1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of BFD, the Binary File Descriptor library.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
29 #include "safe-ctype.h"
30 #include "libiberty.h"
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
36 struct elf_info_failed
38 struct bfd_link_info
*info
;
42 /* This structure is used to pass information to
43 _bfd_elf_link_find_version_dependencies. */
45 struct elf_find_verdep_info
47 /* General link information. */
48 struct bfd_link_info
*info
;
49 /* The number of dependencies. */
51 /* Whether we had a failure. */
55 static bfd_boolean _bfd_elf_fix_symbol_flags
56 (struct elf_link_hash_entry
*, struct elf_info_failed
*);
58 /* Define a symbol in a dynamic linkage section. */
60 struct elf_link_hash_entry
*
61 _bfd_elf_define_linkage_sym (bfd
*abfd
,
62 struct bfd_link_info
*info
,
66 struct elf_link_hash_entry
*h
;
67 struct bfd_link_hash_entry
*bh
;
68 const struct elf_backend_data
*bed
;
70 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
73 /* Zap symbol defined in an as-needed lib that wasn't linked.
74 This is a symptom of a larger problem: Absolute symbols
75 defined in shared libraries can't be overridden, because we
76 lose the link to the bfd which is via the symbol section. */
77 h
->root
.type
= bfd_link_hash_new
;
81 if (!_bfd_generic_link_add_one_symbol (info
, abfd
, name
, BSF_GLOBAL
,
83 get_elf_backend_data (abfd
)->collect
,
86 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
92 bed
= get_elf_backend_data (abfd
);
93 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
98 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
102 struct elf_link_hash_entry
*h
;
103 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
104 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
106 /* This function may be called more than once. */
107 s
= bfd_get_section_by_name (abfd
, ".got");
108 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
111 flags
= bed
->dynamic_sec_flags
;
113 s
= bfd_make_section_anyway_with_flags (abfd
,
114 (bed
->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed
->dynamic_sec_flags
119 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
123 s
= bfd_make_section_anyway_with_flags (abfd
, ".got", flags
);
125 || !bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
129 if (bed
->want_got_plt
)
131 s
= bfd_make_section_anyway_with_flags (abfd
, ".got.plt", flags
);
133 || !bfd_set_section_alignment (abfd
, s
,
134 bed
->s
->log_file_align
))
139 /* The first bit of the global offset table is the header. */
140 s
->size
+= bed
->got_header_size
;
142 if (bed
->want_got_sym
)
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info
)->hgot
= h
;
158 /* Create a strtab to hold the dynamic symbol names. */
160 _bfd_elf_link_create_dynstrtab (bfd
*abfd
, struct bfd_link_info
*info
)
162 struct elf_link_hash_table
*hash_table
;
164 hash_table
= elf_hash_table (info
);
165 if (hash_table
->dynobj
== NULL
)
166 hash_table
->dynobj
= abfd
;
168 if (hash_table
->dynstr
== NULL
)
170 hash_table
->dynstr
= _bfd_elf_strtab_init ();
171 if (hash_table
->dynstr
== NULL
)
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
185 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
189 const struct elf_backend_data
*bed
;
191 if (! is_elf_hash_table (info
->hash
))
194 if (elf_hash_table (info
)->dynamic_sections_created
)
197 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
200 abfd
= elf_hash_table (info
)->dynobj
;
201 bed
= get_elf_backend_data (abfd
);
203 flags
= bed
->dynamic_sec_flags
;
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info
->executable
)
209 s
= bfd_make_section_anyway_with_flags (abfd
, ".interp",
210 flags
| SEC_READONLY
);
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_d",
218 flags
| SEC_READONLY
);
220 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
223 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version",
224 flags
| SEC_READONLY
);
226 || ! bfd_set_section_alignment (abfd
, s
, 1))
229 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.version_r",
230 flags
| SEC_READONLY
);
232 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
235 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynsym",
236 flags
| SEC_READONLY
);
238 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
241 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynstr",
242 flags
| SEC_READONLY
);
246 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynamic", flags
);
248 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd
, info
, s
, "_DYNAMIC"))
262 s
= bfd_make_section_anyway_with_flags (abfd
, ".hash",
263 flags
| SEC_READONLY
);
265 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
267 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
270 if (info
->emit_gnu_hash
)
272 s
= bfd_make_section_anyway_with_flags (abfd
, ".gnu.hash",
273 flags
| SEC_READONLY
);
275 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
277 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
278 4 32-bit words followed by variable count of 64-bit words, then
279 variable count of 32-bit words. */
280 if (bed
->s
->arch_size
== 64)
281 elf_section_data (s
)->this_hdr
.sh_entsize
= 0;
283 elf_section_data (s
)->this_hdr
.sh_entsize
= 4;
286 /* Let the backend create the rest of the sections. This lets the
287 backend set the right flags. The backend will normally create
288 the .got and .plt sections. */
289 if (bed
->elf_backend_create_dynamic_sections
== NULL
290 || ! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
293 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
298 /* Create dynamic sections when linking against a dynamic object. */
301 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
303 flagword flags
, pltflags
;
304 struct elf_link_hash_entry
*h
;
306 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
307 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
309 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
310 .rel[a].bss sections. */
311 flags
= bed
->dynamic_sec_flags
;
314 if (bed
->plt_not_loaded
)
315 /* We do not clear SEC_ALLOC here because we still want the OS to
316 allocate space for the section; it's just that there's nothing
317 to read in from the object file. */
318 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
320 pltflags
|= SEC_ALLOC
| SEC_CODE
| SEC_LOAD
;
321 if (bed
->plt_readonly
)
322 pltflags
|= SEC_READONLY
;
324 s
= bfd_make_section_anyway_with_flags (abfd
, ".plt", pltflags
);
326 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
330 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
332 if (bed
->want_plt_sym
)
334 h
= _bfd_elf_define_linkage_sym (abfd
, info
, s
,
335 "_PROCEDURE_LINKAGE_TABLE_");
336 elf_hash_table (info
)->hplt
= h
;
341 s
= bfd_make_section_anyway_with_flags (abfd
,
342 (bed
->rela_plts_and_copies_p
343 ? ".rela.plt" : ".rel.plt"),
344 flags
| SEC_READONLY
);
346 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
350 if (! _bfd_elf_create_got_section (abfd
, info
))
353 if (bed
->want_dynbss
)
355 /* The .dynbss section is a place to put symbols which are defined
356 by dynamic objects, are referenced by regular objects, and are
357 not functions. We must allocate space for them in the process
358 image and use a R_*_COPY reloc to tell the dynamic linker to
359 initialize them at run time. The linker script puts the .dynbss
360 section into the .bss section of the final image. */
361 s
= bfd_make_section_anyway_with_flags (abfd
, ".dynbss",
362 (SEC_ALLOC
| SEC_LINKER_CREATED
));
366 /* The .rel[a].bss section holds copy relocs. This section is not
367 normally needed. We need to create it here, though, so that the
368 linker will map it to an output section. We can't just create it
369 only if we need it, because we will not know whether we need it
370 until we have seen all the input files, and the first time the
371 main linker code calls BFD after examining all the input files
372 (size_dynamic_sections) the input sections have already been
373 mapped to the output sections. If the section turns out not to
374 be needed, we can discard it later. We will never need this
375 section when generating a shared object, since they do not use
379 s
= bfd_make_section_anyway_with_flags (abfd
,
380 (bed
->rela_plts_and_copies_p
381 ? ".rela.bss" : ".rel.bss"),
382 flags
| SEC_READONLY
);
384 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
392 /* Record a new dynamic symbol. We record the dynamic symbols as we
393 read the input files, since we need to have a list of all of them
394 before we can determine the final sizes of the output sections.
395 Note that we may actually call this function even though we are not
396 going to output any dynamic symbols; in some cases we know that a
397 symbol should be in the dynamic symbol table, but only if there is
401 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
402 struct elf_link_hash_entry
*h
)
404 if (h
->dynindx
== -1)
406 struct elf_strtab_hash
*dynstr
;
411 /* XXX: The ABI draft says the linker must turn hidden and
412 internal symbols into STB_LOCAL symbols when producing the
413 DSO. However, if ld.so honors st_other in the dynamic table,
414 this would not be necessary. */
415 switch (ELF_ST_VISIBILITY (h
->other
))
419 if (h
->root
.type
!= bfd_link_hash_undefined
420 && h
->root
.type
!= bfd_link_hash_undefweak
)
423 if (!elf_hash_table (info
)->is_relocatable_executable
)
431 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
432 ++elf_hash_table (info
)->dynsymcount
;
434 dynstr
= elf_hash_table (info
)->dynstr
;
437 /* Create a strtab to hold the dynamic symbol names. */
438 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
443 /* We don't put any version information in the dynamic string
445 name
= h
->root
.root
.string
;
446 p
= strchr (name
, ELF_VER_CHR
);
448 /* We know that the p points into writable memory. In fact,
449 there are only a few symbols that have read-only names, being
450 those like _GLOBAL_OFFSET_TABLE_ that are created specially
451 by the backends. Most symbols will have names pointing into
452 an ELF string table read from a file, or to objalloc memory. */
455 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
460 if (indx
== (bfd_size_type
) -1)
462 h
->dynstr_index
= indx
;
468 /* Mark a symbol dynamic. */
471 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info
*info
,
472 struct elf_link_hash_entry
*h
,
473 Elf_Internal_Sym
*sym
)
475 struct bfd_elf_dynamic_list
*d
= info
->dynamic_list
;
477 /* It may be called more than once on the same H. */
478 if(h
->dynamic
|| info
->relocatable
)
481 if ((info
->dynamic_data
482 && (h
->type
== STT_OBJECT
484 && ELF_ST_TYPE (sym
->st_info
) == STT_OBJECT
)))
486 && h
->root
.type
== bfd_link_hash_new
487 && (*d
->match
) (&d
->head
, NULL
, h
->root
.root
.string
)))
491 /* Record an assignment to a symbol made by a linker script. We need
492 this in case some dynamic object refers to this symbol. */
495 bfd_elf_record_link_assignment (bfd
*output_bfd
,
496 struct bfd_link_info
*info
,
501 struct elf_link_hash_entry
*h
, *hv
;
502 struct elf_link_hash_table
*htab
;
503 const struct elf_backend_data
*bed
;
505 if (!is_elf_hash_table (info
->hash
))
508 htab
= elf_hash_table (info
);
509 h
= elf_link_hash_lookup (htab
, name
, !provide
, TRUE
, FALSE
);
513 switch (h
->root
.type
)
515 case bfd_link_hash_defined
:
516 case bfd_link_hash_defweak
:
517 case bfd_link_hash_common
:
519 case bfd_link_hash_undefweak
:
520 case bfd_link_hash_undefined
:
521 /* Since we're defining the symbol, don't let it seem to have not
522 been defined. record_dynamic_symbol and size_dynamic_sections
523 may depend on this. */
524 h
->root
.type
= bfd_link_hash_new
;
525 if (h
->root
.u
.undef
.next
!= NULL
|| htab
->root
.undefs_tail
== &h
->root
)
526 bfd_link_repair_undef_list (&htab
->root
);
528 case bfd_link_hash_new
:
529 bfd_elf_link_mark_dynamic_symbol (info
, h
, NULL
);
532 case bfd_link_hash_indirect
:
533 /* We had a versioned symbol in a dynamic library. We make the
534 the versioned symbol point to this one. */
535 bed
= get_elf_backend_data (output_bfd
);
537 while (hv
->root
.type
== bfd_link_hash_indirect
538 || hv
->root
.type
== bfd_link_hash_warning
)
539 hv
= (struct elf_link_hash_entry
*) hv
->root
.u
.i
.link
;
540 /* We don't need to update h->root.u since linker will set them
542 h
->root
.type
= bfd_link_hash_undefined
;
543 hv
->root
.type
= bfd_link_hash_indirect
;
544 hv
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
545 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hv
);
547 case bfd_link_hash_warning
:
552 /* If this symbol is being provided by the linker script, and it is
553 currently defined by a dynamic object, but not by a regular
554 object, then mark it as undefined so that the generic linker will
555 force the correct value. */
559 h
->root
.type
= bfd_link_hash_undefined
;
561 /* If this symbol is not being provided by the linker script, and it is
562 currently defined by a dynamic object, but not by a regular object,
563 then clear out any version information because the symbol will not be
564 associated with the dynamic object any more. */
568 h
->verinfo
.verdef
= NULL
;
572 if (provide
&& hidden
)
574 bed
= get_elf_backend_data (output_bfd
);
575 h
->other
= (h
->other
& ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN
;
576 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
581 if (!info
->relocatable
583 && (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
))
590 || (info
->executable
&& elf_hash_table (info
)->is_relocatable_executable
))
593 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h
->u
.weakdef
!= NULL
600 && h
->u
.weakdef
->dynindx
== -1)
602 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
620 struct elf_link_local_dynamic_entry
*entry
;
621 struct elf_link_hash_table
*eht
;
622 struct elf_strtab_hash
*dynstr
;
623 unsigned long dynstr_index
;
625 Elf_External_Sym_Shndx eshndx
;
626 char esym
[sizeof (Elf64_External_Sym
)];
628 if (! is_elf_hash_table (info
->hash
))
631 /* See if the entry exists already. */
632 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
633 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
636 amt
= sizeof (*entry
);
637 entry
= (struct elf_link_local_dynamic_entry
*) bfd_alloc (input_bfd
, amt
);
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
643 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
645 bfd_release (input_bfd
, entry
);
649 if (entry
->isym
.st_shndx
!= SHN_UNDEF
650 && entry
->isym
.st_shndx
< SHN_LORESERVE
)
654 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
655 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd
, entry
);
664 name
= (bfd_elf_string_from_elf_section
665 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
666 entry
->isym
.st_name
));
668 dynstr
= elf_hash_table (info
)->dynstr
;
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
677 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
678 if (dynstr_index
== (unsigned long) -1)
680 entry
->isym
.st_name
= dynstr_index
;
682 eht
= elf_hash_table (info
);
684 entry
->next
= eht
->dynlocal
;
685 eht
->dynlocal
= entry
;
686 entry
->input_bfd
= input_bfd
;
687 entry
->input_indx
= input_indx
;
690 /* Whatever binding the symbol had before, it's now local. */
692 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
694 /* The dynindx will be set at the end of size_dynamic_sections. */
699 /* Return the dynindex of a local dynamic symbol. */
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
706 struct elf_link_local_dynamic_entry
*e
;
708 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
709 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
722 size_t *count
= (size_t *) data
;
727 if (h
->dynindx
!= -1)
728 h
->dynindx
= ++(*count
);
734 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
735 STB_LOCAL binding. */
738 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
741 size_t *count
= (size_t *) data
;
743 if (!h
->forced_local
)
746 if (h
->dynindx
!= -1)
747 h
->dynindx
= ++(*count
);
752 /* Return true if the dynamic symbol for a given section should be
753 omitted when creating a shared library. */
755 _bfd_elf_link_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
756 struct bfd_link_info
*info
,
759 struct elf_link_hash_table
*htab
;
761 switch (elf_section_data (p
)->this_hdr
.sh_type
)
765 /* If sh_type is yet undecided, assume it could be
766 SHT_PROGBITS/SHT_NOBITS. */
768 htab
= elf_hash_table (info
);
769 if (p
== htab
->tls_sec
)
772 if (htab
->text_index_section
!= NULL
)
773 return p
!= htab
->text_index_section
&& p
!= htab
->data_index_section
;
775 if (strcmp (p
->name
, ".got") == 0
776 || strcmp (p
->name
, ".got.plt") == 0
777 || strcmp (p
->name
, ".plt") == 0)
781 if (htab
->dynobj
!= NULL
782 && (ip
= bfd_get_section_by_name (htab
->dynobj
, p
->name
)) != NULL
783 && (ip
->flags
& SEC_LINKER_CREATED
)
784 && ip
->output_section
== p
)
789 /* There shouldn't be section relative relocations
790 against any other section. */
796 /* Assign dynsym indices. In a shared library we generate a section
797 symbol for each output section, which come first. Next come symbols
798 which have been forced to local binding. Then all of the back-end
799 allocated local dynamic syms, followed by the rest of the global
803 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
,
804 struct bfd_link_info
*info
,
805 unsigned long *section_sym_count
)
807 unsigned long dynsymcount
= 0;
809 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
811 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
813 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
814 if ((p
->flags
& SEC_EXCLUDE
) == 0
815 && (p
->flags
& SEC_ALLOC
) != 0
816 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
817 elf_section_data (p
)->dynindx
= ++dynsymcount
;
819 elf_section_data (p
)->dynindx
= 0;
821 *section_sym_count
= dynsymcount
;
823 elf_link_hash_traverse (elf_hash_table (info
),
824 elf_link_renumber_local_hash_table_dynsyms
,
827 if (elf_hash_table (info
)->dynlocal
)
829 struct elf_link_local_dynamic_entry
*p
;
830 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
831 p
->dynindx
= ++dynsymcount
;
834 elf_link_hash_traverse (elf_hash_table (info
),
835 elf_link_renumber_hash_table_dynsyms
,
838 /* There is an unused NULL entry at the head of the table which
839 we must account for in our count. Unless there weren't any
840 symbols, which means we'll have no table at all. */
841 if (dynsymcount
!= 0)
844 elf_hash_table (info
)->dynsymcount
= dynsymcount
;
848 /* Merge st_other field. */
851 elf_merge_st_other (bfd
*abfd
, struct elf_link_hash_entry
*h
,
852 Elf_Internal_Sym
*isym
, bfd_boolean definition
,
855 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
857 /* If st_other has a processor-specific meaning, specific
858 code might be needed here. We never merge the visibility
859 attribute with the one from a dynamic object. */
860 if (bed
->elf_backend_merge_symbol_attribute
)
861 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
864 /* If this symbol has default visibility and the user has requested
865 we not re-export it, then mark it as hidden. */
869 || (abfd
->my_archive
&& abfd
->my_archive
->no_export
))
870 && ELF_ST_VISIBILITY (isym
->st_other
) != STV_INTERNAL
)
871 isym
->st_other
= (STV_HIDDEN
872 | (isym
->st_other
& ~ELF_ST_VISIBILITY (-1)));
874 if (!dynamic
&& ELF_ST_VISIBILITY (isym
->st_other
) != 0)
876 unsigned char hvis
, symvis
, other
, nvis
;
878 /* Only merge the visibility. Leave the remainder of the
879 st_other field to elf_backend_merge_symbol_attribute. */
880 other
= h
->other
& ~ELF_ST_VISIBILITY (-1);
882 /* Combine visibilities, using the most constraining one. */
883 hvis
= ELF_ST_VISIBILITY (h
->other
);
884 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
890 nvis
= hvis
< symvis
? hvis
: symvis
;
892 h
->other
= other
| nvis
;
896 /* This function is called when we want to define a new symbol. It
897 handles the various cases which arise when we find a definition in
898 a dynamic object, or when there is already a definition in a
899 dynamic object. The new symbol is described by NAME, SYM, PSEC,
900 and PVALUE. We set SYM_HASH to the hash table entry. We set
901 OVERRIDE if the old symbol is overriding a new definition. We set
902 TYPE_CHANGE_OK if it is OK for the type to change. We set
903 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
904 change, we mean that we shouldn't warn if the type or size does
905 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
906 object is overridden by a regular object. */
909 _bfd_elf_merge_symbol (bfd
*abfd
,
910 struct bfd_link_info
*info
,
912 Elf_Internal_Sym
*sym
,
915 unsigned int *pold_alignment
,
916 struct elf_link_hash_entry
**sym_hash
,
918 bfd_boolean
*override
,
919 bfd_boolean
*type_change_ok
,
920 bfd_boolean
*size_change_ok
)
922 asection
*sec
, *oldsec
;
923 struct elf_link_hash_entry
*h
;
924 struct elf_link_hash_entry
*flip
;
927 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
928 bfd_boolean newweak
, oldweak
, newfunc
, oldfunc
;
929 const struct elf_backend_data
*bed
;
935 bind
= ELF_ST_BIND (sym
->st_info
);
937 /* Silently discard TLS symbols from --just-syms. There's no way to
938 combine a static TLS block with a new TLS block for this executable. */
939 if (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
940 && sec
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
946 if (! bfd_is_und_section (sec
))
947 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
949 h
= ((struct elf_link_hash_entry
*)
950 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
955 bed
= get_elf_backend_data (abfd
);
957 /* This code is for coping with dynamic objects, and is only useful
958 if we are doing an ELF link. */
959 if (!(*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
962 /* For merging, we only care about real symbols. */
964 while (h
->root
.type
== bfd_link_hash_indirect
965 || h
->root
.type
== bfd_link_hash_warning
)
966 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
968 /* We have to check it for every instance since the first few may be
969 refereences and not all compilers emit symbol type for undefined
971 bfd_elf_link_mark_dynamic_symbol (info
, h
, sym
);
973 /* If we just created the symbol, mark it as being an ELF symbol.
974 Other than that, there is nothing to do--there is no merge issue
975 with a newly defined symbol--so we just return. */
977 if (h
->root
.type
== bfd_link_hash_new
)
983 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
986 switch (h
->root
.type
)
993 case bfd_link_hash_undefined
:
994 case bfd_link_hash_undefweak
:
995 oldbfd
= h
->root
.u
.undef
.abfd
;
999 case bfd_link_hash_defined
:
1000 case bfd_link_hash_defweak
:
1001 oldbfd
= h
->root
.u
.def
.section
->owner
;
1002 oldsec
= h
->root
.u
.def
.section
;
1005 case bfd_link_hash_common
:
1006 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
1007 oldsec
= h
->root
.u
.c
.p
->section
;
1011 /* Differentiate strong and weak symbols. */
1012 newweak
= bind
== STB_WEAK
;
1013 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
1014 || h
->root
.type
== bfd_link_hash_undefweak
);
1016 /* In cases involving weak versioned symbols, we may wind up trying
1017 to merge a symbol with itself. Catch that here, to avoid the
1018 confusion that results if we try to override a symbol with
1019 itself. The additional tests catch cases like
1020 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1021 dynamic object, which we do want to handle here. */
1023 && (newweak
|| oldweak
)
1024 && ((abfd
->flags
& DYNAMIC
) == 0
1025 || !h
->def_regular
))
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1031 newdyn
= (abfd
->flags
& DYNAMIC
) != 0;
1035 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
1036 else if (oldsec
!= NULL
)
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn
= (oldsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1046 newdef
= !bfd_is_und_section (sec
) && !bfd_is_com_section (sec
);
1048 olddef
= (h
->root
.type
!= bfd_link_hash_undefined
1049 && h
->root
.type
!= bfd_link_hash_undefweak
1050 && h
->root
.type
!= bfd_link_hash_common
);
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1055 newfunc
= (ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1056 && bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)));
1058 oldfunc
= (h
->type
!= STT_NOTYPE
1059 && bed
->is_function_type (h
->type
));
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment
== NULL
1067 && !info
->export_dynamic
1072 && (olddef
|| h
->root
.type
== bfd_link_hash_common
)
1073 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1074 && ELF_ST_TYPE (sym
->st_info
) != STT_NOTYPE
1075 && h
->type
!= STT_NOTYPE
1076 && !(newfunc
&& oldfunc
))
1082 /* Plugin symbol type isn't currently set. Stop bogus errors. */
1083 if (oldbfd
!= NULL
&& (oldbfd
->flags
& BFD_PLUGIN
) != 0)
1084 *type_change_ok
= TRUE
;
1086 /* Check TLS symbol. We don't check undefined symbol introduced by
1088 else if (oldbfd
!= NULL
1089 && ELF_ST_TYPE (sym
->st_info
) != h
->type
1090 && (ELF_ST_TYPE (sym
->st_info
) == STT_TLS
|| h
->type
== STT_TLS
))
1093 bfd_boolean ntdef
, tdef
;
1094 asection
*ntsec
, *tsec
;
1096 if (h
->type
== STT_TLS
)
1116 (*_bfd_error_handler
)
1117 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1118 tbfd
, tsec
, ntbfd
, ntsec
, h
->root
.root
.string
);
1119 else if (!tdef
&& !ntdef
)
1120 (*_bfd_error_handler
)
1121 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1122 tbfd
, ntbfd
, h
->root
.root
.string
);
1124 (*_bfd_error_handler
)
1125 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1126 tbfd
, tsec
, ntbfd
, h
->root
.root
.string
);
1128 (*_bfd_error_handler
)
1129 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1130 tbfd
, ntbfd
, ntsec
, h
->root
.root
.string
);
1132 bfd_set_error (bfd_error_bad_value
);
1136 /* We need to remember if a symbol has a definition in a dynamic
1137 object or is weak in all dynamic objects. Internal and hidden
1138 visibility will make it unavailable to dynamic objects. */
1139 if (newdyn
&& !h
->dynamic_def
)
1141 if (!bfd_is_und_section (sec
))
1145 /* Check if this symbol is weak in all dynamic objects. If it
1146 is the first time we see it in a dynamic object, we mark
1147 if it is weak. Otherwise, we clear it. */
1148 if (!h
->ref_dynamic
)
1150 if (bind
== STB_WEAK
)
1151 h
->dynamic_weak
= 1;
1153 else if (bind
!= STB_WEAK
)
1154 h
->dynamic_weak
= 0;
1158 /* If the old symbol has non-default visibility, we ignore the new
1159 definition from a dynamic object. */
1161 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
1162 && !bfd_is_und_section (sec
))
1165 /* Make sure this symbol is dynamic. */
1167 /* A protected symbol has external availability. Make sure it is
1168 recorded as dynamic.
1170 FIXME: Should we check type and size for protected symbol? */
1171 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
1172 return bfd_elf_link_record_dynamic_symbol (info
, h
);
1177 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
1180 /* If the new symbol with non-default visibility comes from a
1181 relocatable file and the old definition comes from a dynamic
1182 object, we remove the old definition. */
1183 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1185 /* Handle the case where the old dynamic definition is
1186 default versioned. We need to copy the symbol info from
1187 the symbol with default version to the normal one if it
1188 was referenced before. */
1191 struct elf_link_hash_entry
*vh
= *sym_hash
;
1193 vh
->root
.type
= h
->root
.type
;
1194 h
->root
.type
= bfd_link_hash_indirect
;
1195 (*bed
->elf_backend_copy_indirect_symbol
) (info
, vh
, h
);
1196 /* Protected symbols will override the dynamic definition
1197 with default version. */
1198 if (ELF_ST_VISIBILITY (sym
->st_other
) == STV_PROTECTED
)
1200 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) vh
;
1201 vh
->dynamic_def
= 1;
1202 vh
->ref_dynamic
= 1;
1206 h
->root
.type
= vh
->root
.type
;
1207 vh
->ref_dynamic
= 0;
1208 /* We have to hide it here since it was made dynamic
1209 global with extra bits when the symbol info was
1210 copied from the old dynamic definition. */
1211 (*bed
->elf_backend_hide_symbol
) (info
, vh
, TRUE
);
1219 if ((h
->root
.u
.undef
.next
|| info
->hash
->undefs_tail
== &h
->root
)
1220 && bfd_is_und_section (sec
))
1222 /* If the new symbol is undefined and the old symbol was
1223 also undefined before, we need to make sure
1224 _bfd_generic_link_add_one_symbol doesn't mess
1225 up the linker hash table undefs list. Since the old
1226 definition came from a dynamic object, it is still on the
1228 h
->root
.type
= bfd_link_hash_undefined
;
1229 h
->root
.u
.undef
.abfd
= abfd
;
1233 h
->root
.type
= bfd_link_hash_new
;
1234 h
->root
.u
.undef
.abfd
= NULL
;
1242 /* FIXME: Should we check type and size for protected symbol? */
1248 if (bind
== STB_GNU_UNIQUE
)
1249 h
->unique_global
= 1;
1251 /* If a new weak symbol definition comes from a regular file and the
1252 old symbol comes from a dynamic library, we treat the new one as
1253 strong. Similarly, an old weak symbol definition from a regular
1254 file is treated as strong when the new symbol comes from a dynamic
1255 library. Further, an old weak symbol from a dynamic library is
1256 treated as strong if the new symbol is from a dynamic library.
1257 This reflects the way glibc's ld.so works.
1259 Do this before setting *type_change_ok or *size_change_ok so that
1260 we warn properly when dynamic library symbols are overridden. */
1262 if (newdef
&& !newdyn
&& olddyn
)
1264 if (olddef
&& newdyn
)
1267 /* Allow changes between different types of function symbol. */
1268 if (newfunc
&& oldfunc
)
1269 *type_change_ok
= TRUE
;
1271 /* It's OK to change the type if either the existing symbol or the
1272 new symbol is weak. A type change is also OK if the old symbol
1273 is undefined and the new symbol is defined. */
1278 && h
->root
.type
== bfd_link_hash_undefined
))
1279 *type_change_ok
= TRUE
;
1281 /* It's OK to change the size if either the existing symbol or the
1282 new symbol is weak, or if the old symbol is undefined. */
1285 || h
->root
.type
== bfd_link_hash_undefined
)
1286 *size_change_ok
= TRUE
;
1288 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1289 symbol, respectively, appears to be a common symbol in a dynamic
1290 object. If a symbol appears in an uninitialized section, and is
1291 not weak, and is not a function, then it may be a common symbol
1292 which was resolved when the dynamic object was created. We want
1293 to treat such symbols specially, because they raise special
1294 considerations when setting the symbol size: if the symbol
1295 appears as a common symbol in a regular object, and the size in
1296 the regular object is larger, we must make sure that we use the
1297 larger size. This problematic case can always be avoided in C,
1298 but it must be handled correctly when using Fortran shared
1301 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1302 likewise for OLDDYNCOMMON and OLDDEF.
1304 Note that this test is just a heuristic, and that it is quite
1305 possible to have an uninitialized symbol in a shared object which
1306 is really a definition, rather than a common symbol. This could
1307 lead to some minor confusion when the symbol really is a common
1308 symbol in some regular object. However, I think it will be
1314 && (sec
->flags
& SEC_ALLOC
) != 0
1315 && (sec
->flags
& SEC_LOAD
) == 0
1318 newdyncommon
= TRUE
;
1320 newdyncommon
= FALSE
;
1324 && h
->root
.type
== bfd_link_hash_defined
1326 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
1327 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
1330 olddyncommon
= TRUE
;
1332 olddyncommon
= FALSE
;
1334 /* We now know everything about the old and new symbols. We ask the
1335 backend to check if we can merge them. */
1336 if (bed
->merge_symbol
1337 && !bed
->merge_symbol (info
, sym_hash
, h
, sym
, psec
, pvalue
,
1338 pold_alignment
, skip
, override
,
1339 type_change_ok
, size_change_ok
,
1340 &newdyn
, &newdef
, &newdyncommon
, &newweak
,
1342 &olddyn
, &olddef
, &olddyncommon
, &oldweak
,
1346 /* If both the old and the new symbols look like common symbols in a
1347 dynamic object, set the size of the symbol to the larger of the
1352 && sym
->st_size
!= h
->size
)
1354 /* Since we think we have two common symbols, issue a multiple
1355 common warning if desired. Note that we only warn if the
1356 size is different. If the size is the same, we simply let
1357 the old symbol override the new one as normally happens with
1358 symbols defined in dynamic objects. */
1360 if (! ((*info
->callbacks
->multiple_common
)
1361 (info
, &h
->root
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1364 if (sym
->st_size
> h
->size
)
1365 h
->size
= sym
->st_size
;
1367 *size_change_ok
= TRUE
;
1370 /* If we are looking at a dynamic object, and we have found a
1371 definition, we need to see if the symbol was already defined by
1372 some other object. If so, we want to use the existing
1373 definition, and we do not want to report a multiple symbol
1374 definition error; we do this by clobbering *PSEC to be
1375 bfd_und_section_ptr.
1377 We treat a common symbol as a definition if the symbol in the
1378 shared library is a function, since common symbols always
1379 represent variables; this can cause confusion in principle, but
1380 any such confusion would seem to indicate an erroneous program or
1381 shared library. We also permit a common symbol in a regular
1382 object to override a weak symbol in a shared object. */
1387 || (h
->root
.type
== bfd_link_hash_common
1388 && (newweak
|| newfunc
))))
1392 newdyncommon
= FALSE
;
1394 *psec
= sec
= bfd_und_section_ptr
;
1395 *size_change_ok
= TRUE
;
1397 /* If we get here when the old symbol is a common symbol, then
1398 we are explicitly letting it override a weak symbol or
1399 function in a dynamic object, and we don't want to warn about
1400 a type change. If the old symbol is a defined symbol, a type
1401 change warning may still be appropriate. */
1403 if (h
->root
.type
== bfd_link_hash_common
)
1404 *type_change_ok
= TRUE
;
1407 /* Handle the special case of an old common symbol merging with a
1408 new symbol which looks like a common symbol in a shared object.
1409 We change *PSEC and *PVALUE to make the new symbol look like a
1410 common symbol, and let _bfd_generic_link_add_one_symbol do the
1414 && h
->root
.type
== bfd_link_hash_common
)
1418 newdyncommon
= FALSE
;
1419 *pvalue
= sym
->st_size
;
1420 *psec
= sec
= bed
->common_section (oldsec
);
1421 *size_change_ok
= TRUE
;
1424 /* Skip weak definitions of symbols that are already defined. */
1425 if (newdef
&& olddef
&& newweak
)
1427 /* Don't skip new non-IR weak syms. */
1428 if (!(oldbfd
!= NULL
1429 && (oldbfd
->flags
& BFD_PLUGIN
) != 0
1430 && (abfd
->flags
& BFD_PLUGIN
) == 0))
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1436 elf_merge_st_other (abfd
, h
, sym
, newdef
, newdyn
);
1437 if (h
->dynindx
!= -1)
1438 switch (ELF_ST_VISIBILITY (h
->other
))
1442 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1460 || (bfd_is_com_section (sec
)
1461 && (oldweak
|| oldfunc
)))
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1470 h
->root
.type
= bfd_link_hash_undefined
;
1471 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1472 *size_change_ok
= TRUE
;
1475 olddyncommon
= FALSE
;
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1480 if (bfd_is_com_section (sec
))
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1488 h
->type
= STT_NOTYPE
;
1490 *type_change_ok
= TRUE
;
1493 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h
->verinfo
.vertree
= NULL
;
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1509 && bfd_is_com_section (sec
)
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info
->callbacks
->multiple_common
)
1516 (info
, &h
->root
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1519 /* If the presumed common symbol in the dynamic object is
1520 larger, pretend that the new symbol has its size. */
1522 if (h
->size
> *pvalue
)
1525 /* We need to remember the alignment required by the symbol
1526 in the dynamic object. */
1527 BFD_ASSERT (pold_alignment
);
1528 *pold_alignment
= h
->root
.u
.def
.section
->alignment_power
;
1531 olddyncommon
= FALSE
;
1533 h
->root
.type
= bfd_link_hash_undefined
;
1534 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1536 *size_change_ok
= TRUE
;
1537 *type_change_ok
= TRUE
;
1539 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1542 h
->verinfo
.vertree
= NULL
;
1547 /* Handle the case where we had a versioned symbol in a dynamic
1548 library and now find a definition in a normal object. In this
1549 case, we make the versioned symbol point to the normal one. */
1550 flip
->root
.type
= h
->root
.type
;
1551 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1552 h
->root
.type
= bfd_link_hash_indirect
;
1553 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1554 (*bed
->elf_backend_copy_indirect_symbol
) (info
, flip
, h
);
1558 flip
->ref_dynamic
= 1;
1565 /* This function is called to create an indirect symbol from the
1566 default for the symbol with the default version if needed. The
1567 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1568 set DYNSYM if the new indirect symbol is dynamic. */
1571 _bfd_elf_add_default_symbol (bfd
*abfd
,
1572 struct bfd_link_info
*info
,
1573 struct elf_link_hash_entry
*h
,
1575 Elf_Internal_Sym
*sym
,
1578 bfd_boolean
*dynsym
,
1579 bfd_boolean override
)
1581 bfd_boolean type_change_ok
;
1582 bfd_boolean size_change_ok
;
1585 struct elf_link_hash_entry
*hi
;
1586 struct bfd_link_hash_entry
*bh
;
1587 const struct elf_backend_data
*bed
;
1588 bfd_boolean collect
;
1589 bfd_boolean dynamic
;
1591 size_t len
, shortlen
;
1594 /* If this symbol has a version, and it is the default version, we
1595 create an indirect symbol from the default name to the fully
1596 decorated name. This will cause external references which do not
1597 specify a version to be bound to this version of the symbol. */
1598 p
= strchr (name
, ELF_VER_CHR
);
1599 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1604 /* We are overridden by an old definition. We need to check if we
1605 need to create the indirect symbol from the default name. */
1606 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1608 BFD_ASSERT (hi
!= NULL
);
1611 while (hi
->root
.type
== bfd_link_hash_indirect
1612 || hi
->root
.type
== bfd_link_hash_warning
)
1614 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1620 bed
= get_elf_backend_data (abfd
);
1621 collect
= bed
->collect
;
1622 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1624 shortlen
= p
- name
;
1625 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1626 if (shortname
== NULL
)
1628 memcpy (shortname
, name
, shortlen
);
1629 shortname
[shortlen
] = '\0';
1631 /* We are going to create a new symbol. Merge it with any existing
1632 symbol with this name. For the purposes of the merge, act as
1633 though we were defining the symbol we just defined, although we
1634 actually going to define an indirect symbol. */
1635 type_change_ok
= FALSE
;
1636 size_change_ok
= FALSE
;
1638 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1639 NULL
, &hi
, &skip
, &override
,
1640 &type_change_ok
, &size_change_ok
))
1649 if (! (_bfd_generic_link_add_one_symbol
1650 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1651 0, name
, FALSE
, collect
, &bh
)))
1653 hi
= (struct elf_link_hash_entry
*) bh
;
1657 /* In this case the symbol named SHORTNAME is overriding the
1658 indirect symbol we want to add. We were planning on making
1659 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1660 is the name without a version. NAME is the fully versioned
1661 name, and it is the default version.
1663 Overriding means that we already saw a definition for the
1664 symbol SHORTNAME in a regular object, and it is overriding
1665 the symbol defined in the dynamic object.
1667 When this happens, we actually want to change NAME, the
1668 symbol we just added, to refer to SHORTNAME. This will cause
1669 references to NAME in the shared object to become references
1670 to SHORTNAME in the regular object. This is what we expect
1671 when we override a function in a shared object: that the
1672 references in the shared object will be mapped to the
1673 definition in the regular object. */
1675 while (hi
->root
.type
== bfd_link_hash_indirect
1676 || hi
->root
.type
== bfd_link_hash_warning
)
1677 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1679 h
->root
.type
= bfd_link_hash_indirect
;
1680 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1684 hi
->ref_dynamic
= 1;
1688 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1693 /* Now set HI to H, so that the following code will set the
1694 other fields correctly. */
1698 /* Check if HI is a warning symbol. */
1699 if (hi
->root
.type
== bfd_link_hash_warning
)
1700 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1702 /* If there is a duplicate definition somewhere, then HI may not
1703 point to an indirect symbol. We will have reported an error to
1704 the user in that case. */
1706 if (hi
->root
.type
== bfd_link_hash_indirect
)
1708 struct elf_link_hash_entry
*ht
;
1710 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1711 (*bed
->elf_backend_copy_indirect_symbol
) (info
, ht
, hi
);
1713 /* See if the new flags lead us to realize that the symbol must
1719 if (! info
->executable
1725 if (hi
->ref_regular
)
1731 /* We also need to define an indirection from the nondefault version
1735 len
= strlen (name
);
1736 shortname
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1737 if (shortname
== NULL
)
1739 memcpy (shortname
, name
, shortlen
);
1740 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1742 /* Once again, merge with any existing symbol. */
1743 type_change_ok
= FALSE
;
1744 size_change_ok
= FALSE
;
1746 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1747 NULL
, &hi
, &skip
, &override
,
1748 &type_change_ok
, &size_change_ok
))
1756 /* Here SHORTNAME is a versioned name, so we don't expect to see
1757 the type of override we do in the case above unless it is
1758 overridden by a versioned definition. */
1759 if (hi
->root
.type
!= bfd_link_hash_defined
1760 && hi
->root
.type
!= bfd_link_hash_defweak
)
1761 (*_bfd_error_handler
)
1762 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1768 if (! (_bfd_generic_link_add_one_symbol
1769 (info
, abfd
, shortname
, BSF_INDIRECT
,
1770 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1772 hi
= (struct elf_link_hash_entry
*) bh
;
1774 /* If there is a duplicate definition somewhere, then HI may not
1775 point to an indirect symbol. We will have reported an error
1776 to the user in that case. */
1778 if (hi
->root
.type
== bfd_link_hash_indirect
)
1780 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
1782 /* See if the new flags lead us to realize that the symbol
1788 if (! info
->executable
1794 if (hi
->ref_regular
)
1804 /* This routine is used to export all defined symbols into the dynamic
1805 symbol table. It is called via elf_link_hash_traverse. */
1808 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1810 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
1812 /* Ignore indirect symbols. These are added by the versioning code. */
1813 if (h
->root
.type
== bfd_link_hash_indirect
)
1816 /* Ignore this if we won't export it. */
1817 if (!eif
->info
->export_dynamic
&& !h
->dynamic
)
1820 if (h
->dynindx
== -1
1821 && (h
->def_regular
|| h
->ref_regular
)
1822 && ! bfd_hide_sym_by_version (eif
->info
->version_info
,
1823 h
->root
.root
.string
))
1825 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1835 /* Look through the symbols which are defined in other shared
1836 libraries and referenced here. Update the list of version
1837 dependencies. This will be put into the .gnu.version_r section.
1838 This function is called via elf_link_hash_traverse. */
1841 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1844 struct elf_find_verdep_info
*rinfo
= (struct elf_find_verdep_info
*) data
;
1845 Elf_Internal_Verneed
*t
;
1846 Elf_Internal_Vernaux
*a
;
1849 /* We only care about symbols defined in shared objects with version
1854 || h
->verinfo
.verdef
== NULL
)
1857 /* See if we already know about this version. */
1858 for (t
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1862 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1865 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1866 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1872 /* This is a new version. Add it to tree we are building. */
1877 t
= (Elf_Internal_Verneed
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1880 rinfo
->failed
= TRUE
;
1884 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1885 t
->vn_nextref
= elf_tdata (rinfo
->info
->output_bfd
)->verref
;
1886 elf_tdata (rinfo
->info
->output_bfd
)->verref
= t
;
1890 a
= (Elf_Internal_Vernaux
*) bfd_zalloc (rinfo
->info
->output_bfd
, amt
);
1893 rinfo
->failed
= TRUE
;
1897 /* Note that we are copying a string pointer here, and testing it
1898 above. If bfd_elf_string_from_elf_section is ever changed to
1899 discard the string data when low in memory, this will have to be
1901 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1903 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1904 a
->vna_nextptr
= t
->vn_auxptr
;
1906 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1909 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1916 /* Figure out appropriate versions for all the symbols. We may not
1917 have the version number script until we have read all of the input
1918 files, so until that point we don't know which symbols should be
1919 local. This function is called via elf_link_hash_traverse. */
1922 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1924 struct elf_info_failed
*sinfo
;
1925 struct bfd_link_info
*info
;
1926 const struct elf_backend_data
*bed
;
1927 struct elf_info_failed eif
;
1931 sinfo
= (struct elf_info_failed
*) data
;
1934 /* Fix the symbol flags. */
1937 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1940 sinfo
->failed
= TRUE
;
1944 /* We only need version numbers for symbols defined in regular
1946 if (!h
->def_regular
)
1949 bed
= get_elf_backend_data (info
->output_bfd
);
1950 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1951 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1953 struct bfd_elf_version_tree
*t
;
1958 /* There are two consecutive ELF_VER_CHR characters if this is
1959 not a hidden symbol. */
1961 if (*p
== ELF_VER_CHR
)
1967 /* If there is no version string, we can just return out. */
1975 /* Look for the version. If we find it, it is no longer weak. */
1976 for (t
= sinfo
->info
->version_info
; t
!= NULL
; t
= t
->next
)
1978 if (strcmp (t
->name
, p
) == 0)
1982 struct bfd_elf_version_expr
*d
;
1984 len
= p
- h
->root
.root
.string
;
1985 alc
= (char *) bfd_malloc (len
);
1988 sinfo
->failed
= TRUE
;
1991 memcpy (alc
, h
->root
.root
.string
, len
- 1);
1992 alc
[len
- 1] = '\0';
1993 if (alc
[len
- 2] == ELF_VER_CHR
)
1994 alc
[len
- 2] = '\0';
1996 h
->verinfo
.vertree
= t
;
2000 if (t
->globals
.list
!= NULL
)
2001 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
2003 /* See if there is anything to force this symbol to
2005 if (d
== NULL
&& t
->locals
.list
!= NULL
)
2007 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
2010 && ! info
->export_dynamic
)
2011 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2019 /* If we are building an application, we need to create a
2020 version node for this version. */
2021 if (t
== NULL
&& info
->executable
)
2023 struct bfd_elf_version_tree
**pp
;
2026 /* If we aren't going to export this symbol, we don't need
2027 to worry about it. */
2028 if (h
->dynindx
== -1)
2032 t
= (struct bfd_elf_version_tree
*) bfd_zalloc (info
->output_bfd
, amt
);
2035 sinfo
->failed
= TRUE
;
2040 t
->name_indx
= (unsigned int) -1;
2044 /* Don't count anonymous version tag. */
2045 if (sinfo
->info
->version_info
!= NULL
2046 && sinfo
->info
->version_info
->vernum
== 0)
2048 for (pp
= &sinfo
->info
->version_info
;
2052 t
->vernum
= version_index
;
2056 h
->verinfo
.vertree
= t
;
2060 /* We could not find the version for a symbol when
2061 generating a shared archive. Return an error. */
2062 (*_bfd_error_handler
)
2063 (_("%B: version node not found for symbol %s"),
2064 info
->output_bfd
, h
->root
.root
.string
);
2065 bfd_set_error (bfd_error_bad_value
);
2066 sinfo
->failed
= TRUE
;
2074 /* If we don't have a version for this symbol, see if we can find
2076 if (h
->verinfo
.vertree
== NULL
&& sinfo
->info
->version_info
!= NULL
)
2081 = bfd_find_version_for_sym (sinfo
->info
->version_info
,
2082 h
->root
.root
.string
, &hide
);
2083 if (h
->verinfo
.vertree
!= NULL
&& hide
)
2084 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
2090 /* Read and swap the relocs from the section indicated by SHDR. This
2091 may be either a REL or a RELA section. The relocations are
2092 translated into RELA relocations and stored in INTERNAL_RELOCS,
2093 which should have already been allocated to contain enough space.
2094 The EXTERNAL_RELOCS are a buffer where the external form of the
2095 relocations should be stored.
2097 Returns FALSE if something goes wrong. */
2100 elf_link_read_relocs_from_section (bfd
*abfd
,
2102 Elf_Internal_Shdr
*shdr
,
2103 void *external_relocs
,
2104 Elf_Internal_Rela
*internal_relocs
)
2106 const struct elf_backend_data
*bed
;
2107 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
2108 const bfd_byte
*erela
;
2109 const bfd_byte
*erelaend
;
2110 Elf_Internal_Rela
*irela
;
2111 Elf_Internal_Shdr
*symtab_hdr
;
2114 /* Position ourselves at the start of the section. */
2115 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
2118 /* Read the relocations. */
2119 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
2122 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2123 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
2125 bed
= get_elf_backend_data (abfd
);
2127 /* Convert the external relocations to the internal format. */
2128 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2129 swap_in
= bed
->s
->swap_reloc_in
;
2130 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2131 swap_in
= bed
->s
->swap_reloca_in
;
2134 bfd_set_error (bfd_error_wrong_format
);
2138 erela
= (const bfd_byte
*) external_relocs
;
2139 erelaend
= erela
+ shdr
->sh_size
;
2140 irela
= internal_relocs
;
2141 while (erela
< erelaend
)
2145 (*swap_in
) (abfd
, erela
, irela
);
2146 r_symndx
= ELF32_R_SYM (irela
->r_info
);
2147 if (bed
->s
->arch_size
== 64)
2151 if ((size_t) r_symndx
>= nsyms
)
2153 (*_bfd_error_handler
)
2154 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2155 " for offset 0x%lx in section `%A'"),
2157 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2158 bfd_set_error (bfd_error_bad_value
);
2162 else if (r_symndx
!= STN_UNDEF
)
2164 (*_bfd_error_handler
)
2165 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2166 " when the object file has no symbol table"),
2168 (unsigned long) r_symndx
, (unsigned long) nsyms
, irela
->r_offset
);
2169 bfd_set_error (bfd_error_bad_value
);
2172 irela
+= bed
->s
->int_rels_per_ext_rel
;
2173 erela
+= shdr
->sh_entsize
;
2179 /* Read and swap the relocs for a section O. They may have been
2180 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2181 not NULL, they are used as buffers to read into. They are known to
2182 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2183 the return value is allocated using either malloc or bfd_alloc,
2184 according to the KEEP_MEMORY argument. If O has two relocation
2185 sections (both REL and RELA relocations), then the REL_HDR
2186 relocations will appear first in INTERNAL_RELOCS, followed by the
2187 RELA_HDR relocations. */
2190 _bfd_elf_link_read_relocs (bfd
*abfd
,
2192 void *external_relocs
,
2193 Elf_Internal_Rela
*internal_relocs
,
2194 bfd_boolean keep_memory
)
2196 void *alloc1
= NULL
;
2197 Elf_Internal_Rela
*alloc2
= NULL
;
2198 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
2199 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
2200 Elf_Internal_Rela
*internal_rela_relocs
;
2202 if (esdo
->relocs
!= NULL
)
2203 return esdo
->relocs
;
2205 if (o
->reloc_count
== 0)
2208 if (internal_relocs
== NULL
)
2212 size
= o
->reloc_count
;
2213 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
2215 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_alloc (abfd
, size
);
2217 internal_relocs
= alloc2
= (Elf_Internal_Rela
*) bfd_malloc (size
);
2218 if (internal_relocs
== NULL
)
2222 if (external_relocs
== NULL
)
2224 bfd_size_type size
= 0;
2227 size
+= esdo
->rel
.hdr
->sh_size
;
2229 size
+= esdo
->rela
.hdr
->sh_size
;
2231 alloc1
= bfd_malloc (size
);
2234 external_relocs
= alloc1
;
2237 internal_rela_relocs
= internal_relocs
;
2240 if (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rel
.hdr
,
2244 external_relocs
= (((bfd_byte
*) external_relocs
)
2245 + esdo
->rel
.hdr
->sh_size
);
2246 internal_rela_relocs
+= (NUM_SHDR_ENTRIES (esdo
->rel
.hdr
)
2247 * bed
->s
->int_rels_per_ext_rel
);
2251 && (!elf_link_read_relocs_from_section (abfd
, o
, esdo
->rela
.hdr
,
2253 internal_rela_relocs
)))
2256 /* Cache the results for next time, if we can. */
2258 esdo
->relocs
= internal_relocs
;
2263 /* Don't free alloc2, since if it was allocated we are passing it
2264 back (under the name of internal_relocs). */
2266 return internal_relocs
;
2274 bfd_release (abfd
, alloc2
);
2281 /* Compute the size of, and allocate space for, REL_HDR which is the
2282 section header for a section containing relocations for O. */
2285 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
2286 struct bfd_elf_section_reloc_data
*reldata
)
2288 Elf_Internal_Shdr
*rel_hdr
= reldata
->hdr
;
2290 /* That allows us to calculate the size of the section. */
2291 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reldata
->count
;
2293 /* The contents field must last into write_object_contents, so we
2294 allocate it with bfd_alloc rather than malloc. Also since we
2295 cannot be sure that the contents will actually be filled in,
2296 we zero the allocated space. */
2297 rel_hdr
->contents
= (unsigned char *) bfd_zalloc (abfd
, rel_hdr
->sh_size
);
2298 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
2301 if (reldata
->hashes
== NULL
&& reldata
->count
)
2303 struct elf_link_hash_entry
**p
;
2305 p
= (struct elf_link_hash_entry
**)
2306 bfd_zmalloc (reldata
->count
* sizeof (struct elf_link_hash_entry
*));
2310 reldata
->hashes
= p
;
2316 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2317 originated from the section given by INPUT_REL_HDR) to the
2321 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
2322 asection
*input_section
,
2323 Elf_Internal_Shdr
*input_rel_hdr
,
2324 Elf_Internal_Rela
*internal_relocs
,
2325 struct elf_link_hash_entry
**rel_hash
2328 Elf_Internal_Rela
*irela
;
2329 Elf_Internal_Rela
*irelaend
;
2331 struct bfd_elf_section_reloc_data
*output_reldata
;
2332 asection
*output_section
;
2333 const struct elf_backend_data
*bed
;
2334 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
2335 struct bfd_elf_section_data
*esdo
;
2337 output_section
= input_section
->output_section
;
2339 bed
= get_elf_backend_data (output_bfd
);
2340 esdo
= elf_section_data (output_section
);
2341 if (esdo
->rel
.hdr
&& esdo
->rel
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2343 output_reldata
= &esdo
->rel
;
2344 swap_out
= bed
->s
->swap_reloc_out
;
2346 else if (esdo
->rela
.hdr
2347 && esdo
->rela
.hdr
->sh_entsize
== input_rel_hdr
->sh_entsize
)
2349 output_reldata
= &esdo
->rela
;
2350 swap_out
= bed
->s
->swap_reloca_out
;
2354 (*_bfd_error_handler
)
2355 (_("%B: relocation size mismatch in %B section %A"),
2356 output_bfd
, input_section
->owner
, input_section
);
2357 bfd_set_error (bfd_error_wrong_format
);
2361 erel
= output_reldata
->hdr
->contents
;
2362 erel
+= output_reldata
->count
* input_rel_hdr
->sh_entsize
;
2363 irela
= internal_relocs
;
2364 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2365 * bed
->s
->int_rels_per_ext_rel
);
2366 while (irela
< irelaend
)
2368 (*swap_out
) (output_bfd
, irela
, erel
);
2369 irela
+= bed
->s
->int_rels_per_ext_rel
;
2370 erel
+= input_rel_hdr
->sh_entsize
;
2373 /* Bump the counter, so that we know where to add the next set of
2375 output_reldata
->count
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2380 /* Make weak undefined symbols in PIE dynamic. */
2383 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info
*info
,
2384 struct elf_link_hash_entry
*h
)
2388 && h
->root
.type
== bfd_link_hash_undefweak
)
2389 return bfd_elf_link_record_dynamic_symbol (info
, h
);
2394 /* Fix up the flags for a symbol. This handles various cases which
2395 can only be fixed after all the input files are seen. This is
2396 currently called by both adjust_dynamic_symbol and
2397 assign_sym_version, which is unnecessary but perhaps more robust in
2398 the face of future changes. */
2401 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2402 struct elf_info_failed
*eif
)
2404 const struct elf_backend_data
*bed
;
2406 /* If this symbol was mentioned in a non-ELF file, try to set
2407 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2408 permit a non-ELF file to correctly refer to a symbol defined in
2409 an ELF dynamic object. */
2412 while (h
->root
.type
== bfd_link_hash_indirect
)
2413 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2415 if (h
->root
.type
!= bfd_link_hash_defined
2416 && h
->root
.type
!= bfd_link_hash_defweak
)
2419 h
->ref_regular_nonweak
= 1;
2423 if (h
->root
.u
.def
.section
->owner
!= NULL
2424 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2425 == bfd_target_elf_flavour
))
2428 h
->ref_regular_nonweak
= 1;
2434 if (h
->dynindx
== -1
2438 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2447 /* Unfortunately, NON_ELF is only correct if the symbol
2448 was first seen in a non-ELF file. Fortunately, if the symbol
2449 was first seen in an ELF file, we're probably OK unless the
2450 symbol was defined in a non-ELF file. Catch that case here.
2451 FIXME: We're still in trouble if the symbol was first seen in
2452 a dynamic object, and then later in a non-ELF regular object. */
2453 if ((h
->root
.type
== bfd_link_hash_defined
2454 || h
->root
.type
== bfd_link_hash_defweak
)
2456 && (h
->root
.u
.def
.section
->owner
!= NULL
2457 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2458 != bfd_target_elf_flavour
)
2459 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2460 && !h
->def_dynamic
)))
2464 /* Backend specific symbol fixup. */
2465 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2466 if (bed
->elf_backend_fixup_symbol
2467 && !(*bed
->elf_backend_fixup_symbol
) (eif
->info
, h
))
2470 /* If this is a final link, and the symbol was defined as a common
2471 symbol in a regular object file, and there was no definition in
2472 any dynamic object, then the linker will have allocated space for
2473 the symbol in a common section but the DEF_REGULAR
2474 flag will not have been set. */
2475 if (h
->root
.type
== bfd_link_hash_defined
2479 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2482 /* If -Bsymbolic was used (which means to bind references to global
2483 symbols to the definition within the shared object), and this
2484 symbol was defined in a regular object, then it actually doesn't
2485 need a PLT entry. Likewise, if the symbol has non-default
2486 visibility. If the symbol has hidden or internal visibility, we
2487 will force it local. */
2489 && eif
->info
->shared
2490 && is_elf_hash_table (eif
->info
->hash
)
2491 && (SYMBOLIC_BIND (eif
->info
, h
)
2492 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2495 bfd_boolean force_local
;
2497 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2498 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2499 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2502 /* If a weak undefined symbol has non-default visibility, we also
2503 hide it from the dynamic linker. */
2504 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2505 && h
->root
.type
== bfd_link_hash_undefweak
)
2506 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2508 /* If this is a weak defined symbol in a dynamic object, and we know
2509 the real definition in the dynamic object, copy interesting flags
2510 over to the real definition. */
2511 if (h
->u
.weakdef
!= NULL
)
2513 struct elf_link_hash_entry
*weakdef
;
2515 weakdef
= h
->u
.weakdef
;
2516 while (h
->root
.type
== bfd_link_hash_indirect
)
2517 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2519 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2520 || h
->root
.type
== bfd_link_hash_defweak
);
2521 BFD_ASSERT (weakdef
->def_dynamic
);
2523 /* If the real definition is defined by a regular object file,
2524 don't do anything special. See the longer description in
2525 _bfd_elf_adjust_dynamic_symbol, below. */
2526 if (weakdef
->def_regular
)
2527 h
->u
.weakdef
= NULL
;
2530 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2531 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2532 (*bed
->elf_backend_copy_indirect_symbol
) (eif
->info
, weakdef
, h
);
2539 /* Make the backend pick a good value for a dynamic symbol. This is
2540 called via elf_link_hash_traverse, and also calls itself
2544 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2546 struct elf_info_failed
*eif
= (struct elf_info_failed
*) data
;
2548 const struct elf_backend_data
*bed
;
2550 if (! is_elf_hash_table (eif
->info
->hash
))
2553 /* Ignore indirect symbols. These are added by the versioning code. */
2554 if (h
->root
.type
== bfd_link_hash_indirect
)
2557 /* Fix the symbol flags. */
2558 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2561 /* If this symbol does not require a PLT entry, and it is not
2562 defined by a dynamic object, or is not referenced by a regular
2563 object, ignore it. We do have to handle a weak defined symbol,
2564 even if no regular object refers to it, if we decided to add it
2565 to the dynamic symbol table. FIXME: Do we normally need to worry
2566 about symbols which are defined by one dynamic object and
2567 referenced by another one? */
2569 && h
->type
!= STT_GNU_IFUNC
2573 && (h
->u
.weakdef
== NULL
|| h
->u
.weakdef
->dynindx
== -1))))
2575 h
->plt
= elf_hash_table (eif
->info
)->init_plt_offset
;
2579 /* If we've already adjusted this symbol, don't do it again. This
2580 can happen via a recursive call. */
2581 if (h
->dynamic_adjusted
)
2584 /* Don't look at this symbol again. Note that we must set this
2585 after checking the above conditions, because we may look at a
2586 symbol once, decide not to do anything, and then get called
2587 recursively later after REF_REGULAR is set below. */
2588 h
->dynamic_adjusted
= 1;
2590 /* If this is a weak definition, and we know a real definition, and
2591 the real symbol is not itself defined by a regular object file,
2592 then get a good value for the real definition. We handle the
2593 real symbol first, for the convenience of the backend routine.
2595 Note that there is a confusing case here. If the real definition
2596 is defined by a regular object file, we don't get the real symbol
2597 from the dynamic object, but we do get the weak symbol. If the
2598 processor backend uses a COPY reloc, then if some routine in the
2599 dynamic object changes the real symbol, we will not see that
2600 change in the corresponding weak symbol. This is the way other
2601 ELF linkers work as well, and seems to be a result of the shared
2604 I will clarify this issue. Most SVR4 shared libraries define the
2605 variable _timezone and define timezone as a weak synonym. The
2606 tzset call changes _timezone. If you write
2607 extern int timezone;
2609 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2610 you might expect that, since timezone is a synonym for _timezone,
2611 the same number will print both times. However, if the processor
2612 backend uses a COPY reloc, then actually timezone will be copied
2613 into your process image, and, since you define _timezone
2614 yourself, _timezone will not. Thus timezone and _timezone will
2615 wind up at different memory locations. The tzset call will set
2616 _timezone, leaving timezone unchanged. */
2618 if (h
->u
.weakdef
!= NULL
)
2620 /* If we get to this point, there is an implicit reference to
2621 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2622 h
->u
.weakdef
->ref_regular
= 1;
2624 /* Ensure that the backend adjust_dynamic_symbol function sees
2625 H->U.WEAKDEF before H by recursively calling ourselves. */
2626 if (! _bfd_elf_adjust_dynamic_symbol (h
->u
.weakdef
, eif
))
2630 /* If a symbol has no type and no size and does not require a PLT
2631 entry, then we are probably about to do the wrong thing here: we
2632 are probably going to create a COPY reloc for an empty object.
2633 This case can arise when a shared object is built with assembly
2634 code, and the assembly code fails to set the symbol type. */
2636 && h
->type
== STT_NOTYPE
2638 (*_bfd_error_handler
)
2639 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2640 h
->root
.root
.string
);
2642 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2643 bed
= get_elf_backend_data (dynobj
);
2645 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2654 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2658 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry
*h
,
2661 unsigned int power_of_two
;
2663 asection
*sec
= h
->root
.u
.def
.section
;
2665 /* The section aligment of definition is the maximum alignment
2666 requirement of symbols defined in the section. Since we don't
2667 know the symbol alignment requirement, we start with the
2668 maximum alignment and check low bits of the symbol address
2669 for the minimum alignment. */
2670 power_of_two
= bfd_get_section_alignment (sec
->owner
, sec
);
2671 mask
= ((bfd_vma
) 1 << power_of_two
) - 1;
2672 while ((h
->root
.u
.def
.value
& mask
) != 0)
2678 if (power_of_two
> bfd_get_section_alignment (dynbss
->owner
,
2681 /* Adjust the section alignment if needed. */
2682 if (! bfd_set_section_alignment (dynbss
->owner
, dynbss
,
2687 /* We make sure that the symbol will be aligned properly. */
2688 dynbss
->size
= BFD_ALIGN (dynbss
->size
, mask
+ 1);
2690 /* Define the symbol as being at this point in DYNBSS. */
2691 h
->root
.u
.def
.section
= dynbss
;
2692 h
->root
.u
.def
.value
= dynbss
->size
;
2694 /* Increment the size of DYNBSS to make room for the symbol. */
2695 dynbss
->size
+= h
->size
;
2700 /* Adjust all external symbols pointing into SEC_MERGE sections
2701 to reflect the object merging within the sections. */
2704 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2708 if ((h
->root
.type
== bfd_link_hash_defined
2709 || h
->root
.type
== bfd_link_hash_defweak
)
2710 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2711 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2713 bfd
*output_bfd
= (bfd
*) data
;
2715 h
->root
.u
.def
.value
=
2716 _bfd_merged_section_offset (output_bfd
,
2717 &h
->root
.u
.def
.section
,
2718 elf_section_data (sec
)->sec_info
,
2719 h
->root
.u
.def
.value
);
2725 /* Returns false if the symbol referred to by H should be considered
2726 to resolve local to the current module, and true if it should be
2727 considered to bind dynamically. */
2730 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2731 struct bfd_link_info
*info
,
2732 bfd_boolean not_local_protected
)
2734 bfd_boolean binding_stays_local_p
;
2735 const struct elf_backend_data
*bed
;
2736 struct elf_link_hash_table
*hash_table
;
2741 while (h
->root
.type
== bfd_link_hash_indirect
2742 || h
->root
.type
== bfd_link_hash_warning
)
2743 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2745 /* If it was forced local, then clearly it's not dynamic. */
2746 if (h
->dynindx
== -1)
2748 if (h
->forced_local
)
2751 /* Identify the cases where name binding rules say that a
2752 visible symbol resolves locally. */
2753 binding_stays_local_p
= info
->executable
|| SYMBOLIC_BIND (info
, h
);
2755 switch (ELF_ST_VISIBILITY (h
->other
))
2762 hash_table
= elf_hash_table (info
);
2763 if (!is_elf_hash_table (hash_table
))
2766 bed
= get_elf_backend_data (hash_table
->dynobj
);
2768 /* Proper resolution for function pointer equality may require
2769 that these symbols perhaps be resolved dynamically, even though
2770 we should be resolving them to the current module. */
2771 if (!not_local_protected
|| !bed
->is_function_type (h
->type
))
2772 binding_stays_local_p
= TRUE
;
2779 /* If it isn't defined locally, then clearly it's dynamic. */
2780 if (!h
->def_regular
&& !ELF_COMMON_DEF_P (h
))
2783 /* Otherwise, the symbol is dynamic if binding rules don't tell
2784 us that it remains local. */
2785 return !binding_stays_local_p
;
2788 /* Return true if the symbol referred to by H should be considered
2789 to resolve local to the current module, and false otherwise. Differs
2790 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2791 undefined symbols. The two functions are virtually identical except
2792 for the place where forced_local and dynindx == -1 are tested. If
2793 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2794 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2795 the symbol is local only for defined symbols.
2796 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2797 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2798 treatment of undefined weak symbols. For those that do not make
2799 undefined weak symbols dynamic, both functions may return false. */
2802 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2803 struct bfd_link_info
*info
,
2804 bfd_boolean local_protected
)
2806 const struct elf_backend_data
*bed
;
2807 struct elf_link_hash_table
*hash_table
;
2809 /* If it's a local sym, of course we resolve locally. */
2813 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2814 if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
2815 || ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
2818 /* Common symbols that become definitions don't get the DEF_REGULAR
2819 flag set, so test it first, and don't bail out. */
2820 if (ELF_COMMON_DEF_P (h
))
2822 /* If we don't have a definition in a regular file, then we can't
2823 resolve locally. The sym is either undefined or dynamic. */
2824 else if (!h
->def_regular
)
2827 /* Forced local symbols resolve locally. */
2828 if (h
->forced_local
)
2831 /* As do non-dynamic symbols. */
2832 if (h
->dynindx
== -1)
2835 /* At this point, we know the symbol is defined and dynamic. In an
2836 executable it must resolve locally, likewise when building symbolic
2837 shared libraries. */
2838 if (info
->executable
|| SYMBOLIC_BIND (info
, h
))
2841 /* Now deal with defined dynamic symbols in shared libraries. Ones
2842 with default visibility might not resolve locally. */
2843 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2846 hash_table
= elf_hash_table (info
);
2847 if (!is_elf_hash_table (hash_table
))
2850 bed
= get_elf_backend_data (hash_table
->dynobj
);
2852 /* STV_PROTECTED non-function symbols are local. */
2853 if (!bed
->is_function_type (h
->type
))
2856 /* Function pointer equality tests may require that STV_PROTECTED
2857 symbols be treated as dynamic symbols. If the address of a
2858 function not defined in an executable is set to that function's
2859 plt entry in the executable, then the address of the function in
2860 a shared library must also be the plt entry in the executable. */
2861 return local_protected
;
2864 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2865 aligned. Returns the first TLS output section. */
2867 struct bfd_section
*
2868 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2870 struct bfd_section
*sec
, *tls
;
2871 unsigned int align
= 0;
2873 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2874 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2878 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2879 if (sec
->alignment_power
> align
)
2880 align
= sec
->alignment_power
;
2882 elf_hash_table (info
)->tls_sec
= tls
;
2884 /* Ensure the alignment of the first section is the largest alignment,
2885 so that the tls segment starts aligned. */
2887 tls
->alignment_power
= align
;
2892 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2894 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2895 Elf_Internal_Sym
*sym
)
2897 const struct elf_backend_data
*bed
;
2899 /* Local symbols do not count, but target specific ones might. */
2900 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2901 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2904 bed
= get_elf_backend_data (abfd
);
2905 /* Function symbols do not count. */
2906 if (bed
->is_function_type (ELF_ST_TYPE (sym
->st_info
)))
2909 /* If the section is undefined, then so is the symbol. */
2910 if (sym
->st_shndx
== SHN_UNDEF
)
2913 /* If the symbol is defined in the common section, then
2914 it is a common definition and so does not count. */
2915 if (bed
->common_definition (sym
))
2918 /* If the symbol is in a target specific section then we
2919 must rely upon the backend to tell us what it is. */
2920 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2921 /* FIXME - this function is not coded yet:
2923 return _bfd_is_global_symbol_definition (abfd, sym);
2925 Instead for now assume that the definition is not global,
2926 Even if this is wrong, at least the linker will behave
2927 in the same way that it used to do. */
2933 /* Search the symbol table of the archive element of the archive ABFD
2934 whose archive map contains a mention of SYMDEF, and determine if
2935 the symbol is defined in this element. */
2937 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2939 Elf_Internal_Shdr
* hdr
;
2940 bfd_size_type symcount
;
2941 bfd_size_type extsymcount
;
2942 bfd_size_type extsymoff
;
2943 Elf_Internal_Sym
*isymbuf
;
2944 Elf_Internal_Sym
*isym
;
2945 Elf_Internal_Sym
*isymend
;
2948 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2952 if (! bfd_check_format (abfd
, bfd_object
))
2955 /* If we have already included the element containing this symbol in the
2956 link then we do not need to include it again. Just claim that any symbol
2957 it contains is not a definition, so that our caller will not decide to
2958 (re)include this element. */
2959 if (abfd
->archive_pass
)
2962 /* Select the appropriate symbol table. */
2963 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2964 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2966 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2968 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2970 /* The sh_info field of the symtab header tells us where the
2971 external symbols start. We don't care about the local symbols. */
2972 if (elf_bad_symtab (abfd
))
2974 extsymcount
= symcount
;
2979 extsymcount
= symcount
- hdr
->sh_info
;
2980 extsymoff
= hdr
->sh_info
;
2983 if (extsymcount
== 0)
2986 /* Read in the symbol table. */
2987 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
2989 if (isymbuf
== NULL
)
2992 /* Scan the symbol table looking for SYMDEF. */
2994 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
2998 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3003 if (strcmp (name
, symdef
->name
) == 0)
3005 result
= is_global_data_symbol_definition (abfd
, isym
);
3015 /* Add an entry to the .dynamic table. */
3018 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
3022 struct elf_link_hash_table
*hash_table
;
3023 const struct elf_backend_data
*bed
;
3025 bfd_size_type newsize
;
3026 bfd_byte
*newcontents
;
3027 Elf_Internal_Dyn dyn
;
3029 hash_table
= elf_hash_table (info
);
3030 if (! is_elf_hash_table (hash_table
))
3033 bed
= get_elf_backend_data (hash_table
->dynobj
);
3034 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3035 BFD_ASSERT (s
!= NULL
);
3037 newsize
= s
->size
+ bed
->s
->sizeof_dyn
;
3038 newcontents
= (bfd_byte
*) bfd_realloc (s
->contents
, newsize
);
3039 if (newcontents
== NULL
)
3043 dyn
.d_un
.d_val
= val
;
3044 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->size
);
3047 s
->contents
= newcontents
;
3052 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3053 otherwise just check whether one already exists. Returns -1 on error,
3054 1 if a DT_NEEDED tag already exists, and 0 on success. */
3057 elf_add_dt_needed_tag (bfd
*abfd
,
3058 struct bfd_link_info
*info
,
3062 struct elf_link_hash_table
*hash_table
;
3063 bfd_size_type oldsize
;
3064 bfd_size_type strindex
;
3066 if (!_bfd_elf_link_create_dynstrtab (abfd
, info
))
3069 hash_table
= elf_hash_table (info
);
3070 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
3071 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
3072 if (strindex
== (bfd_size_type
) -1)
3075 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
3078 const struct elf_backend_data
*bed
;
3081 bed
= get_elf_backend_data (hash_table
->dynobj
);
3082 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
3084 for (extdyn
= sdyn
->contents
;
3085 extdyn
< sdyn
->contents
+ sdyn
->size
;
3086 extdyn
+= bed
->s
->sizeof_dyn
)
3088 Elf_Internal_Dyn dyn
;
3090 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
3091 if (dyn
.d_tag
== DT_NEEDED
3092 && dyn
.d_un
.d_val
== strindex
)
3094 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3102 if (!_bfd_elf_link_create_dynamic_sections (hash_table
->dynobj
, info
))
3105 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
3109 /* We were just checking for existence of the tag. */
3110 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
3116 on_needed_list (const char *soname
, struct bfd_link_needed_list
*needed
)
3118 for (; needed
!= NULL
; needed
= needed
->next
)
3119 if (strcmp (soname
, needed
->name
) == 0)
3125 /* Sort symbol by value and section. */
3127 elf_sort_symbol (const void *arg1
, const void *arg2
)
3129 const struct elf_link_hash_entry
*h1
;
3130 const struct elf_link_hash_entry
*h2
;
3131 bfd_signed_vma vdiff
;
3133 h1
= *(const struct elf_link_hash_entry
**) arg1
;
3134 h2
= *(const struct elf_link_hash_entry
**) arg2
;
3135 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
3137 return vdiff
> 0 ? 1 : -1;
3140 long sdiff
= h1
->root
.u
.def
.section
->id
- h2
->root
.u
.def
.section
->id
;
3142 return sdiff
> 0 ? 1 : -1;
3147 /* This function is used to adjust offsets into .dynstr for
3148 dynamic symbols. This is called via elf_link_hash_traverse. */
3151 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
3153 struct elf_strtab_hash
*dynstr
= (struct elf_strtab_hash
*) data
;
3155 if (h
->dynindx
!= -1)
3156 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
3160 /* Assign string offsets in .dynstr, update all structures referencing
3164 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
3166 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
3167 struct elf_link_local_dynamic_entry
*entry
;
3168 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
3169 bfd
*dynobj
= hash_table
->dynobj
;
3172 const struct elf_backend_data
*bed
;
3175 _bfd_elf_strtab_finalize (dynstr
);
3176 size
= _bfd_elf_strtab_size (dynstr
);
3178 bed
= get_elf_backend_data (dynobj
);
3179 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
3180 BFD_ASSERT (sdyn
!= NULL
);
3182 /* Update all .dynamic entries referencing .dynstr strings. */
3183 for (extdyn
= sdyn
->contents
;
3184 extdyn
< sdyn
->contents
+ sdyn
->size
;
3185 extdyn
+= bed
->s
->sizeof_dyn
)
3187 Elf_Internal_Dyn dyn
;
3189 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
3193 dyn
.d_un
.d_val
= size
;
3203 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
3208 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
3211 /* Now update local dynamic symbols. */
3212 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
3213 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
3214 entry
->isym
.st_name
);
3216 /* And the rest of dynamic symbols. */
3217 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
3219 /* Adjust version definitions. */
3220 if (elf_tdata (output_bfd
)->cverdefs
)
3225 Elf_Internal_Verdef def
;
3226 Elf_Internal_Verdaux defaux
;
3228 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
3232 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
3234 p
+= sizeof (Elf_External_Verdef
);
3235 if (def
.vd_aux
!= sizeof (Elf_External_Verdef
))
3237 for (i
= 0; i
< def
.vd_cnt
; ++i
)
3239 _bfd_elf_swap_verdaux_in (output_bfd
,
3240 (Elf_External_Verdaux
*) p
, &defaux
);
3241 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
3243 _bfd_elf_swap_verdaux_out (output_bfd
,
3244 &defaux
, (Elf_External_Verdaux
*) p
);
3245 p
+= sizeof (Elf_External_Verdaux
);
3248 while (def
.vd_next
);
3251 /* Adjust version references. */
3252 if (elf_tdata (output_bfd
)->verref
)
3257 Elf_Internal_Verneed need
;
3258 Elf_Internal_Vernaux needaux
;
3260 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
3264 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
3266 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
3267 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
3268 (Elf_External_Verneed
*) p
);
3269 p
+= sizeof (Elf_External_Verneed
);
3270 for (i
= 0; i
< need
.vn_cnt
; ++i
)
3272 _bfd_elf_swap_vernaux_in (output_bfd
,
3273 (Elf_External_Vernaux
*) p
, &needaux
);
3274 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
3276 _bfd_elf_swap_vernaux_out (output_bfd
,
3278 (Elf_External_Vernaux
*) p
);
3279 p
+= sizeof (Elf_External_Vernaux
);
3282 while (need
.vn_next
);
3288 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3289 The default is to only match when the INPUT and OUTPUT are exactly
3293 _bfd_elf_default_relocs_compatible (const bfd_target
*input
,
3294 const bfd_target
*output
)
3296 return input
== output
;
3299 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3300 This version is used when different targets for the same architecture
3301 are virtually identical. */
3304 _bfd_elf_relocs_compatible (const bfd_target
*input
,
3305 const bfd_target
*output
)
3307 const struct elf_backend_data
*obed
, *ibed
;
3309 if (input
== output
)
3312 ibed
= xvec_get_elf_backend_data (input
);
3313 obed
= xvec_get_elf_backend_data (output
);
3315 if (ibed
->arch
!= obed
->arch
)
3318 /* If both backends are using this function, deem them compatible. */
3319 return ibed
->relocs_compatible
== obed
->relocs_compatible
;
3322 /* Add symbols from an ELF object file to the linker hash table. */
3325 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
3327 Elf_Internal_Ehdr
*ehdr
;
3328 Elf_Internal_Shdr
*hdr
;
3329 bfd_size_type symcount
;
3330 bfd_size_type extsymcount
;
3331 bfd_size_type extsymoff
;
3332 struct elf_link_hash_entry
**sym_hash
;
3333 bfd_boolean dynamic
;
3334 Elf_External_Versym
*extversym
= NULL
;
3335 Elf_External_Versym
*ever
;
3336 struct elf_link_hash_entry
*weaks
;
3337 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
3338 bfd_size_type nondeflt_vers_cnt
= 0;
3339 Elf_Internal_Sym
*isymbuf
= NULL
;
3340 Elf_Internal_Sym
*isym
;
3341 Elf_Internal_Sym
*isymend
;
3342 const struct elf_backend_data
*bed
;
3343 bfd_boolean add_needed
;
3344 struct elf_link_hash_table
*htab
;
3346 void *alloc_mark
= NULL
;
3347 struct bfd_hash_entry
**old_table
= NULL
;
3348 unsigned int old_size
= 0;
3349 unsigned int old_count
= 0;
3350 void *old_tab
= NULL
;
3353 struct bfd_link_hash_entry
*old_undefs
= NULL
;
3354 struct bfd_link_hash_entry
*old_undefs_tail
= NULL
;
3355 long old_dynsymcount
= 0;
3357 size_t hashsize
= 0;
3359 htab
= elf_hash_table (info
);
3360 bed
= get_elf_backend_data (abfd
);
3362 if ((abfd
->flags
& DYNAMIC
) == 0)
3368 /* You can't use -r against a dynamic object. Also, there's no
3369 hope of using a dynamic object which does not exactly match
3370 the format of the output file. */
3371 if (info
->relocatable
3372 || !is_elf_hash_table (htab
)
3373 || info
->output_bfd
->xvec
!= abfd
->xvec
)
3375 if (info
->relocatable
)
3376 bfd_set_error (bfd_error_invalid_operation
);
3378 bfd_set_error (bfd_error_wrong_format
);
3383 ehdr
= elf_elfheader (abfd
);
3384 if (info
->warn_alternate_em
3385 && bed
->elf_machine_code
!= ehdr
->e_machine
3386 && ((bed
->elf_machine_alt1
!= 0
3387 && ehdr
->e_machine
== bed
->elf_machine_alt1
)
3388 || (bed
->elf_machine_alt2
!= 0
3389 && ehdr
->e_machine
== bed
->elf_machine_alt2
)))
3390 info
->callbacks
->einfo
3391 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3392 ehdr
->e_machine
, abfd
, bed
->elf_machine_code
);
3394 /* As a GNU extension, any input sections which are named
3395 .gnu.warning.SYMBOL are treated as warning symbols for the given
3396 symbol. This differs from .gnu.warning sections, which generate
3397 warnings when they are included in an output file. */
3398 /* PR 12761: Also generate this warning when building shared libraries. */
3399 if (info
->executable
|| info
->shared
)
3403 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
3407 name
= bfd_get_section_name (abfd
, s
);
3408 if (CONST_STRNEQ (name
, ".gnu.warning."))
3413 name
+= sizeof ".gnu.warning." - 1;
3415 /* If this is a shared object, then look up the symbol
3416 in the hash table. If it is there, and it is already
3417 been defined, then we will not be using the entry
3418 from this shared object, so we don't need to warn.
3419 FIXME: If we see the definition in a regular object
3420 later on, we will warn, but we shouldn't. The only
3421 fix is to keep track of what warnings we are supposed
3422 to emit, and then handle them all at the end of the
3426 struct elf_link_hash_entry
*h
;
3428 h
= elf_link_hash_lookup (htab
, name
, FALSE
, FALSE
, TRUE
);
3430 /* FIXME: What about bfd_link_hash_common? */
3432 && (h
->root
.type
== bfd_link_hash_defined
3433 || h
->root
.type
== bfd_link_hash_defweak
))
3435 /* We don't want to issue this warning. Clobber
3436 the section size so that the warning does not
3437 get copied into the output file. */
3444 msg
= (char *) bfd_alloc (abfd
, sz
+ 1);
3448 if (! bfd_get_section_contents (abfd
, s
, msg
, 0, sz
))
3453 if (! (_bfd_generic_link_add_one_symbol
3454 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
3455 FALSE
, bed
->collect
, NULL
)))
3458 if (! info
->relocatable
)
3460 /* Clobber the section size so that the warning does
3461 not get copied into the output file. */
3464 /* Also set SEC_EXCLUDE, so that symbols defined in
3465 the warning section don't get copied to the output. */
3466 s
->flags
|= SEC_EXCLUDE
;
3475 /* If we are creating a shared library, create all the dynamic
3476 sections immediately. We need to attach them to something,
3477 so we attach them to this BFD, provided it is the right
3478 format. FIXME: If there are no input BFD's of the same
3479 format as the output, we can't make a shared library. */
3481 && is_elf_hash_table (htab
)
3482 && info
->output_bfd
->xvec
== abfd
->xvec
3483 && !htab
->dynamic_sections_created
)
3485 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3489 else if (!is_elf_hash_table (htab
))
3494 const char *soname
= NULL
;
3496 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3499 /* ld --just-symbols and dynamic objects don't mix very well.
3500 ld shouldn't allow it. */
3501 if ((s
= abfd
->sections
) != NULL
3502 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3505 /* If this dynamic lib was specified on the command line with
3506 --as-needed in effect, then we don't want to add a DT_NEEDED
3507 tag unless the lib is actually used. Similary for libs brought
3508 in by another lib's DT_NEEDED. When --no-add-needed is used
3509 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3510 any dynamic library in DT_NEEDED tags in the dynamic lib at
3512 add_needed
= (elf_dyn_lib_class (abfd
)
3513 & (DYN_AS_NEEDED
| DYN_DT_NEEDED
3514 | DYN_NO_NEEDED
)) == 0;
3516 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3521 unsigned int elfsec
;
3522 unsigned long shlink
;
3524 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
3531 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3532 if (elfsec
== SHN_BAD
)
3533 goto error_free_dyn
;
3534 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3536 for (extdyn
= dynbuf
;
3537 extdyn
< dynbuf
+ s
->size
;
3538 extdyn
+= bed
->s
->sizeof_dyn
)
3540 Elf_Internal_Dyn dyn
;
3542 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3543 if (dyn
.d_tag
== DT_SONAME
)
3545 unsigned int tagv
= dyn
.d_un
.d_val
;
3546 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3548 goto error_free_dyn
;
3550 if (dyn
.d_tag
== DT_NEEDED
)
3552 struct bfd_link_needed_list
*n
, **pn
;
3554 unsigned int tagv
= dyn
.d_un
.d_val
;
3556 amt
= sizeof (struct bfd_link_needed_list
);
3557 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3558 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3559 if (n
== NULL
|| fnm
== NULL
)
3560 goto error_free_dyn
;
3561 amt
= strlen (fnm
) + 1;
3562 anm
= (char *) bfd_alloc (abfd
, amt
);
3564 goto error_free_dyn
;
3565 memcpy (anm
, fnm
, amt
);
3569 for (pn
= &htab
->needed
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3573 if (dyn
.d_tag
== DT_RUNPATH
)
3575 struct bfd_link_needed_list
*n
, **pn
;
3577 unsigned int tagv
= dyn
.d_un
.d_val
;
3579 amt
= sizeof (struct bfd_link_needed_list
);
3580 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3581 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3582 if (n
== NULL
|| fnm
== NULL
)
3583 goto error_free_dyn
;
3584 amt
= strlen (fnm
) + 1;
3585 anm
= (char *) bfd_alloc (abfd
, amt
);
3587 goto error_free_dyn
;
3588 memcpy (anm
, fnm
, amt
);
3592 for (pn
= & runpath
;
3598 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3599 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3601 struct bfd_link_needed_list
*n
, **pn
;
3603 unsigned int tagv
= dyn
.d_un
.d_val
;
3605 amt
= sizeof (struct bfd_link_needed_list
);
3606 n
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
3607 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3608 if (n
== NULL
|| fnm
== NULL
)
3609 goto error_free_dyn
;
3610 amt
= strlen (fnm
) + 1;
3611 anm
= (char *) bfd_alloc (abfd
, amt
);
3613 goto error_free_dyn
;
3614 memcpy (anm
, fnm
, amt
);
3624 if (dyn
.d_tag
== DT_AUDIT
)
3626 unsigned int tagv
= dyn
.d_un
.d_val
;
3627 audit
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3634 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3635 frees all more recently bfd_alloc'd blocks as well. */
3641 struct bfd_link_needed_list
**pn
;
3642 for (pn
= &htab
->runpath
; *pn
!= NULL
; pn
= &(*pn
)->next
)
3647 /* We do not want to include any of the sections in a dynamic
3648 object in the output file. We hack by simply clobbering the
3649 list of sections in the BFD. This could be handled more
3650 cleanly by, say, a new section flag; the existing
3651 SEC_NEVER_LOAD flag is not the one we want, because that one
3652 still implies that the section takes up space in the output
3654 bfd_section_list_clear (abfd
);
3656 /* Find the name to use in a DT_NEEDED entry that refers to this
3657 object. If the object has a DT_SONAME entry, we use it.
3658 Otherwise, if the generic linker stuck something in
3659 elf_dt_name, we use that. Otherwise, we just use the file
3661 if (soname
== NULL
|| *soname
== '\0')
3663 soname
= elf_dt_name (abfd
);
3664 if (soname
== NULL
|| *soname
== '\0')
3665 soname
= bfd_get_filename (abfd
);
3668 /* Save the SONAME because sometimes the linker emulation code
3669 will need to know it. */
3670 elf_dt_name (abfd
) = soname
;
3672 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
3676 /* If we have already included this dynamic object in the
3677 link, just ignore it. There is no reason to include a
3678 particular dynamic object more than once. */
3682 /* Save the DT_AUDIT entry for the linker emulation code. */
3683 elf_dt_audit (abfd
) = audit
;
3686 /* If this is a dynamic object, we always link against the .dynsym
3687 symbol table, not the .symtab symbol table. The dynamic linker
3688 will only see the .dynsym symbol table, so there is no reason to
3689 look at .symtab for a dynamic object. */
3691 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3692 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3694 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3696 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3698 /* The sh_info field of the symtab header tells us where the
3699 external symbols start. We don't care about the local symbols at
3701 if (elf_bad_symtab (abfd
))
3703 extsymcount
= symcount
;
3708 extsymcount
= symcount
- hdr
->sh_info
;
3709 extsymoff
= hdr
->sh_info
;
3713 if (extsymcount
!= 0)
3715 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3717 if (isymbuf
== NULL
)
3720 /* We store a pointer to the hash table entry for each external
3722 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3723 sym_hash
= (struct elf_link_hash_entry
**) bfd_alloc (abfd
, amt
);
3724 if (sym_hash
== NULL
)
3725 goto error_free_sym
;
3726 elf_sym_hashes (abfd
) = sym_hash
;
3731 /* Read in any version definitions. */
3732 if (!_bfd_elf_slurp_version_tables (abfd
,
3733 info
->default_imported_symver
))
3734 goto error_free_sym
;
3736 /* Read in the symbol versions, but don't bother to convert them
3737 to internal format. */
3738 if (elf_dynversym (abfd
) != 0)
3740 Elf_Internal_Shdr
*versymhdr
;
3742 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3743 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
3744 if (extversym
== NULL
)
3745 goto error_free_sym
;
3746 amt
= versymhdr
->sh_size
;
3747 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3748 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3749 goto error_free_vers
;
3753 /* If we are loading an as-needed shared lib, save the symbol table
3754 state before we start adding symbols. If the lib turns out
3755 to be unneeded, restore the state. */
3756 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
3761 for (entsize
= 0, i
= 0; i
< htab
->root
.table
.size
; i
++)
3763 struct bfd_hash_entry
*p
;
3764 struct elf_link_hash_entry
*h
;
3766 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3768 h
= (struct elf_link_hash_entry
*) p
;
3769 entsize
+= htab
->root
.table
.entsize
;
3770 if (h
->root
.type
== bfd_link_hash_warning
)
3771 entsize
+= htab
->root
.table
.entsize
;
3775 tabsize
= htab
->root
.table
.size
* sizeof (struct bfd_hash_entry
*);
3776 hashsize
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3777 old_tab
= bfd_malloc (tabsize
+ entsize
+ hashsize
);
3778 if (old_tab
== NULL
)
3779 goto error_free_vers
;
3781 /* Remember the current objalloc pointer, so that all mem for
3782 symbols added can later be reclaimed. */
3783 alloc_mark
= bfd_hash_allocate (&htab
->root
.table
, 1);
3784 if (alloc_mark
== NULL
)
3785 goto error_free_vers
;
3787 /* Make a special call to the linker "notice" function to
3788 tell it that we are about to handle an as-needed lib. */
3789 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
3790 notice_as_needed
, 0, NULL
))
3791 goto error_free_vers
;
3793 /* Clone the symbol table and sym hashes. Remember some
3794 pointers into the symbol table, and dynamic symbol count. */
3795 old_hash
= (char *) old_tab
+ tabsize
;
3796 old_ent
= (char *) old_hash
+ hashsize
;
3797 memcpy (old_tab
, htab
->root
.table
.table
, tabsize
);
3798 memcpy (old_hash
, sym_hash
, hashsize
);
3799 old_undefs
= htab
->root
.undefs
;
3800 old_undefs_tail
= htab
->root
.undefs_tail
;
3801 old_table
= htab
->root
.table
.table
;
3802 old_size
= htab
->root
.table
.size
;
3803 old_count
= htab
->root
.table
.count
;
3804 old_dynsymcount
= htab
->dynsymcount
;
3806 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
3808 struct bfd_hash_entry
*p
;
3809 struct elf_link_hash_entry
*h
;
3811 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
3813 memcpy (old_ent
, p
, htab
->root
.table
.entsize
);
3814 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3815 h
= (struct elf_link_hash_entry
*) p
;
3816 if (h
->root
.type
== bfd_link_hash_warning
)
3818 memcpy (old_ent
, h
->root
.u
.i
.link
, htab
->root
.table
.entsize
);
3819 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
3826 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3827 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3829 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3833 asection
*sec
, *new_sec
;
3836 struct elf_link_hash_entry
*h
;
3837 bfd_boolean definition
;
3838 bfd_boolean size_change_ok
;
3839 bfd_boolean type_change_ok
;
3840 bfd_boolean new_weakdef
;
3841 bfd_boolean override
;
3843 unsigned int old_alignment
;
3845 bfd
* undef_bfd
= NULL
;
3849 flags
= BSF_NO_FLAGS
;
3851 value
= isym
->st_value
;
3853 common
= bed
->common_definition (isym
);
3855 bind
= ELF_ST_BIND (isym
->st_info
);
3859 /* This should be impossible, since ELF requires that all
3860 global symbols follow all local symbols, and that sh_info
3861 point to the first global symbol. Unfortunately, Irix 5
3866 if (isym
->st_shndx
!= SHN_UNDEF
&& !common
)
3874 case STB_GNU_UNIQUE
:
3875 flags
= BSF_GNU_UNIQUE
;
3879 /* Leave it up to the processor backend. */
3883 if (isym
->st_shndx
== SHN_UNDEF
)
3884 sec
= bfd_und_section_ptr
;
3885 else if (isym
->st_shndx
== SHN_ABS
)
3886 sec
= bfd_abs_section_ptr
;
3887 else if (isym
->st_shndx
== SHN_COMMON
)
3889 sec
= bfd_com_section_ptr
;
3890 /* What ELF calls the size we call the value. What ELF
3891 calls the value we call the alignment. */
3892 value
= isym
->st_size
;
3896 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3898 sec
= bfd_abs_section_ptr
;
3899 else if (elf_discarded_section (sec
))
3901 /* Symbols from discarded section are undefined. We keep
3903 sec
= bfd_und_section_ptr
;
3904 isym
->st_shndx
= SHN_UNDEF
;
3906 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3910 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3913 goto error_free_vers
;
3915 if (isym
->st_shndx
== SHN_COMMON
3916 && (abfd
->flags
& BFD_PLUGIN
) != 0)
3918 asection
*xc
= bfd_get_section_by_name (abfd
, "COMMON");
3922 flagword sflags
= (SEC_ALLOC
| SEC_IS_COMMON
| SEC_KEEP
3924 xc
= bfd_make_section_with_flags (abfd
, "COMMON", sflags
);
3926 goto error_free_vers
;
3930 else if (isym
->st_shndx
== SHN_COMMON
3931 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
3932 && !info
->relocatable
)
3934 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3938 flagword sflags
= (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_IS_COMMON
3939 | SEC_LINKER_CREATED
);
3940 tcomm
= bfd_make_section_with_flags (abfd
, ".tcommon", sflags
);
3942 goto error_free_vers
;
3946 else if (bed
->elf_add_symbol_hook
)
3948 if (! (*bed
->elf_add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
,
3950 goto error_free_vers
;
3952 /* The hook function sets the name to NULL if this symbol
3953 should be skipped for some reason. */
3958 /* Sanity check that all possibilities were handled. */
3961 bfd_set_error (bfd_error_bad_value
);
3962 goto error_free_vers
;
3965 if (bfd_is_und_section (sec
)
3966 || bfd_is_com_section (sec
))
3971 size_change_ok
= FALSE
;
3972 type_change_ok
= bed
->type_change_ok
;
3977 if (is_elf_hash_table (htab
))
3979 Elf_Internal_Versym iver
;
3980 unsigned int vernum
= 0;
3983 /* If this is a definition of a symbol which was previously
3984 referenced in a non-weak manner then make a note of the bfd
3985 that contained the reference. This is used if we need to
3986 refer to the source of the reference later on. */
3987 if (! bfd_is_und_section (sec
))
3989 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
3992 && h
->root
.type
== bfd_link_hash_undefined
3993 && h
->root
.u
.undef
.abfd
)
3994 undef_bfd
= h
->root
.u
.undef
.abfd
;
3999 if (info
->default_imported_symver
)
4000 /* Use the default symbol version created earlier. */
4001 iver
.vs_vers
= elf_tdata (abfd
)->cverdefs
;
4006 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
4008 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
4010 /* If this is a hidden symbol, or if it is not version
4011 1, we append the version name to the symbol name.
4012 However, we do not modify a non-hidden absolute symbol
4013 if it is not a function, because it might be the version
4014 symbol itself. FIXME: What if it isn't? */
4015 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
4017 && (!bfd_is_abs_section (sec
)
4018 || bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
)))))
4021 size_t namelen
, verlen
, newlen
;
4024 if (isym
->st_shndx
!= SHN_UNDEF
)
4026 if (vernum
> elf_tdata (abfd
)->cverdefs
)
4028 else if (vernum
> 1)
4030 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
4036 (*_bfd_error_handler
)
4037 (_("%B: %s: invalid version %u (max %d)"),
4039 elf_tdata (abfd
)->cverdefs
);
4040 bfd_set_error (bfd_error_bad_value
);
4041 goto error_free_vers
;
4046 /* We cannot simply test for the number of
4047 entries in the VERNEED section since the
4048 numbers for the needed versions do not start
4050 Elf_Internal_Verneed
*t
;
4053 for (t
= elf_tdata (abfd
)->verref
;
4057 Elf_Internal_Vernaux
*a
;
4059 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
4061 if (a
->vna_other
== vernum
)
4063 verstr
= a
->vna_nodename
;
4072 (*_bfd_error_handler
)
4073 (_("%B: %s: invalid needed version %d"),
4074 abfd
, name
, vernum
);
4075 bfd_set_error (bfd_error_bad_value
);
4076 goto error_free_vers
;
4080 namelen
= strlen (name
);
4081 verlen
= strlen (verstr
);
4082 newlen
= namelen
+ verlen
+ 2;
4083 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4084 && isym
->st_shndx
!= SHN_UNDEF
)
4087 newname
= (char *) bfd_hash_allocate (&htab
->root
.table
, newlen
);
4088 if (newname
== NULL
)
4089 goto error_free_vers
;
4090 memcpy (newname
, name
, namelen
);
4091 p
= newname
+ namelen
;
4093 /* If this is a defined non-hidden version symbol,
4094 we add another @ to the name. This indicates the
4095 default version of the symbol. */
4096 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
4097 && isym
->st_shndx
!= SHN_UNDEF
)
4099 memcpy (p
, verstr
, verlen
+ 1);
4104 /* If necessary, make a second attempt to locate the bfd
4105 containing an unresolved, non-weak reference to the
4107 if (! bfd_is_und_section (sec
) && undef_bfd
== NULL
)
4109 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, FALSE
);
4112 && h
->root
.type
== bfd_link_hash_undefined
4113 && h
->root
.u
.undef
.abfd
)
4114 undef_bfd
= h
->root
.u
.undef
.abfd
;
4117 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
,
4118 &value
, &old_alignment
,
4119 sym_hash
, &skip
, &override
,
4120 &type_change_ok
, &size_change_ok
))
4121 goto error_free_vers
;
4130 while (h
->root
.type
== bfd_link_hash_indirect
4131 || h
->root
.type
== bfd_link_hash_warning
)
4132 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4134 /* Remember the old alignment if this is a common symbol, so
4135 that we don't reduce the alignment later on. We can't
4136 check later, because _bfd_generic_link_add_one_symbol
4137 will set a default for the alignment which we want to
4138 override. We also remember the old bfd where the existing
4139 definition comes from. */
4140 switch (h
->root
.type
)
4145 case bfd_link_hash_defined
:
4146 case bfd_link_hash_defweak
:
4147 old_bfd
= h
->root
.u
.def
.section
->owner
;
4150 case bfd_link_hash_common
:
4151 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
4152 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
4156 if (elf_tdata (abfd
)->verdef
!= NULL
4160 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
4163 if (! (_bfd_generic_link_add_one_symbol
4164 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, bed
->collect
,
4165 (struct bfd_link_hash_entry
**) sym_hash
)))
4166 goto error_free_vers
;
4169 while (h
->root
.type
== bfd_link_hash_indirect
4170 || h
->root
.type
== bfd_link_hash_warning
)
4171 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4174 if (is_elf_hash_table (htab
))
4175 h
->unique_global
= (flags
& BSF_GNU_UNIQUE
) != 0;
4177 new_weakdef
= FALSE
;
4180 && (flags
& BSF_WEAK
) != 0
4181 && !bed
->is_function_type (ELF_ST_TYPE (isym
->st_info
))
4182 && is_elf_hash_table (htab
)
4183 && h
->u
.weakdef
== NULL
)
4185 /* Keep a list of all weak defined non function symbols from
4186 a dynamic object, using the weakdef field. Later in this
4187 function we will set the weakdef field to the correct
4188 value. We only put non-function symbols from dynamic
4189 objects on this list, because that happens to be the only
4190 time we need to know the normal symbol corresponding to a
4191 weak symbol, and the information is time consuming to
4192 figure out. If the weakdef field is not already NULL,
4193 then this symbol was already defined by some previous
4194 dynamic object, and we will be using that previous
4195 definition anyhow. */
4197 h
->u
.weakdef
= weaks
;
4202 /* Set the alignment of a common symbol. */
4203 if ((common
|| bfd_is_com_section (sec
))
4204 && h
->root
.type
== bfd_link_hash_common
)
4209 align
= bfd_log2 (isym
->st_value
);
4212 /* The new symbol is a common symbol in a shared object.
4213 We need to get the alignment from the section. */
4214 align
= new_sec
->alignment_power
;
4216 if (align
> old_alignment
)
4217 h
->root
.u
.c
.p
->alignment_power
= align
;
4219 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
4222 if (is_elf_hash_table (htab
))
4226 /* Check the alignment when a common symbol is involved. This
4227 can change when a common symbol is overridden by a normal
4228 definition or a common symbol is ignored due to the old
4229 normal definition. We need to make sure the maximum
4230 alignment is maintained. */
4231 if ((old_alignment
|| common
)
4232 && h
->root
.type
!= bfd_link_hash_common
)
4234 unsigned int common_align
;
4235 unsigned int normal_align
;
4236 unsigned int symbol_align
;
4240 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
4241 if (h
->root
.u
.def
.section
->owner
!= NULL
4242 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
4244 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
4245 if (normal_align
> symbol_align
)
4246 normal_align
= symbol_align
;
4249 normal_align
= symbol_align
;
4253 common_align
= old_alignment
;
4254 common_bfd
= old_bfd
;
4259 common_align
= bfd_log2 (isym
->st_value
);
4261 normal_bfd
= old_bfd
;
4264 if (normal_align
< common_align
)
4266 /* PR binutils/2735 */
4267 if (normal_bfd
== NULL
)
4268 (*_bfd_error_handler
)
4269 (_("Warning: alignment %u of common symbol `%s' in %B"
4270 " is greater than the alignment (%u) of its section %A"),
4271 common_bfd
, h
->root
.u
.def
.section
,
4272 1 << common_align
, name
, 1 << normal_align
);
4274 (*_bfd_error_handler
)
4275 (_("Warning: alignment %u of symbol `%s' in %B"
4276 " is smaller than %u in %B"),
4277 normal_bfd
, common_bfd
,
4278 1 << normal_align
, name
, 1 << common_align
);
4282 /* Remember the symbol size if it isn't undefined. */
4283 if ((isym
->st_size
!= 0 && isym
->st_shndx
!= SHN_UNDEF
)
4284 && (definition
|| h
->size
== 0))
4287 && h
->size
!= isym
->st_size
4288 && ! size_change_ok
)
4289 (*_bfd_error_handler
)
4290 (_("Warning: size of symbol `%s' changed"
4291 " from %lu in %B to %lu in %B"),
4293 name
, (unsigned long) h
->size
,
4294 (unsigned long) isym
->st_size
);
4296 h
->size
= isym
->st_size
;
4299 /* If this is a common symbol, then we always want H->SIZE
4300 to be the size of the common symbol. The code just above
4301 won't fix the size if a common symbol becomes larger. We
4302 don't warn about a size change here, because that is
4303 covered by --warn-common. Allow changed between different
4305 if (h
->root
.type
== bfd_link_hash_common
)
4306 h
->size
= h
->root
.u
.c
.size
;
4308 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
4309 && (definition
|| h
->type
== STT_NOTYPE
))
4311 unsigned int type
= ELF_ST_TYPE (isym
->st_info
);
4313 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4315 if (type
== STT_GNU_IFUNC
4316 && (abfd
->flags
& DYNAMIC
) != 0)
4319 if (h
->type
!= type
)
4321 if (h
->type
!= STT_NOTYPE
&& ! type_change_ok
)
4322 (*_bfd_error_handler
)
4323 (_("Warning: type of symbol `%s' changed"
4324 " from %d to %d in %B"),
4325 abfd
, name
, h
->type
, type
);
4331 /* Merge st_other field. */
4332 elf_merge_st_other (abfd
, h
, isym
, definition
, dynamic
);
4334 /* Set a flag in the hash table entry indicating the type of
4335 reference or definition we just found. Keep a count of
4336 the number of dynamic symbols we find. A dynamic symbol
4337 is one which is referenced or defined by both a regular
4338 object and a shared object. */
4345 if (bind
!= STB_WEAK
)
4346 h
->ref_regular_nonweak
= 1;
4357 if (! info
->executable
4373 || (h
->u
.weakdef
!= NULL
4375 && h
->u
.weakdef
->dynindx
!= -1))
4379 /* We don't want to make debug symbol dynamic. */
4380 if (definition
&& (sec
->flags
& SEC_DEBUGGING
) && !info
->relocatable
)
4383 /* Nor should we make plugin symbols dynamic. */
4384 if ((abfd
->flags
& BFD_PLUGIN
) != 0)
4388 h
->target_internal
= isym
->st_target_internal
;
4390 /* Check to see if we need to add an indirect symbol for
4391 the default name. */
4392 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
4393 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
4394 &sec
, &value
, &dynsym
,
4396 goto error_free_vers
;
4398 if (definition
&& !dynamic
)
4400 char *p
= strchr (name
, ELF_VER_CHR
);
4401 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
4403 /* Queue non-default versions so that .symver x, x@FOO
4404 aliases can be checked. */
4407 amt
= ((isymend
- isym
+ 1)
4408 * sizeof (struct elf_link_hash_entry
*));
4410 (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4412 goto error_free_vers
;
4414 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
4418 if (dynsym
&& h
->dynindx
== -1)
4420 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4421 goto error_free_vers
;
4422 if (h
->u
.weakdef
!= NULL
4424 && h
->u
.weakdef
->dynindx
== -1)
4426 if (!bfd_elf_link_record_dynamic_symbol (info
, h
->u
.weakdef
))
4427 goto error_free_vers
;
4430 else if (dynsym
&& h
->dynindx
!= -1)
4431 /* If the symbol already has a dynamic index, but
4432 visibility says it should not be visible, turn it into
4434 switch (ELF_ST_VISIBILITY (h
->other
))
4438 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
4448 && (elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0
4449 && !on_needed_list (elf_dt_name (abfd
), htab
->needed
))))
4452 const char *soname
= elf_dt_name (abfd
);
4454 /* A symbol from a library loaded via DT_NEEDED of some
4455 other library is referenced by a regular object.
4456 Add a DT_NEEDED entry for it. Issue an error if
4457 --no-add-needed is used and the reference was not
4459 if (undef_bfd
!= NULL
4460 && (elf_dyn_lib_class (abfd
) & DYN_NO_NEEDED
) != 0)
4462 (*_bfd_error_handler
)
4463 (_("%B: undefined reference to symbol '%s'"),
4465 (*_bfd_error_handler
)
4466 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4468 bfd_set_error (bfd_error_invalid_operation
);
4469 goto error_free_vers
;
4472 elf_dyn_lib_class (abfd
) = (enum dynamic_lib_link_class
)
4473 (elf_dyn_lib_class (abfd
) & ~DYN_AS_NEEDED
);
4476 ret
= elf_add_dt_needed_tag (abfd
, info
, soname
, add_needed
);
4478 goto error_free_vers
;
4480 BFD_ASSERT (ret
== 0);
4485 if (extversym
!= NULL
)
4491 if (isymbuf
!= NULL
)
4497 if ((elf_dyn_lib_class (abfd
) & DYN_AS_NEEDED
) != 0)
4501 /* Restore the symbol table. */
4502 if (bed
->as_needed_cleanup
)
4503 (*bed
->as_needed_cleanup
) (abfd
, info
);
4504 old_hash
= (char *) old_tab
+ tabsize
;
4505 old_ent
= (char *) old_hash
+ hashsize
;
4506 sym_hash
= elf_sym_hashes (abfd
);
4507 htab
->root
.table
.table
= old_table
;
4508 htab
->root
.table
.size
= old_size
;
4509 htab
->root
.table
.count
= old_count
;
4510 memcpy (htab
->root
.table
.table
, old_tab
, tabsize
);
4511 memcpy (sym_hash
, old_hash
, hashsize
);
4512 htab
->root
.undefs
= old_undefs
;
4513 htab
->root
.undefs_tail
= old_undefs_tail
;
4514 for (i
= 0; i
< htab
->root
.table
.size
; i
++)
4516 struct bfd_hash_entry
*p
;
4517 struct elf_link_hash_entry
*h
;
4519 unsigned int alignment_power
;
4521 for (p
= htab
->root
.table
.table
[i
]; p
!= NULL
; p
= p
->next
)
4523 h
= (struct elf_link_hash_entry
*) p
;
4524 if (h
->root
.type
== bfd_link_hash_warning
)
4525 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4526 if (h
->dynindx
>= old_dynsymcount
)
4527 _bfd_elf_strtab_delref (htab
->dynstr
, h
->dynstr_index
);
4529 /* Preserve the maximum alignment and size for common
4530 symbols even if this dynamic lib isn't on DT_NEEDED
4531 since it can still be loaded at the run-time by another
4533 if (h
->root
.type
== bfd_link_hash_common
)
4535 size
= h
->root
.u
.c
.size
;
4536 alignment_power
= h
->root
.u
.c
.p
->alignment_power
;
4541 alignment_power
= 0;
4543 memcpy (p
, old_ent
, htab
->root
.table
.entsize
);
4544 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4545 h
= (struct elf_link_hash_entry
*) p
;
4546 if (h
->root
.type
== bfd_link_hash_warning
)
4548 memcpy (h
->root
.u
.i
.link
, old_ent
, htab
->root
.table
.entsize
);
4549 old_ent
= (char *) old_ent
+ htab
->root
.table
.entsize
;
4551 else if (h
->root
.type
== bfd_link_hash_common
)
4553 if (size
> h
->root
.u
.c
.size
)
4554 h
->root
.u
.c
.size
= size
;
4555 if (alignment_power
> h
->root
.u
.c
.p
->alignment_power
)
4556 h
->root
.u
.c
.p
->alignment_power
= alignment_power
;
4561 /* Make a special call to the linker "notice" function to
4562 tell it that symbols added for crefs may need to be removed. */
4563 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4564 notice_not_needed
, 0, NULL
))
4565 goto error_free_vers
;
4568 objalloc_free_block ((struct objalloc
*) htab
->root
.table
.memory
,
4570 if (nondeflt_vers
!= NULL
)
4571 free (nondeflt_vers
);
4575 if (old_tab
!= NULL
)
4577 if (!(*info
->callbacks
->notice
) (info
, NULL
, abfd
, NULL
,
4578 notice_needed
, 0, NULL
))
4579 goto error_free_vers
;
4584 /* Now that all the symbols from this input file are created, handle
4585 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4586 if (nondeflt_vers
!= NULL
)
4588 bfd_size_type cnt
, symidx
;
4590 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
4592 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
4593 char *shortname
, *p
;
4595 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
4597 || (h
->root
.type
!= bfd_link_hash_defined
4598 && h
->root
.type
!= bfd_link_hash_defweak
))
4601 amt
= p
- h
->root
.root
.string
;
4602 shortname
= (char *) bfd_malloc (amt
+ 1);
4604 goto error_free_vers
;
4605 memcpy (shortname
, h
->root
.root
.string
, amt
);
4606 shortname
[amt
] = '\0';
4608 hi
= (struct elf_link_hash_entry
*)
4609 bfd_link_hash_lookup (&htab
->root
, shortname
,
4610 FALSE
, FALSE
, FALSE
);
4612 && hi
->root
.type
== h
->root
.type
4613 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
4614 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
4616 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
4617 hi
->root
.type
= bfd_link_hash_indirect
;
4618 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
4619 (*bed
->elf_backend_copy_indirect_symbol
) (info
, h
, hi
);
4620 sym_hash
= elf_sym_hashes (abfd
);
4622 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
4623 if (sym_hash
[symidx
] == hi
)
4625 sym_hash
[symidx
] = h
;
4631 free (nondeflt_vers
);
4632 nondeflt_vers
= NULL
;
4635 /* Now set the weakdefs field correctly for all the weak defined
4636 symbols we found. The only way to do this is to search all the
4637 symbols. Since we only need the information for non functions in
4638 dynamic objects, that's the only time we actually put anything on
4639 the list WEAKS. We need this information so that if a regular
4640 object refers to a symbol defined weakly in a dynamic object, the
4641 real symbol in the dynamic object is also put in the dynamic
4642 symbols; we also must arrange for both symbols to point to the
4643 same memory location. We could handle the general case of symbol
4644 aliasing, but a general symbol alias can only be generated in
4645 assembler code, handling it correctly would be very time
4646 consuming, and other ELF linkers don't handle general aliasing
4650 struct elf_link_hash_entry
**hpp
;
4651 struct elf_link_hash_entry
**hppend
;
4652 struct elf_link_hash_entry
**sorted_sym_hash
;
4653 struct elf_link_hash_entry
*h
;
4656 /* Since we have to search the whole symbol list for each weak
4657 defined symbol, search time for N weak defined symbols will be
4658 O(N^2). Binary search will cut it down to O(NlogN). */
4659 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
4660 sorted_sym_hash
= (struct elf_link_hash_entry
**) bfd_malloc (amt
);
4661 if (sorted_sym_hash
== NULL
)
4663 sym_hash
= sorted_sym_hash
;
4664 hpp
= elf_sym_hashes (abfd
);
4665 hppend
= hpp
+ extsymcount
;
4667 for (; hpp
< hppend
; hpp
++)
4671 && h
->root
.type
== bfd_link_hash_defined
4672 && !bed
->is_function_type (h
->type
))
4680 qsort (sorted_sym_hash
, sym_count
,
4681 sizeof (struct elf_link_hash_entry
*),
4684 while (weaks
!= NULL
)
4686 struct elf_link_hash_entry
*hlook
;
4693 weaks
= hlook
->u
.weakdef
;
4694 hlook
->u
.weakdef
= NULL
;
4696 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
4697 || hlook
->root
.type
== bfd_link_hash_defweak
4698 || hlook
->root
.type
== bfd_link_hash_common
4699 || hlook
->root
.type
== bfd_link_hash_indirect
);
4700 slook
= hlook
->root
.u
.def
.section
;
4701 vlook
= hlook
->root
.u
.def
.value
;
4708 bfd_signed_vma vdiff
;
4710 h
= sorted_sym_hash
[idx
];
4711 vdiff
= vlook
- h
->root
.u
.def
.value
;
4718 long sdiff
= slook
->id
- h
->root
.u
.def
.section
->id
;
4731 /* We didn't find a value/section match. */
4735 for (i
= ilook
; i
< sym_count
; i
++)
4737 h
= sorted_sym_hash
[i
];
4739 /* Stop if value or section doesn't match. */
4740 if (h
->root
.u
.def
.value
!= vlook
4741 || h
->root
.u
.def
.section
!= slook
)
4743 else if (h
!= hlook
)
4745 hlook
->u
.weakdef
= h
;
4747 /* If the weak definition is in the list of dynamic
4748 symbols, make sure the real definition is put
4750 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
4752 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
4755 free (sorted_sym_hash
);
4760 /* If the real definition is in the list of dynamic
4761 symbols, make sure the weak definition is put
4762 there as well. If we don't do this, then the
4763 dynamic loader might not merge the entries for the
4764 real definition and the weak definition. */
4765 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4767 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4768 goto err_free_sym_hash
;
4775 free (sorted_sym_hash
);
4778 if (bed
->check_directives
4779 && !(*bed
->check_directives
) (abfd
, info
))
4782 /* If this object is the same format as the output object, and it is
4783 not a shared library, then let the backend look through the
4786 This is required to build global offset table entries and to
4787 arrange for dynamic relocs. It is not required for the
4788 particular common case of linking non PIC code, even when linking
4789 against shared libraries, but unfortunately there is no way of
4790 knowing whether an object file has been compiled PIC or not.
4791 Looking through the relocs is not particularly time consuming.
4792 The problem is that we must either (1) keep the relocs in memory,
4793 which causes the linker to require additional runtime memory or
4794 (2) read the relocs twice from the input file, which wastes time.
4795 This would be a good case for using mmap.
4797 I have no idea how to handle linking PIC code into a file of a
4798 different format. It probably can't be done. */
4800 && is_elf_hash_table (htab
)
4801 && bed
->check_relocs
!= NULL
4802 && elf_object_id (abfd
) == elf_hash_table_id (htab
)
4803 && (*bed
->relocs_compatible
) (abfd
->xvec
, info
->output_bfd
->xvec
))
4807 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4809 Elf_Internal_Rela
*internal_relocs
;
4812 if ((o
->flags
& SEC_RELOC
) == 0
4813 || o
->reloc_count
== 0
4814 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4815 && (o
->flags
& SEC_DEBUGGING
) != 0)
4816 || bfd_is_abs_section (o
->output_section
))
4819 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4821 if (internal_relocs
== NULL
)
4824 ok
= (*bed
->check_relocs
) (abfd
, info
, o
, internal_relocs
);
4826 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4827 free (internal_relocs
);
4834 /* If this is a non-traditional link, try to optimize the handling
4835 of the .stab/.stabstr sections. */
4837 && ! info
->traditional_format
4838 && is_elf_hash_table (htab
)
4839 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4843 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4844 if (stabstr
!= NULL
)
4846 bfd_size_type string_offset
= 0;
4849 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4850 if (CONST_STRNEQ (stab
->name
, ".stab")
4851 && (!stab
->name
[5] ||
4852 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4853 && (stab
->flags
& SEC_MERGE
) == 0
4854 && !bfd_is_abs_section (stab
->output_section
))
4856 struct bfd_elf_section_data
*secdata
;
4858 secdata
= elf_section_data (stab
);
4859 if (! _bfd_link_section_stabs (abfd
, &htab
->stab_info
, stab
,
4860 stabstr
, &secdata
->sec_info
,
4863 if (secdata
->sec_info
)
4864 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4869 if (is_elf_hash_table (htab
) && add_needed
)
4871 /* Add this bfd to the loaded list. */
4872 struct elf_link_loaded_list
*n
;
4874 n
= (struct elf_link_loaded_list
*)
4875 bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4879 n
->next
= htab
->loaded
;
4886 if (old_tab
!= NULL
)
4888 if (nondeflt_vers
!= NULL
)
4889 free (nondeflt_vers
);
4890 if (extversym
!= NULL
)
4893 if (isymbuf
!= NULL
)
4899 /* Return the linker hash table entry of a symbol that might be
4900 satisfied by an archive symbol. Return -1 on error. */
4902 struct elf_link_hash_entry
*
4903 _bfd_elf_archive_symbol_lookup (bfd
*abfd
,
4904 struct bfd_link_info
*info
,
4907 struct elf_link_hash_entry
*h
;
4911 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, FALSE
, FALSE
, TRUE
);
4915 /* If this is a default version (the name contains @@), look up the
4916 symbol again with only one `@' as well as without the version.
4917 The effect is that references to the symbol with and without the
4918 version will be matched by the default symbol in the archive. */
4920 p
= strchr (name
, ELF_VER_CHR
);
4921 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4924 /* First check with only one `@'. */
4925 len
= strlen (name
);
4926 copy
= (char *) bfd_alloc (abfd
, len
);
4928 return (struct elf_link_hash_entry
*) 0 - 1;
4930 first
= p
- name
+ 1;
4931 memcpy (copy
, name
, first
);
4932 memcpy (copy
+ first
, name
+ first
+ 1, len
- first
);
4934 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
, FALSE
, FALSE
, TRUE
);
4937 /* We also need to check references to the symbol without the
4939 copy
[first
- 1] = '\0';
4940 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4941 FALSE
, FALSE
, TRUE
);
4944 bfd_release (abfd
, copy
);
4948 /* Add symbols from an ELF archive file to the linker hash table. We
4949 don't use _bfd_generic_link_add_archive_symbols because of a
4950 problem which arises on UnixWare. The UnixWare libc.so is an
4951 archive which includes an entry libc.so.1 which defines a bunch of
4952 symbols. The libc.so archive also includes a number of other
4953 object files, which also define symbols, some of which are the same
4954 as those defined in libc.so.1. Correct linking requires that we
4955 consider each object file in turn, and include it if it defines any
4956 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4957 this; it looks through the list of undefined symbols, and includes
4958 any object file which defines them. When this algorithm is used on
4959 UnixWare, it winds up pulling in libc.so.1 early and defining a
4960 bunch of symbols. This means that some of the other objects in the
4961 archive are not included in the link, which is incorrect since they
4962 precede libc.so.1 in the archive.
4964 Fortunately, ELF archive handling is simpler than that done by
4965 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4966 oddities. In ELF, if we find a symbol in the archive map, and the
4967 symbol is currently undefined, we know that we must pull in that
4970 Unfortunately, we do have to make multiple passes over the symbol
4971 table until nothing further is resolved. */
4974 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4977 bfd_boolean
*defined
= NULL
;
4978 bfd_boolean
*included
= NULL
;
4982 const struct elf_backend_data
*bed
;
4983 struct elf_link_hash_entry
* (*archive_symbol_lookup
)
4984 (bfd
*, struct bfd_link_info
*, const char *);
4986 if (! bfd_has_map (abfd
))
4988 /* An empty archive is a special case. */
4989 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4991 bfd_set_error (bfd_error_no_armap
);
4995 /* Keep track of all symbols we know to be already defined, and all
4996 files we know to be already included. This is to speed up the
4997 second and subsequent passes. */
4998 c
= bfd_ardata (abfd
)->symdef_count
;
5002 amt
*= sizeof (bfd_boolean
);
5003 defined
= (bfd_boolean
*) bfd_zmalloc (amt
);
5004 included
= (bfd_boolean
*) bfd_zmalloc (amt
);
5005 if (defined
== NULL
|| included
== NULL
)
5008 symdefs
= bfd_ardata (abfd
)->symdefs
;
5009 bed
= get_elf_backend_data (abfd
);
5010 archive_symbol_lookup
= bed
->elf_backend_archive_symbol_lookup
;
5023 symdefend
= symdef
+ c
;
5024 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
5026 struct elf_link_hash_entry
*h
;
5028 struct bfd_link_hash_entry
*undefs_tail
;
5031 if (defined
[i
] || included
[i
])
5033 if (symdef
->file_offset
== last
)
5039 h
= archive_symbol_lookup (abfd
, info
, symdef
->name
);
5040 if (h
== (struct elf_link_hash_entry
*) 0 - 1)
5046 if (h
->root
.type
== bfd_link_hash_common
)
5048 /* We currently have a common symbol. The archive map contains
5049 a reference to this symbol, so we may want to include it. We
5050 only want to include it however, if this archive element
5051 contains a definition of the symbol, not just another common
5054 Unfortunately some archivers (including GNU ar) will put
5055 declarations of common symbols into their archive maps, as
5056 well as real definitions, so we cannot just go by the archive
5057 map alone. Instead we must read in the element's symbol
5058 table and check that to see what kind of symbol definition
5060 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
5063 else if (h
->root
.type
!= bfd_link_hash_undefined
)
5065 if (h
->root
.type
!= bfd_link_hash_undefweak
)
5070 /* We need to include this archive member. */
5071 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
5072 if (element
== NULL
)
5075 if (! bfd_check_format (element
, bfd_object
))
5078 /* Doublecheck that we have not included this object
5079 already--it should be impossible, but there may be
5080 something wrong with the archive. */
5081 if (element
->archive_pass
!= 0)
5083 bfd_set_error (bfd_error_bad_value
);
5086 element
->archive_pass
= 1;
5088 undefs_tail
= info
->hash
->undefs_tail
;
5090 if (!(*info
->callbacks
5091 ->add_archive_element
) (info
, element
, symdef
->name
, &element
))
5093 if (!bfd_link_add_symbols (element
, info
))
5096 /* If there are any new undefined symbols, we need to make
5097 another pass through the archive in order to see whether
5098 they can be defined. FIXME: This isn't perfect, because
5099 common symbols wind up on undefs_tail and because an
5100 undefined symbol which is defined later on in this pass
5101 does not require another pass. This isn't a bug, but it
5102 does make the code less efficient than it could be. */
5103 if (undefs_tail
!= info
->hash
->undefs_tail
)
5106 /* Look backward to mark all symbols from this object file
5107 which we have already seen in this pass. */
5111 included
[mark
] = TRUE
;
5116 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
5118 /* We mark subsequent symbols from this object file as we go
5119 on through the loop. */
5120 last
= symdef
->file_offset
;
5131 if (defined
!= NULL
)
5133 if (included
!= NULL
)
5138 /* Given an ELF BFD, add symbols to the global hash table as
5142 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
5144 switch (bfd_get_format (abfd
))
5147 return elf_link_add_object_symbols (abfd
, info
);
5149 return elf_link_add_archive_symbols (abfd
, info
);
5151 bfd_set_error (bfd_error_wrong_format
);
5156 struct hash_codes_info
5158 unsigned long *hashcodes
;
5162 /* This function will be called though elf_link_hash_traverse to store
5163 all hash value of the exported symbols in an array. */
5166 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5168 struct hash_codes_info
*inf
= (struct hash_codes_info
*) data
;
5174 /* Ignore indirect symbols. These are added by the versioning code. */
5175 if (h
->dynindx
== -1)
5178 name
= h
->root
.root
.string
;
5179 p
= strchr (name
, ELF_VER_CHR
);
5182 alc
= (char *) bfd_malloc (p
- name
+ 1);
5188 memcpy (alc
, name
, p
- name
);
5189 alc
[p
- name
] = '\0';
5193 /* Compute the hash value. */
5194 ha
= bfd_elf_hash (name
);
5196 /* Store the found hash value in the array given as the argument. */
5197 *(inf
->hashcodes
)++ = ha
;
5199 /* And store it in the struct so that we can put it in the hash table
5201 h
->u
.elf_hash_value
= ha
;
5209 struct collect_gnu_hash_codes
5212 const struct elf_backend_data
*bed
;
5213 unsigned long int nsyms
;
5214 unsigned long int maskbits
;
5215 unsigned long int *hashcodes
;
5216 unsigned long int *hashval
;
5217 unsigned long int *indx
;
5218 unsigned long int *counts
;
5221 long int min_dynindx
;
5222 unsigned long int bucketcount
;
5223 unsigned long int symindx
;
5224 long int local_indx
;
5225 long int shift1
, shift2
;
5226 unsigned long int mask
;
5230 /* This function will be called though elf_link_hash_traverse to store
5231 all hash value of the exported symbols in an array. */
5234 elf_collect_gnu_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
5236 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5242 /* Ignore indirect symbols. These are added by the versioning code. */
5243 if (h
->dynindx
== -1)
5246 /* Ignore also local symbols and undefined symbols. */
5247 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5250 name
= h
->root
.root
.string
;
5251 p
= strchr (name
, ELF_VER_CHR
);
5254 alc
= (char *) bfd_malloc (p
- name
+ 1);
5260 memcpy (alc
, name
, p
- name
);
5261 alc
[p
- name
] = '\0';
5265 /* Compute the hash value. */
5266 ha
= bfd_elf_gnu_hash (name
);
5268 /* Store the found hash value in the array for compute_bucket_count,
5269 and also for .dynsym reordering purposes. */
5270 s
->hashcodes
[s
->nsyms
] = ha
;
5271 s
->hashval
[h
->dynindx
] = ha
;
5273 if (s
->min_dynindx
< 0 || s
->min_dynindx
> h
->dynindx
)
5274 s
->min_dynindx
= h
->dynindx
;
5282 /* This function will be called though elf_link_hash_traverse to do
5283 final dynaminc symbol renumbering. */
5286 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry
*h
, void *data
)
5288 struct collect_gnu_hash_codes
*s
= (struct collect_gnu_hash_codes
*) data
;
5289 unsigned long int bucket
;
5290 unsigned long int val
;
5292 /* Ignore indirect symbols. */
5293 if (h
->dynindx
== -1)
5296 /* Ignore also local symbols and undefined symbols. */
5297 if (! (*s
->bed
->elf_hash_symbol
) (h
))
5299 if (h
->dynindx
>= s
->min_dynindx
)
5300 h
->dynindx
= s
->local_indx
++;
5304 bucket
= s
->hashval
[h
->dynindx
] % s
->bucketcount
;
5305 val
= (s
->hashval
[h
->dynindx
] >> s
->shift1
)
5306 & ((s
->maskbits
>> s
->shift1
) - 1);
5307 s
->bitmask
[val
] |= ((bfd_vma
) 1) << (s
->hashval
[h
->dynindx
] & s
->mask
);
5309 |= ((bfd_vma
) 1) << ((s
->hashval
[h
->dynindx
] >> s
->shift2
) & s
->mask
);
5310 val
= s
->hashval
[h
->dynindx
] & ~(unsigned long int) 1;
5311 if (s
->counts
[bucket
] == 1)
5312 /* Last element terminates the chain. */
5314 bfd_put_32 (s
->output_bfd
, val
,
5315 s
->contents
+ (s
->indx
[bucket
] - s
->symindx
) * 4);
5316 --s
->counts
[bucket
];
5317 h
->dynindx
= s
->indx
[bucket
]++;
5321 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5324 _bfd_elf_hash_symbol (struct elf_link_hash_entry
*h
)
5326 return !(h
->forced_local
5327 || h
->root
.type
== bfd_link_hash_undefined
5328 || h
->root
.type
== bfd_link_hash_undefweak
5329 || ((h
->root
.type
== bfd_link_hash_defined
5330 || h
->root
.type
== bfd_link_hash_defweak
)
5331 && h
->root
.u
.def
.section
->output_section
== NULL
));
5334 /* Array used to determine the number of hash table buckets to use
5335 based on the number of symbols there are. If there are fewer than
5336 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5337 fewer than 37 we use 17 buckets, and so forth. We never use more
5338 than 32771 buckets. */
5340 static const size_t elf_buckets
[] =
5342 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5346 /* Compute bucket count for hashing table. We do not use a static set
5347 of possible tables sizes anymore. Instead we determine for all
5348 possible reasonable sizes of the table the outcome (i.e., the
5349 number of collisions etc) and choose the best solution. The
5350 weighting functions are not too simple to allow the table to grow
5351 without bounds. Instead one of the weighting factors is the size.
5352 Therefore the result is always a good payoff between few collisions
5353 (= short chain lengths) and table size. */
5355 compute_bucket_count (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
5356 unsigned long int *hashcodes ATTRIBUTE_UNUSED
,
5357 unsigned long int nsyms
,
5360 size_t best_size
= 0;
5361 unsigned long int i
;
5363 /* We have a problem here. The following code to optimize the table
5364 size requires an integer type with more the 32 bits. If
5365 BFD_HOST_U_64_BIT is set we know about such a type. */
5366 #ifdef BFD_HOST_U_64_BIT
5371 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
5372 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
5373 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
5374 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
5375 unsigned long int *counts
;
5377 unsigned int no_improvement_count
= 0;
5379 /* Possible optimization parameters: if we have NSYMS symbols we say
5380 that the hashing table must at least have NSYMS/4 and at most
5382 minsize
= nsyms
/ 4;
5385 best_size
= maxsize
= nsyms
* 2;
5390 if ((best_size
& 31) == 0)
5394 /* Create array where we count the collisions in. We must use bfd_malloc
5395 since the size could be large. */
5397 amt
*= sizeof (unsigned long int);
5398 counts
= (unsigned long int *) bfd_malloc (amt
);
5402 /* Compute the "optimal" size for the hash table. The criteria is a
5403 minimal chain length. The minor criteria is (of course) the size
5405 for (i
= minsize
; i
< maxsize
; ++i
)
5407 /* Walk through the array of hashcodes and count the collisions. */
5408 BFD_HOST_U_64_BIT max
;
5409 unsigned long int j
;
5410 unsigned long int fact
;
5412 if (gnu_hash
&& (i
& 31) == 0)
5415 memset (counts
, '\0', i
* sizeof (unsigned long int));
5417 /* Determine how often each hash bucket is used. */
5418 for (j
= 0; j
< nsyms
; ++j
)
5419 ++counts
[hashcodes
[j
] % i
];
5421 /* For the weight function we need some information about the
5422 pagesize on the target. This is information need not be 100%
5423 accurate. Since this information is not available (so far) we
5424 define it here to a reasonable default value. If it is crucial
5425 to have a better value some day simply define this value. */
5426 # ifndef BFD_TARGET_PAGESIZE
5427 # define BFD_TARGET_PAGESIZE (4096)
5430 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5432 max
= (2 + dynsymcount
) * bed
->s
->sizeof_hash_entry
;
5435 /* Variant 1: optimize for short chains. We add the squares
5436 of all the chain lengths (which favors many small chain
5437 over a few long chains). */
5438 for (j
= 0; j
< i
; ++j
)
5439 max
+= counts
[j
] * counts
[j
];
5441 /* This adds penalties for the overall size of the table. */
5442 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5445 /* Variant 2: Optimize a lot more for small table. Here we
5446 also add squares of the size but we also add penalties for
5447 empty slots (the +1 term). */
5448 for (j
= 0; j
< i
; ++j
)
5449 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
5451 /* The overall size of the table is considered, but not as
5452 strong as in variant 1, where it is squared. */
5453 fact
= i
/ (BFD_TARGET_PAGESIZE
/ bed
->s
->sizeof_hash_entry
) + 1;
5457 /* Compare with current best results. */
5458 if (max
< best_chlen
)
5462 no_improvement_count
= 0;
5464 /* PR 11843: Avoid futile long searches for the best bucket size
5465 when there are a large number of symbols. */
5466 else if (++no_improvement_count
== 100)
5473 #endif /* defined (BFD_HOST_U_64_BIT) */
5475 /* This is the fallback solution if no 64bit type is available or if we
5476 are not supposed to spend much time on optimizations. We select the
5477 bucket count using a fixed set of numbers. */
5478 for (i
= 0; elf_buckets
[i
] != 0; i
++)
5480 best_size
= elf_buckets
[i
];
5481 if (nsyms
< elf_buckets
[i
+ 1])
5484 if (gnu_hash
&& best_size
< 2)
5491 /* Size any SHT_GROUP section for ld -r. */
5494 _bfd_elf_size_group_sections (struct bfd_link_info
*info
)
5498 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
5499 if (bfd_get_flavour (ibfd
) == bfd_target_elf_flavour
5500 && !_bfd_elf_fixup_group_sections (ibfd
, bfd_abs_section_ptr
))
5505 /* Set up the sizes and contents of the ELF dynamic sections. This is
5506 called by the ELF linker emulation before_allocation routine. We
5507 must set the sizes of the sections before the linker sets the
5508 addresses of the various sections. */
5511 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
5514 const char *filter_shlib
,
5516 const char *depaudit
,
5517 const char * const *auxiliary_filters
,
5518 struct bfd_link_info
*info
,
5519 asection
**sinterpptr
)
5521 bfd_size_type soname_indx
;
5523 const struct elf_backend_data
*bed
;
5524 struct elf_info_failed asvinfo
;
5528 soname_indx
= (bfd_size_type
) -1;
5530 if (!is_elf_hash_table (info
->hash
))
5533 bed
= get_elf_backend_data (output_bfd
);
5534 if (info
->execstack
)
5535 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
5536 else if (info
->noexecstack
)
5537 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
5541 asection
*notesec
= NULL
;
5544 for (inputobj
= info
->input_bfds
;
5546 inputobj
= inputobj
->link_next
)
5551 & (DYNAMIC
| EXEC_P
| BFD_PLUGIN
| BFD_LINKER_CREATED
))
5553 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
5556 if (s
->flags
& SEC_CODE
)
5560 else if (bed
->default_execstack
)
5565 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
5566 if (exec
&& info
->relocatable
5567 && notesec
->output_section
!= bfd_abs_section_ptr
)
5568 notesec
->output_section
->flags
|= SEC_CODE
;
5572 /* Any syms created from now on start with -1 in
5573 got.refcount/offset and plt.refcount/offset. */
5574 elf_hash_table (info
)->init_got_refcount
5575 = elf_hash_table (info
)->init_got_offset
;
5576 elf_hash_table (info
)->init_plt_refcount
5577 = elf_hash_table (info
)->init_plt_offset
;
5579 if (info
->relocatable
5580 && !_bfd_elf_size_group_sections (info
))
5583 /* The backend may have to create some sections regardless of whether
5584 we're dynamic or not. */
5585 if (bed
->elf_backend_always_size_sections
5586 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
5589 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
5592 dynobj
= elf_hash_table (info
)->dynobj
;
5594 /* If there were no dynamic objects in the link, there is nothing to
5599 if (elf_hash_table (info
)->dynamic_sections_created
)
5601 struct elf_info_failed eif
;
5602 struct elf_link_hash_entry
*h
;
5604 struct bfd_elf_version_tree
*t
;
5605 struct bfd_elf_version_expr
*d
;
5607 bfd_boolean all_defined
;
5609 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
5610 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
5614 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5616 if (soname_indx
== (bfd_size_type
) -1
5617 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
5623 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
5625 info
->flags
|= DF_SYMBOLIC
;
5632 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
5634 if (indx
== (bfd_size_type
) -1
5635 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
5638 if (info
->new_dtags
)
5640 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
5641 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
5646 if (filter_shlib
!= NULL
)
5650 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5651 filter_shlib
, TRUE
);
5652 if (indx
== (bfd_size_type
) -1
5653 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
5657 if (auxiliary_filters
!= NULL
)
5659 const char * const *p
;
5661 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
5665 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5667 if (indx
== (bfd_size_type
) -1
5668 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
5677 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, audit
,
5679 if (indx
== (bfd_size_type
) -1
5680 || !_bfd_elf_add_dynamic_entry (info
, DT_AUDIT
, indx
))
5684 if (depaudit
!= NULL
)
5688 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, depaudit
,
5690 if (indx
== (bfd_size_type
) -1
5691 || !_bfd_elf_add_dynamic_entry (info
, DT_DEPAUDIT
, indx
))
5698 /* If we are supposed to export all symbols into the dynamic symbol
5699 table (this is not the normal case), then do so. */
5700 if (info
->export_dynamic
5701 || (info
->executable
&& info
->dynamic
))
5703 elf_link_hash_traverse (elf_hash_table (info
),
5704 _bfd_elf_export_symbol
,
5710 /* Make all global versions with definition. */
5711 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
5712 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5713 if (!d
->symver
&& d
->literal
)
5715 const char *verstr
, *name
;
5716 size_t namelen
, verlen
, newlen
;
5717 char *newname
, *p
, leading_char
;
5718 struct elf_link_hash_entry
*newh
;
5720 leading_char
= bfd_get_symbol_leading_char (output_bfd
);
5722 namelen
= strlen (name
) + (leading_char
!= '\0');
5724 verlen
= strlen (verstr
);
5725 newlen
= namelen
+ verlen
+ 3;
5727 newname
= (char *) bfd_malloc (newlen
);
5728 if (newname
== NULL
)
5730 newname
[0] = leading_char
;
5731 memcpy (newname
+ (leading_char
!= '\0'), name
, namelen
);
5733 /* Check the hidden versioned definition. */
5734 p
= newname
+ namelen
;
5736 memcpy (p
, verstr
, verlen
+ 1);
5737 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5738 newname
, FALSE
, FALSE
,
5741 || (newh
->root
.type
!= bfd_link_hash_defined
5742 && newh
->root
.type
!= bfd_link_hash_defweak
))
5744 /* Check the default versioned definition. */
5746 memcpy (p
, verstr
, verlen
+ 1);
5747 newh
= elf_link_hash_lookup (elf_hash_table (info
),
5748 newname
, FALSE
, FALSE
,
5753 /* Mark this version if there is a definition and it is
5754 not defined in a shared object. */
5756 && !newh
->def_dynamic
5757 && (newh
->root
.type
== bfd_link_hash_defined
5758 || newh
->root
.type
== bfd_link_hash_defweak
))
5762 /* Attach all the symbols to their version information. */
5763 asvinfo
.info
= info
;
5764 asvinfo
.failed
= FALSE
;
5766 elf_link_hash_traverse (elf_hash_table (info
),
5767 _bfd_elf_link_assign_sym_version
,
5772 if (!info
->allow_undefined_version
)
5774 /* Check if all global versions have a definition. */
5776 for (t
= info
->version_info
; t
!= NULL
; t
= t
->next
)
5777 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
5778 if (d
->literal
&& !d
->symver
&& !d
->script
)
5780 (*_bfd_error_handler
)
5781 (_("%s: undefined version: %s"),
5782 d
->pattern
, t
->name
);
5783 all_defined
= FALSE
;
5788 bfd_set_error (bfd_error_bad_value
);
5793 /* Find all symbols which were defined in a dynamic object and make
5794 the backend pick a reasonable value for them. */
5795 elf_link_hash_traverse (elf_hash_table (info
),
5796 _bfd_elf_adjust_dynamic_symbol
,
5801 /* Add some entries to the .dynamic section. We fill in some of the
5802 values later, in bfd_elf_final_link, but we must add the entries
5803 now so that we know the final size of the .dynamic section. */
5805 /* If there are initialization and/or finalization functions to
5806 call then add the corresponding DT_INIT/DT_FINI entries. */
5807 h
= (info
->init_function
5808 ? elf_link_hash_lookup (elf_hash_table (info
),
5809 info
->init_function
, FALSE
,
5816 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
5819 h
= (info
->fini_function
5820 ? elf_link_hash_lookup (elf_hash_table (info
),
5821 info
->fini_function
, FALSE
,
5828 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
5832 s
= bfd_get_section_by_name (output_bfd
, ".preinit_array");
5833 if (s
!= NULL
&& s
->linker_has_input
)
5835 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5836 if (! info
->executable
)
5841 for (sub
= info
->input_bfds
; sub
!= NULL
;
5842 sub
= sub
->link_next
)
5843 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
)
5844 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
5845 if (elf_section_data (o
)->this_hdr
.sh_type
5846 == SHT_PREINIT_ARRAY
)
5848 (*_bfd_error_handler
)
5849 (_("%B: .preinit_array section is not allowed in DSO"),
5854 bfd_set_error (bfd_error_nonrepresentable_section
);
5858 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
5859 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
5862 s
= bfd_get_section_by_name (output_bfd
, ".init_array");
5863 if (s
!= NULL
&& s
->linker_has_input
)
5865 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
5866 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
5869 s
= bfd_get_section_by_name (output_bfd
, ".fini_array");
5870 if (s
!= NULL
&& s
->linker_has_input
)
5872 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
5873 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
5877 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
5878 /* If .dynstr is excluded from the link, we don't want any of
5879 these tags. Strictly, we should be checking each section
5880 individually; This quick check covers for the case where
5881 someone does a /DISCARD/ : { *(*) }. */
5882 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
5884 bfd_size_type strsize
;
5886 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5887 if ((info
->emit_hash
5888 && !_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0))
5889 || (info
->emit_gnu_hash
5890 && !_bfd_elf_add_dynamic_entry (info
, DT_GNU_HASH
, 0))
5891 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
5892 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
5893 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
5894 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
5895 bed
->s
->sizeof_sym
))
5900 /* The backend must work out the sizes of all the other dynamic
5902 if (bed
->elf_backend_size_dynamic_sections
5903 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
5906 if (elf_hash_table (info
)->dynamic_sections_created
)
5908 unsigned long section_sym_count
;
5909 struct bfd_elf_version_tree
*verdefs
;
5912 /* Set up the version definition section. */
5913 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
5914 BFD_ASSERT (s
!= NULL
);
5916 /* We may have created additional version definitions if we are
5917 just linking a regular application. */
5918 verdefs
= info
->version_info
;
5920 /* Skip anonymous version tag. */
5921 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
5922 verdefs
= verdefs
->next
;
5924 if (verdefs
== NULL
&& !info
->create_default_symver
)
5925 s
->flags
|= SEC_EXCLUDE
;
5930 struct bfd_elf_version_tree
*t
;
5932 Elf_Internal_Verdef def
;
5933 Elf_Internal_Verdaux defaux
;
5934 struct bfd_link_hash_entry
*bh
;
5935 struct elf_link_hash_entry
*h
;
5941 /* Make space for the base version. */
5942 size
+= sizeof (Elf_External_Verdef
);
5943 size
+= sizeof (Elf_External_Verdaux
);
5946 /* Make space for the default version. */
5947 if (info
->create_default_symver
)
5949 size
+= sizeof (Elf_External_Verdef
);
5953 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5955 struct bfd_elf_version_deps
*n
;
5957 /* Don't emit base version twice. */
5961 size
+= sizeof (Elf_External_Verdef
);
5962 size
+= sizeof (Elf_External_Verdaux
);
5965 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5966 size
+= sizeof (Elf_External_Verdaux
);
5970 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
5971 if (s
->contents
== NULL
&& s
->size
!= 0)
5974 /* Fill in the version definition section. */
5978 def
.vd_version
= VER_DEF_CURRENT
;
5979 def
.vd_flags
= VER_FLG_BASE
;
5982 if (info
->create_default_symver
)
5984 def
.vd_aux
= 2 * sizeof (Elf_External_Verdef
);
5985 def
.vd_next
= sizeof (Elf_External_Verdef
);
5989 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5990 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5991 + sizeof (Elf_External_Verdaux
));
5994 if (soname_indx
!= (bfd_size_type
) -1)
5996 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5998 def
.vd_hash
= bfd_elf_hash (soname
);
5999 defaux
.vda_name
= soname_indx
;
6006 name
= lbasename (output_bfd
->filename
);
6007 def
.vd_hash
= bfd_elf_hash (name
);
6008 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6010 if (indx
== (bfd_size_type
) -1)
6012 defaux
.vda_name
= indx
;
6014 defaux
.vda_next
= 0;
6016 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6017 (Elf_External_Verdef
*) p
);
6018 p
+= sizeof (Elf_External_Verdef
);
6019 if (info
->create_default_symver
)
6021 /* Add a symbol representing this version. */
6023 if (! (_bfd_generic_link_add_one_symbol
6024 (info
, dynobj
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6026 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6028 h
= (struct elf_link_hash_entry
*) bh
;
6031 h
->type
= STT_OBJECT
;
6032 h
->verinfo
.vertree
= NULL
;
6034 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6037 /* Create a duplicate of the base version with the same
6038 aux block, but different flags. */
6041 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6043 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6044 + sizeof (Elf_External_Verdaux
));
6047 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6048 (Elf_External_Verdef
*) p
);
6049 p
+= sizeof (Elf_External_Verdef
);
6051 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6052 (Elf_External_Verdaux
*) p
);
6053 p
+= sizeof (Elf_External_Verdaux
);
6055 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
6058 struct bfd_elf_version_deps
*n
;
6060 /* Don't emit the base version twice. */
6065 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6068 /* Add a symbol representing this version. */
6070 if (! (_bfd_generic_link_add_one_symbol
6071 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
6073 get_elf_backend_data (dynobj
)->collect
, &bh
)))
6075 h
= (struct elf_link_hash_entry
*) bh
;
6078 h
->type
= STT_OBJECT
;
6079 h
->verinfo
.vertree
= t
;
6081 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
6084 def
.vd_version
= VER_DEF_CURRENT
;
6086 if (t
->globals
.list
== NULL
6087 && t
->locals
.list
== NULL
6089 def
.vd_flags
|= VER_FLG_WEAK
;
6090 def
.vd_ndx
= t
->vernum
+ (info
->create_default_symver
? 2 : 1);
6091 def
.vd_cnt
= cdeps
+ 1;
6092 def
.vd_hash
= bfd_elf_hash (t
->name
);
6093 def
.vd_aux
= sizeof (Elf_External_Verdef
);
6096 /* If a basever node is next, it *must* be the last node in
6097 the chain, otherwise Verdef construction breaks. */
6098 if (t
->next
!= NULL
&& t
->next
->vernum
== 0)
6099 BFD_ASSERT (t
->next
->next
== NULL
);
6101 if (t
->next
!= NULL
&& t
->next
->vernum
!= 0)
6102 def
.vd_next
= (sizeof (Elf_External_Verdef
)
6103 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
6105 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
6106 (Elf_External_Verdef
*) p
);
6107 p
+= sizeof (Elf_External_Verdef
);
6109 defaux
.vda_name
= h
->dynstr_index
;
6110 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6112 defaux
.vda_next
= 0;
6113 if (t
->deps
!= NULL
)
6114 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6115 t
->name_indx
= defaux
.vda_name
;
6117 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6118 (Elf_External_Verdaux
*) p
);
6119 p
+= sizeof (Elf_External_Verdaux
);
6121 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
6123 if (n
->version_needed
== NULL
)
6125 /* This can happen if there was an error in the
6127 defaux
.vda_name
= 0;
6131 defaux
.vda_name
= n
->version_needed
->name_indx
;
6132 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
6135 if (n
->next
== NULL
)
6136 defaux
.vda_next
= 0;
6138 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
6140 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
6141 (Elf_External_Verdaux
*) p
);
6142 p
+= sizeof (Elf_External_Verdaux
);
6146 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
6147 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
6150 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
6153 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
6155 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
6158 else if (info
->flags
& DF_BIND_NOW
)
6160 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
6166 if (info
->executable
)
6167 info
->flags_1
&= ~ (DF_1_INITFIRST
6170 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
6174 /* Work out the size of the version reference section. */
6176 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
6177 BFD_ASSERT (s
!= NULL
);
6179 struct elf_find_verdep_info sinfo
;
6182 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
6183 if (sinfo
.vers
== 0)
6185 sinfo
.failed
= FALSE
;
6187 elf_link_hash_traverse (elf_hash_table (info
),
6188 _bfd_elf_link_find_version_dependencies
,
6193 if (elf_tdata (output_bfd
)->verref
== NULL
)
6194 s
->flags
|= SEC_EXCLUDE
;
6197 Elf_Internal_Verneed
*t
;
6202 /* Build the version dependency section. */
6205 for (t
= elf_tdata (output_bfd
)->verref
;
6209 Elf_Internal_Vernaux
*a
;
6211 size
+= sizeof (Elf_External_Verneed
);
6213 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6214 size
+= sizeof (Elf_External_Vernaux
);
6218 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6219 if (s
->contents
== NULL
)
6223 for (t
= elf_tdata (output_bfd
)->verref
;
6228 Elf_Internal_Vernaux
*a
;
6232 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6235 t
->vn_version
= VER_NEED_CURRENT
;
6237 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6238 elf_dt_name (t
->vn_bfd
) != NULL
6239 ? elf_dt_name (t
->vn_bfd
)
6240 : lbasename (t
->vn_bfd
->filename
),
6242 if (indx
== (bfd_size_type
) -1)
6245 t
->vn_aux
= sizeof (Elf_External_Verneed
);
6246 if (t
->vn_nextref
== NULL
)
6249 t
->vn_next
= (sizeof (Elf_External_Verneed
)
6250 + caux
* sizeof (Elf_External_Vernaux
));
6252 _bfd_elf_swap_verneed_out (output_bfd
, t
,
6253 (Elf_External_Verneed
*) p
);
6254 p
+= sizeof (Elf_External_Verneed
);
6256 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
6258 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
6259 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
6260 a
->vna_nodename
, FALSE
);
6261 if (indx
== (bfd_size_type
) -1)
6264 if (a
->vna_nextptr
== NULL
)
6267 a
->vna_next
= sizeof (Elf_External_Vernaux
);
6269 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
6270 (Elf_External_Vernaux
*) p
);
6271 p
+= sizeof (Elf_External_Vernaux
);
6275 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
6276 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
6279 elf_tdata (output_bfd
)->cverrefs
= crefs
;
6283 if ((elf_tdata (output_bfd
)->cverrefs
== 0
6284 && elf_tdata (output_bfd
)->cverdefs
== 0)
6285 || _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6286 §ion_sym_count
) == 0)
6288 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6289 s
->flags
|= SEC_EXCLUDE
;
6295 /* Find the first non-excluded output section. We'll use its
6296 section symbol for some emitted relocs. */
6298 _bfd_elf_init_1_index_section (bfd
*output_bfd
, struct bfd_link_info
*info
)
6302 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6303 if ((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
)) == SEC_ALLOC
6304 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6306 elf_hash_table (info
)->text_index_section
= s
;
6311 /* Find two non-excluded output sections, one for code, one for data.
6312 We'll use their section symbols for some emitted relocs. */
6314 _bfd_elf_init_2_index_sections (bfd
*output_bfd
, struct bfd_link_info
*info
)
6318 /* Data first, since setting text_index_section changes
6319 _bfd_elf_link_omit_section_dynsym. */
6320 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6321 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
)) == SEC_ALLOC
)
6322 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6324 elf_hash_table (info
)->data_index_section
= s
;
6328 for (s
= output_bfd
->sections
; s
!= NULL
; s
= s
->next
)
6329 if (((s
->flags
& (SEC_EXCLUDE
| SEC_ALLOC
| SEC_READONLY
))
6330 == (SEC_ALLOC
| SEC_READONLY
))
6331 && !_bfd_elf_link_omit_section_dynsym (output_bfd
, info
, s
))
6333 elf_hash_table (info
)->text_index_section
= s
;
6337 if (elf_hash_table (info
)->text_index_section
== NULL
)
6338 elf_hash_table (info
)->text_index_section
6339 = elf_hash_table (info
)->data_index_section
;
6343 bfd_elf_size_dynsym_hash_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
6345 const struct elf_backend_data
*bed
;
6347 if (!is_elf_hash_table (info
->hash
))
6350 bed
= get_elf_backend_data (output_bfd
);
6351 (*bed
->elf_backend_init_index_section
) (output_bfd
, info
);
6353 if (elf_hash_table (info
)->dynamic_sections_created
)
6357 bfd_size_type dynsymcount
;
6358 unsigned long section_sym_count
;
6359 unsigned int dtagcount
;
6361 dynobj
= elf_hash_table (info
)->dynobj
;
6363 /* Assign dynsym indicies. In a shared library we generate a
6364 section symbol for each output section, which come first.
6365 Next come all of the back-end allocated local dynamic syms,
6366 followed by the rest of the global symbols. */
6368 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
,
6369 §ion_sym_count
);
6371 /* Work out the size of the symbol version section. */
6372 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
6373 BFD_ASSERT (s
!= NULL
);
6374 if (dynsymcount
!= 0
6375 && (s
->flags
& SEC_EXCLUDE
) == 0)
6377 s
->size
= dynsymcount
* sizeof (Elf_External_Versym
);
6378 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6379 if (s
->contents
== NULL
)
6382 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
6386 /* Set the size of the .dynsym and .hash sections. We counted
6387 the number of dynamic symbols in elf_link_add_object_symbols.
6388 We will build the contents of .dynsym and .hash when we build
6389 the final symbol table, because until then we do not know the
6390 correct value to give the symbols. We built the .dynstr
6391 section as we went along in elf_link_add_object_symbols. */
6392 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
6393 BFD_ASSERT (s
!= NULL
);
6394 s
->size
= dynsymcount
* bed
->s
->sizeof_sym
;
6396 if (dynsymcount
!= 0)
6398 s
->contents
= (unsigned char *) bfd_alloc (output_bfd
, s
->size
);
6399 if (s
->contents
== NULL
)
6402 /* The first entry in .dynsym is a dummy symbol.
6403 Clear all the section syms, in case we don't output them all. */
6404 ++section_sym_count
;
6405 memset (s
->contents
, 0, section_sym_count
* bed
->s
->sizeof_sym
);
6408 elf_hash_table (info
)->bucketcount
= 0;
6410 /* Compute the size of the hashing table. As a side effect this
6411 computes the hash values for all the names we export. */
6412 if (info
->emit_hash
)
6414 unsigned long int *hashcodes
;
6415 struct hash_codes_info hashinf
;
6417 unsigned long int nsyms
;
6419 size_t hash_entry_size
;
6421 /* Compute the hash values for all exported symbols. At the same
6422 time store the values in an array so that we could use them for
6424 amt
= dynsymcount
* sizeof (unsigned long int);
6425 hashcodes
= (unsigned long int *) bfd_malloc (amt
);
6426 if (hashcodes
== NULL
)
6428 hashinf
.hashcodes
= hashcodes
;
6429 hashinf
.error
= FALSE
;
6431 /* Put all hash values in HASHCODES. */
6432 elf_link_hash_traverse (elf_hash_table (info
),
6433 elf_collect_hash_codes
, &hashinf
);
6440 nsyms
= hashinf
.hashcodes
- hashcodes
;
6442 = compute_bucket_count (info
, hashcodes
, nsyms
, 0);
6445 if (bucketcount
== 0)
6448 elf_hash_table (info
)->bucketcount
= bucketcount
;
6450 s
= bfd_get_section_by_name (dynobj
, ".hash");
6451 BFD_ASSERT (s
!= NULL
);
6452 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
6453 s
->size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
6454 s
->contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6455 if (s
->contents
== NULL
)
6458 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
6459 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
6460 s
->contents
+ hash_entry_size
);
6463 if (info
->emit_gnu_hash
)
6466 unsigned char *contents
;
6467 struct collect_gnu_hash_codes cinfo
;
6471 memset (&cinfo
, 0, sizeof (cinfo
));
6473 /* Compute the hash values for all exported symbols. At the same
6474 time store the values in an array so that we could use them for
6476 amt
= dynsymcount
* 2 * sizeof (unsigned long int);
6477 cinfo
.hashcodes
= (long unsigned int *) bfd_malloc (amt
);
6478 if (cinfo
.hashcodes
== NULL
)
6481 cinfo
.hashval
= cinfo
.hashcodes
+ dynsymcount
;
6482 cinfo
.min_dynindx
= -1;
6483 cinfo
.output_bfd
= output_bfd
;
6486 /* Put all hash values in HASHCODES. */
6487 elf_link_hash_traverse (elf_hash_table (info
),
6488 elf_collect_gnu_hash_codes
, &cinfo
);
6491 free (cinfo
.hashcodes
);
6496 = compute_bucket_count (info
, cinfo
.hashcodes
, cinfo
.nsyms
, 1);
6498 if (bucketcount
== 0)
6500 free (cinfo
.hashcodes
);
6504 s
= bfd_get_section_by_name (dynobj
, ".gnu.hash");
6505 BFD_ASSERT (s
!= NULL
);
6507 if (cinfo
.nsyms
== 0)
6509 /* Empty .gnu.hash section is special. */
6510 BFD_ASSERT (cinfo
.min_dynindx
== -1);
6511 free (cinfo
.hashcodes
);
6512 s
->size
= 5 * 4 + bed
->s
->arch_size
/ 8;
6513 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6514 if (contents
== NULL
)
6516 s
->contents
= contents
;
6517 /* 1 empty bucket. */
6518 bfd_put_32 (output_bfd
, 1, contents
);
6519 /* SYMIDX above the special symbol 0. */
6520 bfd_put_32 (output_bfd
, 1, contents
+ 4);
6521 /* Just one word for bitmask. */
6522 bfd_put_32 (output_bfd
, 1, contents
+ 8);
6523 /* Only hash fn bloom filter. */
6524 bfd_put_32 (output_bfd
, 0, contents
+ 12);
6525 /* No hashes are valid - empty bitmask. */
6526 bfd_put (bed
->s
->arch_size
, output_bfd
, 0, contents
+ 16);
6527 /* No hashes in the only bucket. */
6528 bfd_put_32 (output_bfd
, 0,
6529 contents
+ 16 + bed
->s
->arch_size
/ 8);
6533 unsigned long int maskwords
, maskbitslog2
, x
;
6534 BFD_ASSERT (cinfo
.min_dynindx
!= -1);
6538 while ((x
>>= 1) != 0)
6540 if (maskbitslog2
< 3)
6542 else if ((1 << (maskbitslog2
- 2)) & cinfo
.nsyms
)
6543 maskbitslog2
= maskbitslog2
+ 3;
6545 maskbitslog2
= maskbitslog2
+ 2;
6546 if (bed
->s
->arch_size
== 64)
6548 if (maskbitslog2
== 5)
6554 cinfo
.mask
= (1 << cinfo
.shift1
) - 1;
6555 cinfo
.shift2
= maskbitslog2
;
6556 cinfo
.maskbits
= 1 << maskbitslog2
;
6557 maskwords
= 1 << (maskbitslog2
- cinfo
.shift1
);
6558 amt
= bucketcount
* sizeof (unsigned long int) * 2;
6559 amt
+= maskwords
* sizeof (bfd_vma
);
6560 cinfo
.bitmask
= (bfd_vma
*) bfd_malloc (amt
);
6561 if (cinfo
.bitmask
== NULL
)
6563 free (cinfo
.hashcodes
);
6567 cinfo
.counts
= (long unsigned int *) (cinfo
.bitmask
+ maskwords
);
6568 cinfo
.indx
= cinfo
.counts
+ bucketcount
;
6569 cinfo
.symindx
= dynsymcount
- cinfo
.nsyms
;
6570 memset (cinfo
.bitmask
, 0, maskwords
* sizeof (bfd_vma
));
6572 /* Determine how often each hash bucket is used. */
6573 memset (cinfo
.counts
, 0, bucketcount
* sizeof (cinfo
.counts
[0]));
6574 for (i
= 0; i
< cinfo
.nsyms
; ++i
)
6575 ++cinfo
.counts
[cinfo
.hashcodes
[i
] % bucketcount
];
6577 for (i
= 0, cnt
= cinfo
.symindx
; i
< bucketcount
; ++i
)
6578 if (cinfo
.counts
[i
] != 0)
6580 cinfo
.indx
[i
] = cnt
;
6581 cnt
+= cinfo
.counts
[i
];
6583 BFD_ASSERT (cnt
== dynsymcount
);
6584 cinfo
.bucketcount
= bucketcount
;
6585 cinfo
.local_indx
= cinfo
.min_dynindx
;
6587 s
->size
= (4 + bucketcount
+ cinfo
.nsyms
) * 4;
6588 s
->size
+= cinfo
.maskbits
/ 8;
6589 contents
= (unsigned char *) bfd_zalloc (output_bfd
, s
->size
);
6590 if (contents
== NULL
)
6592 free (cinfo
.bitmask
);
6593 free (cinfo
.hashcodes
);
6597 s
->contents
= contents
;
6598 bfd_put_32 (output_bfd
, bucketcount
, contents
);
6599 bfd_put_32 (output_bfd
, cinfo
.symindx
, contents
+ 4);
6600 bfd_put_32 (output_bfd
, maskwords
, contents
+ 8);
6601 bfd_put_32 (output_bfd
, cinfo
.shift2
, contents
+ 12);
6602 contents
+= 16 + cinfo
.maskbits
/ 8;
6604 for (i
= 0; i
< bucketcount
; ++i
)
6606 if (cinfo
.counts
[i
] == 0)
6607 bfd_put_32 (output_bfd
, 0, contents
);
6609 bfd_put_32 (output_bfd
, cinfo
.indx
[i
], contents
);
6613 cinfo
.contents
= contents
;
6615 /* Renumber dynamic symbols, populate .gnu.hash section. */
6616 elf_link_hash_traverse (elf_hash_table (info
),
6617 elf_renumber_gnu_hash_syms
, &cinfo
);
6619 contents
= s
->contents
+ 16;
6620 for (i
= 0; i
< maskwords
; ++i
)
6622 bfd_put (bed
->s
->arch_size
, output_bfd
, cinfo
.bitmask
[i
],
6624 contents
+= bed
->s
->arch_size
/ 8;
6627 free (cinfo
.bitmask
);
6628 free (cinfo
.hashcodes
);
6632 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
6633 BFD_ASSERT (s
!= NULL
);
6635 elf_finalize_dynstr (output_bfd
, info
);
6637 s
->size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
6639 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
6640 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
6647 /* Indicate that we are only retrieving symbol values from this
6651 _bfd_elf_link_just_syms (asection
*sec
, struct bfd_link_info
*info
)
6653 if (is_elf_hash_table (info
->hash
))
6654 sec
->sec_info_type
= ELF_INFO_TYPE_JUST_SYMS
;
6655 _bfd_generic_link_just_syms (sec
, info
);
6658 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6661 merge_sections_remove_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
6664 BFD_ASSERT (sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
);
6665 sec
->sec_info_type
= ELF_INFO_TYPE_NONE
;
6668 /* Finish SHF_MERGE section merging. */
6671 _bfd_elf_merge_sections (bfd
*abfd
, struct bfd_link_info
*info
)
6676 if (!is_elf_hash_table (info
->hash
))
6679 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
6680 if ((ibfd
->flags
& DYNAMIC
) == 0)
6681 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6682 if ((sec
->flags
& SEC_MERGE
) != 0
6683 && !bfd_is_abs_section (sec
->output_section
))
6685 struct bfd_elf_section_data
*secdata
;
6687 secdata
= elf_section_data (sec
);
6688 if (! _bfd_add_merge_section (abfd
,
6689 &elf_hash_table (info
)->merge_info
,
6690 sec
, &secdata
->sec_info
))
6692 else if (secdata
->sec_info
)
6693 sec
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
6696 if (elf_hash_table (info
)->merge_info
!= NULL
)
6697 _bfd_merge_sections (abfd
, info
, elf_hash_table (info
)->merge_info
,
6698 merge_sections_remove_hook
);
6702 /* Create an entry in an ELF linker hash table. */
6704 struct bfd_hash_entry
*
6705 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
6706 struct bfd_hash_table
*table
,
6709 /* Allocate the structure if it has not already been allocated by a
6713 entry
= (struct bfd_hash_entry
*)
6714 bfd_hash_allocate (table
, sizeof (struct elf_link_hash_entry
));
6719 /* Call the allocation method of the superclass. */
6720 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
6723 struct elf_link_hash_entry
*ret
= (struct elf_link_hash_entry
*) entry
;
6724 struct elf_link_hash_table
*htab
= (struct elf_link_hash_table
*) table
;
6726 /* Set local fields. */
6729 ret
->got
= htab
->init_got_refcount
;
6730 ret
->plt
= htab
->init_plt_refcount
;
6731 memset (&ret
->size
, 0, (sizeof (struct elf_link_hash_entry
)
6732 - offsetof (struct elf_link_hash_entry
, size
)));
6733 /* Assume that we have been called by a non-ELF symbol reader.
6734 This flag is then reset by the code which reads an ELF input
6735 file. This ensures that a symbol created by a non-ELF symbol
6736 reader will have the flag set correctly. */
6743 /* Copy data from an indirect symbol to its direct symbol, hiding the
6744 old indirect symbol. Also used for copying flags to a weakdef. */
6747 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info
*info
,
6748 struct elf_link_hash_entry
*dir
,
6749 struct elf_link_hash_entry
*ind
)
6751 struct elf_link_hash_table
*htab
;
6753 /* Copy down any references that we may have already seen to the
6754 symbol which just became indirect. */
6756 dir
->ref_dynamic
|= ind
->ref_dynamic
;
6757 dir
->ref_regular
|= ind
->ref_regular
;
6758 dir
->ref_regular_nonweak
|= ind
->ref_regular_nonweak
;
6759 dir
->non_got_ref
|= ind
->non_got_ref
;
6760 dir
->needs_plt
|= ind
->needs_plt
;
6761 dir
->pointer_equality_needed
|= ind
->pointer_equality_needed
;
6763 if (ind
->root
.type
!= bfd_link_hash_indirect
)
6766 /* Copy over the global and procedure linkage table refcount entries.
6767 These may have been already set up by a check_relocs routine. */
6768 htab
= elf_hash_table (info
);
6769 if (ind
->got
.refcount
> htab
->init_got_refcount
.refcount
)
6771 if (dir
->got
.refcount
< 0)
6772 dir
->got
.refcount
= 0;
6773 dir
->got
.refcount
+= ind
->got
.refcount
;
6774 ind
->got
.refcount
= htab
->init_got_refcount
.refcount
;
6777 if (ind
->plt
.refcount
> htab
->init_plt_refcount
.refcount
)
6779 if (dir
->plt
.refcount
< 0)
6780 dir
->plt
.refcount
= 0;
6781 dir
->plt
.refcount
+= ind
->plt
.refcount
;
6782 ind
->plt
.refcount
= htab
->init_plt_refcount
.refcount
;
6785 if (ind
->dynindx
!= -1)
6787 if (dir
->dynindx
!= -1)
6788 _bfd_elf_strtab_delref (htab
->dynstr
, dir
->dynstr_index
);
6789 dir
->dynindx
= ind
->dynindx
;
6790 dir
->dynstr_index
= ind
->dynstr_index
;
6792 ind
->dynstr_index
= 0;
6797 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info
*info
,
6798 struct elf_link_hash_entry
*h
,
6799 bfd_boolean force_local
)
6801 /* STT_GNU_IFUNC symbol must go through PLT. */
6802 if (h
->type
!= STT_GNU_IFUNC
)
6804 h
->plt
= elf_hash_table (info
)->init_plt_offset
;
6809 h
->forced_local
= 1;
6810 if (h
->dynindx
!= -1)
6813 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
6819 /* Initialize an ELF linker hash table. */
6822 _bfd_elf_link_hash_table_init
6823 (struct elf_link_hash_table
*table
,
6825 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
6826 struct bfd_hash_table
*,
6828 unsigned int entsize
,
6829 enum elf_target_id target_id
)
6832 int can_refcount
= get_elf_backend_data (abfd
)->can_refcount
;
6834 memset (table
, 0, sizeof * table
);
6835 table
->init_got_refcount
.refcount
= can_refcount
- 1;
6836 table
->init_plt_refcount
.refcount
= can_refcount
- 1;
6837 table
->init_got_offset
.offset
= -(bfd_vma
) 1;
6838 table
->init_plt_offset
.offset
= -(bfd_vma
) 1;
6839 /* The first dynamic symbol is a dummy. */
6840 table
->dynsymcount
= 1;
6842 ret
= _bfd_link_hash_table_init (&table
->root
, abfd
, newfunc
, entsize
);
6844 table
->root
.type
= bfd_link_elf_hash_table
;
6845 table
->hash_table_id
= target_id
;
6850 /* Create an ELF linker hash table. */
6852 struct bfd_link_hash_table
*
6853 _bfd_elf_link_hash_table_create (bfd
*abfd
)
6855 struct elf_link_hash_table
*ret
;
6856 bfd_size_type amt
= sizeof (struct elf_link_hash_table
);
6858 ret
= (struct elf_link_hash_table
*) bfd_malloc (amt
);
6862 if (! _bfd_elf_link_hash_table_init (ret
, abfd
, _bfd_elf_link_hash_newfunc
,
6863 sizeof (struct elf_link_hash_entry
),
6873 /* This is a hook for the ELF emulation code in the generic linker to
6874 tell the backend linker what file name to use for the DT_NEEDED
6875 entry for a dynamic object. */
6878 bfd_elf_set_dt_needed_name (bfd
*abfd
, const char *name
)
6880 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6881 && bfd_get_format (abfd
) == bfd_object
)
6882 elf_dt_name (abfd
) = name
;
6886 bfd_elf_get_dyn_lib_class (bfd
*abfd
)
6889 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6890 && bfd_get_format (abfd
) == bfd_object
)
6891 lib_class
= elf_dyn_lib_class (abfd
);
6898 bfd_elf_set_dyn_lib_class (bfd
*abfd
, enum dynamic_lib_link_class lib_class
)
6900 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6901 && bfd_get_format (abfd
) == bfd_object
)
6902 elf_dyn_lib_class (abfd
) = lib_class
;
6905 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6906 the linker ELF emulation code. */
6908 struct bfd_link_needed_list
*
6909 bfd_elf_get_needed_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6910 struct bfd_link_info
*info
)
6912 if (! is_elf_hash_table (info
->hash
))
6914 return elf_hash_table (info
)->needed
;
6917 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6918 hook for the linker ELF emulation code. */
6920 struct bfd_link_needed_list
*
6921 bfd_elf_get_runpath_list (bfd
*abfd ATTRIBUTE_UNUSED
,
6922 struct bfd_link_info
*info
)
6924 if (! is_elf_hash_table (info
->hash
))
6926 return elf_hash_table (info
)->runpath
;
6929 /* Get the name actually used for a dynamic object for a link. This
6930 is the SONAME entry if there is one. Otherwise, it is the string
6931 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6934 bfd_elf_get_dt_soname (bfd
*abfd
)
6936 if (bfd_get_flavour (abfd
) == bfd_target_elf_flavour
6937 && bfd_get_format (abfd
) == bfd_object
)
6938 return elf_dt_name (abfd
);
6942 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6943 the ELF linker emulation code. */
6946 bfd_elf_get_bfd_needed_list (bfd
*abfd
,
6947 struct bfd_link_needed_list
**pneeded
)
6950 bfd_byte
*dynbuf
= NULL
;
6951 unsigned int elfsec
;
6952 unsigned long shlink
;
6953 bfd_byte
*extdyn
, *extdynend
;
6955 void (*swap_dyn_in
) (bfd
*, const void *, Elf_Internal_Dyn
*);
6959 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
6960 || bfd_get_format (abfd
) != bfd_object
)
6963 s
= bfd_get_section_by_name (abfd
, ".dynamic");
6964 if (s
== NULL
|| s
->size
== 0)
6967 if (!bfd_malloc_and_get_section (abfd
, s
, &dynbuf
))
6970 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
6971 if (elfsec
== SHN_BAD
)
6974 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
6976 extdynsize
= get_elf_backend_data (abfd
)->s
->sizeof_dyn
;
6977 swap_dyn_in
= get_elf_backend_data (abfd
)->s
->swap_dyn_in
;
6980 extdynend
= extdyn
+ s
->size
;
6981 for (; extdyn
< extdynend
; extdyn
+= extdynsize
)
6983 Elf_Internal_Dyn dyn
;
6985 (*swap_dyn_in
) (abfd
, extdyn
, &dyn
);
6987 if (dyn
.d_tag
== DT_NULL
)
6990 if (dyn
.d_tag
== DT_NEEDED
)
6993 struct bfd_link_needed_list
*l
;
6994 unsigned int tagv
= dyn
.d_un
.d_val
;
6997 string
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
7002 l
= (struct bfd_link_needed_list
*) bfd_alloc (abfd
, amt
);
7023 struct elf_symbuf_symbol
7025 unsigned long st_name
; /* Symbol name, index in string tbl */
7026 unsigned char st_info
; /* Type and binding attributes */
7027 unsigned char st_other
; /* Visibilty, and target specific */
7030 struct elf_symbuf_head
7032 struct elf_symbuf_symbol
*ssym
;
7033 bfd_size_type count
;
7034 unsigned int st_shndx
;
7041 Elf_Internal_Sym
*isym
;
7042 struct elf_symbuf_symbol
*ssym
;
7047 /* Sort references to symbols by ascending section number. */
7050 elf_sort_elf_symbol (const void *arg1
, const void *arg2
)
7052 const Elf_Internal_Sym
*s1
= *(const Elf_Internal_Sym
**) arg1
;
7053 const Elf_Internal_Sym
*s2
= *(const Elf_Internal_Sym
**) arg2
;
7055 return s1
->st_shndx
- s2
->st_shndx
;
7059 elf_sym_name_compare (const void *arg1
, const void *arg2
)
7061 const struct elf_symbol
*s1
= (const struct elf_symbol
*) arg1
;
7062 const struct elf_symbol
*s2
= (const struct elf_symbol
*) arg2
;
7063 return strcmp (s1
->name
, s2
->name
);
7066 static struct elf_symbuf_head
*
7067 elf_create_symbuf (bfd_size_type symcount
, Elf_Internal_Sym
*isymbuf
)
7069 Elf_Internal_Sym
**ind
, **indbufend
, **indbuf
;
7070 struct elf_symbuf_symbol
*ssym
;
7071 struct elf_symbuf_head
*ssymbuf
, *ssymhead
;
7072 bfd_size_type i
, shndx_count
, total_size
;
7074 indbuf
= (Elf_Internal_Sym
**) bfd_malloc2 (symcount
, sizeof (*indbuf
));
7078 for (ind
= indbuf
, i
= 0; i
< symcount
; i
++)
7079 if (isymbuf
[i
].st_shndx
!= SHN_UNDEF
)
7080 *ind
++ = &isymbuf
[i
];
7083 qsort (indbuf
, indbufend
- indbuf
, sizeof (Elf_Internal_Sym
*),
7084 elf_sort_elf_symbol
);
7087 if (indbufend
> indbuf
)
7088 for (ind
= indbuf
, shndx_count
++; ind
< indbufend
- 1; ind
++)
7089 if (ind
[0]->st_shndx
!= ind
[1]->st_shndx
)
7092 total_size
= ((shndx_count
+ 1) * sizeof (*ssymbuf
)
7093 + (indbufend
- indbuf
) * sizeof (*ssym
));
7094 ssymbuf
= (struct elf_symbuf_head
*) bfd_malloc (total_size
);
7095 if (ssymbuf
== NULL
)
7101 ssym
= (struct elf_symbuf_symbol
*) (ssymbuf
+ shndx_count
+ 1);
7102 ssymbuf
->ssym
= NULL
;
7103 ssymbuf
->count
= shndx_count
;
7104 ssymbuf
->st_shndx
= 0;
7105 for (ssymhead
= ssymbuf
, ind
= indbuf
; ind
< indbufend
; ssym
++, ind
++)
7107 if (ind
== indbuf
|| ssymhead
->st_shndx
!= (*ind
)->st_shndx
)
7110 ssymhead
->ssym
= ssym
;
7111 ssymhead
->count
= 0;
7112 ssymhead
->st_shndx
= (*ind
)->st_shndx
;
7114 ssym
->st_name
= (*ind
)->st_name
;
7115 ssym
->st_info
= (*ind
)->st_info
;
7116 ssym
->st_other
= (*ind
)->st_other
;
7119 BFD_ASSERT ((bfd_size_type
) (ssymhead
- ssymbuf
) == shndx_count
7120 && (((bfd_hostptr_t
) ssym
- (bfd_hostptr_t
) ssymbuf
)
7127 /* Check if 2 sections define the same set of local and global
7131 bfd_elf_match_symbols_in_sections (asection
*sec1
, asection
*sec2
,
7132 struct bfd_link_info
*info
)
7135 const struct elf_backend_data
*bed1
, *bed2
;
7136 Elf_Internal_Shdr
*hdr1
, *hdr2
;
7137 bfd_size_type symcount1
, symcount2
;
7138 Elf_Internal_Sym
*isymbuf1
, *isymbuf2
;
7139 struct elf_symbuf_head
*ssymbuf1
, *ssymbuf2
;
7140 Elf_Internal_Sym
*isym
, *isymend
;
7141 struct elf_symbol
*symtable1
= NULL
, *symtable2
= NULL
;
7142 bfd_size_type count1
, count2
, i
;
7143 unsigned int shndx1
, shndx2
;
7149 /* Both sections have to be in ELF. */
7150 if (bfd_get_flavour (bfd1
) != bfd_target_elf_flavour
7151 || bfd_get_flavour (bfd2
) != bfd_target_elf_flavour
)
7154 if (elf_section_type (sec1
) != elf_section_type (sec2
))
7157 shndx1
= _bfd_elf_section_from_bfd_section (bfd1
, sec1
);
7158 shndx2
= _bfd_elf_section_from_bfd_section (bfd2
, sec2
);
7159 if (shndx1
== SHN_BAD
|| shndx2
== SHN_BAD
)
7162 bed1
= get_elf_backend_data (bfd1
);
7163 bed2
= get_elf_backend_data (bfd2
);
7164 hdr1
= &elf_tdata (bfd1
)->symtab_hdr
;
7165 symcount1
= hdr1
->sh_size
/ bed1
->s
->sizeof_sym
;
7166 hdr2
= &elf_tdata (bfd2
)->symtab_hdr
;
7167 symcount2
= hdr2
->sh_size
/ bed2
->s
->sizeof_sym
;
7169 if (symcount1
== 0 || symcount2
== 0)
7175 ssymbuf1
= (struct elf_symbuf_head
*) elf_tdata (bfd1
)->symbuf
;
7176 ssymbuf2
= (struct elf_symbuf_head
*) elf_tdata (bfd2
)->symbuf
;
7178 if (ssymbuf1
== NULL
)
7180 isymbuf1
= bfd_elf_get_elf_syms (bfd1
, hdr1
, symcount1
, 0,
7182 if (isymbuf1
== NULL
)
7185 if (!info
->reduce_memory_overheads
)
7186 elf_tdata (bfd1
)->symbuf
= ssymbuf1
7187 = elf_create_symbuf (symcount1
, isymbuf1
);
7190 if (ssymbuf1
== NULL
|| ssymbuf2
== NULL
)
7192 isymbuf2
= bfd_elf_get_elf_syms (bfd2
, hdr2
, symcount2
, 0,
7194 if (isymbuf2
== NULL
)
7197 if (ssymbuf1
!= NULL
&& !info
->reduce_memory_overheads
)
7198 elf_tdata (bfd2
)->symbuf
= ssymbuf2
7199 = elf_create_symbuf (symcount2
, isymbuf2
);
7202 if (ssymbuf1
!= NULL
&& ssymbuf2
!= NULL
)
7204 /* Optimized faster version. */
7205 bfd_size_type lo
, hi
, mid
;
7206 struct elf_symbol
*symp
;
7207 struct elf_symbuf_symbol
*ssym
, *ssymend
;
7210 hi
= ssymbuf1
->count
;
7215 mid
= (lo
+ hi
) / 2;
7216 if (shndx1
< ssymbuf1
[mid
].st_shndx
)
7218 else if (shndx1
> ssymbuf1
[mid
].st_shndx
)
7222 count1
= ssymbuf1
[mid
].count
;
7229 hi
= ssymbuf2
->count
;
7234 mid
= (lo
+ hi
) / 2;
7235 if (shndx2
< ssymbuf2
[mid
].st_shndx
)
7237 else if (shndx2
> ssymbuf2
[mid
].st_shndx
)
7241 count2
= ssymbuf2
[mid
].count
;
7247 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7250 symtable1
= (struct elf_symbol
*)
7251 bfd_malloc (count1
* sizeof (struct elf_symbol
));
7252 symtable2
= (struct elf_symbol
*)
7253 bfd_malloc (count2
* sizeof (struct elf_symbol
));
7254 if (symtable1
== NULL
|| symtable2
== NULL
)
7258 for (ssym
= ssymbuf1
->ssym
, ssymend
= ssym
+ count1
;
7259 ssym
< ssymend
; ssym
++, symp
++)
7261 symp
->u
.ssym
= ssym
;
7262 symp
->name
= bfd_elf_string_from_elf_section (bfd1
,
7268 for (ssym
= ssymbuf2
->ssym
, ssymend
= ssym
+ count2
;
7269 ssym
< ssymend
; ssym
++, symp
++)
7271 symp
->u
.ssym
= ssym
;
7272 symp
->name
= bfd_elf_string_from_elf_section (bfd2
,
7277 /* Sort symbol by name. */
7278 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7279 elf_sym_name_compare
);
7280 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7281 elf_sym_name_compare
);
7283 for (i
= 0; i
< count1
; i
++)
7284 /* Two symbols must have the same binding, type and name. */
7285 if (symtable1
[i
].u
.ssym
->st_info
!= symtable2
[i
].u
.ssym
->st_info
7286 || symtable1
[i
].u
.ssym
->st_other
!= symtable2
[i
].u
.ssym
->st_other
7287 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7294 symtable1
= (struct elf_symbol
*)
7295 bfd_malloc (symcount1
* sizeof (struct elf_symbol
));
7296 symtable2
= (struct elf_symbol
*)
7297 bfd_malloc (symcount2
* sizeof (struct elf_symbol
));
7298 if (symtable1
== NULL
|| symtable2
== NULL
)
7301 /* Count definitions in the section. */
7303 for (isym
= isymbuf1
, isymend
= isym
+ symcount1
; isym
< isymend
; isym
++)
7304 if (isym
->st_shndx
== shndx1
)
7305 symtable1
[count1
++].u
.isym
= isym
;
7308 for (isym
= isymbuf2
, isymend
= isym
+ symcount2
; isym
< isymend
; isym
++)
7309 if (isym
->st_shndx
== shndx2
)
7310 symtable2
[count2
++].u
.isym
= isym
;
7312 if (count1
== 0 || count2
== 0 || count1
!= count2
)
7315 for (i
= 0; i
< count1
; i
++)
7317 = bfd_elf_string_from_elf_section (bfd1
, hdr1
->sh_link
,
7318 symtable1
[i
].u
.isym
->st_name
);
7320 for (i
= 0; i
< count2
; i
++)
7322 = bfd_elf_string_from_elf_section (bfd2
, hdr2
->sh_link
,
7323 symtable2
[i
].u
.isym
->st_name
);
7325 /* Sort symbol by name. */
7326 qsort (symtable1
, count1
, sizeof (struct elf_symbol
),
7327 elf_sym_name_compare
);
7328 qsort (symtable2
, count1
, sizeof (struct elf_symbol
),
7329 elf_sym_name_compare
);
7331 for (i
= 0; i
< count1
; i
++)
7332 /* Two symbols must have the same binding, type and name. */
7333 if (symtable1
[i
].u
.isym
->st_info
!= symtable2
[i
].u
.isym
->st_info
7334 || symtable1
[i
].u
.isym
->st_other
!= symtable2
[i
].u
.isym
->st_other
7335 || strcmp (symtable1
[i
].name
, symtable2
[i
].name
) != 0)
7353 /* Return TRUE if 2 section types are compatible. */
7356 _bfd_elf_match_sections_by_type (bfd
*abfd
, const asection
*asec
,
7357 bfd
*bbfd
, const asection
*bsec
)
7361 || abfd
->xvec
->flavour
!= bfd_target_elf_flavour
7362 || bbfd
->xvec
->flavour
!= bfd_target_elf_flavour
)
7365 return elf_section_type (asec
) == elf_section_type (bsec
);
7368 /* Final phase of ELF linker. */
7370 /* A structure we use to avoid passing large numbers of arguments. */
7372 struct elf_final_link_info
7374 /* General link information. */
7375 struct bfd_link_info
*info
;
7378 /* Symbol string table. */
7379 struct bfd_strtab_hash
*symstrtab
;
7380 /* .dynsym section. */
7381 asection
*dynsym_sec
;
7382 /* .hash section. */
7384 /* symbol version section (.gnu.version). */
7385 asection
*symver_sec
;
7386 /* Buffer large enough to hold contents of any section. */
7388 /* Buffer large enough to hold external relocs of any section. */
7389 void *external_relocs
;
7390 /* Buffer large enough to hold internal relocs of any section. */
7391 Elf_Internal_Rela
*internal_relocs
;
7392 /* Buffer large enough to hold external local symbols of any input
7394 bfd_byte
*external_syms
;
7395 /* And a buffer for symbol section indices. */
7396 Elf_External_Sym_Shndx
*locsym_shndx
;
7397 /* Buffer large enough to hold internal local symbols of any input
7399 Elf_Internal_Sym
*internal_syms
;
7400 /* Array large enough to hold a symbol index for each local symbol
7401 of any input BFD. */
7403 /* Array large enough to hold a section pointer for each local
7404 symbol of any input BFD. */
7405 asection
**sections
;
7406 /* Buffer to hold swapped out symbols. */
7408 /* And one for symbol section indices. */
7409 Elf_External_Sym_Shndx
*symshndxbuf
;
7410 /* Number of swapped out symbols in buffer. */
7411 size_t symbuf_count
;
7412 /* Number of symbols which fit in symbuf. */
7414 /* And same for symshndxbuf. */
7415 size_t shndxbuf_size
;
7418 /* This struct is used to pass information to elf_link_output_extsym. */
7420 struct elf_outext_info
7423 bfd_boolean localsyms
;
7424 struct elf_final_link_info
*finfo
;
7428 /* Support for evaluating a complex relocation.
7430 Complex relocations are generalized, self-describing relocations. The
7431 implementation of them consists of two parts: complex symbols, and the
7432 relocations themselves.
7434 The relocations are use a reserved elf-wide relocation type code (R_RELC
7435 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7436 information (start bit, end bit, word width, etc) into the addend. This
7437 information is extracted from CGEN-generated operand tables within gas.
7439 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7440 internal) representing prefix-notation expressions, including but not
7441 limited to those sorts of expressions normally encoded as addends in the
7442 addend field. The symbol mangling format is:
7445 | <unary-operator> ':' <node>
7446 | <binary-operator> ':' <node> ':' <node>
7449 <literal> := 's' <digits=N> ':' <N character symbol name>
7450 | 'S' <digits=N> ':' <N character section name>
7454 <binary-operator> := as in C
7455 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7458 set_symbol_value (bfd
*bfd_with_globals
,
7459 Elf_Internal_Sym
*isymbuf
,
7464 struct elf_link_hash_entry
**sym_hashes
;
7465 struct elf_link_hash_entry
*h
;
7466 size_t extsymoff
= locsymcount
;
7468 if (symidx
< locsymcount
)
7470 Elf_Internal_Sym
*sym
;
7472 sym
= isymbuf
+ symidx
;
7473 if (ELF_ST_BIND (sym
->st_info
) == STB_LOCAL
)
7475 /* It is a local symbol: move it to the
7476 "absolute" section and give it a value. */
7477 sym
->st_shndx
= SHN_ABS
;
7478 sym
->st_value
= val
;
7481 BFD_ASSERT (elf_bad_symtab (bfd_with_globals
));
7485 /* It is a global symbol: set its link type
7486 to "defined" and give it a value. */
7488 sym_hashes
= elf_sym_hashes (bfd_with_globals
);
7489 h
= sym_hashes
[symidx
- extsymoff
];
7490 while (h
->root
.type
== bfd_link_hash_indirect
7491 || h
->root
.type
== bfd_link_hash_warning
)
7492 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7493 h
->root
.type
= bfd_link_hash_defined
;
7494 h
->root
.u
.def
.value
= val
;
7495 h
->root
.u
.def
.section
= bfd_abs_section_ptr
;
7499 resolve_symbol (const char *name
,
7501 struct elf_final_link_info
*finfo
,
7503 Elf_Internal_Sym
*isymbuf
,
7506 Elf_Internal_Sym
*sym
;
7507 struct bfd_link_hash_entry
*global_entry
;
7508 const char *candidate
= NULL
;
7509 Elf_Internal_Shdr
*symtab_hdr
;
7512 symtab_hdr
= & elf_tdata (input_bfd
)->symtab_hdr
;
7514 for (i
= 0; i
< locsymcount
; ++ i
)
7518 if (ELF_ST_BIND (sym
->st_info
) != STB_LOCAL
)
7521 candidate
= bfd_elf_string_from_elf_section (input_bfd
,
7522 symtab_hdr
->sh_link
,
7525 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7526 name
, candidate
, (unsigned long) sym
->st_value
);
7528 if (candidate
&& strcmp (candidate
, name
) == 0)
7530 asection
*sec
= finfo
->sections
[i
];
7532 *result
= _bfd_elf_rel_local_sym (input_bfd
, sym
, &sec
, 0);
7533 *result
+= sec
->output_offset
+ sec
->output_section
->vma
;
7535 printf ("Found symbol with value %8.8lx\n",
7536 (unsigned long) *result
);
7542 /* Hmm, haven't found it yet. perhaps it is a global. */
7543 global_entry
= bfd_link_hash_lookup (finfo
->info
->hash
, name
,
7544 FALSE
, FALSE
, TRUE
);
7548 if (global_entry
->type
== bfd_link_hash_defined
7549 || global_entry
->type
== bfd_link_hash_defweak
)
7551 *result
= (global_entry
->u
.def
.value
7552 + global_entry
->u
.def
.section
->output_section
->vma
7553 + global_entry
->u
.def
.section
->output_offset
);
7555 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7556 global_entry
->root
.string
, (unsigned long) *result
);
7565 resolve_section (const char *name
,
7572 for (curr
= sections
; curr
; curr
= curr
->next
)
7573 if (strcmp (curr
->name
, name
) == 0)
7575 *result
= curr
->vma
;
7579 /* Hmm. still haven't found it. try pseudo-section names. */
7580 for (curr
= sections
; curr
; curr
= curr
->next
)
7582 len
= strlen (curr
->name
);
7583 if (len
> strlen (name
))
7586 if (strncmp (curr
->name
, name
, len
) == 0)
7588 if (strncmp (".end", name
+ len
, 4) == 0)
7590 *result
= curr
->vma
+ curr
->size
;
7594 /* Insert more pseudo-section names here, if you like. */
7602 undefined_reference (const char *reftype
, const char *name
)
7604 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7609 eval_symbol (bfd_vma
*result
,
7612 struct elf_final_link_info
*finfo
,
7614 Elf_Internal_Sym
*isymbuf
,
7623 const char *sym
= *symp
;
7625 bfd_boolean symbol_is_section
= FALSE
;
7630 if (len
< 1 || len
> sizeof (symbuf
))
7632 bfd_set_error (bfd_error_invalid_operation
);
7645 *result
= strtoul (sym
, (char **) symp
, 16);
7649 symbol_is_section
= TRUE
;
7652 symlen
= strtol (sym
, (char **) symp
, 10);
7653 sym
= *symp
+ 1; /* Skip the trailing ':'. */
7655 if (symend
< sym
|| symlen
+ 1 > sizeof (symbuf
))
7657 bfd_set_error (bfd_error_invalid_operation
);
7661 memcpy (symbuf
, sym
, symlen
);
7662 symbuf
[symlen
] = '\0';
7663 *symp
= sym
+ symlen
;
7665 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7666 the symbol as a section, or vice-versa. so we're pretty liberal in our
7667 interpretation here; section means "try section first", not "must be a
7668 section", and likewise with symbol. */
7670 if (symbol_is_section
)
7672 if (!resolve_section (symbuf
, finfo
->output_bfd
->sections
, result
)
7673 && !resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7674 isymbuf
, locsymcount
))
7676 undefined_reference ("section", symbuf
);
7682 if (!resolve_symbol (symbuf
, input_bfd
, finfo
, result
,
7683 isymbuf
, locsymcount
)
7684 && !resolve_section (symbuf
, finfo
->output_bfd
->sections
,
7687 undefined_reference ("symbol", symbuf
);
7694 /* All that remains are operators. */
7696 #define UNARY_OP(op) \
7697 if (strncmp (sym, #op, strlen (#op)) == 0) \
7699 sym += strlen (#op); \
7703 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7704 isymbuf, locsymcount, signed_p)) \
7707 *result = op ((bfd_signed_vma) a); \
7713 #define BINARY_OP(op) \
7714 if (strncmp (sym, #op, strlen (#op)) == 0) \
7716 sym += strlen (#op); \
7720 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7721 isymbuf, locsymcount, signed_p)) \
7724 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7725 isymbuf, locsymcount, signed_p)) \
7728 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7758 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym
);
7759 bfd_set_error (bfd_error_invalid_operation
);
7765 put_value (bfd_vma size
,
7766 unsigned long chunksz
,
7771 location
+= (size
- chunksz
);
7773 for (; size
; size
-= chunksz
, location
-= chunksz
, x
>>= (chunksz
* 8))
7781 bfd_put_8 (input_bfd
, x
, location
);
7784 bfd_put_16 (input_bfd
, x
, location
);
7787 bfd_put_32 (input_bfd
, x
, location
);
7791 bfd_put_64 (input_bfd
, x
, location
);
7801 get_value (bfd_vma size
,
7802 unsigned long chunksz
,
7808 for (; size
; size
-= chunksz
, location
+= chunksz
)
7816 x
= (x
<< (8 * chunksz
)) | bfd_get_8 (input_bfd
, location
);
7819 x
= (x
<< (8 * chunksz
)) | bfd_get_16 (input_bfd
, location
);
7822 x
= (x
<< (8 * chunksz
)) | bfd_get_32 (input_bfd
, location
);
7826 x
= (x
<< (8 * chunksz
)) | bfd_get_64 (input_bfd
, location
);
7837 decode_complex_addend (unsigned long *start
, /* in bits */
7838 unsigned long *oplen
, /* in bits */
7839 unsigned long *len
, /* in bits */
7840 unsigned long *wordsz
, /* in bytes */
7841 unsigned long *chunksz
, /* in bytes */
7842 unsigned long *lsb0_p
,
7843 unsigned long *signed_p
,
7844 unsigned long *trunc_p
,
7845 unsigned long encoded
)
7847 * start
= encoded
& 0x3F;
7848 * len
= (encoded
>> 6) & 0x3F;
7849 * oplen
= (encoded
>> 12) & 0x3F;
7850 * wordsz
= (encoded
>> 18) & 0xF;
7851 * chunksz
= (encoded
>> 22) & 0xF;
7852 * lsb0_p
= (encoded
>> 27) & 1;
7853 * signed_p
= (encoded
>> 28) & 1;
7854 * trunc_p
= (encoded
>> 29) & 1;
7857 bfd_reloc_status_type
7858 bfd_elf_perform_complex_relocation (bfd
*input_bfd
,
7859 asection
*input_section ATTRIBUTE_UNUSED
,
7861 Elf_Internal_Rela
*rel
,
7864 bfd_vma shift
, x
, mask
;
7865 unsigned long start
, oplen
, len
, wordsz
, chunksz
, lsb0_p
, signed_p
, trunc_p
;
7866 bfd_reloc_status_type r
;
7868 /* Perform this reloc, since it is complex.
7869 (this is not to say that it necessarily refers to a complex
7870 symbol; merely that it is a self-describing CGEN based reloc.
7871 i.e. the addend has the complete reloc information (bit start, end,
7872 word size, etc) encoded within it.). */
7874 decode_complex_addend (&start
, &oplen
, &len
, &wordsz
,
7875 &chunksz
, &lsb0_p
, &signed_p
,
7876 &trunc_p
, rel
->r_addend
);
7878 mask
= (((1L << (len
- 1)) - 1) << 1) | 1;
7881 shift
= (start
+ 1) - len
;
7883 shift
= (8 * wordsz
) - (start
+ len
);
7885 /* FIXME: octets_per_byte. */
7886 x
= get_value (wordsz
, chunksz
, input_bfd
, contents
+ rel
->r_offset
);
7889 printf ("Doing complex reloc: "
7890 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7891 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7892 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7893 lsb0_p
, signed_p
, trunc_p
, wordsz
, chunksz
, start
, len
,
7894 oplen
, (unsigned long) x
, (unsigned long) mask
,
7895 (unsigned long) relocation
);
7900 /* Now do an overflow check. */
7901 r
= bfd_check_overflow ((signed_p
7902 ? complain_overflow_signed
7903 : complain_overflow_unsigned
),
7904 len
, 0, (8 * wordsz
),
7908 x
= (x
& ~(mask
<< shift
)) | ((relocation
& mask
) << shift
);
7911 printf (" relocation: %8.8lx\n"
7912 " shifted mask: %8.8lx\n"
7913 " shifted/masked reloc: %8.8lx\n"
7914 " result: %8.8lx\n",
7915 (unsigned long) relocation
, (unsigned long) (mask
<< shift
),
7916 (unsigned long) ((relocation
& mask
) << shift
), (unsigned long) x
);
7918 /* FIXME: octets_per_byte. */
7919 put_value (wordsz
, chunksz
, input_bfd
, x
, contents
+ rel
->r_offset
);
7923 /* When performing a relocatable link, the input relocations are
7924 preserved. But, if they reference global symbols, the indices
7925 referenced must be updated. Update all the relocations found in
7929 elf_link_adjust_relocs (bfd
*abfd
,
7930 struct bfd_elf_section_reloc_data
*reldata
)
7933 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7935 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
7936 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
7937 bfd_vma r_type_mask
;
7939 unsigned int count
= reldata
->count
;
7940 struct elf_link_hash_entry
**rel_hash
= reldata
->hashes
;
7942 if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
7944 swap_in
= bed
->s
->swap_reloc_in
;
7945 swap_out
= bed
->s
->swap_reloc_out
;
7947 else if (reldata
->hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
7949 swap_in
= bed
->s
->swap_reloca_in
;
7950 swap_out
= bed
->s
->swap_reloca_out
;
7955 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
7958 if (bed
->s
->arch_size
== 32)
7965 r_type_mask
= 0xffffffff;
7969 erela
= reldata
->hdr
->contents
;
7970 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= reldata
->hdr
->sh_entsize
)
7972 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
7975 if (*rel_hash
== NULL
)
7978 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
7980 (*swap_in
) (abfd
, erela
, irela
);
7981 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
7982 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
7983 | (irela
[j
].r_info
& r_type_mask
));
7984 (*swap_out
) (abfd
, irela
, erela
);
7988 struct elf_link_sort_rela
7994 enum elf_reloc_type_class type
;
7995 /* We use this as an array of size int_rels_per_ext_rel. */
7996 Elf_Internal_Rela rela
[1];
8000 elf_link_sort_cmp1 (const void *A
, const void *B
)
8002 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8003 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8004 int relativea
, relativeb
;
8006 relativea
= a
->type
== reloc_class_relative
;
8007 relativeb
= b
->type
== reloc_class_relative
;
8009 if (relativea
< relativeb
)
8011 if (relativea
> relativeb
)
8013 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
8015 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
8017 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8019 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8025 elf_link_sort_cmp2 (const void *A
, const void *B
)
8027 const struct elf_link_sort_rela
*a
= (const struct elf_link_sort_rela
*) A
;
8028 const struct elf_link_sort_rela
*b
= (const struct elf_link_sort_rela
*) B
;
8031 if (a
->u
.offset
< b
->u
.offset
)
8033 if (a
->u
.offset
> b
->u
.offset
)
8035 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
8036 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
8041 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
8043 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
8049 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
8051 asection
*dynamic_relocs
;
8054 bfd_size_type count
, size
;
8055 size_t i
, ret
, sort_elt
, ext_size
;
8056 bfd_byte
*sort
, *s_non_relative
, *p
;
8057 struct elf_link_sort_rela
*sq
;
8058 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8059 int i2e
= bed
->s
->int_rels_per_ext_rel
;
8060 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
8061 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
8062 struct bfd_link_order
*lo
;
8064 bfd_boolean use_rela
;
8066 /* Find a dynamic reloc section. */
8067 rela_dyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
8068 rel_dyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
8069 if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0
8070 && rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8072 bfd_boolean use_rela_initialised
= FALSE
;
8074 /* This is just here to stop gcc from complaining.
8075 It's initialization checking code is not perfect. */
8078 /* Both sections are present. Examine the sizes
8079 of the indirect sections to help us choose. */
8080 for (lo
= rela_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8081 if (lo
->type
== bfd_indirect_link_order
)
8083 asection
*o
= lo
->u
.indirect
.section
;
8085 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8087 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8088 /* Section size is divisible by both rel and rela sizes.
8089 It is of no help to us. */
8093 /* Section size is only divisible by rela. */
8094 if (use_rela_initialised
&& (use_rela
== FALSE
))
8097 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8098 bfd_set_error (bfd_error_invalid_operation
);
8104 use_rela_initialised
= TRUE
;
8108 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8110 /* Section size is only divisible by rel. */
8111 if (use_rela_initialised
&& (use_rela
== TRUE
))
8114 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8115 bfd_set_error (bfd_error_invalid_operation
);
8121 use_rela_initialised
= TRUE
;
8126 /* The section size is not divisible by either - something is wrong. */
8128 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8129 bfd_set_error (bfd_error_invalid_operation
);
8134 for (lo
= rel_dyn
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8135 if (lo
->type
== bfd_indirect_link_order
)
8137 asection
*o
= lo
->u
.indirect
.section
;
8139 if ((o
->size
% bed
->s
->sizeof_rela
) == 0)
8141 if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8142 /* Section size is divisible by both rel and rela sizes.
8143 It is of no help to us. */
8147 /* Section size is only divisible by rela. */
8148 if (use_rela_initialised
&& (use_rela
== FALSE
))
8151 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8152 bfd_set_error (bfd_error_invalid_operation
);
8158 use_rela_initialised
= TRUE
;
8162 else if ((o
->size
% bed
->s
->sizeof_rel
) == 0)
8164 /* Section size is only divisible by rel. */
8165 if (use_rela_initialised
&& (use_rela
== TRUE
))
8168 (_("%B: Unable to sort relocs - they are in more than one size"), abfd
);
8169 bfd_set_error (bfd_error_invalid_operation
);
8175 use_rela_initialised
= TRUE
;
8180 /* The section size is not divisible by either - something is wrong. */
8182 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd
);
8183 bfd_set_error (bfd_error_invalid_operation
);
8188 if (! use_rela_initialised
)
8192 else if (rela_dyn
!= NULL
&& rela_dyn
->size
> 0)
8194 else if (rel_dyn
!= NULL
&& rel_dyn
->size
> 0)
8201 dynamic_relocs
= rela_dyn
;
8202 ext_size
= bed
->s
->sizeof_rela
;
8203 swap_in
= bed
->s
->swap_reloca_in
;
8204 swap_out
= bed
->s
->swap_reloca_out
;
8208 dynamic_relocs
= rel_dyn
;
8209 ext_size
= bed
->s
->sizeof_rel
;
8210 swap_in
= bed
->s
->swap_reloc_in
;
8211 swap_out
= bed
->s
->swap_reloc_out
;
8215 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8216 if (lo
->type
== bfd_indirect_link_order
)
8217 size
+= lo
->u
.indirect
.section
->size
;
8219 if (size
!= dynamic_relocs
->size
)
8222 sort_elt
= (sizeof (struct elf_link_sort_rela
)
8223 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
8225 count
= dynamic_relocs
->size
/ ext_size
;
8228 sort
= (bfd_byte
*) bfd_zmalloc (sort_elt
* count
);
8232 (*info
->callbacks
->warning
)
8233 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
8237 if (bed
->s
->arch_size
== 32)
8238 r_sym_mask
= ~(bfd_vma
) 0xff;
8240 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
8242 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8243 if (lo
->type
== bfd_indirect_link_order
)
8245 bfd_byte
*erel
, *erelend
;
8246 asection
*o
= lo
->u
.indirect
.section
;
8248 if (o
->contents
== NULL
&& o
->size
!= 0)
8250 /* This is a reloc section that is being handled as a normal
8251 section. See bfd_section_from_shdr. We can't combine
8252 relocs in this case. */
8257 erelend
= o
->contents
+ o
->size
;
8258 /* FIXME: octets_per_byte. */
8259 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8261 while (erel
< erelend
)
8263 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8265 (*swap_in
) (abfd
, erel
, s
->rela
);
8266 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
8267 s
->u
.sym_mask
= r_sym_mask
;
8273 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
8275 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
8277 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8278 if (s
->type
!= reloc_class_relative
)
8284 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
8285 for (; i
< count
; i
++, p
+= sort_elt
)
8287 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
8288 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
8290 sp
->u
.offset
= sq
->rela
->r_offset
;
8293 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
8295 for (lo
= dynamic_relocs
->map_head
.link_order
; lo
!= NULL
; lo
= lo
->next
)
8296 if (lo
->type
== bfd_indirect_link_order
)
8298 bfd_byte
*erel
, *erelend
;
8299 asection
*o
= lo
->u
.indirect
.section
;
8302 erelend
= o
->contents
+ o
->size
;
8303 /* FIXME: octets_per_byte. */
8304 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
8305 while (erel
< erelend
)
8307 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
8308 (*swap_out
) (abfd
, s
->rela
, erel
);
8315 *psec
= dynamic_relocs
;
8319 /* Flush the output symbols to the file. */
8322 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
8323 const struct elf_backend_data
*bed
)
8325 if (finfo
->symbuf_count
> 0)
8327 Elf_Internal_Shdr
*hdr
;
8331 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
8332 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
8333 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8334 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
8335 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
8338 hdr
->sh_size
+= amt
;
8339 finfo
->symbuf_count
= 0;
8345 /* Add a symbol to the output symbol table. */
8348 elf_link_output_sym (struct elf_final_link_info
*finfo
,
8350 Elf_Internal_Sym
*elfsym
,
8351 asection
*input_sec
,
8352 struct elf_link_hash_entry
*h
)
8355 Elf_External_Sym_Shndx
*destshndx
;
8356 int (*output_symbol_hook
)
8357 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
8358 struct elf_link_hash_entry
*);
8359 const struct elf_backend_data
*bed
;
8361 bed
= get_elf_backend_data (finfo
->output_bfd
);
8362 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
8363 if (output_symbol_hook
!= NULL
)
8365 int ret
= (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
);
8370 if (name
== NULL
|| *name
== '\0')
8371 elfsym
->st_name
= 0;
8372 else if (input_sec
->flags
& SEC_EXCLUDE
)
8373 elfsym
->st_name
= 0;
8376 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
8378 if (elfsym
->st_name
== (unsigned long) -1)
8382 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
8384 if (! elf_link_flush_output_syms (finfo
, bed
))
8388 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
8389 destshndx
= finfo
->symshndxbuf
;
8390 if (destshndx
!= NULL
)
8392 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
8396 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
8397 destshndx
= (Elf_External_Sym_Shndx
*) bfd_realloc (destshndx
,
8399 if (destshndx
== NULL
)
8401 finfo
->symshndxbuf
= destshndx
;
8402 memset ((char *) destshndx
+ amt
, 0, amt
);
8403 finfo
->shndxbuf_size
*= 2;
8405 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
8408 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
8409 finfo
->symbuf_count
+= 1;
8410 bfd_get_symcount (finfo
->output_bfd
) += 1;
8415 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8418 check_dynsym (bfd
*abfd
, Elf_Internal_Sym
*sym
)
8420 if (sym
->st_shndx
>= (SHN_LORESERVE
& 0xffff)
8421 && sym
->st_shndx
< SHN_LORESERVE
)
8423 /* The gABI doesn't support dynamic symbols in output sections
8425 (*_bfd_error_handler
)
8426 (_("%B: Too many sections: %d (>= %d)"),
8427 abfd
, bfd_count_sections (abfd
), SHN_LORESERVE
& 0xffff);
8428 bfd_set_error (bfd_error_nonrepresentable_section
);
8434 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8435 allowing an unsatisfied unversioned symbol in the DSO to match a
8436 versioned symbol that would normally require an explicit version.
8437 We also handle the case that a DSO references a hidden symbol
8438 which may be satisfied by a versioned symbol in another DSO. */
8441 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
8442 const struct elf_backend_data
*bed
,
8443 struct elf_link_hash_entry
*h
)
8446 struct elf_link_loaded_list
*loaded
;
8448 if (!is_elf_hash_table (info
->hash
))
8451 switch (h
->root
.type
)
8457 case bfd_link_hash_undefined
:
8458 case bfd_link_hash_undefweak
:
8459 abfd
= h
->root
.u
.undef
.abfd
;
8460 if ((abfd
->flags
& DYNAMIC
) == 0
8461 || (elf_dyn_lib_class (abfd
) & DYN_DT_NEEDED
) == 0)
8465 case bfd_link_hash_defined
:
8466 case bfd_link_hash_defweak
:
8467 abfd
= h
->root
.u
.def
.section
->owner
;
8470 case bfd_link_hash_common
:
8471 abfd
= h
->root
.u
.c
.p
->section
->owner
;
8474 BFD_ASSERT (abfd
!= NULL
);
8476 for (loaded
= elf_hash_table (info
)->loaded
;
8478 loaded
= loaded
->next
)
8481 Elf_Internal_Shdr
*hdr
;
8482 bfd_size_type symcount
;
8483 bfd_size_type extsymcount
;
8484 bfd_size_type extsymoff
;
8485 Elf_Internal_Shdr
*versymhdr
;
8486 Elf_Internal_Sym
*isym
;
8487 Elf_Internal_Sym
*isymend
;
8488 Elf_Internal_Sym
*isymbuf
;
8489 Elf_External_Versym
*ever
;
8490 Elf_External_Versym
*extversym
;
8492 input
= loaded
->abfd
;
8494 /* We check each DSO for a possible hidden versioned definition. */
8496 || (input
->flags
& DYNAMIC
) == 0
8497 || elf_dynversym (input
) == 0)
8500 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
8502 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8503 if (elf_bad_symtab (input
))
8505 extsymcount
= symcount
;
8510 extsymcount
= symcount
- hdr
->sh_info
;
8511 extsymoff
= hdr
->sh_info
;
8514 if (extsymcount
== 0)
8517 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
8519 if (isymbuf
== NULL
)
8522 /* Read in any version definitions. */
8523 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
8524 extversym
= (Elf_External_Versym
*) bfd_malloc (versymhdr
->sh_size
);
8525 if (extversym
== NULL
)
8528 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
8529 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
8530 != versymhdr
->sh_size
))
8538 ever
= extversym
+ extsymoff
;
8539 isymend
= isymbuf
+ extsymcount
;
8540 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
8543 Elf_Internal_Versym iver
;
8544 unsigned short version_index
;
8546 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
8547 || isym
->st_shndx
== SHN_UNDEF
)
8550 name
= bfd_elf_string_from_elf_section (input
,
8553 if (strcmp (name
, h
->root
.root
.string
) != 0)
8556 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
8558 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
8560 && h
->forced_local
))
8562 /* If we have a non-hidden versioned sym, then it should
8563 have provided a definition for the undefined sym unless
8564 it is defined in a non-shared object and forced local.
8569 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
8570 if (version_index
== 1 || version_index
== 2)
8572 /* This is the base or first version. We can use it. */
8586 /* Add an external symbol to the symbol table. This is called from
8587 the hash table traversal routine. When generating a shared object,
8588 we go through the symbol table twice. The first time we output
8589 anything that might have been forced to local scope in a version
8590 script. The second time we output the symbols that are still
8594 elf_link_output_extsym (struct bfd_hash_entry
*bh
, void *data
)
8596 struct elf_link_hash_entry
*h
= (struct elf_link_hash_entry
*) bh
;
8597 struct elf_outext_info
*eoinfo
= (struct elf_outext_info
*) data
;
8598 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
8600 Elf_Internal_Sym sym
;
8601 asection
*input_sec
;
8602 const struct elf_backend_data
*bed
;
8606 if (h
->root
.type
== bfd_link_hash_warning
)
8608 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8609 if (h
->root
.type
== bfd_link_hash_new
)
8613 /* Decide whether to output this symbol in this pass. */
8614 if (eoinfo
->localsyms
)
8616 if (!h
->forced_local
)
8621 if (h
->forced_local
)
8625 bed
= get_elf_backend_data (finfo
->output_bfd
);
8627 if (h
->root
.type
== bfd_link_hash_undefined
)
8629 /* If we have an undefined symbol reference here then it must have
8630 come from a shared library that is being linked in. (Undefined
8631 references in regular files have already been handled unless
8632 they are in unreferenced sections which are removed by garbage
8634 bfd_boolean ignore_undef
= FALSE
;
8636 /* Some symbols may be special in that the fact that they're
8637 undefined can be safely ignored - let backend determine that. */
8638 if (bed
->elf_backend_ignore_undef_symbol
)
8639 ignore_undef
= bed
->elf_backend_ignore_undef_symbol (h
);
8641 /* If we are reporting errors for this situation then do so now. */
8644 && (!h
->ref_regular
|| finfo
->info
->gc_sections
)
8645 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
8646 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
8648 if (! (finfo
->info
->callbacks
->undefined_symbol
8649 (finfo
->info
, h
->root
.root
.string
,
8650 h
->ref_regular
? NULL
: h
->root
.u
.undef
.abfd
,
8651 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
8653 bfd_set_error (bfd_error_bad_value
);
8654 eoinfo
->failed
= TRUE
;
8660 /* We should also warn if a forced local symbol is referenced from
8661 shared libraries. */
8662 if (!finfo
->info
->relocatable
8663 && finfo
->info
->executable
8669 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
8674 if (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
)
8675 msg
= _("%B: internal symbol `%s' in %B is referenced by DSO");
8676 else if (ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
)
8677 msg
= _("%B: hidden symbol `%s' in %B is referenced by DSO");
8679 msg
= _("%B: local symbol `%s' in %B is referenced by DSO");
8680 def_bfd
= finfo
->output_bfd
;
8681 if (h
->root
.u
.def
.section
!= bfd_abs_section_ptr
)
8682 def_bfd
= h
->root
.u
.def
.section
->owner
;
8683 (*_bfd_error_handler
) (msg
, finfo
->output_bfd
, def_bfd
,
8684 h
->root
.root
.string
);
8685 bfd_set_error (bfd_error_bad_value
);
8686 eoinfo
->failed
= TRUE
;
8690 /* We don't want to output symbols that have never been mentioned by
8691 a regular file, or that we have been told to strip. However, if
8692 h->indx is set to -2, the symbol is used by a reloc and we must
8696 else if ((h
->def_dynamic
8698 || h
->root
.type
== bfd_link_hash_new
)
8702 else if (finfo
->info
->strip
== strip_all
)
8704 else if (finfo
->info
->strip
== strip_some
8705 && bfd_hash_lookup (finfo
->info
->keep_hash
,
8706 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
8708 else if ((h
->root
.type
== bfd_link_hash_defined
8709 || h
->root
.type
== bfd_link_hash_defweak
)
8710 && ((finfo
->info
->strip_discarded
8711 && elf_discarded_section (h
->root
.u
.def
.section
))
8712 || (h
->root
.u
.def
.section
->owner
!= NULL
8713 && (h
->root
.u
.def
.section
->owner
->flags
& BFD_PLUGIN
) != 0)))
8715 else if ((h
->root
.type
== bfd_link_hash_undefined
8716 || h
->root
.type
== bfd_link_hash_undefweak
)
8717 && h
->root
.u
.undef
.abfd
!= NULL
8718 && (h
->root
.u
.undef
.abfd
->flags
& BFD_PLUGIN
) != 0)
8723 /* If we're stripping it, and it's not a dynamic symbol, there's
8724 nothing else to do unless it is a forced local symbol or a
8725 STT_GNU_IFUNC symbol. */
8728 && h
->type
!= STT_GNU_IFUNC
8729 && !h
->forced_local
)
8733 sym
.st_size
= h
->size
;
8734 sym
.st_other
= h
->other
;
8735 if (h
->forced_local
)
8737 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
8738 /* Turn off visibility on local symbol. */
8739 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
8741 else if (h
->unique_global
)
8742 sym
.st_info
= ELF_ST_INFO (STB_GNU_UNIQUE
, h
->type
);
8743 else if (h
->root
.type
== bfd_link_hash_undefweak
8744 || h
->root
.type
== bfd_link_hash_defweak
)
8745 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
8747 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
8748 sym
.st_target_internal
= h
->target_internal
;
8750 switch (h
->root
.type
)
8753 case bfd_link_hash_new
:
8754 case bfd_link_hash_warning
:
8758 case bfd_link_hash_undefined
:
8759 case bfd_link_hash_undefweak
:
8760 input_sec
= bfd_und_section_ptr
;
8761 sym
.st_shndx
= SHN_UNDEF
;
8764 case bfd_link_hash_defined
:
8765 case bfd_link_hash_defweak
:
8767 input_sec
= h
->root
.u
.def
.section
;
8768 if (input_sec
->output_section
!= NULL
)
8771 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
8772 input_sec
->output_section
);
8773 if (sym
.st_shndx
== SHN_BAD
)
8775 (*_bfd_error_handler
)
8776 (_("%B: could not find output section %A for input section %A"),
8777 finfo
->output_bfd
, input_sec
->output_section
, input_sec
);
8778 bfd_set_error (bfd_error_nonrepresentable_section
);
8779 eoinfo
->failed
= TRUE
;
8783 /* ELF symbols in relocatable files are section relative,
8784 but in nonrelocatable files they are virtual
8786 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
8787 if (! finfo
->info
->relocatable
)
8789 sym
.st_value
+= input_sec
->output_section
->vma
;
8790 if (h
->type
== STT_TLS
)
8792 asection
*tls_sec
= elf_hash_table (finfo
->info
)->tls_sec
;
8793 if (tls_sec
!= NULL
)
8794 sym
.st_value
-= tls_sec
->vma
;
8797 /* The TLS section may have been garbage collected. */
8798 BFD_ASSERT (finfo
->info
->gc_sections
8799 && !input_sec
->gc_mark
);
8806 BFD_ASSERT (input_sec
->owner
== NULL
8807 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
8808 sym
.st_shndx
= SHN_UNDEF
;
8809 input_sec
= bfd_und_section_ptr
;
8814 case bfd_link_hash_common
:
8815 input_sec
= h
->root
.u
.c
.p
->section
;
8816 sym
.st_shndx
= bed
->common_section_index (input_sec
);
8817 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
8820 case bfd_link_hash_indirect
:
8821 /* These symbols are created by symbol versioning. They point
8822 to the decorated version of the name. For example, if the
8823 symbol foo@@GNU_1.2 is the default, which should be used when
8824 foo is used with no version, then we add an indirect symbol
8825 foo which points to foo@@GNU_1.2. We ignore these symbols,
8826 since the indirected symbol is already in the hash table. */
8830 /* Give the processor backend a chance to tweak the symbol value,
8831 and also to finish up anything that needs to be done for this
8832 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8833 forced local syms when non-shared is due to a historical quirk.
8834 STT_GNU_IFUNC symbol must go through PLT. */
8835 if ((h
->type
== STT_GNU_IFUNC
8837 && !finfo
->info
->relocatable
)
8838 || ((h
->dynindx
!= -1
8840 && ((finfo
->info
->shared
8841 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8842 || h
->root
.type
!= bfd_link_hash_undefweak
))
8843 || !h
->forced_local
)
8844 && elf_hash_table (finfo
->info
)->dynamic_sections_created
))
8846 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
8847 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
8849 eoinfo
->failed
= TRUE
;
8854 /* If we are marking the symbol as undefined, and there are no
8855 non-weak references to this symbol from a regular object, then
8856 mark the symbol as weak undefined; if there are non-weak
8857 references, mark the symbol as strong. We can't do this earlier,
8858 because it might not be marked as undefined until the
8859 finish_dynamic_symbol routine gets through with it. */
8860 if (sym
.st_shndx
== SHN_UNDEF
8862 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
8863 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
8866 unsigned int type
= ELF_ST_TYPE (sym
.st_info
);
8868 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8869 if (type
== STT_GNU_IFUNC
)
8872 if (h
->ref_regular_nonweak
)
8873 bindtype
= STB_GLOBAL
;
8875 bindtype
= STB_WEAK
;
8876 sym
.st_info
= ELF_ST_INFO (bindtype
, type
);
8879 /* If this is a symbol defined in a dynamic library, don't use the
8880 symbol size from the dynamic library. Relinking an executable
8881 against a new library may introduce gratuitous changes in the
8882 executable's symbols if we keep the size. */
8883 if (sym
.st_shndx
== SHN_UNDEF
8888 /* If a non-weak symbol with non-default visibility is not defined
8889 locally, it is a fatal error. */
8890 if (! finfo
->info
->relocatable
8891 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
8892 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
8893 && h
->root
.type
== bfd_link_hash_undefined
8898 if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
)
8899 msg
= _("%B: protected symbol `%s' isn't defined");
8900 else if (ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
)
8901 msg
= _("%B: internal symbol `%s' isn't defined");
8903 msg
= _("%B: hidden symbol `%s' isn't defined");
8904 (*_bfd_error_handler
) (msg
, finfo
->output_bfd
, h
->root
.root
.string
);
8905 bfd_set_error (bfd_error_bad_value
);
8906 eoinfo
->failed
= TRUE
;
8910 /* If this symbol should be put in the .dynsym section, then put it
8911 there now. We already know the symbol index. We also fill in
8912 the entry in the .hash section. */
8913 if (h
->dynindx
!= -1
8914 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
8918 sym
.st_name
= h
->dynstr_index
;
8919 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
8920 if (! check_dynsym (finfo
->output_bfd
, &sym
))
8922 eoinfo
->failed
= TRUE
;
8925 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
8927 if (finfo
->hash_sec
!= NULL
)
8929 size_t hash_entry_size
;
8930 bfd_byte
*bucketpos
;
8935 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
8936 bucket
= h
->u
.elf_hash_value
% bucketcount
;
8939 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
8940 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
8941 + (bucket
+ 2) * hash_entry_size
);
8942 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
8943 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
8944 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
8945 ((bfd_byte
*) finfo
->hash_sec
->contents
8946 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
8949 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
8951 Elf_Internal_Versym iversym
;
8952 Elf_External_Versym
*eversym
;
8954 if (!h
->def_regular
)
8956 if (h
->verinfo
.verdef
== NULL
)
8957 iversym
.vs_vers
= 0;
8959 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
8963 if (h
->verinfo
.vertree
== NULL
)
8964 iversym
.vs_vers
= 1;
8966 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
8967 if (finfo
->info
->create_default_symver
)
8972 iversym
.vs_vers
|= VERSYM_HIDDEN
;
8974 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
8975 eversym
+= h
->dynindx
;
8976 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
8980 /* If we're stripping it, then it was just a dynamic symbol, and
8981 there's nothing else to do. */
8982 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
8985 indx
= bfd_get_symcount (finfo
->output_bfd
);
8986 ret
= elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
);
8989 eoinfo
->failed
= TRUE
;
8994 else if (h
->indx
== -2)
9000 /* Return TRUE if special handling is done for relocs in SEC against
9001 symbols defined in discarded sections. */
9004 elf_section_ignore_discarded_relocs (asection
*sec
)
9006 const struct elf_backend_data
*bed
;
9008 switch (sec
->sec_info_type
)
9010 case ELF_INFO_TYPE_STABS
:
9011 case ELF_INFO_TYPE_EH_FRAME
:
9017 bed
= get_elf_backend_data (sec
->owner
);
9018 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
9019 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
9025 /* Return a mask saying how ld should treat relocations in SEC against
9026 symbols defined in discarded sections. If this function returns
9027 COMPLAIN set, ld will issue a warning message. If this function
9028 returns PRETEND set, and the discarded section was link-once and the
9029 same size as the kept link-once section, ld will pretend that the
9030 symbol was actually defined in the kept section. Otherwise ld will
9031 zero the reloc (at least that is the intent, but some cooperation by
9032 the target dependent code is needed, particularly for REL targets). */
9035 _bfd_elf_default_action_discarded (asection
*sec
)
9037 if (sec
->flags
& SEC_DEBUGGING
)
9040 if (strcmp (".eh_frame", sec
->name
) == 0)
9043 if (strcmp (".gcc_except_table", sec
->name
) == 0)
9046 return COMPLAIN
| PRETEND
;
9049 /* Find a match between a section and a member of a section group. */
9052 match_group_member (asection
*sec
, asection
*group
,
9053 struct bfd_link_info
*info
)
9055 asection
*first
= elf_next_in_group (group
);
9056 asection
*s
= first
;
9060 if (bfd_elf_match_symbols_in_sections (s
, sec
, info
))
9063 s
= elf_next_in_group (s
);
9071 /* Check if the kept section of a discarded section SEC can be used
9072 to replace it. Return the replacement if it is OK. Otherwise return
9076 _bfd_elf_check_kept_section (asection
*sec
, struct bfd_link_info
*info
)
9080 kept
= sec
->kept_section
;
9083 if ((kept
->flags
& SEC_GROUP
) != 0)
9084 kept
= match_group_member (sec
, kept
, info
);
9086 && ((sec
->rawsize
!= 0 ? sec
->rawsize
: sec
->size
)
9087 != (kept
->rawsize
!= 0 ? kept
->rawsize
: kept
->size
)))
9089 sec
->kept_section
= kept
;
9094 /* Link an input file into the linker output file. This function
9095 handles all the sections and relocations of the input file at once.
9096 This is so that we only have to read the local symbols once, and
9097 don't have to keep them in memory. */
9100 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
9102 int (*relocate_section
)
9103 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
9104 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
9106 Elf_Internal_Shdr
*symtab_hdr
;
9109 Elf_Internal_Sym
*isymbuf
;
9110 Elf_Internal_Sym
*isym
;
9111 Elf_Internal_Sym
*isymend
;
9113 asection
**ppsection
;
9115 const struct elf_backend_data
*bed
;
9116 struct elf_link_hash_entry
**sym_hashes
;
9117 bfd_size_type address_size
;
9118 bfd_vma r_type_mask
;
9121 output_bfd
= finfo
->output_bfd
;
9122 bed
= get_elf_backend_data (output_bfd
);
9123 relocate_section
= bed
->elf_backend_relocate_section
;
9125 /* If this is a dynamic object, we don't want to do anything here:
9126 we don't want the local symbols, and we don't want the section
9128 if ((input_bfd
->flags
& DYNAMIC
) != 0)
9131 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9132 if (elf_bad_symtab (input_bfd
))
9134 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
9139 locsymcount
= symtab_hdr
->sh_info
;
9140 extsymoff
= symtab_hdr
->sh_info
;
9143 /* Read the local symbols. */
9144 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
9145 if (isymbuf
== NULL
&& locsymcount
!= 0)
9147 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
9148 finfo
->internal_syms
,
9149 finfo
->external_syms
,
9150 finfo
->locsym_shndx
);
9151 if (isymbuf
== NULL
)
9155 /* Find local symbol sections and adjust values of symbols in
9156 SEC_MERGE sections. Write out those local symbols we know are
9157 going into the output file. */
9158 isymend
= isymbuf
+ locsymcount
;
9159 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
9161 isym
++, pindex
++, ppsection
++)
9165 Elf_Internal_Sym osym
;
9171 if (elf_bad_symtab (input_bfd
))
9173 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
9180 if (isym
->st_shndx
== SHN_UNDEF
)
9181 isec
= bfd_und_section_ptr
;
9182 else if (isym
->st_shndx
== SHN_ABS
)
9183 isec
= bfd_abs_section_ptr
;
9184 else if (isym
->st_shndx
== SHN_COMMON
)
9185 isec
= bfd_com_section_ptr
;
9188 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
9191 /* Don't attempt to output symbols with st_shnx in the
9192 reserved range other than SHN_ABS and SHN_COMMON. */
9196 else if (isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
9197 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
9199 _bfd_merged_section_offset (output_bfd
, &isec
,
9200 elf_section_data (isec
)->sec_info
,
9206 /* Don't output the first, undefined, symbol. */
9207 if (ppsection
== finfo
->sections
)
9210 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
9212 /* We never output section symbols. Instead, we use the
9213 section symbol of the corresponding section in the output
9218 /* If we are stripping all symbols, we don't want to output this
9220 if (finfo
->info
->strip
== strip_all
)
9223 /* If we are discarding all local symbols, we don't want to
9224 output this one. If we are generating a relocatable output
9225 file, then some of the local symbols may be required by
9226 relocs; we output them below as we discover that they are
9228 if (finfo
->info
->discard
== discard_all
)
9231 /* If this symbol is defined in a section which we are
9232 discarding, we don't need to keep it. */
9233 if (isym
->st_shndx
!= SHN_UNDEF
9234 && isym
->st_shndx
< SHN_LORESERVE
9235 && bfd_section_removed_from_list (output_bfd
,
9236 isec
->output_section
))
9239 /* Get the name of the symbol. */
9240 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
9245 /* See if we are discarding symbols with this name. */
9246 if ((finfo
->info
->strip
== strip_some
9247 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
9249 || (((finfo
->info
->discard
== discard_sec_merge
9250 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
9251 || finfo
->info
->discard
== discard_l
)
9252 && bfd_is_local_label_name (input_bfd
, name
)))
9257 /* Adjust the section index for the output file. */
9258 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9259 isec
->output_section
);
9260 if (osym
.st_shndx
== SHN_BAD
)
9263 /* ELF symbols in relocatable files are section relative, but
9264 in executable files they are virtual addresses. Note that
9265 this code assumes that all ELF sections have an associated
9266 BFD section with a reasonable value for output_offset; below
9267 we assume that they also have a reasonable value for
9268 output_section. Any special sections must be set up to meet
9269 these requirements. */
9270 osym
.st_value
+= isec
->output_offset
;
9271 if (! finfo
->info
->relocatable
)
9273 osym
.st_value
+= isec
->output_section
->vma
;
9274 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
9276 /* STT_TLS symbols are relative to PT_TLS segment base. */
9277 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
9278 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
9282 indx
= bfd_get_symcount (output_bfd
);
9283 ret
= elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
);
9290 if (bed
->s
->arch_size
== 32)
9298 r_type_mask
= 0xffffffff;
9303 /* Relocate the contents of each section. */
9304 sym_hashes
= elf_sym_hashes (input_bfd
);
9305 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
9309 if (! o
->linker_mark
)
9311 /* This section was omitted from the link. */
9315 if (finfo
->info
->relocatable
9316 && (o
->flags
& (SEC_LINKER_CREATED
| SEC_GROUP
)) == SEC_GROUP
)
9318 /* Deal with the group signature symbol. */
9319 struct bfd_elf_section_data
*sec_data
= elf_section_data (o
);
9320 unsigned long symndx
= sec_data
->this_hdr
.sh_info
;
9321 asection
*osec
= o
->output_section
;
9323 if (symndx
>= locsymcount
9324 || (elf_bad_symtab (input_bfd
)
9325 && finfo
->sections
[symndx
] == NULL
))
9327 struct elf_link_hash_entry
*h
= sym_hashes
[symndx
- extsymoff
];
9328 while (h
->root
.type
== bfd_link_hash_indirect
9329 || h
->root
.type
== bfd_link_hash_warning
)
9330 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9331 /* Arrange for symbol to be output. */
9333 elf_section_data (osec
)->this_hdr
.sh_info
= -2;
9335 else if (ELF_ST_TYPE (isymbuf
[symndx
].st_info
) == STT_SECTION
)
9337 /* We'll use the output section target_index. */
9338 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9339 elf_section_data (osec
)->this_hdr
.sh_info
= sec
->target_index
;
9343 if (finfo
->indices
[symndx
] == -1)
9345 /* Otherwise output the local symbol now. */
9346 Elf_Internal_Sym sym
= isymbuf
[symndx
];
9347 asection
*sec
= finfo
->sections
[symndx
]->output_section
;
9352 name
= bfd_elf_string_from_elf_section (input_bfd
,
9353 symtab_hdr
->sh_link
,
9358 sym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
9360 if (sym
.st_shndx
== SHN_BAD
)
9363 sym
.st_value
+= o
->output_offset
;
9365 indx
= bfd_get_symcount (output_bfd
);
9366 ret
= elf_link_output_sym (finfo
, name
, &sym
, o
, NULL
);
9370 finfo
->indices
[symndx
] = indx
;
9374 elf_section_data (osec
)->this_hdr
.sh_info
9375 = finfo
->indices
[symndx
];
9379 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
9380 || (o
->size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
9383 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
9385 /* Section was created by _bfd_elf_link_create_dynamic_sections
9390 /* Get the contents of the section. They have been cached by a
9391 relaxation routine. Note that o is a section in an input
9392 file, so the contents field will not have been set by any of
9393 the routines which work on output files. */
9394 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
9395 contents
= elf_section_data (o
)->this_hdr
.contents
;
9398 contents
= finfo
->contents
;
9399 if (! bfd_get_full_section_contents (input_bfd
, o
, &contents
))
9403 if ((o
->flags
& SEC_RELOC
) != 0)
9405 Elf_Internal_Rela
*internal_relocs
;
9406 Elf_Internal_Rela
*rel
, *relend
;
9407 int action_discarded
;
9410 /* Get the swapped relocs. */
9412 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
9413 finfo
->internal_relocs
, FALSE
);
9414 if (internal_relocs
== NULL
9415 && o
->reloc_count
> 0)
9418 /* We need to reverse-copy input .ctors/.dtors sections if
9419 they are placed in .init_array/.finit_array for output. */
9420 if (o
->size
> address_size
9421 && ((strncmp (o
->name
, ".ctors", 6) == 0
9422 && strcmp (o
->output_section
->name
,
9423 ".init_array") == 0)
9424 || (strncmp (o
->name
, ".dtors", 6) == 0
9425 && strcmp (o
->output_section
->name
,
9426 ".fini_array") == 0))
9427 && (o
->name
[6] == 0 || o
->name
[6] == '.'))
9429 if (o
->size
!= o
->reloc_count
* address_size
)
9431 (*_bfd_error_handler
)
9432 (_("error: %B: size of section %A is not "
9433 "multiple of address size"),
9435 bfd_set_error (bfd_error_on_input
);
9438 o
->flags
|= SEC_ELF_REVERSE_COPY
;
9441 action_discarded
= -1;
9442 if (!elf_section_ignore_discarded_relocs (o
))
9443 action_discarded
= (*bed
->action_discarded
) (o
);
9445 /* Run through the relocs evaluating complex reloc symbols and
9446 looking for relocs against symbols from discarded sections
9447 or section symbols from removed link-once sections.
9448 Complain about relocs against discarded sections. Zero
9449 relocs against removed link-once sections. */
9451 rel
= internal_relocs
;
9452 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9453 for ( ; rel
< relend
; rel
++)
9455 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
9456 unsigned int s_type
;
9457 asection
**ps
, *sec
;
9458 struct elf_link_hash_entry
*h
= NULL
;
9459 const char *sym_name
;
9461 if (r_symndx
== STN_UNDEF
)
9464 if (r_symndx
>= locsymcount
9465 || (elf_bad_symtab (input_bfd
)
9466 && finfo
->sections
[r_symndx
] == NULL
))
9468 h
= sym_hashes
[r_symndx
- extsymoff
];
9470 /* Badly formatted input files can contain relocs that
9471 reference non-existant symbols. Check here so that
9472 we do not seg fault. */
9477 sprintf_vma (buffer
, rel
->r_info
);
9478 (*_bfd_error_handler
)
9479 (_("error: %B contains a reloc (0x%s) for section %A "
9480 "that references a non-existent global symbol"),
9481 input_bfd
, o
, buffer
);
9482 bfd_set_error (bfd_error_bad_value
);
9486 while (h
->root
.type
== bfd_link_hash_indirect
9487 || h
->root
.type
== bfd_link_hash_warning
)
9488 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9493 if (h
->root
.type
== bfd_link_hash_defined
9494 || h
->root
.type
== bfd_link_hash_defweak
)
9495 ps
= &h
->root
.u
.def
.section
;
9497 sym_name
= h
->root
.root
.string
;
9501 Elf_Internal_Sym
*sym
= isymbuf
+ r_symndx
;
9503 s_type
= ELF_ST_TYPE (sym
->st_info
);
9504 ps
= &finfo
->sections
[r_symndx
];
9505 sym_name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9509 if ((s_type
== STT_RELC
|| s_type
== STT_SRELC
)
9510 && !finfo
->info
->relocatable
)
9513 bfd_vma dot
= (rel
->r_offset
9514 + o
->output_offset
+ o
->output_section
->vma
);
9516 printf ("Encountered a complex symbol!");
9517 printf (" (input_bfd %s, section %s, reloc %ld\n",
9518 input_bfd
->filename
, o
->name
,
9519 (long) (rel
- internal_relocs
));
9520 printf (" symbol: idx %8.8lx, name %s\n",
9521 r_symndx
, sym_name
);
9522 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9523 (unsigned long) rel
->r_info
,
9524 (unsigned long) rel
->r_offset
);
9526 if (!eval_symbol (&val
, &sym_name
, input_bfd
, finfo
, dot
,
9527 isymbuf
, locsymcount
, s_type
== STT_SRELC
))
9530 /* Symbol evaluated OK. Update to absolute value. */
9531 set_symbol_value (input_bfd
, isymbuf
, locsymcount
,
9536 if (action_discarded
!= -1 && ps
!= NULL
)
9538 /* Complain if the definition comes from a
9539 discarded section. */
9540 if ((sec
= *ps
) != NULL
&& elf_discarded_section (sec
))
9542 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
9543 if (action_discarded
& COMPLAIN
)
9544 (*finfo
->info
->callbacks
->einfo
)
9545 (_("%X`%s' referenced in section `%A' of %B: "
9546 "defined in discarded section `%A' of %B\n"),
9547 sym_name
, o
, input_bfd
, sec
, sec
->owner
);
9549 /* Try to do the best we can to support buggy old
9550 versions of gcc. Pretend that the symbol is
9551 really defined in the kept linkonce section.
9552 FIXME: This is quite broken. Modifying the
9553 symbol here means we will be changing all later
9554 uses of the symbol, not just in this section. */
9555 if (action_discarded
& PRETEND
)
9559 kept
= _bfd_elf_check_kept_section (sec
,
9571 /* Relocate the section by invoking a back end routine.
9573 The back end routine is responsible for adjusting the
9574 section contents as necessary, and (if using Rela relocs
9575 and generating a relocatable output file) adjusting the
9576 reloc addend as necessary.
9578 The back end routine does not have to worry about setting
9579 the reloc address or the reloc symbol index.
9581 The back end routine is given a pointer to the swapped in
9582 internal symbols, and can access the hash table entries
9583 for the external symbols via elf_sym_hashes (input_bfd).
9585 When generating relocatable output, the back end routine
9586 must handle STB_LOCAL/STT_SECTION symbols specially. The
9587 output symbol is going to be a section symbol
9588 corresponding to the output section, which will require
9589 the addend to be adjusted. */
9591 ret
= (*relocate_section
) (output_bfd
, finfo
->info
,
9592 input_bfd
, o
, contents
,
9600 || finfo
->info
->relocatable
9601 || finfo
->info
->emitrelocations
)
9603 Elf_Internal_Rela
*irela
;
9604 Elf_Internal_Rela
*irelaend
, *irelamid
;
9605 bfd_vma last_offset
;
9606 struct elf_link_hash_entry
**rel_hash
;
9607 struct elf_link_hash_entry
**rel_hash_list
, **rela_hash_list
;
9608 Elf_Internal_Shdr
*input_rel_hdr
, *input_rela_hdr
;
9609 unsigned int next_erel
;
9610 bfd_boolean rela_normal
;
9611 struct bfd_elf_section_data
*esdi
, *esdo
;
9613 esdi
= elf_section_data (o
);
9614 esdo
= elf_section_data (o
->output_section
);
9615 rela_normal
= FALSE
;
9617 /* Adjust the reloc addresses and symbol indices. */
9619 irela
= internal_relocs
;
9620 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9621 rel_hash
= esdo
->rel
.hashes
+ esdo
->rel
.count
;
9622 /* We start processing the REL relocs, if any. When we reach
9623 IRELAMID in the loop, we switch to the RELA relocs. */
9625 if (esdi
->rel
.hdr
!= NULL
)
9626 irelamid
+= (NUM_SHDR_ENTRIES (esdi
->rel
.hdr
)
9627 * bed
->s
->int_rels_per_ext_rel
);
9628 rel_hash_list
= rel_hash
;
9629 rela_hash_list
= NULL
;
9630 last_offset
= o
->output_offset
;
9631 if (!finfo
->info
->relocatable
)
9632 last_offset
+= o
->output_section
->vma
;
9633 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
9635 unsigned long r_symndx
;
9637 Elf_Internal_Sym sym
;
9639 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
9645 if (irela
== irelamid
)
9647 rel_hash
= esdo
->rela
.hashes
+ esdo
->rela
.count
;
9648 rela_hash_list
= rel_hash
;
9649 rela_normal
= bed
->rela_normal
;
9652 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
9655 if (irela
->r_offset
>= (bfd_vma
) -2)
9657 /* This is a reloc for a deleted entry or somesuch.
9658 Turn it into an R_*_NONE reloc, at the same
9659 offset as the last reloc. elf_eh_frame.c and
9660 bfd_elf_discard_info rely on reloc offsets
9662 irela
->r_offset
= last_offset
;
9664 irela
->r_addend
= 0;
9668 irela
->r_offset
+= o
->output_offset
;
9670 /* Relocs in an executable have to be virtual addresses. */
9671 if (!finfo
->info
->relocatable
)
9672 irela
->r_offset
+= o
->output_section
->vma
;
9674 last_offset
= irela
->r_offset
;
9676 r_symndx
= irela
->r_info
>> r_sym_shift
;
9677 if (r_symndx
== STN_UNDEF
)
9680 if (r_symndx
>= locsymcount
9681 || (elf_bad_symtab (input_bfd
)
9682 && finfo
->sections
[r_symndx
] == NULL
))
9684 struct elf_link_hash_entry
*rh
;
9687 /* This is a reloc against a global symbol. We
9688 have not yet output all the local symbols, so
9689 we do not know the symbol index of any global
9690 symbol. We set the rel_hash entry for this
9691 reloc to point to the global hash table entry
9692 for this symbol. The symbol index is then
9693 set at the end of bfd_elf_final_link. */
9694 indx
= r_symndx
- extsymoff
;
9695 rh
= elf_sym_hashes (input_bfd
)[indx
];
9696 while (rh
->root
.type
== bfd_link_hash_indirect
9697 || rh
->root
.type
== bfd_link_hash_warning
)
9698 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
9700 /* Setting the index to -2 tells
9701 elf_link_output_extsym that this symbol is
9703 BFD_ASSERT (rh
->indx
< 0);
9711 /* This is a reloc against a local symbol. */
9714 sym
= isymbuf
[r_symndx
];
9715 sec
= finfo
->sections
[r_symndx
];
9716 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
9718 /* I suppose the backend ought to fill in the
9719 section of any STT_SECTION symbol against a
9720 processor specific section. */
9721 r_symndx
= STN_UNDEF
;
9722 if (bfd_is_abs_section (sec
))
9724 else if (sec
== NULL
|| sec
->owner
== NULL
)
9726 bfd_set_error (bfd_error_bad_value
);
9731 asection
*osec
= sec
->output_section
;
9733 /* If we have discarded a section, the output
9734 section will be the absolute section. In
9735 case of discarded SEC_MERGE sections, use
9736 the kept section. relocate_section should
9737 have already handled discarded linkonce
9739 if (bfd_is_abs_section (osec
)
9740 && sec
->kept_section
!= NULL
9741 && sec
->kept_section
->output_section
!= NULL
)
9743 osec
= sec
->kept_section
->output_section
;
9744 irela
->r_addend
-= osec
->vma
;
9747 if (!bfd_is_abs_section (osec
))
9749 r_symndx
= osec
->target_index
;
9750 if (r_symndx
== STN_UNDEF
)
9752 struct elf_link_hash_table
*htab
;
9755 htab
= elf_hash_table (finfo
->info
);
9756 oi
= htab
->text_index_section
;
9757 if ((osec
->flags
& SEC_READONLY
) == 0
9758 && htab
->data_index_section
!= NULL
)
9759 oi
= htab
->data_index_section
;
9763 irela
->r_addend
+= osec
->vma
- oi
->vma
;
9764 r_symndx
= oi
->target_index
;
9768 BFD_ASSERT (r_symndx
!= STN_UNDEF
);
9772 /* Adjust the addend according to where the
9773 section winds up in the output section. */
9775 irela
->r_addend
+= sec
->output_offset
;
9779 if (finfo
->indices
[r_symndx
] == -1)
9781 unsigned long shlink
;
9786 if (finfo
->info
->strip
== strip_all
)
9788 /* You can't do ld -r -s. */
9789 bfd_set_error (bfd_error_invalid_operation
);
9793 /* This symbol was skipped earlier, but
9794 since it is needed by a reloc, we
9795 must output it now. */
9796 shlink
= symtab_hdr
->sh_link
;
9797 name
= (bfd_elf_string_from_elf_section
9798 (input_bfd
, shlink
, sym
.st_name
));
9802 osec
= sec
->output_section
;
9804 _bfd_elf_section_from_bfd_section (output_bfd
,
9806 if (sym
.st_shndx
== SHN_BAD
)
9809 sym
.st_value
+= sec
->output_offset
;
9810 if (! finfo
->info
->relocatable
)
9812 sym
.st_value
+= osec
->vma
;
9813 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
9815 /* STT_TLS symbols are relative to PT_TLS
9817 BFD_ASSERT (elf_hash_table (finfo
->info
)
9819 sym
.st_value
-= (elf_hash_table (finfo
->info
)
9824 indx
= bfd_get_symcount (output_bfd
);
9825 ret
= elf_link_output_sym (finfo
, name
, &sym
, sec
,
9830 finfo
->indices
[r_symndx
] = indx
;
9835 r_symndx
= finfo
->indices
[r_symndx
];
9838 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
9839 | (irela
->r_info
& r_type_mask
));
9842 /* Swap out the relocs. */
9843 input_rel_hdr
= esdi
->rel
.hdr
;
9844 if (input_rel_hdr
&& input_rel_hdr
->sh_size
!= 0)
9846 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9851 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
9852 * bed
->s
->int_rels_per_ext_rel
);
9853 rel_hash_list
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
9856 input_rela_hdr
= esdi
->rela
.hdr
;
9857 if (input_rela_hdr
&& input_rela_hdr
->sh_size
!= 0)
9859 if (!bed
->elf_backend_emit_relocs (output_bfd
, o
,
9868 /* Write out the modified section contents. */
9869 if (bed
->elf_backend_write_section
9870 && (*bed
->elf_backend_write_section
) (output_bfd
, finfo
->info
, o
,
9873 /* Section written out. */
9875 else switch (o
->sec_info_type
)
9877 case ELF_INFO_TYPE_STABS
:
9878 if (! (_bfd_write_section_stabs
9880 &elf_hash_table (finfo
->info
)->stab_info
,
9881 o
, &elf_section_data (o
)->sec_info
, contents
)))
9884 case ELF_INFO_TYPE_MERGE
:
9885 if (! _bfd_write_merged_section (output_bfd
, o
,
9886 elf_section_data (o
)->sec_info
))
9889 case ELF_INFO_TYPE_EH_FRAME
:
9891 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
9898 /* FIXME: octets_per_byte. */
9899 if (! (o
->flags
& SEC_EXCLUDE
))
9901 file_ptr offset
= (file_ptr
) o
->output_offset
;
9902 bfd_size_type todo
= o
->size
;
9903 if ((o
->flags
& SEC_ELF_REVERSE_COPY
))
9905 /* Reverse-copy input section to output. */
9908 todo
-= address_size
;
9909 if (! bfd_set_section_contents (output_bfd
,
9917 offset
+= address_size
;
9921 else if (! bfd_set_section_contents (output_bfd
,
9935 /* Generate a reloc when linking an ELF file. This is a reloc
9936 requested by the linker, and does not come from any input file. This
9937 is used to build constructor and destructor tables when linking
9941 elf_reloc_link_order (bfd
*output_bfd
,
9942 struct bfd_link_info
*info
,
9943 asection
*output_section
,
9944 struct bfd_link_order
*link_order
)
9946 reloc_howto_type
*howto
;
9950 struct bfd_elf_section_reloc_data
*reldata
;
9951 struct elf_link_hash_entry
**rel_hash_ptr
;
9952 Elf_Internal_Shdr
*rel_hdr
;
9953 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
9954 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
9957 struct bfd_elf_section_data
*esdo
= elf_section_data (output_section
);
9959 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
9962 bfd_set_error (bfd_error_bad_value
);
9966 addend
= link_order
->u
.reloc
.p
->addend
;
9969 reldata
= &esdo
->rel
;
9970 else if (esdo
->rela
.hdr
)
9971 reldata
= &esdo
->rela
;
9978 /* Figure out the symbol index. */
9979 rel_hash_ptr
= reldata
->hashes
+ reldata
->count
;
9980 if (link_order
->type
== bfd_section_reloc_link_order
)
9982 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
9983 BFD_ASSERT (indx
!= 0);
9984 *rel_hash_ptr
= NULL
;
9988 struct elf_link_hash_entry
*h
;
9990 /* Treat a reloc against a defined symbol as though it were
9991 actually against the section. */
9992 h
= ((struct elf_link_hash_entry
*)
9993 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
9994 link_order
->u
.reloc
.p
->u
.name
,
9995 FALSE
, FALSE
, TRUE
));
9997 && (h
->root
.type
== bfd_link_hash_defined
9998 || h
->root
.type
== bfd_link_hash_defweak
))
10002 section
= h
->root
.u
.def
.section
;
10003 indx
= section
->output_section
->target_index
;
10004 *rel_hash_ptr
= NULL
;
10005 /* It seems that we ought to add the symbol value to the
10006 addend here, but in practice it has already been added
10007 because it was passed to constructor_callback. */
10008 addend
+= section
->output_section
->vma
+ section
->output_offset
;
10010 else if (h
!= NULL
)
10012 /* Setting the index to -2 tells elf_link_output_extsym that
10013 this symbol is used by a reloc. */
10020 if (! ((*info
->callbacks
->unattached_reloc
)
10021 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
10027 /* If this is an inplace reloc, we must write the addend into the
10029 if (howto
->partial_inplace
&& addend
!= 0)
10031 bfd_size_type size
;
10032 bfd_reloc_status_type rstat
;
10035 const char *sym_name
;
10037 size
= (bfd_size_type
) bfd_get_reloc_size (howto
);
10038 buf
= (bfd_byte
*) bfd_zmalloc (size
);
10041 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
10048 case bfd_reloc_outofrange
:
10051 case bfd_reloc_overflow
:
10052 if (link_order
->type
== bfd_section_reloc_link_order
)
10053 sym_name
= bfd_section_name (output_bfd
,
10054 link_order
->u
.reloc
.p
->u
.section
);
10056 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
10057 if (! ((*info
->callbacks
->reloc_overflow
)
10058 (info
, NULL
, sym_name
, howto
->name
, addend
, NULL
,
10059 NULL
, (bfd_vma
) 0)))
10066 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
10067 link_order
->offset
, size
);
10073 /* The address of a reloc is relative to the section in a
10074 relocatable file, and is a virtual address in an executable
10076 offset
= link_order
->offset
;
10077 if (! info
->relocatable
)
10078 offset
+= output_section
->vma
;
10080 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
10082 irel
[i
].r_offset
= offset
;
10083 irel
[i
].r_info
= 0;
10084 irel
[i
].r_addend
= 0;
10086 if (bed
->s
->arch_size
== 32)
10087 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
10089 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
10091 rel_hdr
= reldata
->hdr
;
10092 erel
= rel_hdr
->contents
;
10093 if (rel_hdr
->sh_type
== SHT_REL
)
10095 erel
+= reldata
->count
* bed
->s
->sizeof_rel
;
10096 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
10100 irel
[0].r_addend
= addend
;
10101 erel
+= reldata
->count
* bed
->s
->sizeof_rela
;
10102 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
10111 /* Get the output vma of the section pointed to by the sh_link field. */
10114 elf_get_linked_section_vma (struct bfd_link_order
*p
)
10116 Elf_Internal_Shdr
**elf_shdrp
;
10120 s
= p
->u
.indirect
.section
;
10121 elf_shdrp
= elf_elfsections (s
->owner
);
10122 elfsec
= _bfd_elf_section_from_bfd_section (s
->owner
, s
);
10123 elfsec
= elf_shdrp
[elfsec
]->sh_link
;
10125 The Intel C compiler generates SHT_IA_64_UNWIND with
10126 SHF_LINK_ORDER. But it doesn't set the sh_link or
10127 sh_info fields. Hence we could get the situation
10128 where elfsec is 0. */
10131 const struct elf_backend_data
*bed
10132 = get_elf_backend_data (s
->owner
);
10133 if (bed
->link_order_error_handler
)
10134 bed
->link_order_error_handler
10135 (_("%B: warning: sh_link not set for section `%A'"), s
->owner
, s
);
10140 s
= elf_shdrp
[elfsec
]->bfd_section
;
10141 return s
->output_section
->vma
+ s
->output_offset
;
10146 /* Compare two sections based on the locations of the sections they are
10147 linked to. Used by elf_fixup_link_order. */
10150 compare_link_order (const void * a
, const void * b
)
10155 apos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)a
);
10156 bpos
= elf_get_linked_section_vma (*(struct bfd_link_order
**)b
);
10159 return apos
> bpos
;
10163 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10164 order as their linked sections. Returns false if this could not be done
10165 because an output section includes both ordered and unordered
10166 sections. Ideally we'd do this in the linker proper. */
10169 elf_fixup_link_order (bfd
*abfd
, asection
*o
)
10171 int seen_linkorder
;
10174 struct bfd_link_order
*p
;
10176 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10178 struct bfd_link_order
**sections
;
10179 asection
*s
, *other_sec
, *linkorder_sec
;
10183 linkorder_sec
= NULL
;
10185 seen_linkorder
= 0;
10186 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10188 if (p
->type
== bfd_indirect_link_order
)
10190 s
= p
->u
.indirect
.section
;
10192 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10193 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
10194 && (elfsec
= _bfd_elf_section_from_bfd_section (sub
, s
))
10195 && elfsec
< elf_numsections (sub
)
10196 && elf_elfsections (sub
)[elfsec
]->sh_flags
& SHF_LINK_ORDER
10197 && elf_elfsections (sub
)[elfsec
]->sh_link
< elf_numsections (sub
))
10211 if (seen_other
&& seen_linkorder
)
10213 if (other_sec
&& linkorder_sec
)
10214 (*_bfd_error_handler
) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10216 linkorder_sec
->owner
, other_sec
,
10219 (*_bfd_error_handler
) (_("%A has both ordered and unordered sections"),
10221 bfd_set_error (bfd_error_bad_value
);
10226 if (!seen_linkorder
)
10229 sections
= (struct bfd_link_order
**)
10230 bfd_malloc (seen_linkorder
* sizeof (struct bfd_link_order
*));
10231 if (sections
== NULL
)
10233 seen_linkorder
= 0;
10235 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10237 sections
[seen_linkorder
++] = p
;
10239 /* Sort the input sections in the order of their linked section. */
10240 qsort (sections
, seen_linkorder
, sizeof (struct bfd_link_order
*),
10241 compare_link_order
);
10243 /* Change the offsets of the sections. */
10245 for (n
= 0; n
< seen_linkorder
; n
++)
10247 s
= sections
[n
]->u
.indirect
.section
;
10248 offset
&= ~(bfd_vma
) 0 << s
->alignment_power
;
10249 s
->output_offset
= offset
;
10250 sections
[n
]->offset
= offset
;
10251 /* FIXME: octets_per_byte. */
10252 offset
+= sections
[n
]->size
;
10260 /* Do the final step of an ELF link. */
10263 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10265 bfd_boolean dynamic
;
10266 bfd_boolean emit_relocs
;
10268 struct elf_final_link_info finfo
;
10270 struct bfd_link_order
*p
;
10272 bfd_size_type max_contents_size
;
10273 bfd_size_type max_external_reloc_size
;
10274 bfd_size_type max_internal_reloc_count
;
10275 bfd_size_type max_sym_count
;
10276 bfd_size_type max_sym_shndx_count
;
10278 Elf_Internal_Sym elfsym
;
10280 Elf_Internal_Shdr
*symtab_hdr
;
10281 Elf_Internal_Shdr
*symtab_shndx_hdr
;
10282 Elf_Internal_Shdr
*symstrtab_hdr
;
10283 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
10284 struct elf_outext_info eoinfo
;
10285 bfd_boolean merged
;
10286 size_t relativecount
= 0;
10287 asection
*reldyn
= 0;
10289 asection
*attr_section
= NULL
;
10290 bfd_vma attr_size
= 0;
10291 const char *std_attrs_section
;
10293 if (! is_elf_hash_table (info
->hash
))
10297 abfd
->flags
|= DYNAMIC
;
10299 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
10300 dynobj
= elf_hash_table (info
)->dynobj
;
10302 emit_relocs
= (info
->relocatable
10303 || info
->emitrelocations
);
10306 finfo
.output_bfd
= abfd
;
10307 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
10308 if (finfo
.symstrtab
== NULL
)
10313 finfo
.dynsym_sec
= NULL
;
10314 finfo
.hash_sec
= NULL
;
10315 finfo
.symver_sec
= NULL
;
10319 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
10320 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
10321 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
);
10322 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
10323 /* Note that it is OK if symver_sec is NULL. */
10326 finfo
.contents
= NULL
;
10327 finfo
.external_relocs
= NULL
;
10328 finfo
.internal_relocs
= NULL
;
10329 finfo
.external_syms
= NULL
;
10330 finfo
.locsym_shndx
= NULL
;
10331 finfo
.internal_syms
= NULL
;
10332 finfo
.indices
= NULL
;
10333 finfo
.sections
= NULL
;
10334 finfo
.symbuf
= NULL
;
10335 finfo
.symshndxbuf
= NULL
;
10336 finfo
.symbuf_count
= 0;
10337 finfo
.shndxbuf_size
= 0;
10339 /* The object attributes have been merged. Remove the input
10340 sections from the link, and set the contents of the output
10342 std_attrs_section
= get_elf_backend_data (abfd
)->obj_attrs_section
;
10343 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10345 if ((std_attrs_section
&& strcmp (o
->name
, std_attrs_section
) == 0)
10346 || strcmp (o
->name
, ".gnu.attributes") == 0)
10348 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10350 asection
*input_section
;
10352 if (p
->type
!= bfd_indirect_link_order
)
10354 input_section
= p
->u
.indirect
.section
;
10355 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10356 elf_link_input_bfd ignores this section. */
10357 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
10360 attr_size
= bfd_elf_obj_attr_size (abfd
);
10363 bfd_set_section_size (abfd
, o
, attr_size
);
10365 /* Skip this section later on. */
10366 o
->map_head
.link_order
= NULL
;
10369 o
->flags
|= SEC_EXCLUDE
;
10373 /* Count up the number of relocations we will output for each output
10374 section, so that we know the sizes of the reloc sections. We
10375 also figure out some maximum sizes. */
10376 max_contents_size
= 0;
10377 max_external_reloc_size
= 0;
10378 max_internal_reloc_count
= 0;
10380 max_sym_shndx_count
= 0;
10382 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10384 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10385 o
->reloc_count
= 0;
10387 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10389 unsigned int reloc_count
= 0;
10390 struct bfd_elf_section_data
*esdi
= NULL
;
10392 if (p
->type
== bfd_section_reloc_link_order
10393 || p
->type
== bfd_symbol_reloc_link_order
)
10395 else if (p
->type
== bfd_indirect_link_order
)
10399 sec
= p
->u
.indirect
.section
;
10400 esdi
= elf_section_data (sec
);
10402 /* Mark all sections which are to be included in the
10403 link. This will normally be every section. We need
10404 to do this so that we can identify any sections which
10405 the linker has decided to not include. */
10406 sec
->linker_mark
= TRUE
;
10408 if (sec
->flags
& SEC_MERGE
)
10411 if (info
->relocatable
|| info
->emitrelocations
)
10412 reloc_count
= sec
->reloc_count
;
10413 else if (bed
->elf_backend_count_relocs
)
10414 reloc_count
= (*bed
->elf_backend_count_relocs
) (info
, sec
);
10416 if (sec
->rawsize
> max_contents_size
)
10417 max_contents_size
= sec
->rawsize
;
10418 if (sec
->size
> max_contents_size
)
10419 max_contents_size
= sec
->size
;
10421 /* We are interested in just local symbols, not all
10423 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
10424 && (sec
->owner
->flags
& DYNAMIC
) == 0)
10428 if (elf_bad_symtab (sec
->owner
))
10429 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
10430 / bed
->s
->sizeof_sym
);
10432 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
10434 if (sym_count
> max_sym_count
)
10435 max_sym_count
= sym_count
;
10437 if (sym_count
> max_sym_shndx_count
10438 && elf_symtab_shndx (sec
->owner
) != 0)
10439 max_sym_shndx_count
= sym_count
;
10441 if ((sec
->flags
& SEC_RELOC
) != 0)
10443 size_t ext_size
= 0;
10445 if (esdi
->rel
.hdr
!= NULL
)
10446 ext_size
= esdi
->rel
.hdr
->sh_size
;
10447 if (esdi
->rela
.hdr
!= NULL
)
10448 ext_size
+= esdi
->rela
.hdr
->sh_size
;
10450 if (ext_size
> max_external_reloc_size
)
10451 max_external_reloc_size
= ext_size
;
10452 if (sec
->reloc_count
> max_internal_reloc_count
)
10453 max_internal_reloc_count
= sec
->reloc_count
;
10458 if (reloc_count
== 0)
10461 o
->reloc_count
+= reloc_count
;
10463 if (p
->type
== bfd_indirect_link_order
10464 && (info
->relocatable
|| info
->emitrelocations
))
10467 esdo
->rel
.count
+= NUM_SHDR_ENTRIES (esdi
->rel
.hdr
);
10468 if (esdi
->rela
.hdr
)
10469 esdo
->rela
.count
+= NUM_SHDR_ENTRIES (esdi
->rela
.hdr
);
10474 esdo
->rela
.count
+= reloc_count
;
10476 esdo
->rel
.count
+= reloc_count
;
10480 if (o
->reloc_count
> 0)
10481 o
->flags
|= SEC_RELOC
;
10484 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10485 set it (this is probably a bug) and if it is set
10486 assign_section_numbers will create a reloc section. */
10487 o
->flags
&=~ SEC_RELOC
;
10490 /* If the SEC_ALLOC flag is not set, force the section VMA to
10491 zero. This is done in elf_fake_sections as well, but forcing
10492 the VMA to 0 here will ensure that relocs against these
10493 sections are handled correctly. */
10494 if ((o
->flags
& SEC_ALLOC
) == 0
10495 && ! o
->user_set_vma
)
10499 if (! info
->relocatable
&& merged
)
10500 elf_link_hash_traverse (elf_hash_table (info
),
10501 _bfd_elf_link_sec_merge_syms
, abfd
);
10503 /* Figure out the file positions for everything but the symbol table
10504 and the relocs. We set symcount to force assign_section_numbers
10505 to create a symbol table. */
10506 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
10507 BFD_ASSERT (! abfd
->output_has_begun
);
10508 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
10511 /* Set sizes, and assign file positions for reloc sections. */
10512 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10514 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10515 if ((o
->flags
& SEC_RELOC
) != 0)
10518 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rel
)))
10522 && !(_bfd_elf_link_size_reloc_section (abfd
, &esdo
->rela
)))
10526 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10527 to count upwards while actually outputting the relocations. */
10528 esdo
->rel
.count
= 0;
10529 esdo
->rela
.count
= 0;
10532 _bfd_elf_assign_file_positions_for_relocs (abfd
);
10534 /* We have now assigned file positions for all the sections except
10535 .symtab and .strtab. We start the .symtab section at the current
10536 file position, and write directly to it. We build the .strtab
10537 section in memory. */
10538 bfd_get_symcount (abfd
) = 0;
10539 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
10540 /* sh_name is set in prep_headers. */
10541 symtab_hdr
->sh_type
= SHT_SYMTAB
;
10542 /* sh_flags, sh_addr and sh_size all start off zero. */
10543 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
10544 /* sh_link is set in assign_section_numbers. */
10545 /* sh_info is set below. */
10546 /* sh_offset is set just below. */
10547 symtab_hdr
->sh_addralign
= (bfd_vma
) 1 << bed
->s
->log_file_align
;
10549 off
= elf_tdata (abfd
)->next_file_pos
;
10550 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
10552 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10553 incorrect. We do not yet know the size of the .symtab section.
10554 We correct next_file_pos below, after we do know the size. */
10556 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10557 continuously seeking to the right position in the file. */
10558 if (! info
->keep_memory
|| max_sym_count
< 20)
10559 finfo
.symbuf_size
= 20;
10561 finfo
.symbuf_size
= max_sym_count
;
10562 amt
= finfo
.symbuf_size
;
10563 amt
*= bed
->s
->sizeof_sym
;
10564 finfo
.symbuf
= (bfd_byte
*) bfd_malloc (amt
);
10565 if (finfo
.symbuf
== NULL
)
10567 if (elf_numsections (abfd
) > (SHN_LORESERVE
& 0xFFFF))
10569 /* Wild guess at number of output symbols. realloc'd as needed. */
10570 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
10571 finfo
.shndxbuf_size
= amt
;
10572 amt
*= sizeof (Elf_External_Sym_Shndx
);
10573 finfo
.symshndxbuf
= (Elf_External_Sym_Shndx
*) bfd_zmalloc (amt
);
10574 if (finfo
.symshndxbuf
== NULL
)
10578 /* Start writing out the symbol table. The first symbol is always a
10580 if (info
->strip
!= strip_all
10583 elfsym
.st_value
= 0;
10584 elfsym
.st_size
= 0;
10585 elfsym
.st_info
= 0;
10586 elfsym
.st_other
= 0;
10587 elfsym
.st_shndx
= SHN_UNDEF
;
10588 elfsym
.st_target_internal
= 0;
10589 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
10594 /* Output a symbol for each section. We output these even if we are
10595 discarding local symbols, since they are used for relocs. These
10596 symbols have no names. We store the index of each one in the
10597 index field of the section, so that we can find it again when
10598 outputting relocs. */
10599 if (info
->strip
!= strip_all
10602 elfsym
.st_size
= 0;
10603 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10604 elfsym
.st_other
= 0;
10605 elfsym
.st_value
= 0;
10606 elfsym
.st_target_internal
= 0;
10607 for (i
= 1; i
< elf_numsections (abfd
); i
++)
10609 o
= bfd_section_from_elf_index (abfd
, i
);
10612 o
->target_index
= bfd_get_symcount (abfd
);
10613 elfsym
.st_shndx
= i
;
10614 if (!info
->relocatable
)
10615 elfsym
.st_value
= o
->vma
;
10616 if (elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
) != 1)
10622 /* Allocate some memory to hold information read in from the input
10624 if (max_contents_size
!= 0)
10626 finfo
.contents
= (bfd_byte
*) bfd_malloc (max_contents_size
);
10627 if (finfo
.contents
== NULL
)
10631 if (max_external_reloc_size
!= 0)
10633 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
10634 if (finfo
.external_relocs
== NULL
)
10638 if (max_internal_reloc_count
!= 0)
10640 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
10641 amt
*= sizeof (Elf_Internal_Rela
);
10642 finfo
.internal_relocs
= (Elf_Internal_Rela
*) bfd_malloc (amt
);
10643 if (finfo
.internal_relocs
== NULL
)
10647 if (max_sym_count
!= 0)
10649 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
10650 finfo
.external_syms
= (bfd_byte
*) bfd_malloc (amt
);
10651 if (finfo
.external_syms
== NULL
)
10654 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
10655 finfo
.internal_syms
= (Elf_Internal_Sym
*) bfd_malloc (amt
);
10656 if (finfo
.internal_syms
== NULL
)
10659 amt
= max_sym_count
* sizeof (long);
10660 finfo
.indices
= (long int *) bfd_malloc (amt
);
10661 if (finfo
.indices
== NULL
)
10664 amt
= max_sym_count
* sizeof (asection
*);
10665 finfo
.sections
= (asection
**) bfd_malloc (amt
);
10666 if (finfo
.sections
== NULL
)
10670 if (max_sym_shndx_count
!= 0)
10672 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
10673 finfo
.locsym_shndx
= (Elf_External_Sym_Shndx
*) bfd_malloc (amt
);
10674 if (finfo
.locsym_shndx
== NULL
)
10678 if (elf_hash_table (info
)->tls_sec
)
10680 bfd_vma base
, end
= 0;
10683 for (sec
= elf_hash_table (info
)->tls_sec
;
10684 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
10687 bfd_size_type size
= sec
->size
;
10690 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
10692 struct bfd_link_order
*ord
= sec
->map_tail
.link_order
;
10695 size
= ord
->offset
+ ord
->size
;
10697 end
= sec
->vma
+ size
;
10699 base
= elf_hash_table (info
)->tls_sec
->vma
;
10700 /* Only align end of TLS section if static TLS doesn't have special
10701 alignment requirements. */
10702 if (bed
->static_tls_alignment
== 1)
10703 end
= align_power (end
,
10704 elf_hash_table (info
)->tls_sec
->alignment_power
);
10705 elf_hash_table (info
)->tls_size
= end
- base
;
10708 /* Reorder SHF_LINK_ORDER sections. */
10709 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10711 if (!elf_fixup_link_order (abfd
, o
))
10715 /* Since ELF permits relocations to be against local symbols, we
10716 must have the local symbols available when we do the relocations.
10717 Since we would rather only read the local symbols once, and we
10718 would rather not keep them in memory, we handle all the
10719 relocations for a single input file at the same time.
10721 Unfortunately, there is no way to know the total number of local
10722 symbols until we have seen all of them, and the local symbol
10723 indices precede the global symbol indices. This means that when
10724 we are generating relocatable output, and we see a reloc against
10725 a global symbol, we can not know the symbol index until we have
10726 finished examining all the local symbols to see which ones we are
10727 going to output. To deal with this, we keep the relocations in
10728 memory, and don't output them until the end of the link. This is
10729 an unfortunate waste of memory, but I don't see a good way around
10730 it. Fortunately, it only happens when performing a relocatable
10731 link, which is not the common case. FIXME: If keep_memory is set
10732 we could write the relocs out and then read them again; I don't
10733 know how bad the memory loss will be. */
10735 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10736 sub
->output_has_begun
= FALSE
;
10737 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10739 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
10741 if (p
->type
== bfd_indirect_link_order
10742 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
10743 == bfd_target_elf_flavour
)
10744 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
10746 if (! sub
->output_has_begun
)
10748 if (! elf_link_input_bfd (&finfo
, sub
))
10750 sub
->output_has_begun
= TRUE
;
10753 else if (p
->type
== bfd_section_reloc_link_order
10754 || p
->type
== bfd_symbol_reloc_link_order
)
10756 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
10761 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
10763 if (p
->type
== bfd_indirect_link_order
10764 && (bfd_get_flavour (sub
)
10765 == bfd_target_elf_flavour
)
10766 && (elf_elfheader (sub
)->e_ident
[EI_CLASS
]
10767 != bed
->s
->elfclass
))
10769 const char *iclass
, *oclass
;
10771 if (bed
->s
->elfclass
== ELFCLASS64
)
10773 iclass
= "ELFCLASS32";
10774 oclass
= "ELFCLASS64";
10778 iclass
= "ELFCLASS64";
10779 oclass
= "ELFCLASS32";
10782 bfd_set_error (bfd_error_wrong_format
);
10783 (*_bfd_error_handler
)
10784 (_("%B: file class %s incompatible with %s"),
10785 sub
, iclass
, oclass
);
10794 /* Free symbol buffer if needed. */
10795 if (!info
->reduce_memory_overheads
)
10797 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
10798 if (bfd_get_flavour (sub
) == bfd_target_elf_flavour
10799 && elf_tdata (sub
)->symbuf
)
10801 free (elf_tdata (sub
)->symbuf
);
10802 elf_tdata (sub
)->symbuf
= NULL
;
10806 /* Output any global symbols that got converted to local in a
10807 version script or due to symbol visibility. We do this in a
10808 separate step since ELF requires all local symbols to appear
10809 prior to any global symbols. FIXME: We should only do this if
10810 some global symbols were, in fact, converted to become local.
10811 FIXME: Will this work correctly with the Irix 5 linker? */
10812 eoinfo
.failed
= FALSE
;
10813 eoinfo
.finfo
= &finfo
;
10814 eoinfo
.localsyms
= TRUE
;
10815 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
10819 /* If backend needs to output some local symbols not present in the hash
10820 table, do it now. */
10821 if (bed
->elf_backend_output_arch_local_syms
)
10823 typedef int (*out_sym_func
)
10824 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10825 struct elf_link_hash_entry
*);
10827 if (! ((*bed
->elf_backend_output_arch_local_syms
)
10828 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10832 /* That wrote out all the local symbols. Finish up the symbol table
10833 with the global symbols. Even if we want to strip everything we
10834 can, we still need to deal with those global symbols that got
10835 converted to local in a version script. */
10837 /* The sh_info field records the index of the first non local symbol. */
10838 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
10841 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
10843 Elf_Internal_Sym sym
;
10844 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
10845 long last_local
= 0;
10847 /* Write out the section symbols for the output sections. */
10848 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
10854 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
10856 sym
.st_target_internal
= 0;
10858 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
10864 dynindx
= elf_section_data (s
)->dynindx
;
10867 indx
= elf_section_data (s
)->this_idx
;
10868 BFD_ASSERT (indx
> 0);
10869 sym
.st_shndx
= indx
;
10870 if (! check_dynsym (abfd
, &sym
))
10872 sym
.st_value
= s
->vma
;
10873 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
10874 if (last_local
< dynindx
)
10875 last_local
= dynindx
;
10876 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10880 /* Write out the local dynsyms. */
10881 if (elf_hash_table (info
)->dynlocal
)
10883 struct elf_link_local_dynamic_entry
*e
;
10884 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
10889 /* Copy the internal symbol and turn off visibility.
10890 Note that we saved a word of storage and overwrote
10891 the original st_name with the dynstr_index. */
10893 sym
.st_other
&= ~ELF_ST_VISIBILITY (-1);
10895 s
= bfd_section_from_elf_index (e
->input_bfd
,
10900 elf_section_data (s
->output_section
)->this_idx
;
10901 if (! check_dynsym (abfd
, &sym
))
10903 sym
.st_value
= (s
->output_section
->vma
10905 + e
->isym
.st_value
);
10908 if (last_local
< e
->dynindx
)
10909 last_local
= e
->dynindx
;
10911 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
10912 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
10916 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
10920 /* We get the global symbols from the hash table. */
10921 eoinfo
.failed
= FALSE
;
10922 eoinfo
.localsyms
= FALSE
;
10923 eoinfo
.finfo
= &finfo
;
10924 bfd_hash_traverse (&info
->hash
->table
, elf_link_output_extsym
, &eoinfo
);
10928 /* If backend needs to output some symbols not present in the hash
10929 table, do it now. */
10930 if (bed
->elf_backend_output_arch_syms
)
10932 typedef int (*out_sym_func
)
10933 (void *, const char *, Elf_Internal_Sym
*, asection
*,
10934 struct elf_link_hash_entry
*);
10936 if (! ((*bed
->elf_backend_output_arch_syms
)
10937 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
10941 /* Flush all symbols to the file. */
10942 if (! elf_link_flush_output_syms (&finfo
, bed
))
10945 /* Now we know the size of the symtab section. */
10946 off
+= symtab_hdr
->sh_size
;
10948 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
10949 if (symtab_shndx_hdr
->sh_name
!= 0)
10951 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
10952 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
10953 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
10954 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
10955 symtab_shndx_hdr
->sh_size
= amt
;
10957 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
10960 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
10961 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
10966 /* Finish up and write out the symbol string table (.strtab)
10968 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
10969 /* sh_name was set in prep_headers. */
10970 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
10971 symstrtab_hdr
->sh_flags
= 0;
10972 symstrtab_hdr
->sh_addr
= 0;
10973 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
10974 symstrtab_hdr
->sh_entsize
= 0;
10975 symstrtab_hdr
->sh_link
= 0;
10976 symstrtab_hdr
->sh_info
= 0;
10977 /* sh_offset is set just below. */
10978 symstrtab_hdr
->sh_addralign
= 1;
10980 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
10981 elf_tdata (abfd
)->next_file_pos
= off
;
10983 if (bfd_get_symcount (abfd
) > 0)
10985 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
10986 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
10990 /* Adjust the relocs to have the correct symbol indices. */
10991 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
10993 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
10994 if ((o
->flags
& SEC_RELOC
) == 0)
10997 if (esdo
->rel
.hdr
!= NULL
)
10998 elf_link_adjust_relocs (abfd
, &esdo
->rel
);
10999 if (esdo
->rela
.hdr
!= NULL
)
11000 elf_link_adjust_relocs (abfd
, &esdo
->rela
);
11002 /* Set the reloc_count field to 0 to prevent write_relocs from
11003 trying to swap the relocs out itself. */
11004 o
->reloc_count
= 0;
11007 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
11008 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
11010 /* If we are linking against a dynamic object, or generating a
11011 shared library, finish up the dynamic linking information. */
11014 bfd_byte
*dyncon
, *dynconend
;
11016 /* Fix up .dynamic entries. */
11017 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
11018 BFD_ASSERT (o
!= NULL
);
11020 dyncon
= o
->contents
;
11021 dynconend
= o
->contents
+ o
->size
;
11022 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11024 Elf_Internal_Dyn dyn
;
11028 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11035 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
11037 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
11039 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
11040 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
11043 dyn
.d_un
.d_val
= relativecount
;
11050 name
= info
->init_function
;
11053 name
= info
->fini_function
;
11056 struct elf_link_hash_entry
*h
;
11058 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
11059 FALSE
, FALSE
, TRUE
);
11061 && (h
->root
.type
== bfd_link_hash_defined
11062 || h
->root
.type
== bfd_link_hash_defweak
))
11064 dyn
.d_un
.d_ptr
= h
->root
.u
.def
.value
;
11065 o
= h
->root
.u
.def
.section
;
11066 if (o
->output_section
!= NULL
)
11067 dyn
.d_un
.d_ptr
+= (o
->output_section
->vma
11068 + o
->output_offset
);
11071 /* The symbol is imported from another shared
11072 library and does not apply to this one. */
11073 dyn
.d_un
.d_ptr
= 0;
11080 case DT_PREINIT_ARRAYSZ
:
11081 name
= ".preinit_array";
11083 case DT_INIT_ARRAYSZ
:
11084 name
= ".init_array";
11086 case DT_FINI_ARRAYSZ
:
11087 name
= ".fini_array";
11089 o
= bfd_get_section_by_name (abfd
, name
);
11092 (*_bfd_error_handler
)
11093 (_("%B: could not find output section %s"), abfd
, name
);
11097 (*_bfd_error_handler
)
11098 (_("warning: %s section has zero size"), name
);
11099 dyn
.d_un
.d_val
= o
->size
;
11102 case DT_PREINIT_ARRAY
:
11103 name
= ".preinit_array";
11105 case DT_INIT_ARRAY
:
11106 name
= ".init_array";
11108 case DT_FINI_ARRAY
:
11109 name
= ".fini_array";
11116 name
= ".gnu.hash";
11125 name
= ".gnu.version_d";
11128 name
= ".gnu.version_r";
11131 name
= ".gnu.version";
11133 o
= bfd_get_section_by_name (abfd
, name
);
11136 (*_bfd_error_handler
)
11137 (_("%B: could not find output section %s"), abfd
, name
);
11140 if (elf_section_data (o
->output_section
)->this_hdr
.sh_type
== SHT_NOTE
)
11142 (*_bfd_error_handler
)
11143 (_("warning: section '%s' is being made into a note"), name
);
11144 bfd_set_error (bfd_error_nonrepresentable_section
);
11147 dyn
.d_un
.d_ptr
= o
->vma
;
11154 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
11158 dyn
.d_un
.d_val
= 0;
11159 dyn
.d_un
.d_ptr
= 0;
11160 for (i
= 1; i
< elf_numsections (abfd
); i
++)
11162 Elf_Internal_Shdr
*hdr
;
11164 hdr
= elf_elfsections (abfd
)[i
];
11165 if (hdr
->sh_type
== type
11166 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
11168 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
11169 dyn
.d_un
.d_val
+= hdr
->sh_size
;
11172 if (dyn
.d_un
.d_ptr
== 0
11173 || hdr
->sh_addr
< dyn
.d_un
.d_ptr
)
11174 dyn
.d_un
.d_ptr
= hdr
->sh_addr
;
11180 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
11184 /* If we have created any dynamic sections, then output them. */
11185 if (dynobj
!= NULL
)
11187 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
11190 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11191 if (((info
->warn_shared_textrel
&& info
->shared
)
11192 || info
->error_textrel
)
11193 && (o
= bfd_get_section_by_name (dynobj
, ".dynamic")) != NULL
)
11195 bfd_byte
*dyncon
, *dynconend
;
11197 dyncon
= o
->contents
;
11198 dynconend
= o
->contents
+ o
->size
;
11199 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
11201 Elf_Internal_Dyn dyn
;
11203 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
11205 if (dyn
.d_tag
== DT_TEXTREL
)
11207 if (info
->error_textrel
)
11208 info
->callbacks
->einfo
11209 (_("%P%X: read-only segment has dynamic relocations.\n"));
11211 info
->callbacks
->einfo
11212 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11218 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
11220 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
11222 || o
->output_section
== bfd_abs_section_ptr
)
11224 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
11226 /* At this point, we are only interested in sections
11227 created by _bfd_elf_link_create_dynamic_sections. */
11230 if (elf_hash_table (info
)->stab_info
.stabstr
== o
)
11232 if (elf_hash_table (info
)->eh_info
.hdr_sec
== o
)
11234 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
11236 && (strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0))
11238 /* FIXME: octets_per_byte. */
11239 if (! bfd_set_section_contents (abfd
, o
->output_section
,
11241 (file_ptr
) o
->output_offset
,
11247 /* The contents of the .dynstr section are actually in a
11249 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
11250 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
11251 || ! _bfd_elf_strtab_emit (abfd
,
11252 elf_hash_table (info
)->dynstr
))
11258 if (info
->relocatable
)
11260 bfd_boolean failed
= FALSE
;
11262 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
11267 /* If we have optimized stabs strings, output them. */
11268 if (elf_hash_table (info
)->stab_info
.stabstr
!= NULL
)
11270 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
11274 if (info
->eh_frame_hdr
)
11276 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
11280 if (finfo
.symstrtab
!= NULL
)
11281 _bfd_stringtab_free (finfo
.symstrtab
);
11282 if (finfo
.contents
!= NULL
)
11283 free (finfo
.contents
);
11284 if (finfo
.external_relocs
!= NULL
)
11285 free (finfo
.external_relocs
);
11286 if (finfo
.internal_relocs
!= NULL
)
11287 free (finfo
.internal_relocs
);
11288 if (finfo
.external_syms
!= NULL
)
11289 free (finfo
.external_syms
);
11290 if (finfo
.locsym_shndx
!= NULL
)
11291 free (finfo
.locsym_shndx
);
11292 if (finfo
.internal_syms
!= NULL
)
11293 free (finfo
.internal_syms
);
11294 if (finfo
.indices
!= NULL
)
11295 free (finfo
.indices
);
11296 if (finfo
.sections
!= NULL
)
11297 free (finfo
.sections
);
11298 if (finfo
.symbuf
!= NULL
)
11299 free (finfo
.symbuf
);
11300 if (finfo
.symshndxbuf
!= NULL
)
11301 free (finfo
.symshndxbuf
);
11302 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11304 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11305 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11306 free (esdo
->rel
.hashes
);
11307 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11308 free (esdo
->rela
.hashes
);
11311 elf_tdata (abfd
)->linker
= TRUE
;
11315 bfd_byte
*contents
= (bfd_byte
*) bfd_malloc (attr_size
);
11316 if (contents
== NULL
)
11317 return FALSE
; /* Bail out and fail. */
11318 bfd_elf_set_obj_attr_contents (abfd
, contents
, attr_size
);
11319 bfd_set_section_contents (abfd
, attr_section
, contents
, 0, attr_size
);
11326 if (finfo
.symstrtab
!= NULL
)
11327 _bfd_stringtab_free (finfo
.symstrtab
);
11328 if (finfo
.contents
!= NULL
)
11329 free (finfo
.contents
);
11330 if (finfo
.external_relocs
!= NULL
)
11331 free (finfo
.external_relocs
);
11332 if (finfo
.internal_relocs
!= NULL
)
11333 free (finfo
.internal_relocs
);
11334 if (finfo
.external_syms
!= NULL
)
11335 free (finfo
.external_syms
);
11336 if (finfo
.locsym_shndx
!= NULL
)
11337 free (finfo
.locsym_shndx
);
11338 if (finfo
.internal_syms
!= NULL
)
11339 free (finfo
.internal_syms
);
11340 if (finfo
.indices
!= NULL
)
11341 free (finfo
.indices
);
11342 if (finfo
.sections
!= NULL
)
11343 free (finfo
.sections
);
11344 if (finfo
.symbuf
!= NULL
)
11345 free (finfo
.symbuf
);
11346 if (finfo
.symshndxbuf
!= NULL
)
11347 free (finfo
.symshndxbuf
);
11348 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
11350 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
11351 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rel
.hashes
!= NULL
)
11352 free (esdo
->rel
.hashes
);
11353 if ((o
->flags
& SEC_RELOC
) != 0 && esdo
->rela
.hashes
!= NULL
)
11354 free (esdo
->rela
.hashes
);
11360 /* Initialize COOKIE for input bfd ABFD. */
11363 init_reloc_cookie (struct elf_reloc_cookie
*cookie
,
11364 struct bfd_link_info
*info
, bfd
*abfd
)
11366 Elf_Internal_Shdr
*symtab_hdr
;
11367 const struct elf_backend_data
*bed
;
11369 bed
= get_elf_backend_data (abfd
);
11370 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11372 cookie
->abfd
= abfd
;
11373 cookie
->sym_hashes
= elf_sym_hashes (abfd
);
11374 cookie
->bad_symtab
= elf_bad_symtab (abfd
);
11375 if (cookie
->bad_symtab
)
11377 cookie
->locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
11378 cookie
->extsymoff
= 0;
11382 cookie
->locsymcount
= symtab_hdr
->sh_info
;
11383 cookie
->extsymoff
= symtab_hdr
->sh_info
;
11386 if (bed
->s
->arch_size
== 32)
11387 cookie
->r_sym_shift
= 8;
11389 cookie
->r_sym_shift
= 32;
11391 cookie
->locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11392 if (cookie
->locsyms
== NULL
&& cookie
->locsymcount
!= 0)
11394 cookie
->locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
11395 cookie
->locsymcount
, 0,
11397 if (cookie
->locsyms
== NULL
)
11399 info
->callbacks
->einfo (_("%P%X: can not read symbols: %E\n"));
11402 if (info
->keep_memory
)
11403 symtab_hdr
->contents
= (bfd_byte
*) cookie
->locsyms
;
11408 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11411 fini_reloc_cookie (struct elf_reloc_cookie
*cookie
, bfd
*abfd
)
11413 Elf_Internal_Shdr
*symtab_hdr
;
11415 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11416 if (cookie
->locsyms
!= NULL
11417 && symtab_hdr
->contents
!= (unsigned char *) cookie
->locsyms
)
11418 free (cookie
->locsyms
);
11421 /* Initialize the relocation information in COOKIE for input section SEC
11422 of input bfd ABFD. */
11425 init_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11426 struct bfd_link_info
*info
, bfd
*abfd
,
11429 const struct elf_backend_data
*bed
;
11431 if (sec
->reloc_count
== 0)
11433 cookie
->rels
= NULL
;
11434 cookie
->relend
= NULL
;
11438 bed
= get_elf_backend_data (abfd
);
11440 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
11441 info
->keep_memory
);
11442 if (cookie
->rels
== NULL
)
11444 cookie
->rel
= cookie
->rels
;
11445 cookie
->relend
= (cookie
->rels
11446 + sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
);
11448 cookie
->rel
= cookie
->rels
;
11452 /* Free the memory allocated by init_reloc_cookie_rels,
11456 fini_reloc_cookie_rels (struct elf_reloc_cookie
*cookie
,
11459 if (cookie
->rels
&& elf_section_data (sec
)->relocs
!= cookie
->rels
)
11460 free (cookie
->rels
);
11463 /* Initialize the whole of COOKIE for input section SEC. */
11466 init_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11467 struct bfd_link_info
*info
,
11470 if (!init_reloc_cookie (cookie
, info
, sec
->owner
))
11472 if (!init_reloc_cookie_rels (cookie
, info
, sec
->owner
, sec
))
11477 fini_reloc_cookie (cookie
, sec
->owner
);
11482 /* Free the memory allocated by init_reloc_cookie_for_section,
11486 fini_reloc_cookie_for_section (struct elf_reloc_cookie
*cookie
,
11489 fini_reloc_cookie_rels (cookie
, sec
);
11490 fini_reloc_cookie (cookie
, sec
->owner
);
11493 /* Garbage collect unused sections. */
11495 /* Default gc_mark_hook. */
11498 _bfd_elf_gc_mark_hook (asection
*sec
,
11499 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11500 Elf_Internal_Rela
*rel ATTRIBUTE_UNUSED
,
11501 struct elf_link_hash_entry
*h
,
11502 Elf_Internal_Sym
*sym
)
11504 const char *sec_name
;
11508 switch (h
->root
.type
)
11510 case bfd_link_hash_defined
:
11511 case bfd_link_hash_defweak
:
11512 return h
->root
.u
.def
.section
;
11514 case bfd_link_hash_common
:
11515 return h
->root
.u
.c
.p
->section
;
11517 case bfd_link_hash_undefined
:
11518 case bfd_link_hash_undefweak
:
11519 /* To work around a glibc bug, keep all XXX input sections
11520 when there is an as yet undefined reference to __start_XXX
11521 or __stop_XXX symbols. The linker will later define such
11522 symbols for orphan input sections that have a name
11523 representable as a C identifier. */
11524 if (strncmp (h
->root
.root
.string
, "__start_", 8) == 0)
11525 sec_name
= h
->root
.root
.string
+ 8;
11526 else if (strncmp (h
->root
.root
.string
, "__stop_", 7) == 0)
11527 sec_name
= h
->root
.root
.string
+ 7;
11531 if (sec_name
&& *sec_name
!= '\0')
11535 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
11537 sec
= bfd_get_section_by_name (i
, sec_name
);
11539 sec
->flags
|= SEC_KEEP
;
11549 return bfd_section_from_elf_index (sec
->owner
, sym
->st_shndx
);
11554 /* COOKIE->rel describes a relocation against section SEC, which is
11555 a section we've decided to keep. Return the section that contains
11556 the relocation symbol, or NULL if no section contains it. */
11559 _bfd_elf_gc_mark_rsec (struct bfd_link_info
*info
, asection
*sec
,
11560 elf_gc_mark_hook_fn gc_mark_hook
,
11561 struct elf_reloc_cookie
*cookie
)
11563 unsigned long r_symndx
;
11564 struct elf_link_hash_entry
*h
;
11566 r_symndx
= cookie
->rel
->r_info
>> cookie
->r_sym_shift
;
11567 if (r_symndx
== STN_UNDEF
)
11570 if (r_symndx
>= cookie
->locsymcount
11571 || ELF_ST_BIND (cookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
11573 h
= cookie
->sym_hashes
[r_symndx
- cookie
->extsymoff
];
11574 while (h
->root
.type
== bfd_link_hash_indirect
11575 || h
->root
.type
== bfd_link_hash_warning
)
11576 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
11578 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, h
, NULL
);
11581 return (*gc_mark_hook
) (sec
, info
, cookie
->rel
, NULL
,
11582 &cookie
->locsyms
[r_symndx
]);
11585 /* COOKIE->rel describes a relocation against section SEC, which is
11586 a section we've decided to keep. Mark the section that contains
11587 the relocation symbol. */
11590 _bfd_elf_gc_mark_reloc (struct bfd_link_info
*info
,
11592 elf_gc_mark_hook_fn gc_mark_hook
,
11593 struct elf_reloc_cookie
*cookie
)
11597 rsec
= _bfd_elf_gc_mark_rsec (info
, sec
, gc_mark_hook
, cookie
);
11598 if (rsec
&& !rsec
->gc_mark
)
11600 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
11602 else if (!_bfd_elf_gc_mark (info
, rsec
, gc_mark_hook
))
11608 /* The mark phase of garbage collection. For a given section, mark
11609 it and any sections in this section's group, and all the sections
11610 which define symbols to which it refers. */
11613 _bfd_elf_gc_mark (struct bfd_link_info
*info
,
11615 elf_gc_mark_hook_fn gc_mark_hook
)
11618 asection
*group_sec
, *eh_frame
;
11622 /* Mark all the sections in the group. */
11623 group_sec
= elf_section_data (sec
)->next_in_group
;
11624 if (group_sec
&& !group_sec
->gc_mark
)
11625 if (!_bfd_elf_gc_mark (info
, group_sec
, gc_mark_hook
))
11628 /* Look through the section relocs. */
11630 eh_frame
= elf_eh_frame_section (sec
->owner
);
11631 if ((sec
->flags
& SEC_RELOC
) != 0
11632 && sec
->reloc_count
> 0
11633 && sec
!= eh_frame
)
11635 struct elf_reloc_cookie cookie
;
11637 if (!init_reloc_cookie_for_section (&cookie
, info
, sec
))
11641 for (; cookie
.rel
< cookie
.relend
; cookie
.rel
++)
11642 if (!_bfd_elf_gc_mark_reloc (info
, sec
, gc_mark_hook
, &cookie
))
11647 fini_reloc_cookie_for_section (&cookie
, sec
);
11651 if (ret
&& eh_frame
&& elf_fde_list (sec
))
11653 struct elf_reloc_cookie cookie
;
11655 if (!init_reloc_cookie_for_section (&cookie
, info
, eh_frame
))
11659 if (!_bfd_elf_gc_mark_fdes (info
, sec
, eh_frame
,
11660 gc_mark_hook
, &cookie
))
11662 fini_reloc_cookie_for_section (&cookie
, eh_frame
);
11669 /* Keep debug and special sections. */
11672 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info
*info
,
11673 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED
)
11677 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
11680 bfd_boolean some_kept
;
11682 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
)
11685 /* Ensure all linker created sections are kept, and see whether
11686 any other section is already marked. */
11688 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
11690 if ((isec
->flags
& SEC_LINKER_CREATED
) != 0)
11692 else if (isec
->gc_mark
)
11696 /* If no section in this file will be kept, then we can
11697 toss out debug sections. */
11701 /* Keep debug and special sections like .comment when they are
11702 not part of a group, or when we have single-member groups. */
11703 for (isec
= ibfd
->sections
; isec
!= NULL
; isec
= isec
->next
)
11704 if ((elf_next_in_group (isec
) == NULL
11705 || elf_next_in_group (isec
) == isec
)
11706 && ((isec
->flags
& SEC_DEBUGGING
) != 0
11707 || (isec
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_RELOC
)) == 0))
11713 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11715 struct elf_gc_sweep_symbol_info
11717 struct bfd_link_info
*info
;
11718 void (*hide_symbol
) (struct bfd_link_info
*, struct elf_link_hash_entry
*,
11723 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *data
)
11726 && (((h
->root
.type
== bfd_link_hash_defined
11727 || h
->root
.type
== bfd_link_hash_defweak
)
11728 && !(h
->def_regular
11729 && h
->root
.u
.def
.section
->gc_mark
))
11730 || h
->root
.type
== bfd_link_hash_undefined
11731 || h
->root
.type
== bfd_link_hash_undefweak
))
11733 struct elf_gc_sweep_symbol_info
*inf
;
11735 inf
= (struct elf_gc_sweep_symbol_info
*) data
;
11736 (*inf
->hide_symbol
) (inf
->info
, h
, TRUE
);
11737 h
->def_regular
= 0;
11738 h
->ref_regular
= 0;
11739 h
->ref_regular_nonweak
= 0;
11745 /* The sweep phase of garbage collection. Remove all garbage sections. */
11747 typedef bfd_boolean (*gc_sweep_hook_fn
)
11748 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
11751 elf_gc_sweep (bfd
*abfd
, struct bfd_link_info
*info
)
11754 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11755 gc_sweep_hook_fn gc_sweep_hook
= bed
->gc_sweep_hook
;
11756 unsigned long section_sym_count
;
11757 struct elf_gc_sweep_symbol_info sweep_info
;
11759 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
11763 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
11766 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
11768 /* When any section in a section group is kept, we keep all
11769 sections in the section group. If the first member of
11770 the section group is excluded, we will also exclude the
11772 if (o
->flags
& SEC_GROUP
)
11774 asection
*first
= elf_next_in_group (o
);
11775 o
->gc_mark
= first
->gc_mark
;
11781 /* Skip sweeping sections already excluded. */
11782 if (o
->flags
& SEC_EXCLUDE
)
11785 /* Since this is early in the link process, it is simple
11786 to remove a section from the output. */
11787 o
->flags
|= SEC_EXCLUDE
;
11789 if (info
->print_gc_sections
&& o
->size
!= 0)
11790 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub
, o
->name
);
11792 /* But we also have to update some of the relocation
11793 info we collected before. */
11795 && (o
->flags
& SEC_RELOC
) != 0
11796 && o
->reloc_count
> 0
11797 && !bfd_is_abs_section (o
->output_section
))
11799 Elf_Internal_Rela
*internal_relocs
;
11803 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
11804 info
->keep_memory
);
11805 if (internal_relocs
== NULL
)
11808 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
11810 if (elf_section_data (o
)->relocs
!= internal_relocs
)
11811 free (internal_relocs
);
11819 /* Remove the symbols that were in the swept sections from the dynamic
11820 symbol table. GCFIXME: Anyone know how to get them out of the
11821 static symbol table as well? */
11822 sweep_info
.info
= info
;
11823 sweep_info
.hide_symbol
= bed
->elf_backend_hide_symbol
;
11824 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
,
11827 _bfd_elf_link_renumber_dynsyms (abfd
, info
, §ion_sym_count
);
11831 /* Propagate collected vtable information. This is called through
11832 elf_link_hash_traverse. */
11835 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
11837 /* Those that are not vtables. */
11838 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11841 /* Those vtables that do not have parents, we cannot merge. */
11842 if (h
->vtable
->parent
== (struct elf_link_hash_entry
*) -1)
11845 /* If we've already been done, exit. */
11846 if (h
->vtable
->used
&& h
->vtable
->used
[-1])
11849 /* Make sure the parent's table is up to date. */
11850 elf_gc_propagate_vtable_entries_used (h
->vtable
->parent
, okp
);
11852 if (h
->vtable
->used
== NULL
)
11854 /* None of this table's entries were referenced. Re-use the
11856 h
->vtable
->used
= h
->vtable
->parent
->vtable
->used
;
11857 h
->vtable
->size
= h
->vtable
->parent
->vtable
->size
;
11862 bfd_boolean
*cu
, *pu
;
11864 /* Or the parent's entries into ours. */
11865 cu
= h
->vtable
->used
;
11867 pu
= h
->vtable
->parent
->vtable
->used
;
11870 const struct elf_backend_data
*bed
;
11871 unsigned int log_file_align
;
11873 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
11874 log_file_align
= bed
->s
->log_file_align
;
11875 n
= h
->vtable
->parent
->vtable
->size
>> log_file_align
;
11890 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
11893 bfd_vma hstart
, hend
;
11894 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
11895 const struct elf_backend_data
*bed
;
11896 unsigned int log_file_align
;
11898 /* Take care of both those symbols that do not describe vtables as
11899 well as those that are not loaded. */
11900 if (h
->vtable
== NULL
|| h
->vtable
->parent
== NULL
)
11903 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
11904 || h
->root
.type
== bfd_link_hash_defweak
);
11906 sec
= h
->root
.u
.def
.section
;
11907 hstart
= h
->root
.u
.def
.value
;
11908 hend
= hstart
+ h
->size
;
11910 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
11912 return *(bfd_boolean
*) okp
= FALSE
;
11913 bed
= get_elf_backend_data (sec
->owner
);
11914 log_file_align
= bed
->s
->log_file_align
;
11916 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
11918 for (rel
= relstart
; rel
< relend
; ++rel
)
11919 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
11921 /* If the entry is in use, do nothing. */
11922 if (h
->vtable
->used
11923 && (rel
->r_offset
- hstart
) < h
->vtable
->size
)
11925 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
11926 if (h
->vtable
->used
[entry
])
11929 /* Otherwise, kill it. */
11930 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
11936 /* Mark sections containing dynamically referenced symbols. When
11937 building shared libraries, we must assume that any visible symbol is
11941 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry
*h
, void *inf
)
11943 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
11945 if ((h
->root
.type
== bfd_link_hash_defined
11946 || h
->root
.type
== bfd_link_hash_defweak
)
11948 || ((!info
->executable
|| info
->export_dynamic
)
11950 && ELF_ST_VISIBILITY (h
->other
) != STV_INTERNAL
11951 && ELF_ST_VISIBILITY (h
->other
) != STV_HIDDEN
11952 && (strchr (h
->root
.root
.string
, ELF_VER_CHR
) != NULL
11953 || !bfd_hide_sym_by_version (info
->version_info
,
11954 h
->root
.root
.string
)))))
11955 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11960 /* Keep all sections containing symbols undefined on the command-line,
11961 and the section containing the entry symbol. */
11964 _bfd_elf_gc_keep (struct bfd_link_info
*info
)
11966 struct bfd_sym_chain
*sym
;
11968 for (sym
= info
->gc_sym_list
; sym
!= NULL
; sym
= sym
->next
)
11970 struct elf_link_hash_entry
*h
;
11972 h
= elf_link_hash_lookup (elf_hash_table (info
), sym
->name
,
11973 FALSE
, FALSE
, FALSE
);
11976 && (h
->root
.type
== bfd_link_hash_defined
11977 || h
->root
.type
== bfd_link_hash_defweak
)
11978 && !bfd_is_abs_section (h
->root
.u
.def
.section
))
11979 h
->root
.u
.def
.section
->flags
|= SEC_KEEP
;
11983 /* Do mark and sweep of unused sections. */
11986 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
11988 bfd_boolean ok
= TRUE
;
11990 elf_gc_mark_hook_fn gc_mark_hook
;
11991 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
11993 if (!bed
->can_gc_sections
11994 || !is_elf_hash_table (info
->hash
))
11996 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
12000 bed
->gc_keep (info
);
12002 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
12003 at the .eh_frame section if we can mark the FDEs individually. */
12004 _bfd_elf_begin_eh_frame_parsing (info
);
12005 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12008 struct elf_reloc_cookie cookie
;
12010 sec
= bfd_get_section_by_name (sub
, ".eh_frame");
12011 if (sec
&& init_reloc_cookie_for_section (&cookie
, info
, sec
))
12013 _bfd_elf_parse_eh_frame (sub
, info
, sec
, &cookie
);
12014 if (elf_section_data (sec
)->sec_info
)
12015 elf_eh_frame_section (sub
) = sec
;
12016 fini_reloc_cookie_for_section (&cookie
, sec
);
12019 _bfd_elf_end_eh_frame_parsing (info
);
12021 /* Apply transitive closure to the vtable entry usage info. */
12022 elf_link_hash_traverse (elf_hash_table (info
),
12023 elf_gc_propagate_vtable_entries_used
,
12028 /* Kill the vtable relocations that were not used. */
12029 elf_link_hash_traverse (elf_hash_table (info
),
12030 elf_gc_smash_unused_vtentry_relocs
,
12035 /* Mark dynamically referenced symbols. */
12036 if (elf_hash_table (info
)->dynamic_sections_created
)
12037 elf_link_hash_traverse (elf_hash_table (info
),
12038 bed
->gc_mark_dynamic_ref
,
12041 /* Grovel through relocs to find out who stays ... */
12042 gc_mark_hook
= bed
->gc_mark_hook
;
12043 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12047 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
12050 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12051 Also treat note sections as a root, if the section is not part
12053 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12055 && (o
->flags
& SEC_EXCLUDE
) == 0
12056 && ((o
->flags
& SEC_KEEP
) != 0
12057 || (elf_section_data (o
)->this_hdr
.sh_type
== SHT_NOTE
12058 && elf_next_in_group (o
) == NULL
)))
12060 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12065 /* Allow the backend to mark additional target specific sections. */
12066 bed
->gc_mark_extra_sections (info
, gc_mark_hook
);
12068 /* ... and mark SEC_EXCLUDE for those that go. */
12069 return elf_gc_sweep (abfd
, info
);
12072 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
12075 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
12077 struct elf_link_hash_entry
*h
,
12080 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
12081 struct elf_link_hash_entry
**search
, *child
;
12082 bfd_size_type extsymcount
;
12083 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12085 /* The sh_info field of the symtab header tells us where the
12086 external symbols start. We don't care about the local symbols at
12088 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
12089 if (!elf_bad_symtab (abfd
))
12090 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
12092 sym_hashes
= elf_sym_hashes (abfd
);
12093 sym_hashes_end
= sym_hashes
+ extsymcount
;
12095 /* Hunt down the child symbol, which is in this section at the same
12096 offset as the relocation. */
12097 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
12099 if ((child
= *search
) != NULL
12100 && (child
->root
.type
== bfd_link_hash_defined
12101 || child
->root
.type
== bfd_link_hash_defweak
)
12102 && child
->root
.u
.def
.section
== sec
12103 && child
->root
.u
.def
.value
== offset
)
12107 (*_bfd_error_handler
) ("%B: %A+%lu: No symbol found for INHERIT",
12108 abfd
, sec
, (unsigned long) offset
);
12109 bfd_set_error (bfd_error_invalid_operation
);
12113 if (!child
->vtable
)
12115 child
->vtable
= (struct elf_link_virtual_table_entry
*)
12116 bfd_zalloc (abfd
, sizeof (*child
->vtable
));
12117 if (!child
->vtable
)
12122 /* This *should* only be the absolute section. It could potentially
12123 be that someone has defined a non-global vtable though, which
12124 would be bad. It isn't worth paging in the local symbols to be
12125 sure though; that case should simply be handled by the assembler. */
12127 child
->vtable
->parent
= (struct elf_link_hash_entry
*) -1;
12130 child
->vtable
->parent
= h
;
12135 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
12138 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
12139 asection
*sec ATTRIBUTE_UNUSED
,
12140 struct elf_link_hash_entry
*h
,
12143 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12144 unsigned int log_file_align
= bed
->s
->log_file_align
;
12148 h
->vtable
= (struct elf_link_virtual_table_entry
*)
12149 bfd_zalloc (abfd
, sizeof (*h
->vtable
));
12154 if (addend
>= h
->vtable
->size
)
12156 size_t size
, bytes
, file_align
;
12157 bfd_boolean
*ptr
= h
->vtable
->used
;
12159 /* While the symbol is undefined, we have to be prepared to handle
12161 file_align
= 1 << log_file_align
;
12162 if (h
->root
.type
== bfd_link_hash_undefined
)
12163 size
= addend
+ file_align
;
12167 if (addend
>= size
)
12169 /* Oops! We've got a reference past the defined end of
12170 the table. This is probably a bug -- shall we warn? */
12171 size
= addend
+ file_align
;
12174 size
= (size
+ file_align
- 1) & -file_align
;
12176 /* Allocate one extra entry for use as a "done" flag for the
12177 consolidation pass. */
12178 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
12182 ptr
= (bfd_boolean
*) bfd_realloc (ptr
- 1, bytes
);
12188 oldbytes
= (((h
->vtable
->size
>> log_file_align
) + 1)
12189 * sizeof (bfd_boolean
));
12190 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
12194 ptr
= (bfd_boolean
*) bfd_zmalloc (bytes
);
12199 /* And arrange for that done flag to be at index -1. */
12200 h
->vtable
->used
= ptr
+ 1;
12201 h
->vtable
->size
= size
;
12204 h
->vtable
->used
[addend
>> log_file_align
] = TRUE
;
12209 /* Map an ELF section header flag to its corresponding string. */
12213 flagword flag_value
;
12214 } elf_flags_to_name_table
;
12216 static elf_flags_to_name_table elf_flags_to_names
[] =
12218 { "SHF_WRITE", SHF_WRITE
},
12219 { "SHF_ALLOC", SHF_ALLOC
},
12220 { "SHF_EXECINSTR", SHF_EXECINSTR
},
12221 { "SHF_MERGE", SHF_MERGE
},
12222 { "SHF_STRINGS", SHF_STRINGS
},
12223 { "SHF_INFO_LINK", SHF_INFO_LINK
},
12224 { "SHF_LINK_ORDER", SHF_LINK_ORDER
},
12225 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING
},
12226 { "SHF_GROUP", SHF_GROUP
},
12227 { "SHF_TLS", SHF_TLS
},
12228 { "SHF_MASKOS", SHF_MASKOS
},
12229 { "SHF_EXCLUDE", SHF_EXCLUDE
},
12233 bfd_elf_lookup_section_flags (struct bfd_link_info
*info
,
12234 struct flag_info
*finfo
)
12236 bfd
*output_bfd
= info
->output_bfd
;
12237 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
12238 struct flag_info_list
*tf
= finfo
->flag_list
;
12240 int without_hex
= 0;
12242 for (tf
= finfo
->flag_list
; tf
!= NULL
; tf
= tf
->next
)
12245 if (bed
->elf_backend_lookup_section_flags_hook
)
12248 (*bed
->elf_backend_lookup_section_flags_hook
) ((char *) tf
->name
);
12252 if (tf
->with
== with_flags
)
12253 with_hex
|= hexval
;
12254 else if (tf
->with
== without_flags
)
12255 without_hex
|= hexval
;
12260 for (i
= 0; i
< 12; i
++)
12262 if (!strcmp (tf
->name
, elf_flags_to_names
[i
].flag_name
))
12264 if (tf
->with
== with_flags
)
12265 with_hex
|= elf_flags_to_names
[i
].flag_value
;
12266 else if (tf
->with
== without_flags
)
12267 without_hex
|= elf_flags_to_names
[i
].flag_value
;
12272 if (tf
->valid
== FALSE
)
12274 info
->callbacks
->einfo
12275 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf
->name
);
12279 finfo
->flags_initialized
= TRUE
;
12280 finfo
->only_with_flags
|= with_hex
;
12281 finfo
->not_with_flags
|= without_hex
;
12286 struct alloc_got_off_arg
{
12288 struct bfd_link_info
*info
;
12291 /* We need a special top-level link routine to convert got reference counts
12292 to real got offsets. */
12295 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
12297 struct alloc_got_off_arg
*gofarg
= (struct alloc_got_off_arg
*) arg
;
12298 bfd
*obfd
= gofarg
->info
->output_bfd
;
12299 const struct elf_backend_data
*bed
= get_elf_backend_data (obfd
);
12301 if (h
->got
.refcount
> 0)
12303 h
->got
.offset
= gofarg
->gotoff
;
12304 gofarg
->gotoff
+= bed
->got_elt_size (obfd
, gofarg
->info
, h
, NULL
, 0);
12307 h
->got
.offset
= (bfd_vma
) -1;
12312 /* And an accompanying bit to work out final got entry offsets once
12313 we're done. Should be called from final_link. */
12316 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
12317 struct bfd_link_info
*info
)
12320 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12322 struct alloc_got_off_arg gofarg
;
12324 BFD_ASSERT (abfd
== info
->output_bfd
);
12326 if (! is_elf_hash_table (info
->hash
))
12329 /* The GOT offset is relative to the .got section, but the GOT header is
12330 put into the .got.plt section, if the backend uses it. */
12331 if (bed
->want_got_plt
)
12334 gotoff
= bed
->got_header_size
;
12336 /* Do the local .got entries first. */
12337 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
12339 bfd_signed_vma
*local_got
;
12340 bfd_size_type j
, locsymcount
;
12341 Elf_Internal_Shdr
*symtab_hdr
;
12343 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
12346 local_got
= elf_local_got_refcounts (i
);
12350 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
12351 if (elf_bad_symtab (i
))
12352 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
12354 locsymcount
= symtab_hdr
->sh_info
;
12356 for (j
= 0; j
< locsymcount
; ++j
)
12358 if (local_got
[j
] > 0)
12360 local_got
[j
] = gotoff
;
12361 gotoff
+= bed
->got_elt_size (abfd
, info
, NULL
, i
, j
);
12364 local_got
[j
] = (bfd_vma
) -1;
12368 /* Then the global .got entries. .plt refcounts are handled by
12369 adjust_dynamic_symbol */
12370 gofarg
.gotoff
= gotoff
;
12371 gofarg
.info
= info
;
12372 elf_link_hash_traverse (elf_hash_table (info
),
12373 elf_gc_allocate_got_offsets
,
12378 /* Many folk need no more in the way of final link than this, once
12379 got entry reference counting is enabled. */
12382 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12384 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
12387 /* Invoke the regular ELF backend linker to do all the work. */
12388 return bfd_elf_final_link (abfd
, info
);
12392 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
12394 struct elf_reloc_cookie
*rcookie
= (struct elf_reloc_cookie
*) cookie
;
12396 if (rcookie
->bad_symtab
)
12397 rcookie
->rel
= rcookie
->rels
;
12399 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
12401 unsigned long r_symndx
;
12403 if (! rcookie
->bad_symtab
)
12404 if (rcookie
->rel
->r_offset
> offset
)
12406 if (rcookie
->rel
->r_offset
!= offset
)
12409 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
12410 if (r_symndx
== STN_UNDEF
)
12413 if (r_symndx
>= rcookie
->locsymcount
12414 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
12416 struct elf_link_hash_entry
*h
;
12418 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
12420 while (h
->root
.type
== bfd_link_hash_indirect
12421 || h
->root
.type
== bfd_link_hash_warning
)
12422 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12424 if ((h
->root
.type
== bfd_link_hash_defined
12425 || h
->root
.type
== bfd_link_hash_defweak
)
12426 && elf_discarded_section (h
->root
.u
.def
.section
))
12433 /* It's not a relocation against a global symbol,
12434 but it could be a relocation against a local
12435 symbol for a discarded section. */
12437 Elf_Internal_Sym
*isym
;
12439 /* Need to: get the symbol; get the section. */
12440 isym
= &rcookie
->locsyms
[r_symndx
];
12441 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
12442 if (isec
!= NULL
&& elf_discarded_section (isec
))
12450 /* Discard unneeded references to discarded sections.
12451 Returns TRUE if any section's size was changed. */
12452 /* This function assumes that the relocations are in sorted order,
12453 which is true for all known assemblers. */
12456 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
12458 struct elf_reloc_cookie cookie
;
12459 asection
*stab
, *eh
;
12460 const struct elf_backend_data
*bed
;
12462 bfd_boolean ret
= FALSE
;
12464 if (info
->traditional_format
12465 || !is_elf_hash_table (info
->hash
))
12468 _bfd_elf_begin_eh_frame_parsing (info
);
12469 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
12471 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
12474 bed
= get_elf_backend_data (abfd
);
12476 if ((abfd
->flags
& DYNAMIC
) != 0)
12480 if (!info
->relocatable
)
12482 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
12485 || bfd_is_abs_section (eh
->output_section
)))
12489 stab
= bfd_get_section_by_name (abfd
, ".stab");
12491 && (stab
->size
== 0
12492 || bfd_is_abs_section (stab
->output_section
)
12493 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
12498 && bed
->elf_backend_discard_info
== NULL
)
12501 if (!init_reloc_cookie (&cookie
, info
, abfd
))
12505 && stab
->reloc_count
> 0
12506 && init_reloc_cookie_rels (&cookie
, info
, abfd
, stab
))
12508 if (_bfd_discard_section_stabs (abfd
, stab
,
12509 elf_section_data (stab
)->sec_info
,
12510 bfd_elf_reloc_symbol_deleted_p
,
12513 fini_reloc_cookie_rels (&cookie
, stab
);
12517 && init_reloc_cookie_rels (&cookie
, info
, abfd
, eh
))
12519 _bfd_elf_parse_eh_frame (abfd
, info
, eh
, &cookie
);
12520 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
12521 bfd_elf_reloc_symbol_deleted_p
,
12524 fini_reloc_cookie_rels (&cookie
, eh
);
12527 if (bed
->elf_backend_discard_info
!= NULL
12528 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
12531 fini_reloc_cookie (&cookie
, abfd
);
12533 _bfd_elf_end_eh_frame_parsing (info
);
12535 if (info
->eh_frame_hdr
12536 && !info
->relocatable
12537 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))
12544 _bfd_elf_section_already_linked (bfd
*abfd
,
12546 struct bfd_link_info
*info
)
12549 const char *name
, *key
;
12550 struct bfd_section_already_linked
*l
;
12551 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
12553 if (sec
->output_section
== bfd_abs_section_ptr
)
12556 flags
= sec
->flags
;
12558 /* Return if it isn't a linkonce section. A comdat group section
12559 also has SEC_LINK_ONCE set. */
12560 if ((flags
& SEC_LINK_ONCE
) == 0)
12563 /* Don't put group member sections on our list of already linked
12564 sections. They are handled as a group via their group section. */
12565 if (elf_sec_group (sec
) != NULL
)
12568 /* For a SHT_GROUP section, use the group signature as the key. */
12570 if ((flags
& SEC_GROUP
) != 0
12571 && elf_next_in_group (sec
) != NULL
12572 && elf_group_name (elf_next_in_group (sec
)) != NULL
)
12573 key
= elf_group_name (elf_next_in_group (sec
));
12576 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
12577 if (CONST_STRNEQ (name
, ".gnu.linkonce.")
12578 && (key
= strchr (name
+ sizeof (".gnu.linkonce.") - 1, '.')) != NULL
)
12581 /* Must be a user linkonce section that doesn't follow gcc's
12582 naming convention. In this case we won't be matching
12583 single member groups. */
12587 already_linked_list
= bfd_section_already_linked_table_lookup (key
);
12589 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12591 /* We may have 2 different types of sections on the list: group
12592 sections with a signature of <key> (<key> is some string),
12593 and linkonce sections named .gnu.linkonce.<type>.<key>.
12594 Match like sections. LTO plugin sections are an exception.
12595 They are always named .gnu.linkonce.t.<key> and match either
12596 type of section. */
12597 if (((flags
& SEC_GROUP
) == (l
->sec
->flags
& SEC_GROUP
)
12598 && ((flags
& SEC_GROUP
) != 0
12599 || strcmp (name
, l
->sec
->name
) == 0))
12600 || (l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
12602 /* The section has already been linked. See if we should
12603 issue a warning. */
12604 if (!_bfd_handle_already_linked (sec
, l
, info
))
12607 if (flags
& SEC_GROUP
)
12609 asection
*first
= elf_next_in_group (sec
);
12610 asection
*s
= first
;
12614 s
->output_section
= bfd_abs_section_ptr
;
12615 /* Record which group discards it. */
12616 s
->kept_section
= l
->sec
;
12617 s
= elf_next_in_group (s
);
12618 /* These lists are circular. */
12628 /* A single member comdat group section may be discarded by a
12629 linkonce section and vice versa. */
12630 if ((flags
& SEC_GROUP
) != 0)
12632 asection
*first
= elf_next_in_group (sec
);
12634 if (first
!= NULL
&& elf_next_in_group (first
) == first
)
12635 /* Check this single member group against linkonce sections. */
12636 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12637 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12638 && bfd_elf_match_symbols_in_sections (l
->sec
, first
, info
))
12640 first
->output_section
= bfd_abs_section_ptr
;
12641 first
->kept_section
= l
->sec
;
12642 sec
->output_section
= bfd_abs_section_ptr
;
12647 /* Check this linkonce section against single member groups. */
12648 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12649 if (l
->sec
->flags
& SEC_GROUP
)
12651 asection
*first
= elf_next_in_group (l
->sec
);
12654 && elf_next_in_group (first
) == first
12655 && bfd_elf_match_symbols_in_sections (first
, sec
, info
))
12657 sec
->output_section
= bfd_abs_section_ptr
;
12658 sec
->kept_section
= first
;
12663 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12664 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12665 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12666 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12667 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12668 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12669 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12670 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12671 The reverse order cannot happen as there is never a bfd with only the
12672 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12673 matter as here were are looking only for cross-bfd sections. */
12675 if ((flags
& SEC_GROUP
) == 0 && CONST_STRNEQ (name
, ".gnu.linkonce.r."))
12676 for (l
= already_linked_list
->entry
; l
!= NULL
; l
= l
->next
)
12677 if ((l
->sec
->flags
& SEC_GROUP
) == 0
12678 && CONST_STRNEQ (l
->sec
->name
, ".gnu.linkonce.t."))
12680 if (abfd
!= l
->sec
->owner
)
12681 sec
->output_section
= bfd_abs_section_ptr
;
12685 /* This is the first section with this name. Record it. */
12686 if (!bfd_section_already_linked_table_insert (already_linked_list
, sec
))
12687 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
12688 return sec
->output_section
== bfd_abs_section_ptr
;
12692 _bfd_elf_common_definition (Elf_Internal_Sym
*sym
)
12694 return sym
->st_shndx
== SHN_COMMON
;
12698 _bfd_elf_common_section_index (asection
*sec ATTRIBUTE_UNUSED
)
12704 _bfd_elf_common_section (asection
*sec ATTRIBUTE_UNUSED
)
12706 return bfd_com_section_ptr
;
12710 _bfd_elf_default_got_elt_size (bfd
*abfd
,
12711 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
12712 struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
,
12713 bfd
*ibfd ATTRIBUTE_UNUSED
,
12714 unsigned long symndx ATTRIBUTE_UNUSED
)
12716 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12717 return bed
->s
->arch_size
/ 8;
12720 /* Routines to support the creation of dynamic relocs. */
12722 /* Returns the name of the dynamic reloc section associated with SEC. */
12724 static const char *
12725 get_dynamic_reloc_section_name (bfd
* abfd
,
12727 bfd_boolean is_rela
)
12730 const char *old_name
= bfd_get_section_name (NULL
, sec
);
12731 const char *prefix
= is_rela
? ".rela" : ".rel";
12733 if (old_name
== NULL
)
12736 name
= bfd_alloc (abfd
, strlen (prefix
) + strlen (old_name
) + 1);
12737 sprintf (name
, "%s%s", prefix
, old_name
);
12742 /* Returns the dynamic reloc section associated with SEC.
12743 If necessary compute the name of the dynamic reloc section based
12744 on SEC's name (looked up in ABFD's string table) and the setting
12748 _bfd_elf_get_dynamic_reloc_section (bfd
* abfd
,
12750 bfd_boolean is_rela
)
12752 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12754 if (reloc_sec
== NULL
)
12756 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12760 reloc_sec
= bfd_get_section_by_name (abfd
, name
);
12762 if (reloc_sec
!= NULL
)
12763 elf_section_data (sec
)->sreloc
= reloc_sec
;
12770 /* Returns the dynamic reloc section associated with SEC. If the
12771 section does not exist it is created and attached to the DYNOBJ
12772 bfd and stored in the SRELOC field of SEC's elf_section_data
12775 ALIGNMENT is the alignment for the newly created section and
12776 IS_RELA defines whether the name should be .rela.<SEC's name>
12777 or .rel.<SEC's name>. The section name is looked up in the
12778 string table associated with ABFD. */
12781 _bfd_elf_make_dynamic_reloc_section (asection
* sec
,
12783 unsigned int alignment
,
12785 bfd_boolean is_rela
)
12787 asection
* reloc_sec
= elf_section_data (sec
)->sreloc
;
12789 if (reloc_sec
== NULL
)
12791 const char * name
= get_dynamic_reloc_section_name (abfd
, sec
, is_rela
);
12796 reloc_sec
= bfd_get_section_by_name (dynobj
, name
);
12798 if (reloc_sec
== NULL
)
12802 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
12803 if ((sec
->flags
& SEC_ALLOC
) != 0)
12804 flags
|= SEC_ALLOC
| SEC_LOAD
;
12806 reloc_sec
= bfd_make_section_with_flags (dynobj
, name
, flags
);
12807 if (reloc_sec
!= NULL
)
12809 if (! bfd_set_section_alignment (dynobj
, reloc_sec
, alignment
))
12814 elf_section_data (sec
)->sreloc
= reloc_sec
;
12820 /* Copy the ELF symbol type associated with a linker hash entry. */
12822 _bfd_elf_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
12823 struct bfd_link_hash_entry
* hdest
,
12824 struct bfd_link_hash_entry
* hsrc
)
12826 struct elf_link_hash_entry
*ehdest
= (struct elf_link_hash_entry
*)hdest
;
12827 struct elf_link_hash_entry
*ehsrc
= (struct elf_link_hash_entry
*)hsrc
;
12829 ehdest
->type
= ehsrc
->type
;
12830 ehdest
->target_internal
= ehsrc
->target_internal
;
12833 /* Append a RELA relocation REL to section S in BFD. */
12836 elf_append_rela (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
12838 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12839 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rela
);
12840 BFD_ASSERT (loc
+ bed
->s
->sizeof_rela
<= s
->contents
+ s
->size
);
12841 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);
12844 /* Append a REL relocation REL to section S in BFD. */
12847 elf_append_rel (bfd
*abfd
, asection
*s
, Elf_Internal_Rela
*rel
)
12849 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12850 bfd_byte
*loc
= s
->contents
+ (s
->reloc_count
++ * bed
->s
->sizeof_rel
);
12851 BFD_ASSERT (loc
+ bed
->s
->sizeof_rel
<= s
->contents
+ s
->size
);
12852 bed
->s
->swap_reloca_out (abfd
, rel
, loc
);