final section offsets, and thus the final output
3045 // file size. Note we finalize the .shstrab last, to allow the
3046 // after_input_section sections to modify their section-names before
3047 // writing.
3048 if (this->any_postprocessing_sections_)
3050 off_t off = this->output_file_size_;
3051 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3053 // Now that we've finalized the names, we can finalize the shstrab.
3054 off =
3055 this->set_section_offsets(off,
3056 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3058 if (off > this->output_file_size_)
3060 of->resize(off);
3061 this->output_file_size_ = off;
3065 for (Section_list::const_iterator p = this->section_list_.begin();
3066 p != this->section_list_.end();
3067 ++p)
3069 if ((*p)->after_input_sections())
3070 (*p)->write(of);
3073 this->section_headers_->write(of);
3076 // If the build ID requires computing a checksum, do so here, and
3077 // write it out. We compute a checksum over the entire file because
3078 // that is simplest.
3080 void
3081 Layout::write_build_id(Output_file* of) const
3083 if (this->build_id_note_ == NULL)
3084 return;
3086 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3088 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3089 this->build_id_note_->data_size());
3091 const char* style = parameters->options().build_id();
3092 if (strcmp(style, "sha1") == 0)
3094 sha1_ctx ctx;
3095 sha1_init_ctx(&ctx);
3096 sha1_process_bytes(iv, this->output_file_size_, &ctx);
3097 sha1_finish_ctx(&ctx, ov);
3099 else if (strcmp(style, "md5") == 0)
3101 md5_ctx ctx;
3102 md5_init_ctx(&ctx);
3103 md5_process_bytes(iv, this->output_file_size_, &ctx);
3104 md5_finish_ctx(&ctx, ov);
3106 else
3107 gold_unreachable();
3109 of->write_output_view(this->build_id_note_->offset(),
3110 this->build_id_note_->data_size(),
3111 ov);
3113 of->free_input_view(0, this->output_file_size_, iv);
3116 // Write out a binary file. This is called after the link is
3117 // complete. IN is the temporary output file we used to generate the
3118 // ELF code. We simply walk through the segments, read them from
3119 // their file offset in IN, and write them to their load address in
3120 // the output file. FIXME: with a bit more work, we could support
3121 // S-records and/or Intel hex format here.
3123 void
3124 Layout::write_binary(Output_file* in) const
3126 gold_assert(this->options_.oformat_enum()
3127 == General_options::OBJECT_FORMAT_BINARY);
3129 // Get the size of the binary file.
3130 uint64_t max_load_address = 0;
3131 for (Segment_list::const_iterator p = this->segment_list_.begin();
3132 p != this->segment_list_.end();
3133 ++p)
3135 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3137 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3138 if (max_paddr > max_load_address)
3139 max_load_address = max_paddr;
3143 Output_file out(parameters->options().output_file_name());
3144 out.open(max_load_address);
3146 for (Segment_list::const_iterator p = this->segment_list_.begin();
3147 p != this->segment_list_.end();
3148 ++p)
3150 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3152 const unsigned char* vin = in->get_input_view((*p)->offset(),
3153 (*p)->filesz());
3154 unsigned char* vout = out.get_output_view((*p)->paddr(),
3155 (*p)->filesz());
3156 memcpy(vout, vin, (*p)->filesz());
3157 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3158 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3162 out.close();
3165 // Print the output sections to the map file.
3167 void
3168 Layout::print_to_mapfile(Mapfile* mapfile) const
3170 for (Segment_list::const_iterator p = this->segment_list_.begin();
3171 p != this->segment_list_.end();
3172 ++p)
3173 (*p)->print_sections_to_mapfile(mapfile);
3176 // Print statistical information to stderr. This is used for --stats.
3178 void
3179 Layout::print_stats() const
3181 this->namepool_.print_stats("section name pool");
3182 this->sympool_.print_stats("output symbol name pool");
3183 this->dynpool_.print_stats("dynamic name pool");
3185 for (Section_list::const_iterator p = this->section_list_.begin();
3186 p != this->section_list_.end();
3187 ++p)
3188 (*p)->print_merge_stats();
3191 // Write_sections_task methods.
3193 // We can always run this task.
3195 Task_token*
3196 Write_sections_task::is_runnable()
3198 return NULL;
3201 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3202 // when finished.
3204 void
3205 Write_sections_task::locks(Task_locker* tl)
3207 tl->add(this, this->output_sections_blocker_);
3208 tl->add(this, this->final_blocker_);
3211 // Run the task--write out the data.
3213 void
3214 Write_sections_task::run(Workqueue*)
3216 this->layout_->write_output_sections(this->of_);
3219 // Write_data_task methods.
3221 // We can always run this task.
3223 Task_token*
3224 Write_data_task::is_runnable()
3226 return NULL;
3229 // We need to unlock FINAL_BLOCKER when finished.
3231 void
3232 Write_data_task::locks(Task_locker* tl)
3234 tl->add(this, this->final_blocker_);
3237 // Run the task--write out the data.
3239 void
3240 Write_data_task::run(Workqueue*)
3242 this->layout_->write_data(this->symtab_, this->of_);
3245 // Write_symbols_task methods.
3247 // We can always run this task.
3249 Task_token*
3250 Write_symbols_task::is_runnable()
3252 return NULL;
3255 // We need to unlock FINAL_BLOCKER when finished.
3257 void
3258 Write_symbols_task::locks(Task_locker* tl)
3260 tl->add(this, this->final_blocker_);
3263 // Run the task--write out the symbols.
3265 void
3266 Write_symbols_task::run(Workqueue*)
3268 this->symtab_->write_globals(this->input_objects_, this->sympool_,
3269 this->dynpool_, this->layout_->symtab_xindex(),
3270 this->layout_->dynsym_xindex(), this->of_);
3273 // Write_after_input_sections_task methods.
3275 // We can only run this task after the input sections have completed.
3277 Task_token*
3278 Write_after_input_sections_task::is_runnable()
3280 if (this->input_sections_blocker_->is_blocked())
3281 return this->input_sections_blocker_;
3282 return NULL;
3285 // We need to unlock FINAL_BLOCKER when finished.
3287 void
3288 Write_after_input_sections_task::locks(Task_locker* tl)
3290 tl->add(this, this->final_blocker_);
3293 // Run the task.
3295 void
3296 Write_after_input_sections_task::run(Workqueue*)
3298 this->layout_->write_sections_after_input_sections(this->of_);
3301 // Close_task_runner methods.
3303 // Run the task--close the file.
3305 void
3306 Close_task_runner::run(Workqueue*, const Task*)
3308 // If we need to compute a checksum for the BUILD if, we do so here.
3309 this->layout_->write_build_id(this->of_);
3311 // If we've been asked to create a binary file, we do so here.
3312 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3313 this->layout_->write_binary(this->of_);
3315 this->of_->close();
3318 // Instantiate the templates we need. We could use the configure
3319 // script to restrict this to only the ones for implemented targets.
3321 #ifdef HAVE_TARGET_32_LITTLE
3322 template
3323 Output_section*
3324 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3325 const char* name,
3326 const elfcpp::Shdr<32, false>& shdr,
3327 unsigned int, unsigned int, off_t*);
3328 #endif
3330 #ifdef HAVE_TARGET_32_BIG
3331 template
3332 Output_section*
3333 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3334 const char* name,
3335 const elfcpp::Shdr<32, true>& shdr,
3336 unsigned int, unsigned int, off_t*);
3337 #endif
3339 #ifdef HAVE_TARGET_64_LITTLE
3340 template
3341 Output_section*
3342 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3343 const char* name,
3344 const elfcpp::Shdr<64, false>& shdr,
3345 unsigned int, unsigned int, off_t*);
3346 #endif
3348 #ifdef HAVE_TARGET_64_BIG
3349 template
3350 Output_section*
3351 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3352 const char* name,
3353 const elfcpp::Shdr<64, true>& shdr,
3354 unsigned int, unsigned int, off_t*);
3355 #endif
3357 #ifdef HAVE_TARGET_32_LITTLE
3358 template
3359 Output_section*
3360 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3361 unsigned int reloc_shndx,
3362 const elfcpp::Shdr<32, false>& shdr,
3363 Output_section* data_section,
3364 Relocatable_relocs* rr);
3365 #endif
3367 #ifdef HAVE_TARGET_32_BIG
3368 template
3369 Output_section*
3370 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3371 unsigned int reloc_shndx,
3372 const elfcpp::Shdr<32, true>& shdr,
3373 Output_section* data_section,
3374 Relocatable_relocs* rr);
3375 #endif
3377 #ifdef HAVE_TARGET_64_LITTLE
3378 template
3379 Output_section*
3380 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3381 unsigned int reloc_shndx,
3382 const elfcpp::Shdr<64, false>& shdr,
3383 Output_section* data_section,
3384 Relocatable_relocs* rr);
3385 #endif
3387 #ifdef HAVE_TARGET_64_BIG
3388 template
3389 Output_section*
3390 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3391 unsigned int reloc_shndx,
3392 const elfcpp::Shdr<64, true>& shdr,
3393 Output_section* data_section,
3394 Relocatable_relocs* rr);
3395 #endif
3397 #ifdef HAVE_TARGET_32_LITTLE
3398 template
3399 void
3400 Layout::layout_group<32, false>(Symbol_table* symtab,
3401 Sized_relobj<32, false>* object,
3402 unsigned int,
3403 const char* group_section_name,
3404 const char* signature,
3405 const elfcpp::Shdr<32, false>& shdr,
3406 elfcpp::Elf_Word flags,
3407 std::vector<unsigned int>* shndxes);
3408 #endif
3410 #ifdef HAVE_TARGET_32_BIG
3411 template
3412 void
3413 Layout::layout_group<32, true>(Symbol_table* symtab,
3414 Sized_relobj<32, true>* object,
3415 unsigned int,
3416 const char* group_section_name,
3417 const char* signature,
3418 const elfcpp::Shdr<32, true>& shdr,
3419 elfcpp::Elf_Word flags,
3420 std::vector<unsigned int>* shndxes);
3421 #endif
3423 #ifdef HAVE_TARGET_64_LITTLE
3424 template
3425 void
3426 Layout::layout_group<64, false>(Symbol_table* symtab,
3427 Sized_relobj<64, false>* object,
3428 unsigned int,
3429 const char* group_section_name,
3430 const char* signature,
3431 const elfcpp::Shdr<64, false>& shdr,
3432 elfcpp::Elf_Word flags,
3433 std::vector<unsigned int>* shndxes);
3434 #endif
3436 #ifdef HAVE_TARGET_64_BIG
3437 template
3438 void
3439 Layout::layout_group<64, true>(Symbol_table* symtab,
3440 Sized_relobj<64, true>* object,
3441 unsigned int,
3442 const char* group_section_name,
3443 const char* signature,
3444 const elfcpp::Shdr<64, true>& shdr,
3445 elfcpp::Elf_Word flags,
3446 std::vector<unsigned int>* shndxes);
3447 #endif
3449 #ifdef HAVE_TARGET_32_LITTLE
3450 template
3451 Output_section*
3452 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3453 const unsigned char* symbols,
3454 off_t symbols_size,
3455 const unsigned char* symbol_names,
3456 off_t symbol_names_size,
3457 unsigned int shndx,
3458 const elfcpp::Shdr<32, false>& shdr,
3459 unsigned int reloc_shndx,
3460 unsigned int reloc_type,
3461 off_t* off);
3462 #endif
3464 #ifdef HAVE_TARGET_32_BIG
3465 template
3466 Output_section*
3467 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3468 const unsigned char* symbols,
3469 off_t symbols_size,
3470 const unsigned char* symbol_names,
3471 off_t symbol_names_size,
3472 unsigned int shndx,
3473 const elfcpp::Shdr<32, true>& shdr,
3474 unsigned int reloc_shndx,
3475 unsigned int reloc_type,
3476 off_t* off);
3477 #endif
3479 #ifdef HAVE_TARGET_64_LITTLE
3480 template
3481 Output_section*
3482 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3483 const unsigned char* symbols,
3484 off_t symbols_size,
3485 const unsigned char* symbol_names,
3486 off_t symbol_names_size,
3487 unsigned int shndx,
3488 const elfcpp::Shdr<64, false>& shdr,
3489 unsigned int reloc_shndx,
3490 unsigned int reloc_type,
3491 off_t* off);
3492 #endif
3494 #ifdef HAVE_TARGET_64_BIG
3495 template
3496 Output_section*
3497 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3498 const unsigned char* symbols,
3499 off_t symbols_size,
3500 const unsigned char* symbol_names,
3501 off_t symbol_names_size,
3502 unsigned int shndx,
3503 const elfcpp::Shdr<64, true>& shdr,
3504 unsigned int reloc_shndx,
3505 unsigned int reloc_type,
3506 off_t* off);
3507 #endif
3509 } // End namespace gold.