1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
7 Center for Software Science
8 Department of Computer Science
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
14 This file is part of BFD, the Binary File Descriptor library.
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
37 #include "elf32-hppa.h"
39 #include "elf32-hppa.h"
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
53 /* We use two hash tables to hold information for linking PA ELF objects.
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
63 There are a number of different stubs generated by the linker.
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
115 : ldw -24(%sp),%rp ; restore the original rp
118 : be,n 0(%sr0,%rp) ; inter-space return. */
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
131 bfd_hash_table "btab"
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
137 elf32_hppa_dyn_reloc_entry "hdh"
139 Always remember to use GNU Coding Style. */
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
145 static const bfd_byte plt_stub
[] =
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
157 /* Section name for stubs is the associated section name plus this
159 #define STUB_SUFFIX ".stub"
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
173 #define ELIMINATE_COPY_RELOCS 1
175 enum elf32_hppa_stub_type
177 hppa_stub_long_branch
,
178 hppa_stub_long_branch_shared
,
180 hppa_stub_import_shared
,
185 struct elf32_hppa_stub_hash_entry
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root
;
190 /* The stub section. */
193 /* Offset within stub_sec of the beginning of this stub. */
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value
;
199 asection
*target_section
;
201 enum elf32_hppa_stub_type stub_type
;
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry
*hh
;
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
211 struct elf32_hppa_link_hash_entry
213 struct elf_link_hash_entry eh
;
215 /* A pointer to the most recently used stub hash entry against this
217 struct elf32_hppa_stub_hash_entry
*hsh_cache
;
219 /* Used to count relocations for delayed sizing of relocation
221 struct elf32_hppa_dyn_reloc_entry
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry
*hdh_next
;
226 /* The input section of the reloc. */
229 /* Number of relocs copied in this section. */
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count
;
240 GOT_UNKNOWN
= 0, GOT_NORMAL
= 1, GOT_TLS_GD
= 2, GOT_TLS_LDM
= 4, GOT_TLS_IE
= 8
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel
:1;
247 struct elf32_hppa_link_hash_table
249 /* The main hash table. */
250 struct elf_link_hash_table etab
;
252 /* The stub hash table. */
253 struct bfd_hash_table bstab
;
255 /* Linker stub bfd. */
258 /* Linker call-backs. */
259 asection
* (*add_stub_section
) (const char *, asection
*);
260 void (*layout_sections_again
) (void);
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
266 /* This is the section to which stubs in the group will be
269 /* The stub section. */
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count
;
276 asection
**input_list
;
277 Elf_Internal_Sym
**all_local_syms
;
279 /* Short-cuts to get to dynamic linker sections. */
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base
;
290 bfd_vma data_segment_base
;
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace
:1;
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch
:1;
298 unsigned int has_17bit_branch
:1;
299 unsigned int has_22bit_branch
:1;
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub
:1;
304 /* Small local sym cache. */
305 struct sym_cache sym_cache
;
307 /* Data for LDM relocations. */
310 bfd_signed_vma refcount
;
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
320 #define hppa_elf_hash_entry(ent) \
321 ((struct elf32_hppa_link_hash_entry *)(ent))
323 #define hppa_stub_hash_entry(ent) \
324 ((struct elf32_hppa_stub_hash_entry *)(ent))
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327 ((struct elf32_hppa_stub_hash_entry *) \
328 bfd_hash_lookup ((table), (string), (create), (copy)))
330 #define hppa_elf_local_got_tls_type(abfd) \
331 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
333 #define hh_name(hh) \
334 (hh ? hh->eh.root.root.string : "<undef>")
336 #define eh_name(eh) \
337 (eh ? eh->root.root.string : "<undef>")
339 /* Assorted hash table functions. */
341 /* Initialize an entry in the stub hash table. */
343 static struct bfd_hash_entry
*
344 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
345 struct bfd_hash_table
*table
,
348 /* Allocate the structure if it has not already been allocated by a
352 entry
= bfd_hash_allocate (table
,
353 sizeof (struct elf32_hppa_stub_hash_entry
));
358 /* Call the allocation method of the superclass. */
359 entry
= bfd_hash_newfunc (entry
, table
, string
);
362 struct elf32_hppa_stub_hash_entry
*hsh
;
364 /* Initialize the local fields. */
365 hsh
= hppa_stub_hash_entry (entry
);
366 hsh
->stub_sec
= NULL
;
367 hsh
->stub_offset
= 0;
368 hsh
->target_value
= 0;
369 hsh
->target_section
= NULL
;
370 hsh
->stub_type
= hppa_stub_long_branch
;
378 /* Initialize an entry in the link hash table. */
380 static struct bfd_hash_entry
*
381 hppa_link_hash_newfunc (struct bfd_hash_entry
*entry
,
382 struct bfd_hash_table
*table
,
385 /* Allocate the structure if it has not already been allocated by a
389 entry
= bfd_hash_allocate (table
,
390 sizeof (struct elf32_hppa_link_hash_entry
));
395 /* Call the allocation method of the superclass. */
396 entry
= _bfd_elf_link_hash_newfunc (entry
, table
, string
);
399 struct elf32_hppa_link_hash_entry
*hh
;
401 /* Initialize the local fields. */
402 hh
= hppa_elf_hash_entry (entry
);
403 hh
->hsh_cache
= NULL
;
404 hh
->dyn_relocs
= NULL
;
406 hh
->tls_type
= GOT_UNKNOWN
;
412 /* Create the derived linker hash table. The PA ELF port uses the derived
413 hash table to keep information specific to the PA ELF linker (without
414 using static variables). */
416 static struct bfd_link_hash_table
*
417 elf32_hppa_link_hash_table_create (bfd
*abfd
)
419 struct elf32_hppa_link_hash_table
*htab
;
420 bfd_size_type amt
= sizeof (*htab
);
422 htab
= bfd_malloc (amt
);
426 if (!_bfd_elf_link_hash_table_init (&htab
->etab
, abfd
, hppa_link_hash_newfunc
,
427 sizeof (struct elf32_hppa_link_hash_entry
),
434 /* Init the stub hash table too. */
435 if (!bfd_hash_table_init (&htab
->bstab
, stub_hash_newfunc
,
436 sizeof (struct elf32_hppa_stub_hash_entry
)))
439 htab
->stub_bfd
= NULL
;
440 htab
->add_stub_section
= NULL
;
441 htab
->layout_sections_again
= NULL
;
442 htab
->stub_group
= NULL
;
444 htab
->srelgot
= NULL
;
446 htab
->srelplt
= NULL
;
447 htab
->sdynbss
= NULL
;
448 htab
->srelbss
= NULL
;
449 htab
->text_segment_base
= (bfd_vma
) -1;
450 htab
->data_segment_base
= (bfd_vma
) -1;
451 htab
->multi_subspace
= 0;
452 htab
->has_12bit_branch
= 0;
453 htab
->has_17bit_branch
= 0;
454 htab
->has_22bit_branch
= 0;
455 htab
->need_plt_stub
= 0;
456 htab
->sym_cache
.abfd
= NULL
;
457 htab
->tls_ldm_got
.refcount
= 0;
459 return &htab
->etab
.root
;
462 /* Free the derived linker hash table. */
465 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table
*btab
)
467 struct elf32_hppa_link_hash_table
*htab
468 = (struct elf32_hppa_link_hash_table
*) btab
;
470 bfd_hash_table_free (&htab
->bstab
);
471 _bfd_generic_link_hash_table_free (btab
);
474 /* Build a name for an entry in the stub hash table. */
477 hppa_stub_name (const asection
*input_section
,
478 const asection
*sym_sec
,
479 const struct elf32_hppa_link_hash_entry
*hh
,
480 const Elf_Internal_Rela
*rela
)
487 len
= 8 + 1 + strlen (hh_name (hh
)) + 1 + 8 + 1;
488 stub_name
= bfd_malloc (len
);
489 if (stub_name
!= NULL
)
490 sprintf (stub_name
, "%08x_%s+%x",
491 input_section
->id
& 0xffffffff,
493 (int) rela
->r_addend
& 0xffffffff);
497 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
498 stub_name
= bfd_malloc (len
);
499 if (stub_name
!= NULL
)
500 sprintf (stub_name
, "%08x_%x:%x+%x",
501 input_section
->id
& 0xffffffff,
502 sym_sec
->id
& 0xffffffff,
503 (int) ELF32_R_SYM (rela
->r_info
) & 0xffffffff,
504 (int) rela
->r_addend
& 0xffffffff);
509 /* Look up an entry in the stub hash. Stub entries are cached because
510 creating the stub name takes a bit of time. */
512 static struct elf32_hppa_stub_hash_entry
*
513 hppa_get_stub_entry (const asection
*input_section
,
514 const asection
*sym_sec
,
515 struct elf32_hppa_link_hash_entry
*hh
,
516 const Elf_Internal_Rela
*rela
,
517 struct elf32_hppa_link_hash_table
*htab
)
519 struct elf32_hppa_stub_hash_entry
*hsh_entry
;
520 const asection
*id_sec
;
522 /* If this input section is part of a group of sections sharing one
523 stub section, then use the id of the first section in the group.
524 Stub names need to include a section id, as there may well be
525 more than one stub used to reach say, printf, and we need to
526 distinguish between them. */
527 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
529 if (hh
!= NULL
&& hh
->hsh_cache
!= NULL
530 && hh
->hsh_cache
->hh
== hh
531 && hh
->hsh_cache
->id_sec
== id_sec
)
533 hsh_entry
= hh
->hsh_cache
;
539 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hh
, rela
);
540 if (stub_name
== NULL
)
543 hsh_entry
= hppa_stub_hash_lookup (&htab
->bstab
,
544 stub_name
, FALSE
, FALSE
);
546 hh
->hsh_cache
= hsh_entry
;
554 /* Add a new stub entry to the stub hash. Not all fields of the new
555 stub entry are initialised. */
557 static struct elf32_hppa_stub_hash_entry
*
558 hppa_add_stub (const char *stub_name
,
560 struct elf32_hppa_link_hash_table
*htab
)
564 struct elf32_hppa_stub_hash_entry
*hsh
;
566 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
567 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
568 if (stub_sec
== NULL
)
570 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
571 if (stub_sec
== NULL
)
577 namelen
= strlen (link_sec
->name
);
578 len
= namelen
+ sizeof (STUB_SUFFIX
);
579 s_name
= bfd_alloc (htab
->stub_bfd
, len
);
583 memcpy (s_name
, link_sec
->name
, namelen
);
584 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
585 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
586 if (stub_sec
== NULL
)
588 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
590 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
593 /* Enter this entry into the linker stub hash table. */
594 hsh
= hppa_stub_hash_lookup (&htab
->bstab
, stub_name
,
598 (*_bfd_error_handler
) (_("%B: cannot create stub entry %s"),
604 hsh
->stub_sec
= stub_sec
;
605 hsh
->stub_offset
= 0;
606 hsh
->id_sec
= link_sec
;
610 /* Determine the type of stub needed, if any, for a call. */
612 static enum elf32_hppa_stub_type
613 hppa_type_of_stub (asection
*input_sec
,
614 const Elf_Internal_Rela
*rela
,
615 struct elf32_hppa_link_hash_entry
*hh
,
617 struct bfd_link_info
*info
)
620 bfd_vma branch_offset
;
621 bfd_vma max_branch_offset
;
625 && hh
->eh
.plt
.offset
!= (bfd_vma
) -1
626 && hh
->eh
.dynindx
!= -1
629 || !hh
->eh
.def_regular
630 || hh
->eh
.root
.type
== bfd_link_hash_defweak
))
632 /* We need an import stub. Decide between hppa_stub_import
633 and hppa_stub_import_shared later. */
634 return hppa_stub_import
;
637 /* Determine where the call point is. */
638 location
= (input_sec
->output_offset
639 + input_sec
->output_section
->vma
642 branch_offset
= destination
- location
- 8;
643 r_type
= ELF32_R_TYPE (rela
->r_info
);
645 /* Determine if a long branch stub is needed. parisc branch offsets
646 are relative to the second instruction past the branch, ie. +8
647 bytes on from the branch instruction location. The offset is
648 signed and counts in units of 4 bytes. */
649 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
650 max_branch_offset
= (1 << (17 - 1)) << 2;
652 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
653 max_branch_offset
= (1 << (12 - 1)) << 2;
655 else /* R_PARISC_PCREL22F. */
656 max_branch_offset
= (1 << (22 - 1)) << 2;
658 if (branch_offset
+ max_branch_offset
>= 2*max_branch_offset
)
659 return hppa_stub_long_branch
;
661 return hppa_stub_none
;
664 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
665 IN_ARG contains the link info pointer. */
667 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
668 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
670 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
671 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
672 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
674 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
675 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
676 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
677 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
679 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
680 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
682 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
683 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
684 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
685 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
687 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
688 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
689 #define NOP 0x08000240 /* nop */
690 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
691 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
692 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
699 #define LDW_R1_DLT LDW_R1_R19
701 #define LDW_R1_DLT LDW_R1_DP
705 hppa_build_one_stub (struct bfd_hash_entry
*bh
, void *in_arg
)
707 struct elf32_hppa_stub_hash_entry
*hsh
;
708 struct bfd_link_info
*info
;
709 struct elf32_hppa_link_hash_table
*htab
;
719 /* Massage our args to the form they really have. */
720 hsh
= hppa_stub_hash_entry (bh
);
721 info
= (struct bfd_link_info
*)in_arg
;
723 htab
= hppa_link_hash_table (info
);
727 stub_sec
= hsh
->stub_sec
;
729 /* Make a note of the offset within the stubs for this entry. */
730 hsh
->stub_offset
= stub_sec
->size
;
731 loc
= stub_sec
->contents
+ hsh
->stub_offset
;
733 stub_bfd
= stub_sec
->owner
;
735 switch (hsh
->stub_type
)
737 case hppa_stub_long_branch
:
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value
= (hsh
->target_value
743 + hsh
->target_section
->output_offset
744 + hsh
->target_section
->output_section
->vma
);
746 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
);
747 insn
= hppa_rebuild_insn ((int) LDIL_R1
, val
, 21);
748 bfd_put_32 (stub_bfd
, insn
, loc
);
750 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
) >> 2;
751 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
752 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
757 case hppa_stub_long_branch_shared
:
758 /* Branches are relative. This is where we are going to. */
759 sym_value
= (hsh
->target_value
760 + hsh
->target_section
->output_offset
761 + hsh
->target_section
->output_section
->vma
);
763 /* And this is where we are coming from, more or less. */
764 sym_value
-= (hsh
->stub_offset
765 + stub_sec
->output_offset
766 + stub_sec
->output_section
->vma
);
768 bfd_put_32 (stub_bfd
, (bfd_vma
) BL_R1
, loc
);
769 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_lrsel
);
770 insn
= hppa_rebuild_insn ((int) ADDIL_R1
, val
, 21);
771 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
773 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_rrsel
) >> 2;
774 insn
= hppa_rebuild_insn ((int) BE_SR4_R1
, val
, 17);
775 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
779 case hppa_stub_import
:
780 case hppa_stub_import_shared
:
781 off
= hsh
->hh
->eh
.plt
.offset
;
782 if (off
>= (bfd_vma
) -2)
785 off
&= ~ (bfd_vma
) 1;
787 + htab
->splt
->output_offset
788 + htab
->splt
->output_section
->vma
789 - elf_gp (htab
->splt
->output_section
->owner
));
793 if (hsh
->stub_type
== hppa_stub_import_shared
)
796 val
= hppa_field_adjust (sym_value
, 0, e_lrsel
),
797 insn
= hppa_rebuild_insn ((int) insn
, val
, 21);
798 bfd_put_32 (stub_bfd
, insn
, loc
);
800 /* It is critical to use lrsel/rrsel here because we are using
801 two different offsets (+0 and +4) from sym_value. If we use
802 lsel/rsel then with unfortunate sym_values we will round
803 sym_value+4 up to the next 2k block leading to a mis-match
804 between the lsel and rsel value. */
805 val
= hppa_field_adjust (sym_value
, 0, e_rrsel
);
806 insn
= hppa_rebuild_insn ((int) LDW_R1_R21
, val
, 14);
807 bfd_put_32 (stub_bfd
, insn
, loc
+ 4);
809 if (htab
->multi_subspace
)
811 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
812 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
813 bfd_put_32 (stub_bfd
, insn
, loc
+ 8);
815 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_R21_R1
, loc
+ 12);
816 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
817 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_R21
, loc
+ 20);
818 bfd_put_32 (stub_bfd
, (bfd_vma
) STW_RP
, loc
+ 24);
824 bfd_put_32 (stub_bfd
, (bfd_vma
) BV_R0_R21
, loc
+ 8);
825 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) 4, e_rrsel
);
826 insn
= hppa_rebuild_insn ((int) LDW_R1_DLT
, val
, 14);
827 bfd_put_32 (stub_bfd
, insn
, loc
+ 12);
834 case hppa_stub_export
:
835 /* Branches are relative. This is where we are going to. */
836 sym_value
= (hsh
->target_value
837 + hsh
->target_section
->output_offset
838 + hsh
->target_section
->output_section
->vma
);
840 /* And this is where we are coming from. */
841 sym_value
-= (hsh
->stub_offset
842 + stub_sec
->output_offset
843 + stub_sec
->output_section
->vma
);
845 if (sym_value
- 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
846 && (!htab
->has_22bit_branch
847 || sym_value
- 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
849 (*_bfd_error_handler
)
850 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
851 hsh
->target_section
->owner
,
853 (long) hsh
->stub_offset
,
854 hsh
->bh_root
.string
);
855 bfd_set_error (bfd_error_bad_value
);
859 val
= hppa_field_adjust (sym_value
, (bfd_signed_vma
) -8, e_fsel
) >> 2;
860 if (!htab
->has_22bit_branch
)
861 insn
= hppa_rebuild_insn ((int) BL_RP
, val
, 17);
863 insn
= hppa_rebuild_insn ((int) BL22_RP
, val
, 22);
864 bfd_put_32 (stub_bfd
, insn
, loc
);
866 bfd_put_32 (stub_bfd
, (bfd_vma
) NOP
, loc
+ 4);
867 bfd_put_32 (stub_bfd
, (bfd_vma
) LDW_RP
, loc
+ 8);
868 bfd_put_32 (stub_bfd
, (bfd_vma
) LDSID_RP_R1
, loc
+ 12);
869 bfd_put_32 (stub_bfd
, (bfd_vma
) MTSP_R1
, loc
+ 16);
870 bfd_put_32 (stub_bfd
, (bfd_vma
) BE_SR0_RP
, loc
+ 20);
872 /* Point the function symbol at the stub. */
873 hsh
->hh
->eh
.root
.u
.def
.section
= stub_sec
;
874 hsh
->hh
->eh
.root
.u
.def
.value
= stub_sec
->size
;
884 stub_sec
->size
+= size
;
909 /* As above, but don't actually build the stub. Just bump offset so
910 we know stub section sizes. */
913 hppa_size_one_stub (struct bfd_hash_entry
*bh
, void *in_arg
)
915 struct elf32_hppa_stub_hash_entry
*hsh
;
916 struct elf32_hppa_link_hash_table
*htab
;
919 /* Massage our args to the form they really have. */
920 hsh
= hppa_stub_hash_entry (bh
);
923 if (hsh
->stub_type
== hppa_stub_long_branch
)
925 else if (hsh
->stub_type
== hppa_stub_long_branch_shared
)
927 else if (hsh
->stub_type
== hppa_stub_export
)
929 else /* hppa_stub_import or hppa_stub_import_shared. */
931 if (htab
->multi_subspace
)
937 hsh
->stub_sec
->size
+= size
;
941 /* Return nonzero if ABFD represents an HPPA ELF32 file.
942 Additionally we set the default architecture and machine. */
945 elf32_hppa_object_p (bfd
*abfd
)
947 Elf_Internal_Ehdr
* i_ehdrp
;
950 i_ehdrp
= elf_elfheader (abfd
);
951 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-linux") == 0)
953 /* GCC on hppa-linux produces binaries with OSABI=GNU,
954 but the kernel produces corefiles with OSABI=SysV. */
955 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_GNU
&&
956 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
959 else if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0)
961 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
962 but the kernel produces corefiles with OSABI=SysV. */
963 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NETBSD
&&
964 i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
969 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
)
973 flags
= i_ehdrp
->e_flags
;
974 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
977 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
979 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
981 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
982 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
983 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
988 /* Create the .plt and .got sections, and set up our hash table
989 short-cuts to various dynamic sections. */
992 elf32_hppa_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
994 struct elf32_hppa_link_hash_table
*htab
;
995 struct elf_link_hash_entry
*eh
;
997 /* Don't try to create the .plt and .got twice. */
998 htab
= hppa_link_hash_table (info
);
1001 if (htab
->splt
!= NULL
)
1004 /* Call the generic code to do most of the work. */
1005 if (! _bfd_elf_create_dynamic_sections (abfd
, info
))
1008 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
1009 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
1011 htab
->sgot
= bfd_get_section_by_name (abfd
, ".got");
1012 htab
->srelgot
= bfd_get_section_by_name (abfd
, ".rela.got");
1014 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
1015 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh
= elf_hash_table (info
)->hgot
;
1020 eh
->forced_local
= 0;
1021 eh
->other
= STV_DEFAULT
;
1022 return bfd_elf_link_record_dynamic_symbol (info
, eh
);
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info
*info
,
1029 struct elf_link_hash_entry
*eh_dir
,
1030 struct elf_link_hash_entry
*eh_ind
)
1032 struct elf32_hppa_link_hash_entry
*hh_dir
, *hh_ind
;
1034 hh_dir
= hppa_elf_hash_entry (eh_dir
);
1035 hh_ind
= hppa_elf_hash_entry (eh_ind
);
1037 if (hh_ind
->dyn_relocs
!= NULL
)
1039 if (hh_dir
->dyn_relocs
!= NULL
)
1041 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
1042 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp
= &hh_ind
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; )
1048 struct elf32_hppa_dyn_reloc_entry
*hdh_q
;
1050 for (hdh_q
= hh_dir
->dyn_relocs
;
1052 hdh_q
= hdh_q
->hdh_next
)
1053 if (hdh_q
->sec
== hdh_p
->sec
)
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q
->relative_count
+= hdh_p
->relative_count
;
1058 hdh_q
->count
+= hdh_p
->count
;
1059 *hdh_pp
= hdh_p
->hdh_next
;
1063 hdh_pp
= &hdh_p
->hdh_next
;
1065 *hdh_pp
= hh_dir
->dyn_relocs
;
1068 hh_dir
->dyn_relocs
= hh_ind
->dyn_relocs
;
1069 hh_ind
->dyn_relocs
= NULL
;
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind
->root
.type
!= bfd_link_hash_indirect
1074 && eh_dir
->dynamic_adjusted
)
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir
->ref_dynamic
|= eh_ind
->ref_dynamic
;
1080 eh_dir
->ref_regular
|= eh_ind
->ref_regular
;
1081 eh_dir
->ref_regular_nonweak
|= eh_ind
->ref_regular_nonweak
;
1082 eh_dir
->needs_plt
|= eh_ind
->needs_plt
;
1086 if (eh_ind
->root
.type
== bfd_link_hash_indirect
1087 && eh_dir
->got
.refcount
<= 0)
1089 hh_dir
->tls_type
= hh_ind
->tls_type
;
1090 hh_ind
->tls_type
= GOT_UNKNOWN
;
1093 _bfd_elf_link_hash_copy_indirect (info
, eh_dir
, eh_ind
);
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1099 int r_type
, int is_local ATTRIBUTE_UNUSED
)
1101 /* For now we don't support linker optimizations. */
1105 /* Return a pointer to the local GOT, PLT and TLS reference counts
1106 for ABFD. Returns NULL if the storage allocation fails. */
1108 static bfd_signed_vma
*
1109 hppa32_elf_local_refcounts (bfd
*abfd
)
1111 Elf_Internal_Shdr
*symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1112 bfd_signed_vma
*local_refcounts
;
1114 local_refcounts
= elf_local_got_refcounts (abfd
);
1115 if (local_refcounts
== NULL
)
1119 /* Allocate space for local GOT and PLT reference
1120 counts. Done this way to save polluting elf_obj_tdata
1121 with another target specific pointer. */
1122 size
= symtab_hdr
->sh_info
;
1123 size
*= 2 * sizeof (bfd_signed_vma
);
1124 /* Add in space to store the local GOT TLS types. */
1125 size
+= symtab_hdr
->sh_info
;
1126 local_refcounts
= bfd_zalloc (abfd
, size
);
1127 if (local_refcounts
== NULL
)
1129 elf_local_got_refcounts (abfd
) = local_refcounts
;
1130 memset (hppa_elf_local_got_tls_type (abfd
), GOT_UNKNOWN
,
1131 symtab_hdr
->sh_info
);
1133 return local_refcounts
;
1137 /* Look through the relocs for a section during the first phase, and
1138 calculate needed space in the global offset table, procedure linkage
1139 table, and dynamic reloc sections. At this point we haven't
1140 necessarily read all the input files. */
1143 elf32_hppa_check_relocs (bfd
*abfd
,
1144 struct bfd_link_info
*info
,
1146 const Elf_Internal_Rela
*relocs
)
1148 Elf_Internal_Shdr
*symtab_hdr
;
1149 struct elf_link_hash_entry
**eh_syms
;
1150 const Elf_Internal_Rela
*rela
;
1151 const Elf_Internal_Rela
*rela_end
;
1152 struct elf32_hppa_link_hash_table
*htab
;
1154 int tls_type
= GOT_UNKNOWN
, old_tls_type
= GOT_UNKNOWN
;
1156 if (info
->relocatable
)
1159 htab
= hppa_link_hash_table (info
);
1162 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1163 eh_syms
= elf_sym_hashes (abfd
);
1166 rela_end
= relocs
+ sec
->reloc_count
;
1167 for (rela
= relocs
; rela
< rela_end
; rela
++)
1176 unsigned int r_symndx
, r_type
;
1177 struct elf32_hppa_link_hash_entry
*hh
;
1180 r_symndx
= ELF32_R_SYM (rela
->r_info
);
1182 if (r_symndx
< symtab_hdr
->sh_info
)
1186 hh
= hppa_elf_hash_entry (eh_syms
[r_symndx
- symtab_hdr
->sh_info
]);
1187 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
1188 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
1189 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
1192 r_type
= ELF32_R_TYPE (rela
->r_info
);
1193 r_type
= elf32_hppa_optimized_tls_reloc (info
, r_type
, hh
== NULL
);
1197 case R_PARISC_DLTIND14F
:
1198 case R_PARISC_DLTIND14R
:
1199 case R_PARISC_DLTIND21L
:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry
= NEED_GOT
;
1204 case R_PARISC_PLABEL14R
: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L
:
1206 case R_PARISC_PLABEL32
:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela
->r_addend
!= 0)
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry
= PLT_PLABEL
| NEED_PLT
| NEED_DYNREL
;
1231 case R_PARISC_PCREL12F
:
1232 htab
->has_12bit_branch
= 1;
1235 case R_PARISC_PCREL17C
:
1236 case R_PARISC_PCREL17F
:
1237 htab
->has_17bit_branch
= 1;
1240 case R_PARISC_PCREL22F
:
1241 htab
->has_22bit_branch
= 1;
1243 /* Function calls might need to go through the .plt, and
1244 might require long branch stubs. */
1247 /* We know local syms won't need a .plt entry, and if
1248 they need a long branch stub we can't guarantee that
1249 we can reach the stub. So just flag an error later
1250 if we're doing a shared link and find we need a long
1256 /* Global symbols will need a .plt entry if they remain
1257 global, and in most cases won't need a long branch
1258 stub. Unfortunately, we have to cater for the case
1259 where a symbol is forced local by versioning, or due
1260 to symbolic linking, and we lose the .plt entry. */
1261 need_entry
= NEED_PLT
;
1262 if (hh
->eh
.type
== STT_PARISC_MILLI
)
1267 case R_PARISC_SEGBASE
: /* Used to set segment base. */
1268 case R_PARISC_SEGREL32
: /* Relative reloc, used for unwind. */
1269 case R_PARISC_PCREL14F
: /* PC relative load/store. */
1270 case R_PARISC_PCREL14R
:
1271 case R_PARISC_PCREL17R
: /* External branches. */
1272 case R_PARISC_PCREL21L
: /* As above, and for load/store too. */
1273 case R_PARISC_PCREL32
:
1274 /* We don't need to propagate the relocation if linking a
1275 shared object since these are section relative. */
1278 case R_PARISC_DPREL14F
: /* Used for gp rel data load/store. */
1279 case R_PARISC_DPREL14R
:
1280 case R_PARISC_DPREL21L
:
1283 (*_bfd_error_handler
)
1284 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1286 elf_hppa_howto_table
[r_type
].name
);
1287 bfd_set_error (bfd_error_bad_value
);
1292 case R_PARISC_DIR17F
: /* Used for external branches. */
1293 case R_PARISC_DIR17R
:
1294 case R_PARISC_DIR14F
: /* Used for load/store from absolute locn. */
1295 case R_PARISC_DIR14R
:
1296 case R_PARISC_DIR21L
: /* As above, and for ext branches too. */
1297 case R_PARISC_DIR32
: /* .word relocs. */
1298 /* We may want to output a dynamic relocation later. */
1299 need_entry
= NEED_DYNREL
;
1302 /* This relocation describes the C++ object vtable hierarchy.
1303 Reconstruct it for later use during GC. */
1304 case R_PARISC_GNU_VTINHERIT
:
1305 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, &hh
->eh
, rela
->r_offset
))
1309 /* This relocation describes which C++ vtable entries are actually
1310 used. Record for later use during GC. */
1311 case R_PARISC_GNU_VTENTRY
:
1312 BFD_ASSERT (hh
!= NULL
);
1314 && !bfd_elf_gc_record_vtentry (abfd
, sec
, &hh
->eh
, rela
->r_addend
))
1318 case R_PARISC_TLS_GD21L
:
1319 case R_PARISC_TLS_GD14R
:
1320 case R_PARISC_TLS_LDM21L
:
1321 case R_PARISC_TLS_LDM14R
:
1322 need_entry
= NEED_GOT
;
1325 case R_PARISC_TLS_IE21L
:
1326 case R_PARISC_TLS_IE14R
:
1328 info
->flags
|= DF_STATIC_TLS
;
1329 need_entry
= NEED_GOT
;
1336 /* Now carry out our orders. */
1337 if (need_entry
& NEED_GOT
)
1342 tls_type
= GOT_NORMAL
;
1344 case R_PARISC_TLS_GD21L
:
1345 case R_PARISC_TLS_GD14R
:
1346 tls_type
|= GOT_TLS_GD
;
1348 case R_PARISC_TLS_LDM21L
:
1349 case R_PARISC_TLS_LDM14R
:
1350 tls_type
|= GOT_TLS_LDM
;
1352 case R_PARISC_TLS_IE21L
:
1353 case R_PARISC_TLS_IE14R
:
1354 tls_type
|= GOT_TLS_IE
;
1358 /* Allocate space for a GOT entry, as well as a dynamic
1359 relocation for this entry. */
1360 if (htab
->sgot
== NULL
)
1362 if (htab
->etab
.dynobj
== NULL
)
1363 htab
->etab
.dynobj
= abfd
;
1364 if (!elf32_hppa_create_dynamic_sections (htab
->etab
.dynobj
, info
))
1368 if (r_type
== R_PARISC_TLS_LDM21L
1369 || r_type
== R_PARISC_TLS_LDM14R
)
1370 htab
->tls_ldm_got
.refcount
+= 1;
1375 hh
->eh
.got
.refcount
+= 1;
1376 old_tls_type
= hh
->tls_type
;
1380 bfd_signed_vma
*local_got_refcounts
;
1382 /* This is a global offset table entry for a local symbol. */
1383 local_got_refcounts
= hppa32_elf_local_refcounts (abfd
);
1384 if (local_got_refcounts
== NULL
)
1386 local_got_refcounts
[r_symndx
] += 1;
1388 old_tls_type
= hppa_elf_local_got_tls_type (abfd
) [r_symndx
];
1391 tls_type
|= old_tls_type
;
1393 if (old_tls_type
!= tls_type
)
1396 hh
->tls_type
= tls_type
;
1398 hppa_elf_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
1404 if (need_entry
& NEED_PLT
)
1406 /* If we are creating a shared library, and this is a reloc
1407 against a weak symbol or a global symbol in a dynamic
1408 object, then we will be creating an import stub and a
1409 .plt entry for the symbol. Similarly, on a normal link
1410 to symbols defined in a dynamic object we'll need the
1411 import stub and a .plt entry. We don't know yet whether
1412 the symbol is defined or not, so make an entry anyway and
1413 clean up later in adjust_dynamic_symbol. */
1414 if ((sec
->flags
& SEC_ALLOC
) != 0)
1418 hh
->eh
.needs_plt
= 1;
1419 hh
->eh
.plt
.refcount
+= 1;
1421 /* If this .plt entry is for a plabel, mark it so
1422 that adjust_dynamic_symbol will keep the entry
1423 even if it appears to be local. */
1424 if (need_entry
& PLT_PLABEL
)
1427 else if (need_entry
& PLT_PLABEL
)
1429 bfd_signed_vma
*local_got_refcounts
;
1430 bfd_signed_vma
*local_plt_refcounts
;
1432 local_got_refcounts
= hppa32_elf_local_refcounts (abfd
);
1433 if (local_got_refcounts
== NULL
)
1435 local_plt_refcounts
= (local_got_refcounts
1436 + symtab_hdr
->sh_info
);
1437 local_plt_refcounts
[r_symndx
] += 1;
1442 if (need_entry
& NEED_DYNREL
)
1444 /* Flag this symbol as having a non-got, non-plt reference
1445 so that we generate copy relocs if it turns out to be
1447 if (hh
!= NULL
&& !info
->shared
)
1448 hh
->eh
.non_got_ref
= 1;
1450 /* If we are creating a shared library then we need to copy
1451 the reloc into the shared library. However, if we are
1452 linking with -Bsymbolic, we need only copy absolute
1453 relocs or relocs against symbols that are not defined in
1454 an object we are including in the link. PC- or DP- or
1455 DLT-relative relocs against any local sym or global sym
1456 with DEF_REGULAR set, can be discarded. At this point we
1457 have not seen all the input files, so it is possible that
1458 DEF_REGULAR is not set now but will be set later (it is
1459 never cleared). We account for that possibility below by
1460 storing information in the dyn_relocs field of the
1463 A similar situation to the -Bsymbolic case occurs when
1464 creating shared libraries and symbol visibility changes
1465 render the symbol local.
1467 As it turns out, all the relocs we will be creating here
1468 are absolute, so we cannot remove them on -Bsymbolic
1469 links or visibility changes anyway. A STUB_REL reloc
1470 is absolute too, as in that case it is the reloc in the
1471 stub we will be creating, rather than copying the PCREL
1472 reloc in the branch.
1474 If on the other hand, we are creating an executable, we
1475 may need to keep relocations for symbols satisfied by a
1476 dynamic library if we manage to avoid copy relocs for the
1479 && (sec
->flags
& SEC_ALLOC
) != 0
1480 && (IS_ABSOLUTE_RELOC (r_type
)
1483 || hh
->eh
.root
.type
== bfd_link_hash_defweak
1484 || !hh
->eh
.def_regular
))))
1485 || (ELIMINATE_COPY_RELOCS
1487 && (sec
->flags
& SEC_ALLOC
) != 0
1489 && (hh
->eh
.root
.type
== bfd_link_hash_defweak
1490 || !hh
->eh
.def_regular
)))
1492 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1493 struct elf32_hppa_dyn_reloc_entry
**hdh_head
;
1495 /* Create a reloc section in dynobj and make room for
1499 if (htab
->etab
.dynobj
== NULL
)
1500 htab
->etab
.dynobj
= abfd
;
1502 sreloc
= _bfd_elf_make_dynamic_reloc_section
1503 (sec
, htab
->etab
.dynobj
, 2, abfd
, /*rela?*/ TRUE
);
1507 bfd_set_error (bfd_error_bad_value
);
1512 /* If this is a global symbol, we count the number of
1513 relocations we need for this symbol. */
1516 hdh_head
= &hh
->dyn_relocs
;
1520 /* Track dynamic relocs needed for local syms too.
1521 We really need local syms available to do this
1525 Elf_Internal_Sym
*isym
;
1527 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
1532 sr
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
1536 vpp
= &elf_section_data (sr
)->local_dynrel
;
1537 hdh_head
= (struct elf32_hppa_dyn_reloc_entry
**) vpp
;
1541 if (hdh_p
== NULL
|| hdh_p
->sec
!= sec
)
1543 hdh_p
= bfd_alloc (htab
->etab
.dynobj
, sizeof *hdh_p
);
1546 hdh_p
->hdh_next
= *hdh_head
;
1550 #if RELATIVE_DYNRELOCS
1551 hdh_p
->relative_count
= 0;
1556 #if RELATIVE_DYNRELOCS
1557 if (!IS_ABSOLUTE_RELOC (rtype
))
1558 hdh_p
->relative_count
+= 1;
1567 /* Return the section that should be marked against garbage collection
1568 for a given relocation. */
1571 elf32_hppa_gc_mark_hook (asection
*sec
,
1572 struct bfd_link_info
*info
,
1573 Elf_Internal_Rela
*rela
,
1574 struct elf_link_hash_entry
*hh
,
1575 Elf_Internal_Sym
*sym
)
1578 switch ((unsigned int) ELF32_R_TYPE (rela
->r_info
))
1580 case R_PARISC_GNU_VTINHERIT
:
1581 case R_PARISC_GNU_VTENTRY
:
1585 return _bfd_elf_gc_mark_hook (sec
, info
, rela
, hh
, sym
);
1588 /* Update the got and plt entry reference counts for the section being
1592 elf32_hppa_gc_sweep_hook (bfd
*abfd
,
1593 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
1595 const Elf_Internal_Rela
*relocs
)
1597 Elf_Internal_Shdr
*symtab_hdr
;
1598 struct elf_link_hash_entry
**eh_syms
;
1599 bfd_signed_vma
*local_got_refcounts
;
1600 bfd_signed_vma
*local_plt_refcounts
;
1601 const Elf_Internal_Rela
*rela
, *relend
;
1602 struct elf32_hppa_link_hash_table
*htab
;
1604 if (info
->relocatable
)
1607 htab
= hppa_link_hash_table (info
);
1611 elf_section_data (sec
)->local_dynrel
= NULL
;
1613 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1614 eh_syms
= elf_sym_hashes (abfd
);
1615 local_got_refcounts
= elf_local_got_refcounts (abfd
);
1616 local_plt_refcounts
= local_got_refcounts
;
1617 if (local_plt_refcounts
!= NULL
)
1618 local_plt_refcounts
+= symtab_hdr
->sh_info
;
1620 relend
= relocs
+ sec
->reloc_count
;
1621 for (rela
= relocs
; rela
< relend
; rela
++)
1623 unsigned long r_symndx
;
1624 unsigned int r_type
;
1625 struct elf_link_hash_entry
*eh
= NULL
;
1627 r_symndx
= ELF32_R_SYM (rela
->r_info
);
1628 if (r_symndx
>= symtab_hdr
->sh_info
)
1630 struct elf32_hppa_link_hash_entry
*hh
;
1631 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
1632 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1634 eh
= eh_syms
[r_symndx
- symtab_hdr
->sh_info
];
1635 while (eh
->root
.type
== bfd_link_hash_indirect
1636 || eh
->root
.type
== bfd_link_hash_warning
)
1637 eh
= (struct elf_link_hash_entry
*) eh
->root
.u
.i
.link
;
1638 hh
= hppa_elf_hash_entry (eh
);
1640 for (hdh_pp
= &hh
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; hdh_pp
= &hdh_p
->hdh_next
)
1641 if (hdh_p
->sec
== sec
)
1643 /* Everything must go for SEC. */
1644 *hdh_pp
= hdh_p
->hdh_next
;
1649 r_type
= ELF32_R_TYPE (rela
->r_info
);
1650 r_type
= elf32_hppa_optimized_tls_reloc (info
, r_type
, eh
!= NULL
);
1654 case R_PARISC_DLTIND14F
:
1655 case R_PARISC_DLTIND14R
:
1656 case R_PARISC_DLTIND21L
:
1657 case R_PARISC_TLS_GD21L
:
1658 case R_PARISC_TLS_GD14R
:
1659 case R_PARISC_TLS_IE21L
:
1660 case R_PARISC_TLS_IE14R
:
1663 if (eh
->got
.refcount
> 0)
1664 eh
->got
.refcount
-= 1;
1666 else if (local_got_refcounts
!= NULL
)
1668 if (local_got_refcounts
[r_symndx
] > 0)
1669 local_got_refcounts
[r_symndx
] -= 1;
1673 case R_PARISC_TLS_LDM21L
:
1674 case R_PARISC_TLS_LDM14R
:
1675 htab
->tls_ldm_got
.refcount
-= 1;
1678 case R_PARISC_PCREL12F
:
1679 case R_PARISC_PCREL17C
:
1680 case R_PARISC_PCREL17F
:
1681 case R_PARISC_PCREL22F
:
1684 if (eh
->plt
.refcount
> 0)
1685 eh
->plt
.refcount
-= 1;
1689 case R_PARISC_PLABEL14R
:
1690 case R_PARISC_PLABEL21L
:
1691 case R_PARISC_PLABEL32
:
1694 if (eh
->plt
.refcount
> 0)
1695 eh
->plt
.refcount
-= 1;
1697 else if (local_plt_refcounts
!= NULL
)
1699 if (local_plt_refcounts
[r_symndx
] > 0)
1700 local_plt_refcounts
[r_symndx
] -= 1;
1712 /* Support for core dump NOTE sections. */
1715 elf32_hppa_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1720 switch (note
->descsz
)
1725 case 396: /* Linux/hppa */
1727 elf_tdata (abfd
)->core_signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1730 elf_tdata (abfd
)->core_lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1739 /* Make a ".reg/999" section. */
1740 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1741 size
, note
->descpos
+ offset
);
1745 elf32_hppa_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1747 switch (note
->descsz
)
1752 case 124: /* Linux/hppa elf_prpsinfo. */
1753 elf_tdata (abfd
)->core_program
1754 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1755 elf_tdata (abfd
)->core_command
1756 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1759 /* Note that for some reason, a spurious space is tacked
1760 onto the end of the args in some (at least one anyway)
1761 implementations, so strip it off if it exists. */
1763 char *command
= elf_tdata (abfd
)->core_command
;
1764 int n
= strlen (command
);
1766 if (0 < n
&& command
[n
- 1] == ' ')
1767 command
[n
- 1] = '\0';
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1777 elf32_hppa_hide_symbol (struct bfd_link_info
*info
,
1778 struct elf_link_hash_entry
*eh
,
1779 bfd_boolean force_local
)
1783 eh
->forced_local
= 1;
1784 if (eh
->dynindx
!= -1)
1787 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1792 /* STT_GNU_IFUNC symbol must go through PLT. */
1793 if (! hppa_elf_hash_entry (eh
)->plabel
1794 && eh
->type
!= STT_GNU_IFUNC
)
1797 eh
->plt
= elf_hash_table (info
)->init_plt_offset
;
1801 /* Adjust a symbol defined by a dynamic object and referenced by a
1802 regular object. The current definition is in some section of the
1803 dynamic object, but we're not including those sections. We have to
1804 change the definition to something the rest of the link can
1808 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info
*info
,
1809 struct elf_link_hash_entry
*eh
)
1811 struct elf32_hppa_link_hash_table
*htab
;
1814 /* If this is a function, put it in the procedure linkage table. We
1815 will fill in the contents of the procedure linkage table later. */
1816 if (eh
->type
== STT_FUNC
1819 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1820 The refcounts are not reliable when it has been hidden since
1821 hide_symbol can be called before the plabel flag is set. */
1822 if (hppa_elf_hash_entry (eh
)->plabel
1823 && eh
->plt
.refcount
<= 0)
1824 eh
->plt
.refcount
= 1;
1826 if (eh
->plt
.refcount
<= 0
1828 && eh
->root
.type
!= bfd_link_hash_defweak
1829 && ! hppa_elf_hash_entry (eh
)->plabel
1830 && (!info
->shared
|| info
->symbolic
)))
1832 /* The .plt entry is not needed when:
1833 a) Garbage collection has removed all references to the
1835 b) We know for certain the symbol is defined in this
1836 object, and it's not a weak definition, nor is the symbol
1837 used by a plabel relocation. Either this object is the
1838 application or we are doing a shared symbolic link. */
1840 eh
->plt
.offset
= (bfd_vma
) -1;
1847 eh
->plt
.offset
= (bfd_vma
) -1;
1849 /* If this is a weak symbol, and there is a real definition, the
1850 processor independent code will have arranged for us to see the
1851 real definition first, and we can just use the same value. */
1852 if (eh
->u
.weakdef
!= NULL
)
1854 if (eh
->u
.weakdef
->root
.type
!= bfd_link_hash_defined
1855 && eh
->u
.weakdef
->root
.type
!= bfd_link_hash_defweak
)
1857 eh
->root
.u
.def
.section
= eh
->u
.weakdef
->root
.u
.def
.section
;
1858 eh
->root
.u
.def
.value
= eh
->u
.weakdef
->root
.u
.def
.value
;
1859 if (ELIMINATE_COPY_RELOCS
)
1860 eh
->non_got_ref
= eh
->u
.weakdef
->non_got_ref
;
1864 /* This is a reference to a symbol defined by a dynamic object which
1865 is not a function. */
1867 /* If we are creating a shared library, we must presume that the
1868 only references to the symbol are via the global offset table.
1869 For such cases we need not do anything here; the relocations will
1870 be handled correctly by relocate_section. */
1874 /* If there are no references to this symbol that do not use the
1875 GOT, we don't need to generate a copy reloc. */
1876 if (!eh
->non_got_ref
)
1879 if (ELIMINATE_COPY_RELOCS
)
1881 struct elf32_hppa_link_hash_entry
*hh
;
1882 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
1884 hh
= hppa_elf_hash_entry (eh
);
1885 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
1887 sec
= hdh_p
->sec
->output_section
;
1888 if (sec
!= NULL
&& (sec
->flags
& SEC_READONLY
) != 0)
1892 /* If we didn't find any dynamic relocs in read-only sections, then
1893 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1896 eh
->non_got_ref
= 0;
1903 (*_bfd_error_handler
) (_("dynamic variable `%s' is zero size"),
1904 eh
->root
.root
.string
);
1908 /* We must allocate the symbol in our .dynbss section, which will
1909 become part of the .bss section of the executable. There will be
1910 an entry for this symbol in the .dynsym section. The dynamic
1911 object will contain position independent code, so all references
1912 from the dynamic object to this symbol will go through the global
1913 offset table. The dynamic linker will use the .dynsym entry to
1914 determine the address it must put in the global offset table, so
1915 both the dynamic object and the regular object will refer to the
1916 same memory location for the variable. */
1918 htab
= hppa_link_hash_table (info
);
1922 /* We must generate a COPY reloc to tell the dynamic linker to
1923 copy the initial value out of the dynamic object and into the
1924 runtime process image. */
1925 if ((eh
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1927 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
1931 sec
= htab
->sdynbss
;
1933 return _bfd_elf_adjust_dynamic_copy (eh
, sec
);
1936 /* Allocate space in the .plt for entries that won't have relocations.
1937 ie. plabel entries. */
1940 allocate_plt_static (struct elf_link_hash_entry
*eh
, void *inf
)
1942 struct bfd_link_info
*info
;
1943 struct elf32_hppa_link_hash_table
*htab
;
1944 struct elf32_hppa_link_hash_entry
*hh
;
1947 if (eh
->root
.type
== bfd_link_hash_indirect
)
1950 info
= (struct bfd_link_info
*) inf
;
1951 hh
= hppa_elf_hash_entry (eh
);
1952 htab
= hppa_link_hash_table (info
);
1956 if (htab
->etab
.dynamic_sections_created
1957 && eh
->plt
.refcount
> 0)
1959 /* Make sure this symbol is output as a dynamic symbol.
1960 Undefined weak syms won't yet be marked as dynamic. */
1961 if (eh
->dynindx
== -1
1962 && !eh
->forced_local
1963 && eh
->type
!= STT_PARISC_MILLI
)
1965 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
1969 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
, eh
))
1971 /* Allocate these later. From this point on, h->plabel
1972 means that the plt entry is only used by a plabel.
1973 We'll be using a normal plt entry for this symbol, so
1974 clear the plabel indicator. */
1978 else if (hh
->plabel
)
1980 /* Make an entry in the .plt section for plabel references
1981 that won't have a .plt entry for other reasons. */
1983 eh
->plt
.offset
= sec
->size
;
1984 sec
->size
+= PLT_ENTRY_SIZE
;
1988 /* No .plt entry needed. */
1989 eh
->plt
.offset
= (bfd_vma
) -1;
1995 eh
->plt
.offset
= (bfd_vma
) -1;
2002 /* Allocate space in .plt, .got and associated reloc sections for
2006 allocate_dynrelocs (struct elf_link_hash_entry
*eh
, void *inf
)
2008 struct bfd_link_info
*info
;
2009 struct elf32_hppa_link_hash_table
*htab
;
2011 struct elf32_hppa_link_hash_entry
*hh
;
2012 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2014 if (eh
->root
.type
== bfd_link_hash_indirect
)
2018 htab
= hppa_link_hash_table (info
);
2022 hh
= hppa_elf_hash_entry (eh
);
2024 if (htab
->etab
.dynamic_sections_created
2025 && eh
->plt
.offset
!= (bfd_vma
) -1
2027 && eh
->plt
.refcount
> 0)
2029 /* Make an entry in the .plt section. */
2031 eh
->plt
.offset
= sec
->size
;
2032 sec
->size
+= PLT_ENTRY_SIZE
;
2034 /* We also need to make an entry in the .rela.plt section. */
2035 htab
->srelplt
->size
+= sizeof (Elf32_External_Rela
);
2036 htab
->need_plt_stub
= 1;
2039 if (eh
->got
.refcount
> 0)
2041 /* Make sure this symbol is output as a dynamic symbol.
2042 Undefined weak syms won't yet be marked as dynamic. */
2043 if (eh
->dynindx
== -1
2044 && !eh
->forced_local
2045 && eh
->type
!= STT_PARISC_MILLI
)
2047 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2052 eh
->got
.offset
= sec
->size
;
2053 sec
->size
+= GOT_ENTRY_SIZE
;
2054 /* R_PARISC_TLS_GD* needs two GOT entries */
2055 if ((hh
->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2056 sec
->size
+= GOT_ENTRY_SIZE
* 2;
2057 else if ((hh
->tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2058 sec
->size
+= GOT_ENTRY_SIZE
;
2059 if (htab
->etab
.dynamic_sections_created
2061 || (eh
->dynindx
!= -1
2062 && !eh
->forced_local
)))
2064 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2065 if ((hh
->tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2066 htab
->srelgot
->size
+= 2 * sizeof (Elf32_External_Rela
);
2067 else if ((hh
->tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2068 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2072 eh
->got
.offset
= (bfd_vma
) -1;
2074 if (hh
->dyn_relocs
== NULL
)
2077 /* If this is a -Bsymbolic shared link, then we need to discard all
2078 space allocated for dynamic pc-relative relocs against symbols
2079 defined in a regular object. For the normal shared case, discard
2080 space for relocs that have become local due to symbol visibility
2084 #if RELATIVE_DYNRELOCS
2085 if (SYMBOL_CALLS_LOCAL (info
, eh
))
2087 struct elf32_hppa_dyn_reloc_entry
**hdh_pp
;
2089 for (hdh_pp
= &hh
->dyn_relocs
; (hdh_p
= *hdh_pp
) != NULL
; )
2091 hdh_p
->count
-= hdh_p
->relative_count
;
2092 hdh_p
->relative_count
= 0;
2093 if (hdh_p
->count
== 0)
2094 *hdh_pp
= hdh_p
->hdh_next
;
2096 hdh_pp
= &hdh_p
->hdh_next
;
2101 /* Also discard relocs on undefined weak syms with non-default
2103 if (hh
->dyn_relocs
!= NULL
2104 && eh
->root
.type
== bfd_link_hash_undefweak
)
2106 if (ELF_ST_VISIBILITY (eh
->other
) != STV_DEFAULT
)
2107 hh
->dyn_relocs
= NULL
;
2109 /* Make sure undefined weak symbols are output as a dynamic
2111 else if (eh
->dynindx
== -1
2112 && !eh
->forced_local
)
2114 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2121 /* For the non-shared case, discard space for relocs against
2122 symbols which turn out to need copy relocs or are not
2125 if (!eh
->non_got_ref
2126 && ((ELIMINATE_COPY_RELOCS
2128 && !eh
->def_regular
)
2129 || (htab
->etab
.dynamic_sections_created
2130 && (eh
->root
.type
== bfd_link_hash_undefweak
2131 || eh
->root
.type
== bfd_link_hash_undefined
))))
2133 /* Make sure this symbol is output as a dynamic symbol.
2134 Undefined weak syms won't yet be marked as dynamic. */
2135 if (eh
->dynindx
== -1
2136 && !eh
->forced_local
2137 && eh
->type
!= STT_PARISC_MILLI
)
2139 if (! bfd_elf_link_record_dynamic_symbol (info
, eh
))
2143 /* If that succeeded, we know we'll be keeping all the
2145 if (eh
->dynindx
!= -1)
2149 hh
->dyn_relocs
= NULL
;
2155 /* Finally, allocate space. */
2156 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
2158 asection
*sreloc
= elf_section_data (hdh_p
->sec
)->sreloc
;
2159 sreloc
->size
+= hdh_p
->count
* sizeof (Elf32_External_Rela
);
2165 /* This function is called via elf_link_hash_traverse to force
2166 millicode symbols local so they do not end up as globals in the
2167 dynamic symbol table. We ought to be able to do this in
2168 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2169 for all dynamic symbols. Arguably, this is a bug in
2170 elf_adjust_dynamic_symbol. */
2173 clobber_millicode_symbols (struct elf_link_hash_entry
*eh
,
2174 struct bfd_link_info
*info
)
2176 if (eh
->type
== STT_PARISC_MILLI
2177 && !eh
->forced_local
)
2179 elf32_hppa_hide_symbol (info
, eh
, TRUE
);
2184 /* Find any dynamic relocs that apply to read-only sections. */
2187 readonly_dynrelocs (struct elf_link_hash_entry
*eh
, void *inf
)
2189 struct elf32_hppa_link_hash_entry
*hh
;
2190 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2192 hh
= hppa_elf_hash_entry (eh
);
2193 for (hdh_p
= hh
->dyn_relocs
; hdh_p
!= NULL
; hdh_p
= hdh_p
->hdh_next
)
2195 asection
*sec
= hdh_p
->sec
->output_section
;
2197 if (sec
!= NULL
&& (sec
->flags
& SEC_READONLY
) != 0)
2199 struct bfd_link_info
*info
= inf
;
2201 info
->flags
|= DF_TEXTREL
;
2203 /* Not an error, just cut short the traversal. */
2210 /* Set the sizes of the dynamic sections. */
2213 elf32_hppa_size_dynamic_sections (bfd
*output_bfd ATTRIBUTE_UNUSED
,
2214 struct bfd_link_info
*info
)
2216 struct elf32_hppa_link_hash_table
*htab
;
2222 htab
= hppa_link_hash_table (info
);
2226 dynobj
= htab
->etab
.dynobj
;
2230 if (htab
->etab
.dynamic_sections_created
)
2232 /* Set the contents of the .interp section to the interpreter. */
2233 if (info
->executable
)
2235 sec
= bfd_get_section_by_name (dynobj
, ".interp");
2238 sec
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
2239 sec
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
2242 /* Force millicode symbols local. */
2243 elf_link_hash_traverse (&htab
->etab
,
2244 clobber_millicode_symbols
,
2248 /* Set up .got and .plt offsets for local syms, and space for local
2250 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
2252 bfd_signed_vma
*local_got
;
2253 bfd_signed_vma
*end_local_got
;
2254 bfd_signed_vma
*local_plt
;
2255 bfd_signed_vma
*end_local_plt
;
2256 bfd_size_type locsymcount
;
2257 Elf_Internal_Shdr
*symtab_hdr
;
2259 char *local_tls_type
;
2261 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
2264 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2266 struct elf32_hppa_dyn_reloc_entry
*hdh_p
;
2268 for (hdh_p
= ((struct elf32_hppa_dyn_reloc_entry
*)
2269 elf_section_data (sec
)->local_dynrel
);
2271 hdh_p
= hdh_p
->hdh_next
)
2273 if (!bfd_is_abs_section (hdh_p
->sec
)
2274 && bfd_is_abs_section (hdh_p
->sec
->output_section
))
2276 /* Input section has been discarded, either because
2277 it is a copy of a linkonce section or due to
2278 linker script /DISCARD/, so we'll be discarding
2281 else if (hdh_p
->count
!= 0)
2283 srel
= elf_section_data (hdh_p
->sec
)->sreloc
;
2284 srel
->size
+= hdh_p
->count
* sizeof (Elf32_External_Rela
);
2285 if ((hdh_p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
2286 info
->flags
|= DF_TEXTREL
;
2291 local_got
= elf_local_got_refcounts (ibfd
);
2295 symtab_hdr
= &elf_tdata (ibfd
)->symtab_hdr
;
2296 locsymcount
= symtab_hdr
->sh_info
;
2297 end_local_got
= local_got
+ locsymcount
;
2298 local_tls_type
= hppa_elf_local_got_tls_type (ibfd
);
2300 srel
= htab
->srelgot
;
2301 for (; local_got
< end_local_got
; ++local_got
)
2305 *local_got
= sec
->size
;
2306 sec
->size
+= GOT_ENTRY_SIZE
;
2307 if ((*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2308 sec
->size
+= 2 * GOT_ENTRY_SIZE
;
2309 else if ((*local_tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2310 sec
->size
+= GOT_ENTRY_SIZE
;
2313 srel
->size
+= sizeof (Elf32_External_Rela
);
2314 if ((*local_tls_type
& (GOT_TLS_GD
| GOT_TLS_IE
)) == (GOT_TLS_GD
| GOT_TLS_IE
))
2315 srel
->size
+= 2 * sizeof (Elf32_External_Rela
);
2316 else if ((*local_tls_type
& GOT_TLS_GD
) == GOT_TLS_GD
)
2317 srel
->size
+= sizeof (Elf32_External_Rela
);
2321 *local_got
= (bfd_vma
) -1;
2326 local_plt
= end_local_got
;
2327 end_local_plt
= local_plt
+ locsymcount
;
2328 if (! htab
->etab
.dynamic_sections_created
)
2330 /* Won't be used, but be safe. */
2331 for (; local_plt
< end_local_plt
; ++local_plt
)
2332 *local_plt
= (bfd_vma
) -1;
2337 srel
= htab
->srelplt
;
2338 for (; local_plt
< end_local_plt
; ++local_plt
)
2342 *local_plt
= sec
->size
;
2343 sec
->size
+= PLT_ENTRY_SIZE
;
2345 srel
->size
+= sizeof (Elf32_External_Rela
);
2348 *local_plt
= (bfd_vma
) -1;
2353 if (htab
->tls_ldm_got
.refcount
> 0)
2355 /* Allocate 2 got entries and 1 dynamic reloc for
2356 R_PARISC_TLS_DTPMOD32 relocs. */
2357 htab
->tls_ldm_got
.offset
= htab
->sgot
->size
;
2358 htab
->sgot
->size
+= (GOT_ENTRY_SIZE
* 2);
2359 htab
->srelgot
->size
+= sizeof (Elf32_External_Rela
);
2362 htab
->tls_ldm_got
.offset
= -1;
2364 /* Do all the .plt entries without relocs first. The dynamic linker
2365 uses the last .plt reloc to find the end of the .plt (and hence
2366 the start of the .got) for lazy linking. */
2367 elf_link_hash_traverse (&htab
->etab
, allocate_plt_static
, info
);
2369 /* Allocate global sym .plt and .got entries, and space for global
2370 sym dynamic relocs. */
2371 elf_link_hash_traverse (&htab
->etab
, allocate_dynrelocs
, info
);
2373 /* The check_relocs and adjust_dynamic_symbol entry points have
2374 determined the sizes of the various dynamic sections. Allocate
2377 for (sec
= dynobj
->sections
; sec
!= NULL
; sec
= sec
->next
)
2379 if ((sec
->flags
& SEC_LINKER_CREATED
) == 0)
2382 if (sec
== htab
->splt
)
2384 if (htab
->need_plt_stub
)
2386 /* Make space for the plt stub at the end of the .plt
2387 section. We want this stub right at the end, up
2388 against the .got section. */
2389 int gotalign
= bfd_section_alignment (dynobj
, htab
->sgot
);
2390 int pltalign
= bfd_section_alignment (dynobj
, sec
);
2393 if (gotalign
> pltalign
)
2394 bfd_set_section_alignment (dynobj
, sec
, gotalign
);
2395 mask
= ((bfd_size_type
) 1 << gotalign
) - 1;
2396 sec
->size
= (sec
->size
+ sizeof (plt_stub
) + mask
) & ~mask
;
2399 else if (sec
== htab
->sgot
2400 || sec
== htab
->sdynbss
)
2402 else if (CONST_STRNEQ (bfd_get_section_name (dynobj
, sec
), ".rela"))
2406 /* Remember whether there are any reloc sections other
2408 if (sec
!= htab
->srelplt
)
2411 /* We use the reloc_count field as a counter if we need
2412 to copy relocs into the output file. */
2413 sec
->reloc_count
= 0;
2418 /* It's not one of our sections, so don't allocate space. */
2424 /* If we don't need this section, strip it from the
2425 output file. This is mostly to handle .rela.bss and
2426 .rela.plt. We must create both sections in
2427 create_dynamic_sections, because they must be created
2428 before the linker maps input sections to output
2429 sections. The linker does that before
2430 adjust_dynamic_symbol is called, and it is that
2431 function which decides whether anything needs to go
2432 into these sections. */
2433 sec
->flags
|= SEC_EXCLUDE
;
2437 if ((sec
->flags
& SEC_HAS_CONTENTS
) == 0)
2440 /* Allocate memory for the section contents. Zero it, because
2441 we may not fill in all the reloc sections. */
2442 sec
->contents
= bfd_zalloc (dynobj
, sec
->size
);
2443 if (sec
->contents
== NULL
)
2447 if (htab
->etab
.dynamic_sections_created
)
2449 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2450 actually has nothing to do with the PLT, it is how we
2451 communicate the LTP value of a load module to the dynamic
2453 #define add_dynamic_entry(TAG, VAL) \
2454 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2456 if (!add_dynamic_entry (DT_PLTGOT
, 0))
2459 /* Add some entries to the .dynamic section. We fill in the
2460 values later, in elf32_hppa_finish_dynamic_sections, but we
2461 must add the entries now so that we get the correct size for
2462 the .dynamic section. The DT_DEBUG entry is filled in by the
2463 dynamic linker and used by the debugger. */
2464 if (info
->executable
)
2466 if (!add_dynamic_entry (DT_DEBUG
, 0))
2470 if (htab
->srelplt
->size
!= 0)
2472 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
2473 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
2474 || !add_dynamic_entry (DT_JMPREL
, 0))
2480 if (!add_dynamic_entry (DT_RELA
, 0)
2481 || !add_dynamic_entry (DT_RELASZ
, 0)
2482 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf32_External_Rela
)))
2485 /* If any dynamic relocs apply to a read-only section,
2486 then we need a DT_TEXTREL entry. */
2487 if ((info
->flags
& DF_TEXTREL
) == 0)
2488 elf_link_hash_traverse (&htab
->etab
, readonly_dynrelocs
, info
);
2490 if ((info
->flags
& DF_TEXTREL
) != 0)
2492 if (!add_dynamic_entry (DT_TEXTREL
, 0))
2497 #undef add_dynamic_entry
2502 /* External entry points for sizing and building linker stubs. */
2504 /* Set up various things so that we can make a list of input sections
2505 for each output section included in the link. Returns -1 on error,
2506 0 when no stubs will be needed, and 1 on success. */
2509 elf32_hppa_setup_section_lists (bfd
*output_bfd
, struct bfd_link_info
*info
)
2512 unsigned int bfd_count
;
2513 int top_id
, top_index
;
2515 asection
**input_list
, **list
;
2517 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2522 /* Count the number of input BFDs and find the top input section id. */
2523 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
2525 input_bfd
= input_bfd
->link_next
)
2528 for (section
= input_bfd
->sections
;
2530 section
= section
->next
)
2532 if (top_id
< section
->id
)
2533 top_id
= section
->id
;
2536 htab
->bfd_count
= bfd_count
;
2538 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
2539 htab
->stub_group
= bfd_zmalloc (amt
);
2540 if (htab
->stub_group
== NULL
)
2543 /* We can't use output_bfd->section_count here to find the top output
2544 section index as some sections may have been removed, and
2545 strip_excluded_output_sections doesn't renumber the indices. */
2546 for (section
= output_bfd
->sections
, top_index
= 0;
2548 section
= section
->next
)
2550 if (top_index
< section
->index
)
2551 top_index
= section
->index
;
2554 htab
->top_index
= top_index
;
2555 amt
= sizeof (asection
*) * (top_index
+ 1);
2556 input_list
= bfd_malloc (amt
);
2557 htab
->input_list
= input_list
;
2558 if (input_list
== NULL
)
2561 /* For sections we aren't interested in, mark their entries with a
2562 value we can check later. */
2563 list
= input_list
+ top_index
;
2565 *list
= bfd_abs_section_ptr
;
2566 while (list
-- != input_list
);
2568 for (section
= output_bfd
->sections
;
2570 section
= section
->next
)
2572 if ((section
->flags
& SEC_CODE
) != 0)
2573 input_list
[section
->index
] = NULL
;
2579 /* The linker repeatedly calls this function for each input section,
2580 in the order that input sections are linked into output sections.
2581 Build lists of input sections to determine groupings between which
2582 we may insert linker stubs. */
2585 elf32_hppa_next_input_section (struct bfd_link_info
*info
, asection
*isec
)
2587 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2592 if (isec
->output_section
->index
<= htab
->top_index
)
2594 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
2595 if (*list
!= bfd_abs_section_ptr
)
2597 /* Steal the link_sec pointer for our list. */
2598 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2599 /* This happens to make the list in reverse order,
2600 which is what we want. */
2601 PREV_SEC (isec
) = *list
;
2607 /* See whether we can group stub sections together. Grouping stub
2608 sections may result in fewer stubs. More importantly, we need to
2609 put all .init* and .fini* stubs at the beginning of the .init or
2610 .fini output sections respectively, because glibc splits the
2611 _init and _fini functions into multiple parts. Putting a stub in
2612 the middle of a function is not a good idea. */
2615 group_sections (struct elf32_hppa_link_hash_table
*htab
,
2616 bfd_size_type stub_group_size
,
2617 bfd_boolean stubs_always_before_branch
)
2619 asection
**list
= htab
->input_list
+ htab
->top_index
;
2622 asection
*tail
= *list
;
2623 if (tail
== bfd_abs_section_ptr
)
2625 while (tail
!= NULL
)
2629 bfd_size_type total
;
2630 bfd_boolean big_sec
;
2634 big_sec
= total
>= stub_group_size
;
2636 while ((prev
= PREV_SEC (curr
)) != NULL
2637 && ((total
+= curr
->output_offset
- prev
->output_offset
)
2641 /* OK, the size from the start of CURR to the end is less
2642 than 240000 bytes and thus can be handled by one stub
2643 section. (or the tail section is itself larger than
2644 240000 bytes, in which case we may be toast.)
2645 We should really be keeping track of the total size of
2646 stubs added here, as stubs contribute to the final output
2647 section size. That's a little tricky, and this way will
2648 only break if stubs added total more than 22144 bytes, or
2649 2768 long branch stubs. It seems unlikely for more than
2650 2768 different functions to be called, especially from
2651 code only 240000 bytes long. This limit used to be
2652 250000, but c++ code tends to generate lots of little
2653 functions, and sometimes violated the assumption. */
2656 prev
= PREV_SEC (tail
);
2657 /* Set up this stub group. */
2658 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2660 while (tail
!= curr
&& (tail
= prev
) != NULL
);
2662 /* But wait, there's more! Input sections up to 240000
2663 bytes before the stub section can be handled by it too.
2664 Don't do this if we have a really large section after the
2665 stubs, as adding more stubs increases the chance that
2666 branches may not reach into the stub section. */
2667 if (!stubs_always_before_branch
&& !big_sec
)
2671 && ((total
+= tail
->output_offset
- prev
->output_offset
)
2675 prev
= PREV_SEC (tail
);
2676 htab
->stub_group
[tail
->id
].link_sec
= curr
;
2682 while (list
-- != htab
->input_list
);
2683 free (htab
->input_list
);
2687 /* Read in all local syms for all input bfds, and create hash entries
2688 for export stubs if we are building a multi-subspace shared lib.
2689 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2692 get_local_syms (bfd
*output_bfd
, bfd
*input_bfd
, struct bfd_link_info
*info
)
2694 unsigned int bfd_indx
;
2695 Elf_Internal_Sym
*local_syms
, **all_local_syms
;
2696 int stub_changed
= 0;
2697 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2702 /* We want to read in symbol extension records only once. To do this
2703 we need to read in the local symbols in parallel and save them for
2704 later use; so hold pointers to the local symbols in an array. */
2705 bfd_size_type amt
= sizeof (Elf_Internal_Sym
*) * htab
->bfd_count
;
2706 all_local_syms
= bfd_zmalloc (amt
);
2707 htab
->all_local_syms
= all_local_syms
;
2708 if (all_local_syms
== NULL
)
2711 /* Walk over all the input BFDs, swapping in local symbols.
2712 If we are creating a shared library, create hash entries for the
2716 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2718 Elf_Internal_Shdr
*symtab_hdr
;
2720 /* We'll need the symbol table in a second. */
2721 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2722 if (symtab_hdr
->sh_info
== 0)
2725 /* We need an array of the local symbols attached to the input bfd. */
2726 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
2727 if (local_syms
== NULL
)
2729 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
2730 symtab_hdr
->sh_info
, 0,
2732 /* Cache them for elf_link_input_bfd. */
2733 symtab_hdr
->contents
= (unsigned char *) local_syms
;
2735 if (local_syms
== NULL
)
2738 all_local_syms
[bfd_indx
] = local_syms
;
2740 if (info
->shared
&& htab
->multi_subspace
)
2742 struct elf_link_hash_entry
**eh_syms
;
2743 struct elf_link_hash_entry
**eh_symend
;
2744 unsigned int symcount
;
2746 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
2747 - symtab_hdr
->sh_info
);
2748 eh_syms
= (struct elf_link_hash_entry
**) elf_sym_hashes (input_bfd
);
2749 eh_symend
= (struct elf_link_hash_entry
**) (eh_syms
+ symcount
);
2751 /* Look through the global syms for functions; We need to
2752 build export stubs for all globally visible functions. */
2753 for (; eh_syms
< eh_symend
; eh_syms
++)
2755 struct elf32_hppa_link_hash_entry
*hh
;
2757 hh
= hppa_elf_hash_entry (*eh_syms
);
2759 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
2760 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
2761 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
2763 /* At this point in the link, undefined syms have been
2764 resolved, so we need to check that the symbol was
2765 defined in this BFD. */
2766 if ((hh
->eh
.root
.type
== bfd_link_hash_defined
2767 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)
2768 && hh
->eh
.type
== STT_FUNC
2769 && hh
->eh
.root
.u
.def
.section
->output_section
!= NULL
2770 && (hh
->eh
.root
.u
.def
.section
->output_section
->owner
2772 && hh
->eh
.root
.u
.def
.section
->owner
== input_bfd
2773 && hh
->eh
.def_regular
2774 && !hh
->eh
.forced_local
2775 && ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
)
2778 const char *stub_name
;
2779 struct elf32_hppa_stub_hash_entry
*hsh
;
2781 sec
= hh
->eh
.root
.u
.def
.section
;
2782 stub_name
= hh_name (hh
);
2783 hsh
= hppa_stub_hash_lookup (&htab
->bstab
,
2788 hsh
= hppa_add_stub (stub_name
, sec
, htab
);
2792 hsh
->target_value
= hh
->eh
.root
.u
.def
.value
;
2793 hsh
->target_section
= hh
->eh
.root
.u
.def
.section
;
2794 hsh
->stub_type
= hppa_stub_export
;
2800 (*_bfd_error_handler
) (_("%B: duplicate export stub %s"),
2809 return stub_changed
;
2812 /* Determine and set the size of the stub section for a final link.
2814 The basic idea here is to examine all the relocations looking for
2815 PC-relative calls to a target that is unreachable with a "bl"
2819 elf32_hppa_size_stubs
2820 (bfd
*output_bfd
, bfd
*stub_bfd
, struct bfd_link_info
*info
,
2821 bfd_boolean multi_subspace
, bfd_signed_vma group_size
,
2822 asection
* (*add_stub_section
) (const char *, asection
*),
2823 void (*layout_sections_again
) (void))
2825 bfd_size_type stub_group_size
;
2826 bfd_boolean stubs_always_before_branch
;
2827 bfd_boolean stub_changed
;
2828 struct elf32_hppa_link_hash_table
*htab
= hppa_link_hash_table (info
);
2833 /* Stash our params away. */
2834 htab
->stub_bfd
= stub_bfd
;
2835 htab
->multi_subspace
= multi_subspace
;
2836 htab
->add_stub_section
= add_stub_section
;
2837 htab
->layout_sections_again
= layout_sections_again
;
2838 stubs_always_before_branch
= group_size
< 0;
2840 stub_group_size
= -group_size
;
2842 stub_group_size
= group_size
;
2843 if (stub_group_size
== 1)
2845 /* Default values. */
2846 if (stubs_always_before_branch
)
2848 stub_group_size
= 7680000;
2849 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2850 stub_group_size
= 240000;
2851 if (htab
->has_12bit_branch
)
2852 stub_group_size
= 7500;
2856 stub_group_size
= 6971392;
2857 if (htab
->has_17bit_branch
|| htab
->multi_subspace
)
2858 stub_group_size
= 217856;
2859 if (htab
->has_12bit_branch
)
2860 stub_group_size
= 6808;
2864 group_sections (htab
, stub_group_size
, stubs_always_before_branch
);
2866 switch (get_local_syms (output_bfd
, info
->input_bfds
, info
))
2869 if (htab
->all_local_syms
)
2870 goto error_ret_free_local
;
2874 stub_changed
= FALSE
;
2878 stub_changed
= TRUE
;
2885 unsigned int bfd_indx
;
2888 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
2890 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
2892 Elf_Internal_Shdr
*symtab_hdr
;
2894 Elf_Internal_Sym
*local_syms
;
2896 /* We'll need the symbol table in a second. */
2897 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
2898 if (symtab_hdr
->sh_info
== 0)
2901 local_syms
= htab
->all_local_syms
[bfd_indx
];
2903 /* Walk over each section attached to the input bfd. */
2904 for (section
= input_bfd
->sections
;
2906 section
= section
->next
)
2908 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
2910 /* If there aren't any relocs, then there's nothing more
2912 if ((section
->flags
& SEC_RELOC
) == 0
2913 || section
->reloc_count
== 0)
2916 /* If this section is a link-once section that will be
2917 discarded, then don't create any stubs. */
2918 if (section
->output_section
== NULL
2919 || section
->output_section
->owner
!= output_bfd
)
2922 /* Get the relocs. */
2924 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
, NULL
,
2926 if (internal_relocs
== NULL
)
2927 goto error_ret_free_local
;
2929 /* Now examine each relocation. */
2930 irela
= internal_relocs
;
2931 irelaend
= irela
+ section
->reloc_count
;
2932 for (; irela
< irelaend
; irela
++)
2934 unsigned int r_type
, r_indx
;
2935 enum elf32_hppa_stub_type stub_type
;
2936 struct elf32_hppa_stub_hash_entry
*hsh
;
2939 bfd_vma destination
;
2940 struct elf32_hppa_link_hash_entry
*hh
;
2942 const asection
*id_sec
;
2944 r_type
= ELF32_R_TYPE (irela
->r_info
);
2945 r_indx
= ELF32_R_SYM (irela
->r_info
);
2947 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
2949 bfd_set_error (bfd_error_bad_value
);
2950 error_ret_free_internal
:
2951 if (elf_section_data (section
)->relocs
== NULL
)
2952 free (internal_relocs
);
2953 goto error_ret_free_local
;
2956 /* Only look for stubs on call instructions. */
2957 if (r_type
!= (unsigned int) R_PARISC_PCREL12F
2958 && r_type
!= (unsigned int) R_PARISC_PCREL17F
2959 && r_type
!= (unsigned int) R_PARISC_PCREL22F
)
2962 /* Now determine the call target, its name, value,
2968 if (r_indx
< symtab_hdr
->sh_info
)
2970 /* It's a local symbol. */
2971 Elf_Internal_Sym
*sym
;
2972 Elf_Internal_Shdr
*hdr
;
2975 sym
= local_syms
+ r_indx
;
2976 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
2977 sym_value
= sym
->st_value
;
2978 shndx
= sym
->st_shndx
;
2979 if (shndx
< elf_numsections (input_bfd
))
2981 hdr
= elf_elfsections (input_bfd
)[shndx
];
2982 sym_sec
= hdr
->bfd_section
;
2983 destination
= (sym_value
+ irela
->r_addend
2984 + sym_sec
->output_offset
2985 + sym_sec
->output_section
->vma
);
2990 /* It's an external symbol. */
2993 e_indx
= r_indx
- symtab_hdr
->sh_info
;
2994 hh
= hppa_elf_hash_entry (elf_sym_hashes (input_bfd
)[e_indx
]);
2996 while (hh
->eh
.root
.type
== bfd_link_hash_indirect
2997 || hh
->eh
.root
.type
== bfd_link_hash_warning
)
2998 hh
= hppa_elf_hash_entry (hh
->eh
.root
.u
.i
.link
);
3000 if (hh
->eh
.root
.type
== bfd_link_hash_defined
3001 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)
3003 sym_sec
= hh
->eh
.root
.u
.def
.section
;
3004 sym_value
= hh
->eh
.root
.u
.def
.value
;
3005 if (sym_sec
->output_section
!= NULL
)
3006 destination
= (sym_value
+ irela
->r_addend
3007 + sym_sec
->output_offset
3008 + sym_sec
->output_section
->vma
);
3010 else if (hh
->eh
.root
.type
== bfd_link_hash_undefweak
)
3015 else if (hh
->eh
.root
.type
== bfd_link_hash_undefined
)
3017 if (! (info
->unresolved_syms_in_objects
== RM_IGNORE
3018 && (ELF_ST_VISIBILITY (hh
->eh
.other
)
3020 && hh
->eh
.type
!= STT_PARISC_MILLI
))
3025 bfd_set_error (bfd_error_bad_value
);
3026 goto error_ret_free_internal
;
3030 /* Determine what (if any) linker stub is needed. */
3031 stub_type
= hppa_type_of_stub (section
, irela
, hh
,
3033 if (stub_type
== hppa_stub_none
)
3036 /* Support for grouping stub sections. */
3037 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
3039 /* Get the name of this stub. */
3040 stub_name
= hppa_stub_name (id_sec
, sym_sec
, hh
, irela
);
3042 goto error_ret_free_internal
;
3044 hsh
= hppa_stub_hash_lookup (&htab
->bstab
,
3049 /* The proper stub has already been created. */
3054 hsh
= hppa_add_stub (stub_name
, section
, htab
);
3058 goto error_ret_free_internal
;
3061 hsh
->target_value
= sym_value
;
3062 hsh
->target_section
= sym_sec
;
3063 hsh
->stub_type
= stub_type
;
3066 if (stub_type
== hppa_stub_import
)
3067 hsh
->stub_type
= hppa_stub_import_shared
;
3068 else if (stub_type
== hppa_stub_long_branch
)
3069 hsh
->stub_type
= hppa_stub_long_branch_shared
;
3072 stub_changed
= TRUE
;
3075 /* We're done with the internal relocs, free them. */
3076 if (elf_section_data (section
)->relocs
== NULL
)
3077 free (internal_relocs
);
3084 /* OK, we've added some stubs. Find out the new size of the
3086 for (stub_sec
= htab
->stub_bfd
->sections
;
3088 stub_sec
= stub_sec
->next
)
3091 bfd_hash_traverse (&htab
->bstab
, hppa_size_one_stub
, htab
);
3093 /* Ask the linker to do its stuff. */
3094 (*htab
->layout_sections_again
) ();
3095 stub_changed
= FALSE
;
3098 free (htab
->all_local_syms
);
3101 error_ret_free_local
:
3102 free (htab
->all_local_syms
);
3106 /* For a final link, this function is called after we have sized the
3107 stubs to provide a value for __gp. */
3110 elf32_hppa_set_gp (bfd
*abfd
, struct bfd_link_info
*info
)
3112 struct bfd_link_hash_entry
*h
;
3113 asection
*sec
= NULL
;
3115 struct elf32_hppa_link_hash_table
*htab
;
3117 htab
= hppa_link_hash_table (info
);
3121 h
= bfd_link_hash_lookup (&htab
->etab
.root
, "$global$", FALSE
, FALSE
, FALSE
);
3124 && (h
->type
== bfd_link_hash_defined
3125 || h
->type
== bfd_link_hash_defweak
))
3127 gp_val
= h
->u
.def
.value
;
3128 sec
= h
->u
.def
.section
;
3132 asection
*splt
= bfd_get_section_by_name (abfd
, ".plt");
3133 asection
*sgot
= bfd_get_section_by_name (abfd
, ".got");
3135 /* Choose to point our LTP at, in this order, one of .plt, .got,
3136 or .data, if these sections exist. In the case of choosing
3137 .plt try to make the LTP ideal for addressing anywhere in the
3138 .plt or .got with a 14 bit signed offset. Typically, the end
3139 of the .plt is the start of the .got, so choose .plt + 0x2000
3140 if either the .plt or .got is larger than 0x2000. If both
3141 the .plt and .got are smaller than 0x2000, choose the end of
3142 the .plt section. */
3143 sec
= strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") == 0
3148 if (gp_val
> 0x2000 || (sgot
&& sgot
->size
> 0x2000))
3158 if (strcmp (bfd_get_target (abfd
), "elf32-hppa-netbsd") != 0)
3160 /* We know we don't have a .plt. If .got is large,
3162 if (sec
->size
> 0x2000)
3168 /* No .plt or .got. Who cares what the LTP is? */
3169 sec
= bfd_get_section_by_name (abfd
, ".data");
3175 h
->type
= bfd_link_hash_defined
;
3176 h
->u
.def
.value
= gp_val
;
3178 h
->u
.def
.section
= sec
;
3180 h
->u
.def
.section
= bfd_abs_section_ptr
;
3184 if (sec
!= NULL
&& sec
->output_section
!= NULL
)
3185 gp_val
+= sec
->output_section
->vma
+ sec
->output_offset
;
3187 elf_gp (abfd
) = gp_val
;
3191 /* Build all the stubs associated with the current output file. The
3192 stubs are kept in a hash table attached to the main linker hash
3193 table. We also set up the .plt entries for statically linked PIC
3194 functions here. This function is called via hppaelf_finish in the
3198 elf32_hppa_build_stubs (struct bfd_link_info
*info
)
3201 struct bfd_hash_table
*table
;
3202 struct elf32_hppa_link_hash_table
*htab
;
3204 htab
= hppa_link_hash_table (info
);
3208 for (stub_sec
= htab
->stub_bfd
->sections
;
3210 stub_sec
= stub_sec
->next
)
3214 /* Allocate memory to hold the linker stubs. */
3215 size
= stub_sec
->size
;
3216 stub_sec
->contents
= bfd_zalloc (htab
->stub_bfd
, size
);
3217 if (stub_sec
->contents
== NULL
&& size
!= 0)
3222 /* Build the stubs as directed by the stub hash table. */
3223 table
= &htab
->bstab
;
3224 bfd_hash_traverse (table
, hppa_build_one_stub
, info
);
3229 /* Return the base vma address which should be subtracted from the real
3230 address when resolving a dtpoff relocation.
3231 This is PT_TLS segment p_vaddr. */
3234 dtpoff_base (struct bfd_link_info
*info
)
3236 /* If tls_sec is NULL, we should have signalled an error already. */
3237 if (elf_hash_table (info
)->tls_sec
== NULL
)
3239 return elf_hash_table (info
)->tls_sec
->vma
;
3242 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3245 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
3247 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
3249 /* If tls_sec is NULL, we should have signalled an error already. */
3250 if (htab
->tls_sec
== NULL
)
3252 /* hppa TLS ABI is variant I and static TLS block start just after
3253 tcbhead structure which has 2 pointer fields. */
3254 return (address
- htab
->tls_sec
->vma
3255 + align_power ((bfd_vma
) 8, htab
->tls_sec
->alignment_power
));
3258 /* Perform a final link. */
3261 elf32_hppa_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
3263 /* Invoke the regular ELF linker to do all the work. */
3264 if (!bfd_elf_final_link (abfd
, info
))
3267 /* If we're producing a final executable, sort the contents of the
3269 if (info
->relocatable
)
3272 return elf_hppa_sort_unwind (abfd
);
3275 /* Record the lowest address for the data and text segments. */
3278 hppa_record_segment_addr (bfd
*abfd
, asection
*section
, void *data
)
3280 struct elf32_hppa_link_hash_table
*htab
;
3282 htab
= (struct elf32_hppa_link_hash_table
*) data
;
3286 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
)) == (SEC_ALLOC
| SEC_LOAD
))
3289 Elf_Internal_Phdr
*p
;
3291 p
= _bfd_elf_find_segment_containing_section (abfd
, section
->output_section
);
3292 BFD_ASSERT (p
!= NULL
);
3295 if ((section
->flags
& SEC_READONLY
) != 0)
3297 if (value
< htab
->text_segment_base
)
3298 htab
->text_segment_base
= value
;
3302 if (value
< htab
->data_segment_base
)
3303 htab
->data_segment_base
= value
;
3308 /* Perform a relocation as part of a final link. */
3310 static bfd_reloc_status_type
3311 final_link_relocate (asection
*input_section
,
3313 const Elf_Internal_Rela
*rela
,
3315 struct elf32_hppa_link_hash_table
*htab
,
3317 struct elf32_hppa_link_hash_entry
*hh
,
3318 struct bfd_link_info
*info
)
3321 unsigned int r_type
= ELF32_R_TYPE (rela
->r_info
);
3322 unsigned int orig_r_type
= r_type
;
3323 reloc_howto_type
*howto
= elf_hppa_howto_table
+ r_type
;
3324 int r_format
= howto
->bitsize
;
3325 enum hppa_reloc_field_selector_type_alt r_field
;
3326 bfd
*input_bfd
= input_section
->owner
;
3327 bfd_vma offset
= rela
->r_offset
;
3328 bfd_vma max_branch_offset
= 0;
3329 bfd_byte
*hit_data
= contents
+ offset
;
3330 bfd_signed_vma addend
= rela
->r_addend
;
3332 struct elf32_hppa_stub_hash_entry
*hsh
= NULL
;
3335 if (r_type
== R_PARISC_NONE
)
3336 return bfd_reloc_ok
;
3338 insn
= bfd_get_32 (input_bfd
, hit_data
);
3340 /* Find out where we are and where we're going. */
3341 location
= (offset
+
3342 input_section
->output_offset
+
3343 input_section
->output_section
->vma
);
3345 /* If we are not building a shared library, convert DLTIND relocs to
3351 case R_PARISC_DLTIND21L
:
3352 case R_PARISC_TLS_GD21L
:
3353 case R_PARISC_TLS_LDM21L
:
3354 case R_PARISC_TLS_IE21L
:
3355 r_type
= R_PARISC_DPREL21L
;
3358 case R_PARISC_DLTIND14R
:
3359 case R_PARISC_TLS_GD14R
:
3360 case R_PARISC_TLS_LDM14R
:
3361 case R_PARISC_TLS_IE14R
:
3362 r_type
= R_PARISC_DPREL14R
;
3365 case R_PARISC_DLTIND14F
:
3366 r_type
= R_PARISC_DPREL14F
;
3373 case R_PARISC_PCREL12F
:
3374 case R_PARISC_PCREL17F
:
3375 case R_PARISC_PCREL22F
:
3376 /* If this call should go via the plt, find the import stub in
3379 || sym_sec
->output_section
== NULL
3381 && hh
->eh
.plt
.offset
!= (bfd_vma
) -1
3382 && hh
->eh
.dynindx
!= -1
3385 || !hh
->eh
.def_regular
3386 || hh
->eh
.root
.type
== bfd_link_hash_defweak
)))
3388 hsh
= hppa_get_stub_entry (input_section
, sym_sec
,
3392 value
= (hsh
->stub_offset
3393 + hsh
->stub_sec
->output_offset
3394 + hsh
->stub_sec
->output_section
->vma
);
3397 else if (sym_sec
== NULL
&& hh
!= NULL
3398 && hh
->eh
.root
.type
== bfd_link_hash_undefweak
)
3400 /* It's OK if undefined weak. Calls to undefined weak
3401 symbols behave as if the "called" function
3402 immediately returns. We can thus call to a weak
3403 function without first checking whether the function
3409 return bfd_reloc_undefined
;
3413 case R_PARISC_PCREL21L
:
3414 case R_PARISC_PCREL17C
:
3415 case R_PARISC_PCREL17R
:
3416 case R_PARISC_PCREL14R
:
3417 case R_PARISC_PCREL14F
:
3418 case R_PARISC_PCREL32
:
3419 /* Make it a pc relative offset. */
3424 case R_PARISC_DPREL21L
:
3425 case R_PARISC_DPREL14R
:
3426 case R_PARISC_DPREL14F
:
3427 /* Convert instructions that use the linkage table pointer (r19) to
3428 instructions that use the global data pointer (dp). This is the
3429 most efficient way of using PIC code in an incomplete executable,
3430 but the user must follow the standard runtime conventions for
3431 accessing data for this to work. */
3432 if (orig_r_type
!= r_type
)
3434 if (r_type
== R_PARISC_DPREL21L
)
3436 /* GCC sometimes uses a register other than r19 for the
3437 operation, so we must convert any addil instruction
3438 that uses this relocation. */
3439 if ((insn
& 0xfc000000) == ((int) OP_ADDIL
<< 26))
3442 /* We must have a ldil instruction. It's too hard to find
3443 and convert the associated add instruction, so issue an
3445 (*_bfd_error_handler
)
3446 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3453 else if (r_type
== R_PARISC_DPREL14F
)
3455 /* This must be a format 1 load/store. Change the base
3457 insn
= (insn
& 0xfc1ffff) | (27 << 21);
3461 /* For all the DP relative relocations, we need to examine the symbol's
3462 section. If it has no section or if it's a code section, then
3463 "data pointer relative" makes no sense. In that case we don't
3464 adjust the "value", and for 21 bit addil instructions, we change the
3465 source addend register from %dp to %r0. This situation commonly
3466 arises for undefined weak symbols and when a variable's "constness"
3467 is declared differently from the way the variable is defined. For
3468 instance: "extern int foo" with foo defined as "const int foo". */
3469 if (sym_sec
== NULL
|| (sym_sec
->flags
& SEC_CODE
) != 0)
3471 if ((insn
& ((0x3f << 26) | (0x1f << 21)))
3472 == (((int) OP_ADDIL
<< 26) | (27 << 21)))
3474 insn
&= ~ (0x1f << 21);
3476 /* Now try to make things easy for the dynamic linker. */
3482 case R_PARISC_DLTIND21L
:
3483 case R_PARISC_DLTIND14R
:
3484 case R_PARISC_DLTIND14F
:
3485 case R_PARISC_TLS_GD21L
:
3486 case R_PARISC_TLS_LDM21L
:
3487 case R_PARISC_TLS_IE21L
:
3488 case R_PARISC_TLS_GD14R
:
3489 case R_PARISC_TLS_LDM14R
:
3490 case R_PARISC_TLS_IE14R
:
3491 value
-= elf_gp (input_section
->output_section
->owner
);
3494 case R_PARISC_SEGREL32
:
3495 if ((sym_sec
->flags
& SEC_CODE
) != 0)
3496 value
-= htab
->text_segment_base
;
3498 value
-= htab
->data_segment_base
;
3507 case R_PARISC_DIR32
:
3508 case R_PARISC_DIR14F
:
3509 case R_PARISC_DIR17F
:
3510 case R_PARISC_PCREL17C
:
3511 case R_PARISC_PCREL14F
:
3512 case R_PARISC_PCREL32
:
3513 case R_PARISC_DPREL14F
:
3514 case R_PARISC_PLABEL32
:
3515 case R_PARISC_DLTIND14F
:
3516 case R_PARISC_SEGBASE
:
3517 case R_PARISC_SEGREL32
:
3518 case R_PARISC_TLS_DTPMOD32
:
3519 case R_PARISC_TLS_DTPOFF32
:
3520 case R_PARISC_TLS_TPREL32
:
3524 case R_PARISC_DLTIND21L
:
3525 case R_PARISC_PCREL21L
:
3526 case R_PARISC_PLABEL21L
:
3530 case R_PARISC_DIR21L
:
3531 case R_PARISC_DPREL21L
:
3532 case R_PARISC_TLS_GD21L
:
3533 case R_PARISC_TLS_LDM21L
:
3534 case R_PARISC_TLS_LDO21L
:
3535 case R_PARISC_TLS_IE21L
:
3536 case R_PARISC_TLS_LE21L
:
3540 case R_PARISC_PCREL17R
:
3541 case R_PARISC_PCREL14R
:
3542 case R_PARISC_PLABEL14R
:
3543 case R_PARISC_DLTIND14R
:
3547 case R_PARISC_DIR17R
:
3548 case R_PARISC_DIR14R
:
3549 case R_PARISC_DPREL14R
:
3550 case R_PARISC_TLS_GD14R
:
3551 case R_PARISC_TLS_LDM14R
:
3552 case R_PARISC_TLS_LDO14R
:
3553 case R_PARISC_TLS_IE14R
:
3554 case R_PARISC_TLS_LE14R
:
3558 case R_PARISC_PCREL12F
:
3559 case R_PARISC_PCREL17F
:
3560 case R_PARISC_PCREL22F
:
3563 if (r_type
== (unsigned int) R_PARISC_PCREL17F
)
3565 max_branch_offset
= (1 << (17-1)) << 2;
3567 else if (r_type
== (unsigned int) R_PARISC_PCREL12F
)
3569 max_branch_offset
= (1 << (12-1)) << 2;
3573 max_branch_offset
= (1 << (22-1)) << 2;
3576 /* sym_sec is NULL on undefined weak syms or when shared on
3577 undefined syms. We've already checked for a stub for the
3578 shared undefined case. */
3579 if (sym_sec
== NULL
)
3582 /* If the branch is out of reach, then redirect the
3583 call to the local stub for this function. */
3584 if (value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3586 hsh
= hppa_get_stub_entry (input_section
, sym_sec
,
3589 return bfd_reloc_undefined
;
3591 /* Munge up the value and addend so that we call the stub
3592 rather than the procedure directly. */
3593 value
= (hsh
->stub_offset
3594 + hsh
->stub_sec
->output_offset
3595 + hsh
->stub_sec
->output_section
->vma
3601 /* Something we don't know how to handle. */
3603 return bfd_reloc_notsupported
;
3606 /* Make sure we can reach the stub. */
3607 if (max_branch_offset
!= 0
3608 && value
+ addend
+ max_branch_offset
>= 2*max_branch_offset
)
3610 (*_bfd_error_handler
)
3611 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3615 hsh
->bh_root
.string
);
3616 bfd_set_error (bfd_error_bad_value
);
3617 return bfd_reloc_notsupported
;
3620 val
= hppa_field_adjust (value
, addend
, r_field
);
3624 case R_PARISC_PCREL12F
:
3625 case R_PARISC_PCREL17C
:
3626 case R_PARISC_PCREL17F
:
3627 case R_PARISC_PCREL17R
:
3628 case R_PARISC_PCREL22F
:
3629 case R_PARISC_DIR17F
:
3630 case R_PARISC_DIR17R
:
3631 /* This is a branch. Divide the offset by four.
3632 Note that we need to decide whether it's a branch or
3633 otherwise by inspecting the reloc. Inspecting insn won't
3634 work as insn might be from a .word directive. */
3642 insn
= hppa_rebuild_insn (insn
, val
, r_format
);
3644 /* Update the instruction word. */
3645 bfd_put_32 (input_bfd
, (bfd_vma
) insn
, hit_data
);
3646 return bfd_reloc_ok
;
3649 /* Relocate an HPPA ELF section. */
3652 elf32_hppa_relocate_section (bfd
*output_bfd
,
3653 struct bfd_link_info
*info
,
3655 asection
*input_section
,
3657 Elf_Internal_Rela
*relocs
,
3658 Elf_Internal_Sym
*local_syms
,
3659 asection
**local_sections
)
3661 bfd_vma
*local_got_offsets
;
3662 struct elf32_hppa_link_hash_table
*htab
;
3663 Elf_Internal_Shdr
*symtab_hdr
;
3664 Elf_Internal_Rela
*rela
;
3665 Elf_Internal_Rela
*relend
;
3667 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
3669 htab
= hppa_link_hash_table (info
);
3673 local_got_offsets
= elf_local_got_offsets (input_bfd
);
3676 relend
= relocs
+ input_section
->reloc_count
;
3677 for (; rela
< relend
; rela
++)
3679 unsigned int r_type
;
3680 reloc_howto_type
*howto
;
3681 unsigned int r_symndx
;
3682 struct elf32_hppa_link_hash_entry
*hh
;
3683 Elf_Internal_Sym
*sym
;
3686 bfd_reloc_status_type rstatus
;
3687 const char *sym_name
;
3689 bfd_boolean warned_undef
;
3691 r_type
= ELF32_R_TYPE (rela
->r_info
);
3692 if (r_type
>= (unsigned int) R_PARISC_UNIMPLEMENTED
)
3694 bfd_set_error (bfd_error_bad_value
);
3697 if (r_type
== (unsigned int) R_PARISC_GNU_VTENTRY
3698 || r_type
== (unsigned int) R_PARISC_GNU_VTINHERIT
)
3701 r_symndx
= ELF32_R_SYM (rela
->r_info
);
3705 warned_undef
= FALSE
;
3706 if (r_symndx
< symtab_hdr
->sh_info
)
3708 /* This is a local symbol, h defaults to NULL. */
3709 sym
= local_syms
+ r_symndx
;
3710 sym_sec
= local_sections
[r_symndx
];
3711 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sym_sec
, rela
);
3715 struct elf_link_hash_entry
*eh
;
3716 bfd_boolean unresolved_reloc
;
3717 struct elf_link_hash_entry
**sym_hashes
= elf_sym_hashes (input_bfd
);
3719 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rela
,
3720 r_symndx
, symtab_hdr
, sym_hashes
,
3721 eh
, sym_sec
, relocation
,
3722 unresolved_reloc
, warned_undef
);
3724 if (!info
->relocatable
3726 && eh
->root
.type
!= bfd_link_hash_defined
3727 && eh
->root
.type
!= bfd_link_hash_defweak
3728 && eh
->root
.type
!= bfd_link_hash_undefweak
)
3730 if (info
->unresolved_syms_in_objects
== RM_IGNORE
3731 && ELF_ST_VISIBILITY (eh
->other
) == STV_DEFAULT
3732 && eh
->type
== STT_PARISC_MILLI
)
3734 if (! info
->callbacks
->undefined_symbol
3735 (info
, eh_name (eh
), input_bfd
,
3736 input_section
, rela
->r_offset
, FALSE
))
3738 warned_undef
= TRUE
;
3741 hh
= hppa_elf_hash_entry (eh
);
3744 if (sym_sec
!= NULL
&& elf_discarded_section (sym_sec
))
3745 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
3747 elf_hppa_howto_table
+ r_type
,
3750 if (info
->relocatable
)
3753 /* Do any required modifications to the relocation value, and
3754 determine what types of dynamic info we need to output, if
3759 case R_PARISC_DLTIND14F
:
3760 case R_PARISC_DLTIND14R
:
3761 case R_PARISC_DLTIND21L
:
3764 bfd_boolean do_got
= 0;
3766 /* Relocation is to the entry for this symbol in the
3767 global offset table. */
3772 off
= hh
->eh
.got
.offset
;
3773 dyn
= htab
->etab
.dynamic_sections_created
;
3774 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
,
3777 /* If we aren't going to call finish_dynamic_symbol,
3778 then we need to handle initialisation of the .got
3779 entry and create needed relocs here. Since the
3780 offset must always be a multiple of 4, we use the
3781 least significant bit to record whether we have
3782 initialised it already. */
3787 hh
->eh
.got
.offset
|= 1;
3794 /* Local symbol case. */
3795 if (local_got_offsets
== NULL
)
3798 off
= local_got_offsets
[r_symndx
];
3800 /* The offset must always be a multiple of 4. We use
3801 the least significant bit to record whether we have
3802 already generated the necessary reloc. */
3807 local_got_offsets
[r_symndx
] |= 1;
3816 /* Output a dynamic relocation for this GOT entry.
3817 In this case it is relative to the base of the
3818 object because the symbol index is zero. */
3819 Elf_Internal_Rela outrel
;
3821 asection
*sec
= htab
->srelgot
;
3823 outrel
.r_offset
= (off
3824 + htab
->sgot
->output_offset
3825 + htab
->sgot
->output_section
->vma
);
3826 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
3827 outrel
.r_addend
= relocation
;
3828 loc
= sec
->contents
;
3829 loc
+= sec
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3830 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3833 bfd_put_32 (output_bfd
, relocation
,
3834 htab
->sgot
->contents
+ off
);
3837 if (off
>= (bfd_vma
) -2)
3840 /* Add the base of the GOT to the relocation value. */
3842 + htab
->sgot
->output_offset
3843 + htab
->sgot
->output_section
->vma
);
3847 case R_PARISC_SEGREL32
:
3848 /* If this is the first SEGREL relocation, then initialize
3849 the segment base values. */
3850 if (htab
->text_segment_base
== (bfd_vma
) -1)
3851 bfd_map_over_sections (output_bfd
, hppa_record_segment_addr
, htab
);
3854 case R_PARISC_PLABEL14R
:
3855 case R_PARISC_PLABEL21L
:
3856 case R_PARISC_PLABEL32
:
3857 if (htab
->etab
.dynamic_sections_created
)
3860 bfd_boolean do_plt
= 0;
3861 /* If we have a global symbol with a PLT slot, then
3862 redirect this relocation to it. */
3865 off
= hh
->eh
.plt
.offset
;
3866 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info
->shared
,
3869 /* In a non-shared link, adjust_dynamic_symbols
3870 isn't called for symbols forced local. We
3871 need to write out the plt entry here. */
3876 hh
->eh
.plt
.offset
|= 1;
3883 bfd_vma
*local_plt_offsets
;
3885 if (local_got_offsets
== NULL
)
3888 local_plt_offsets
= local_got_offsets
+ symtab_hdr
->sh_info
;
3889 off
= local_plt_offsets
[r_symndx
];
3891 /* As for the local .got entry case, we use the last
3892 bit to record whether we've already initialised
3893 this local .plt entry. */
3898 local_plt_offsets
[r_symndx
] |= 1;
3907 /* Output a dynamic IPLT relocation for this
3909 Elf_Internal_Rela outrel
;
3911 asection
*s
= htab
->srelplt
;
3913 outrel
.r_offset
= (off
3914 + htab
->splt
->output_offset
3915 + htab
->splt
->output_section
->vma
);
3916 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
3917 outrel
.r_addend
= relocation
;
3919 loc
+= s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
3920 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
3924 bfd_put_32 (output_bfd
,
3926 htab
->splt
->contents
+ off
);
3927 bfd_put_32 (output_bfd
,
3928 elf_gp (htab
->splt
->output_section
->owner
),
3929 htab
->splt
->contents
+ off
+ 4);
3933 if (off
>= (bfd_vma
) -2)
3936 /* PLABELs contain function pointers. Relocation is to
3937 the entry for the function in the .plt. The magic +2
3938 offset signals to $$dyncall that the function pointer
3939 is in the .plt and thus has a gp pointer too.
3940 Exception: Undefined PLABELs should have a value of
3943 || (hh
->eh
.root
.type
!= bfd_link_hash_undefweak
3944 && hh
->eh
.root
.type
!= bfd_link_hash_undefined
))
3947 + htab
->splt
->output_offset
3948 + htab
->splt
->output_section
->vma
3953 /* Fall through and possibly emit a dynamic relocation. */
3955 case R_PARISC_DIR17F
:
3956 case R_PARISC_DIR17R
:
3957 case R_PARISC_DIR14F
:
3958 case R_PARISC_DIR14R
:
3959 case R_PARISC_DIR21L
:
3960 case R_PARISC_DPREL14F
:
3961 case R_PARISC_DPREL14R
:
3962 case R_PARISC_DPREL21L
:
3963 case R_PARISC_DIR32
:
3964 if ((input_section
->flags
& SEC_ALLOC
) == 0)
3967 /* The reloc types handled here and this conditional
3968 expression must match the code in ..check_relocs and
3969 allocate_dynrelocs. ie. We need exactly the same condition
3970 as in ..check_relocs, with some extra conditions (dynindx
3971 test in this case) to cater for relocs removed by
3972 allocate_dynrelocs. If you squint, the non-shared test
3973 here does indeed match the one in ..check_relocs, the
3974 difference being that here we test DEF_DYNAMIC as well as
3975 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3976 which is why we can't use just that test here.
3977 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3978 there all files have not been loaded. */
3981 || ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
3982 || hh
->eh
.root
.type
!= bfd_link_hash_undefweak
)
3983 && (IS_ABSOLUTE_RELOC (r_type
)
3984 || !SYMBOL_CALLS_LOCAL (info
, &hh
->eh
)))
3987 && hh
->eh
.dynindx
!= -1
3988 && !hh
->eh
.non_got_ref
3989 && ((ELIMINATE_COPY_RELOCS
3990 && hh
->eh
.def_dynamic
3991 && !hh
->eh
.def_regular
)
3992 || hh
->eh
.root
.type
== bfd_link_hash_undefweak
3993 || hh
->eh
.root
.type
== bfd_link_hash_undefined
)))
3995 Elf_Internal_Rela outrel
;
4000 /* When generating a shared object, these relocations
4001 are copied into the output file to be resolved at run
4004 outrel
.r_addend
= rela
->r_addend
;
4006 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
4008 skip
= (outrel
.r_offset
== (bfd_vma
) -1
4009 || outrel
.r_offset
== (bfd_vma
) -2);
4010 outrel
.r_offset
+= (input_section
->output_offset
4011 + input_section
->output_section
->vma
);
4015 memset (&outrel
, 0, sizeof (outrel
));
4018 && hh
->eh
.dynindx
!= -1
4020 || !IS_ABSOLUTE_RELOC (r_type
)
4023 || !hh
->eh
.def_regular
))
4025 outrel
.r_info
= ELF32_R_INFO (hh
->eh
.dynindx
, r_type
);
4027 else /* It's a local symbol, or one marked to become local. */
4031 /* Add the absolute offset of the symbol. */
4032 outrel
.r_addend
+= relocation
;
4034 /* Global plabels need to be processed by the
4035 dynamic linker so that functions have at most one
4036 fptr. For this reason, we need to differentiate
4037 between global and local plabels, which we do by
4038 providing the function symbol for a global plabel
4039 reloc, and no symbol for local plabels. */
4042 && sym_sec
->output_section
!= NULL
4043 && ! bfd_is_abs_section (sym_sec
))
4047 osec
= sym_sec
->output_section
;
4048 indx
= elf_section_data (osec
)->dynindx
;
4051 osec
= htab
->etab
.text_index_section
;
4052 indx
= elf_section_data (osec
)->dynindx
;
4054 BFD_ASSERT (indx
!= 0);
4056 /* We are turning this relocation into one
4057 against a section symbol, so subtract out the
4058 output section's address but not the offset
4059 of the input section in the output section. */
4060 outrel
.r_addend
-= osec
->vma
;
4063 outrel
.r_info
= ELF32_R_INFO (indx
, r_type
);
4065 sreloc
= elf_section_data (input_section
)->sreloc
;
4069 loc
= sreloc
->contents
;
4070 loc
+= sreloc
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4071 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4075 case R_PARISC_TLS_LDM21L
:
4076 case R_PARISC_TLS_LDM14R
:
4080 off
= htab
->tls_ldm_got
.offset
;
4085 Elf_Internal_Rela outrel
;
4088 outrel
.r_offset
= (off
4089 + htab
->sgot
->output_section
->vma
4090 + htab
->sgot
->output_offset
);
4091 outrel
.r_addend
= 0;
4092 outrel
.r_info
= ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32
);
4093 loc
= htab
->srelgot
->contents
;
4094 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4096 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4097 htab
->tls_ldm_got
.offset
|= 1;
4100 /* Add the base of the GOT to the relocation value. */
4102 + htab
->sgot
->output_offset
4103 + htab
->sgot
->output_section
->vma
);
4108 case R_PARISC_TLS_LDO21L
:
4109 case R_PARISC_TLS_LDO14R
:
4110 relocation
-= dtpoff_base (info
);
4113 case R_PARISC_TLS_GD21L
:
4114 case R_PARISC_TLS_GD14R
:
4115 case R_PARISC_TLS_IE21L
:
4116 case R_PARISC_TLS_IE14R
:
4126 dyn
= htab
->etab
.dynamic_sections_created
;
4128 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &hh
->eh
)
4130 || !SYMBOL_REFERENCES_LOCAL (info
, &hh
->eh
)))
4132 indx
= hh
->eh
.dynindx
;
4134 off
= hh
->eh
.got
.offset
;
4135 tls_type
= hh
->tls_type
;
4139 off
= local_got_offsets
[r_symndx
];
4140 tls_type
= hppa_elf_local_got_tls_type (input_bfd
)[r_symndx
];
4143 if (tls_type
== GOT_UNKNOWN
)
4150 bfd_boolean need_relocs
= FALSE
;
4151 Elf_Internal_Rela outrel
;
4152 bfd_byte
*loc
= NULL
;
4155 /* The GOT entries have not been initialized yet. Do it
4156 now, and emit any relocations. If both an IE GOT and a
4157 GD GOT are necessary, we emit the GD first. */
4159 if ((info
->shared
|| indx
!= 0)
4161 || ELF_ST_VISIBILITY (hh
->eh
.other
) == STV_DEFAULT
4162 || hh
->eh
.root
.type
!= bfd_link_hash_undefweak
))
4165 loc
= htab
->srelgot
->contents
;
4166 /* FIXME (CAO): Should this be reloc_count++ ? */
4167 loc
+= htab
->srelgot
->reloc_count
* sizeof (Elf32_External_Rela
);
4170 if (tls_type
& GOT_TLS_GD
)
4174 outrel
.r_offset
= (cur_off
4175 + htab
->sgot
->output_section
->vma
4176 + htab
->sgot
->output_offset
);
4177 outrel
.r_info
= ELF32_R_INFO (indx
,R_PARISC_TLS_DTPMOD32
);
4178 outrel
.r_addend
= 0;
4179 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ cur_off
);
4180 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4181 htab
->srelgot
->reloc_count
++;
4182 loc
+= sizeof (Elf32_External_Rela
);
4185 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
4186 htab
->sgot
->contents
+ cur_off
+ 4);
4189 bfd_put_32 (output_bfd
, 0,
4190 htab
->sgot
->contents
+ cur_off
+ 4);
4191 outrel
.r_info
= ELF32_R_INFO (indx
, R_PARISC_TLS_DTPOFF32
);
4192 outrel
.r_offset
+= 4;
4193 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
,loc
);
4194 htab
->srelgot
->reloc_count
++;
4195 loc
+= sizeof (Elf32_External_Rela
);
4200 /* If we are not emitting relocations for a
4201 general dynamic reference, then we must be in a
4202 static link or an executable link with the
4203 symbol binding locally. Mark it as belonging
4204 to module 1, the executable. */
4205 bfd_put_32 (output_bfd
, 1,
4206 htab
->sgot
->contents
+ cur_off
);
4207 bfd_put_32 (output_bfd
, relocation
- dtpoff_base (info
),
4208 htab
->sgot
->contents
+ cur_off
+ 4);
4215 if (tls_type
& GOT_TLS_IE
)
4219 outrel
.r_offset
= (cur_off
4220 + htab
->sgot
->output_section
->vma
4221 + htab
->sgot
->output_offset
);
4222 outrel
.r_info
= ELF32_R_INFO (indx
, R_PARISC_TLS_TPREL32
);
4225 outrel
.r_addend
= relocation
- dtpoff_base (info
);
4227 outrel
.r_addend
= 0;
4229 bfd_elf32_swap_reloca_out (output_bfd
, &outrel
, loc
);
4230 htab
->srelgot
->reloc_count
++;
4231 loc
+= sizeof (Elf32_External_Rela
);
4234 bfd_put_32 (output_bfd
, tpoff (info
, relocation
),
4235 htab
->sgot
->contents
+ cur_off
);
4241 hh
->eh
.got
.offset
|= 1;
4243 local_got_offsets
[r_symndx
] |= 1;
4246 if ((tls_type
& GOT_TLS_GD
)
4247 && r_type
!= R_PARISC_TLS_GD21L
4248 && r_type
!= R_PARISC_TLS_GD14R
)
4249 off
+= 2 * GOT_ENTRY_SIZE
;
4251 /* Add the base of the GOT to the relocation value. */
4253 + htab
->sgot
->output_offset
4254 + htab
->sgot
->output_section
->vma
);
4259 case R_PARISC_TLS_LE21L
:
4260 case R_PARISC_TLS_LE14R
:
4262 relocation
= tpoff (info
, relocation
);
4271 rstatus
= final_link_relocate (input_section
, contents
, rela
, relocation
,
4272 htab
, sym_sec
, hh
, info
);
4274 if (rstatus
== bfd_reloc_ok
)
4278 sym_name
= hh_name (hh
);
4281 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
4282 symtab_hdr
->sh_link
,
4284 if (sym_name
== NULL
)
4286 if (*sym_name
== '\0')
4287 sym_name
= bfd_section_name (input_bfd
, sym_sec
);
4290 howto
= elf_hppa_howto_table
+ r_type
;
4292 if (rstatus
== bfd_reloc_undefined
|| rstatus
== bfd_reloc_notsupported
)
4294 if (rstatus
== bfd_reloc_notsupported
|| !warned_undef
)
4296 (*_bfd_error_handler
)
4297 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4300 (long) rela
->r_offset
,
4303 bfd_set_error (bfd_error_bad_value
);
4309 if (!((*info
->callbacks
->reloc_overflow
)
4310 (info
, (hh
? &hh
->eh
.root
: NULL
), sym_name
, howto
->name
,
4311 (bfd_vma
) 0, input_bfd
, input_section
, rela
->r_offset
)))
4319 /* Finish up dynamic symbol handling. We set the contents of various
4320 dynamic sections here. */
4323 elf32_hppa_finish_dynamic_symbol (bfd
*output_bfd
,
4324 struct bfd_link_info
*info
,
4325 struct elf_link_hash_entry
*eh
,
4326 Elf_Internal_Sym
*sym
)
4328 struct elf32_hppa_link_hash_table
*htab
;
4329 Elf_Internal_Rela rela
;
4332 htab
= hppa_link_hash_table (info
);
4336 if (eh
->plt
.offset
!= (bfd_vma
) -1)
4340 if (eh
->plt
.offset
& 1)
4343 /* This symbol has an entry in the procedure linkage table. Set
4346 The format of a plt entry is
4351 if (eh
->root
.type
== bfd_link_hash_defined
4352 || eh
->root
.type
== bfd_link_hash_defweak
)
4354 value
= eh
->root
.u
.def
.value
;
4355 if (eh
->root
.u
.def
.section
->output_section
!= NULL
)
4356 value
+= (eh
->root
.u
.def
.section
->output_offset
4357 + eh
->root
.u
.def
.section
->output_section
->vma
);
4360 /* Create a dynamic IPLT relocation for this entry. */
4361 rela
.r_offset
= (eh
->plt
.offset
4362 + htab
->splt
->output_offset
4363 + htab
->splt
->output_section
->vma
);
4364 if (eh
->dynindx
!= -1)
4366 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_IPLT
);
4371 /* This symbol has been marked to become local, and is
4372 used by a plabel so must be kept in the .plt. */
4373 rela
.r_info
= ELF32_R_INFO (0, R_PARISC_IPLT
);
4374 rela
.r_addend
= value
;
4377 loc
= htab
->srelplt
->contents
;
4378 loc
+= htab
->srelplt
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4379 bfd_elf32_swap_reloca_out (htab
->splt
->output_section
->owner
, &rela
, loc
);
4381 if (!eh
->def_regular
)
4383 /* Mark the symbol as undefined, rather than as defined in
4384 the .plt section. Leave the value alone. */
4385 sym
->st_shndx
= SHN_UNDEF
;
4389 if (eh
->got
.offset
!= (bfd_vma
) -1
4390 && (hppa_elf_hash_entry (eh
)->tls_type
& GOT_TLS_GD
) == 0
4391 && (hppa_elf_hash_entry (eh
)->tls_type
& GOT_TLS_IE
) == 0)
4393 /* This symbol has an entry in the global offset table. Set it
4396 rela
.r_offset
= ((eh
->got
.offset
&~ (bfd_vma
) 1)
4397 + htab
->sgot
->output_offset
4398 + htab
->sgot
->output_section
->vma
);
4400 /* If this is a -Bsymbolic link and the symbol is defined
4401 locally or was forced to be local because of a version file,
4402 we just want to emit a RELATIVE reloc. The entry in the
4403 global offset table will already have been initialized in the
4404 relocate_section function. */
4406 && (info
->symbolic
|| eh
->dynindx
== -1)
4409 rela
.r_info
= ELF32_R_INFO (0, R_PARISC_DIR32
);
4410 rela
.r_addend
= (eh
->root
.u
.def
.value
4411 + eh
->root
.u
.def
.section
->output_offset
4412 + eh
->root
.u
.def
.section
->output_section
->vma
);
4416 if ((eh
->got
.offset
& 1) != 0)
4419 bfd_put_32 (output_bfd
, 0, htab
->sgot
->contents
+ (eh
->got
.offset
& ~1));
4420 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_DIR32
);
4424 loc
= htab
->srelgot
->contents
;
4425 loc
+= htab
->srelgot
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4426 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4433 /* This symbol needs a copy reloc. Set it up. */
4435 if (! (eh
->dynindx
!= -1
4436 && (eh
->root
.type
== bfd_link_hash_defined
4437 || eh
->root
.type
== bfd_link_hash_defweak
)))
4440 sec
= htab
->srelbss
;
4442 rela
.r_offset
= (eh
->root
.u
.def
.value
4443 + eh
->root
.u
.def
.section
->output_offset
4444 + eh
->root
.u
.def
.section
->output_section
->vma
);
4446 rela
.r_info
= ELF32_R_INFO (eh
->dynindx
, R_PARISC_COPY
);
4447 loc
= sec
->contents
+ sec
->reloc_count
++ * sizeof (Elf32_External_Rela
);
4448 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
4451 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4452 if (eh_name (eh
)[0] == '_'
4453 && (strcmp (eh_name (eh
), "_DYNAMIC") == 0
4454 || eh
== htab
->etab
.hgot
))
4456 sym
->st_shndx
= SHN_ABS
;
4462 /* Used to decide how to sort relocs in an optimal manner for the
4463 dynamic linker, before writing them out. */
4465 static enum elf_reloc_type_class
4466 elf32_hppa_reloc_type_class (const Elf_Internal_Rela
*rela
)
4468 /* Handle TLS relocs first; we don't want them to be marked
4469 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4471 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4473 case R_PARISC_TLS_DTPMOD32
:
4474 case R_PARISC_TLS_DTPOFF32
:
4475 case R_PARISC_TLS_TPREL32
:
4476 return reloc_class_normal
;
4479 if (ELF32_R_SYM (rela
->r_info
) == STN_UNDEF
)
4480 return reloc_class_relative
;
4482 switch ((int) ELF32_R_TYPE (rela
->r_info
))
4485 return reloc_class_plt
;
4487 return reloc_class_copy
;
4489 return reloc_class_normal
;
4493 /* Finish up the dynamic sections. */
4496 elf32_hppa_finish_dynamic_sections (bfd
*output_bfd
,
4497 struct bfd_link_info
*info
)
4500 struct elf32_hppa_link_hash_table
*htab
;
4504 htab
= hppa_link_hash_table (info
);
4508 dynobj
= htab
->etab
.dynobj
;
4511 /* A broken linker script might have discarded the dynamic sections.
4512 Catch this here so that we do not seg-fault later on. */
4513 if (sgot
!= NULL
&& bfd_is_abs_section (sgot
->output_section
))
4516 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
4518 if (htab
->etab
.dynamic_sections_created
)
4520 Elf32_External_Dyn
*dyncon
, *dynconend
;
4525 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
4526 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
4527 for (; dyncon
< dynconend
; dyncon
++)
4529 Elf_Internal_Dyn dyn
;
4532 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
4540 /* Use PLTGOT to set the GOT register. */
4541 dyn
.d_un
.d_ptr
= elf_gp (output_bfd
);
4546 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
4551 dyn
.d_un
.d_val
= s
->size
;
4555 /* Don't count procedure linkage table relocs in the
4556 overall reloc count. */
4560 dyn
.d_un
.d_val
-= s
->size
;
4564 /* We may not be using the standard ELF linker script.
4565 If .rela.plt is the first .rela section, we adjust
4566 DT_RELA to not include it. */
4570 if (dyn
.d_un
.d_ptr
!= s
->output_section
->vma
+ s
->output_offset
)
4572 dyn
.d_un
.d_ptr
+= s
->size
;
4576 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
4580 if (sgot
!= NULL
&& sgot
->size
!= 0)
4582 /* Fill in the first entry in the global offset table.
4583 We use it to point to our dynamic section, if we have one. */
4584 bfd_put_32 (output_bfd
,
4585 sdyn
? sdyn
->output_section
->vma
+ sdyn
->output_offset
: 0,
4588 /* The second entry is reserved for use by the dynamic linker. */
4589 memset (sgot
->contents
+ GOT_ENTRY_SIZE
, 0, GOT_ENTRY_SIZE
);
4591 /* Set .got entry size. */
4592 elf_section_data (sgot
->output_section
)
4593 ->this_hdr
.sh_entsize
= GOT_ENTRY_SIZE
;
4596 if (htab
->splt
!= NULL
&& htab
->splt
->size
!= 0)
4598 /* Set plt entry size. */
4599 elf_section_data (htab
->splt
->output_section
)
4600 ->this_hdr
.sh_entsize
= PLT_ENTRY_SIZE
;
4602 if (htab
->need_plt_stub
)
4604 /* Set up the .plt stub. */
4605 memcpy (htab
->splt
->contents
4606 + htab
->splt
->size
- sizeof (plt_stub
),
4607 plt_stub
, sizeof (plt_stub
));
4609 if ((htab
->splt
->output_offset
4610 + htab
->splt
->output_section
->vma
4612 != (sgot
->output_offset
4613 + sgot
->output_section
->vma
))
4615 (*_bfd_error_handler
)
4616 (_(".got section not immediately after .plt section"));
4625 /* Called when writing out an object file to decide the type of a
4628 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym
*elf_sym
, int type
)
4630 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
4631 return STT_PARISC_MILLI
;
4636 /* Misc BFD support code. */
4637 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4638 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4639 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4640 #define elf_info_to_howto elf_hppa_info_to_howto
4641 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4643 /* Stuff for the BFD linker. */
4644 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4645 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4646 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4647 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4648 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4649 #define elf_backend_check_relocs elf32_hppa_check_relocs
4650 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4651 #define elf_backend_fake_sections elf_hppa_fake_sections
4652 #define elf_backend_relocate_section elf32_hppa_relocate_section
4653 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4654 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4655 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4656 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4657 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4658 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4659 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4660 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4661 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4662 #define elf_backend_object_p elf32_hppa_object_p
4663 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4664 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4665 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4666 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4667 #define elf_backend_action_discarded elf_hppa_action_discarded
4669 #define elf_backend_can_gc_sections 1
4670 #define elf_backend_can_refcount 1
4671 #define elf_backend_plt_alignment 2
4672 #define elf_backend_want_got_plt 0
4673 #define elf_backend_plt_readonly 0
4674 #define elf_backend_want_plt_sym 0
4675 #define elf_backend_got_header_size 8
4676 #define elf_backend_rela_normal 1
4678 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4679 #define TARGET_BIG_NAME "elf32-hppa"
4680 #define ELF_ARCH bfd_arch_hppa
4681 #define ELF_TARGET_ID HPPA32_ELF_DATA
4682 #define ELF_MACHINE_CODE EM_PARISC
4683 #define ELF_MAXPAGESIZE 0x1000
4684 #define ELF_OSABI ELFOSABI_HPUX
4685 #define elf32_bed elf32_hppa_hpux_bed
4687 #include "elf32-target.h"
4689 #undef TARGET_BIG_SYM
4690 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4691 #undef TARGET_BIG_NAME
4692 #define TARGET_BIG_NAME "elf32-hppa-linux"
4694 #define ELF_OSABI ELFOSABI_GNU
4696 #define elf32_bed elf32_hppa_linux_bed
4698 #include "elf32-target.h"
4700 #undef TARGET_BIG_SYM
4701 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4702 #undef TARGET_BIG_NAME
4703 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4705 #define ELF_OSABI ELFOSABI_NETBSD
4707 #define elf32_bed elf32_hppa_netbsd_bed
4709 #include "elf32-target.h"