1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
13 This file is part of BFD, the Binary File Descriptor library.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
31 /* This file handles functionality common to the different MIPS ABI's. */
36 #include "libiberty.h"
38 #include "elfxx-mips.h"
40 #include "elf-vxworks.h"
42 /* Get the ECOFF swapping routines. */
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
53 (1) absolute addresses
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
85 /* The input bfd in which the symbol is defined. */
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
92 /* If abfd == NULL, an address that must be stored in the got. */
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry
*h
;
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type
;
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
120 struct mips_got_page_range
122 struct mips_got_page_range
*next
;
123 bfd_signed_vma min_addend
;
124 bfd_signed_vma max_addend
;
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
131 /* The input bfd in which the symbol is defined. */
133 /* The index of the symbol, as stored in the relocation r_info. */
135 /* The ranges for this page entry. */
136 struct mips_got_page_range
*ranges
;
137 /* The maximum number of page entries needed for RANGES. */
141 /* This structure is used to hold .got information when linking. */
145 /* The global symbol in the GOT with the lowest index in the dynamic
147 struct elf_link_hash_entry
*global_gotsym
;
148 /* The number of global .got entries. */
149 unsigned int global_gotno
;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno
;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno
;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno
;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno
;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno
;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno
;
163 /* A hash table holding members of the got. */
164 struct htab
*got_entries
;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab
*got_page_entries
;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab
*bfd2got
;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info
*next
;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset
;
180 /* Map an input bfd to a got in a multi-got link. */
182 struct mips_elf_bfd2got_hash
185 struct mips_got_info
*g
;
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
191 struct mips_elf_got_per_bfd_arg
193 /* A hashtable that maps bfds to gots. */
195 /* The output bfd. */
197 /* The link information. */
198 struct bfd_link_info
*info
;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
202 struct mips_got_info
*primary
;
203 /* A non-primary got we're trying to merge with other input bfd's
205 struct mips_got_info
*current
;
206 /* The maximum number of got entries that can be addressed with a
208 unsigned int max_count
;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages
;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
215 unsigned int global_count
;
218 /* Another structure used to pass arguments for got entries traversal. */
220 struct mips_elf_set_global_got_offset_arg
222 struct mips_got_info
*g
;
224 unsigned int needed_relocs
;
225 struct bfd_link_info
*info
;
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
231 struct mips_elf_count_tls_arg
233 struct bfd_link_info
*info
;
237 struct _mips_elf_section_data
239 struct bfd_elf_section_data elf
;
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
272 #define GGA_RELOC_ONLY 1
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
279 addiu $25,$25,%lo(func)
281 immediately before a PIC function "func". The second is to add:
285 addiu $25,$25,%lo(func)
287 to a separate trampoline section.
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub
{
293 /* The generated section that contains this stub. */
294 asection
*stub_section
;
296 /* The offset of the stub from the start of STUB_SECTION. */
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry
*h
;
304 /* Macros for populating a mips_elf_la25_stub. */
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
319 struct mips_elf_hash_sort_data
321 /* The symbol in the global GOT with the lowest dynamic symbol table
323 struct elf_link_hash_entry
*low
;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx
;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx
;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx
;
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
339 struct mips_elf_link_hash_entry
341 struct elf_link_hash_entry root
;
343 /* External symbol information. */
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub
*la25_stub
;
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
351 unsigned int possibly_dynamic_relocs
;
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection
*call_fp_stub
;
367 #define GOT_TLS_LDM 2
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type
;
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset
;
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area
: 2;
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls
: 1;
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc
: 1;
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs
: 1;
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub
: 1;
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub
: 1;
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches
: 1;
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub
: 1;
418 /* MIPS ELF linker hash table. */
420 struct mips_elf_link_hash_table
422 struct elf_link_hash_table root
;
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex
[SIZEOF_MIPS_DYNSYM_SECNAMES
];
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count
;
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size
;
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head
;
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry
*rld_symbol
;
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen
;
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs
;
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks
;
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported
;
454 /* Shortcuts to some dynamic sections, or NULL if they are not
465 /* The master GOT information. */
466 struct mips_got_info
*got_info
;
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size
;
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size
;
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count
;
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size
;
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno
;
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection
*strampoline
;
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
496 The function returns the new section on success, otherwise it
498 asection
*(*add_stub_section
) (const char *, asection
*, asection
*);
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
510 /* The usual link-wide information. */
511 struct bfd_link_info
*info
;
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
547 /* Structure used to pass information to mips_elf_output_extsym. */
552 struct bfd_link_info
*info
;
553 struct ecoff_debug_info
*debug
;
554 const struct ecoff_debug_swap
*swap
;
558 /* The names of the runtime procedure table symbols used on IRIX5. */
560 static const char * const mips_elf_dynsym_rtproc_names
[] =
563 "_procedure_string_table",
564 "_procedure_table_size",
568 /* These structures are used to generate the .compact_rel section on
573 unsigned long id1
; /* Always one? */
574 unsigned long num
; /* Number of compact relocation entries. */
575 unsigned long id2
; /* Always two? */
576 unsigned long offset
; /* The file offset of the first relocation. */
577 unsigned long reserved0
; /* Zero? */
578 unsigned long reserved1
; /* Zero? */
587 bfd_byte reserved0
[4];
588 bfd_byte reserved1
[4];
589 } Elf32_External_compact_rel
;
593 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype
: 4; /* Relocation types. See below. */
595 unsigned int dist2to
: 8;
596 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst
; /* KONST field. See below. */
598 unsigned long vaddr
; /* VADDR to be relocated. */
603 unsigned int ctype
: 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype
: 4; /* Relocation types. See below. */
605 unsigned int dist2to
: 8;
606 unsigned int relvaddr
: 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst
; /* KONST field. See below. */
615 } Elf32_External_crinfo
;
621 } Elf32_External_crinfo2
;
623 /* These are the constants used to swap the bitfields in a crinfo. */
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
663 typedef struct runtime_pdr
{
664 bfd_vma adr
; /* Memory address of start of procedure. */
665 long regmask
; /* Save register mask. */
666 long regoffset
; /* Save register offset. */
667 long fregmask
; /* Save floating point register mask. */
668 long fregoffset
; /* Save floating point register offset. */
669 long frameoffset
; /* Frame size. */
670 short framereg
; /* Frame pointer register. */
671 short pcreg
; /* Offset or reg of return pc. */
672 long irpss
; /* Index into the runtime string table. */
674 struct exception_info
*exception_info
;/* Pointer to exception array. */
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
679 static struct mips_got_entry
*mips_elf_create_local_got_entry
680 (bfd
*, struct bfd_link_info
*, bfd
*, bfd_vma
, unsigned long,
681 struct mips_elf_link_hash_entry
*, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry
*, void *);
684 static bfd_vma mips_elf_high
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd
*, struct bfd_link_info
*, const Elf_Internal_Rela
*,
688 struct mips_elf_link_hash_entry
*, asection
*, bfd_vma
,
689 bfd_vma
*, asection
*);
690 static hashval_t mips_elf_got_entry_hash
692 static bfd_vma mips_elf_adjust_gp
693 (bfd
*, struct mips_got_info
*, bfd
*);
694 static struct mips_got_info
*mips_elf_got_for_ibfd
695 (struct mips_got_info
*, bfd
*);
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd
*reldyn_sorting_bfd
;
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
715 #define JALR_TO_BAL_P(abfd) 1
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
720 #define JR_TO_B_P(abfd) 1
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
830 /* The maximum size of the GOT for it to be addressable using 16-bit
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
855 /* The name of the dynamic interpreter. This is put in the .interp
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
876 #define ELF_R_TYPE(bfd, i) \
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
914 We record any stubs that we find in the symbol table. */
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry
[] =
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry
[] =
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry
[] =
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry
[] =
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry
[] =
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry
[] =
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry
[] =
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry
[] =
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1016 /* Look up an entry in a MIPS ELF linker hash table. */
1018 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1019 ((struct mips_elf_link_hash_entry *) \
1020 elf_link_hash_lookup (&(table)->root, (string), (create), \
1023 /* Traverse a MIPS ELF linker hash table. */
1025 #define mips_elf_link_hash_traverse(table, func, info) \
1026 (elf_link_hash_traverse \
1028 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1031 /* Find the base offsets for thread-local storage in this object,
1032 for GD/LD and IE/LE respectively. */
1034 #define TP_OFFSET 0x7000
1035 #define DTP_OFFSET 0x8000
1038 dtprel_base (struct bfd_link_info
*info
)
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info
)->tls_sec
== NULL
)
1043 return elf_hash_table (info
)->tls_sec
->vma
+ DTP_OFFSET
;
1047 tprel_base (struct bfd_link_info
*info
)
1049 /* If tls_sec is NULL, we should have signalled an error already. */
1050 if (elf_hash_table (info
)->tls_sec
== NULL
)
1052 return elf_hash_table (info
)->tls_sec
->vma
+ TP_OFFSET
;
1055 /* Create an entry in a MIPS ELF linker hash table. */
1057 static struct bfd_hash_entry
*
1058 mips_elf_link_hash_newfunc (struct bfd_hash_entry
*entry
,
1059 struct bfd_hash_table
*table
, const char *string
)
1061 struct mips_elf_link_hash_entry
*ret
=
1062 (struct mips_elf_link_hash_entry
*) entry
;
1064 /* Allocate the structure if it has not already been allocated by a
1067 ret
= bfd_hash_allocate (table
, sizeof (struct mips_elf_link_hash_entry
));
1069 return (struct bfd_hash_entry
*) ret
;
1071 /* Call the allocation method of the superclass. */
1072 ret
= ((struct mips_elf_link_hash_entry
*)
1073 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
1077 /* Set local fields. */
1078 memset (&ret
->esym
, 0, sizeof (EXTR
));
1079 /* We use -2 as a marker to indicate that the information has
1080 not been set. -1 means there is no associated ifd. */
1083 ret
->possibly_dynamic_relocs
= 0;
1084 ret
->fn_stub
= NULL
;
1085 ret
->call_stub
= NULL
;
1086 ret
->call_fp_stub
= NULL
;
1087 ret
->tls_type
= GOT_NORMAL
;
1088 ret
->global_got_area
= GGA_NONE
;
1089 ret
->got_only_for_calls
= TRUE
;
1090 ret
->readonly_reloc
= FALSE
;
1091 ret
->has_static_relocs
= FALSE
;
1092 ret
->no_fn_stub
= FALSE
;
1093 ret
->need_fn_stub
= FALSE
;
1094 ret
->has_nonpic_branches
= FALSE
;
1095 ret
->needs_lazy_stub
= FALSE
;
1098 return (struct bfd_hash_entry
*) ret
;
1102 _bfd_mips_elf_new_section_hook (bfd
*abfd
, asection
*sec
)
1104 if (!sec
->used_by_bfd
)
1106 struct _mips_elf_section_data
*sdata
;
1107 bfd_size_type amt
= sizeof (*sdata
);
1109 sdata
= bfd_zalloc (abfd
, amt
);
1112 sec
->used_by_bfd
= sdata
;
1115 return _bfd_elf_new_section_hook (abfd
, sec
);
1118 /* Read ECOFF debugging information from a .mdebug section into a
1119 ecoff_debug_info structure. */
1122 _bfd_mips_elf_read_ecoff_info (bfd
*abfd
, asection
*section
,
1123 struct ecoff_debug_info
*debug
)
1126 const struct ecoff_debug_swap
*swap
;
1129 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1130 memset (debug
, 0, sizeof (*debug
));
1132 ext_hdr
= bfd_malloc (swap
->external_hdr_size
);
1133 if (ext_hdr
== NULL
&& swap
->external_hdr_size
!= 0)
1136 if (! bfd_get_section_contents (abfd
, section
, ext_hdr
, 0,
1137 swap
->external_hdr_size
))
1140 symhdr
= &debug
->symbolic_header
;
1141 (*swap
->swap_hdr_in
) (abfd
, ext_hdr
, symhdr
);
1143 /* The symbolic header contains absolute file offsets and sizes to
1145 #define READ(ptr, offset, count, size, type) \
1146 if (symhdr->count == 0) \
1147 debug->ptr = NULL; \
1150 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1151 debug->ptr = bfd_malloc (amt); \
1152 if (debug->ptr == NULL) \
1153 goto error_return; \
1154 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1155 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1156 goto error_return; \
1159 READ (line
, cbLineOffset
, cbLine
, sizeof (unsigned char), unsigned char *);
1160 READ (external_dnr
, cbDnOffset
, idnMax
, swap
->external_dnr_size
, void *);
1161 READ (external_pdr
, cbPdOffset
, ipdMax
, swap
->external_pdr_size
, void *);
1162 READ (external_sym
, cbSymOffset
, isymMax
, swap
->external_sym_size
, void *);
1163 READ (external_opt
, cbOptOffset
, ioptMax
, swap
->external_opt_size
, void *);
1164 READ (external_aux
, cbAuxOffset
, iauxMax
, sizeof (union aux_ext
),
1166 READ (ss
, cbSsOffset
, issMax
, sizeof (char), char *);
1167 READ (ssext
, cbSsExtOffset
, issExtMax
, sizeof (char), char *);
1168 READ (external_fdr
, cbFdOffset
, ifdMax
, swap
->external_fdr_size
, void *);
1169 READ (external_rfd
, cbRfdOffset
, crfd
, swap
->external_rfd_size
, void *);
1170 READ (external_ext
, cbExtOffset
, iextMax
, swap
->external_ext_size
, void *);
1178 if (ext_hdr
!= NULL
)
1180 if (debug
->line
!= NULL
)
1182 if (debug
->external_dnr
!= NULL
)
1183 free (debug
->external_dnr
);
1184 if (debug
->external_pdr
!= NULL
)
1185 free (debug
->external_pdr
);
1186 if (debug
->external_sym
!= NULL
)
1187 free (debug
->external_sym
);
1188 if (debug
->external_opt
!= NULL
)
1189 free (debug
->external_opt
);
1190 if (debug
->external_aux
!= NULL
)
1191 free (debug
->external_aux
);
1192 if (debug
->ss
!= NULL
)
1194 if (debug
->ssext
!= NULL
)
1195 free (debug
->ssext
);
1196 if (debug
->external_fdr
!= NULL
)
1197 free (debug
->external_fdr
);
1198 if (debug
->external_rfd
!= NULL
)
1199 free (debug
->external_rfd
);
1200 if (debug
->external_ext
!= NULL
)
1201 free (debug
->external_ext
);
1205 /* Swap RPDR (runtime procedure table entry) for output. */
1208 ecoff_swap_rpdr_out (bfd
*abfd
, const RPDR
*in
, struct rpdr_ext
*ex
)
1210 H_PUT_S32 (abfd
, in
->adr
, ex
->p_adr
);
1211 H_PUT_32 (abfd
, in
->regmask
, ex
->p_regmask
);
1212 H_PUT_32 (abfd
, in
->regoffset
, ex
->p_regoffset
);
1213 H_PUT_32 (abfd
, in
->fregmask
, ex
->p_fregmask
);
1214 H_PUT_32 (abfd
, in
->fregoffset
, ex
->p_fregoffset
);
1215 H_PUT_32 (abfd
, in
->frameoffset
, ex
->p_frameoffset
);
1217 H_PUT_16 (abfd
, in
->framereg
, ex
->p_framereg
);
1218 H_PUT_16 (abfd
, in
->pcreg
, ex
->p_pcreg
);
1220 H_PUT_32 (abfd
, in
->irpss
, ex
->p_irpss
);
1223 /* Create a runtime procedure table from the .mdebug section. */
1226 mips_elf_create_procedure_table (void *handle
, bfd
*abfd
,
1227 struct bfd_link_info
*info
, asection
*s
,
1228 struct ecoff_debug_info
*debug
)
1230 const struct ecoff_debug_swap
*swap
;
1231 HDRR
*hdr
= &debug
->symbolic_header
;
1233 struct rpdr_ext
*erp
;
1235 struct pdr_ext
*epdr
;
1236 struct sym_ext
*esym
;
1240 bfd_size_type count
;
1241 unsigned long sindex
;
1245 const char *no_name_func
= _("static procedure (no name)");
1253 swap
= get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
1255 sindex
= strlen (no_name_func
) + 1;
1256 count
= hdr
->ipdMax
;
1259 size
= swap
->external_pdr_size
;
1261 epdr
= bfd_malloc (size
* count
);
1265 if (! _bfd_ecoff_get_accumulated_pdr (handle
, (bfd_byte
*) epdr
))
1268 size
= sizeof (RPDR
);
1269 rp
= rpdr
= bfd_malloc (size
* count
);
1273 size
= sizeof (char *);
1274 sv
= bfd_malloc (size
* count
);
1278 count
= hdr
->isymMax
;
1279 size
= swap
->external_sym_size
;
1280 esym
= bfd_malloc (size
* count
);
1284 if (! _bfd_ecoff_get_accumulated_sym (handle
, (bfd_byte
*) esym
))
1287 count
= hdr
->issMax
;
1288 ss
= bfd_malloc (count
);
1291 if (! _bfd_ecoff_get_accumulated_ss (handle
, (bfd_byte
*) ss
))
1294 count
= hdr
->ipdMax
;
1295 for (i
= 0; i
< (unsigned long) count
; i
++, rp
++)
1297 (*swap
->swap_pdr_in
) (abfd
, epdr
+ i
, &pdr
);
1298 (*swap
->swap_sym_in
) (abfd
, &esym
[pdr
.isym
], &sym
);
1299 rp
->adr
= sym
.value
;
1300 rp
->regmask
= pdr
.regmask
;
1301 rp
->regoffset
= pdr
.regoffset
;
1302 rp
->fregmask
= pdr
.fregmask
;
1303 rp
->fregoffset
= pdr
.fregoffset
;
1304 rp
->frameoffset
= pdr
.frameoffset
;
1305 rp
->framereg
= pdr
.framereg
;
1306 rp
->pcreg
= pdr
.pcreg
;
1308 sv
[i
] = ss
+ sym
.iss
;
1309 sindex
+= strlen (sv
[i
]) + 1;
1313 size
= sizeof (struct rpdr_ext
) * (count
+ 2) + sindex
;
1314 size
= BFD_ALIGN (size
, 16);
1315 rtproc
= bfd_alloc (abfd
, size
);
1318 mips_elf_hash_table (info
)->procedure_count
= 0;
1322 mips_elf_hash_table (info
)->procedure_count
= count
+ 2;
1325 memset (erp
, 0, sizeof (struct rpdr_ext
));
1327 str
= (char *) rtproc
+ sizeof (struct rpdr_ext
) * (count
+ 2);
1328 strcpy (str
, no_name_func
);
1329 str
+= strlen (no_name_func
) + 1;
1330 for (i
= 0; i
< count
; i
++)
1332 ecoff_swap_rpdr_out (abfd
, rpdr
+ i
, erp
+ i
);
1333 strcpy (str
, sv
[i
]);
1334 str
+= strlen (sv
[i
]) + 1;
1336 H_PUT_S32 (abfd
, -1, (erp
+ count
)->p_adr
);
1338 /* Set the size and contents of .rtproc section. */
1340 s
->contents
= rtproc
;
1342 /* Skip this section later on (I don't think this currently
1343 matters, but someday it might). */
1344 s
->map_head
.link_order
= NULL
;
1373 /* We're going to create a stub for H. Create a symbol for the stub's
1374 value and size, to help make the disassembly easier to read. */
1377 mips_elf_create_stub_symbol (struct bfd_link_info
*info
,
1378 struct mips_elf_link_hash_entry
*h
,
1379 const char *prefix
, asection
*s
, bfd_vma value
,
1382 struct bfd_link_hash_entry
*bh
;
1383 struct elf_link_hash_entry
*elfh
;
1386 if (ELF_ST_IS_MICROMIPS (h
->root
.other
))
1389 /* Create a new symbol. */
1390 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1392 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1393 BSF_LOCAL
, s
, value
, NULL
,
1397 /* Make it a local function. */
1398 elfh
= (struct elf_link_hash_entry
*) bh
;
1399 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
1401 elfh
->forced_local
= 1;
1405 /* We're about to redefine H. Create a symbol to represent H's
1406 current value and size, to help make the disassembly easier
1410 mips_elf_create_shadow_symbol (struct bfd_link_info
*info
,
1411 struct mips_elf_link_hash_entry
*h
,
1414 struct bfd_link_hash_entry
*bh
;
1415 struct elf_link_hash_entry
*elfh
;
1420 /* Read the symbol's value. */
1421 BFD_ASSERT (h
->root
.root
.type
== bfd_link_hash_defined
1422 || h
->root
.root
.type
== bfd_link_hash_defweak
);
1423 s
= h
->root
.root
.u
.def
.section
;
1424 value
= h
->root
.root
.u
.def
.value
;
1426 /* Create a new symbol. */
1427 name
= ACONCAT ((prefix
, h
->root
.root
.root
.string
, NULL
));
1429 if (!_bfd_generic_link_add_one_symbol (info
, s
->owner
, name
,
1430 BSF_LOCAL
, s
, value
, NULL
,
1434 /* Make it local and copy the other attributes from H. */
1435 elfh
= (struct elf_link_hash_entry
*) bh
;
1436 elfh
->type
= ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (h
->root
.type
));
1437 elfh
->other
= h
->root
.other
;
1438 elfh
->size
= h
->root
.size
;
1439 elfh
->forced_local
= 1;
1443 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1444 function rather than to a hard-float stub. */
1447 section_allows_mips16_refs_p (asection
*section
)
1451 name
= bfd_get_section_name (section
->owner
, section
);
1452 return (FN_STUB_P (name
)
1453 || CALL_STUB_P (name
)
1454 || CALL_FP_STUB_P (name
)
1455 || strcmp (name
, ".pdr") == 0);
1458 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1459 stub section of some kind. Return the R_SYMNDX of the target
1460 function, or 0 if we can't decide which function that is. */
1462 static unsigned long
1463 mips16_stub_symndx (asection
*sec ATTRIBUTE_UNUSED
,
1464 const Elf_Internal_Rela
*relocs
,
1465 const Elf_Internal_Rela
*relend
)
1467 const Elf_Internal_Rela
*rel
;
1469 /* Trust the first R_MIPS_NONE relocation, if any. */
1470 for (rel
= relocs
; rel
< relend
; rel
++)
1471 if (ELF_R_TYPE (sec
->owner
, rel
->r_info
) == R_MIPS_NONE
)
1472 return ELF_R_SYM (sec
->owner
, rel
->r_info
);
1474 /* Otherwise trust the first relocation, whatever its kind. This is
1475 the traditional behavior. */
1476 if (relocs
< relend
)
1477 return ELF_R_SYM (sec
->owner
, relocs
->r_info
);
1482 /* Check the mips16 stubs for a particular symbol, and see if we can
1486 mips_elf_check_mips16_stubs (struct bfd_link_info
*info
,
1487 struct mips_elf_link_hash_entry
*h
)
1489 /* Dynamic symbols must use the standard call interface, in case other
1490 objects try to call them. */
1491 if (h
->fn_stub
!= NULL
1492 && h
->root
.dynindx
!= -1)
1494 mips_elf_create_shadow_symbol (info
, h
, ".mips16.");
1495 h
->need_fn_stub
= TRUE
;
1498 if (h
->fn_stub
!= NULL
1499 && ! h
->need_fn_stub
)
1501 /* We don't need the fn_stub; the only references to this symbol
1502 are 16 bit calls. Clobber the size to 0 to prevent it from
1503 being included in the link. */
1504 h
->fn_stub
->size
= 0;
1505 h
->fn_stub
->flags
&= ~SEC_RELOC
;
1506 h
->fn_stub
->reloc_count
= 0;
1507 h
->fn_stub
->flags
|= SEC_EXCLUDE
;
1510 if (h
->call_stub
!= NULL
1511 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1513 /* We don't need the call_stub; this is a 16 bit function, so
1514 calls from other 16 bit functions are OK. Clobber the size
1515 to 0 to prevent it from being included in the link. */
1516 h
->call_stub
->size
= 0;
1517 h
->call_stub
->flags
&= ~SEC_RELOC
;
1518 h
->call_stub
->reloc_count
= 0;
1519 h
->call_stub
->flags
|= SEC_EXCLUDE
;
1522 if (h
->call_fp_stub
!= NULL
1523 && ELF_ST_IS_MIPS16 (h
->root
.other
))
1525 /* We don't need the call_stub; this is a 16 bit function, so
1526 calls from other 16 bit functions are OK. Clobber the size
1527 to 0 to prevent it from being included in the link. */
1528 h
->call_fp_stub
->size
= 0;
1529 h
->call_fp_stub
->flags
&= ~SEC_RELOC
;
1530 h
->call_fp_stub
->reloc_count
= 0;
1531 h
->call_fp_stub
->flags
|= SEC_EXCLUDE
;
1535 /* Hashtable callbacks for mips_elf_la25_stubs. */
1538 mips_elf_la25_stub_hash (const void *entry_
)
1540 const struct mips_elf_la25_stub
*entry
;
1542 entry
= (struct mips_elf_la25_stub
*) entry_
;
1543 return entry
->h
->root
.root
.u
.def
.section
->id
1544 + entry
->h
->root
.root
.u
.def
.value
;
1548 mips_elf_la25_stub_eq (const void *entry1_
, const void *entry2_
)
1550 const struct mips_elf_la25_stub
*entry1
, *entry2
;
1552 entry1
= (struct mips_elf_la25_stub
*) entry1_
;
1553 entry2
= (struct mips_elf_la25_stub
*) entry2_
;
1554 return ((entry1
->h
->root
.root
.u
.def
.section
1555 == entry2
->h
->root
.root
.u
.def
.section
)
1556 && (entry1
->h
->root
.root
.u
.def
.value
1557 == entry2
->h
->root
.root
.u
.def
.value
));
1560 /* Called by the linker to set up the la25 stub-creation code. FN is
1561 the linker's implementation of add_stub_function. Return true on
1565 _bfd_mips_elf_init_stubs (struct bfd_link_info
*info
,
1566 asection
*(*fn
) (const char *, asection
*,
1569 struct mips_elf_link_hash_table
*htab
;
1571 htab
= mips_elf_hash_table (info
);
1575 htab
->add_stub_section
= fn
;
1576 htab
->la25_stubs
= htab_try_create (1, mips_elf_la25_stub_hash
,
1577 mips_elf_la25_stub_eq
, NULL
);
1578 if (htab
->la25_stubs
== NULL
)
1584 /* Return true if H is a locally-defined PIC function, in the sense
1585 that it or its fn_stub might need $25 to be valid on entry.
1586 Note that MIPS16 functions set up $gp using PC-relative instructions,
1587 so they themselves never need $25 to be valid. Only non-MIPS16
1588 entry points are of interest here. */
1591 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry
*h
)
1593 return ((h
->root
.root
.type
== bfd_link_hash_defined
1594 || h
->root
.root
.type
== bfd_link_hash_defweak
)
1595 && h
->root
.def_regular
1596 && !bfd_is_abs_section (h
->root
.root
.u
.def
.section
)
1597 && (!ELF_ST_IS_MIPS16 (h
->root
.other
)
1598 || (h
->fn_stub
&& h
->need_fn_stub
))
1599 && (PIC_OBJECT_P (h
->root
.root
.u
.def
.section
->owner
)
1600 || ELF_ST_IS_MIPS_PIC (h
->root
.other
)));
1603 /* Set *SEC to the input section that contains the target of STUB.
1604 Return the offset of the target from the start of that section. */
1607 mips_elf_get_la25_target (struct mips_elf_la25_stub
*stub
,
1610 if (ELF_ST_IS_MIPS16 (stub
->h
->root
.other
))
1612 BFD_ASSERT (stub
->h
->need_fn_stub
);
1613 *sec
= stub
->h
->fn_stub
;
1618 *sec
= stub
->h
->root
.root
.u
.def
.section
;
1619 return stub
->h
->root
.root
.u
.def
.value
;
1623 /* STUB describes an la25 stub that we have decided to implement
1624 by inserting an LUI/ADDIU pair before the target function.
1625 Create the section and redirect the function symbol to it. */
1628 mips_elf_add_la25_intro (struct mips_elf_la25_stub
*stub
,
1629 struct bfd_link_info
*info
)
1631 struct mips_elf_link_hash_table
*htab
;
1633 asection
*s
, *input_section
;
1636 htab
= mips_elf_hash_table (info
);
1640 /* Create a unique name for the new section. */
1641 name
= bfd_malloc (11 + sizeof (".text.stub."));
1644 sprintf (name
, ".text.stub.%d", (int) htab_elements (htab
->la25_stubs
));
1646 /* Create the section. */
1647 mips_elf_get_la25_target (stub
, &input_section
);
1648 s
= htab
->add_stub_section (name
, input_section
,
1649 input_section
->output_section
);
1653 /* Make sure that any padding goes before the stub. */
1654 align
= input_section
->alignment_power
;
1655 if (!bfd_set_section_alignment (s
->owner
, s
, align
))
1658 s
->size
= (1 << align
) - 8;
1660 /* Create a symbol for the stub. */
1661 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 8);
1662 stub
->stub_section
= s
;
1663 stub
->offset
= s
->size
;
1665 /* Allocate room for it. */
1670 /* STUB describes an la25 stub that we have decided to implement
1671 with a separate trampoline. Allocate room for it and redirect
1672 the function symbol to it. */
1675 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub
*stub
,
1676 struct bfd_link_info
*info
)
1678 struct mips_elf_link_hash_table
*htab
;
1681 htab
= mips_elf_hash_table (info
);
1685 /* Create a trampoline section, if we haven't already. */
1686 s
= htab
->strampoline
;
1689 asection
*input_section
= stub
->h
->root
.root
.u
.def
.section
;
1690 s
= htab
->add_stub_section (".text", NULL
,
1691 input_section
->output_section
);
1692 if (s
== NULL
|| !bfd_set_section_alignment (s
->owner
, s
, 4))
1694 htab
->strampoline
= s
;
1697 /* Create a symbol for the stub. */
1698 mips_elf_create_stub_symbol (info
, stub
->h
, ".pic.", s
, s
->size
, 16);
1699 stub
->stub_section
= s
;
1700 stub
->offset
= s
->size
;
1702 /* Allocate room for it. */
1707 /* H describes a symbol that needs an la25 stub. Make sure that an
1708 appropriate stub exists and point H at it. */
1711 mips_elf_add_la25_stub (struct bfd_link_info
*info
,
1712 struct mips_elf_link_hash_entry
*h
)
1714 struct mips_elf_link_hash_table
*htab
;
1715 struct mips_elf_la25_stub search
, *stub
;
1716 bfd_boolean use_trampoline_p
;
1721 /* Describe the stub we want. */
1722 search
.stub_section
= NULL
;
1726 /* See if we've already created an equivalent stub. */
1727 htab
= mips_elf_hash_table (info
);
1731 slot
= htab_find_slot (htab
->la25_stubs
, &search
, INSERT
);
1735 stub
= (struct mips_elf_la25_stub
*) *slot
;
1738 /* We can reuse the existing stub. */
1739 h
->la25_stub
= stub
;
1743 /* Create a permanent copy of ENTRY and add it to the hash table. */
1744 stub
= bfd_malloc (sizeof (search
));
1750 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1751 of the section and if we would need no more than 2 nops. */
1752 value
= mips_elf_get_la25_target (stub
, &s
);
1753 use_trampoline_p
= (value
!= 0 || s
->alignment_power
> 4);
1755 h
->la25_stub
= stub
;
1756 return (use_trampoline_p
1757 ? mips_elf_add_la25_trampoline (stub
, info
)
1758 : mips_elf_add_la25_intro (stub
, info
));
1761 /* A mips_elf_link_hash_traverse callback that is called before sizing
1762 sections. DATA points to a mips_htab_traverse_info structure. */
1765 mips_elf_check_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
1767 struct mips_htab_traverse_info
*hti
;
1769 hti
= (struct mips_htab_traverse_info
*) data
;
1770 if (!hti
->info
->relocatable
)
1771 mips_elf_check_mips16_stubs (hti
->info
, h
);
1773 if (mips_elf_local_pic_function_p (h
))
1775 /* PR 12845: If H is in a section that has been garbage
1776 collected it will have its output section set to *ABS*. */
1777 if (bfd_is_abs_section (h
->root
.root
.u
.def
.section
->output_section
))
1780 /* H is a function that might need $25 to be valid on entry.
1781 If we're creating a non-PIC relocatable object, mark H as
1782 being PIC. If we're creating a non-relocatable object with
1783 non-PIC branches and jumps to H, make sure that H has an la25
1785 if (hti
->info
->relocatable
)
1787 if (!PIC_OBJECT_P (hti
->output_bfd
))
1788 h
->root
.other
= ELF_ST_SET_MIPS_PIC (h
->root
.other
);
1790 else if (h
->has_nonpic_branches
&& !mips_elf_add_la25_stub (hti
->info
, h
))
1799 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1800 Most mips16 instructions are 16 bits, but these instructions
1803 The format of these instructions is:
1805 +--------------+--------------------------------+
1806 | JALX | X| Imm 20:16 | Imm 25:21 |
1807 +--------------+--------------------------------+
1809 +-----------------------------------------------+
1811 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1812 Note that the immediate value in the first word is swapped.
1814 When producing a relocatable object file, R_MIPS16_26 is
1815 handled mostly like R_MIPS_26. In particular, the addend is
1816 stored as a straight 26-bit value in a 32-bit instruction.
1817 (gas makes life simpler for itself by never adjusting a
1818 R_MIPS16_26 reloc to be against a section, so the addend is
1819 always zero). However, the 32 bit instruction is stored as 2
1820 16-bit values, rather than a single 32-bit value. In a
1821 big-endian file, the result is the same; in a little-endian
1822 file, the two 16-bit halves of the 32 bit value are swapped.
1823 This is so that a disassembler can recognize the jal
1826 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1827 instruction stored as two 16-bit values. The addend A is the
1828 contents of the targ26 field. The calculation is the same as
1829 R_MIPS_26. When storing the calculated value, reorder the
1830 immediate value as shown above, and don't forget to store the
1831 value as two 16-bit values.
1833 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1837 +--------+----------------------+
1841 +--------+----------------------+
1844 +----------+------+-------------+
1848 +----------+--------------------+
1849 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1850 ((sub1 << 16) | sub2)).
1852 When producing a relocatable object file, the calculation is
1853 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1854 When producing a fully linked file, the calculation is
1855 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1856 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1858 The table below lists the other MIPS16 instruction relocations.
1859 Each one is calculated in the same way as the non-MIPS16 relocation
1860 given on the right, but using the extended MIPS16 layout of 16-bit
1863 R_MIPS16_GPREL R_MIPS_GPREL16
1864 R_MIPS16_GOT16 R_MIPS_GOT16
1865 R_MIPS16_CALL16 R_MIPS_CALL16
1866 R_MIPS16_HI16 R_MIPS_HI16
1867 R_MIPS16_LO16 R_MIPS_LO16
1869 A typical instruction will have a format like this:
1871 +--------------+--------------------------------+
1872 | EXTEND | Imm 10:5 | Imm 15:11 |
1873 +--------------+--------------------------------+
1874 | Major | rx | ry | Imm 4:0 |
1875 +--------------+--------------------------------+
1877 EXTEND is the five bit value 11110. Major is the instruction
1880 All we need to do here is shuffle the bits appropriately.
1881 As above, the two 16-bit halves must be swapped on a
1882 little-endian system. */
1884 static inline bfd_boolean
1885 mips16_reloc_p (int r_type
)
1890 case R_MIPS16_GPREL
:
1891 case R_MIPS16_GOT16
:
1892 case R_MIPS16_CALL16
:
1895 case R_MIPS16_TLS_GD
:
1896 case R_MIPS16_TLS_LDM
:
1897 case R_MIPS16_TLS_DTPREL_HI16
:
1898 case R_MIPS16_TLS_DTPREL_LO16
:
1899 case R_MIPS16_TLS_GOTTPREL
:
1900 case R_MIPS16_TLS_TPREL_HI16
:
1901 case R_MIPS16_TLS_TPREL_LO16
:
1909 /* Check if a microMIPS reloc. */
1911 static inline bfd_boolean
1912 micromips_reloc_p (unsigned int r_type
)
1914 return r_type
>= R_MICROMIPS_min
&& r_type
< R_MICROMIPS_max
;
1917 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1918 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1919 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1921 static inline bfd_boolean
1922 micromips_reloc_shuffle_p (unsigned int r_type
)
1924 return (micromips_reloc_p (r_type
)
1925 && r_type
!= R_MICROMIPS_PC7_S1
1926 && r_type
!= R_MICROMIPS_PC10_S1
);
1929 static inline bfd_boolean
1930 got16_reloc_p (int r_type
)
1932 return (r_type
== R_MIPS_GOT16
1933 || r_type
== R_MIPS16_GOT16
1934 || r_type
== R_MICROMIPS_GOT16
);
1937 static inline bfd_boolean
1938 call16_reloc_p (int r_type
)
1940 return (r_type
== R_MIPS_CALL16
1941 || r_type
== R_MIPS16_CALL16
1942 || r_type
== R_MICROMIPS_CALL16
);
1945 static inline bfd_boolean
1946 got_disp_reloc_p (unsigned int r_type
)
1948 return r_type
== R_MIPS_GOT_DISP
|| r_type
== R_MICROMIPS_GOT_DISP
;
1951 static inline bfd_boolean
1952 got_page_reloc_p (unsigned int r_type
)
1954 return r_type
== R_MIPS_GOT_PAGE
|| r_type
== R_MICROMIPS_GOT_PAGE
;
1957 static inline bfd_boolean
1958 got_ofst_reloc_p (unsigned int r_type
)
1960 return r_type
== R_MIPS_GOT_OFST
|| r_type
== R_MICROMIPS_GOT_OFST
;
1963 static inline bfd_boolean
1964 got_hi16_reloc_p (unsigned int r_type
)
1966 return r_type
== R_MIPS_GOT_HI16
|| r_type
== R_MICROMIPS_GOT_HI16
;
1969 static inline bfd_boolean
1970 got_lo16_reloc_p (unsigned int r_type
)
1972 return r_type
== R_MIPS_GOT_LO16
|| r_type
== R_MICROMIPS_GOT_LO16
;
1975 static inline bfd_boolean
1976 call_hi16_reloc_p (unsigned int r_type
)
1978 return r_type
== R_MIPS_CALL_HI16
|| r_type
== R_MICROMIPS_CALL_HI16
;
1981 static inline bfd_boolean
1982 call_lo16_reloc_p (unsigned int r_type
)
1984 return r_type
== R_MIPS_CALL_LO16
|| r_type
== R_MICROMIPS_CALL_LO16
;
1987 static inline bfd_boolean
1988 hi16_reloc_p (int r_type
)
1990 return (r_type
== R_MIPS_HI16
1991 || r_type
== R_MIPS16_HI16
1992 || r_type
== R_MICROMIPS_HI16
);
1995 static inline bfd_boolean
1996 lo16_reloc_p (int r_type
)
1998 return (r_type
== R_MIPS_LO16
1999 || r_type
== R_MIPS16_LO16
2000 || r_type
== R_MICROMIPS_LO16
);
2003 static inline bfd_boolean
2004 mips16_call_reloc_p (int r_type
)
2006 return r_type
== R_MIPS16_26
|| r_type
== R_MIPS16_CALL16
;
2009 static inline bfd_boolean
2010 jal_reloc_p (int r_type
)
2012 return (r_type
== R_MIPS_26
2013 || r_type
== R_MIPS16_26
2014 || r_type
== R_MICROMIPS_26_S1
);
2017 static inline bfd_boolean
2018 micromips_branch_reloc_p (int r_type
)
2020 return (r_type
== R_MICROMIPS_26_S1
2021 || r_type
== R_MICROMIPS_PC16_S1
2022 || r_type
== R_MICROMIPS_PC10_S1
2023 || r_type
== R_MICROMIPS_PC7_S1
);
2026 static inline bfd_boolean
2027 tls_gd_reloc_p (unsigned int r_type
)
2029 return (r_type
== R_MIPS_TLS_GD
2030 || r_type
== R_MIPS16_TLS_GD
2031 || r_type
== R_MICROMIPS_TLS_GD
);
2034 static inline bfd_boolean
2035 tls_ldm_reloc_p (unsigned int r_type
)
2037 return (r_type
== R_MIPS_TLS_LDM
2038 || r_type
== R_MIPS16_TLS_LDM
2039 || r_type
== R_MICROMIPS_TLS_LDM
);
2042 static inline bfd_boolean
2043 tls_gottprel_reloc_p (unsigned int r_type
)
2045 return (r_type
== R_MIPS_TLS_GOTTPREL
2046 || r_type
== R_MIPS16_TLS_GOTTPREL
2047 || r_type
== R_MICROMIPS_TLS_GOTTPREL
);
2051 _bfd_mips_elf_reloc_unshuffle (bfd
*abfd
, int r_type
,
2052 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2054 bfd_vma first
, second
, val
;
2056 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2059 /* Pick up the first and second halfwords of the instruction. */
2060 first
= bfd_get_16 (abfd
, data
);
2061 second
= bfd_get_16 (abfd
, data
+ 2);
2062 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2063 val
= first
<< 16 | second
;
2064 else if (r_type
!= R_MIPS16_26
)
2065 val
= (((first
& 0xf800) << 16) | ((second
& 0xffe0) << 11)
2066 | ((first
& 0x1f) << 11) | (first
& 0x7e0) | (second
& 0x1f));
2068 val
= (((first
& 0xfc00) << 16) | ((first
& 0x3e0) << 11)
2069 | ((first
& 0x1f) << 21) | second
);
2070 bfd_put_32 (abfd
, val
, data
);
2074 _bfd_mips_elf_reloc_shuffle (bfd
*abfd
, int r_type
,
2075 bfd_boolean jal_shuffle
, bfd_byte
*data
)
2077 bfd_vma first
, second
, val
;
2079 if (!mips16_reloc_p (r_type
) && !micromips_reloc_shuffle_p (r_type
))
2082 val
= bfd_get_32 (abfd
, data
);
2083 if (micromips_reloc_p (r_type
) || (r_type
== R_MIPS16_26
&& !jal_shuffle
))
2085 second
= val
& 0xffff;
2088 else if (r_type
!= R_MIPS16_26
)
2090 second
= ((val
>> 11) & 0xffe0) | (val
& 0x1f);
2091 first
= ((val
>> 16) & 0xf800) | ((val
>> 11) & 0x1f) | (val
& 0x7e0);
2095 second
= val
& 0xffff;
2096 first
= ((val
>> 16) & 0xfc00) | ((val
>> 11) & 0x3e0)
2097 | ((val
>> 21) & 0x1f);
2099 bfd_put_16 (abfd
, second
, data
+ 2);
2100 bfd_put_16 (abfd
, first
, data
);
2103 bfd_reloc_status_type
2104 _bfd_mips_elf_gprel16_with_gp (bfd
*abfd
, asymbol
*symbol
,
2105 arelent
*reloc_entry
, asection
*input_section
,
2106 bfd_boolean relocatable
, void *data
, bfd_vma gp
)
2110 bfd_reloc_status_type status
;
2112 if (bfd_is_com_section (symbol
->section
))
2115 relocation
= symbol
->value
;
2117 relocation
+= symbol
->section
->output_section
->vma
;
2118 relocation
+= symbol
->section
->output_offset
;
2120 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2121 return bfd_reloc_outofrange
;
2123 /* Set val to the offset into the section or symbol. */
2124 val
= reloc_entry
->addend
;
2126 _bfd_mips_elf_sign_extend (val
, 16);
2128 /* Adjust val for the final section location and GP value. If we
2129 are producing relocatable output, we don't want to do this for
2130 an external symbol. */
2132 || (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2133 val
+= relocation
- gp
;
2135 if (reloc_entry
->howto
->partial_inplace
)
2137 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2139 + reloc_entry
->address
);
2140 if (status
!= bfd_reloc_ok
)
2144 reloc_entry
->addend
= val
;
2147 reloc_entry
->address
+= input_section
->output_offset
;
2149 return bfd_reloc_ok
;
2152 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2153 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2154 that contains the relocation field and DATA points to the start of
2159 struct mips_hi16
*next
;
2161 asection
*input_section
;
2165 /* FIXME: This should not be a static variable. */
2167 static struct mips_hi16
*mips_hi16_list
;
2169 /* A howto special_function for REL *HI16 relocations. We can only
2170 calculate the correct value once we've seen the partnering
2171 *LO16 relocation, so just save the information for later.
2173 The ABI requires that the *LO16 immediately follow the *HI16.
2174 However, as a GNU extension, we permit an arbitrary number of
2175 *HI16s to be associated with a single *LO16. This significantly
2176 simplies the relocation handling in gcc. */
2178 bfd_reloc_status_type
2179 _bfd_mips_elf_hi16_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2180 asymbol
*symbol ATTRIBUTE_UNUSED
, void *data
,
2181 asection
*input_section
, bfd
*output_bfd
,
2182 char **error_message ATTRIBUTE_UNUSED
)
2184 struct mips_hi16
*n
;
2186 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2187 return bfd_reloc_outofrange
;
2189 n
= bfd_malloc (sizeof *n
);
2191 return bfd_reloc_outofrange
;
2193 n
->next
= mips_hi16_list
;
2195 n
->input_section
= input_section
;
2196 n
->rel
= *reloc_entry
;
2199 if (output_bfd
!= NULL
)
2200 reloc_entry
->address
+= input_section
->output_offset
;
2202 return bfd_reloc_ok
;
2205 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2206 like any other 16-bit relocation when applied to global symbols, but is
2207 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2209 bfd_reloc_status_type
2210 _bfd_mips_elf_got16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2211 void *data
, asection
*input_section
,
2212 bfd
*output_bfd
, char **error_message
)
2214 if ((symbol
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0
2215 || bfd_is_und_section (bfd_get_section (symbol
))
2216 || bfd_is_com_section (bfd_get_section (symbol
)))
2217 /* The relocation is against a global symbol. */
2218 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2219 input_section
, output_bfd
,
2222 return _bfd_mips_elf_hi16_reloc (abfd
, reloc_entry
, symbol
, data
,
2223 input_section
, output_bfd
, error_message
);
2226 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2227 is a straightforward 16 bit inplace relocation, but we must deal with
2228 any partnering high-part relocations as well. */
2230 bfd_reloc_status_type
2231 _bfd_mips_elf_lo16_reloc (bfd
*abfd
, arelent
*reloc_entry
, asymbol
*symbol
,
2232 void *data
, asection
*input_section
,
2233 bfd
*output_bfd
, char **error_message
)
2236 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2238 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2239 return bfd_reloc_outofrange
;
2241 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2243 vallo
= bfd_get_32 (abfd
, location
);
2244 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2247 while (mips_hi16_list
!= NULL
)
2249 bfd_reloc_status_type ret
;
2250 struct mips_hi16
*hi
;
2252 hi
= mips_hi16_list
;
2254 /* R_MIPS*_GOT16 relocations are something of a special case. We
2255 want to install the addend in the same way as for a R_MIPS*_HI16
2256 relocation (with a rightshift of 16). However, since GOT16
2257 relocations can also be used with global symbols, their howto
2258 has a rightshift of 0. */
2259 if (hi
->rel
.howto
->type
== R_MIPS_GOT16
)
2260 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS_HI16
, FALSE
);
2261 else if (hi
->rel
.howto
->type
== R_MIPS16_GOT16
)
2262 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MIPS16_HI16
, FALSE
);
2263 else if (hi
->rel
.howto
->type
== R_MICROMIPS_GOT16
)
2264 hi
->rel
.howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, R_MICROMIPS_HI16
, FALSE
);
2266 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2267 carry or borrow will induce a change of +1 or -1 in the high part. */
2268 hi
->rel
.addend
+= (vallo
+ 0x8000) & 0xffff;
2270 ret
= _bfd_mips_elf_generic_reloc (abfd
, &hi
->rel
, symbol
, hi
->data
,
2271 hi
->input_section
, output_bfd
,
2273 if (ret
!= bfd_reloc_ok
)
2276 mips_hi16_list
= hi
->next
;
2280 return _bfd_mips_elf_generic_reloc (abfd
, reloc_entry
, symbol
, data
,
2281 input_section
, output_bfd
,
2285 /* A generic howto special_function. This calculates and installs the
2286 relocation itself, thus avoiding the oft-discussed problems in
2287 bfd_perform_relocation and bfd_install_relocation. */
2289 bfd_reloc_status_type
2290 _bfd_mips_elf_generic_reloc (bfd
*abfd ATTRIBUTE_UNUSED
, arelent
*reloc_entry
,
2291 asymbol
*symbol
, void *data ATTRIBUTE_UNUSED
,
2292 asection
*input_section
, bfd
*output_bfd
,
2293 char **error_message ATTRIBUTE_UNUSED
)
2296 bfd_reloc_status_type status
;
2297 bfd_boolean relocatable
;
2299 relocatable
= (output_bfd
!= NULL
);
2301 if (reloc_entry
->address
> bfd_get_section_limit (abfd
, input_section
))
2302 return bfd_reloc_outofrange
;
2304 /* Build up the field adjustment in VAL. */
2306 if (!relocatable
|| (symbol
->flags
& BSF_SECTION_SYM
) != 0)
2308 /* Either we're calculating the final field value or we have a
2309 relocation against a section symbol. Add in the section's
2310 offset or address. */
2311 val
+= symbol
->section
->output_section
->vma
;
2312 val
+= symbol
->section
->output_offset
;
2317 /* We're calculating the final field value. Add in the symbol's value
2318 and, if pc-relative, subtract the address of the field itself. */
2319 val
+= symbol
->value
;
2320 if (reloc_entry
->howto
->pc_relative
)
2322 val
-= input_section
->output_section
->vma
;
2323 val
-= input_section
->output_offset
;
2324 val
-= reloc_entry
->address
;
2328 /* VAL is now the final adjustment. If we're keeping this relocation
2329 in the output file, and if the relocation uses a separate addend,
2330 we just need to add VAL to that addend. Otherwise we need to add
2331 VAL to the relocation field itself. */
2332 if (relocatable
&& !reloc_entry
->howto
->partial_inplace
)
2333 reloc_entry
->addend
+= val
;
2336 bfd_byte
*location
= (bfd_byte
*) data
+ reloc_entry
->address
;
2338 /* Add in the separate addend, if any. */
2339 val
+= reloc_entry
->addend
;
2341 /* Add VAL to the relocation field. */
2342 _bfd_mips_elf_reloc_unshuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2344 status
= _bfd_relocate_contents (reloc_entry
->howto
, abfd
, val
,
2346 _bfd_mips_elf_reloc_shuffle (abfd
, reloc_entry
->howto
->type
, FALSE
,
2349 if (status
!= bfd_reloc_ok
)
2354 reloc_entry
->address
+= input_section
->output_offset
;
2356 return bfd_reloc_ok
;
2359 /* Swap an entry in a .gptab section. Note that these routines rely
2360 on the equivalence of the two elements of the union. */
2363 bfd_mips_elf32_swap_gptab_in (bfd
*abfd
, const Elf32_External_gptab
*ex
,
2366 in
->gt_entry
.gt_g_value
= H_GET_32 (abfd
, ex
->gt_entry
.gt_g_value
);
2367 in
->gt_entry
.gt_bytes
= H_GET_32 (abfd
, ex
->gt_entry
.gt_bytes
);
2371 bfd_mips_elf32_swap_gptab_out (bfd
*abfd
, const Elf32_gptab
*in
,
2372 Elf32_External_gptab
*ex
)
2374 H_PUT_32 (abfd
, in
->gt_entry
.gt_g_value
, ex
->gt_entry
.gt_g_value
);
2375 H_PUT_32 (abfd
, in
->gt_entry
.gt_bytes
, ex
->gt_entry
.gt_bytes
);
2379 bfd_elf32_swap_compact_rel_out (bfd
*abfd
, const Elf32_compact_rel
*in
,
2380 Elf32_External_compact_rel
*ex
)
2382 H_PUT_32 (abfd
, in
->id1
, ex
->id1
);
2383 H_PUT_32 (abfd
, in
->num
, ex
->num
);
2384 H_PUT_32 (abfd
, in
->id2
, ex
->id2
);
2385 H_PUT_32 (abfd
, in
->offset
, ex
->offset
);
2386 H_PUT_32 (abfd
, in
->reserved0
, ex
->reserved0
);
2387 H_PUT_32 (abfd
, in
->reserved1
, ex
->reserved1
);
2391 bfd_elf32_swap_crinfo_out (bfd
*abfd
, const Elf32_crinfo
*in
,
2392 Elf32_External_crinfo
*ex
)
2396 l
= (((in
->ctype
& CRINFO_CTYPE
) << CRINFO_CTYPE_SH
)
2397 | ((in
->rtype
& CRINFO_RTYPE
) << CRINFO_RTYPE_SH
)
2398 | ((in
->dist2to
& CRINFO_DIST2TO
) << CRINFO_DIST2TO_SH
)
2399 | ((in
->relvaddr
& CRINFO_RELVADDR
) << CRINFO_RELVADDR_SH
));
2400 H_PUT_32 (abfd
, l
, ex
->info
);
2401 H_PUT_32 (abfd
, in
->konst
, ex
->konst
);
2402 H_PUT_32 (abfd
, in
->vaddr
, ex
->vaddr
);
2405 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2406 routines swap this structure in and out. They are used outside of
2407 BFD, so they are globally visible. */
2410 bfd_mips_elf32_swap_reginfo_in (bfd
*abfd
, const Elf32_External_RegInfo
*ex
,
2413 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2414 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2415 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2416 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2417 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2418 in
->ri_gp_value
= H_GET_32 (abfd
, ex
->ri_gp_value
);
2422 bfd_mips_elf32_swap_reginfo_out (bfd
*abfd
, const Elf32_RegInfo
*in
,
2423 Elf32_External_RegInfo
*ex
)
2425 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2426 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2427 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2428 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2429 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2430 H_PUT_32 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2433 /* In the 64 bit ABI, the .MIPS.options section holds register
2434 information in an Elf64_Reginfo structure. These routines swap
2435 them in and out. They are globally visible because they are used
2436 outside of BFD. These routines are here so that gas can call them
2437 without worrying about whether the 64 bit ABI has been included. */
2440 bfd_mips_elf64_swap_reginfo_in (bfd
*abfd
, const Elf64_External_RegInfo
*ex
,
2441 Elf64_Internal_RegInfo
*in
)
2443 in
->ri_gprmask
= H_GET_32 (abfd
, ex
->ri_gprmask
);
2444 in
->ri_pad
= H_GET_32 (abfd
, ex
->ri_pad
);
2445 in
->ri_cprmask
[0] = H_GET_32 (abfd
, ex
->ri_cprmask
[0]);
2446 in
->ri_cprmask
[1] = H_GET_32 (abfd
, ex
->ri_cprmask
[1]);
2447 in
->ri_cprmask
[2] = H_GET_32 (abfd
, ex
->ri_cprmask
[2]);
2448 in
->ri_cprmask
[3] = H_GET_32 (abfd
, ex
->ri_cprmask
[3]);
2449 in
->ri_gp_value
= H_GET_64 (abfd
, ex
->ri_gp_value
);
2453 bfd_mips_elf64_swap_reginfo_out (bfd
*abfd
, const Elf64_Internal_RegInfo
*in
,
2454 Elf64_External_RegInfo
*ex
)
2456 H_PUT_32 (abfd
, in
->ri_gprmask
, ex
->ri_gprmask
);
2457 H_PUT_32 (abfd
, in
->ri_pad
, ex
->ri_pad
);
2458 H_PUT_32 (abfd
, in
->ri_cprmask
[0], ex
->ri_cprmask
[0]);
2459 H_PUT_32 (abfd
, in
->ri_cprmask
[1], ex
->ri_cprmask
[1]);
2460 H_PUT_32 (abfd
, in
->ri_cprmask
[2], ex
->ri_cprmask
[2]);
2461 H_PUT_32 (abfd
, in
->ri_cprmask
[3], ex
->ri_cprmask
[3]);
2462 H_PUT_64 (abfd
, in
->ri_gp_value
, ex
->ri_gp_value
);
2465 /* Swap in an options header. */
2468 bfd_mips_elf_swap_options_in (bfd
*abfd
, const Elf_External_Options
*ex
,
2469 Elf_Internal_Options
*in
)
2471 in
->kind
= H_GET_8 (abfd
, ex
->kind
);
2472 in
->size
= H_GET_8 (abfd
, ex
->size
);
2473 in
->section
= H_GET_16 (abfd
, ex
->section
);
2474 in
->info
= H_GET_32 (abfd
, ex
->info
);
2477 /* Swap out an options header. */
2480 bfd_mips_elf_swap_options_out (bfd
*abfd
, const Elf_Internal_Options
*in
,
2481 Elf_External_Options
*ex
)
2483 H_PUT_8 (abfd
, in
->kind
, ex
->kind
);
2484 H_PUT_8 (abfd
, in
->size
, ex
->size
);
2485 H_PUT_16 (abfd
, in
->section
, ex
->section
);
2486 H_PUT_32 (abfd
, in
->info
, ex
->info
);
2489 /* This function is called via qsort() to sort the dynamic relocation
2490 entries by increasing r_symndx value. */
2493 sort_dynamic_relocs (const void *arg1
, const void *arg2
)
2495 Elf_Internal_Rela int_reloc1
;
2496 Elf_Internal_Rela int_reloc2
;
2499 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg1
, &int_reloc1
);
2500 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd
, arg2
, &int_reloc2
);
2502 diff
= ELF32_R_SYM (int_reloc1
.r_info
) - ELF32_R_SYM (int_reloc2
.r_info
);
2506 if (int_reloc1
.r_offset
< int_reloc2
.r_offset
)
2508 if (int_reloc1
.r_offset
> int_reloc2
.r_offset
)
2513 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2516 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED
,
2517 const void *arg2 ATTRIBUTE_UNUSED
)
2520 Elf_Internal_Rela int_reloc1
[3];
2521 Elf_Internal_Rela int_reloc2
[3];
2523 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2524 (reldyn_sorting_bfd
, arg1
, int_reloc1
);
2525 (*get_elf_backend_data (reldyn_sorting_bfd
)->s
->swap_reloc_in
)
2526 (reldyn_sorting_bfd
, arg2
, int_reloc2
);
2528 if (ELF64_R_SYM (int_reloc1
[0].r_info
) < ELF64_R_SYM (int_reloc2
[0].r_info
))
2530 if (ELF64_R_SYM (int_reloc1
[0].r_info
) > ELF64_R_SYM (int_reloc2
[0].r_info
))
2533 if (int_reloc1
[0].r_offset
< int_reloc2
[0].r_offset
)
2535 if (int_reloc1
[0].r_offset
> int_reloc2
[0].r_offset
)
2544 /* This routine is used to write out ECOFF debugging external symbol
2545 information. It is called via mips_elf_link_hash_traverse. The
2546 ECOFF external symbol information must match the ELF external
2547 symbol information. Unfortunately, at this point we don't know
2548 whether a symbol is required by reloc information, so the two
2549 tables may wind up being different. We must sort out the external
2550 symbol information before we can set the final size of the .mdebug
2551 section, and we must set the size of the .mdebug section before we
2552 can relocate any sections, and we can't know which symbols are
2553 required by relocation until we relocate the sections.
2554 Fortunately, it is relatively unlikely that any symbol will be
2555 stripped but required by a reloc. In particular, it can not happen
2556 when generating a final executable. */
2559 mips_elf_output_extsym (struct mips_elf_link_hash_entry
*h
, void *data
)
2561 struct extsym_info
*einfo
= data
;
2563 asection
*sec
, *output_section
;
2565 if (h
->root
.indx
== -2)
2567 else if ((h
->root
.def_dynamic
2568 || h
->root
.ref_dynamic
2569 || h
->root
.type
== bfd_link_hash_new
)
2570 && !h
->root
.def_regular
2571 && !h
->root
.ref_regular
)
2573 else if (einfo
->info
->strip
== strip_all
2574 || (einfo
->info
->strip
== strip_some
2575 && bfd_hash_lookup (einfo
->info
->keep_hash
,
2576 h
->root
.root
.root
.string
,
2577 FALSE
, FALSE
) == NULL
))
2585 if (h
->esym
.ifd
== -2)
2588 h
->esym
.cobol_main
= 0;
2589 h
->esym
.weakext
= 0;
2590 h
->esym
.reserved
= 0;
2591 h
->esym
.ifd
= ifdNil
;
2592 h
->esym
.asym
.value
= 0;
2593 h
->esym
.asym
.st
= stGlobal
;
2595 if (h
->root
.root
.type
== bfd_link_hash_undefined
2596 || h
->root
.root
.type
== bfd_link_hash_undefweak
)
2600 /* Use undefined class. Also, set class and type for some
2602 name
= h
->root
.root
.root
.string
;
2603 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
2604 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
2606 h
->esym
.asym
.sc
= scData
;
2607 h
->esym
.asym
.st
= stLabel
;
2608 h
->esym
.asym
.value
= 0;
2610 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
2612 h
->esym
.asym
.sc
= scAbs
;
2613 h
->esym
.asym
.st
= stLabel
;
2614 h
->esym
.asym
.value
=
2615 mips_elf_hash_table (einfo
->info
)->procedure_count
;
2617 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (einfo
->abfd
))
2619 h
->esym
.asym
.sc
= scAbs
;
2620 h
->esym
.asym
.st
= stLabel
;
2621 h
->esym
.asym
.value
= elf_gp (einfo
->abfd
);
2624 h
->esym
.asym
.sc
= scUndefined
;
2626 else if (h
->root
.root
.type
!= bfd_link_hash_defined
2627 && h
->root
.root
.type
!= bfd_link_hash_defweak
)
2628 h
->esym
.asym
.sc
= scAbs
;
2633 sec
= h
->root
.root
.u
.def
.section
;
2634 output_section
= sec
->output_section
;
2636 /* When making a shared library and symbol h is the one from
2637 the another shared library, OUTPUT_SECTION may be null. */
2638 if (output_section
== NULL
)
2639 h
->esym
.asym
.sc
= scUndefined
;
2642 name
= bfd_section_name (output_section
->owner
, output_section
);
2644 if (strcmp (name
, ".text") == 0)
2645 h
->esym
.asym
.sc
= scText
;
2646 else if (strcmp (name
, ".data") == 0)
2647 h
->esym
.asym
.sc
= scData
;
2648 else if (strcmp (name
, ".sdata") == 0)
2649 h
->esym
.asym
.sc
= scSData
;
2650 else if (strcmp (name
, ".rodata") == 0
2651 || strcmp (name
, ".rdata") == 0)
2652 h
->esym
.asym
.sc
= scRData
;
2653 else if (strcmp (name
, ".bss") == 0)
2654 h
->esym
.asym
.sc
= scBss
;
2655 else if (strcmp (name
, ".sbss") == 0)
2656 h
->esym
.asym
.sc
= scSBss
;
2657 else if (strcmp (name
, ".init") == 0)
2658 h
->esym
.asym
.sc
= scInit
;
2659 else if (strcmp (name
, ".fini") == 0)
2660 h
->esym
.asym
.sc
= scFini
;
2662 h
->esym
.asym
.sc
= scAbs
;
2666 h
->esym
.asym
.reserved
= 0;
2667 h
->esym
.asym
.index
= indexNil
;
2670 if (h
->root
.root
.type
== bfd_link_hash_common
)
2671 h
->esym
.asym
.value
= h
->root
.root
.u
.c
.size
;
2672 else if (h
->root
.root
.type
== bfd_link_hash_defined
2673 || h
->root
.root
.type
== bfd_link_hash_defweak
)
2675 if (h
->esym
.asym
.sc
== scCommon
)
2676 h
->esym
.asym
.sc
= scBss
;
2677 else if (h
->esym
.asym
.sc
== scSCommon
)
2678 h
->esym
.asym
.sc
= scSBss
;
2680 sec
= h
->root
.root
.u
.def
.section
;
2681 output_section
= sec
->output_section
;
2682 if (output_section
!= NULL
)
2683 h
->esym
.asym
.value
= (h
->root
.root
.u
.def
.value
2684 + sec
->output_offset
2685 + output_section
->vma
);
2687 h
->esym
.asym
.value
= 0;
2691 struct mips_elf_link_hash_entry
*hd
= h
;
2693 while (hd
->root
.root
.type
== bfd_link_hash_indirect
)
2694 hd
= (struct mips_elf_link_hash_entry
*)h
->root
.root
.u
.i
.link
;
2696 if (hd
->needs_lazy_stub
)
2698 /* Set type and value for a symbol with a function stub. */
2699 h
->esym
.asym
.st
= stProc
;
2700 sec
= hd
->root
.root
.u
.def
.section
;
2702 h
->esym
.asym
.value
= 0;
2705 output_section
= sec
->output_section
;
2706 if (output_section
!= NULL
)
2707 h
->esym
.asym
.value
= (hd
->root
.plt
.offset
2708 + sec
->output_offset
2709 + output_section
->vma
);
2711 h
->esym
.asym
.value
= 0;
2716 if (! bfd_ecoff_debug_one_external (einfo
->abfd
, einfo
->debug
, einfo
->swap
,
2717 h
->root
.root
.root
.string
,
2720 einfo
->failed
= TRUE
;
2727 /* A comparison routine used to sort .gptab entries. */
2730 gptab_compare (const void *p1
, const void *p2
)
2732 const Elf32_gptab
*a1
= p1
;
2733 const Elf32_gptab
*a2
= p2
;
2735 return a1
->gt_entry
.gt_g_value
- a2
->gt_entry
.gt_g_value
;
2738 /* Functions to manage the got entry hash table. */
2740 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2743 static INLINE hashval_t
2744 mips_elf_hash_bfd_vma (bfd_vma addr
)
2747 return addr
+ (addr
>> 32);
2753 /* got_entries only match if they're identical, except for gotidx, so
2754 use all fields to compute the hash, and compare the appropriate
2758 mips_elf_got_entry_hash (const void *entry_
)
2760 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2762 return entry
->symndx
2763 + ((entry
->tls_type
& GOT_TLS_LDM
) << 17)
2764 + (! entry
->abfd
? mips_elf_hash_bfd_vma (entry
->d
.address
)
2766 + (entry
->symndx
>= 0 ? mips_elf_hash_bfd_vma (entry
->d
.addend
)
2767 : entry
->d
.h
->root
.root
.root
.hash
));
2771 mips_elf_got_entry_eq (const void *entry1
, const void *entry2
)
2773 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2774 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2776 /* An LDM entry can only match another LDM entry. */
2777 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2780 return e1
->abfd
== e2
->abfd
&& e1
->symndx
== e2
->symndx
2781 && (! e1
->abfd
? e1
->d
.address
== e2
->d
.address
2782 : e1
->symndx
>= 0 ? e1
->d
.addend
== e2
->d
.addend
2783 : e1
->d
.h
== e2
->d
.h
);
2786 /* multi_got_entries are still a match in the case of global objects,
2787 even if the input bfd in which they're referenced differs, so the
2788 hash computation and compare functions are adjusted
2792 mips_elf_multi_got_entry_hash (const void *entry_
)
2794 const struct mips_got_entry
*entry
= (struct mips_got_entry
*)entry_
;
2796 return entry
->symndx
2798 ? mips_elf_hash_bfd_vma (entry
->d
.address
)
2799 : entry
->symndx
>= 0
2800 ? ((entry
->tls_type
& GOT_TLS_LDM
)
2801 ? (GOT_TLS_LDM
<< 17)
2803 + mips_elf_hash_bfd_vma (entry
->d
.addend
)))
2804 : entry
->d
.h
->root
.root
.root
.hash
);
2808 mips_elf_multi_got_entry_eq (const void *entry1
, const void *entry2
)
2810 const struct mips_got_entry
*e1
= (struct mips_got_entry
*)entry1
;
2811 const struct mips_got_entry
*e2
= (struct mips_got_entry
*)entry2
;
2813 /* Any two LDM entries match. */
2814 if (e1
->tls_type
& e2
->tls_type
& GOT_TLS_LDM
)
2817 /* Nothing else matches an LDM entry. */
2818 if ((e1
->tls_type
^ e2
->tls_type
) & GOT_TLS_LDM
)
2821 return e1
->symndx
== e2
->symndx
2822 && (e1
->symndx
>= 0 ? e1
->abfd
== e2
->abfd
&& e1
->d
.addend
== e2
->d
.addend
2823 : e1
->abfd
== NULL
|| e2
->abfd
== NULL
2824 ? e1
->abfd
== e2
->abfd
&& e1
->d
.address
== e2
->d
.address
2825 : e1
->d
.h
== e2
->d
.h
);
2829 mips_got_page_entry_hash (const void *entry_
)
2831 const struct mips_got_page_entry
*entry
;
2833 entry
= (const struct mips_got_page_entry
*) entry_
;
2834 return entry
->abfd
->id
+ entry
->symndx
;
2838 mips_got_page_entry_eq (const void *entry1_
, const void *entry2_
)
2840 const struct mips_got_page_entry
*entry1
, *entry2
;
2842 entry1
= (const struct mips_got_page_entry
*) entry1_
;
2843 entry2
= (const struct mips_got_page_entry
*) entry2_
;
2844 return entry1
->abfd
== entry2
->abfd
&& entry1
->symndx
== entry2
->symndx
;
2847 /* Return the dynamic relocation section. If it doesn't exist, try to
2848 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2849 if creation fails. */
2852 mips_elf_rel_dyn_section (struct bfd_link_info
*info
, bfd_boolean create_p
)
2858 dname
= MIPS_ELF_REL_DYN_NAME (info
);
2859 dynobj
= elf_hash_table (info
)->dynobj
;
2860 sreloc
= bfd_get_section_by_name (dynobj
, dname
);
2861 if (sreloc
== NULL
&& create_p
)
2863 sreloc
= bfd_make_section_with_flags (dynobj
, dname
,
2868 | SEC_LINKER_CREATED
2871 || ! bfd_set_section_alignment (dynobj
, sreloc
,
2872 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
2878 /* Count the number of relocations needed for a TLS GOT entry, with
2879 access types from TLS_TYPE, and symbol H (or a local symbol if H
2883 mips_tls_got_relocs (struct bfd_link_info
*info
, unsigned char tls_type
,
2884 struct elf_link_hash_entry
*h
)
2888 bfd_boolean need_relocs
= FALSE
;
2889 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
2891 if (h
&& WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
2892 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, h
)))
2895 if ((info
->shared
|| indx
!= 0)
2897 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
2898 || h
->root
.type
!= bfd_link_hash_undefweak
))
2904 if (tls_type
& GOT_TLS_GD
)
2911 if (tls_type
& GOT_TLS_IE
)
2914 if ((tls_type
& GOT_TLS_LDM
) && info
->shared
)
2920 /* Count the number of TLS relocations required for the GOT entry in
2921 ARG1, if it describes a local symbol. */
2924 mips_elf_count_local_tls_relocs (void **arg1
, void *arg2
)
2926 struct mips_got_entry
*entry
= * (struct mips_got_entry
**) arg1
;
2927 struct mips_elf_count_tls_arg
*arg
= arg2
;
2929 if (entry
->abfd
!= NULL
&& entry
->symndx
!= -1)
2930 arg
->needed
+= mips_tls_got_relocs (arg
->info
, entry
->tls_type
, NULL
);
2935 /* Count the number of TLS GOT entries required for the global (or
2936 forced-local) symbol in ARG1. */
2939 mips_elf_count_global_tls_entries (void *arg1
, void *arg2
)
2941 struct mips_elf_link_hash_entry
*hm
2942 = (struct mips_elf_link_hash_entry
*) arg1
;
2943 struct mips_elf_count_tls_arg
*arg
= arg2
;
2945 if (hm
->tls_type
& GOT_TLS_GD
)
2947 if (hm
->tls_type
& GOT_TLS_IE
)
2953 /* Count the number of TLS relocations required for the global (or
2954 forced-local) symbol in ARG1. */
2957 mips_elf_count_global_tls_relocs (void *arg1
, void *arg2
)
2959 struct mips_elf_link_hash_entry
*hm
2960 = (struct mips_elf_link_hash_entry
*) arg1
;
2961 struct mips_elf_count_tls_arg
*arg
= arg2
;
2963 arg
->needed
+= mips_tls_got_relocs (arg
->info
, hm
->tls_type
, &hm
->root
);
2968 /* Output a simple dynamic relocation into SRELOC. */
2971 mips_elf_output_dynamic_relocation (bfd
*output_bfd
,
2973 unsigned long reloc_index
,
2978 Elf_Internal_Rela rel
[3];
2980 memset (rel
, 0, sizeof (rel
));
2982 rel
[0].r_info
= ELF_R_INFO (output_bfd
, indx
, r_type
);
2983 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
2985 if (ABI_64_P (output_bfd
))
2987 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
2988 (output_bfd
, &rel
[0],
2990 + reloc_index
* sizeof (Elf64_Mips_External_Rel
)));
2993 bfd_elf32_swap_reloc_out
2994 (output_bfd
, &rel
[0],
2996 + reloc_index
* sizeof (Elf32_External_Rel
)));
2999 /* Initialize a set of TLS GOT entries for one symbol. */
3002 mips_elf_initialize_tls_slots (bfd
*abfd
, bfd_vma got_offset
,
3003 unsigned char *tls_type_p
,
3004 struct bfd_link_info
*info
,
3005 struct mips_elf_link_hash_entry
*h
,
3008 struct mips_elf_link_hash_table
*htab
;
3010 asection
*sreloc
, *sgot
;
3011 bfd_vma offset
, offset2
;
3012 bfd_boolean need_relocs
= FALSE
;
3014 htab
= mips_elf_hash_table (info
);
3023 bfd_boolean dyn
= elf_hash_table (info
)->dynamic_sections_created
;
3025 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, &h
->root
)
3026 && (!info
->shared
|| !SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
3027 indx
= h
->root
.dynindx
;
3030 if (*tls_type_p
& GOT_TLS_DONE
)
3033 if ((info
->shared
|| indx
!= 0)
3035 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
3036 || h
->root
.type
!= bfd_link_hash_undefweak
))
3039 /* MINUS_ONE means the symbol is not defined in this object. It may not
3040 be defined at all; assume that the value doesn't matter in that
3041 case. Otherwise complain if we would use the value. */
3042 BFD_ASSERT (value
!= MINUS_ONE
|| (indx
!= 0 && need_relocs
)
3043 || h
->root
.root
.type
== bfd_link_hash_undefweak
);
3045 /* Emit necessary relocations. */
3046 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
3048 /* General Dynamic. */
3049 if (*tls_type_p
& GOT_TLS_GD
)
3051 offset
= got_offset
;
3052 offset2
= offset
+ MIPS_ELF_GOT_SIZE (abfd
);
3056 mips_elf_output_dynamic_relocation
3057 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3058 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3059 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
3062 mips_elf_output_dynamic_relocation
3063 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3064 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPREL64
: R_MIPS_TLS_DTPREL32
,
3065 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset2
);
3067 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3068 sgot
->contents
+ offset2
);
3072 MIPS_ELF_PUT_WORD (abfd
, 1,
3073 sgot
->contents
+ offset
);
3074 MIPS_ELF_PUT_WORD (abfd
, value
- dtprel_base (info
),
3075 sgot
->contents
+ offset2
);
3078 got_offset
+= 2 * MIPS_ELF_GOT_SIZE (abfd
);
3081 /* Initial Exec model. */
3082 if (*tls_type_p
& GOT_TLS_IE
)
3084 offset
= got_offset
;
3089 MIPS_ELF_PUT_WORD (abfd
, value
- elf_hash_table (info
)->tls_sec
->vma
,
3090 sgot
->contents
+ offset
);
3092 MIPS_ELF_PUT_WORD (abfd
, 0,
3093 sgot
->contents
+ offset
);
3095 mips_elf_output_dynamic_relocation
3096 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3097 ABI_64_P (abfd
) ? R_MIPS_TLS_TPREL64
: R_MIPS_TLS_TPREL32
,
3098 sgot
->output_offset
+ sgot
->output_section
->vma
+ offset
);
3101 MIPS_ELF_PUT_WORD (abfd
, value
- tprel_base (info
),
3102 sgot
->contents
+ offset
);
3105 if (*tls_type_p
& GOT_TLS_LDM
)
3107 /* The initial offset is zero, and the LD offsets will include the
3108 bias by DTP_OFFSET. */
3109 MIPS_ELF_PUT_WORD (abfd
, 0,
3110 sgot
->contents
+ got_offset
3111 + MIPS_ELF_GOT_SIZE (abfd
));
3114 MIPS_ELF_PUT_WORD (abfd
, 1,
3115 sgot
->contents
+ got_offset
);
3117 mips_elf_output_dynamic_relocation
3118 (abfd
, sreloc
, sreloc
->reloc_count
++, indx
,
3119 ABI_64_P (abfd
) ? R_MIPS_TLS_DTPMOD64
: R_MIPS_TLS_DTPMOD32
,
3120 sgot
->output_offset
+ sgot
->output_section
->vma
+ got_offset
);
3123 *tls_type_p
|= GOT_TLS_DONE
;
3126 /* Return the GOT index to use for a relocation of type R_TYPE against
3127 a symbol accessed using TLS_TYPE models. The GOT entries for this
3128 symbol in this GOT start at GOT_INDEX. This function initializes the
3129 GOT entries and corresponding relocations. */
3132 mips_tls_got_index (bfd
*abfd
, bfd_vma got_index
, unsigned char *tls_type
,
3133 int r_type
, struct bfd_link_info
*info
,
3134 struct mips_elf_link_hash_entry
*h
, bfd_vma symbol
)
3136 BFD_ASSERT (tls_gottprel_reloc_p (r_type
)
3137 || tls_gd_reloc_p (r_type
)
3138 || tls_ldm_reloc_p (r_type
));
3140 mips_elf_initialize_tls_slots (abfd
, got_index
, tls_type
, info
, h
, symbol
);
3142 if (tls_gottprel_reloc_p (r_type
))
3144 BFD_ASSERT (*tls_type
& GOT_TLS_IE
);
3145 if (*tls_type
& GOT_TLS_GD
)
3146 return got_index
+ 2 * MIPS_ELF_GOT_SIZE (abfd
);
3151 if (tls_gd_reloc_p (r_type
))
3153 BFD_ASSERT (*tls_type
& GOT_TLS_GD
);
3157 if (tls_ldm_reloc_p (r_type
))
3159 BFD_ASSERT (*tls_type
& GOT_TLS_LDM
);
3166 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3167 for global symbol H. .got.plt comes before the GOT, so the offset
3168 will be negative. */
3171 mips_elf_gotplt_index (struct bfd_link_info
*info
,
3172 struct elf_link_hash_entry
*h
)
3174 bfd_vma plt_index
, got_address
, got_value
;
3175 struct mips_elf_link_hash_table
*htab
;
3177 htab
= mips_elf_hash_table (info
);
3178 BFD_ASSERT (htab
!= NULL
);
3180 BFD_ASSERT (h
->plt
.offset
!= (bfd_vma
) -1);
3182 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3183 section starts with reserved entries. */
3184 BFD_ASSERT (htab
->is_vxworks
);
3186 /* Calculate the index of the symbol's PLT entry. */
3187 plt_index
= (h
->plt
.offset
- htab
->plt_header_size
) / htab
->plt_entry_size
;
3189 /* Calculate the address of the associated .got.plt entry. */
3190 got_address
= (htab
->sgotplt
->output_section
->vma
3191 + htab
->sgotplt
->output_offset
3194 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3195 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
3196 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
3197 + htab
->root
.hgot
->root
.u
.def
.value
);
3199 return got_address
- got_value
;
3202 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3203 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3204 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3205 offset can be found. */
3208 mips_elf_local_got_index (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3209 bfd_vma value
, unsigned long r_symndx
,
3210 struct mips_elf_link_hash_entry
*h
, int r_type
)
3212 struct mips_elf_link_hash_table
*htab
;
3213 struct mips_got_entry
*entry
;
3215 htab
= mips_elf_hash_table (info
);
3216 BFD_ASSERT (htab
!= NULL
);
3218 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
,
3219 r_symndx
, h
, r_type
);
3223 if (TLS_RELOC_P (r_type
))
3225 if (entry
->symndx
== -1 && htab
->got_info
->next
== NULL
)
3226 /* A type (3) entry in the single-GOT case. We use the symbol's
3227 hash table entry to track the index. */
3228 return mips_tls_got_index (abfd
, h
->tls_got_offset
, &h
->tls_type
,
3229 r_type
, info
, h
, value
);
3231 return mips_tls_got_index (abfd
, entry
->gotidx
, &entry
->tls_type
,
3232 r_type
, info
, h
, value
);
3235 return entry
->gotidx
;
3238 /* Returns the GOT index for the global symbol indicated by H. */
3241 mips_elf_global_got_index (bfd
*abfd
, bfd
*ibfd
, struct elf_link_hash_entry
*h
,
3242 int r_type
, struct bfd_link_info
*info
)
3244 struct mips_elf_link_hash_table
*htab
;
3246 struct mips_got_info
*g
, *gg
;
3247 long global_got_dynindx
= 0;
3249 htab
= mips_elf_hash_table (info
);
3250 BFD_ASSERT (htab
!= NULL
);
3252 gg
= g
= htab
->got_info
;
3253 if (g
->bfd2got
&& ibfd
)
3255 struct mips_got_entry e
, *p
;
3257 BFD_ASSERT (h
->dynindx
>= 0);
3259 g
= mips_elf_got_for_ibfd (g
, ibfd
);
3260 if (g
->next
!= gg
|| TLS_RELOC_P (r_type
))
3264 e
.d
.h
= (struct mips_elf_link_hash_entry
*)h
;
3267 p
= htab_find (g
->got_entries
, &e
);
3269 BFD_ASSERT (p
->gotidx
> 0);
3271 if (TLS_RELOC_P (r_type
))
3273 bfd_vma value
= MINUS_ONE
;
3274 if ((h
->root
.type
== bfd_link_hash_defined
3275 || h
->root
.type
== bfd_link_hash_defweak
)
3276 && h
->root
.u
.def
.section
->output_section
)
3277 value
= (h
->root
.u
.def
.value
3278 + h
->root
.u
.def
.section
->output_offset
3279 + h
->root
.u
.def
.section
->output_section
->vma
);
3281 return mips_tls_got_index (abfd
, p
->gotidx
, &p
->tls_type
, r_type
,
3282 info
, e
.d
.h
, value
);
3289 if (gg
->global_gotsym
!= NULL
)
3290 global_got_dynindx
= gg
->global_gotsym
->dynindx
;
3292 if (TLS_RELOC_P (r_type
))
3294 struct mips_elf_link_hash_entry
*hm
3295 = (struct mips_elf_link_hash_entry
*) h
;
3296 bfd_vma value
= MINUS_ONE
;
3298 if ((h
->root
.type
== bfd_link_hash_defined
3299 || h
->root
.type
== bfd_link_hash_defweak
)
3300 && h
->root
.u
.def
.section
->output_section
)
3301 value
= (h
->root
.u
.def
.value
3302 + h
->root
.u
.def
.section
->output_offset
3303 + h
->root
.u
.def
.section
->output_section
->vma
);
3305 got_index
= mips_tls_got_index (abfd
, hm
->tls_got_offset
, &hm
->tls_type
,
3306 r_type
, info
, hm
, value
);
3310 /* Once we determine the global GOT entry with the lowest dynamic
3311 symbol table index, we must put all dynamic symbols with greater
3312 indices into the GOT. That makes it easy to calculate the GOT
3314 BFD_ASSERT (h
->dynindx
>= global_got_dynindx
);
3315 got_index
= ((h
->dynindx
- global_got_dynindx
+ g
->local_gotno
)
3316 * MIPS_ELF_GOT_SIZE (abfd
));
3318 BFD_ASSERT (got_index
< htab
->sgot
->size
);
3323 /* Find a GOT page entry that points to within 32KB of VALUE. These
3324 entries are supposed to be placed at small offsets in the GOT, i.e.,
3325 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3326 entry could be created. If OFFSETP is nonnull, use it to return the
3327 offset of the GOT entry from VALUE. */
3330 mips_elf_got_page (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3331 bfd_vma value
, bfd_vma
*offsetp
)
3333 bfd_vma page
, got_index
;
3334 struct mips_got_entry
*entry
;
3336 page
= (value
+ 0x8000) & ~(bfd_vma
) 0xffff;
3337 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, page
, 0,
3338 NULL
, R_MIPS_GOT_PAGE
);
3343 got_index
= entry
->gotidx
;
3346 *offsetp
= value
- entry
->d
.address
;
3351 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3352 EXTERNAL is true if the relocation was originally against a global
3353 symbol that binds locally. */
3356 mips_elf_got16_entry (bfd
*abfd
, bfd
*ibfd
, struct bfd_link_info
*info
,
3357 bfd_vma value
, bfd_boolean external
)
3359 struct mips_got_entry
*entry
;
3361 /* GOT16 relocations against local symbols are followed by a LO16
3362 relocation; those against global symbols are not. Thus if the
3363 symbol was originally local, the GOT16 relocation should load the
3364 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3366 value
= mips_elf_high (value
) << 16;
3368 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3369 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3370 same in all cases. */
3371 entry
= mips_elf_create_local_got_entry (abfd
, info
, ibfd
, value
, 0,
3372 NULL
, R_MIPS_GOT16
);
3374 return entry
->gotidx
;
3379 /* Returns the offset for the entry at the INDEXth position
3383 mips_elf_got_offset_from_index (struct bfd_link_info
*info
, bfd
*output_bfd
,
3384 bfd
*input_bfd
, bfd_vma got_index
)
3386 struct mips_elf_link_hash_table
*htab
;
3390 htab
= mips_elf_hash_table (info
);
3391 BFD_ASSERT (htab
!= NULL
);
3394 gp
= _bfd_get_gp_value (output_bfd
)
3395 + mips_elf_adjust_gp (output_bfd
, htab
->got_info
, input_bfd
);
3397 return sgot
->output_section
->vma
+ sgot
->output_offset
+ got_index
- gp
;
3400 /* Create and return a local GOT entry for VALUE, which was calculated
3401 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3402 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3405 static struct mips_got_entry
*
3406 mips_elf_create_local_got_entry (bfd
*abfd
, struct bfd_link_info
*info
,
3407 bfd
*ibfd
, bfd_vma value
,
3408 unsigned long r_symndx
,
3409 struct mips_elf_link_hash_entry
*h
,
3412 struct mips_got_entry entry
, **loc
;
3413 struct mips_got_info
*g
;
3414 struct mips_elf_link_hash_table
*htab
;
3416 htab
= mips_elf_hash_table (info
);
3417 BFD_ASSERT (htab
!= NULL
);
3421 entry
.d
.address
= value
;
3424 g
= mips_elf_got_for_ibfd (htab
->got_info
, ibfd
);
3427 g
= mips_elf_got_for_ibfd (htab
->got_info
, abfd
);
3428 BFD_ASSERT (g
!= NULL
);
3431 /* This function shouldn't be called for symbols that live in the global
3433 BFD_ASSERT (h
== NULL
|| h
->global_got_area
== GGA_NONE
);
3434 if (TLS_RELOC_P (r_type
))
3436 struct mips_got_entry
*p
;
3439 if (tls_ldm_reloc_p (r_type
))
3441 entry
.tls_type
= GOT_TLS_LDM
;
3447 entry
.symndx
= r_symndx
;
3453 p
= (struct mips_got_entry
*)
3454 htab_find (g
->got_entries
, &entry
);
3460 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3465 entry
.gotidx
= MIPS_ELF_GOT_SIZE (abfd
) * g
->assigned_gotno
++;
3468 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3473 memcpy (*loc
, &entry
, sizeof entry
);
3475 if (g
->assigned_gotno
> g
->local_gotno
)
3477 (*loc
)->gotidx
= -1;
3478 /* We didn't allocate enough space in the GOT. */
3479 (*_bfd_error_handler
)
3480 (_("not enough GOT space for local GOT entries"));
3481 bfd_set_error (bfd_error_bad_value
);
3485 MIPS_ELF_PUT_WORD (abfd
, value
,
3486 (htab
->sgot
->contents
+ entry
.gotidx
));
3488 /* These GOT entries need a dynamic relocation on VxWorks. */
3489 if (htab
->is_vxworks
)
3491 Elf_Internal_Rela outrel
;
3494 bfd_vma got_address
;
3496 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3497 got_address
= (htab
->sgot
->output_section
->vma
3498 + htab
->sgot
->output_offset
3501 rloc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
3502 outrel
.r_offset
= got_address
;
3503 outrel
.r_info
= ELF32_R_INFO (STN_UNDEF
, R_MIPS_32
);
3504 outrel
.r_addend
= value
;
3505 bfd_elf32_swap_reloca_out (abfd
, &outrel
, rloc
);
3511 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3512 The number might be exact or a worst-case estimate, depending on how
3513 much information is available to elf_backend_omit_section_dynsym at
3514 the current linking stage. */
3516 static bfd_size_type
3517 count_section_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
3519 bfd_size_type count
;
3522 if (info
->shared
|| elf_hash_table (info
)->is_relocatable_executable
)
3525 const struct elf_backend_data
*bed
;
3527 bed
= get_elf_backend_data (output_bfd
);
3528 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
3529 if ((p
->flags
& SEC_EXCLUDE
) == 0
3530 && (p
->flags
& SEC_ALLOC
) != 0
3531 && !(*bed
->elf_backend_omit_section_dynsym
) (output_bfd
, info
, p
))
3537 /* Sort the dynamic symbol table so that symbols that need GOT entries
3538 appear towards the end. */
3541 mips_elf_sort_hash_table (bfd
*abfd
, struct bfd_link_info
*info
)
3543 struct mips_elf_link_hash_table
*htab
;
3544 struct mips_elf_hash_sort_data hsd
;
3545 struct mips_got_info
*g
;
3547 if (elf_hash_table (info
)->dynsymcount
== 0)
3550 htab
= mips_elf_hash_table (info
);
3551 BFD_ASSERT (htab
!= NULL
);
3558 hsd
.max_unref_got_dynindx
3559 = hsd
.min_got_dynindx
3560 = (elf_hash_table (info
)->dynsymcount
- g
->reloc_only_gotno
);
3561 hsd
.max_non_got_dynindx
= count_section_dynsyms (abfd
, info
) + 1;
3562 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table
*)
3563 elf_hash_table (info
)),
3564 mips_elf_sort_hash_table_f
,
3567 /* There should have been enough room in the symbol table to
3568 accommodate both the GOT and non-GOT symbols. */
3569 BFD_ASSERT (hsd
.max_non_got_dynindx
<= hsd
.min_got_dynindx
);
3570 BFD_ASSERT ((unsigned long) hsd
.max_unref_got_dynindx
3571 == elf_hash_table (info
)->dynsymcount
);
3572 BFD_ASSERT (elf_hash_table (info
)->dynsymcount
- hsd
.min_got_dynindx
3573 == g
->global_gotno
);
3575 /* Now we know which dynamic symbol has the lowest dynamic symbol
3576 table index in the GOT. */
3577 g
->global_gotsym
= hsd
.low
;
3582 /* If H needs a GOT entry, assign it the highest available dynamic
3583 index. Otherwise, assign it the lowest available dynamic
3587 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry
*h
, void *data
)
3589 struct mips_elf_hash_sort_data
*hsd
= data
;
3591 /* Symbols without dynamic symbol table entries aren't interesting
3593 if (h
->root
.dynindx
== -1)
3596 switch (h
->global_got_area
)
3599 h
->root
.dynindx
= hsd
->max_non_got_dynindx
++;
3603 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3605 h
->root
.dynindx
= --hsd
->min_got_dynindx
;
3606 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3609 case GGA_RELOC_ONLY
:
3610 BFD_ASSERT (h
->tls_type
== GOT_NORMAL
);
3612 if (hsd
->max_unref_got_dynindx
== hsd
->min_got_dynindx
)
3613 hsd
->low
= (struct elf_link_hash_entry
*) h
;
3614 h
->root
.dynindx
= hsd
->max_unref_got_dynindx
++;
3621 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3622 symbol table index lower than any we've seen to date, record it for
3623 posterity. FOR_CALL is true if the caller is only interested in
3624 using the GOT entry for calls. */
3627 mips_elf_record_global_got_symbol (struct elf_link_hash_entry
*h
,
3628 bfd
*abfd
, struct bfd_link_info
*info
,
3629 bfd_boolean for_call
,
3630 unsigned char tls_flag
)
3632 struct mips_elf_link_hash_table
*htab
;
3633 struct mips_elf_link_hash_entry
*hmips
;
3634 struct mips_got_entry entry
, **loc
;
3635 struct mips_got_info
*g
;
3637 htab
= mips_elf_hash_table (info
);
3638 BFD_ASSERT (htab
!= NULL
);
3640 hmips
= (struct mips_elf_link_hash_entry
*) h
;
3642 hmips
->got_only_for_calls
= FALSE
;
3644 /* A global symbol in the GOT must also be in the dynamic symbol
3646 if (h
->dynindx
== -1)
3648 switch (ELF_ST_VISIBILITY (h
->other
))
3652 _bfd_elf_link_hash_hide_symbol (info
, h
, TRUE
);
3655 if (!bfd_elf_link_record_dynamic_symbol (info
, h
))
3659 /* Make sure we have a GOT to put this entry into. */
3661 BFD_ASSERT (g
!= NULL
);
3665 entry
.d
.h
= (struct mips_elf_link_hash_entry
*) h
;
3668 loc
= (struct mips_got_entry
**) htab_find_slot (g
->got_entries
, &entry
,
3671 /* If we've already marked this entry as needing GOT space, we don't
3672 need to do it again. */
3675 (*loc
)->tls_type
|= tls_flag
;
3679 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3685 entry
.tls_type
= tls_flag
;
3687 memcpy (*loc
, &entry
, sizeof entry
);
3690 hmips
->global_got_area
= GGA_NORMAL
;
3695 /* Reserve space in G for a GOT entry containing the value of symbol
3696 SYMNDX in input bfd ABDF, plus ADDEND. */
3699 mips_elf_record_local_got_symbol (bfd
*abfd
, long symndx
, bfd_vma addend
,
3700 struct bfd_link_info
*info
,
3701 unsigned char tls_flag
)
3703 struct mips_elf_link_hash_table
*htab
;
3704 struct mips_got_info
*g
;
3705 struct mips_got_entry entry
, **loc
;
3707 htab
= mips_elf_hash_table (info
);
3708 BFD_ASSERT (htab
!= NULL
);
3711 BFD_ASSERT (g
!= NULL
);
3714 entry
.symndx
= symndx
;
3715 entry
.d
.addend
= addend
;
3716 entry
.tls_type
= tls_flag
;
3717 loc
= (struct mips_got_entry
**)
3718 htab_find_slot (g
->got_entries
, &entry
, INSERT
);
3722 if (tls_flag
== GOT_TLS_GD
&& !((*loc
)->tls_type
& GOT_TLS_GD
))
3725 (*loc
)->tls_type
|= tls_flag
;
3727 else if (tls_flag
== GOT_TLS_IE
&& !((*loc
)->tls_type
& GOT_TLS_IE
))
3730 (*loc
)->tls_type
|= tls_flag
;
3738 entry
.tls_type
= tls_flag
;
3739 if (tls_flag
== GOT_TLS_IE
)
3741 else if (tls_flag
== GOT_TLS_GD
)
3743 else if (g
->tls_ldm_offset
== MINUS_ONE
)
3745 g
->tls_ldm_offset
= MINUS_TWO
;
3751 entry
.gotidx
= g
->local_gotno
++;
3755 *loc
= (struct mips_got_entry
*)bfd_alloc (abfd
, sizeof entry
);
3760 memcpy (*loc
, &entry
, sizeof entry
);
3765 /* Return the maximum number of GOT page entries required for RANGE. */
3768 mips_elf_pages_for_range (const struct mips_got_page_range
*range
)
3770 return (range
->max_addend
- range
->min_addend
+ 0x1ffff) >> 16;
3773 /* Record that ABFD has a page relocation against symbol SYMNDX and
3774 that ADDEND is the addend for that relocation.
3776 This function creates an upper bound on the number of GOT slots
3777 required; no attempt is made to combine references to non-overridable
3778 global symbols across multiple input files. */
3781 mips_elf_record_got_page_entry (struct bfd_link_info
*info
, bfd
*abfd
,
3782 long symndx
, bfd_signed_vma addend
)
3784 struct mips_elf_link_hash_table
*htab
;
3785 struct mips_got_info
*g
;
3786 struct mips_got_page_entry lookup
, *entry
;
3787 struct mips_got_page_range
**range_ptr
, *range
;
3788 bfd_vma old_pages
, new_pages
;
3791 htab
= mips_elf_hash_table (info
);
3792 BFD_ASSERT (htab
!= NULL
);
3795 BFD_ASSERT (g
!= NULL
);
3797 /* Find the mips_got_page_entry hash table entry for this symbol. */
3799 lookup
.symndx
= symndx
;
3800 loc
= htab_find_slot (g
->got_page_entries
, &lookup
, INSERT
);
3804 /* Create a mips_got_page_entry if this is the first time we've
3806 entry
= (struct mips_got_page_entry
*) *loc
;
3809 entry
= bfd_alloc (abfd
, sizeof (*entry
));
3814 entry
->symndx
= symndx
;
3815 entry
->ranges
= NULL
;
3816 entry
->num_pages
= 0;
3820 /* Skip over ranges whose maximum extent cannot share a page entry
3822 range_ptr
= &entry
->ranges
;
3823 while (*range_ptr
&& addend
> (*range_ptr
)->max_addend
+ 0xffff)
3824 range_ptr
= &(*range_ptr
)->next
;
3826 /* If we scanned to the end of the list, or found a range whose
3827 minimum extent cannot share a page entry with ADDEND, create
3828 a new singleton range. */
3830 if (!range
|| addend
< range
->min_addend
- 0xffff)
3832 range
= bfd_alloc (abfd
, sizeof (*range
));
3836 range
->next
= *range_ptr
;
3837 range
->min_addend
= addend
;
3838 range
->max_addend
= addend
;
3846 /* Remember how many pages the old range contributed. */
3847 old_pages
= mips_elf_pages_for_range (range
);
3849 /* Update the ranges. */
3850 if (addend
< range
->min_addend
)
3851 range
->min_addend
= addend
;
3852 else if (addend
> range
->max_addend
)
3854 if (range
->next
&& addend
>= range
->next
->min_addend
- 0xffff)
3856 old_pages
+= mips_elf_pages_for_range (range
->next
);
3857 range
->max_addend
= range
->next
->max_addend
;
3858 range
->next
= range
->next
->next
;
3861 range
->max_addend
= addend
;
3864 /* Record any change in the total estimate. */
3865 new_pages
= mips_elf_pages_for_range (range
);
3866 if (old_pages
!= new_pages
)
3868 entry
->num_pages
+= new_pages
- old_pages
;
3869 g
->page_gotno
+= new_pages
- old_pages
;
3875 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3878 mips_elf_allocate_dynamic_relocations (bfd
*abfd
, struct bfd_link_info
*info
,
3882 struct mips_elf_link_hash_table
*htab
;
3884 htab
= mips_elf_hash_table (info
);
3885 BFD_ASSERT (htab
!= NULL
);
3887 s
= mips_elf_rel_dyn_section (info
, FALSE
);
3888 BFD_ASSERT (s
!= NULL
);
3890 if (htab
->is_vxworks
)
3891 s
->size
+= n
* MIPS_ELF_RELA_SIZE (abfd
);
3896 /* Make room for a null element. */
3897 s
->size
+= MIPS_ELF_REL_SIZE (abfd
);
3900 s
->size
+= n
* MIPS_ELF_REL_SIZE (abfd
);
3904 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3905 if the GOT entry is for an indirect or warning symbol. */
3908 mips_elf_check_recreate_got (void **entryp
, void *data
)
3910 struct mips_got_entry
*entry
;
3911 bfd_boolean
*must_recreate
;
3913 entry
= (struct mips_got_entry
*) *entryp
;
3914 must_recreate
= (bfd_boolean
*) data
;
3915 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3917 struct mips_elf_link_hash_entry
*h
;
3920 if (h
->root
.root
.type
== bfd_link_hash_indirect
3921 || h
->root
.root
.type
== bfd_link_hash_warning
)
3923 *must_recreate
= TRUE
;
3930 /* A htab_traverse callback for GOT entries. Add all entries to
3931 hash table *DATA, converting entries for indirect and warning
3932 symbols into entries for the target symbol. Set *DATA to null
3936 mips_elf_recreate_got (void **entryp
, void *data
)
3939 struct mips_got_entry
*entry
;
3942 new_got
= (htab_t
*) data
;
3943 entry
= (struct mips_got_entry
*) *entryp
;
3944 if (entry
->abfd
!= NULL
&& entry
->symndx
== -1)
3946 struct mips_elf_link_hash_entry
*h
;
3949 while (h
->root
.root
.type
== bfd_link_hash_indirect
3950 || h
->root
.root
.type
== bfd_link_hash_warning
)
3952 BFD_ASSERT (h
->global_got_area
== GGA_NONE
);
3953 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
3957 slot
= htab_find_slot (*new_got
, entry
, INSERT
);
3970 /* If any entries in G->got_entries are for indirect or warning symbols,
3971 replace them with entries for the target symbol. */
3974 mips_elf_resolve_final_got_entries (struct mips_got_info
*g
)
3976 bfd_boolean must_recreate
;
3979 must_recreate
= FALSE
;
3980 htab_traverse (g
->got_entries
, mips_elf_check_recreate_got
, &must_recreate
);
3983 new_got
= htab_create (htab_size (g
->got_entries
),
3984 mips_elf_got_entry_hash
,
3985 mips_elf_got_entry_eq
, NULL
);
3986 htab_traverse (g
->got_entries
, mips_elf_recreate_got
, &new_got
);
3987 if (new_got
== NULL
)
3990 /* Each entry in g->got_entries has either been copied to new_got
3991 or freed. Now delete the hash table itself. */
3992 htab_delete (g
->got_entries
);
3993 g
->got_entries
= new_got
;
3998 /* A mips_elf_link_hash_traverse callback for which DATA points
3999 to the link_info structure. Count the number of type (3) entries
4000 in the master GOT. */
4003 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry
*h
, void *data
)
4005 struct bfd_link_info
*info
;
4006 struct mips_elf_link_hash_table
*htab
;
4007 struct mips_got_info
*g
;
4009 info
= (struct bfd_link_info
*) data
;
4010 htab
= mips_elf_hash_table (info
);
4012 if (h
->global_got_area
!= GGA_NONE
)
4014 /* Make a final decision about whether the symbol belongs in the
4015 local or global GOT. Symbols that bind locally can (and in the
4016 case of forced-local symbols, must) live in the local GOT.
4017 Those that are aren't in the dynamic symbol table must also
4018 live in the local GOT.
4020 Note that the former condition does not always imply the
4021 latter: symbols do not bind locally if they are completely
4022 undefined. We'll report undefined symbols later if appropriate. */
4023 if (h
->root
.dynindx
== -1
4024 || (h
->got_only_for_calls
4025 ? SYMBOL_CALLS_LOCAL (info
, &h
->root
)
4026 : SYMBOL_REFERENCES_LOCAL (info
, &h
->root
)))
4028 /* The symbol belongs in the local GOT. We no longer need this
4029 entry if it was only used for relocations; those relocations
4030 will be against the null or section symbol instead of H. */
4031 if (h
->global_got_area
!= GGA_RELOC_ONLY
)
4033 h
->global_got_area
= GGA_NONE
;
4035 else if (htab
->is_vxworks
4036 && h
->got_only_for_calls
4037 && h
->root
.plt
.offset
!= MINUS_ONE
)
4038 /* On VxWorks, calls can refer directly to the .got.plt entry;
4039 they don't need entries in the regular GOT. .got.plt entries
4040 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4041 h
->global_got_area
= GGA_NONE
;
4045 if (h
->global_got_area
== GGA_RELOC_ONLY
)
4046 g
->reloc_only_gotno
++;
4052 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4055 mips_elf_bfd2got_entry_hash (const void *entry_
)
4057 const struct mips_elf_bfd2got_hash
*entry
4058 = (struct mips_elf_bfd2got_hash
*)entry_
;
4060 return entry
->bfd
->id
;
4063 /* Check whether two hash entries have the same bfd. */
4066 mips_elf_bfd2got_entry_eq (const void *entry1
, const void *entry2
)
4068 const struct mips_elf_bfd2got_hash
*e1
4069 = (const struct mips_elf_bfd2got_hash
*)entry1
;
4070 const struct mips_elf_bfd2got_hash
*e2
4071 = (const struct mips_elf_bfd2got_hash
*)entry2
;
4073 return e1
->bfd
== e2
->bfd
;
4076 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4077 be the master GOT data. */
4079 static struct mips_got_info
*
4080 mips_elf_got_for_ibfd (struct mips_got_info
*g
, bfd
*ibfd
)
4082 struct mips_elf_bfd2got_hash e
, *p
;
4088 p
= htab_find (g
->bfd2got
, &e
);
4089 return p
? p
->g
: NULL
;
4092 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4093 Return NULL if an error occured. */
4095 static struct mips_got_info
*
4096 mips_elf_get_got_for_bfd (struct htab
*bfd2got
, bfd
*output_bfd
,
4099 struct mips_elf_bfd2got_hash bfdgot_entry
, *bfdgot
;
4100 struct mips_got_info
*g
;
4103 bfdgot_entry
.bfd
= input_bfd
;
4104 bfdgotp
= htab_find_slot (bfd2got
, &bfdgot_entry
, INSERT
);
4105 bfdgot
= (struct mips_elf_bfd2got_hash
*) *bfdgotp
;
4109 bfdgot
= ((struct mips_elf_bfd2got_hash
*)
4110 bfd_alloc (output_bfd
, sizeof (struct mips_elf_bfd2got_hash
)));
4116 g
= ((struct mips_got_info
*)
4117 bfd_alloc (output_bfd
, sizeof (struct mips_got_info
)));
4121 bfdgot
->bfd
= input_bfd
;
4124 g
->global_gotsym
= NULL
;
4125 g
->global_gotno
= 0;
4126 g
->reloc_only_gotno
= 0;
4129 g
->assigned_gotno
= -1;
4131 g
->tls_assigned_gotno
= 0;
4132 g
->tls_ldm_offset
= MINUS_ONE
;
4133 g
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
4134 mips_elf_multi_got_entry_eq
, NULL
);
4135 if (g
->got_entries
== NULL
)
4138 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4139 mips_got_page_entry_eq
, NULL
);
4140 if (g
->got_page_entries
== NULL
)
4150 /* A htab_traverse callback for the entries in the master got.
4151 Create one separate got for each bfd that has entries in the global
4152 got, such that we can tell how many local and global entries each
4156 mips_elf_make_got_per_bfd (void **entryp
, void *p
)
4158 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4159 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
4160 struct mips_got_info
*g
;
4162 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
4169 /* Insert the GOT entry in the bfd's got entry hash table. */
4170 entryp
= htab_find_slot (g
->got_entries
, entry
, INSERT
);
4171 if (*entryp
!= NULL
)
4176 if (entry
->tls_type
)
4178 if (entry
->tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
4180 if (entry
->tls_type
& GOT_TLS_IE
)
4183 else if (entry
->symndx
>= 0 || entry
->d
.h
->global_got_area
== GGA_NONE
)
4191 /* A htab_traverse callback for the page entries in the master got.
4192 Associate each page entry with the bfd's got. */
4195 mips_elf_make_got_pages_per_bfd (void **entryp
, void *p
)
4197 struct mips_got_page_entry
*entry
= (struct mips_got_page_entry
*) *entryp
;
4198 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*) p
;
4199 struct mips_got_info
*g
;
4201 g
= mips_elf_get_got_for_bfd (arg
->bfd2got
, arg
->obfd
, entry
->abfd
);
4208 /* Insert the GOT entry in the bfd's got entry hash table. */
4209 entryp
= htab_find_slot (g
->got_page_entries
, entry
, INSERT
);
4210 if (*entryp
!= NULL
)
4214 g
->page_gotno
+= entry
->num_pages
;
4218 /* Consider merging the got described by BFD2GOT with TO, using the
4219 information given by ARG. Return -1 if this would lead to overflow,
4220 1 if they were merged successfully, and 0 if a merge failed due to
4221 lack of memory. (These values are chosen so that nonnegative return
4222 values can be returned by a htab_traverse callback.) */
4225 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash
*bfd2got
,
4226 struct mips_got_info
*to
,
4227 struct mips_elf_got_per_bfd_arg
*arg
)
4229 struct mips_got_info
*from
= bfd2got
->g
;
4230 unsigned int estimate
;
4232 /* Work out how many page entries we would need for the combined GOT. */
4233 estimate
= arg
->max_pages
;
4234 if (estimate
>= from
->page_gotno
+ to
->page_gotno
)
4235 estimate
= from
->page_gotno
+ to
->page_gotno
;
4237 /* And conservatively estimate how many local and TLS entries
4239 estimate
+= from
->local_gotno
+ to
->local_gotno
;
4240 estimate
+= from
->tls_gotno
+ to
->tls_gotno
;
4242 /* If we're merging with the primary got, we will always have
4243 the full set of global entries. Otherwise estimate those
4244 conservatively as well. */
4245 if (to
== arg
->primary
)
4246 estimate
+= arg
->global_count
;
4248 estimate
+= from
->global_gotno
+ to
->global_gotno
;
4250 /* Bail out if the combined GOT might be too big. */
4251 if (estimate
> arg
->max_count
)
4254 /* Commit to the merge. Record that TO is now the bfd for this got. */
4257 /* Transfer the bfd's got information from FROM to TO. */
4258 htab_traverse (from
->got_entries
, mips_elf_make_got_per_bfd
, arg
);
4259 if (arg
->obfd
== NULL
)
4262 htab_traverse (from
->got_page_entries
, mips_elf_make_got_pages_per_bfd
, arg
);
4263 if (arg
->obfd
== NULL
)
4266 /* We don't have to worry about releasing memory of the actual
4267 got entries, since they're all in the master got_entries hash
4269 htab_delete (from
->got_entries
);
4270 htab_delete (from
->got_page_entries
);
4274 /* Attempt to merge gots of different input bfds. Try to use as much
4275 as possible of the primary got, since it doesn't require explicit
4276 dynamic relocations, but don't use bfds that would reference global
4277 symbols out of the addressable range. Failing the primary got,
4278 attempt to merge with the current got, or finish the current got
4279 and then make make the new got current. */
4282 mips_elf_merge_gots (void **bfd2got_
, void *p
)
4284 struct mips_elf_bfd2got_hash
*bfd2got
4285 = (struct mips_elf_bfd2got_hash
*)*bfd2got_
;
4286 struct mips_elf_got_per_bfd_arg
*arg
= (struct mips_elf_got_per_bfd_arg
*)p
;
4287 struct mips_got_info
*g
;
4288 unsigned int estimate
;
4293 /* Work out the number of page, local and TLS entries. */
4294 estimate
= arg
->max_pages
;
4295 if (estimate
> g
->page_gotno
)
4296 estimate
= g
->page_gotno
;
4297 estimate
+= g
->local_gotno
+ g
->tls_gotno
;
4299 /* We place TLS GOT entries after both locals and globals. The globals
4300 for the primary GOT may overflow the normal GOT size limit, so be
4301 sure not to merge a GOT which requires TLS with the primary GOT in that
4302 case. This doesn't affect non-primary GOTs. */
4303 estimate
+= (g
->tls_gotno
> 0 ? arg
->global_count
: g
->global_gotno
);
4305 if (estimate
<= arg
->max_count
)
4307 /* If we don't have a primary GOT, use it as
4308 a starting point for the primary GOT. */
4311 arg
->primary
= bfd2got
->g
;
4315 /* Try merging with the primary GOT. */
4316 result
= mips_elf_merge_got_with (bfd2got
, arg
->primary
, arg
);
4321 /* If we can merge with the last-created got, do it. */
4324 result
= mips_elf_merge_got_with (bfd2got
, arg
->current
, arg
);
4329 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4330 fits; if it turns out that it doesn't, we'll get relocation
4331 overflows anyway. */
4332 g
->next
= arg
->current
;
4338 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4339 is null iff there is just a single GOT. */
4342 mips_elf_initialize_tls_index (void **entryp
, void *p
)
4344 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4345 struct mips_got_info
*g
= p
;
4347 unsigned char tls_type
;
4349 /* We're only interested in TLS symbols. */
4350 if (entry
->tls_type
== 0)
4353 next_index
= MIPS_ELF_GOT_SIZE (entry
->abfd
) * (long) g
->tls_assigned_gotno
;
4355 if (entry
->symndx
== -1 && g
->next
== NULL
)
4357 /* A type (3) got entry in the single-GOT case. We use the symbol's
4358 hash table entry to track its index. */
4359 if (entry
->d
.h
->tls_type
& GOT_TLS_OFFSET_DONE
)
4361 entry
->d
.h
->tls_type
|= GOT_TLS_OFFSET_DONE
;
4362 entry
->d
.h
->tls_got_offset
= next_index
;
4363 tls_type
= entry
->d
.h
->tls_type
;
4367 if (entry
->tls_type
& GOT_TLS_LDM
)
4369 /* There are separate mips_got_entry objects for each input bfd
4370 that requires an LDM entry. Make sure that all LDM entries in
4371 a GOT resolve to the same index. */
4372 if (g
->tls_ldm_offset
!= MINUS_TWO
&& g
->tls_ldm_offset
!= MINUS_ONE
)
4374 entry
->gotidx
= g
->tls_ldm_offset
;
4377 g
->tls_ldm_offset
= next_index
;
4379 entry
->gotidx
= next_index
;
4380 tls_type
= entry
->tls_type
;
4383 /* Account for the entries we've just allocated. */
4384 if (tls_type
& (GOT_TLS_GD
| GOT_TLS_LDM
))
4385 g
->tls_assigned_gotno
+= 2;
4386 if (tls_type
& GOT_TLS_IE
)
4387 g
->tls_assigned_gotno
+= 1;
4392 /* If passed a NULL mips_got_info in the argument, set the marker used
4393 to tell whether a global symbol needs a got entry (in the primary
4394 got) to the given VALUE.
4396 If passed a pointer G to a mips_got_info in the argument (it must
4397 not be the primary GOT), compute the offset from the beginning of
4398 the (primary) GOT section to the entry in G corresponding to the
4399 global symbol. G's assigned_gotno must contain the index of the
4400 first available global GOT entry in G. VALUE must contain the size
4401 of a GOT entry in bytes. For each global GOT entry that requires a
4402 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4403 marked as not eligible for lazy resolution through a function
4406 mips_elf_set_global_got_offset (void **entryp
, void *p
)
4408 struct mips_got_entry
*entry
= (struct mips_got_entry
*)*entryp
;
4409 struct mips_elf_set_global_got_offset_arg
*arg
4410 = (struct mips_elf_set_global_got_offset_arg
*)p
;
4411 struct mips_got_info
*g
= arg
->g
;
4413 if (g
&& entry
->tls_type
!= GOT_NORMAL
)
4414 arg
->needed_relocs
+=
4415 mips_tls_got_relocs (arg
->info
, entry
->tls_type
,
4416 entry
->symndx
== -1 ? &entry
->d
.h
->root
: NULL
);
4418 if (entry
->abfd
!= NULL
4419 && entry
->symndx
== -1
4420 && entry
->d
.h
->global_got_area
!= GGA_NONE
)
4424 BFD_ASSERT (g
->global_gotsym
== NULL
);
4426 entry
->gotidx
= arg
->value
* (long) g
->assigned_gotno
++;
4427 if (arg
->info
->shared
4428 || (elf_hash_table (arg
->info
)->dynamic_sections_created
4429 && entry
->d
.h
->root
.def_dynamic
4430 && !entry
->d
.h
->root
.def_regular
))
4431 ++arg
->needed_relocs
;
4434 entry
->d
.h
->global_got_area
= arg
->value
;
4440 /* A htab_traverse callback for GOT entries for which DATA is the
4441 bfd_link_info. Forbid any global symbols from having traditional
4442 lazy-binding stubs. */
4445 mips_elf_forbid_lazy_stubs (void **entryp
, void *data
)
4447 struct bfd_link_info
*info
;
4448 struct mips_elf_link_hash_table
*htab
;
4449 struct mips_got_entry
*entry
;
4451 entry
= (struct mips_got_entry
*) *entryp
;
4452 info
= (struct bfd_link_info
*) data
;
4453 htab
= mips_elf_hash_table (info
);
4454 BFD_ASSERT (htab
!= NULL
);
4456 if (entry
->abfd
!= NULL
4457 && entry
->symndx
== -1
4458 && entry
->d
.h
->needs_lazy_stub
)
4460 entry
->d
.h
->needs_lazy_stub
= FALSE
;
4461 htab
->lazy_stub_count
--;
4467 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4470 mips_elf_adjust_gp (bfd
*abfd
, struct mips_got_info
*g
, bfd
*ibfd
)
4472 if (g
->bfd2got
== NULL
)
4475 g
= mips_elf_got_for_ibfd (g
, ibfd
);
4479 BFD_ASSERT (g
->next
);
4483 return (g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
)
4484 * MIPS_ELF_GOT_SIZE (abfd
);
4487 /* Turn a single GOT that is too big for 16-bit addressing into
4488 a sequence of GOTs, each one 16-bit addressable. */
4491 mips_elf_multi_got (bfd
*abfd
, struct bfd_link_info
*info
,
4492 asection
*got
, bfd_size_type pages
)
4494 struct mips_elf_link_hash_table
*htab
;
4495 struct mips_elf_got_per_bfd_arg got_per_bfd_arg
;
4496 struct mips_elf_set_global_got_offset_arg set_got_offset_arg
;
4497 struct mips_got_info
*g
, *gg
;
4498 unsigned int assign
, needed_relocs
;
4501 dynobj
= elf_hash_table (info
)->dynobj
;
4502 htab
= mips_elf_hash_table (info
);
4503 BFD_ASSERT (htab
!= NULL
);
4506 g
->bfd2got
= htab_try_create (1, mips_elf_bfd2got_entry_hash
,
4507 mips_elf_bfd2got_entry_eq
, NULL
);
4508 if (g
->bfd2got
== NULL
)
4511 got_per_bfd_arg
.bfd2got
= g
->bfd2got
;
4512 got_per_bfd_arg
.obfd
= abfd
;
4513 got_per_bfd_arg
.info
= info
;
4515 /* Count how many GOT entries each input bfd requires, creating a
4516 map from bfd to got info while at that. */
4517 htab_traverse (g
->got_entries
, mips_elf_make_got_per_bfd
, &got_per_bfd_arg
);
4518 if (got_per_bfd_arg
.obfd
== NULL
)
4521 /* Also count how many page entries each input bfd requires. */
4522 htab_traverse (g
->got_page_entries
, mips_elf_make_got_pages_per_bfd
,
4524 if (got_per_bfd_arg
.obfd
== NULL
)
4527 got_per_bfd_arg
.current
= NULL
;
4528 got_per_bfd_arg
.primary
= NULL
;
4529 got_per_bfd_arg
.max_count
= ((MIPS_ELF_GOT_MAX_SIZE (info
)
4530 / MIPS_ELF_GOT_SIZE (abfd
))
4531 - htab
->reserved_gotno
);
4532 got_per_bfd_arg
.max_pages
= pages
;
4533 /* The number of globals that will be included in the primary GOT.
4534 See the calls to mips_elf_set_global_got_offset below for more
4536 got_per_bfd_arg
.global_count
= g
->global_gotno
;
4538 /* Try to merge the GOTs of input bfds together, as long as they
4539 don't seem to exceed the maximum GOT size, choosing one of them
4540 to be the primary GOT. */
4541 htab_traverse (g
->bfd2got
, mips_elf_merge_gots
, &got_per_bfd_arg
);
4542 if (got_per_bfd_arg
.obfd
== NULL
)
4545 /* If we do not find any suitable primary GOT, create an empty one. */
4546 if (got_per_bfd_arg
.primary
== NULL
)
4548 g
->next
= (struct mips_got_info
*)
4549 bfd_alloc (abfd
, sizeof (struct mips_got_info
));
4550 if (g
->next
== NULL
)
4553 g
->next
->global_gotsym
= NULL
;
4554 g
->next
->global_gotno
= 0;
4555 g
->next
->reloc_only_gotno
= 0;
4556 g
->next
->local_gotno
= 0;
4557 g
->next
->page_gotno
= 0;
4558 g
->next
->tls_gotno
= 0;
4559 g
->next
->assigned_gotno
= 0;
4560 g
->next
->tls_assigned_gotno
= 0;
4561 g
->next
->tls_ldm_offset
= MINUS_ONE
;
4562 g
->next
->got_entries
= htab_try_create (1, mips_elf_multi_got_entry_hash
,
4563 mips_elf_multi_got_entry_eq
,
4565 if (g
->next
->got_entries
== NULL
)
4567 g
->next
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4568 mips_got_page_entry_eq
,
4570 if (g
->next
->got_page_entries
== NULL
)
4572 g
->next
->bfd2got
= NULL
;
4575 g
->next
= got_per_bfd_arg
.primary
;
4576 g
->next
->next
= got_per_bfd_arg
.current
;
4578 /* GG is now the master GOT, and G is the primary GOT. */
4582 /* Map the output bfd to the primary got. That's what we're going
4583 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4584 didn't mark in check_relocs, and we want a quick way to find it.
4585 We can't just use gg->next because we're going to reverse the
4588 struct mips_elf_bfd2got_hash
*bfdgot
;
4591 bfdgot
= (struct mips_elf_bfd2got_hash
*)bfd_alloc
4592 (abfd
, sizeof (struct mips_elf_bfd2got_hash
));
4599 bfdgotp
= htab_find_slot (gg
->bfd2got
, bfdgot
, INSERT
);
4601 BFD_ASSERT (*bfdgotp
== NULL
);
4605 /* Every symbol that is referenced in a dynamic relocation must be
4606 present in the primary GOT, so arrange for them to appear after
4607 those that are actually referenced. */
4608 gg
->reloc_only_gotno
= gg
->global_gotno
- g
->global_gotno
;
4609 g
->global_gotno
= gg
->global_gotno
;
4611 set_got_offset_arg
.g
= NULL
;
4612 set_got_offset_arg
.value
= GGA_RELOC_ONLY
;
4613 htab_traverse (gg
->got_entries
, mips_elf_set_global_got_offset
,
4614 &set_got_offset_arg
);
4615 set_got_offset_arg
.value
= GGA_NORMAL
;
4616 htab_traverse (g
->got_entries
, mips_elf_set_global_got_offset
,
4617 &set_got_offset_arg
);
4619 /* Now go through the GOTs assigning them offset ranges.
4620 [assigned_gotno, local_gotno[ will be set to the range of local
4621 entries in each GOT. We can then compute the end of a GOT by
4622 adding local_gotno to global_gotno. We reverse the list and make
4623 it circular since then we'll be able to quickly compute the
4624 beginning of a GOT, by computing the end of its predecessor. To
4625 avoid special cases for the primary GOT, while still preserving
4626 assertions that are valid for both single- and multi-got links,
4627 we arrange for the main got struct to have the right number of
4628 global entries, but set its local_gotno such that the initial
4629 offset of the primary GOT is zero. Remember that the primary GOT
4630 will become the last item in the circular linked list, so it
4631 points back to the master GOT. */
4632 gg
->local_gotno
= -g
->global_gotno
;
4633 gg
->global_gotno
= g
->global_gotno
;
4640 struct mips_got_info
*gn
;
4642 assign
+= htab
->reserved_gotno
;
4643 g
->assigned_gotno
= assign
;
4644 g
->local_gotno
+= assign
;
4645 g
->local_gotno
+= (pages
< g
->page_gotno
? pages
: g
->page_gotno
);
4646 assign
= g
->local_gotno
+ g
->global_gotno
+ g
->tls_gotno
;
4648 /* Take g out of the direct list, and push it onto the reversed
4649 list that gg points to. g->next is guaranteed to be nonnull after
4650 this operation, as required by mips_elf_initialize_tls_index. */
4655 /* Set up any TLS entries. We always place the TLS entries after
4656 all non-TLS entries. */
4657 g
->tls_assigned_gotno
= g
->local_gotno
+ g
->global_gotno
;
4658 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
4660 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4663 /* Forbid global symbols in every non-primary GOT from having
4664 lazy-binding stubs. */
4666 htab_traverse (g
->got_entries
, mips_elf_forbid_lazy_stubs
, info
);
4670 got
->size
= (gg
->next
->local_gotno
4671 + gg
->next
->global_gotno
4672 + gg
->next
->tls_gotno
) * MIPS_ELF_GOT_SIZE (abfd
);
4675 set_got_offset_arg
.value
= MIPS_ELF_GOT_SIZE (abfd
);
4676 set_got_offset_arg
.info
= info
;
4677 for (g
= gg
->next
; g
&& g
->next
!= gg
; g
= g
->next
)
4679 unsigned int save_assign
;
4681 /* Assign offsets to global GOT entries. */
4682 save_assign
= g
->assigned_gotno
;
4683 g
->assigned_gotno
= g
->local_gotno
;
4684 set_got_offset_arg
.g
= g
;
4685 set_got_offset_arg
.needed_relocs
= 0;
4686 htab_traverse (g
->got_entries
,
4687 mips_elf_set_global_got_offset
,
4688 &set_got_offset_arg
);
4689 needed_relocs
+= set_got_offset_arg
.needed_relocs
;
4690 BFD_ASSERT (g
->assigned_gotno
- g
->local_gotno
<= g
->global_gotno
);
4692 g
->assigned_gotno
= save_assign
;
4695 needed_relocs
+= g
->local_gotno
- g
->assigned_gotno
;
4696 BFD_ASSERT (g
->assigned_gotno
== g
->next
->local_gotno
4697 + g
->next
->global_gotno
4698 + g
->next
->tls_gotno
4699 + htab
->reserved_gotno
);
4704 mips_elf_allocate_dynamic_relocations (dynobj
, info
,
4711 /* Returns the first relocation of type r_type found, beginning with
4712 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4714 static const Elf_Internal_Rela
*
4715 mips_elf_next_relocation (bfd
*abfd ATTRIBUTE_UNUSED
, unsigned int r_type
,
4716 const Elf_Internal_Rela
*relocation
,
4717 const Elf_Internal_Rela
*relend
)
4719 unsigned long r_symndx
= ELF_R_SYM (abfd
, relocation
->r_info
);
4721 while (relocation
< relend
)
4723 if (ELF_R_TYPE (abfd
, relocation
->r_info
) == r_type
4724 && ELF_R_SYM (abfd
, relocation
->r_info
) == r_symndx
)
4730 /* We didn't find it. */
4734 /* Return whether an input relocation is against a local symbol. */
4737 mips_elf_local_relocation_p (bfd
*input_bfd
,
4738 const Elf_Internal_Rela
*relocation
,
4739 asection
**local_sections
)
4741 unsigned long r_symndx
;
4742 Elf_Internal_Shdr
*symtab_hdr
;
4745 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
4746 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4747 extsymoff
= (elf_bad_symtab (input_bfd
)) ? 0 : symtab_hdr
->sh_info
;
4749 if (r_symndx
< extsymoff
)
4751 if (elf_bad_symtab (input_bfd
) && local_sections
[r_symndx
] != NULL
)
4757 /* Sign-extend VALUE, which has the indicated number of BITS. */
4760 _bfd_mips_elf_sign_extend (bfd_vma value
, int bits
)
4762 if (value
& ((bfd_vma
) 1 << (bits
- 1)))
4763 /* VALUE is negative. */
4764 value
|= ((bfd_vma
) - 1) << bits
;
4769 /* Return non-zero if the indicated VALUE has overflowed the maximum
4770 range expressible by a signed number with the indicated number of
4774 mips_elf_overflow_p (bfd_vma value
, int bits
)
4776 bfd_signed_vma svalue
= (bfd_signed_vma
) value
;
4778 if (svalue
> (1 << (bits
- 1)) - 1)
4779 /* The value is too big. */
4781 else if (svalue
< -(1 << (bits
- 1)))
4782 /* The value is too small. */
4789 /* Calculate the %high function. */
4792 mips_elf_high (bfd_vma value
)
4794 return ((value
+ (bfd_vma
) 0x8000) >> 16) & 0xffff;
4797 /* Calculate the %higher function. */
4800 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED
)
4803 return ((value
+ (bfd_vma
) 0x80008000) >> 32) & 0xffff;
4810 /* Calculate the %highest function. */
4813 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED
)
4816 return ((value
+ (((bfd_vma
) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4823 /* Create the .compact_rel section. */
4826 mips_elf_create_compact_rel_section
4827 (bfd
*abfd
, struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
4830 register asection
*s
;
4832 if (bfd_get_section_by_name (abfd
, ".compact_rel") == NULL
)
4834 flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
4837 s
= bfd_make_section_with_flags (abfd
, ".compact_rel", flags
);
4839 || ! bfd_set_section_alignment (abfd
, s
,
4840 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
4843 s
->size
= sizeof (Elf32_External_compact_rel
);
4849 /* Create the .got section to hold the global offset table. */
4852 mips_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
4855 register asection
*s
;
4856 struct elf_link_hash_entry
*h
;
4857 struct bfd_link_hash_entry
*bh
;
4858 struct mips_got_info
*g
;
4860 struct mips_elf_link_hash_table
*htab
;
4862 htab
= mips_elf_hash_table (info
);
4863 BFD_ASSERT (htab
!= NULL
);
4865 /* This function may be called more than once. */
4869 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
4870 | SEC_LINKER_CREATED
);
4872 /* We have to use an alignment of 2**4 here because this is hardcoded
4873 in the function stub generation and in the linker script. */
4874 s
= bfd_make_section_with_flags (abfd
, ".got", flags
);
4876 || ! bfd_set_section_alignment (abfd
, s
, 4))
4880 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4881 linker script because we don't want to define the symbol if we
4882 are not creating a global offset table. */
4884 if (! (_bfd_generic_link_add_one_symbol
4885 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
4886 0, NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
4889 h
= (struct elf_link_hash_entry
*) bh
;
4892 h
->type
= STT_OBJECT
;
4893 elf_hash_table (info
)->hgot
= h
;
4896 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
4899 amt
= sizeof (struct mips_got_info
);
4900 g
= bfd_alloc (abfd
, amt
);
4903 g
->global_gotsym
= NULL
;
4904 g
->global_gotno
= 0;
4905 g
->reloc_only_gotno
= 0;
4909 g
->assigned_gotno
= 0;
4912 g
->tls_ldm_offset
= MINUS_ONE
;
4913 g
->got_entries
= htab_try_create (1, mips_elf_got_entry_hash
,
4914 mips_elf_got_entry_eq
, NULL
);
4915 if (g
->got_entries
== NULL
)
4917 g
->got_page_entries
= htab_try_create (1, mips_got_page_entry_hash
,
4918 mips_got_page_entry_eq
, NULL
);
4919 if (g
->got_page_entries
== NULL
)
4922 mips_elf_section_data (s
)->elf
.this_hdr
.sh_flags
4923 |= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
4925 /* We also need a .got.plt section when generating PLTs. */
4926 s
= bfd_make_section_with_flags (abfd
, ".got.plt",
4927 SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
4928 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
4936 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4937 __GOTT_INDEX__ symbols. These symbols are only special for
4938 shared objects; they are not used in executables. */
4941 is_gott_symbol (struct bfd_link_info
*info
, struct elf_link_hash_entry
*h
)
4943 return (mips_elf_hash_table (info
)->is_vxworks
4945 && (strcmp (h
->root
.root
.string
, "__GOTT_BASE__") == 0
4946 || strcmp (h
->root
.root
.string
, "__GOTT_INDEX__") == 0));
4949 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4950 require an la25 stub. See also mips_elf_local_pic_function_p,
4951 which determines whether the destination function ever requires a
4955 mips_elf_relocation_needs_la25_stub (bfd
*input_bfd
, int r_type
,
4956 bfd_boolean target_is_16_bit_code_p
)
4958 /* We specifically ignore branches and jumps from EF_PIC objects,
4959 where the onus is on the compiler or programmer to perform any
4960 necessary initialization of $25. Sometimes such initialization
4961 is unnecessary; for example, -mno-shared functions do not use
4962 the incoming value of $25, and may therefore be called directly. */
4963 if (PIC_OBJECT_P (input_bfd
))
4970 case R_MICROMIPS_26_S1
:
4971 case R_MICROMIPS_PC7_S1
:
4972 case R_MICROMIPS_PC10_S1
:
4973 case R_MICROMIPS_PC16_S1
:
4974 case R_MICROMIPS_PC23_S2
:
4978 return !target_is_16_bit_code_p
;
4985 /* Calculate the value produced by the RELOCATION (which comes from
4986 the INPUT_BFD). The ADDEND is the addend to use for this
4987 RELOCATION; RELOCATION->R_ADDEND is ignored.
4989 The result of the relocation calculation is stored in VALUEP.
4990 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4991 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4993 This function returns bfd_reloc_continue if the caller need take no
4994 further action regarding this relocation, bfd_reloc_notsupported if
4995 something goes dramatically wrong, bfd_reloc_overflow if an
4996 overflow occurs, and bfd_reloc_ok to indicate success. */
4998 static bfd_reloc_status_type
4999 mips_elf_calculate_relocation (bfd
*abfd
, bfd
*input_bfd
,
5000 asection
*input_section
,
5001 struct bfd_link_info
*info
,
5002 const Elf_Internal_Rela
*relocation
,
5003 bfd_vma addend
, reloc_howto_type
*howto
,
5004 Elf_Internal_Sym
*local_syms
,
5005 asection
**local_sections
, bfd_vma
*valuep
,
5007 bfd_boolean
*cross_mode_jump_p
,
5008 bfd_boolean save_addend
)
5010 /* The eventual value we will return. */
5012 /* The address of the symbol against which the relocation is
5015 /* The final GP value to be used for the relocatable, executable, or
5016 shared object file being produced. */
5018 /* The place (section offset or address) of the storage unit being
5021 /* The value of GP used to create the relocatable object. */
5023 /* The offset into the global offset table at which the address of
5024 the relocation entry symbol, adjusted by the addend, resides
5025 during execution. */
5026 bfd_vma g
= MINUS_ONE
;
5027 /* The section in which the symbol referenced by the relocation is
5029 asection
*sec
= NULL
;
5030 struct mips_elf_link_hash_entry
*h
= NULL
;
5031 /* TRUE if the symbol referred to by this relocation is a local
5033 bfd_boolean local_p
, was_local_p
;
5034 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5035 bfd_boolean gp_disp_p
= FALSE
;
5036 /* TRUE if the symbol referred to by this relocation is
5037 "__gnu_local_gp". */
5038 bfd_boolean gnu_local_gp_p
= FALSE
;
5039 Elf_Internal_Shdr
*symtab_hdr
;
5041 unsigned long r_symndx
;
5043 /* TRUE if overflow occurred during the calculation of the
5044 relocation value. */
5045 bfd_boolean overflowed_p
;
5046 /* TRUE if this relocation refers to a MIPS16 function. */
5047 bfd_boolean target_is_16_bit_code_p
= FALSE
;
5048 bfd_boolean target_is_micromips_code_p
= FALSE
;
5049 struct mips_elf_link_hash_table
*htab
;
5052 dynobj
= elf_hash_table (info
)->dynobj
;
5053 htab
= mips_elf_hash_table (info
);
5054 BFD_ASSERT (htab
!= NULL
);
5056 /* Parse the relocation. */
5057 r_symndx
= ELF_R_SYM (input_bfd
, relocation
->r_info
);
5058 r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5059 p
= (input_section
->output_section
->vma
5060 + input_section
->output_offset
5061 + relocation
->r_offset
);
5063 /* Assume that there will be no overflow. */
5064 overflowed_p
= FALSE
;
5066 /* Figure out whether or not the symbol is local, and get the offset
5067 used in the array of hash table entries. */
5068 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5069 local_p
= mips_elf_local_relocation_p (input_bfd
, relocation
,
5071 was_local_p
= local_p
;
5072 if (! elf_bad_symtab (input_bfd
))
5073 extsymoff
= symtab_hdr
->sh_info
;
5076 /* The symbol table does not follow the rule that local symbols
5077 must come before globals. */
5081 /* Figure out the value of the symbol. */
5084 Elf_Internal_Sym
*sym
;
5086 sym
= local_syms
+ r_symndx
;
5087 sec
= local_sections
[r_symndx
];
5089 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5090 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
5091 || (sec
->flags
& SEC_MERGE
))
5092 symbol
+= sym
->st_value
;
5093 if ((sec
->flags
& SEC_MERGE
)
5094 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
5096 addend
= _bfd_elf_rel_local_sym (abfd
, sym
, &sec
, addend
);
5098 addend
+= sec
->output_section
->vma
+ sec
->output_offset
;
5101 /* MIPS16/microMIPS text labels should be treated as odd. */
5102 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
5105 /* Record the name of this symbol, for our caller. */
5106 *namep
= bfd_elf_string_from_elf_section (input_bfd
,
5107 symtab_hdr
->sh_link
,
5110 *namep
= bfd_section_name (input_bfd
, sec
);
5112 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (sym
->st_other
);
5113 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (sym
->st_other
);
5117 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5119 /* For global symbols we look up the symbol in the hash-table. */
5120 h
= ((struct mips_elf_link_hash_entry
*)
5121 elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
]);
5122 /* Find the real hash-table entry for this symbol. */
5123 while (h
->root
.root
.type
== bfd_link_hash_indirect
5124 || h
->root
.root
.type
== bfd_link_hash_warning
)
5125 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
5127 /* Record the name of this symbol, for our caller. */
5128 *namep
= h
->root
.root
.root
.string
;
5130 /* See if this is the special _gp_disp symbol. Note that such a
5131 symbol must always be a global symbol. */
5132 if (strcmp (*namep
, "_gp_disp") == 0
5133 && ! NEWABI_P (input_bfd
))
5135 /* Relocations against _gp_disp are permitted only with
5136 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5137 if (!hi16_reloc_p (r_type
) && !lo16_reloc_p (r_type
))
5138 return bfd_reloc_notsupported
;
5142 /* See if this is the special _gp symbol. Note that such a
5143 symbol must always be a global symbol. */
5144 else if (strcmp (*namep
, "__gnu_local_gp") == 0)
5145 gnu_local_gp_p
= TRUE
;
5148 /* If this symbol is defined, calculate its address. Note that
5149 _gp_disp is a magic symbol, always implicitly defined by the
5150 linker, so it's inappropriate to check to see whether or not
5152 else if ((h
->root
.root
.type
== bfd_link_hash_defined
5153 || h
->root
.root
.type
== bfd_link_hash_defweak
)
5154 && h
->root
.root
.u
.def
.section
)
5156 sec
= h
->root
.root
.u
.def
.section
;
5157 if (sec
->output_section
)
5158 symbol
= (h
->root
.root
.u
.def
.value
5159 + sec
->output_section
->vma
5160 + sec
->output_offset
);
5162 symbol
= h
->root
.root
.u
.def
.value
;
5164 else if (h
->root
.root
.type
== bfd_link_hash_undefweak
)
5165 /* We allow relocations against undefined weak symbols, giving
5166 it the value zero, so that you can undefined weak functions
5167 and check to see if they exist by looking at their
5170 else if (info
->unresolved_syms_in_objects
== RM_IGNORE
5171 && ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5173 else if (strcmp (*namep
, SGI_COMPAT (input_bfd
)
5174 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5176 /* If this is a dynamic link, we should have created a
5177 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5178 in in _bfd_mips_elf_create_dynamic_sections.
5179 Otherwise, we should define the symbol with a value of 0.
5180 FIXME: It should probably get into the symbol table
5182 BFD_ASSERT (! info
->shared
);
5183 BFD_ASSERT (bfd_get_section_by_name (abfd
, ".dynamic") == NULL
);
5186 else if (ELF_MIPS_IS_OPTIONAL (h
->root
.other
))
5188 /* This is an optional symbol - an Irix specific extension to the
5189 ELF spec. Ignore it for now.
5190 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5191 than simply ignoring them, but we do not handle this for now.
5192 For information see the "64-bit ELF Object File Specification"
5193 which is available from here:
5194 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5197 else if ((*info
->callbacks
->undefined_symbol
)
5198 (info
, h
->root
.root
.root
.string
, input_bfd
,
5199 input_section
, relocation
->r_offset
,
5200 (info
->unresolved_syms_in_objects
== RM_GENERATE_ERROR
)
5201 || ELF_ST_VISIBILITY (h
->root
.other
)))
5203 return bfd_reloc_undefined
;
5207 return bfd_reloc_notsupported
;
5210 target_is_16_bit_code_p
= ELF_ST_IS_MIPS16 (h
->root
.other
);
5211 /* If the output section is the PLT section,
5212 then the target is not microMIPS. */
5213 target_is_micromips_code_p
= (htab
->splt
!= sec
5214 && ELF_ST_IS_MICROMIPS (h
->root
.other
));
5217 /* If this is a reference to a 16-bit function with a stub, we need
5218 to redirect the relocation to the stub unless:
5220 (a) the relocation is for a MIPS16 JAL;
5222 (b) the relocation is for a MIPS16 PIC call, and there are no
5223 non-MIPS16 uses of the GOT slot; or
5225 (c) the section allows direct references to MIPS16 functions. */
5226 if (r_type
!= R_MIPS16_26
5227 && !info
->relocatable
5229 && h
->fn_stub
!= NULL
5230 && (r_type
!= R_MIPS16_CALL16
|| h
->need_fn_stub
))
5232 && elf_tdata (input_bfd
)->local_stubs
!= NULL
5233 && elf_tdata (input_bfd
)->local_stubs
[r_symndx
] != NULL
))
5234 && !section_allows_mips16_refs_p (input_section
))
5236 /* This is a 32- or 64-bit call to a 16-bit function. We should
5237 have already noticed that we were going to need the
5241 sec
= elf_tdata (input_bfd
)->local_stubs
[r_symndx
];
5246 BFD_ASSERT (h
->need_fn_stub
);
5249 /* If a LA25 header for the stub itself exists, point to the
5250 prepended LUI/ADDIU sequence. */
5251 sec
= h
->la25_stub
->stub_section
;
5252 value
= h
->la25_stub
->offset
;
5261 symbol
= sec
->output_section
->vma
+ sec
->output_offset
+ value
;
5262 /* The target is 16-bit, but the stub isn't. */
5263 target_is_16_bit_code_p
= FALSE
;
5265 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5266 need to redirect the call to the stub. Note that we specifically
5267 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5268 use an indirect stub instead. */
5269 else if (r_type
== R_MIPS16_26
&& !info
->relocatable
5270 && ((h
!= NULL
&& (h
->call_stub
!= NULL
|| h
->call_fp_stub
!= NULL
))
5272 && elf_tdata (input_bfd
)->local_call_stubs
!= NULL
5273 && elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
] != NULL
))
5274 && !target_is_16_bit_code_p
)
5277 sec
= elf_tdata (input_bfd
)->local_call_stubs
[r_symndx
];
5280 /* If both call_stub and call_fp_stub are defined, we can figure
5281 out which one to use by checking which one appears in the input
5283 if (h
->call_stub
!= NULL
&& h
->call_fp_stub
!= NULL
)
5288 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
5290 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd
, o
)))
5292 sec
= h
->call_fp_stub
;
5299 else if (h
->call_stub
!= NULL
)
5302 sec
= h
->call_fp_stub
;
5305 BFD_ASSERT (sec
->size
> 0);
5306 symbol
= sec
->output_section
->vma
+ sec
->output_offset
;
5308 /* If this is a direct call to a PIC function, redirect to the
5310 else if (h
!= NULL
&& h
->la25_stub
5311 && mips_elf_relocation_needs_la25_stub (input_bfd
, r_type
,
5312 target_is_16_bit_code_p
))
5313 symbol
= (h
->la25_stub
->stub_section
->output_section
->vma
5314 + h
->la25_stub
->stub_section
->output_offset
5315 + h
->la25_stub
->offset
);
5317 /* Make sure MIPS16 and microMIPS are not used together. */
5318 if ((r_type
== R_MIPS16_26
&& target_is_micromips_code_p
)
5319 || (micromips_branch_reloc_p (r_type
) && target_is_16_bit_code_p
))
5321 (*_bfd_error_handler
)
5322 (_("MIPS16 and microMIPS functions cannot call each other"));
5323 return bfd_reloc_notsupported
;
5326 /* Calls from 16-bit code to 32-bit code and vice versa require the
5327 mode change. However, we can ignore calls to undefined weak symbols,
5328 which should never be executed at runtime. This exception is important
5329 because the assembly writer may have "known" that any definition of the
5330 symbol would be 16-bit code, and that direct jumps were therefore
5332 *cross_mode_jump_p
= (!info
->relocatable
5333 && !(h
&& h
->root
.root
.type
== bfd_link_hash_undefweak
)
5334 && ((r_type
== R_MIPS16_26
&& !target_is_16_bit_code_p
)
5335 || (r_type
== R_MICROMIPS_26_S1
5336 && !target_is_micromips_code_p
)
5337 || ((r_type
== R_MIPS_26
|| r_type
== R_MIPS_JALR
)
5338 && (target_is_16_bit_code_p
5339 || target_is_micromips_code_p
))));
5341 local_p
= h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, &h
->root
);
5343 gp0
= _bfd_get_gp_value (input_bfd
);
5344 gp
= _bfd_get_gp_value (abfd
);
5346 gp
+= mips_elf_adjust_gp (abfd
, htab
->got_info
, input_bfd
);
5351 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5352 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5353 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5354 if (got_page_reloc_p (r_type
) && !local_p
)
5356 r_type
= (micromips_reloc_p (r_type
)
5357 ? R_MICROMIPS_GOT_DISP
: R_MIPS_GOT_DISP
);
5361 /* If we haven't already determined the GOT offset, and we're going
5362 to need it, get it now. */
5365 case R_MIPS16_CALL16
:
5366 case R_MIPS16_GOT16
:
5369 case R_MIPS_GOT_DISP
:
5370 case R_MIPS_GOT_HI16
:
5371 case R_MIPS_CALL_HI16
:
5372 case R_MIPS_GOT_LO16
:
5373 case R_MIPS_CALL_LO16
:
5374 case R_MICROMIPS_CALL16
:
5375 case R_MICROMIPS_GOT16
:
5376 case R_MICROMIPS_GOT_DISP
:
5377 case R_MICROMIPS_GOT_HI16
:
5378 case R_MICROMIPS_CALL_HI16
:
5379 case R_MICROMIPS_GOT_LO16
:
5380 case R_MICROMIPS_CALL_LO16
:
5382 case R_MIPS_TLS_GOTTPREL
:
5383 case R_MIPS_TLS_LDM
:
5384 case R_MIPS16_TLS_GD
:
5385 case R_MIPS16_TLS_GOTTPREL
:
5386 case R_MIPS16_TLS_LDM
:
5387 case R_MICROMIPS_TLS_GD
:
5388 case R_MICROMIPS_TLS_GOTTPREL
:
5389 case R_MICROMIPS_TLS_LDM
:
5390 /* Find the index into the GOT where this value is located. */
5391 if (tls_ldm_reloc_p (r_type
))
5393 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5394 0, 0, NULL
, r_type
);
5396 return bfd_reloc_outofrange
;
5400 /* On VxWorks, CALL relocations should refer to the .got.plt
5401 entry, which is initialized to point at the PLT stub. */
5402 if (htab
->is_vxworks
5403 && (call_hi16_reloc_p (r_type
)
5404 || call_lo16_reloc_p (r_type
)
5405 || call16_reloc_p (r_type
)))
5407 BFD_ASSERT (addend
== 0);
5408 BFD_ASSERT (h
->root
.needs_plt
);
5409 g
= mips_elf_gotplt_index (info
, &h
->root
);
5413 BFD_ASSERT (addend
== 0);
5414 g
= mips_elf_global_got_index (dynobj
, input_bfd
,
5415 &h
->root
, r_type
, info
);
5416 if (h
->tls_type
== GOT_NORMAL
5417 && !elf_hash_table (info
)->dynamic_sections_created
)
5418 /* This is a static link. We must initialize the GOT entry. */
5419 MIPS_ELF_PUT_WORD (dynobj
, symbol
, htab
->sgot
->contents
+ g
);
5422 else if (!htab
->is_vxworks
5423 && (call16_reloc_p (r_type
) || got16_reloc_p (r_type
)))
5424 /* The calculation below does not involve "g". */
5428 g
= mips_elf_local_got_index (abfd
, input_bfd
, info
,
5429 symbol
+ addend
, r_symndx
, h
, r_type
);
5431 return bfd_reloc_outofrange
;
5434 /* Convert GOT indices to actual offsets. */
5435 g
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, g
);
5439 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5440 symbols are resolved by the loader. Add them to .rela.dyn. */
5441 if (h
!= NULL
&& is_gott_symbol (info
, &h
->root
))
5443 Elf_Internal_Rela outrel
;
5447 s
= mips_elf_rel_dyn_section (info
, FALSE
);
5448 loc
= s
->contents
+ s
->reloc_count
++ * sizeof (Elf32_External_Rela
);
5450 outrel
.r_offset
= (input_section
->output_section
->vma
5451 + input_section
->output_offset
5452 + relocation
->r_offset
);
5453 outrel
.r_info
= ELF32_R_INFO (h
->root
.dynindx
, r_type
);
5454 outrel
.r_addend
= addend
;
5455 bfd_elf32_swap_reloca_out (abfd
, &outrel
, loc
);
5457 /* If we've written this relocation for a readonly section,
5458 we need to set DF_TEXTREL again, so that we do not delete the
5460 if (MIPS_ELF_READONLY_SECTION (input_section
))
5461 info
->flags
|= DF_TEXTREL
;
5464 return bfd_reloc_ok
;
5467 /* Figure out what kind of relocation is being performed. */
5471 return bfd_reloc_continue
;
5474 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 16);
5475 overflowed_p
= mips_elf_overflow_p (value
, 16);
5482 || (htab
->root
.dynamic_sections_created
5484 && h
->root
.def_dynamic
5485 && !h
->root
.def_regular
5486 && !h
->has_static_relocs
))
5487 && r_symndx
!= STN_UNDEF
5489 || h
->root
.root
.type
!= bfd_link_hash_undefweak
5490 || ELF_ST_VISIBILITY (h
->root
.other
) == STV_DEFAULT
)
5491 && (input_section
->flags
& SEC_ALLOC
) != 0)
5493 /* If we're creating a shared library, then we can't know
5494 where the symbol will end up. So, we create a relocation
5495 record in the output, and leave the job up to the dynamic
5496 linker. We must do the same for executable references to
5497 shared library symbols, unless we've decided to use copy
5498 relocs or PLTs instead. */
5500 if (!mips_elf_create_dynamic_relocation (abfd
,
5508 return bfd_reloc_undefined
;
5512 if (r_type
!= R_MIPS_REL32
)
5513 value
= symbol
+ addend
;
5517 value
&= howto
->dst_mask
;
5521 value
= symbol
+ addend
- p
;
5522 value
&= howto
->dst_mask
;
5526 /* The calculation for R_MIPS16_26 is just the same as for an
5527 R_MIPS_26. It's only the storage of the relocated field into
5528 the output file that's different. That's handled in
5529 mips_elf_perform_relocation. So, we just fall through to the
5530 R_MIPS_26 case here. */
5532 case R_MICROMIPS_26_S1
:
5536 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5537 the correct ISA mode selector and bit 1 must be 0. */
5538 if (*cross_mode_jump_p
&& (symbol
& 3) != (r_type
== R_MIPS_26
))
5539 return bfd_reloc_outofrange
;
5541 /* Shift is 2, unusually, for microMIPS JALX. */
5542 shift
= (!*cross_mode_jump_p
&& r_type
== R_MICROMIPS_26_S1
) ? 1 : 2;
5545 value
= addend
| ((p
+ 4) & (0xfc000000 << shift
));
5547 value
= _bfd_mips_elf_sign_extend (addend
, 26 + shift
);
5548 value
= (value
+ symbol
) >> shift
;
5549 if (!was_local_p
&& h
->root
.root
.type
!= bfd_link_hash_undefweak
)
5550 overflowed_p
= (value
>> 26) != ((p
+ 4) >> (26 + shift
));
5551 value
&= howto
->dst_mask
;
5555 case R_MIPS_TLS_DTPREL_HI16
:
5556 case R_MIPS16_TLS_DTPREL_HI16
:
5557 case R_MICROMIPS_TLS_DTPREL_HI16
:
5558 value
= (mips_elf_high (addend
+ symbol
- dtprel_base (info
))
5562 case R_MIPS_TLS_DTPREL_LO16
:
5563 case R_MIPS_TLS_DTPREL32
:
5564 case R_MIPS_TLS_DTPREL64
:
5565 case R_MIPS16_TLS_DTPREL_LO16
:
5566 case R_MICROMIPS_TLS_DTPREL_LO16
:
5567 value
= (symbol
+ addend
- dtprel_base (info
)) & howto
->dst_mask
;
5570 case R_MIPS_TLS_TPREL_HI16
:
5571 case R_MIPS16_TLS_TPREL_HI16
:
5572 case R_MICROMIPS_TLS_TPREL_HI16
:
5573 value
= (mips_elf_high (addend
+ symbol
- tprel_base (info
))
5577 case R_MIPS_TLS_TPREL_LO16
:
5578 case R_MIPS_TLS_TPREL32
:
5579 case R_MIPS_TLS_TPREL64
:
5580 case R_MIPS16_TLS_TPREL_LO16
:
5581 case R_MICROMIPS_TLS_TPREL_LO16
:
5582 value
= (symbol
+ addend
- tprel_base (info
)) & howto
->dst_mask
;
5587 case R_MICROMIPS_HI16
:
5590 value
= mips_elf_high (addend
+ symbol
);
5591 value
&= howto
->dst_mask
;
5595 /* For MIPS16 ABI code we generate this sequence
5596 0: li $v0,%hi(_gp_disp)
5597 4: addiupc $v1,%lo(_gp_disp)
5601 So the offsets of hi and lo relocs are the same, but the
5602 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5603 ADDIUPC clears the low two bits of the instruction address,
5604 so the base is ($t9 + 4) & ~3. */
5605 if (r_type
== R_MIPS16_HI16
)
5606 value
= mips_elf_high (addend
+ gp
- ((p
+ 4) & ~(bfd_vma
) 0x3));
5607 /* The microMIPS .cpload sequence uses the same assembly
5608 instructions as the traditional psABI version, but the
5609 incoming $t9 has the low bit set. */
5610 else if (r_type
== R_MICROMIPS_HI16
)
5611 value
= mips_elf_high (addend
+ gp
- p
- 1);
5613 value
= mips_elf_high (addend
+ gp
- p
);
5614 overflowed_p
= mips_elf_overflow_p (value
, 16);
5620 case R_MICROMIPS_LO16
:
5621 case R_MICROMIPS_HI0_LO16
:
5623 value
= (symbol
+ addend
) & howto
->dst_mask
;
5626 /* See the comment for R_MIPS16_HI16 above for the reason
5627 for this conditional. */
5628 if (r_type
== R_MIPS16_LO16
)
5629 value
= addend
+ gp
- (p
& ~(bfd_vma
) 0x3);
5630 else if (r_type
== R_MICROMIPS_LO16
5631 || r_type
== R_MICROMIPS_HI0_LO16
)
5632 value
= addend
+ gp
- p
+ 3;
5634 value
= addend
+ gp
- p
+ 4;
5635 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5636 for overflow. But, on, say, IRIX5, relocations against
5637 _gp_disp are normally generated from the .cpload
5638 pseudo-op. It generates code that normally looks like
5641 lui $gp,%hi(_gp_disp)
5642 addiu $gp,$gp,%lo(_gp_disp)
5645 Here $t9 holds the address of the function being called,
5646 as required by the MIPS ELF ABI. The R_MIPS_LO16
5647 relocation can easily overflow in this situation, but the
5648 R_MIPS_HI16 relocation will handle the overflow.
5649 Therefore, we consider this a bug in the MIPS ABI, and do
5650 not check for overflow here. */
5654 case R_MIPS_LITERAL
:
5655 case R_MICROMIPS_LITERAL
:
5656 /* Because we don't merge literal sections, we can handle this
5657 just like R_MIPS_GPREL16. In the long run, we should merge
5658 shared literals, and then we will need to additional work
5663 case R_MIPS16_GPREL
:
5664 /* The R_MIPS16_GPREL performs the same calculation as
5665 R_MIPS_GPREL16, but stores the relocated bits in a different
5666 order. We don't need to do anything special here; the
5667 differences are handled in mips_elf_perform_relocation. */
5668 case R_MIPS_GPREL16
:
5669 case R_MICROMIPS_GPREL7_S2
:
5670 case R_MICROMIPS_GPREL16
:
5671 /* Only sign-extend the addend if it was extracted from the
5672 instruction. If the addend was separate, leave it alone,
5673 otherwise we may lose significant bits. */
5674 if (howto
->partial_inplace
)
5675 addend
= _bfd_mips_elf_sign_extend (addend
, 16);
5676 value
= symbol
+ addend
- gp
;
5677 /* If the symbol was local, any earlier relocatable links will
5678 have adjusted its addend with the gp offset, so compensate
5679 for that now. Don't do it for symbols forced local in this
5680 link, though, since they won't have had the gp offset applied
5684 overflowed_p
= mips_elf_overflow_p (value
, 16);
5687 case R_MIPS16_GOT16
:
5688 case R_MIPS16_CALL16
:
5691 case R_MICROMIPS_GOT16
:
5692 case R_MICROMIPS_CALL16
:
5693 /* VxWorks does not have separate local and global semantics for
5694 R_MIPS*_GOT16; every relocation evaluates to "G". */
5695 if (!htab
->is_vxworks
&& local_p
)
5697 value
= mips_elf_got16_entry (abfd
, input_bfd
, info
,
5698 symbol
+ addend
, !was_local_p
);
5699 if (value
== MINUS_ONE
)
5700 return bfd_reloc_outofrange
;
5702 = mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5703 overflowed_p
= mips_elf_overflow_p (value
, 16);
5710 case R_MIPS_TLS_GOTTPREL
:
5711 case R_MIPS_TLS_LDM
:
5712 case R_MIPS_GOT_DISP
:
5713 case R_MIPS16_TLS_GD
:
5714 case R_MIPS16_TLS_GOTTPREL
:
5715 case R_MIPS16_TLS_LDM
:
5716 case R_MICROMIPS_TLS_GD
:
5717 case R_MICROMIPS_TLS_GOTTPREL
:
5718 case R_MICROMIPS_TLS_LDM
:
5719 case R_MICROMIPS_GOT_DISP
:
5721 overflowed_p
= mips_elf_overflow_p (value
, 16);
5724 case R_MIPS_GPREL32
:
5725 value
= (addend
+ symbol
+ gp0
- gp
);
5727 value
&= howto
->dst_mask
;
5731 case R_MIPS_GNU_REL16_S2
:
5732 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 18) - p
;
5733 overflowed_p
= mips_elf_overflow_p (value
, 18);
5734 value
>>= howto
->rightshift
;
5735 value
&= howto
->dst_mask
;
5738 case R_MICROMIPS_PC7_S1
:
5739 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 8) - p
;
5740 overflowed_p
= mips_elf_overflow_p (value
, 8);
5741 value
>>= howto
->rightshift
;
5742 value
&= howto
->dst_mask
;
5745 case R_MICROMIPS_PC10_S1
:
5746 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 11) - p
;
5747 overflowed_p
= mips_elf_overflow_p (value
, 11);
5748 value
>>= howto
->rightshift
;
5749 value
&= howto
->dst_mask
;
5752 case R_MICROMIPS_PC16_S1
:
5753 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 17) - p
;
5754 overflowed_p
= mips_elf_overflow_p (value
, 17);
5755 value
>>= howto
->rightshift
;
5756 value
&= howto
->dst_mask
;
5759 case R_MICROMIPS_PC23_S2
:
5760 value
= symbol
+ _bfd_mips_elf_sign_extend (addend
, 25) - ((p
| 3) ^ 3);
5761 overflowed_p
= mips_elf_overflow_p (value
, 25);
5762 value
>>= howto
->rightshift
;
5763 value
&= howto
->dst_mask
;
5766 case R_MIPS_GOT_HI16
:
5767 case R_MIPS_CALL_HI16
:
5768 case R_MICROMIPS_GOT_HI16
:
5769 case R_MICROMIPS_CALL_HI16
:
5770 /* We're allowed to handle these two relocations identically.
5771 The dynamic linker is allowed to handle the CALL relocations
5772 differently by creating a lazy evaluation stub. */
5774 value
= mips_elf_high (value
);
5775 value
&= howto
->dst_mask
;
5778 case R_MIPS_GOT_LO16
:
5779 case R_MIPS_CALL_LO16
:
5780 case R_MICROMIPS_GOT_LO16
:
5781 case R_MICROMIPS_CALL_LO16
:
5782 value
= g
& howto
->dst_mask
;
5785 case R_MIPS_GOT_PAGE
:
5786 case R_MICROMIPS_GOT_PAGE
:
5787 value
= mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, NULL
);
5788 if (value
== MINUS_ONE
)
5789 return bfd_reloc_outofrange
;
5790 value
= mips_elf_got_offset_from_index (info
, abfd
, input_bfd
, value
);
5791 overflowed_p
= mips_elf_overflow_p (value
, 16);
5794 case R_MIPS_GOT_OFST
:
5795 case R_MICROMIPS_GOT_OFST
:
5797 mips_elf_got_page (abfd
, input_bfd
, info
, symbol
+ addend
, &value
);
5800 overflowed_p
= mips_elf_overflow_p (value
, 16);
5804 case R_MICROMIPS_SUB
:
5805 value
= symbol
- addend
;
5806 value
&= howto
->dst_mask
;
5810 case R_MICROMIPS_HIGHER
:
5811 value
= mips_elf_higher (addend
+ symbol
);
5812 value
&= howto
->dst_mask
;
5815 case R_MIPS_HIGHEST
:
5816 case R_MICROMIPS_HIGHEST
:
5817 value
= mips_elf_highest (addend
+ symbol
);
5818 value
&= howto
->dst_mask
;
5821 case R_MIPS_SCN_DISP
:
5822 case R_MICROMIPS_SCN_DISP
:
5823 value
= symbol
+ addend
- sec
->output_offset
;
5824 value
&= howto
->dst_mask
;
5828 case R_MICROMIPS_JALR
:
5829 /* This relocation is only a hint. In some cases, we optimize
5830 it into a bal instruction. But we don't try to optimize
5831 when the symbol does not resolve locally. */
5832 if (h
!= NULL
&& !SYMBOL_CALLS_LOCAL (info
, &h
->root
))
5833 return bfd_reloc_continue
;
5834 value
= symbol
+ addend
;
5838 case R_MIPS_GNU_VTINHERIT
:
5839 case R_MIPS_GNU_VTENTRY
:
5840 /* We don't do anything with these at present. */
5841 return bfd_reloc_continue
;
5844 /* An unrecognized relocation type. */
5845 return bfd_reloc_notsupported
;
5848 /* Store the VALUE for our caller. */
5850 return overflowed_p
? bfd_reloc_overflow
: bfd_reloc_ok
;
5853 /* Obtain the field relocated by RELOCATION. */
5856 mips_elf_obtain_contents (reloc_howto_type
*howto
,
5857 const Elf_Internal_Rela
*relocation
,
5858 bfd
*input_bfd
, bfd_byte
*contents
)
5861 bfd_byte
*location
= contents
+ relocation
->r_offset
;
5863 /* Obtain the bytes. */
5864 x
= bfd_get ((8 * bfd_get_reloc_size (howto
)), input_bfd
, location
);
5869 /* It has been determined that the result of the RELOCATION is the
5870 VALUE. Use HOWTO to place VALUE into the output file at the
5871 appropriate position. The SECTION is the section to which the
5873 CROSS_MODE_JUMP_P is true if the relocation field
5874 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5876 Returns FALSE if anything goes wrong. */
5879 mips_elf_perform_relocation (struct bfd_link_info
*info
,
5880 reloc_howto_type
*howto
,
5881 const Elf_Internal_Rela
*relocation
,
5882 bfd_vma value
, bfd
*input_bfd
,
5883 asection
*input_section
, bfd_byte
*contents
,
5884 bfd_boolean cross_mode_jump_p
)
5888 int r_type
= ELF_R_TYPE (input_bfd
, relocation
->r_info
);
5890 /* Figure out where the relocation is occurring. */
5891 location
= contents
+ relocation
->r_offset
;
5893 _bfd_mips_elf_reloc_unshuffle (input_bfd
, r_type
, FALSE
, location
);
5895 /* Obtain the current value. */
5896 x
= mips_elf_obtain_contents (howto
, relocation
, input_bfd
, contents
);
5898 /* Clear the field we are setting. */
5899 x
&= ~howto
->dst_mask
;
5901 /* Set the field. */
5902 x
|= (value
& howto
->dst_mask
);
5904 /* If required, turn JAL into JALX. */
5905 if (cross_mode_jump_p
&& jal_reloc_p (r_type
))
5908 bfd_vma opcode
= x
>> 26;
5909 bfd_vma jalx_opcode
;
5911 /* Check to see if the opcode is already JAL or JALX. */
5912 if (r_type
== R_MIPS16_26
)
5914 ok
= ((opcode
== 0x6) || (opcode
== 0x7));
5917 else if (r_type
== R_MICROMIPS_26_S1
)
5919 ok
= ((opcode
== 0x3d) || (opcode
== 0x3c));
5924 ok
= ((opcode
== 0x3) || (opcode
== 0x1d));
5928 /* If the opcode is not JAL or JALX, there's a problem. */
5931 (*_bfd_error_handler
)
5932 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5935 (unsigned long) relocation
->r_offset
);
5936 bfd_set_error (bfd_error_bad_value
);
5940 /* Make this the JALX opcode. */
5941 x
= (x
& ~(0x3f << 26)) | (jalx_opcode
<< 26);
5944 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5946 if (!info
->relocatable
5947 && !cross_mode_jump_p
5948 && ((JAL_TO_BAL_P (input_bfd
)
5949 && r_type
== R_MIPS_26
5950 && (x
>> 26) == 0x3) /* jal addr */
5951 || (JALR_TO_BAL_P (input_bfd
)
5952 && r_type
== R_MIPS_JALR
5953 && x
== 0x0320f809) /* jalr t9 */
5954 || (JR_TO_B_P (input_bfd
)
5955 && r_type
== R_MIPS_JALR
5956 && x
== 0x03200008))) /* jr t9 */
5962 addr
= (input_section
->output_section
->vma
5963 + input_section
->output_offset
5964 + relocation
->r_offset
5966 if (r_type
== R_MIPS_26
)
5967 dest
= (value
<< 2) | ((addr
>> 28) << 28);
5971 if (off
<= 0x1ffff && off
>= -0x20000)
5973 if (x
== 0x03200008) /* jr t9 */
5974 x
= 0x10000000 | (((bfd_vma
) off
>> 2) & 0xffff); /* b addr */
5976 x
= 0x04110000 | (((bfd_vma
) off
>> 2) & 0xffff); /* bal addr */
5980 /* Put the value into the output. */
5981 bfd_put (8 * bfd_get_reloc_size (howto
), input_bfd
, x
, location
);
5983 _bfd_mips_elf_reloc_shuffle (input_bfd
, r_type
, !info
->relocatable
,
5989 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5990 is the original relocation, which is now being transformed into a
5991 dynamic relocation. The ADDENDP is adjusted if necessary; the
5992 caller should store the result in place of the original addend. */
5995 mips_elf_create_dynamic_relocation (bfd
*output_bfd
,
5996 struct bfd_link_info
*info
,
5997 const Elf_Internal_Rela
*rel
,
5998 struct mips_elf_link_hash_entry
*h
,
5999 asection
*sec
, bfd_vma symbol
,
6000 bfd_vma
*addendp
, asection
*input_section
)
6002 Elf_Internal_Rela outrel
[3];
6007 bfd_boolean defined_p
;
6008 struct mips_elf_link_hash_table
*htab
;
6010 htab
= mips_elf_hash_table (info
);
6011 BFD_ASSERT (htab
!= NULL
);
6013 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
6014 dynobj
= elf_hash_table (info
)->dynobj
;
6015 sreloc
= mips_elf_rel_dyn_section (info
, FALSE
);
6016 BFD_ASSERT (sreloc
!= NULL
);
6017 BFD_ASSERT (sreloc
->contents
!= NULL
);
6018 BFD_ASSERT (sreloc
->reloc_count
* MIPS_ELF_REL_SIZE (output_bfd
)
6021 outrel
[0].r_offset
=
6022 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[0].r_offset
);
6023 if (ABI_64_P (output_bfd
))
6025 outrel
[1].r_offset
=
6026 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[1].r_offset
);
6027 outrel
[2].r_offset
=
6028 _bfd_elf_section_offset (output_bfd
, info
, input_section
, rel
[2].r_offset
);
6031 if (outrel
[0].r_offset
== MINUS_ONE
)
6032 /* The relocation field has been deleted. */
6035 if (outrel
[0].r_offset
== MINUS_TWO
)
6037 /* The relocation field has been converted into a relative value of
6038 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6039 the field to be fully relocated, so add in the symbol's value. */
6044 /* We must now calculate the dynamic symbol table index to use
6045 in the relocation. */
6046 if (h
!= NULL
&& ! SYMBOL_REFERENCES_LOCAL (info
, &h
->root
))
6048 BFD_ASSERT (htab
->is_vxworks
|| h
->global_got_area
!= GGA_NONE
);
6049 indx
= h
->root
.dynindx
;
6050 if (SGI_COMPAT (output_bfd
))
6051 defined_p
= h
->root
.def_regular
;
6053 /* ??? glibc's ld.so just adds the final GOT entry to the
6054 relocation field. It therefore treats relocs against
6055 defined symbols in the same way as relocs against
6056 undefined symbols. */
6061 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
6063 else if (sec
== NULL
|| sec
->owner
== NULL
)
6065 bfd_set_error (bfd_error_bad_value
);
6070 indx
= elf_section_data (sec
->output_section
)->dynindx
;
6073 asection
*osec
= htab
->root
.text_index_section
;
6074 indx
= elf_section_data (osec
)->dynindx
;
6080 /* Instead of generating a relocation using the section
6081 symbol, we may as well make it a fully relative
6082 relocation. We want to avoid generating relocations to
6083 local symbols because we used to generate them
6084 incorrectly, without adding the original symbol value,
6085 which is mandated by the ABI for section symbols. In
6086 order to give dynamic loaders and applications time to
6087 phase out the incorrect use, we refrain from emitting
6088 section-relative relocations. It's not like they're
6089 useful, after all. This should be a bit more efficient
6091 /* ??? Although this behavior is compatible with glibc's ld.so,
6092 the ABI says that relocations against STN_UNDEF should have
6093 a symbol value of 0. Irix rld honors this, so relocations
6094 against STN_UNDEF have no effect. */
6095 if (!SGI_COMPAT (output_bfd
))
6100 /* If the relocation was previously an absolute relocation and
6101 this symbol will not be referred to by the relocation, we must
6102 adjust it by the value we give it in the dynamic symbol table.
6103 Otherwise leave the job up to the dynamic linker. */
6104 if (defined_p
&& r_type
!= R_MIPS_REL32
)
6107 if (htab
->is_vxworks
)
6108 /* VxWorks uses non-relative relocations for this. */
6109 outrel
[0].r_info
= ELF32_R_INFO (indx
, R_MIPS_32
);
6111 /* The relocation is always an REL32 relocation because we don't
6112 know where the shared library will wind up at load-time. */
6113 outrel
[0].r_info
= ELF_R_INFO (output_bfd
, (unsigned long) indx
,
6116 /* For strict adherence to the ABI specification, we should
6117 generate a R_MIPS_64 relocation record by itself before the
6118 _REL32/_64 record as well, such that the addend is read in as
6119 a 64-bit value (REL32 is a 32-bit relocation, after all).
6120 However, since none of the existing ELF64 MIPS dynamic
6121 loaders seems to care, we don't waste space with these
6122 artificial relocations. If this turns out to not be true,
6123 mips_elf_allocate_dynamic_relocation() should be tweaked so
6124 as to make room for a pair of dynamic relocations per
6125 invocation if ABI_64_P, and here we should generate an
6126 additional relocation record with R_MIPS_64 by itself for a
6127 NULL symbol before this relocation record. */
6128 outrel
[1].r_info
= ELF_R_INFO (output_bfd
, 0,
6129 ABI_64_P (output_bfd
)
6132 outrel
[2].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_NONE
);
6134 /* Adjust the output offset of the relocation to reference the
6135 correct location in the output file. */
6136 outrel
[0].r_offset
+= (input_section
->output_section
->vma
6137 + input_section
->output_offset
);
6138 outrel
[1].r_offset
+= (input_section
->output_section
->vma
6139 + input_section
->output_offset
);
6140 outrel
[2].r_offset
+= (input_section
->output_section
->vma
6141 + input_section
->output_offset
);
6143 /* Put the relocation back out. We have to use the special
6144 relocation outputter in the 64-bit case since the 64-bit
6145 relocation format is non-standard. */
6146 if (ABI_64_P (output_bfd
))
6148 (*get_elf_backend_data (output_bfd
)->s
->swap_reloc_out
)
6149 (output_bfd
, &outrel
[0],
6151 + sreloc
->reloc_count
* sizeof (Elf64_Mips_External_Rel
)));
6153 else if (htab
->is_vxworks
)
6155 /* VxWorks uses RELA rather than REL dynamic relocations. */
6156 outrel
[0].r_addend
= *addendp
;
6157 bfd_elf32_swap_reloca_out
6158 (output_bfd
, &outrel
[0],
6160 + sreloc
->reloc_count
* sizeof (Elf32_External_Rela
)));
6163 bfd_elf32_swap_reloc_out
6164 (output_bfd
, &outrel
[0],
6165 (sreloc
->contents
+ sreloc
->reloc_count
* sizeof (Elf32_External_Rel
)));
6167 /* We've now added another relocation. */
6168 ++sreloc
->reloc_count
;
6170 /* Make sure the output section is writable. The dynamic linker
6171 will be writing to it. */
6172 elf_section_data (input_section
->output_section
)->this_hdr
.sh_flags
6175 /* On IRIX5, make an entry of compact relocation info. */
6176 if (IRIX_COMPAT (output_bfd
) == ict_irix5
)
6178 asection
*scpt
= bfd_get_section_by_name (dynobj
, ".compact_rel");
6183 Elf32_crinfo cptrel
;
6185 mips_elf_set_cr_format (cptrel
, CRF_MIPS_LONG
);
6186 cptrel
.vaddr
= (rel
->r_offset
6187 + input_section
->output_section
->vma
6188 + input_section
->output_offset
);
6189 if (r_type
== R_MIPS_REL32
)
6190 mips_elf_set_cr_type (cptrel
, CRT_MIPS_REL32
);
6192 mips_elf_set_cr_type (cptrel
, CRT_MIPS_WORD
);
6193 mips_elf_set_cr_dist2to (cptrel
, 0);
6194 cptrel
.konst
= *addendp
;
6196 cr
= (scpt
->contents
6197 + sizeof (Elf32_External_compact_rel
));
6198 mips_elf_set_cr_relvaddr (cptrel
, 0);
6199 bfd_elf32_swap_crinfo_out (output_bfd
, &cptrel
,
6200 ((Elf32_External_crinfo
*) cr
6201 + scpt
->reloc_count
));
6202 ++scpt
->reloc_count
;
6206 /* If we've written this relocation for a readonly section,
6207 we need to set DF_TEXTREL again, so that we do not delete the
6209 if (MIPS_ELF_READONLY_SECTION (input_section
))
6210 info
->flags
|= DF_TEXTREL
;
6215 /* Return the MACH for a MIPS e_flags value. */
6218 _bfd_elf_mips_mach (flagword flags
)
6220 switch (flags
& EF_MIPS_MACH
)
6222 case E_MIPS_MACH_3900
:
6223 return bfd_mach_mips3900
;
6225 case E_MIPS_MACH_4010
:
6226 return bfd_mach_mips4010
;
6228 case E_MIPS_MACH_4100
:
6229 return bfd_mach_mips4100
;
6231 case E_MIPS_MACH_4111
:
6232 return bfd_mach_mips4111
;
6234 case E_MIPS_MACH_4120
:
6235 return bfd_mach_mips4120
;
6237 case E_MIPS_MACH_4650
:
6238 return bfd_mach_mips4650
;
6240 case E_MIPS_MACH_5400
:
6241 return bfd_mach_mips5400
;
6243 case E_MIPS_MACH_5500
:
6244 return bfd_mach_mips5500
;
6246 case E_MIPS_MACH_9000
:
6247 return bfd_mach_mips9000
;
6249 case E_MIPS_MACH_SB1
:
6250 return bfd_mach_mips_sb1
;
6252 case E_MIPS_MACH_LS2E
:
6253 return bfd_mach_mips_loongson_2e
;
6255 case E_MIPS_MACH_LS2F
:
6256 return bfd_mach_mips_loongson_2f
;
6258 case E_MIPS_MACH_LS3A
:
6259 return bfd_mach_mips_loongson_3a
;
6261 case E_MIPS_MACH_OCTEON2
:
6262 return bfd_mach_mips_octeon2
;
6264 case E_MIPS_MACH_OCTEON
:
6265 return bfd_mach_mips_octeon
;
6267 case E_MIPS_MACH_XLR
:
6268 return bfd_mach_mips_xlr
;
6271 switch (flags
& EF_MIPS_ARCH
)
6275 return bfd_mach_mips3000
;
6278 return bfd_mach_mips6000
;
6281 return bfd_mach_mips4000
;
6284 return bfd_mach_mips8000
;
6287 return bfd_mach_mips5
;
6289 case E_MIPS_ARCH_32
:
6290 return bfd_mach_mipsisa32
;
6292 case E_MIPS_ARCH_64
:
6293 return bfd_mach_mipsisa64
;
6295 case E_MIPS_ARCH_32R2
:
6296 return bfd_mach_mipsisa32r2
;
6298 case E_MIPS_ARCH_64R2
:
6299 return bfd_mach_mipsisa64r2
;
6306 /* Return printable name for ABI. */
6308 static INLINE
char *
6309 elf_mips_abi_name (bfd
*abfd
)
6313 flags
= elf_elfheader (abfd
)->e_flags
;
6314 switch (flags
& EF_MIPS_ABI
)
6317 if (ABI_N32_P (abfd
))
6319 else if (ABI_64_P (abfd
))
6323 case E_MIPS_ABI_O32
:
6325 case E_MIPS_ABI_O64
:
6327 case E_MIPS_ABI_EABI32
:
6329 case E_MIPS_ABI_EABI64
:
6332 return "unknown abi";
6336 /* MIPS ELF uses two common sections. One is the usual one, and the
6337 other is for small objects. All the small objects are kept
6338 together, and then referenced via the gp pointer, which yields
6339 faster assembler code. This is what we use for the small common
6340 section. This approach is copied from ecoff.c. */
6341 static asection mips_elf_scom_section
;
6342 static asymbol mips_elf_scom_symbol
;
6343 static asymbol
*mips_elf_scom_symbol_ptr
;
6345 /* MIPS ELF also uses an acommon section, which represents an
6346 allocated common symbol which may be overridden by a
6347 definition in a shared library. */
6348 static asection mips_elf_acom_section
;
6349 static asymbol mips_elf_acom_symbol
;
6350 static asymbol
*mips_elf_acom_symbol_ptr
;
6352 /* This is used for both the 32-bit and the 64-bit ABI. */
6355 _bfd_mips_elf_symbol_processing (bfd
*abfd
, asymbol
*asym
)
6357 elf_symbol_type
*elfsym
;
6359 /* Handle the special MIPS section numbers that a symbol may use. */
6360 elfsym
= (elf_symbol_type
*) asym
;
6361 switch (elfsym
->internal_elf_sym
.st_shndx
)
6363 case SHN_MIPS_ACOMMON
:
6364 /* This section is used in a dynamically linked executable file.
6365 It is an allocated common section. The dynamic linker can
6366 either resolve these symbols to something in a shared
6367 library, or it can just leave them here. For our purposes,
6368 we can consider these symbols to be in a new section. */
6369 if (mips_elf_acom_section
.name
== NULL
)
6371 /* Initialize the acommon section. */
6372 mips_elf_acom_section
.name
= ".acommon";
6373 mips_elf_acom_section
.flags
= SEC_ALLOC
;
6374 mips_elf_acom_section
.output_section
= &mips_elf_acom_section
;
6375 mips_elf_acom_section
.symbol
= &mips_elf_acom_symbol
;
6376 mips_elf_acom_section
.symbol_ptr_ptr
= &mips_elf_acom_symbol_ptr
;
6377 mips_elf_acom_symbol
.name
= ".acommon";
6378 mips_elf_acom_symbol
.flags
= BSF_SECTION_SYM
;
6379 mips_elf_acom_symbol
.section
= &mips_elf_acom_section
;
6380 mips_elf_acom_symbol_ptr
= &mips_elf_acom_symbol
;
6382 asym
->section
= &mips_elf_acom_section
;
6386 /* Common symbols less than the GP size are automatically
6387 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6388 if (asym
->value
> elf_gp_size (abfd
)
6389 || ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_TLS
6390 || IRIX_COMPAT (abfd
) == ict_irix6
)
6393 case SHN_MIPS_SCOMMON
:
6394 if (mips_elf_scom_section
.name
== NULL
)
6396 /* Initialize the small common section. */
6397 mips_elf_scom_section
.name
= ".scommon";
6398 mips_elf_scom_section
.flags
= SEC_IS_COMMON
;
6399 mips_elf_scom_section
.output_section
= &mips_elf_scom_section
;
6400 mips_elf_scom_section
.symbol
= &mips_elf_scom_symbol
;
6401 mips_elf_scom_section
.symbol_ptr_ptr
= &mips_elf_scom_symbol_ptr
;
6402 mips_elf_scom_symbol
.name
= ".scommon";
6403 mips_elf_scom_symbol
.flags
= BSF_SECTION_SYM
;
6404 mips_elf_scom_symbol
.section
= &mips_elf_scom_section
;
6405 mips_elf_scom_symbol_ptr
= &mips_elf_scom_symbol
;
6407 asym
->section
= &mips_elf_scom_section
;
6408 asym
->value
= elfsym
->internal_elf_sym
.st_size
;
6411 case SHN_MIPS_SUNDEFINED
:
6412 asym
->section
= bfd_und_section_ptr
;
6417 asection
*section
= bfd_get_section_by_name (abfd
, ".text");
6419 if (section
!= NULL
)
6421 asym
->section
= section
;
6422 /* MIPS_TEXT is a bit special, the address is not an offset
6423 to the base of the .text section. So substract the section
6424 base address to make it an offset. */
6425 asym
->value
-= section
->vma
;
6432 asection
*section
= bfd_get_section_by_name (abfd
, ".data");
6434 if (section
!= NULL
)
6436 asym
->section
= section
;
6437 /* MIPS_DATA is a bit special, the address is not an offset
6438 to the base of the .data section. So substract the section
6439 base address to make it an offset. */
6440 asym
->value
-= section
->vma
;
6446 /* If this is an odd-valued function symbol, assume it's a MIPS16
6447 or microMIPS one. */
6448 if (ELF_ST_TYPE (elfsym
->internal_elf_sym
.st_info
) == STT_FUNC
6449 && (asym
->value
& 1) != 0)
6452 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
6453 elfsym
->internal_elf_sym
.st_other
6454 = ELF_ST_SET_MICROMIPS (elfsym
->internal_elf_sym
.st_other
);
6456 elfsym
->internal_elf_sym
.st_other
6457 = ELF_ST_SET_MIPS16 (elfsym
->internal_elf_sym
.st_other
);
6461 /* Implement elf_backend_eh_frame_address_size. This differs from
6462 the default in the way it handles EABI64.
6464 EABI64 was originally specified as an LP64 ABI, and that is what
6465 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6466 historically accepted the combination of -mabi=eabi and -mlong32,
6467 and this ILP32 variation has become semi-official over time.
6468 Both forms use elf32 and have pointer-sized FDE addresses.
6470 If an EABI object was generated by GCC 4.0 or above, it will have
6471 an empty .gcc_compiled_longXX section, where XX is the size of longs
6472 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6473 have no special marking to distinguish them from LP64 objects.
6475 We don't want users of the official LP64 ABI to be punished for the
6476 existence of the ILP32 variant, but at the same time, we don't want
6477 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6478 We therefore take the following approach:
6480 - If ABFD contains a .gcc_compiled_longXX section, use it to
6481 determine the pointer size.
6483 - Otherwise check the type of the first relocation. Assume that
6484 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6488 The second check is enough to detect LP64 objects generated by pre-4.0
6489 compilers because, in the kind of output generated by those compilers,
6490 the first relocation will be associated with either a CIE personality
6491 routine or an FDE start address. Furthermore, the compilers never
6492 used a special (non-pointer) encoding for this ABI.
6494 Checking the relocation type should also be safe because there is no
6495 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6499 _bfd_mips_elf_eh_frame_address_size (bfd
*abfd
, asection
*sec
)
6501 if (elf_elfheader (abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
6503 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
6505 bfd_boolean long32_p
, long64_p
;
6507 long32_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long32") != 0;
6508 long64_p
= bfd_get_section_by_name (abfd
, ".gcc_compiled_long64") != 0;
6509 if (long32_p
&& long64_p
)
6516 if (sec
->reloc_count
> 0
6517 && elf_section_data (sec
)->relocs
!= NULL
6518 && (ELF32_R_TYPE (elf_section_data (sec
)->relocs
[0].r_info
)
6527 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6528 relocations against two unnamed section symbols to resolve to the
6529 same address. For example, if we have code like:
6531 lw $4,%got_disp(.data)($gp)
6532 lw $25,%got_disp(.text)($gp)
6535 then the linker will resolve both relocations to .data and the program
6536 will jump there rather than to .text.
6538 We can work around this problem by giving names to local section symbols.
6539 This is also what the MIPSpro tools do. */
6542 _bfd_mips_elf_name_local_section_symbols (bfd
*abfd
)
6544 return SGI_COMPAT (abfd
);
6547 /* Work over a section just before writing it out. This routine is
6548 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6549 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6553 _bfd_mips_elf_section_processing (bfd
*abfd
, Elf_Internal_Shdr
*hdr
)
6555 if (hdr
->sh_type
== SHT_MIPS_REGINFO
6556 && hdr
->sh_size
> 0)
6560 BFD_ASSERT (hdr
->sh_size
== sizeof (Elf32_External_RegInfo
));
6561 BFD_ASSERT (hdr
->contents
== NULL
);
6564 hdr
->sh_offset
+ sizeof (Elf32_External_RegInfo
) - 4,
6567 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6568 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6572 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
6573 && hdr
->bfd_section
!= NULL
6574 && mips_elf_section_data (hdr
->bfd_section
) != NULL
6575 && mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
!= NULL
)
6577 bfd_byte
*contents
, *l
, *lend
;
6579 /* We stored the section contents in the tdata field in the
6580 set_section_contents routine. We save the section contents
6581 so that we don't have to read them again.
6582 At this point we know that elf_gp is set, so we can look
6583 through the section contents to see if there is an
6584 ODK_REGINFO structure. */
6586 contents
= mips_elf_section_data (hdr
->bfd_section
)->u
.tdata
;
6588 lend
= contents
+ hdr
->sh_size
;
6589 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6591 Elf_Internal_Options intopt
;
6593 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6595 if (intopt
.size
< sizeof (Elf_External_Options
))
6597 (*_bfd_error_handler
)
6598 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6599 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6602 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6609 + sizeof (Elf_External_Options
)
6610 + (sizeof (Elf64_External_RegInfo
) - 8)),
6613 H_PUT_64 (abfd
, elf_gp (abfd
), buf
);
6614 if (bfd_bwrite (buf
, 8, abfd
) != 8)
6617 else if (intopt
.kind
== ODK_REGINFO
)
6624 + sizeof (Elf_External_Options
)
6625 + (sizeof (Elf32_External_RegInfo
) - 4)),
6628 H_PUT_32 (abfd
, elf_gp (abfd
), buf
);
6629 if (bfd_bwrite (buf
, 4, abfd
) != 4)
6636 if (hdr
->bfd_section
!= NULL
)
6638 const char *name
= bfd_get_section_name (abfd
, hdr
->bfd_section
);
6640 /* .sbss is not handled specially here because the GNU/Linux
6641 prelinker can convert .sbss from NOBITS to PROGBITS and
6642 changing it back to NOBITS breaks the binary. The entry in
6643 _bfd_mips_elf_special_sections will ensure the correct flags
6644 are set on .sbss if BFD creates it without reading it from an
6645 input file, and without special handling here the flags set
6646 on it in an input file will be followed. */
6647 if (strcmp (name
, ".sdata") == 0
6648 || strcmp (name
, ".lit8") == 0
6649 || strcmp (name
, ".lit4") == 0)
6651 hdr
->sh_flags
|= SHF_ALLOC
| SHF_WRITE
| SHF_MIPS_GPREL
;
6652 hdr
->sh_type
= SHT_PROGBITS
;
6654 else if (strcmp (name
, ".srdata") == 0)
6656 hdr
->sh_flags
|= SHF_ALLOC
| SHF_MIPS_GPREL
;
6657 hdr
->sh_type
= SHT_PROGBITS
;
6659 else if (strcmp (name
, ".compact_rel") == 0)
6662 hdr
->sh_type
= SHT_PROGBITS
;
6664 else if (strcmp (name
, ".rtproc") == 0)
6666 if (hdr
->sh_addralign
!= 0 && hdr
->sh_entsize
== 0)
6668 unsigned int adjust
;
6670 adjust
= hdr
->sh_size
% hdr
->sh_addralign
;
6672 hdr
->sh_size
+= hdr
->sh_addralign
- adjust
;
6680 /* Handle a MIPS specific section when reading an object file. This
6681 is called when elfcode.h finds a section with an unknown type.
6682 This routine supports both the 32-bit and 64-bit ELF ABI.
6684 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6688 _bfd_mips_elf_section_from_shdr (bfd
*abfd
,
6689 Elf_Internal_Shdr
*hdr
,
6695 /* There ought to be a place to keep ELF backend specific flags, but
6696 at the moment there isn't one. We just keep track of the
6697 sections by their name, instead. Fortunately, the ABI gives
6698 suggested names for all the MIPS specific sections, so we will
6699 probably get away with this. */
6700 switch (hdr
->sh_type
)
6702 case SHT_MIPS_LIBLIST
:
6703 if (strcmp (name
, ".liblist") != 0)
6707 if (strcmp (name
, ".msym") != 0)
6710 case SHT_MIPS_CONFLICT
:
6711 if (strcmp (name
, ".conflict") != 0)
6714 case SHT_MIPS_GPTAB
:
6715 if (! CONST_STRNEQ (name
, ".gptab."))
6718 case SHT_MIPS_UCODE
:
6719 if (strcmp (name
, ".ucode") != 0)
6722 case SHT_MIPS_DEBUG
:
6723 if (strcmp (name
, ".mdebug") != 0)
6725 flags
= SEC_DEBUGGING
;
6727 case SHT_MIPS_REGINFO
:
6728 if (strcmp (name
, ".reginfo") != 0
6729 || hdr
->sh_size
!= sizeof (Elf32_External_RegInfo
))
6731 flags
= (SEC_LINK_ONCE
| SEC_LINK_DUPLICATES_SAME_SIZE
);
6733 case SHT_MIPS_IFACE
:
6734 if (strcmp (name
, ".MIPS.interfaces") != 0)
6737 case SHT_MIPS_CONTENT
:
6738 if (! CONST_STRNEQ (name
, ".MIPS.content"))
6741 case SHT_MIPS_OPTIONS
:
6742 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6745 case SHT_MIPS_DWARF
:
6746 if (! CONST_STRNEQ (name
, ".debug_")
6747 && ! CONST_STRNEQ (name
, ".zdebug_"))
6750 case SHT_MIPS_SYMBOL_LIB
:
6751 if (strcmp (name
, ".MIPS.symlib") != 0)
6754 case SHT_MIPS_EVENTS
:
6755 if (! CONST_STRNEQ (name
, ".MIPS.events")
6756 && ! CONST_STRNEQ (name
, ".MIPS.post_rel"))
6763 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
6768 if (! bfd_set_section_flags (abfd
, hdr
->bfd_section
,
6769 (bfd_get_section_flags (abfd
,
6775 /* FIXME: We should record sh_info for a .gptab section. */
6777 /* For a .reginfo section, set the gp value in the tdata information
6778 from the contents of this section. We need the gp value while
6779 processing relocs, so we just get it now. The .reginfo section
6780 is not used in the 64-bit MIPS ELF ABI. */
6781 if (hdr
->sh_type
== SHT_MIPS_REGINFO
)
6783 Elf32_External_RegInfo ext
;
6786 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
,
6787 &ext
, 0, sizeof ext
))
6789 bfd_mips_elf32_swap_reginfo_in (abfd
, &ext
, &s
);
6790 elf_gp (abfd
) = s
.ri_gp_value
;
6793 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6794 set the gp value based on what we find. We may see both
6795 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6796 they should agree. */
6797 if (hdr
->sh_type
== SHT_MIPS_OPTIONS
)
6799 bfd_byte
*contents
, *l
, *lend
;
6801 contents
= bfd_malloc (hdr
->sh_size
);
6802 if (contents
== NULL
)
6804 if (! bfd_get_section_contents (abfd
, hdr
->bfd_section
, contents
,
6811 lend
= contents
+ hdr
->sh_size
;
6812 while (l
+ sizeof (Elf_External_Options
) <= lend
)
6814 Elf_Internal_Options intopt
;
6816 bfd_mips_elf_swap_options_in (abfd
, (Elf_External_Options
*) l
,
6818 if (intopt
.size
< sizeof (Elf_External_Options
))
6820 (*_bfd_error_handler
)
6821 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6822 abfd
, MIPS_ELF_OPTIONS_SECTION_NAME (abfd
), intopt
.size
);
6825 if (ABI_64_P (abfd
) && intopt
.kind
== ODK_REGINFO
)
6827 Elf64_Internal_RegInfo intreg
;
6829 bfd_mips_elf64_swap_reginfo_in
6831 ((Elf64_External_RegInfo
*)
6832 (l
+ sizeof (Elf_External_Options
))),
6834 elf_gp (abfd
) = intreg
.ri_gp_value
;
6836 else if (intopt
.kind
== ODK_REGINFO
)
6838 Elf32_RegInfo intreg
;
6840 bfd_mips_elf32_swap_reginfo_in
6842 ((Elf32_External_RegInfo
*)
6843 (l
+ sizeof (Elf_External_Options
))),
6845 elf_gp (abfd
) = intreg
.ri_gp_value
;
6855 /* Set the correct type for a MIPS ELF section. We do this by the
6856 section name, which is a hack, but ought to work. This routine is
6857 used by both the 32-bit and the 64-bit ABI. */
6860 _bfd_mips_elf_fake_sections (bfd
*abfd
, Elf_Internal_Shdr
*hdr
, asection
*sec
)
6862 const char *name
= bfd_get_section_name (abfd
, sec
);
6864 if (strcmp (name
, ".liblist") == 0)
6866 hdr
->sh_type
= SHT_MIPS_LIBLIST
;
6867 hdr
->sh_info
= sec
->size
/ sizeof (Elf32_Lib
);
6868 /* The sh_link field is set in final_write_processing. */
6870 else if (strcmp (name
, ".conflict") == 0)
6871 hdr
->sh_type
= SHT_MIPS_CONFLICT
;
6872 else if (CONST_STRNEQ (name
, ".gptab."))
6874 hdr
->sh_type
= SHT_MIPS_GPTAB
;
6875 hdr
->sh_entsize
= sizeof (Elf32_External_gptab
);
6876 /* The sh_info field is set in final_write_processing. */
6878 else if (strcmp (name
, ".ucode") == 0)
6879 hdr
->sh_type
= SHT_MIPS_UCODE
;
6880 else if (strcmp (name
, ".mdebug") == 0)
6882 hdr
->sh_type
= SHT_MIPS_DEBUG
;
6883 /* In a shared object on IRIX 5.3, the .mdebug section has an
6884 entsize of 0. FIXME: Does this matter? */
6885 if (SGI_COMPAT (abfd
) && (abfd
->flags
& DYNAMIC
) != 0)
6886 hdr
->sh_entsize
= 0;
6888 hdr
->sh_entsize
= 1;
6890 else if (strcmp (name
, ".reginfo") == 0)
6892 hdr
->sh_type
= SHT_MIPS_REGINFO
;
6893 /* In a shared object on IRIX 5.3, the .reginfo section has an
6894 entsize of 0x18. FIXME: Does this matter? */
6895 if (SGI_COMPAT (abfd
))
6897 if ((abfd
->flags
& DYNAMIC
) != 0)
6898 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6900 hdr
->sh_entsize
= 1;
6903 hdr
->sh_entsize
= sizeof (Elf32_External_RegInfo
);
6905 else if (SGI_COMPAT (abfd
)
6906 && (strcmp (name
, ".hash") == 0
6907 || strcmp (name
, ".dynamic") == 0
6908 || strcmp (name
, ".dynstr") == 0))
6910 if (SGI_COMPAT (abfd
))
6911 hdr
->sh_entsize
= 0;
6913 /* This isn't how the IRIX6 linker behaves. */
6914 hdr
->sh_info
= SIZEOF_MIPS_DYNSYM_SECNAMES
;
6917 else if (strcmp (name
, ".got") == 0
6918 || strcmp (name
, ".srdata") == 0
6919 || strcmp (name
, ".sdata") == 0
6920 || strcmp (name
, ".sbss") == 0
6921 || strcmp (name
, ".lit4") == 0
6922 || strcmp (name
, ".lit8") == 0)
6923 hdr
->sh_flags
|= SHF_MIPS_GPREL
;
6924 else if (strcmp (name
, ".MIPS.interfaces") == 0)
6926 hdr
->sh_type
= SHT_MIPS_IFACE
;
6927 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6929 else if (CONST_STRNEQ (name
, ".MIPS.content"))
6931 hdr
->sh_type
= SHT_MIPS_CONTENT
;
6932 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6933 /* The sh_info field is set in final_write_processing. */
6935 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name
))
6937 hdr
->sh_type
= SHT_MIPS_OPTIONS
;
6938 hdr
->sh_entsize
= 1;
6939 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6941 else if (CONST_STRNEQ (name
, ".debug_")
6942 || CONST_STRNEQ (name
, ".zdebug_"))
6944 hdr
->sh_type
= SHT_MIPS_DWARF
;
6946 /* Irix facilities such as libexc expect a single .debug_frame
6947 per executable, the system ones have NOSTRIP set and the linker
6948 doesn't merge sections with different flags so ... */
6949 if (SGI_COMPAT (abfd
) && CONST_STRNEQ (name
, ".debug_frame"))
6950 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6952 else if (strcmp (name
, ".MIPS.symlib") == 0)
6954 hdr
->sh_type
= SHT_MIPS_SYMBOL_LIB
;
6955 /* The sh_link and sh_info fields are set in
6956 final_write_processing. */
6958 else if (CONST_STRNEQ (name
, ".MIPS.events")
6959 || CONST_STRNEQ (name
, ".MIPS.post_rel"))
6961 hdr
->sh_type
= SHT_MIPS_EVENTS
;
6962 hdr
->sh_flags
|= SHF_MIPS_NOSTRIP
;
6963 /* The sh_link field is set in final_write_processing. */
6965 else if (strcmp (name
, ".msym") == 0)
6967 hdr
->sh_type
= SHT_MIPS_MSYM
;
6968 hdr
->sh_flags
|= SHF_ALLOC
;
6969 hdr
->sh_entsize
= 8;
6972 /* The generic elf_fake_sections will set up REL_HDR using the default
6973 kind of relocations. We used to set up a second header for the
6974 non-default kind of relocations here, but only NewABI would use
6975 these, and the IRIX ld doesn't like resulting empty RELA sections.
6976 Thus we create those header only on demand now. */
6981 /* Given a BFD section, try to locate the corresponding ELF section
6982 index. This is used by both the 32-bit and the 64-bit ABI.
6983 Actually, it's not clear to me that the 64-bit ABI supports these,
6984 but for non-PIC objects we will certainly want support for at least
6985 the .scommon section. */
6988 _bfd_mips_elf_section_from_bfd_section (bfd
*abfd ATTRIBUTE_UNUSED
,
6989 asection
*sec
, int *retval
)
6991 if (strcmp (bfd_get_section_name (abfd
, sec
), ".scommon") == 0)
6993 *retval
= SHN_MIPS_SCOMMON
;
6996 if (strcmp (bfd_get_section_name (abfd
, sec
), ".acommon") == 0)
6998 *retval
= SHN_MIPS_ACOMMON
;
7004 /* Hook called by the linker routine which adds symbols from an object
7005 file. We must handle the special MIPS section numbers here. */
7008 _bfd_mips_elf_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
7009 Elf_Internal_Sym
*sym
, const char **namep
,
7010 flagword
*flagsp ATTRIBUTE_UNUSED
,
7011 asection
**secp
, bfd_vma
*valp
)
7013 if (SGI_COMPAT (abfd
)
7014 && (abfd
->flags
& DYNAMIC
) != 0
7015 && strcmp (*namep
, "_rld_new_interface") == 0)
7017 /* Skip IRIX5 rld entry name. */
7022 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7023 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7024 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7025 a magic symbol resolved by the linker, we ignore this bogus definition
7026 of _gp_disp. New ABI objects do not suffer from this problem so this
7027 is not done for them. */
7029 && (sym
->st_shndx
== SHN_ABS
)
7030 && (strcmp (*namep
, "_gp_disp") == 0))
7036 switch (sym
->st_shndx
)
7039 /* Common symbols less than the GP size are automatically
7040 treated as SHN_MIPS_SCOMMON symbols. */
7041 if (sym
->st_size
> elf_gp_size (abfd
)
7042 || ELF_ST_TYPE (sym
->st_info
) == STT_TLS
7043 || IRIX_COMPAT (abfd
) == ict_irix6
)
7046 case SHN_MIPS_SCOMMON
:
7047 *secp
= bfd_make_section_old_way (abfd
, ".scommon");
7048 (*secp
)->flags
|= SEC_IS_COMMON
;
7049 *valp
= sym
->st_size
;
7053 /* This section is used in a shared object. */
7054 if (elf_tdata (abfd
)->elf_text_section
== NULL
)
7056 asymbol
*elf_text_symbol
;
7057 asection
*elf_text_section
;
7058 bfd_size_type amt
= sizeof (asection
);
7060 elf_text_section
= bfd_zalloc (abfd
, amt
);
7061 if (elf_text_section
== NULL
)
7064 amt
= sizeof (asymbol
);
7065 elf_text_symbol
= bfd_zalloc (abfd
, amt
);
7066 if (elf_text_symbol
== NULL
)
7069 /* Initialize the section. */
7071 elf_tdata (abfd
)->elf_text_section
= elf_text_section
;
7072 elf_tdata (abfd
)->elf_text_symbol
= elf_text_symbol
;
7074 elf_text_section
->symbol
= elf_text_symbol
;
7075 elf_text_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_text_symbol
;
7077 elf_text_section
->name
= ".text";
7078 elf_text_section
->flags
= SEC_NO_FLAGS
;
7079 elf_text_section
->output_section
= NULL
;
7080 elf_text_section
->owner
= abfd
;
7081 elf_text_symbol
->name
= ".text";
7082 elf_text_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7083 elf_text_symbol
->section
= elf_text_section
;
7085 /* This code used to do *secp = bfd_und_section_ptr if
7086 info->shared. I don't know why, and that doesn't make sense,
7087 so I took it out. */
7088 *secp
= elf_tdata (abfd
)->elf_text_section
;
7091 case SHN_MIPS_ACOMMON
:
7092 /* Fall through. XXX Can we treat this as allocated data? */
7094 /* This section is used in a shared object. */
7095 if (elf_tdata (abfd
)->elf_data_section
== NULL
)
7097 asymbol
*elf_data_symbol
;
7098 asection
*elf_data_section
;
7099 bfd_size_type amt
= sizeof (asection
);
7101 elf_data_section
= bfd_zalloc (abfd
, amt
);
7102 if (elf_data_section
== NULL
)
7105 amt
= sizeof (asymbol
);
7106 elf_data_symbol
= bfd_zalloc (abfd
, amt
);
7107 if (elf_data_symbol
== NULL
)
7110 /* Initialize the section. */
7112 elf_tdata (abfd
)->elf_data_section
= elf_data_section
;
7113 elf_tdata (abfd
)->elf_data_symbol
= elf_data_symbol
;
7115 elf_data_section
->symbol
= elf_data_symbol
;
7116 elf_data_section
->symbol_ptr_ptr
= &elf_tdata (abfd
)->elf_data_symbol
;
7118 elf_data_section
->name
= ".data";
7119 elf_data_section
->flags
= SEC_NO_FLAGS
;
7120 elf_data_section
->output_section
= NULL
;
7121 elf_data_section
->owner
= abfd
;
7122 elf_data_symbol
->name
= ".data";
7123 elf_data_symbol
->flags
= BSF_SECTION_SYM
| BSF_DYNAMIC
;
7124 elf_data_symbol
->section
= elf_data_section
;
7126 /* This code used to do *secp = bfd_und_section_ptr if
7127 info->shared. I don't know why, and that doesn't make sense,
7128 so I took it out. */
7129 *secp
= elf_tdata (abfd
)->elf_data_section
;
7132 case SHN_MIPS_SUNDEFINED
:
7133 *secp
= bfd_und_section_ptr
;
7137 if (SGI_COMPAT (abfd
)
7139 && info
->output_bfd
->xvec
== abfd
->xvec
7140 && strcmp (*namep
, "__rld_obj_head") == 0)
7142 struct elf_link_hash_entry
*h
;
7143 struct bfd_link_hash_entry
*bh
;
7145 /* Mark __rld_obj_head as dynamic. */
7147 if (! (_bfd_generic_link_add_one_symbol
7148 (info
, abfd
, *namep
, BSF_GLOBAL
, *secp
, *valp
, NULL
, FALSE
,
7149 get_elf_backend_data (abfd
)->collect
, &bh
)))
7152 h
= (struct elf_link_hash_entry
*) bh
;
7155 h
->type
= STT_OBJECT
;
7157 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7160 mips_elf_hash_table (info
)->use_rld_obj_head
= TRUE
;
7161 mips_elf_hash_table (info
)->rld_symbol
= h
;
7164 /* If this is a mips16 text symbol, add 1 to the value to make it
7165 odd. This will cause something like .word SYM to come up with
7166 the right value when it is loaded into the PC. */
7167 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7173 /* This hook function is called before the linker writes out a global
7174 symbol. We mark symbols as small common if appropriate. This is
7175 also where we undo the increment of the value for a mips16 symbol. */
7178 _bfd_mips_elf_link_output_symbol_hook
7179 (struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
7180 const char *name ATTRIBUTE_UNUSED
, Elf_Internal_Sym
*sym
,
7181 asection
*input_sec
, struct elf_link_hash_entry
*h ATTRIBUTE_UNUSED
)
7183 /* If we see a common symbol, which implies a relocatable link, then
7184 if a symbol was small common in an input file, mark it as small
7185 common in the output file. */
7186 if (sym
->st_shndx
== SHN_COMMON
7187 && strcmp (input_sec
->name
, ".scommon") == 0)
7188 sym
->st_shndx
= SHN_MIPS_SCOMMON
;
7190 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
7191 sym
->st_value
&= ~1;
7196 /* Functions for the dynamic linker. */
7198 /* Create dynamic sections when linking against a dynamic object. */
7201 _bfd_mips_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
7203 struct elf_link_hash_entry
*h
;
7204 struct bfd_link_hash_entry
*bh
;
7206 register asection
*s
;
7207 const char * const *namep
;
7208 struct mips_elf_link_hash_table
*htab
;
7210 htab
= mips_elf_hash_table (info
);
7211 BFD_ASSERT (htab
!= NULL
);
7213 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
7214 | SEC_LINKER_CREATED
| SEC_READONLY
);
7216 /* The psABI requires a read-only .dynamic section, but the VxWorks
7218 if (!htab
->is_vxworks
)
7220 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7223 if (! bfd_set_section_flags (abfd
, s
, flags
))
7228 /* We need to create .got section. */
7229 if (!mips_elf_create_got_section (abfd
, info
))
7232 if (! mips_elf_rel_dyn_section (info
, TRUE
))
7235 /* Create .stub section. */
7236 s
= bfd_make_section_with_flags (abfd
,
7237 MIPS_ELF_STUB_SECTION_NAME (abfd
),
7240 || ! bfd_set_section_alignment (abfd
, s
,
7241 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7245 if ((IRIX_COMPAT (abfd
) == ict_irix5
|| IRIX_COMPAT (abfd
) == ict_none
)
7247 && bfd_get_section_by_name (abfd
, ".rld_map") == NULL
)
7249 s
= bfd_make_section_with_flags (abfd
, ".rld_map",
7250 flags
&~ (flagword
) SEC_READONLY
);
7252 || ! bfd_set_section_alignment (abfd
, s
,
7253 MIPS_ELF_LOG_FILE_ALIGN (abfd
)))
7257 /* On IRIX5, we adjust add some additional symbols and change the
7258 alignments of several sections. There is no ABI documentation
7259 indicating that this is necessary on IRIX6, nor any evidence that
7260 the linker takes such action. */
7261 if (IRIX_COMPAT (abfd
) == ict_irix5
)
7263 for (namep
= mips_elf_dynsym_rtproc_names
; *namep
!= NULL
; namep
++)
7266 if (! (_bfd_generic_link_add_one_symbol
7267 (info
, abfd
, *namep
, BSF_GLOBAL
, bfd_und_section_ptr
, 0,
7268 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
7271 h
= (struct elf_link_hash_entry
*) bh
;
7274 h
->type
= STT_SECTION
;
7276 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7280 /* We need to create a .compact_rel section. */
7281 if (SGI_COMPAT (abfd
))
7283 if (!mips_elf_create_compact_rel_section (abfd
, info
))
7287 /* Change alignments of some sections. */
7288 s
= bfd_get_section_by_name (abfd
, ".hash");
7290 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7291 s
= bfd_get_section_by_name (abfd
, ".dynsym");
7293 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7294 s
= bfd_get_section_by_name (abfd
, ".dynstr");
7296 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7297 s
= bfd_get_section_by_name (abfd
, ".reginfo");
7299 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7300 s
= bfd_get_section_by_name (abfd
, ".dynamic");
7302 bfd_set_section_alignment (abfd
, s
, MIPS_ELF_LOG_FILE_ALIGN (abfd
));
7309 name
= SGI_COMPAT (abfd
) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7311 if (!(_bfd_generic_link_add_one_symbol
7312 (info
, abfd
, name
, BSF_GLOBAL
, bfd_abs_section_ptr
, 0,
7313 NULL
, FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
7316 h
= (struct elf_link_hash_entry
*) bh
;
7319 h
->type
= STT_SECTION
;
7321 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7324 if (! mips_elf_hash_table (info
)->use_rld_obj_head
)
7326 /* __rld_map is a four byte word located in the .data section
7327 and is filled in by the rtld to contain a pointer to
7328 the _r_debug structure. Its symbol value will be set in
7329 _bfd_mips_elf_finish_dynamic_symbol. */
7330 s
= bfd_get_section_by_name (abfd
, ".rld_map");
7331 BFD_ASSERT (s
!= NULL
);
7333 name
= SGI_COMPAT (abfd
) ? "__rld_map" : "__RLD_MAP";
7335 if (!(_bfd_generic_link_add_one_symbol
7336 (info
, abfd
, name
, BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
7337 get_elf_backend_data (abfd
)->collect
, &bh
)))
7340 h
= (struct elf_link_hash_entry
*) bh
;
7343 h
->type
= STT_OBJECT
;
7345 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
7347 mips_elf_hash_table (info
)->rld_symbol
= h
;
7351 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7352 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7353 if (!_bfd_elf_create_dynamic_sections (abfd
, info
))
7356 /* Cache the sections created above. */
7357 htab
->splt
= bfd_get_section_by_name (abfd
, ".plt");
7358 htab
->sdynbss
= bfd_get_section_by_name (abfd
, ".dynbss");
7359 if (htab
->is_vxworks
)
7361 htab
->srelbss
= bfd_get_section_by_name (abfd
, ".rela.bss");
7362 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rela.plt");
7365 htab
->srelplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
7367 || (htab
->is_vxworks
&& !htab
->srelbss
&& !info
->shared
)
7372 if (htab
->is_vxworks
)
7374 /* Do the usual VxWorks handling. */
7375 if (!elf_vxworks_create_dynamic_sections (abfd
, info
, &htab
->srelplt2
))
7378 /* Work out the PLT sizes. */
7381 htab
->plt_header_size
7382 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry
);
7383 htab
->plt_entry_size
7384 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry
);
7388 htab
->plt_header_size
7389 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry
);
7390 htab
->plt_entry_size
7391 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry
);
7394 else if (!info
->shared
)
7396 /* All variants of the plt0 entry are the same size. */
7397 htab
->plt_header_size
= 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
);
7398 htab
->plt_entry_size
= 4 * ARRAY_SIZE (mips_exec_plt_entry
);
7404 /* Return true if relocation REL against section SEC is a REL rather than
7405 RELA relocation. RELOCS is the first relocation in the section and
7406 ABFD is the bfd that contains SEC. */
7409 mips_elf_rel_relocation_p (bfd
*abfd
, asection
*sec
,
7410 const Elf_Internal_Rela
*relocs
,
7411 const Elf_Internal_Rela
*rel
)
7413 Elf_Internal_Shdr
*rel_hdr
;
7414 const struct elf_backend_data
*bed
;
7416 /* To determine which flavor of relocation this is, we depend on the
7417 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7418 rel_hdr
= elf_section_data (sec
)->rel
.hdr
;
7419 if (rel_hdr
== NULL
)
7421 bed
= get_elf_backend_data (abfd
);
7422 return ((size_t) (rel
- relocs
)
7423 < NUM_SHDR_ENTRIES (rel_hdr
) * bed
->s
->int_rels_per_ext_rel
);
7426 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7427 HOWTO is the relocation's howto and CONTENTS points to the contents
7428 of the section that REL is against. */
7431 mips_elf_read_rel_addend (bfd
*abfd
, const Elf_Internal_Rela
*rel
,
7432 reloc_howto_type
*howto
, bfd_byte
*contents
)
7435 unsigned int r_type
;
7438 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7439 location
= contents
+ rel
->r_offset
;
7441 /* Get the addend, which is stored in the input file. */
7442 _bfd_mips_elf_reloc_unshuffle (abfd
, r_type
, FALSE
, location
);
7443 addend
= mips_elf_obtain_contents (howto
, rel
, abfd
, contents
);
7444 _bfd_mips_elf_reloc_shuffle (abfd
, r_type
, FALSE
, location
);
7446 return addend
& howto
->src_mask
;
7449 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7450 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7451 and update *ADDEND with the final addend. Return true on success
7452 or false if the LO16 could not be found. RELEND is the exclusive
7453 upper bound on the relocations for REL's section. */
7456 mips_elf_add_lo16_rel_addend (bfd
*abfd
,
7457 const Elf_Internal_Rela
*rel
,
7458 const Elf_Internal_Rela
*relend
,
7459 bfd_byte
*contents
, bfd_vma
*addend
)
7461 unsigned int r_type
, lo16_type
;
7462 const Elf_Internal_Rela
*lo16_relocation
;
7463 reloc_howto_type
*lo16_howto
;
7466 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7467 if (mips16_reloc_p (r_type
))
7468 lo16_type
= R_MIPS16_LO16
;
7469 else if (micromips_reloc_p (r_type
))
7470 lo16_type
= R_MICROMIPS_LO16
;
7472 lo16_type
= R_MIPS_LO16
;
7474 /* The combined value is the sum of the HI16 addend, left-shifted by
7475 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7476 code does a `lui' of the HI16 value, and then an `addiu' of the
7479 Scan ahead to find a matching LO16 relocation.
7481 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7482 be immediately following. However, for the IRIX6 ABI, the next
7483 relocation may be a composed relocation consisting of several
7484 relocations for the same address. In that case, the R_MIPS_LO16
7485 relocation may occur as one of these. We permit a similar
7486 extension in general, as that is useful for GCC.
7488 In some cases GCC dead code elimination removes the LO16 but keeps
7489 the corresponding HI16. This is strictly speaking a violation of
7490 the ABI but not immediately harmful. */
7491 lo16_relocation
= mips_elf_next_relocation (abfd
, lo16_type
, rel
, relend
);
7492 if (lo16_relocation
== NULL
)
7495 /* Obtain the addend kept there. */
7496 lo16_howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, lo16_type
, FALSE
);
7497 l
= mips_elf_read_rel_addend (abfd
, lo16_relocation
, lo16_howto
, contents
);
7499 l
<<= lo16_howto
->rightshift
;
7500 l
= _bfd_mips_elf_sign_extend (l
, 16);
7507 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7508 store the contents in *CONTENTS on success. Assume that *CONTENTS
7509 already holds the contents if it is nonull on entry. */
7512 mips_elf_get_section_contents (bfd
*abfd
, asection
*sec
, bfd_byte
**contents
)
7517 /* Get cached copy if it exists. */
7518 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
7520 *contents
= elf_section_data (sec
)->this_hdr
.contents
;
7524 return bfd_malloc_and_get_section (abfd
, sec
, contents
);
7527 /* Look through the relocs for a section during the first phase, and
7528 allocate space in the global offset table. */
7531 _bfd_mips_elf_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
7532 asection
*sec
, const Elf_Internal_Rela
*relocs
)
7536 Elf_Internal_Shdr
*symtab_hdr
;
7537 struct elf_link_hash_entry
**sym_hashes
;
7539 const Elf_Internal_Rela
*rel
;
7540 const Elf_Internal_Rela
*rel_end
;
7542 const struct elf_backend_data
*bed
;
7543 struct mips_elf_link_hash_table
*htab
;
7546 reloc_howto_type
*howto
;
7548 if (info
->relocatable
)
7551 htab
= mips_elf_hash_table (info
);
7552 BFD_ASSERT (htab
!= NULL
);
7554 dynobj
= elf_hash_table (info
)->dynobj
;
7555 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7556 sym_hashes
= elf_sym_hashes (abfd
);
7557 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
7559 bed
= get_elf_backend_data (abfd
);
7560 rel_end
= relocs
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7562 /* Check for the mips16 stub sections. */
7564 name
= bfd_get_section_name (abfd
, sec
);
7565 if (FN_STUB_P (name
))
7567 unsigned long r_symndx
;
7569 /* Look at the relocation information to figure out which symbol
7572 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7575 (*_bfd_error_handler
)
7576 (_("%B: Warning: cannot determine the target function for"
7577 " stub section `%s'"),
7579 bfd_set_error (bfd_error_bad_value
);
7583 if (r_symndx
< extsymoff
7584 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7588 /* This stub is for a local symbol. This stub will only be
7589 needed if there is some relocation in this BFD, other
7590 than a 16 bit function call, which refers to this symbol. */
7591 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7593 Elf_Internal_Rela
*sec_relocs
;
7594 const Elf_Internal_Rela
*r
, *rend
;
7596 /* We can ignore stub sections when looking for relocs. */
7597 if ((o
->flags
& SEC_RELOC
) == 0
7598 || o
->reloc_count
== 0
7599 || section_allows_mips16_refs_p (o
))
7603 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7605 if (sec_relocs
== NULL
)
7608 rend
= sec_relocs
+ o
->reloc_count
;
7609 for (r
= sec_relocs
; r
< rend
; r
++)
7610 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7611 && !mips16_call_reloc_p (ELF_R_TYPE (abfd
, r
->r_info
)))
7614 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7623 /* There is no non-call reloc for this stub, so we do
7624 not need it. Since this function is called before
7625 the linker maps input sections to output sections, we
7626 can easily discard it by setting the SEC_EXCLUDE
7628 sec
->flags
|= SEC_EXCLUDE
;
7632 /* Record this stub in an array of local symbol stubs for
7634 if (elf_tdata (abfd
)->local_stubs
== NULL
)
7636 unsigned long symcount
;
7640 if (elf_bad_symtab (abfd
))
7641 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7643 symcount
= symtab_hdr
->sh_info
;
7644 amt
= symcount
* sizeof (asection
*);
7645 n
= bfd_zalloc (abfd
, amt
);
7648 elf_tdata (abfd
)->local_stubs
= n
;
7651 sec
->flags
|= SEC_KEEP
;
7652 elf_tdata (abfd
)->local_stubs
[r_symndx
] = sec
;
7654 /* We don't need to set mips16_stubs_seen in this case.
7655 That flag is used to see whether we need to look through
7656 the global symbol table for stubs. We don't need to set
7657 it here, because we just have a local stub. */
7661 struct mips_elf_link_hash_entry
*h
;
7663 h
= ((struct mips_elf_link_hash_entry
*)
7664 sym_hashes
[r_symndx
- extsymoff
]);
7666 while (h
->root
.root
.type
== bfd_link_hash_indirect
7667 || h
->root
.root
.type
== bfd_link_hash_warning
)
7668 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
7670 /* H is the symbol this stub is for. */
7672 /* If we already have an appropriate stub for this function, we
7673 don't need another one, so we can discard this one. Since
7674 this function is called before the linker maps input sections
7675 to output sections, we can easily discard it by setting the
7676 SEC_EXCLUDE flag. */
7677 if (h
->fn_stub
!= NULL
)
7679 sec
->flags
|= SEC_EXCLUDE
;
7683 sec
->flags
|= SEC_KEEP
;
7685 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7688 else if (CALL_STUB_P (name
) || CALL_FP_STUB_P (name
))
7690 unsigned long r_symndx
;
7691 struct mips_elf_link_hash_entry
*h
;
7694 /* Look at the relocation information to figure out which symbol
7697 r_symndx
= mips16_stub_symndx (sec
, relocs
, rel_end
);
7700 (*_bfd_error_handler
)
7701 (_("%B: Warning: cannot determine the target function for"
7702 " stub section `%s'"),
7704 bfd_set_error (bfd_error_bad_value
);
7708 if (r_symndx
< extsymoff
7709 || sym_hashes
[r_symndx
- extsymoff
] == NULL
)
7713 /* This stub is for a local symbol. This stub will only be
7714 needed if there is some relocation (R_MIPS16_26) in this BFD
7715 that refers to this symbol. */
7716 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7718 Elf_Internal_Rela
*sec_relocs
;
7719 const Elf_Internal_Rela
*r
, *rend
;
7721 /* We can ignore stub sections when looking for relocs. */
7722 if ((o
->flags
& SEC_RELOC
) == 0
7723 || o
->reloc_count
== 0
7724 || section_allows_mips16_refs_p (o
))
7728 = _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
7730 if (sec_relocs
== NULL
)
7733 rend
= sec_relocs
+ o
->reloc_count
;
7734 for (r
= sec_relocs
; r
< rend
; r
++)
7735 if (ELF_R_SYM (abfd
, r
->r_info
) == r_symndx
7736 && ELF_R_TYPE (abfd
, r
->r_info
) == R_MIPS16_26
)
7739 if (elf_section_data (o
)->relocs
!= sec_relocs
)
7748 /* There is no non-call reloc for this stub, so we do
7749 not need it. Since this function is called before
7750 the linker maps input sections to output sections, we
7751 can easily discard it by setting the SEC_EXCLUDE
7753 sec
->flags
|= SEC_EXCLUDE
;
7757 /* Record this stub in an array of local symbol call_stubs for
7759 if (elf_tdata (abfd
)->local_call_stubs
== NULL
)
7761 unsigned long symcount
;
7765 if (elf_bad_symtab (abfd
))
7766 symcount
= NUM_SHDR_ENTRIES (symtab_hdr
);
7768 symcount
= symtab_hdr
->sh_info
;
7769 amt
= symcount
* sizeof (asection
*);
7770 n
= bfd_zalloc (abfd
, amt
);
7773 elf_tdata (abfd
)->local_call_stubs
= n
;
7776 sec
->flags
|= SEC_KEEP
;
7777 elf_tdata (abfd
)->local_call_stubs
[r_symndx
] = sec
;
7779 /* We don't need to set mips16_stubs_seen in this case.
7780 That flag is used to see whether we need to look through
7781 the global symbol table for stubs. We don't need to set
7782 it here, because we just have a local stub. */
7786 h
= ((struct mips_elf_link_hash_entry
*)
7787 sym_hashes
[r_symndx
- extsymoff
]);
7789 /* H is the symbol this stub is for. */
7791 if (CALL_FP_STUB_P (name
))
7792 loc
= &h
->call_fp_stub
;
7794 loc
= &h
->call_stub
;
7796 /* If we already have an appropriate stub for this function, we
7797 don't need another one, so we can discard this one. Since
7798 this function is called before the linker maps input sections
7799 to output sections, we can easily discard it by setting the
7800 SEC_EXCLUDE flag. */
7803 sec
->flags
|= SEC_EXCLUDE
;
7807 sec
->flags
|= SEC_KEEP
;
7809 mips_elf_hash_table (info
)->mips16_stubs_seen
= TRUE
;
7815 for (rel
= relocs
; rel
< rel_end
; ++rel
)
7817 unsigned long r_symndx
;
7818 unsigned int r_type
;
7819 struct elf_link_hash_entry
*h
;
7820 bfd_boolean can_make_dynamic_p
;
7822 r_symndx
= ELF_R_SYM (abfd
, rel
->r_info
);
7823 r_type
= ELF_R_TYPE (abfd
, rel
->r_info
);
7825 if (r_symndx
< extsymoff
)
7827 else if (r_symndx
>= extsymoff
+ NUM_SHDR_ENTRIES (symtab_hdr
))
7829 (*_bfd_error_handler
)
7830 (_("%B: Malformed reloc detected for section %s"),
7832 bfd_set_error (bfd_error_bad_value
);
7837 h
= sym_hashes
[r_symndx
- extsymoff
];
7839 && (h
->root
.type
== bfd_link_hash_indirect
7840 || h
->root
.type
== bfd_link_hash_warning
))
7841 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
7844 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7845 relocation into a dynamic one. */
7846 can_make_dynamic_p
= FALSE
;
7851 case R_MIPS_CALL_HI16
:
7852 case R_MIPS_CALL_LO16
:
7853 case R_MIPS_GOT_HI16
:
7854 case R_MIPS_GOT_LO16
:
7855 case R_MIPS_GOT_PAGE
:
7856 case R_MIPS_GOT_OFST
:
7857 case R_MIPS_GOT_DISP
:
7858 case R_MIPS_TLS_GOTTPREL
:
7860 case R_MIPS_TLS_LDM
:
7861 case R_MIPS16_GOT16
:
7862 case R_MIPS16_CALL16
:
7863 case R_MIPS16_TLS_GOTTPREL
:
7864 case R_MIPS16_TLS_GD
:
7865 case R_MIPS16_TLS_LDM
:
7866 case R_MICROMIPS_GOT16
:
7867 case R_MICROMIPS_CALL16
:
7868 case R_MICROMIPS_CALL_HI16
:
7869 case R_MICROMIPS_CALL_LO16
:
7870 case R_MICROMIPS_GOT_HI16
:
7871 case R_MICROMIPS_GOT_LO16
:
7872 case R_MICROMIPS_GOT_PAGE
:
7873 case R_MICROMIPS_GOT_OFST
:
7874 case R_MICROMIPS_GOT_DISP
:
7875 case R_MICROMIPS_TLS_GOTTPREL
:
7876 case R_MICROMIPS_TLS_GD
:
7877 case R_MICROMIPS_TLS_LDM
:
7879 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7880 if (!mips_elf_create_got_section (dynobj
, info
))
7882 if (htab
->is_vxworks
&& !info
->shared
)
7884 (*_bfd_error_handler
)
7885 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7886 abfd
, (unsigned long) rel
->r_offset
);
7887 bfd_set_error (bfd_error_bad_value
);
7892 /* This is just a hint; it can safely be ignored. Don't set
7893 has_static_relocs for the corresponding symbol. */
7895 case R_MICROMIPS_JALR
:
7901 /* In VxWorks executables, references to external symbols
7902 must be handled using copy relocs or PLT entries; it is not
7903 possible to convert this relocation into a dynamic one.
7905 For executables that use PLTs and copy-relocs, we have a
7906 choice between converting the relocation into a dynamic
7907 one or using copy relocations or PLT entries. It is
7908 usually better to do the former, unless the relocation is
7909 against a read-only section. */
7912 && !htab
->is_vxworks
7913 && strcmp (h
->root
.root
.string
, "__gnu_local_gp") != 0
7914 && !(!info
->nocopyreloc
7915 && !PIC_OBJECT_P (abfd
)
7916 && MIPS_ELF_READONLY_SECTION (sec
))))
7917 && (sec
->flags
& SEC_ALLOC
) != 0)
7919 can_make_dynamic_p
= TRUE
;
7921 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
7924 /* For sections that are not SEC_ALLOC a copy reloc would be
7925 output if possible (implying questionable semantics for
7926 read-only data objects) or otherwise the final link would
7927 fail as ld.so will not process them and could not therefore
7928 handle any outstanding dynamic relocations.
7930 For such sections that are also SEC_DEBUGGING, we can avoid
7931 these problems by simply ignoring any relocs as these
7932 sections have a predefined use and we know it is safe to do
7935 This is needed in cases such as a global symbol definition
7936 in a shared library causing a common symbol from an object
7937 file to be converted to an undefined reference. If that
7938 happens, then all the relocations against this symbol from
7939 SEC_DEBUGGING sections in the object file will resolve to
7941 if ((sec
->flags
& SEC_DEBUGGING
) != 0)
7946 /* Most static relocations require pointer equality, except
7949 h
->pointer_equality_needed
= TRUE
;
7955 case R_MICROMIPS_26_S1
:
7956 case R_MICROMIPS_PC7_S1
:
7957 case R_MICROMIPS_PC10_S1
:
7958 case R_MICROMIPS_PC16_S1
:
7959 case R_MICROMIPS_PC23_S2
:
7961 ((struct mips_elf_link_hash_entry
*) h
)->has_static_relocs
= TRUE
;
7967 /* Relocations against the special VxWorks __GOTT_BASE__ and
7968 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7969 room for them in .rela.dyn. */
7970 if (is_gott_symbol (info
, h
))
7974 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
7978 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
7979 if (MIPS_ELF_READONLY_SECTION (sec
))
7980 /* We tell the dynamic linker that there are
7981 relocations against the text segment. */
7982 info
->flags
|= DF_TEXTREL
;
7985 else if (call_lo16_reloc_p (r_type
)
7986 || got_lo16_reloc_p (r_type
)
7987 || got_disp_reloc_p (r_type
)
7988 || (got16_reloc_p (r_type
) && htab
->is_vxworks
))
7990 /* We may need a local GOT entry for this relocation. We
7991 don't count R_MIPS_GOT_PAGE because we can estimate the
7992 maximum number of pages needed by looking at the size of
7993 the segment. Similar comments apply to R_MIPS*_GOT16 and
7994 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7995 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7996 R_MIPS_CALL_HI16 because these are always followed by an
7997 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7998 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
7999 rel
->r_addend
, info
, 0))
8004 && mips_elf_relocation_needs_la25_stub (abfd
, r_type
,
8005 ELF_ST_IS_MIPS16 (h
->other
)))
8006 ((struct mips_elf_link_hash_entry
*) h
)->has_nonpic_branches
= TRUE
;
8011 case R_MIPS16_CALL16
:
8012 case R_MICROMIPS_CALL16
:
8015 (*_bfd_error_handler
)
8016 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8017 abfd
, (unsigned long) rel
->r_offset
);
8018 bfd_set_error (bfd_error_bad_value
);
8023 case R_MIPS_CALL_HI16
:
8024 case R_MIPS_CALL_LO16
:
8025 case R_MICROMIPS_CALL_HI16
:
8026 case R_MICROMIPS_CALL_LO16
:
8029 /* Make sure there is room in the regular GOT to hold the
8030 function's address. We may eliminate it in favour of
8031 a .got.plt entry later; see mips_elf_count_got_symbols. */
8032 if (!mips_elf_record_global_got_symbol (h
, abfd
, info
, TRUE
, 0))
8035 /* We need a stub, not a plt entry for the undefined
8036 function. But we record it as if it needs plt. See
8037 _bfd_elf_adjust_dynamic_symbol. */
8043 case R_MIPS_GOT_PAGE
:
8044 case R_MICROMIPS_GOT_PAGE
:
8045 /* If this is a global, overridable symbol, GOT_PAGE will
8046 decay to GOT_DISP, so we'll need a GOT entry for it. */
8049 struct mips_elf_link_hash_entry
*hmips
=
8050 (struct mips_elf_link_hash_entry
*) h
;
8052 /* This symbol is definitely not overridable. */
8053 if (hmips
->root
.def_regular
8054 && ! (info
->shared
&& ! info
->symbolic
8055 && ! hmips
->root
.forced_local
))
8060 case R_MIPS16_GOT16
:
8062 case R_MIPS_GOT_HI16
:
8063 case R_MIPS_GOT_LO16
:
8064 case R_MICROMIPS_GOT16
:
8065 case R_MICROMIPS_GOT_HI16
:
8066 case R_MICROMIPS_GOT_LO16
:
8067 if (!h
|| got_page_reloc_p (r_type
))
8069 /* This relocation needs (or may need, if h != NULL) a
8070 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8071 know for sure until we know whether the symbol is
8073 if (mips_elf_rel_relocation_p (abfd
, sec
, relocs
, rel
))
8075 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8077 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
8078 addend
= mips_elf_read_rel_addend (abfd
, rel
,
8080 if (got16_reloc_p (r_type
))
8081 mips_elf_add_lo16_rel_addend (abfd
, rel
, rel_end
,
8084 addend
<<= howto
->rightshift
;
8087 addend
= rel
->r_addend
;
8088 if (!mips_elf_record_got_page_entry (info
, abfd
, r_symndx
,
8094 case R_MIPS_GOT_DISP
:
8095 case R_MICROMIPS_GOT_DISP
:
8096 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
,
8101 case R_MIPS_TLS_GOTTPREL
:
8102 case R_MIPS16_TLS_GOTTPREL
:
8103 case R_MICROMIPS_TLS_GOTTPREL
:
8105 info
->flags
|= DF_STATIC_TLS
;
8108 case R_MIPS_TLS_LDM
:
8109 case R_MIPS16_TLS_LDM
:
8110 case R_MICROMIPS_TLS_LDM
:
8111 if (tls_ldm_reloc_p (r_type
))
8113 r_symndx
= STN_UNDEF
;
8119 case R_MIPS16_TLS_GD
:
8120 case R_MICROMIPS_TLS_GD
:
8121 /* This symbol requires a global offset table entry, or two
8122 for TLS GD relocations. */
8126 flag
= (tls_gd_reloc_p (r_type
)
8128 : tls_ldm_reloc_p (r_type
) ? GOT_TLS_LDM
: GOT_TLS_IE
);
8131 struct mips_elf_link_hash_entry
*hmips
=
8132 (struct mips_elf_link_hash_entry
*) h
;
8133 hmips
->tls_type
|= flag
;
8135 if (h
&& !mips_elf_record_global_got_symbol (h
, abfd
, info
,
8141 BFD_ASSERT (flag
== GOT_TLS_LDM
|| r_symndx
!= STN_UNDEF
);
8143 if (!mips_elf_record_local_got_symbol (abfd
, r_symndx
,
8154 /* In VxWorks executables, references to external symbols
8155 are handled using copy relocs or PLT stubs, so there's
8156 no need to add a .rela.dyn entry for this relocation. */
8157 if (can_make_dynamic_p
)
8161 sreloc
= mips_elf_rel_dyn_section (info
, TRUE
);
8165 if (info
->shared
&& h
== NULL
)
8167 /* When creating a shared object, we must copy these
8168 reloc types into the output file as R_MIPS_REL32
8169 relocs. Make room for this reloc in .rel(a).dyn. */
8170 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8171 if (MIPS_ELF_READONLY_SECTION (sec
))
8172 /* We tell the dynamic linker that there are
8173 relocations against the text segment. */
8174 info
->flags
|= DF_TEXTREL
;
8178 struct mips_elf_link_hash_entry
*hmips
;
8180 /* For a shared object, we must copy this relocation
8181 unless the symbol turns out to be undefined and
8182 weak with non-default visibility, in which case
8183 it will be left as zero.
8185 We could elide R_MIPS_REL32 for locally binding symbols
8186 in shared libraries, but do not yet do so.
8188 For an executable, we only need to copy this
8189 reloc if the symbol is defined in a dynamic
8191 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8192 ++hmips
->possibly_dynamic_relocs
;
8193 if (MIPS_ELF_READONLY_SECTION (sec
))
8194 /* We need it to tell the dynamic linker if there
8195 are relocations against the text segment. */
8196 hmips
->readonly_reloc
= TRUE
;
8200 if (SGI_COMPAT (abfd
))
8201 mips_elf_hash_table (info
)->compact_rel_size
+=
8202 sizeof (Elf32_External_crinfo
);
8206 case R_MIPS_GPREL16
:
8207 case R_MIPS_LITERAL
:
8208 case R_MIPS_GPREL32
:
8209 case R_MICROMIPS_26_S1
:
8210 case R_MICROMIPS_GPREL16
:
8211 case R_MICROMIPS_LITERAL
:
8212 case R_MICROMIPS_GPREL7_S2
:
8213 if (SGI_COMPAT (abfd
))
8214 mips_elf_hash_table (info
)->compact_rel_size
+=
8215 sizeof (Elf32_External_crinfo
);
8218 /* This relocation describes the C++ object vtable hierarchy.
8219 Reconstruct it for later use during GC. */
8220 case R_MIPS_GNU_VTINHERIT
:
8221 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
8225 /* This relocation describes which C++ vtable entries are actually
8226 used. Record for later use during GC. */
8227 case R_MIPS_GNU_VTENTRY
:
8228 BFD_ASSERT (h
!= NULL
);
8230 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
8238 /* We must not create a stub for a symbol that has relocations
8239 related to taking the function's address. This doesn't apply to
8240 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8241 a normal .got entry. */
8242 if (!htab
->is_vxworks
&& h
!= NULL
)
8246 ((struct mips_elf_link_hash_entry
*) h
)->no_fn_stub
= TRUE
;
8248 case R_MIPS16_CALL16
:
8250 case R_MIPS_CALL_HI16
:
8251 case R_MIPS_CALL_LO16
:
8253 case R_MICROMIPS_CALL16
:
8254 case R_MICROMIPS_CALL_HI16
:
8255 case R_MICROMIPS_CALL_LO16
:
8256 case R_MICROMIPS_JALR
:
8260 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8261 if there is one. We only need to handle global symbols here;
8262 we decide whether to keep or delete stubs for local symbols
8263 when processing the stub's relocations. */
8265 && !mips16_call_reloc_p (r_type
)
8266 && !section_allows_mips16_refs_p (sec
))
8268 struct mips_elf_link_hash_entry
*mh
;
8270 mh
= (struct mips_elf_link_hash_entry
*) h
;
8271 mh
->need_fn_stub
= TRUE
;
8274 /* Refuse some position-dependent relocations when creating a
8275 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8276 not PIC, but we can create dynamic relocations and the result
8277 will be fine. Also do not refuse R_MIPS_LO16, which can be
8278 combined with R_MIPS_GOT16. */
8286 case R_MIPS_HIGHEST
:
8287 case R_MICROMIPS_HI16
:
8288 case R_MICROMIPS_HIGHER
:
8289 case R_MICROMIPS_HIGHEST
:
8290 /* Don't refuse a high part relocation if it's against
8291 no symbol (e.g. part of a compound relocation). */
8292 if (r_symndx
== STN_UNDEF
)
8295 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8296 and has a special meaning. */
8297 if (!NEWABI_P (abfd
) && h
!= NULL
8298 && strcmp (h
->root
.root
.string
, "_gp_disp") == 0)
8301 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8302 if (is_gott_symbol (info
, h
))
8309 case R_MICROMIPS_26_S1
:
8310 howto
= MIPS_ELF_RTYPE_TO_HOWTO (abfd
, r_type
, FALSE
);
8311 (*_bfd_error_handler
)
8312 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8314 (h
) ? h
->root
.root
.string
: "a local symbol");
8315 bfd_set_error (bfd_error_bad_value
);
8327 _bfd_mips_relax_section (bfd
*abfd
, asection
*sec
,
8328 struct bfd_link_info
*link_info
,
8331 Elf_Internal_Rela
*internal_relocs
;
8332 Elf_Internal_Rela
*irel
, *irelend
;
8333 Elf_Internal_Shdr
*symtab_hdr
;
8334 bfd_byte
*contents
= NULL
;
8336 bfd_boolean changed_contents
= FALSE
;
8337 bfd_vma sec_start
= sec
->output_section
->vma
+ sec
->output_offset
;
8338 Elf_Internal_Sym
*isymbuf
= NULL
;
8340 /* We are not currently changing any sizes, so only one pass. */
8343 if (link_info
->relocatable
)
8346 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
8347 link_info
->keep_memory
);
8348 if (internal_relocs
== NULL
)
8351 irelend
= internal_relocs
+ sec
->reloc_count
8352 * get_elf_backend_data (abfd
)->s
->int_rels_per_ext_rel
;
8353 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8354 extsymoff
= (elf_bad_symtab (abfd
)) ? 0 : symtab_hdr
->sh_info
;
8356 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
8359 bfd_signed_vma sym_offset
;
8360 unsigned int r_type
;
8361 unsigned long r_symndx
;
8363 unsigned long instruction
;
8365 /* Turn jalr into bgezal, and jr into beq, if they're marked
8366 with a JALR relocation, that indicate where they jump to.
8367 This saves some pipeline bubbles. */
8368 r_type
= ELF_R_TYPE (abfd
, irel
->r_info
);
8369 if (r_type
!= R_MIPS_JALR
)
8372 r_symndx
= ELF_R_SYM (abfd
, irel
->r_info
);
8373 /* Compute the address of the jump target. */
8374 if (r_symndx
>= extsymoff
)
8376 struct mips_elf_link_hash_entry
*h
8377 = ((struct mips_elf_link_hash_entry
*)
8378 elf_sym_hashes (abfd
) [r_symndx
- extsymoff
]);
8380 while (h
->root
.root
.type
== bfd_link_hash_indirect
8381 || h
->root
.root
.type
== bfd_link_hash_warning
)
8382 h
= (struct mips_elf_link_hash_entry
*) h
->root
.root
.u
.i
.link
;
8384 /* If a symbol is undefined, or if it may be overridden,
8386 if (! ((h
->root
.root
.type
== bfd_link_hash_defined
8387 || h
->root
.root
.type
== bfd_link_hash_defweak
)
8388 && h
->root
.root
.u
.def
.section
)
8389 || (link_info
->shared
&& ! link_info
->symbolic
8390 && !h
->root
.forced_local
))
8393 sym_sec
= h
->root
.root
.u
.def
.section
;
8394 if (sym_sec
->output_section
)
8395 symval
= (h
->root
.root
.u
.def
.value
8396 + sym_sec
->output_section
->vma
8397 + sym_sec
->output_offset
);
8399 symval
= h
->root
.root
.u
.def
.value
;
8403 Elf_Internal_Sym
*isym
;
8405 /* Read this BFD's symbols if we haven't done so already. */
8406 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
8408 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8409 if (isymbuf
== NULL
)
8410 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
8411 symtab_hdr
->sh_info
, 0,
8413 if (isymbuf
== NULL
)
8417 isym
= isymbuf
+ r_symndx
;
8418 if (isym
->st_shndx
== SHN_UNDEF
)
8420 else if (isym
->st_shndx
== SHN_ABS
)
8421 sym_sec
= bfd_abs_section_ptr
;
8422 else if (isym
->st_shndx
== SHN_COMMON
)
8423 sym_sec
= bfd_com_section_ptr
;
8426 = bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
8427 symval
= isym
->st_value
8428 + sym_sec
->output_section
->vma
8429 + sym_sec
->output_offset
;
8432 /* Compute branch offset, from delay slot of the jump to the
8434 sym_offset
= (symval
+ irel
->r_addend
)
8435 - (sec_start
+ irel
->r_offset
+ 4);
8437 /* Branch offset must be properly aligned. */
8438 if ((sym_offset
& 3) != 0)
8443 /* Check that it's in range. */
8444 if (sym_offset
< -0x8000 || sym_offset
>= 0x8000)
8447 /* Get the section contents if we haven't done so already. */
8448 if (!mips_elf_get_section_contents (abfd
, sec
, &contents
))
8451 instruction
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
);
8453 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8454 if ((instruction
& 0xfc1fffff) == 0x0000f809)
8455 instruction
= 0x04110000;
8456 /* If it was jr <reg>, turn it into b <target>. */
8457 else if ((instruction
& 0xfc1fffff) == 0x00000008)
8458 instruction
= 0x10000000;
8462 instruction
|= (sym_offset
& 0xffff);
8463 bfd_put_32 (abfd
, instruction
, contents
+ irel
->r_offset
);
8464 changed_contents
= TRUE
;
8467 if (contents
!= NULL
8468 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8470 if (!changed_contents
&& !link_info
->keep_memory
)
8474 /* Cache the section contents for elf_link_input_bfd. */
8475 elf_section_data (sec
)->this_hdr
.contents
= contents
;
8481 if (contents
!= NULL
8482 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8487 /* Allocate space for global sym dynamic relocs. */
8490 allocate_dynrelocs (struct elf_link_hash_entry
*h
, void *inf
)
8492 struct bfd_link_info
*info
= inf
;
8494 struct mips_elf_link_hash_entry
*hmips
;
8495 struct mips_elf_link_hash_table
*htab
;
8497 htab
= mips_elf_hash_table (info
);
8498 BFD_ASSERT (htab
!= NULL
);
8500 dynobj
= elf_hash_table (info
)->dynobj
;
8501 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8503 /* VxWorks executables are handled elsewhere; we only need to
8504 allocate relocations in shared objects. */
8505 if (htab
->is_vxworks
&& !info
->shared
)
8508 /* Ignore indirect symbols. All relocations against such symbols
8509 will be redirected to the target symbol. */
8510 if (h
->root
.type
== bfd_link_hash_indirect
)
8513 /* If this symbol is defined in a dynamic object, or we are creating
8514 a shared library, we will need to copy any R_MIPS_32 or
8515 R_MIPS_REL32 relocs against it into the output file. */
8516 if (! info
->relocatable
8517 && hmips
->possibly_dynamic_relocs
!= 0
8518 && (h
->root
.type
== bfd_link_hash_defweak
8522 bfd_boolean do_copy
= TRUE
;
8524 if (h
->root
.type
== bfd_link_hash_undefweak
)
8526 /* Do not copy relocations for undefined weak symbols with
8527 non-default visibility. */
8528 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
8531 /* Make sure undefined weak symbols are output as a dynamic
8533 else if (h
->dynindx
== -1 && !h
->forced_local
)
8535 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
8542 /* Even though we don't directly need a GOT entry for this symbol,
8543 the SVR4 psABI requires it to have a dynamic symbol table
8544 index greater that DT_MIPS_GOTSYM if there are dynamic
8545 relocations against it.
8547 VxWorks does not enforce the same mapping between the GOT
8548 and the symbol table, so the same requirement does not
8550 if (!htab
->is_vxworks
)
8552 if (hmips
->global_got_area
> GGA_RELOC_ONLY
)
8553 hmips
->global_got_area
= GGA_RELOC_ONLY
;
8554 hmips
->got_only_for_calls
= FALSE
;
8557 mips_elf_allocate_dynamic_relocations
8558 (dynobj
, info
, hmips
->possibly_dynamic_relocs
);
8559 if (hmips
->readonly_reloc
)
8560 /* We tell the dynamic linker that there are relocations
8561 against the text segment. */
8562 info
->flags
|= DF_TEXTREL
;
8569 /* Adjust a symbol defined by a dynamic object and referenced by a
8570 regular object. The current definition is in some section of the
8571 dynamic object, but we're not including those sections. We have to
8572 change the definition to something the rest of the link can
8576 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info
*info
,
8577 struct elf_link_hash_entry
*h
)
8580 struct mips_elf_link_hash_entry
*hmips
;
8581 struct mips_elf_link_hash_table
*htab
;
8583 htab
= mips_elf_hash_table (info
);
8584 BFD_ASSERT (htab
!= NULL
);
8586 dynobj
= elf_hash_table (info
)->dynobj
;
8587 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8589 /* Make sure we know what is going on here. */
8590 BFD_ASSERT (dynobj
!= NULL
8592 || h
->u
.weakdef
!= NULL
8595 && !h
->def_regular
)));
8597 hmips
= (struct mips_elf_link_hash_entry
*) h
;
8599 /* If there are call relocations against an externally-defined symbol,
8600 see whether we can create a MIPS lazy-binding stub for it. We can
8601 only do this if all references to the function are through call
8602 relocations, and in that case, the traditional lazy-binding stubs
8603 are much more efficient than PLT entries.
8605 Traditional stubs are only available on SVR4 psABI-based systems;
8606 VxWorks always uses PLTs instead. */
8607 if (!htab
->is_vxworks
&& h
->needs_plt
&& !hmips
->no_fn_stub
)
8609 if (! elf_hash_table (info
)->dynamic_sections_created
)
8612 /* If this symbol is not defined in a regular file, then set
8613 the symbol to the stub location. This is required to make
8614 function pointers compare as equal between the normal
8615 executable and the shared library. */
8616 if (!h
->def_regular
)
8618 hmips
->needs_lazy_stub
= TRUE
;
8619 htab
->lazy_stub_count
++;
8623 /* As above, VxWorks requires PLT entries for externally-defined
8624 functions that are only accessed through call relocations.
8626 Both VxWorks and non-VxWorks targets also need PLT entries if there
8627 are static-only relocations against an externally-defined function.
8628 This can technically occur for shared libraries if there are
8629 branches to the symbol, although it is unlikely that this will be
8630 used in practice due to the short ranges involved. It can occur
8631 for any relative or absolute relocation in executables; in that
8632 case, the PLT entry becomes the function's canonical address. */
8633 else if (((h
->needs_plt
&& !hmips
->no_fn_stub
)
8634 || (h
->type
== STT_FUNC
&& hmips
->has_static_relocs
))
8635 && htab
->use_plts_and_copy_relocs
8636 && !SYMBOL_CALLS_LOCAL (info
, h
)
8637 && !(ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
8638 && h
->root
.type
== bfd_link_hash_undefweak
))
8640 /* If this is the first symbol to need a PLT entry, allocate room
8642 if (htab
->splt
->size
== 0)
8644 BFD_ASSERT (htab
->sgotplt
->size
== 0);
8646 /* If we're using the PLT additions to the psABI, each PLT
8647 entry is 16 bytes and the PLT0 entry is 32 bytes.
8648 Encourage better cache usage by aligning. We do this
8649 lazily to avoid pessimizing traditional objects. */
8650 if (!htab
->is_vxworks
8651 && !bfd_set_section_alignment (dynobj
, htab
->splt
, 5))
8654 /* Make sure that .got.plt is word-aligned. We do this lazily
8655 for the same reason as above. */
8656 if (!bfd_set_section_alignment (dynobj
, htab
->sgotplt
,
8657 MIPS_ELF_LOG_FILE_ALIGN (dynobj
)))
8660 htab
->splt
->size
+= htab
->plt_header_size
;
8662 /* On non-VxWorks targets, the first two entries in .got.plt
8664 if (!htab
->is_vxworks
)
8665 htab
->sgotplt
->size
+= 2 * MIPS_ELF_GOT_SIZE (dynobj
);
8667 /* On VxWorks, also allocate room for the header's
8668 .rela.plt.unloaded entries. */
8669 if (htab
->is_vxworks
&& !info
->shared
)
8670 htab
->srelplt2
->size
+= 2 * sizeof (Elf32_External_Rela
);
8673 /* Assign the next .plt entry to this symbol. */
8674 h
->plt
.offset
= htab
->splt
->size
;
8675 htab
->splt
->size
+= htab
->plt_entry_size
;
8677 /* If the output file has no definition of the symbol, set the
8678 symbol's value to the address of the stub. */
8679 if (!info
->shared
&& !h
->def_regular
)
8681 h
->root
.u
.def
.section
= htab
->splt
;
8682 h
->root
.u
.def
.value
= h
->plt
.offset
;
8683 /* For VxWorks, point at the PLT load stub rather than the
8684 lazy resolution stub; this stub will become the canonical
8685 function address. */
8686 if (htab
->is_vxworks
)
8687 h
->root
.u
.def
.value
+= 8;
8690 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8692 htab
->sgotplt
->size
+= MIPS_ELF_GOT_SIZE (dynobj
);
8693 htab
->srelplt
->size
+= (htab
->is_vxworks
8694 ? MIPS_ELF_RELA_SIZE (dynobj
)
8695 : MIPS_ELF_REL_SIZE (dynobj
));
8697 /* Make room for the .rela.plt.unloaded relocations. */
8698 if (htab
->is_vxworks
&& !info
->shared
)
8699 htab
->srelplt2
->size
+= 3 * sizeof (Elf32_External_Rela
);
8701 /* All relocations against this symbol that could have been made
8702 dynamic will now refer to the PLT entry instead. */
8703 hmips
->possibly_dynamic_relocs
= 0;
8708 /* If this is a weak symbol, and there is a real definition, the
8709 processor independent code will have arranged for us to see the
8710 real definition first, and we can just use the same value. */
8711 if (h
->u
.weakdef
!= NULL
)
8713 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
8714 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
8715 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
8716 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
8720 /* Otherwise, there is nothing further to do for symbols defined
8721 in regular objects. */
8725 /* There's also nothing more to do if we'll convert all relocations
8726 against this symbol into dynamic relocations. */
8727 if (!hmips
->has_static_relocs
)
8730 /* We're now relying on copy relocations. Complain if we have
8731 some that we can't convert. */
8732 if (!htab
->use_plts_and_copy_relocs
|| info
->shared
)
8734 (*_bfd_error_handler
) (_("non-dynamic relocations refer to "
8735 "dynamic symbol %s"),
8736 h
->root
.root
.string
);
8737 bfd_set_error (bfd_error_bad_value
);
8741 /* We must allocate the symbol in our .dynbss section, which will
8742 become part of the .bss section of the executable. There will be
8743 an entry for this symbol in the .dynsym section. The dynamic
8744 object will contain position independent code, so all references
8745 from the dynamic object to this symbol will go through the global
8746 offset table. The dynamic linker will use the .dynsym entry to
8747 determine the address it must put in the global offset table, so
8748 both the dynamic object and the regular object will refer to the
8749 same memory location for the variable. */
8751 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
8753 if (htab
->is_vxworks
)
8754 htab
->srelbss
->size
+= sizeof (Elf32_External_Rela
);
8756 mips_elf_allocate_dynamic_relocations (dynobj
, info
, 1);
8760 /* All relocations against this symbol that could have been made
8761 dynamic will now refer to the local copy instead. */
8762 hmips
->possibly_dynamic_relocs
= 0;
8764 return _bfd_elf_adjust_dynamic_copy (h
, htab
->sdynbss
);
8767 /* This function is called after all the input files have been read,
8768 and the input sections have been assigned to output sections. We
8769 check for any mips16 stub sections that we can discard. */
8772 _bfd_mips_elf_always_size_sections (bfd
*output_bfd
,
8773 struct bfd_link_info
*info
)
8776 struct mips_elf_link_hash_table
*htab
;
8777 struct mips_htab_traverse_info hti
;
8779 htab
= mips_elf_hash_table (info
);
8780 BFD_ASSERT (htab
!= NULL
);
8782 /* The .reginfo section has a fixed size. */
8783 ri
= bfd_get_section_by_name (output_bfd
, ".reginfo");
8785 bfd_set_section_size (output_bfd
, ri
, sizeof (Elf32_External_RegInfo
));
8788 hti
.output_bfd
= output_bfd
;
8790 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
8791 mips_elf_check_symbols
, &hti
);
8798 /* If the link uses a GOT, lay it out and work out its size. */
8801 mips_elf_lay_out_got (bfd
*output_bfd
, struct bfd_link_info
*info
)
8805 struct mips_got_info
*g
;
8806 bfd_size_type loadable_size
= 0;
8807 bfd_size_type page_gotno
;
8809 struct mips_elf_count_tls_arg count_tls_arg
;
8810 struct mips_elf_link_hash_table
*htab
;
8812 htab
= mips_elf_hash_table (info
);
8813 BFD_ASSERT (htab
!= NULL
);
8819 dynobj
= elf_hash_table (info
)->dynobj
;
8822 /* Allocate room for the reserved entries. VxWorks always reserves
8823 3 entries; other objects only reserve 2 entries. */
8824 BFD_ASSERT (g
->assigned_gotno
== 0);
8825 if (htab
->is_vxworks
)
8826 htab
->reserved_gotno
= 3;
8828 htab
->reserved_gotno
= 2;
8829 g
->local_gotno
+= htab
->reserved_gotno
;
8830 g
->assigned_gotno
= htab
->reserved_gotno
;
8832 /* Replace entries for indirect and warning symbols with entries for
8833 the target symbol. */
8834 if (!mips_elf_resolve_final_got_entries (g
))
8837 /* Count the number of GOT symbols. */
8838 mips_elf_link_hash_traverse (htab
, mips_elf_count_got_symbols
, info
);
8840 /* Calculate the total loadable size of the output. That
8841 will give us the maximum number of GOT_PAGE entries
8843 for (sub
= info
->input_bfds
; sub
; sub
= sub
->link_next
)
8845 asection
*subsection
;
8847 for (subsection
= sub
->sections
;
8849 subsection
= subsection
->next
)
8851 if ((subsection
->flags
& SEC_ALLOC
) == 0)
8853 loadable_size
+= ((subsection
->size
+ 0xf)
8854 &~ (bfd_size_type
) 0xf);
8858 if (htab
->is_vxworks
)
8859 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8860 relocations against local symbols evaluate to "G", and the EABI does
8861 not include R_MIPS_GOT_PAGE. */
8864 /* Assume there are two loadable segments consisting of contiguous
8865 sections. Is 5 enough? */
8866 page_gotno
= (loadable_size
>> 16) + 5;
8868 /* Choose the smaller of the two estimates; both are intended to be
8870 if (page_gotno
> g
->page_gotno
)
8871 page_gotno
= g
->page_gotno
;
8873 g
->local_gotno
+= page_gotno
;
8874 s
->size
+= g
->local_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8875 s
->size
+= g
->global_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8877 /* We need to calculate tls_gotno for global symbols at this point
8878 instead of building it up earlier, to avoid doublecounting
8879 entries for one global symbol from multiple input files. */
8880 count_tls_arg
.info
= info
;
8881 count_tls_arg
.needed
= 0;
8882 elf_link_hash_traverse (elf_hash_table (info
),
8883 mips_elf_count_global_tls_entries
,
8885 g
->tls_gotno
+= count_tls_arg
.needed
;
8886 s
->size
+= g
->tls_gotno
* MIPS_ELF_GOT_SIZE (output_bfd
);
8888 /* VxWorks does not support multiple GOTs. It initializes $gp to
8889 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8891 if (htab
->is_vxworks
)
8893 /* VxWorks executables do not need a GOT. */
8896 /* Each VxWorks GOT entry needs an explicit relocation. */
8899 count
= g
->global_gotno
+ g
->local_gotno
- htab
->reserved_gotno
;
8901 mips_elf_allocate_dynamic_relocations (dynobj
, info
, count
);
8904 else if (s
->size
> MIPS_ELF_GOT_MAX_SIZE (info
))
8906 if (!mips_elf_multi_got (output_bfd
, info
, s
, page_gotno
))
8911 struct mips_elf_count_tls_arg arg
;
8913 /* Set up TLS entries. */
8914 g
->tls_assigned_gotno
= g
->global_gotno
+ g
->local_gotno
;
8915 htab_traverse (g
->got_entries
, mips_elf_initialize_tls_index
, g
);
8917 /* Allocate room for the TLS relocations. */
8920 htab_traverse (g
->got_entries
, mips_elf_count_local_tls_relocs
, &arg
);
8921 elf_link_hash_traverse (elf_hash_table (info
),
8922 mips_elf_count_global_tls_relocs
,
8925 mips_elf_allocate_dynamic_relocations (dynobj
, info
, arg
.needed
);
8931 /* Estimate the size of the .MIPS.stubs section. */
8934 mips_elf_estimate_stub_size (bfd
*output_bfd
, struct bfd_link_info
*info
)
8936 struct mips_elf_link_hash_table
*htab
;
8937 bfd_size_type dynsymcount
;
8939 htab
= mips_elf_hash_table (info
);
8940 BFD_ASSERT (htab
!= NULL
);
8942 if (htab
->lazy_stub_count
== 0)
8945 /* IRIX rld assumes that a function stub isn't at the end of the .text
8946 section, so add a dummy entry to the end. */
8947 htab
->lazy_stub_count
++;
8949 /* Get a worst-case estimate of the number of dynamic symbols needed.
8950 At this point, dynsymcount does not account for section symbols
8951 and count_section_dynsyms may overestimate the number that will
8953 dynsymcount
= (elf_hash_table (info
)->dynsymcount
8954 + count_section_dynsyms (output_bfd
, info
));
8956 /* Determine the size of one stub entry. */
8957 htab
->function_stub_size
= (dynsymcount
> 0x10000
8958 ? MIPS_FUNCTION_STUB_BIG_SIZE
8959 : MIPS_FUNCTION_STUB_NORMAL_SIZE
);
8961 htab
->sstubs
->size
= htab
->lazy_stub_count
* htab
->function_stub_size
;
8964 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8965 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8966 allocate an entry in the stubs section. */
8969 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry
*h
, void **data
)
8971 struct mips_elf_link_hash_table
*htab
;
8973 htab
= (struct mips_elf_link_hash_table
*) data
;
8974 if (h
->needs_lazy_stub
)
8976 h
->root
.root
.u
.def
.section
= htab
->sstubs
;
8977 h
->root
.root
.u
.def
.value
= htab
->sstubs
->size
;
8978 h
->root
.plt
.offset
= htab
->sstubs
->size
;
8979 htab
->sstubs
->size
+= htab
->function_stub_size
;
8984 /* Allocate offsets in the stubs section to each symbol that needs one.
8985 Set the final size of the .MIPS.stub section. */
8988 mips_elf_lay_out_lazy_stubs (struct bfd_link_info
*info
)
8990 struct mips_elf_link_hash_table
*htab
;
8992 htab
= mips_elf_hash_table (info
);
8993 BFD_ASSERT (htab
!= NULL
);
8995 if (htab
->lazy_stub_count
== 0)
8998 htab
->sstubs
->size
= 0;
8999 mips_elf_link_hash_traverse (htab
, mips_elf_allocate_lazy_stub
, htab
);
9000 htab
->sstubs
->size
+= htab
->function_stub_size
;
9001 BFD_ASSERT (htab
->sstubs
->size
9002 == htab
->lazy_stub_count
* htab
->function_stub_size
);
9005 /* Set the sizes of the dynamic sections. */
9008 _bfd_mips_elf_size_dynamic_sections (bfd
*output_bfd
,
9009 struct bfd_link_info
*info
)
9012 asection
*s
, *sreldyn
;
9013 bfd_boolean reltext
;
9014 struct mips_elf_link_hash_table
*htab
;
9016 htab
= mips_elf_hash_table (info
);
9017 BFD_ASSERT (htab
!= NULL
);
9018 dynobj
= elf_hash_table (info
)->dynobj
;
9019 BFD_ASSERT (dynobj
!= NULL
);
9021 if (elf_hash_table (info
)->dynamic_sections_created
)
9023 /* Set the contents of the .interp section to the interpreter. */
9024 if (info
->executable
)
9026 s
= bfd_get_section_by_name (dynobj
, ".interp");
9027 BFD_ASSERT (s
!= NULL
);
9029 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd
)) + 1;
9031 = (bfd_byte
*) ELF_DYNAMIC_INTERPRETER (output_bfd
);
9034 /* Create a symbol for the PLT, if we know that we are using it. */
9035 if (htab
->splt
&& htab
->splt
->size
> 0 && htab
->root
.hplt
== NULL
)
9037 struct elf_link_hash_entry
*h
;
9039 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9041 h
= _bfd_elf_define_linkage_sym (dynobj
, info
, htab
->splt
,
9042 "_PROCEDURE_LINKAGE_TABLE_");
9043 htab
->root
.hplt
= h
;
9050 /* Allocate space for global sym dynamic relocs. */
9051 elf_link_hash_traverse (&htab
->root
, allocate_dynrelocs
, (PTR
) info
);
9053 mips_elf_estimate_stub_size (output_bfd
, info
);
9055 if (!mips_elf_lay_out_got (output_bfd
, info
))
9058 mips_elf_lay_out_lazy_stubs (info
);
9060 /* The check_relocs and adjust_dynamic_symbol entry points have
9061 determined the sizes of the various dynamic sections. Allocate
9064 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
9068 /* It's OK to base decisions on the section name, because none
9069 of the dynobj section names depend upon the input files. */
9070 name
= bfd_get_section_name (dynobj
, s
);
9072 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
9075 if (CONST_STRNEQ (name
, ".rel"))
9079 const char *outname
;
9082 /* If this relocation section applies to a read only
9083 section, then we probably need a DT_TEXTREL entry.
9084 If the relocation section is .rel(a).dyn, we always
9085 assert a DT_TEXTREL entry rather than testing whether
9086 there exists a relocation to a read only section or
9088 outname
= bfd_get_section_name (output_bfd
,
9090 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
9092 && (target
->flags
& SEC_READONLY
) != 0
9093 && (target
->flags
& SEC_ALLOC
) != 0)
9094 || strcmp (outname
, MIPS_ELF_REL_DYN_NAME (info
)) == 0)
9097 /* We use the reloc_count field as a counter if we need
9098 to copy relocs into the output file. */
9099 if (strcmp (name
, MIPS_ELF_REL_DYN_NAME (info
)) != 0)
9102 /* If combreloc is enabled, elf_link_sort_relocs() will
9103 sort relocations, but in a different way than we do,
9104 and before we're done creating relocations. Also, it
9105 will move them around between input sections'
9106 relocation's contents, so our sorting would be
9107 broken, so don't let it run. */
9108 info
->combreloc
= 0;
9111 else if (! info
->shared
9112 && ! mips_elf_hash_table (info
)->use_rld_obj_head
9113 && CONST_STRNEQ (name
, ".rld_map"))
9115 /* We add a room for __rld_map. It will be filled in by the
9116 rtld to contain a pointer to the _r_debug structure. */
9117 s
->size
+= MIPS_ELF_RLD_MAP_SIZE (output_bfd
);
9119 else if (SGI_COMPAT (output_bfd
)
9120 && CONST_STRNEQ (name
, ".compact_rel"))
9121 s
->size
+= mips_elf_hash_table (info
)->compact_rel_size
;
9122 else if (s
== htab
->splt
)
9124 /* If the last PLT entry has a branch delay slot, allocate
9125 room for an extra nop to fill the delay slot. This is
9126 for CPUs without load interlocking. */
9127 if (! LOAD_INTERLOCKS_P (output_bfd
)
9128 && ! htab
->is_vxworks
&& s
->size
> 0)
9131 else if (! CONST_STRNEQ (name
, ".init")
9133 && s
!= htab
->sgotplt
9134 && s
!= htab
->sstubs
9135 && s
!= htab
->sdynbss
)
9137 /* It's not one of our sections, so don't allocate space. */
9143 s
->flags
|= SEC_EXCLUDE
;
9147 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
9150 /* Allocate memory for the section contents. */
9151 s
->contents
= bfd_zalloc (dynobj
, s
->size
);
9152 if (s
->contents
== NULL
)
9154 bfd_set_error (bfd_error_no_memory
);
9159 if (elf_hash_table (info
)->dynamic_sections_created
)
9161 /* Add some entries to the .dynamic section. We fill in the
9162 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9163 must add the entries now so that we get the correct size for
9164 the .dynamic section. */
9166 /* SGI object has the equivalence of DT_DEBUG in the
9167 DT_MIPS_RLD_MAP entry. This must come first because glibc
9168 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9169 looks at the first one it sees. */
9171 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_MAP
, 0))
9174 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9175 used by the debugger. */
9176 if (info
->executable
9177 && !SGI_COMPAT (output_bfd
)
9178 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_DEBUG
, 0))
9181 if (reltext
&& (SGI_COMPAT (output_bfd
) || htab
->is_vxworks
))
9182 info
->flags
|= DF_TEXTREL
;
9184 if ((info
->flags
& DF_TEXTREL
) != 0)
9186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_TEXTREL
, 0))
9189 /* Clear the DF_TEXTREL flag. It will be set again if we
9190 write out an actual text relocation; we may not, because
9191 at this point we do not know whether e.g. any .eh_frame
9192 absolute relocations have been converted to PC-relative. */
9193 info
->flags
&= ~DF_TEXTREL
;
9196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTGOT
, 0))
9199 sreldyn
= mips_elf_rel_dyn_section (info
, FALSE
);
9200 if (htab
->is_vxworks
)
9202 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9203 use any of the DT_MIPS_* tags. */
9204 if (sreldyn
&& sreldyn
->size
> 0)
9206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELA
, 0))
9209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELASZ
, 0))
9212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELAENT
, 0))
9218 if (sreldyn
&& sreldyn
->size
> 0)
9220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_REL
, 0))
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELSZ
, 0))
9226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_RELENT
, 0))
9230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_RLD_VERSION
, 0))
9233 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_FLAGS
, 0))
9236 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_BASE_ADDRESS
, 0))
9239 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_LOCAL_GOTNO
, 0))
9242 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_SYMTABNO
, 0))
9245 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_UNREFEXTNO
, 0))
9248 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_GOTSYM
, 0))
9251 if (IRIX_COMPAT (dynobj
) == ict_irix5
9252 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_HIPAGENO
, 0))
9255 if (IRIX_COMPAT (dynobj
) == ict_irix6
9256 && (bfd_get_section_by_name
9257 (dynobj
, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj
)))
9258 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_OPTIONS
, 0))
9261 if (htab
->splt
->size
> 0)
9263 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTREL
, 0))
9266 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_JMPREL
, 0))
9269 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_PLTRELSZ
, 0))
9272 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info
, DT_MIPS_PLTGOT
, 0))
9275 if (htab
->is_vxworks
9276 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
9283 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9284 Adjust its R_ADDEND field so that it is correct for the output file.
9285 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9286 and sections respectively; both use symbol indexes. */
9289 mips_elf_adjust_addend (bfd
*output_bfd
, struct bfd_link_info
*info
,
9290 bfd
*input_bfd
, Elf_Internal_Sym
*local_syms
,
9291 asection
**local_sections
, Elf_Internal_Rela
*rel
)
9293 unsigned int r_type
, r_symndx
;
9294 Elf_Internal_Sym
*sym
;
9297 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
9299 r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
9300 if (gprel16_reloc_p (r_type
)
9301 || r_type
== R_MIPS_GPREL32
9302 || literal_reloc_p (r_type
))
9304 rel
->r_addend
+= _bfd_get_gp_value (input_bfd
);
9305 rel
->r_addend
-= _bfd_get_gp_value (output_bfd
);
9308 r_symndx
= ELF_R_SYM (output_bfd
, rel
->r_info
);
9309 sym
= local_syms
+ r_symndx
;
9311 /* Adjust REL's addend to account for section merging. */
9312 if (!info
->relocatable
)
9314 sec
= local_sections
[r_symndx
];
9315 _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
9318 /* This would normally be done by the rela_normal code in elflink.c. */
9319 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
9320 rel
->r_addend
+= local_sections
[r_symndx
]->output_offset
;
9324 /* Relocate a MIPS ELF section. */
9327 _bfd_mips_elf_relocate_section (bfd
*output_bfd
, struct bfd_link_info
*info
,
9328 bfd
*input_bfd
, asection
*input_section
,
9329 bfd_byte
*contents
, Elf_Internal_Rela
*relocs
,
9330 Elf_Internal_Sym
*local_syms
,
9331 asection
**local_sections
)
9333 Elf_Internal_Rela
*rel
;
9334 const Elf_Internal_Rela
*relend
;
9336 bfd_boolean use_saved_addend_p
= FALSE
;
9337 const struct elf_backend_data
*bed
;
9339 bed
= get_elf_backend_data (output_bfd
);
9340 relend
= relocs
+ input_section
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
9341 for (rel
= relocs
; rel
< relend
; ++rel
)
9345 reloc_howto_type
*howto
;
9346 bfd_boolean cross_mode_jump_p
;
9347 /* TRUE if the relocation is a RELA relocation, rather than a
9349 bfd_boolean rela_relocation_p
= TRUE
;
9350 unsigned int r_type
= ELF_R_TYPE (output_bfd
, rel
->r_info
);
9352 unsigned long r_symndx
;
9354 Elf_Internal_Shdr
*symtab_hdr
;
9355 struct elf_link_hash_entry
*h
;
9356 bfd_boolean rel_reloc
;
9358 rel_reloc
= (NEWABI_P (input_bfd
)
9359 && mips_elf_rel_relocation_p (input_bfd
, input_section
,
9361 /* Find the relocation howto for this relocation. */
9362 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, r_type
, !rel_reloc
);
9364 r_symndx
= ELF_R_SYM (input_bfd
, rel
->r_info
);
9365 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
9366 if (mips_elf_local_relocation_p (input_bfd
, rel
, local_sections
))
9368 sec
= local_sections
[r_symndx
];
9373 unsigned long extsymoff
;
9376 if (!elf_bad_symtab (input_bfd
))
9377 extsymoff
= symtab_hdr
->sh_info
;
9378 h
= elf_sym_hashes (input_bfd
) [r_symndx
- extsymoff
];
9379 while (h
->root
.type
== bfd_link_hash_indirect
9380 || h
->root
.type
== bfd_link_hash_warning
)
9381 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
9384 if (h
->root
.type
== bfd_link_hash_defined
9385 || h
->root
.type
== bfd_link_hash_defweak
)
9386 sec
= h
->root
.u
.def
.section
;
9389 if (sec
!= NULL
&& elf_discarded_section (sec
))
9390 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
9391 rel
, relend
, howto
, contents
);
9393 if (r_type
== R_MIPS_64
&& ! NEWABI_P (input_bfd
))
9395 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9396 64-bit code, but make sure all their addresses are in the
9397 lowermost or uppermost 32-bit section of the 64-bit address
9398 space. Thus, when they use an R_MIPS_64 they mean what is
9399 usually meant by R_MIPS_32, with the exception that the
9400 stored value is sign-extended to 64 bits. */
9401 howto
= MIPS_ELF_RTYPE_TO_HOWTO (input_bfd
, R_MIPS_32
, FALSE
);
9403 /* On big-endian systems, we need to lie about the position
9405 if (bfd_big_endian (input_bfd
))
9409 if (!use_saved_addend_p
)
9411 /* If these relocations were originally of the REL variety,
9412 we must pull the addend out of the field that will be
9413 relocated. Otherwise, we simply use the contents of the
9415 if (mips_elf_rel_relocation_p (input_bfd
, input_section
,
9418 rela_relocation_p
= FALSE
;
9419 addend
= mips_elf_read_rel_addend (input_bfd
, rel
,
9421 if (hi16_reloc_p (r_type
)
9422 || (got16_reloc_p (r_type
)
9423 && mips_elf_local_relocation_p (input_bfd
, rel
,
9426 if (!mips_elf_add_lo16_rel_addend (input_bfd
, rel
, relend
,
9430 name
= h
->root
.root
.string
;
9432 name
= bfd_elf_sym_name (input_bfd
, symtab_hdr
,
9433 local_syms
+ r_symndx
,
9435 (*_bfd_error_handler
)
9436 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9437 input_bfd
, input_section
, name
, howto
->name
,
9442 addend
<<= howto
->rightshift
;
9445 addend
= rel
->r_addend
;
9446 mips_elf_adjust_addend (output_bfd
, info
, input_bfd
,
9447 local_syms
, local_sections
, rel
);
9450 if (info
->relocatable
)
9452 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
)
9453 && bfd_big_endian (input_bfd
))
9456 if (!rela_relocation_p
&& rel
->r_addend
)
9458 addend
+= rel
->r_addend
;
9459 if (hi16_reloc_p (r_type
) || got16_reloc_p (r_type
))
9460 addend
= mips_elf_high (addend
);
9461 else if (r_type
== R_MIPS_HIGHER
)
9462 addend
= mips_elf_higher (addend
);
9463 else if (r_type
== R_MIPS_HIGHEST
)
9464 addend
= mips_elf_highest (addend
);
9466 addend
>>= howto
->rightshift
;
9468 /* We use the source mask, rather than the destination
9469 mask because the place to which we are writing will be
9470 source of the addend in the final link. */
9471 addend
&= howto
->src_mask
;
9473 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9474 /* See the comment above about using R_MIPS_64 in the 32-bit
9475 ABI. Here, we need to update the addend. It would be
9476 possible to get away with just using the R_MIPS_32 reloc
9477 but for endianness. */
9483 if (addend
& ((bfd_vma
) 1 << 31))
9485 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9492 /* If we don't know that we have a 64-bit type,
9493 do two separate stores. */
9494 if (bfd_big_endian (input_bfd
))
9496 /* Store the sign-bits (which are most significant)
9498 low_bits
= sign_bits
;
9504 high_bits
= sign_bits
;
9506 bfd_put_32 (input_bfd
, low_bits
,
9507 contents
+ rel
->r_offset
);
9508 bfd_put_32 (input_bfd
, high_bits
,
9509 contents
+ rel
->r_offset
+ 4);
9513 if (! mips_elf_perform_relocation (info
, howto
, rel
, addend
,
9514 input_bfd
, input_section
,
9519 /* Go on to the next relocation. */
9523 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9524 relocations for the same offset. In that case we are
9525 supposed to treat the output of each relocation as the addend
9527 if (rel
+ 1 < relend
9528 && rel
->r_offset
== rel
[1].r_offset
9529 && ELF_R_TYPE (input_bfd
, rel
[1].r_info
) != R_MIPS_NONE
)
9530 use_saved_addend_p
= TRUE
;
9532 use_saved_addend_p
= FALSE
;
9534 /* Figure out what value we are supposed to relocate. */
9535 switch (mips_elf_calculate_relocation (output_bfd
, input_bfd
,
9536 input_section
, info
, rel
,
9537 addend
, howto
, local_syms
,
9538 local_sections
, &value
,
9539 &name
, &cross_mode_jump_p
,
9540 use_saved_addend_p
))
9542 case bfd_reloc_continue
:
9543 /* There's nothing to do. */
9546 case bfd_reloc_undefined
:
9547 /* mips_elf_calculate_relocation already called the
9548 undefined_symbol callback. There's no real point in
9549 trying to perform the relocation at this point, so we
9550 just skip ahead to the next relocation. */
9553 case bfd_reloc_notsupported
:
9554 msg
= _("internal error: unsupported relocation error");
9555 info
->callbacks
->warning
9556 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
9559 case bfd_reloc_overflow
:
9560 if (use_saved_addend_p
)
9561 /* Ignore overflow until we reach the last relocation for
9562 a given location. */
9566 struct mips_elf_link_hash_table
*htab
;
9568 htab
= mips_elf_hash_table (info
);
9569 BFD_ASSERT (htab
!= NULL
);
9570 BFD_ASSERT (name
!= NULL
);
9571 if (!htab
->small_data_overflow_reported
9572 && (gprel16_reloc_p (howto
->type
)
9573 || literal_reloc_p (howto
->type
)))
9575 msg
= _("small-data section exceeds 64KB;"
9576 " lower small-data size limit (see option -G)");
9578 htab
->small_data_overflow_reported
= TRUE
;
9579 (*info
->callbacks
->einfo
) ("%P: %s\n", msg
);
9581 if (! ((*info
->callbacks
->reloc_overflow
)
9582 (info
, NULL
, name
, howto
->name
, (bfd_vma
) 0,
9583 input_bfd
, input_section
, rel
->r_offset
)))
9591 case bfd_reloc_outofrange
:
9592 if (jal_reloc_p (howto
->type
))
9594 msg
= _("JALX to a non-word-aligned address");
9595 info
->callbacks
->warning
9596 (info
, msg
, name
, input_bfd
, input_section
, rel
->r_offset
);
9606 /* If we've got another relocation for the address, keep going
9607 until we reach the last one. */
9608 if (use_saved_addend_p
)
9614 if (r_type
== R_MIPS_64
&& ! NEWABI_P (output_bfd
))
9615 /* See the comment above about using R_MIPS_64 in the 32-bit
9616 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9617 that calculated the right value. Now, however, we
9618 sign-extend the 32-bit result to 64-bits, and store it as a
9619 64-bit value. We are especially generous here in that we
9620 go to extreme lengths to support this usage on systems with
9621 only a 32-bit VMA. */
9627 if (value
& ((bfd_vma
) 1 << 31))
9629 sign_bits
= ((bfd_vma
) 1 << 32) - 1;
9636 /* If we don't know that we have a 64-bit type,
9637 do two separate stores. */
9638 if (bfd_big_endian (input_bfd
))
9640 /* Undo what we did above. */
9642 /* Store the sign-bits (which are most significant)
9644 low_bits
= sign_bits
;
9650 high_bits
= sign_bits
;
9652 bfd_put_32 (input_bfd
, low_bits
,
9653 contents
+ rel
->r_offset
);
9654 bfd_put_32 (input_bfd
, high_bits
,
9655 contents
+ rel
->r_offset
+ 4);
9659 /* Actually perform the relocation. */
9660 if (! mips_elf_perform_relocation (info
, howto
, rel
, value
,
9661 input_bfd
, input_section
,
9662 contents
, cross_mode_jump_p
))
9669 /* A function that iterates over each entry in la25_stubs and fills
9670 in the code for each one. DATA points to a mips_htab_traverse_info. */
9673 mips_elf_create_la25_stub (void **slot
, void *data
)
9675 struct mips_htab_traverse_info
*hti
;
9676 struct mips_elf_link_hash_table
*htab
;
9677 struct mips_elf_la25_stub
*stub
;
9680 bfd_vma offset
, target
, target_high
, target_low
;
9682 stub
= (struct mips_elf_la25_stub
*) *slot
;
9683 hti
= (struct mips_htab_traverse_info
*) data
;
9684 htab
= mips_elf_hash_table (hti
->info
);
9685 BFD_ASSERT (htab
!= NULL
);
9687 /* Create the section contents, if we haven't already. */
9688 s
= stub
->stub_section
;
9692 loc
= bfd_malloc (s
->size
);
9701 /* Work out where in the section this stub should go. */
9702 offset
= stub
->offset
;
9704 /* Work out the target address. */
9705 target
= mips_elf_get_la25_target (stub
, &s
);
9706 target
+= s
->output_section
->vma
+ s
->output_offset
;
9708 target_high
= ((target
+ 0x8000) >> 16) & 0xffff;
9709 target_low
= (target
& 0xffff);
9711 if (stub
->stub_section
!= htab
->strampoline
)
9713 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9714 of the section and write the two instructions at the end. */
9715 memset (loc
, 0, offset
);
9717 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
9719 bfd_put_16 (hti
->output_bfd
, LA25_LUI_MICROMIPS_1 (target_high
),
9721 bfd_put_16 (hti
->output_bfd
, LA25_LUI_MICROMIPS_2 (target_high
),
9723 bfd_put_16 (hti
->output_bfd
, LA25_ADDIU_MICROMIPS_1 (target_low
),
9725 bfd_put_16 (hti
->output_bfd
, LA25_ADDIU_MICROMIPS_2 (target_low
),
9730 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9731 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 4);
9736 /* This is trampoline. */
9738 if (ELF_ST_IS_MICROMIPS (stub
->h
->root
.other
))
9740 bfd_put_16 (hti
->output_bfd
, LA25_LUI_MICROMIPS_1 (target_high
),
9742 bfd_put_16 (hti
->output_bfd
, LA25_LUI_MICROMIPS_2 (target_high
),
9744 bfd_put_16 (hti
->output_bfd
, LA25_J_MICROMIPS_1 (target
), loc
+ 4);
9745 bfd_put_16 (hti
->output_bfd
, LA25_J_MICROMIPS_2 (target
), loc
+ 6);
9746 bfd_put_16 (hti
->output_bfd
, LA25_ADDIU_MICROMIPS_1 (target_low
),
9748 bfd_put_16 (hti
->output_bfd
, LA25_ADDIU_MICROMIPS_2 (target_low
),
9750 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
9754 bfd_put_32 (hti
->output_bfd
, LA25_LUI (target_high
), loc
);
9755 bfd_put_32 (hti
->output_bfd
, LA25_J (target
), loc
+ 4);
9756 bfd_put_32 (hti
->output_bfd
, LA25_ADDIU (target_low
), loc
+ 8);
9757 bfd_put_32 (hti
->output_bfd
, 0, loc
+ 12);
9763 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9764 adjust it appropriately now. */
9767 mips_elf_irix6_finish_dynamic_symbol (bfd
*abfd ATTRIBUTE_UNUSED
,
9768 const char *name
, Elf_Internal_Sym
*sym
)
9770 /* The linker script takes care of providing names and values for
9771 these, but we must place them into the right sections. */
9772 static const char* const text_section_symbols
[] = {
9775 "__dso_displacement",
9777 "__program_header_table",
9781 static const char* const data_section_symbols
[] = {
9789 const char* const *p
;
9792 for (i
= 0; i
< 2; ++i
)
9793 for (p
= (i
== 0) ? text_section_symbols
: data_section_symbols
;
9796 if (strcmp (*p
, name
) == 0)
9798 /* All of these symbols are given type STT_SECTION by the
9800 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
9801 sym
->st_other
= STO_PROTECTED
;
9803 /* The IRIX linker puts these symbols in special sections. */
9805 sym
->st_shndx
= SHN_MIPS_TEXT
;
9807 sym
->st_shndx
= SHN_MIPS_DATA
;
9813 /* Finish up dynamic symbol handling. We set the contents of various
9814 dynamic sections here. */
9817 _bfd_mips_elf_finish_dynamic_symbol (bfd
*output_bfd
,
9818 struct bfd_link_info
*info
,
9819 struct elf_link_hash_entry
*h
,
9820 Elf_Internal_Sym
*sym
)
9824 struct mips_got_info
*g
, *gg
;
9827 struct mips_elf_link_hash_table
*htab
;
9828 struct mips_elf_link_hash_entry
*hmips
;
9830 htab
= mips_elf_hash_table (info
);
9831 BFD_ASSERT (htab
!= NULL
);
9832 dynobj
= elf_hash_table (info
)->dynobj
;
9833 hmips
= (struct mips_elf_link_hash_entry
*) h
;
9835 BFD_ASSERT (!htab
->is_vxworks
);
9837 if (h
->plt
.offset
!= MINUS_ONE
&& hmips
->no_fn_stub
)
9839 /* We've decided to create a PLT entry for this symbol. */
9841 bfd_vma header_address
, plt_index
, got_address
;
9842 bfd_vma got_address_high
, got_address_low
, load
;
9843 const bfd_vma
*plt_entry
;
9845 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
9846 BFD_ASSERT (h
->dynindx
!= -1);
9847 BFD_ASSERT (htab
->splt
!= NULL
);
9848 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
9849 BFD_ASSERT (!h
->def_regular
);
9851 /* Calculate the address of the PLT header. */
9852 header_address
= (htab
->splt
->output_section
->vma
9853 + htab
->splt
->output_offset
);
9855 /* Calculate the index of the entry. */
9856 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
9857 / htab
->plt_entry_size
);
9859 /* Calculate the address of the .got.plt entry. */
9860 got_address
= (htab
->sgotplt
->output_section
->vma
9861 + htab
->sgotplt
->output_offset
9862 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9863 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
9864 got_address_low
= got_address
& 0xffff;
9866 /* Initially point the .got.plt entry at the PLT header. */
9867 loc
= (htab
->sgotplt
->contents
9868 + (2 + plt_index
) * MIPS_ELF_GOT_SIZE (dynobj
));
9869 if (ABI_64_P (output_bfd
))
9870 bfd_put_64 (output_bfd
, header_address
, loc
);
9872 bfd_put_32 (output_bfd
, header_address
, loc
);
9874 /* Find out where the .plt entry should go. */
9875 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
9877 /* Pick the load opcode. */
9878 load
= MIPS_ELF_LOAD_WORD (output_bfd
);
9880 /* Fill in the PLT entry itself. */
9881 plt_entry
= mips_exec_plt_entry
;
9882 bfd_put_32 (output_bfd
, plt_entry
[0] | got_address_high
, loc
);
9883 bfd_put_32 (output_bfd
, plt_entry
[1] | got_address_low
| load
, loc
+ 4);
9885 if (! LOAD_INTERLOCKS_P (output_bfd
))
9887 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 8);
9888 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
9892 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 8);
9893 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_low
, loc
+ 12);
9896 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9897 mips_elf_output_dynamic_relocation (output_bfd
, htab
->srelplt
,
9898 plt_index
, h
->dynindx
,
9899 R_MIPS_JUMP_SLOT
, got_address
);
9901 /* We distinguish between PLT entries and lazy-binding stubs by
9902 giving the former an st_other value of STO_MIPS_PLT. Set the
9903 flag and leave the value if there are any relocations in the
9904 binary where pointer equality matters. */
9905 sym
->st_shndx
= SHN_UNDEF
;
9906 if (h
->pointer_equality_needed
)
9907 sym
->st_other
= STO_MIPS_PLT
;
9911 else if (h
->plt
.offset
!= MINUS_ONE
)
9913 /* We've decided to create a lazy-binding stub. */
9914 bfd_byte stub
[MIPS_FUNCTION_STUB_BIG_SIZE
];
9916 /* This symbol has a stub. Set it up. */
9918 BFD_ASSERT (h
->dynindx
!= -1);
9920 BFD_ASSERT ((htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9921 || (h
->dynindx
<= 0xffff));
9923 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9924 sign extension at runtime in the stub, resulting in a negative
9926 if (h
->dynindx
& ~0x7fffffff)
9929 /* Fill the stub. */
9931 bfd_put_32 (output_bfd
, STUB_LW (output_bfd
), stub
+ idx
);
9933 bfd_put_32 (output_bfd
, STUB_MOVE (output_bfd
), stub
+ idx
);
9935 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9937 bfd_put_32 (output_bfd
, STUB_LUI ((h
->dynindx
>> 16) & 0x7fff),
9941 bfd_put_32 (output_bfd
, STUB_JALR
, stub
+ idx
);
9944 /* If a large stub is not required and sign extension is not a
9945 problem, then use legacy code in the stub. */
9946 if (htab
->function_stub_size
== MIPS_FUNCTION_STUB_BIG_SIZE
)
9947 bfd_put_32 (output_bfd
, STUB_ORI (h
->dynindx
& 0xffff), stub
+ idx
);
9948 else if (h
->dynindx
& ~0x7fff)
9949 bfd_put_32 (output_bfd
, STUB_LI16U (h
->dynindx
& 0xffff), stub
+ idx
);
9951 bfd_put_32 (output_bfd
, STUB_LI16S (output_bfd
, h
->dynindx
),
9954 BFD_ASSERT (h
->plt
.offset
<= htab
->sstubs
->size
);
9955 memcpy (htab
->sstubs
->contents
+ h
->plt
.offset
,
9956 stub
, htab
->function_stub_size
);
9958 /* Mark the symbol as undefined. plt.offset != -1 occurs
9959 only for the referenced symbol. */
9960 sym
->st_shndx
= SHN_UNDEF
;
9962 /* The run-time linker uses the st_value field of the symbol
9963 to reset the global offset table entry for this external
9964 to its stub address when unlinking a shared object. */
9965 sym
->st_value
= (htab
->sstubs
->output_section
->vma
9966 + htab
->sstubs
->output_offset
9970 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9971 refer to the stub, since only the stub uses the standard calling
9973 if (h
->dynindx
!= -1 && hmips
->fn_stub
!= NULL
)
9975 BFD_ASSERT (hmips
->need_fn_stub
);
9976 sym
->st_value
= (hmips
->fn_stub
->output_section
->vma
9977 + hmips
->fn_stub
->output_offset
);
9978 sym
->st_size
= hmips
->fn_stub
->size
;
9979 sym
->st_other
= ELF_ST_VISIBILITY (sym
->st_other
);
9982 BFD_ASSERT (h
->dynindx
!= -1
9983 || h
->forced_local
);
9987 BFD_ASSERT (g
!= NULL
);
9989 /* Run through the global symbol table, creating GOT entries for all
9990 the symbols that need them. */
9991 if (hmips
->global_got_area
!= GGA_NONE
)
9996 value
= sym
->st_value
;
9997 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
9998 R_MIPS_GOT16
, info
);
9999 MIPS_ELF_PUT_WORD (output_bfd
, value
, sgot
->contents
+ offset
);
10002 if (hmips
->global_got_area
!= GGA_NONE
&& g
->next
&& h
->type
!= STT_TLS
)
10004 struct mips_got_entry e
, *p
;
10010 e
.abfd
= output_bfd
;
10015 for (g
= g
->next
; g
->next
!= gg
; g
= g
->next
)
10018 && (p
= (struct mips_got_entry
*) htab_find (g
->got_entries
,
10021 offset
= p
->gotidx
;
10023 || (elf_hash_table (info
)->dynamic_sections_created
10025 && p
->d
.h
->root
.def_dynamic
10026 && !p
->d
.h
->root
.def_regular
))
10028 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10029 the various compatibility problems, it's easier to mock
10030 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10031 mips_elf_create_dynamic_relocation to calculate the
10032 appropriate addend. */
10033 Elf_Internal_Rela rel
[3];
10035 memset (rel
, 0, sizeof (rel
));
10036 if (ABI_64_P (output_bfd
))
10037 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_64
);
10039 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_32
);
10040 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
= offset
;
10043 if (! (mips_elf_create_dynamic_relocation
10044 (output_bfd
, info
, rel
,
10045 e
.d
.h
, NULL
, sym
->st_value
, &entry
, sgot
)))
10049 entry
= sym
->st_value
;
10050 MIPS_ELF_PUT_WORD (output_bfd
, entry
, sgot
->contents
+ offset
);
10055 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10056 name
= h
->root
.root
.string
;
10057 if (strcmp (name
, "_DYNAMIC") == 0
10058 || h
== elf_hash_table (info
)->hgot
)
10059 sym
->st_shndx
= SHN_ABS
;
10060 else if (strcmp (name
, "_DYNAMIC_LINK") == 0
10061 || strcmp (name
, "_DYNAMIC_LINKING") == 0)
10063 sym
->st_shndx
= SHN_ABS
;
10064 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
10067 else if (strcmp (name
, "_gp_disp") == 0 && ! NEWABI_P (output_bfd
))
10069 sym
->st_shndx
= SHN_ABS
;
10070 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
10071 sym
->st_value
= elf_gp (output_bfd
);
10073 else if (SGI_COMPAT (output_bfd
))
10075 if (strcmp (name
, mips_elf_dynsym_rtproc_names
[0]) == 0
10076 || strcmp (name
, mips_elf_dynsym_rtproc_names
[1]) == 0)
10078 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
10079 sym
->st_other
= STO_PROTECTED
;
10081 sym
->st_shndx
= SHN_MIPS_DATA
;
10083 else if (strcmp (name
, mips_elf_dynsym_rtproc_names
[2]) == 0)
10085 sym
->st_info
= ELF_ST_INFO (STB_GLOBAL
, STT_SECTION
);
10086 sym
->st_other
= STO_PROTECTED
;
10087 sym
->st_value
= mips_elf_hash_table (info
)->procedure_count
;
10088 sym
->st_shndx
= SHN_ABS
;
10090 else if (sym
->st_shndx
!= SHN_UNDEF
&& sym
->st_shndx
!= SHN_ABS
)
10092 if (h
->type
== STT_FUNC
)
10093 sym
->st_shndx
= SHN_MIPS_TEXT
;
10094 else if (h
->type
== STT_OBJECT
)
10095 sym
->st_shndx
= SHN_MIPS_DATA
;
10099 /* Emit a copy reloc, if needed. */
10105 BFD_ASSERT (h
->dynindx
!= -1);
10106 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10108 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10109 symval
= (h
->root
.u
.def
.section
->output_section
->vma
10110 + h
->root
.u
.def
.section
->output_offset
10111 + h
->root
.u
.def
.value
);
10112 mips_elf_output_dynamic_relocation (output_bfd
, s
, s
->reloc_count
++,
10113 h
->dynindx
, R_MIPS_COPY
, symval
);
10116 /* Handle the IRIX6-specific symbols. */
10117 if (IRIX_COMPAT (output_bfd
) == ict_irix6
)
10118 mips_elf_irix6_finish_dynamic_symbol (output_bfd
, name
, sym
);
10120 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10121 treat MIPS16 symbols like any other. */
10122 if (ELF_ST_IS_MIPS16 (sym
->st_other
))
10124 BFD_ASSERT (sym
->st_value
& 1);
10125 sym
->st_other
-= STO_MIPS16
;
10131 /* Likewise, for VxWorks. */
10134 _bfd_mips_vxworks_finish_dynamic_symbol (bfd
*output_bfd
,
10135 struct bfd_link_info
*info
,
10136 struct elf_link_hash_entry
*h
,
10137 Elf_Internal_Sym
*sym
)
10141 struct mips_got_info
*g
;
10142 struct mips_elf_link_hash_table
*htab
;
10143 struct mips_elf_link_hash_entry
*hmips
;
10145 htab
= mips_elf_hash_table (info
);
10146 BFD_ASSERT (htab
!= NULL
);
10147 dynobj
= elf_hash_table (info
)->dynobj
;
10148 hmips
= (struct mips_elf_link_hash_entry
*) h
;
10150 if (h
->plt
.offset
!= (bfd_vma
) -1)
10153 bfd_vma plt_address
, plt_index
, got_address
, got_offset
, branch_offset
;
10154 Elf_Internal_Rela rel
;
10155 static const bfd_vma
*plt_entry
;
10157 BFD_ASSERT (h
->dynindx
!= -1);
10158 BFD_ASSERT (htab
->splt
!= NULL
);
10159 BFD_ASSERT (h
->plt
.offset
<= htab
->splt
->size
);
10161 /* Calculate the address of the .plt entry. */
10162 plt_address
= (htab
->splt
->output_section
->vma
10163 + htab
->splt
->output_offset
10166 /* Calculate the index of the entry. */
10167 plt_index
= ((h
->plt
.offset
- htab
->plt_header_size
)
10168 / htab
->plt_entry_size
);
10170 /* Calculate the address of the .got.plt entry. */
10171 got_address
= (htab
->sgotplt
->output_section
->vma
10172 + htab
->sgotplt
->output_offset
10175 /* Calculate the offset of the .got.plt entry from
10176 _GLOBAL_OFFSET_TABLE_. */
10177 got_offset
= mips_elf_gotplt_index (info
, h
);
10179 /* Calculate the offset for the branch at the start of the PLT
10180 entry. The branch jumps to the beginning of .plt. */
10181 branch_offset
= -(h
->plt
.offset
/ 4 + 1) & 0xffff;
10183 /* Fill in the initial value of the .got.plt entry. */
10184 bfd_put_32 (output_bfd
, plt_address
,
10185 htab
->sgotplt
->contents
+ plt_index
* 4);
10187 /* Find out where the .plt entry should go. */
10188 loc
= htab
->splt
->contents
+ h
->plt
.offset
;
10192 plt_entry
= mips_vxworks_shared_plt_entry
;
10193 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
10194 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
10198 bfd_vma got_address_high
, got_address_low
;
10200 plt_entry
= mips_vxworks_exec_plt_entry
;
10201 got_address_high
= ((got_address
+ 0x8000) >> 16) & 0xffff;
10202 got_address_low
= got_address
& 0xffff;
10204 bfd_put_32 (output_bfd
, plt_entry
[0] | branch_offset
, loc
);
10205 bfd_put_32 (output_bfd
, plt_entry
[1] | plt_index
, loc
+ 4);
10206 bfd_put_32 (output_bfd
, plt_entry
[2] | got_address_high
, loc
+ 8);
10207 bfd_put_32 (output_bfd
, plt_entry
[3] | got_address_low
, loc
+ 12);
10208 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
10209 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
10210 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
10211 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
10213 loc
= (htab
->srelplt2
->contents
10214 + (plt_index
* 3 + 2) * sizeof (Elf32_External_Rela
));
10216 /* Emit a relocation for the .got.plt entry. */
10217 rel
.r_offset
= got_address
;
10218 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
10219 rel
.r_addend
= h
->plt
.offset
;
10220 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10222 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10223 loc
+= sizeof (Elf32_External_Rela
);
10224 rel
.r_offset
= plt_address
+ 8;
10225 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
10226 rel
.r_addend
= got_offset
;
10227 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10229 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10230 loc
+= sizeof (Elf32_External_Rela
);
10232 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
10233 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10236 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10237 loc
= htab
->srelplt
->contents
+ plt_index
* sizeof (Elf32_External_Rela
);
10238 rel
.r_offset
= got_address
;
10239 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_JUMP_SLOT
);
10241 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10243 if (!h
->def_regular
)
10244 sym
->st_shndx
= SHN_UNDEF
;
10247 BFD_ASSERT (h
->dynindx
!= -1 || h
->forced_local
);
10250 g
= htab
->got_info
;
10251 BFD_ASSERT (g
!= NULL
);
10253 /* See if this symbol has an entry in the GOT. */
10254 if (hmips
->global_got_area
!= GGA_NONE
)
10257 Elf_Internal_Rela outrel
;
10261 /* Install the symbol value in the GOT. */
10262 offset
= mips_elf_global_got_index (dynobj
, output_bfd
, h
,
10263 R_MIPS_GOT16
, info
);
10264 MIPS_ELF_PUT_WORD (output_bfd
, sym
->st_value
, sgot
->contents
+ offset
);
10266 /* Add a dynamic relocation for it. */
10267 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10268 loc
= s
->contents
+ (s
->reloc_count
++ * sizeof (Elf32_External_Rela
));
10269 outrel
.r_offset
= (sgot
->output_section
->vma
10270 + sgot
->output_offset
10272 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_32
);
10273 outrel
.r_addend
= 0;
10274 bfd_elf32_swap_reloca_out (dynobj
, &outrel
, loc
);
10277 /* Emit a copy reloc, if needed. */
10280 Elf_Internal_Rela rel
;
10282 BFD_ASSERT (h
->dynindx
!= -1);
10284 rel
.r_offset
= (h
->root
.u
.def
.section
->output_section
->vma
10285 + h
->root
.u
.def
.section
->output_offset
10286 + h
->root
.u
.def
.value
);
10287 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_MIPS_COPY
);
10289 bfd_elf32_swap_reloca_out (output_bfd
, &rel
,
10290 htab
->srelbss
->contents
10291 + (htab
->srelbss
->reloc_count
10292 * sizeof (Elf32_External_Rela
)));
10293 ++htab
->srelbss
->reloc_count
;
10296 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10297 if (ELF_ST_IS_COMPRESSED (sym
->st_other
))
10298 sym
->st_value
&= ~1;
10303 /* Write out a plt0 entry to the beginning of .plt. */
10306 mips_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
10309 bfd_vma gotplt_value
, gotplt_value_high
, gotplt_value_low
;
10310 static const bfd_vma
*plt_entry
;
10311 struct mips_elf_link_hash_table
*htab
;
10313 htab
= mips_elf_hash_table (info
);
10314 BFD_ASSERT (htab
!= NULL
);
10316 if (ABI_64_P (output_bfd
))
10317 plt_entry
= mips_n64_exec_plt0_entry
;
10318 else if (ABI_N32_P (output_bfd
))
10319 plt_entry
= mips_n32_exec_plt0_entry
;
10321 plt_entry
= mips_o32_exec_plt0_entry
;
10323 /* Calculate the value of .got.plt. */
10324 gotplt_value
= (htab
->sgotplt
->output_section
->vma
10325 + htab
->sgotplt
->output_offset
);
10326 gotplt_value_high
= ((gotplt_value
+ 0x8000) >> 16) & 0xffff;
10327 gotplt_value_low
= gotplt_value
& 0xffff;
10329 /* The PLT sequence is not safe for N64 if .got.plt's address can
10330 not be loaded in two instructions. */
10331 BFD_ASSERT ((gotplt_value
& ~(bfd_vma
) 0x7fffffff) == 0
10332 || ~(gotplt_value
| 0x7fffffff) == 0);
10334 /* Install the PLT header. */
10335 loc
= htab
->splt
->contents
;
10336 bfd_put_32 (output_bfd
, plt_entry
[0] | gotplt_value_high
, loc
);
10337 bfd_put_32 (output_bfd
, plt_entry
[1] | gotplt_value_low
, loc
+ 4);
10338 bfd_put_32 (output_bfd
, plt_entry
[2] | gotplt_value_low
, loc
+ 8);
10339 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
10340 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
10341 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
10342 bfd_put_32 (output_bfd
, plt_entry
[6], loc
+ 24);
10343 bfd_put_32 (output_bfd
, plt_entry
[7], loc
+ 28);
10346 /* Install the PLT header for a VxWorks executable and finalize the
10347 contents of .rela.plt.unloaded. */
10350 mips_vxworks_finish_exec_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
10352 Elf_Internal_Rela rela
;
10354 bfd_vma got_value
, got_value_high
, got_value_low
, plt_address
;
10355 static const bfd_vma
*plt_entry
;
10356 struct mips_elf_link_hash_table
*htab
;
10358 htab
= mips_elf_hash_table (info
);
10359 BFD_ASSERT (htab
!= NULL
);
10361 plt_entry
= mips_vxworks_exec_plt0_entry
;
10363 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10364 got_value
= (htab
->root
.hgot
->root
.u
.def
.section
->output_section
->vma
10365 + htab
->root
.hgot
->root
.u
.def
.section
->output_offset
10366 + htab
->root
.hgot
->root
.u
.def
.value
);
10368 got_value_high
= ((got_value
+ 0x8000) >> 16) & 0xffff;
10369 got_value_low
= got_value
& 0xffff;
10371 /* Calculate the address of the PLT header. */
10372 plt_address
= htab
->splt
->output_section
->vma
+ htab
->splt
->output_offset
;
10374 /* Install the PLT header. */
10375 loc
= htab
->splt
->contents
;
10376 bfd_put_32 (output_bfd
, plt_entry
[0] | got_value_high
, loc
);
10377 bfd_put_32 (output_bfd
, plt_entry
[1] | got_value_low
, loc
+ 4);
10378 bfd_put_32 (output_bfd
, plt_entry
[2], loc
+ 8);
10379 bfd_put_32 (output_bfd
, plt_entry
[3], loc
+ 12);
10380 bfd_put_32 (output_bfd
, plt_entry
[4], loc
+ 16);
10381 bfd_put_32 (output_bfd
, plt_entry
[5], loc
+ 20);
10383 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10384 loc
= htab
->srelplt2
->contents
;
10385 rela
.r_offset
= plt_address
;
10386 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
10388 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
10389 loc
+= sizeof (Elf32_External_Rela
);
10391 /* Output the relocation for the following addiu of
10392 %lo(_GLOBAL_OFFSET_TABLE_). */
10393 rela
.r_offset
+= 4;
10394 rela
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
10395 bfd_elf32_swap_reloca_out (output_bfd
, &rela
, loc
);
10396 loc
+= sizeof (Elf32_External_Rela
);
10398 /* Fix up the remaining relocations. They may have the wrong
10399 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10400 in which symbols were output. */
10401 while (loc
< htab
->srelplt2
->contents
+ htab
->srelplt2
->size
)
10403 Elf_Internal_Rela rel
;
10405 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
10406 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_MIPS_32
);
10407 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10408 loc
+= sizeof (Elf32_External_Rela
);
10410 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
10411 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_HI16
);
10412 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10413 loc
+= sizeof (Elf32_External_Rela
);
10415 bfd_elf32_swap_reloca_in (output_bfd
, loc
, &rel
);
10416 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_MIPS_LO16
);
10417 bfd_elf32_swap_reloca_out (output_bfd
, &rel
, loc
);
10418 loc
+= sizeof (Elf32_External_Rela
);
10422 /* Install the PLT header for a VxWorks shared library. */
10425 mips_vxworks_finish_shared_plt (bfd
*output_bfd
, struct bfd_link_info
*info
)
10428 struct mips_elf_link_hash_table
*htab
;
10430 htab
= mips_elf_hash_table (info
);
10431 BFD_ASSERT (htab
!= NULL
);
10433 /* We just need to copy the entry byte-by-byte. */
10434 for (i
= 0; i
< ARRAY_SIZE (mips_vxworks_shared_plt0_entry
); i
++)
10435 bfd_put_32 (output_bfd
, mips_vxworks_shared_plt0_entry
[i
],
10436 htab
->splt
->contents
+ i
* 4);
10439 /* Finish up the dynamic sections. */
10442 _bfd_mips_elf_finish_dynamic_sections (bfd
*output_bfd
,
10443 struct bfd_link_info
*info
)
10448 struct mips_got_info
*gg
, *g
;
10449 struct mips_elf_link_hash_table
*htab
;
10451 htab
= mips_elf_hash_table (info
);
10452 BFD_ASSERT (htab
!= NULL
);
10454 dynobj
= elf_hash_table (info
)->dynobj
;
10456 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
10459 gg
= htab
->got_info
;
10461 if (elf_hash_table (info
)->dynamic_sections_created
)
10464 int dyn_to_skip
= 0, dyn_skipped
= 0;
10466 BFD_ASSERT (sdyn
!= NULL
);
10467 BFD_ASSERT (gg
!= NULL
);
10469 g
= mips_elf_got_for_ibfd (gg
, output_bfd
);
10470 BFD_ASSERT (g
!= NULL
);
10472 for (b
= sdyn
->contents
;
10473 b
< sdyn
->contents
+ sdyn
->size
;
10474 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10476 Elf_Internal_Dyn dyn
;
10480 bfd_boolean swap_out_p
;
10482 /* Read in the current dynamic entry. */
10483 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10485 /* Assume that we're going to modify it and write it out. */
10491 dyn
.d_un
.d_val
= MIPS_ELF_REL_SIZE (dynobj
);
10495 BFD_ASSERT (htab
->is_vxworks
);
10496 dyn
.d_un
.d_val
= MIPS_ELF_RELA_SIZE (dynobj
);
10500 /* Rewrite DT_STRSZ. */
10502 _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
10507 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10510 case DT_MIPS_PLTGOT
:
10512 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
10515 case DT_MIPS_RLD_VERSION
:
10516 dyn
.d_un
.d_val
= 1; /* XXX */
10519 case DT_MIPS_FLAGS
:
10520 dyn
.d_un
.d_val
= RHF_NOTPOT
; /* XXX */
10523 case DT_MIPS_TIME_STAMP
:
10527 dyn
.d_un
.d_val
= t
;
10531 case DT_MIPS_ICHECKSUM
:
10533 swap_out_p
= FALSE
;
10536 case DT_MIPS_IVERSION
:
10538 swap_out_p
= FALSE
;
10541 case DT_MIPS_BASE_ADDRESS
:
10542 s
= output_bfd
->sections
;
10543 BFD_ASSERT (s
!= NULL
);
10544 dyn
.d_un
.d_ptr
= s
->vma
& ~(bfd_vma
) 0xffff;
10547 case DT_MIPS_LOCAL_GOTNO
:
10548 dyn
.d_un
.d_val
= g
->local_gotno
;
10551 case DT_MIPS_UNREFEXTNO
:
10552 /* The index into the dynamic symbol table which is the
10553 entry of the first external symbol that is not
10554 referenced within the same object. */
10555 dyn
.d_un
.d_val
= bfd_count_sections (output_bfd
) + 1;
10558 case DT_MIPS_GOTSYM
:
10559 if (gg
->global_gotsym
)
10561 dyn
.d_un
.d_val
= gg
->global_gotsym
->dynindx
;
10564 /* In case if we don't have global got symbols we default
10565 to setting DT_MIPS_GOTSYM to the same value as
10566 DT_MIPS_SYMTABNO, so we just fall through. */
10568 case DT_MIPS_SYMTABNO
:
10570 elemsize
= MIPS_ELF_SYM_SIZE (output_bfd
);
10571 s
= bfd_get_section_by_name (output_bfd
, name
);
10572 BFD_ASSERT (s
!= NULL
);
10574 dyn
.d_un
.d_val
= s
->size
/ elemsize
;
10577 case DT_MIPS_HIPAGENO
:
10578 dyn
.d_un
.d_val
= g
->local_gotno
- htab
->reserved_gotno
;
10581 case DT_MIPS_RLD_MAP
:
10583 struct elf_link_hash_entry
*h
;
10584 h
= mips_elf_hash_table (info
)->rld_symbol
;
10587 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
10588 swap_out_p
= FALSE
;
10591 s
= h
->root
.u
.def
.section
;
10592 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
10593 + h
->root
.u
.def
.value
);
10597 case DT_MIPS_OPTIONS
:
10598 s
= (bfd_get_section_by_name
10599 (output_bfd
, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd
)));
10600 dyn
.d_un
.d_ptr
= s
->vma
;
10604 BFD_ASSERT (htab
->is_vxworks
);
10605 /* The count does not include the JUMP_SLOT relocations. */
10607 dyn
.d_un
.d_val
-= htab
->srelplt
->size
;
10611 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10612 if (htab
->is_vxworks
)
10613 dyn
.d_un
.d_val
= DT_RELA
;
10615 dyn
.d_un
.d_val
= DT_REL
;
10619 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10620 dyn
.d_un
.d_val
= htab
->srelplt
->size
;
10624 BFD_ASSERT (htab
->use_plts_and_copy_relocs
);
10625 dyn
.d_un
.d_ptr
= (htab
->srelplt
->output_section
->vma
10626 + htab
->srelplt
->output_offset
);
10630 /* If we didn't need any text relocations after all, delete
10631 the dynamic tag. */
10632 if (!(info
->flags
& DF_TEXTREL
))
10634 dyn_to_skip
= MIPS_ELF_DYN_SIZE (dynobj
);
10635 swap_out_p
= FALSE
;
10640 /* If we didn't need any text relocations after all, clear
10641 DF_TEXTREL from DT_FLAGS. */
10642 if (!(info
->flags
& DF_TEXTREL
))
10643 dyn
.d_un
.d_val
&= ~DF_TEXTREL
;
10645 swap_out_p
= FALSE
;
10649 swap_out_p
= FALSE
;
10650 if (htab
->is_vxworks
10651 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
10656 if (swap_out_p
|| dyn_skipped
)
10657 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10658 (dynobj
, &dyn
, b
- dyn_skipped
);
10662 dyn_skipped
+= dyn_to_skip
;
10667 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10668 if (dyn_skipped
> 0)
10669 memset (b
- dyn_skipped
, 0, dyn_skipped
);
10672 if (sgot
!= NULL
&& sgot
->size
> 0
10673 && !bfd_is_abs_section (sgot
->output_section
))
10675 if (htab
->is_vxworks
)
10677 /* The first entry of the global offset table points to the
10678 ".dynamic" section. The second is initialized by the
10679 loader and contains the shared library identifier.
10680 The third is also initialized by the loader and points
10681 to the lazy resolution stub. */
10682 MIPS_ELF_PUT_WORD (output_bfd
,
10683 sdyn
->output_offset
+ sdyn
->output_section
->vma
,
10685 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10686 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10687 MIPS_ELF_PUT_WORD (output_bfd
, 0,
10689 + 2 * MIPS_ELF_GOT_SIZE (output_bfd
));
10693 /* The first entry of the global offset table will be filled at
10694 runtime. The second entry will be used by some runtime loaders.
10695 This isn't the case of IRIX rld. */
10696 MIPS_ELF_PUT_WORD (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
10697 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10698 sgot
->contents
+ MIPS_ELF_GOT_SIZE (output_bfd
));
10701 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
10702 = MIPS_ELF_GOT_SIZE (output_bfd
);
10705 /* Generate dynamic relocations for the non-primary gots. */
10706 if (gg
!= NULL
&& gg
->next
)
10708 Elf_Internal_Rela rel
[3];
10709 bfd_vma addend
= 0;
10711 memset (rel
, 0, sizeof (rel
));
10712 rel
[0].r_info
= ELF_R_INFO (output_bfd
, 0, R_MIPS_REL32
);
10714 for (g
= gg
->next
; g
->next
!= gg
; g
= g
->next
)
10716 bfd_vma got_index
= g
->next
->local_gotno
+ g
->next
->global_gotno
10717 + g
->next
->tls_gotno
;
10719 MIPS_ELF_PUT_WORD (output_bfd
, 0, sgot
->contents
10720 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10721 MIPS_ELF_PUT_WORD (output_bfd
, MIPS_ELF_GNU_GOT1_MASK (output_bfd
),
10723 + got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
));
10725 if (! info
->shared
)
10728 while (got_index
< g
->assigned_gotno
)
10730 rel
[0].r_offset
= rel
[1].r_offset
= rel
[2].r_offset
10731 = got_index
++ * MIPS_ELF_GOT_SIZE (output_bfd
);
10732 if (!(mips_elf_create_dynamic_relocation
10733 (output_bfd
, info
, rel
, NULL
,
10734 bfd_abs_section_ptr
,
10735 0, &addend
, sgot
)))
10737 BFD_ASSERT (addend
== 0);
10742 /* The generation of dynamic relocations for the non-primary gots
10743 adds more dynamic relocations. We cannot count them until
10746 if (elf_hash_table (info
)->dynamic_sections_created
)
10749 bfd_boolean swap_out_p
;
10751 BFD_ASSERT (sdyn
!= NULL
);
10753 for (b
= sdyn
->contents
;
10754 b
< sdyn
->contents
+ sdyn
->size
;
10755 b
+= MIPS_ELF_DYN_SIZE (dynobj
))
10757 Elf_Internal_Dyn dyn
;
10760 /* Read in the current dynamic entry. */
10761 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_in
) (dynobj
, b
, &dyn
);
10763 /* Assume that we're going to modify it and write it out. */
10769 /* Reduce DT_RELSZ to account for any relocations we
10770 decided not to make. This is for the n64 irix rld,
10771 which doesn't seem to apply any relocations if there
10772 are trailing null entries. */
10773 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10774 dyn
.d_un
.d_val
= (s
->reloc_count
10775 * (ABI_64_P (output_bfd
)
10776 ? sizeof (Elf64_Mips_External_Rel
)
10777 : sizeof (Elf32_External_Rel
)));
10778 /* Adjust the section size too. Tools like the prelinker
10779 can reasonably expect the values to the same. */
10780 elf_section_data (s
->output_section
)->this_hdr
.sh_size
10785 swap_out_p
= FALSE
;
10790 (*get_elf_backend_data (dynobj
)->s
->swap_dyn_out
)
10797 Elf32_compact_rel cpt
;
10799 if (SGI_COMPAT (output_bfd
))
10801 /* Write .compact_rel section out. */
10802 s
= bfd_get_section_by_name (dynobj
, ".compact_rel");
10806 cpt
.num
= s
->reloc_count
;
10808 cpt
.offset
= (s
->output_section
->filepos
10809 + sizeof (Elf32_External_compact_rel
));
10812 bfd_elf32_swap_compact_rel_out (output_bfd
, &cpt
,
10813 ((Elf32_External_compact_rel
*)
10816 /* Clean up a dummy stub function entry in .text. */
10817 if (htab
->sstubs
!= NULL
)
10819 file_ptr dummy_offset
;
10821 BFD_ASSERT (htab
->sstubs
->size
>= htab
->function_stub_size
);
10822 dummy_offset
= htab
->sstubs
->size
- htab
->function_stub_size
;
10823 memset (htab
->sstubs
->contents
+ dummy_offset
, 0,
10824 htab
->function_stub_size
);
10829 /* The psABI says that the dynamic relocations must be sorted in
10830 increasing order of r_symndx. The VxWorks EABI doesn't require
10831 this, and because the code below handles REL rather than RELA
10832 relocations, using it for VxWorks would be outright harmful. */
10833 if (!htab
->is_vxworks
)
10835 s
= mips_elf_rel_dyn_section (info
, FALSE
);
10837 && s
->size
> (bfd_vma
)2 * MIPS_ELF_REL_SIZE (output_bfd
))
10839 reldyn_sorting_bfd
= output_bfd
;
10841 if (ABI_64_P (output_bfd
))
10842 qsort ((Elf64_External_Rel
*) s
->contents
+ 1,
10843 s
->reloc_count
- 1, sizeof (Elf64_Mips_External_Rel
),
10844 sort_dynamic_relocs_64
);
10846 qsort ((Elf32_External_Rel
*) s
->contents
+ 1,
10847 s
->reloc_count
- 1, sizeof (Elf32_External_Rel
),
10848 sort_dynamic_relocs
);
10853 if (htab
->splt
&& htab
->splt
->size
> 0)
10855 if (htab
->is_vxworks
)
10858 mips_vxworks_finish_shared_plt (output_bfd
, info
);
10860 mips_vxworks_finish_exec_plt (output_bfd
, info
);
10864 BFD_ASSERT (!info
->shared
);
10865 mips_finish_exec_plt (output_bfd
, info
);
10872 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10875 mips_set_isa_flags (bfd
*abfd
)
10879 switch (bfd_get_mach (abfd
))
10882 case bfd_mach_mips3000
:
10883 val
= E_MIPS_ARCH_1
;
10886 case bfd_mach_mips3900
:
10887 val
= E_MIPS_ARCH_1
| E_MIPS_MACH_3900
;
10890 case bfd_mach_mips6000
:
10891 val
= E_MIPS_ARCH_2
;
10894 case bfd_mach_mips4000
:
10895 case bfd_mach_mips4300
:
10896 case bfd_mach_mips4400
:
10897 case bfd_mach_mips4600
:
10898 val
= E_MIPS_ARCH_3
;
10901 case bfd_mach_mips4010
:
10902 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4010
;
10905 case bfd_mach_mips4100
:
10906 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4100
;
10909 case bfd_mach_mips4111
:
10910 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4111
;
10913 case bfd_mach_mips4120
:
10914 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4120
;
10917 case bfd_mach_mips4650
:
10918 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_4650
;
10921 case bfd_mach_mips5400
:
10922 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5400
;
10925 case bfd_mach_mips5500
:
10926 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_5500
;
10929 case bfd_mach_mips9000
:
10930 val
= E_MIPS_ARCH_4
| E_MIPS_MACH_9000
;
10933 case bfd_mach_mips5000
:
10934 case bfd_mach_mips7000
:
10935 case bfd_mach_mips8000
:
10936 case bfd_mach_mips10000
:
10937 case bfd_mach_mips12000
:
10938 case bfd_mach_mips14000
:
10939 case bfd_mach_mips16000
:
10940 val
= E_MIPS_ARCH_4
;
10943 case bfd_mach_mips5
:
10944 val
= E_MIPS_ARCH_5
;
10947 case bfd_mach_mips_loongson_2e
:
10948 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2E
;
10951 case bfd_mach_mips_loongson_2f
:
10952 val
= E_MIPS_ARCH_3
| E_MIPS_MACH_LS2F
;
10955 case bfd_mach_mips_sb1
:
10956 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_SB1
;
10959 case bfd_mach_mips_loongson_3a
:
10960 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_LS3A
;
10963 case bfd_mach_mips_octeon
:
10964 case bfd_mach_mips_octeonp
:
10965 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON
;
10968 case bfd_mach_mips_xlr
:
10969 val
= E_MIPS_ARCH_64
| E_MIPS_MACH_XLR
;
10972 case bfd_mach_mips_octeon2
:
10973 val
= E_MIPS_ARCH_64R2
| E_MIPS_MACH_OCTEON2
;
10976 case bfd_mach_mipsisa32
:
10977 val
= E_MIPS_ARCH_32
;
10980 case bfd_mach_mipsisa64
:
10981 val
= E_MIPS_ARCH_64
;
10984 case bfd_mach_mipsisa32r2
:
10985 val
= E_MIPS_ARCH_32R2
;
10988 case bfd_mach_mipsisa64r2
:
10989 val
= E_MIPS_ARCH_64R2
;
10992 elf_elfheader (abfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
10993 elf_elfheader (abfd
)->e_flags
|= val
;
10998 /* The final processing done just before writing out a MIPS ELF object
10999 file. This gets the MIPS architecture right based on the machine
11000 number. This is used by both the 32-bit and the 64-bit ABI. */
11003 _bfd_mips_elf_final_write_processing (bfd
*abfd
,
11004 bfd_boolean linker ATTRIBUTE_UNUSED
)
11007 Elf_Internal_Shdr
**hdrpp
;
11011 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11012 is nonzero. This is for compatibility with old objects, which used
11013 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11014 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_MACH
) == 0)
11015 mips_set_isa_flags (abfd
);
11017 /* Set the sh_info field for .gptab sections and other appropriate
11018 info for each special section. */
11019 for (i
= 1, hdrpp
= elf_elfsections (abfd
) + 1;
11020 i
< elf_numsections (abfd
);
11023 switch ((*hdrpp
)->sh_type
)
11025 case SHT_MIPS_MSYM
:
11026 case SHT_MIPS_LIBLIST
:
11027 sec
= bfd_get_section_by_name (abfd
, ".dynstr");
11029 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
11032 case SHT_MIPS_GPTAB
:
11033 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
11034 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
11035 BFD_ASSERT (name
!= NULL
11036 && CONST_STRNEQ (name
, ".gptab."));
11037 sec
= bfd_get_section_by_name (abfd
, name
+ sizeof ".gptab" - 1);
11038 BFD_ASSERT (sec
!= NULL
);
11039 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
11042 case SHT_MIPS_CONTENT
:
11043 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
11044 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
11045 BFD_ASSERT (name
!= NULL
11046 && CONST_STRNEQ (name
, ".MIPS.content"));
11047 sec
= bfd_get_section_by_name (abfd
,
11048 name
+ sizeof ".MIPS.content" - 1);
11049 BFD_ASSERT (sec
!= NULL
);
11050 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
11053 case SHT_MIPS_SYMBOL_LIB
:
11054 sec
= bfd_get_section_by_name (abfd
, ".dynsym");
11056 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
11057 sec
= bfd_get_section_by_name (abfd
, ".liblist");
11059 (*hdrpp
)->sh_info
= elf_section_data (sec
)->this_idx
;
11062 case SHT_MIPS_EVENTS
:
11063 BFD_ASSERT ((*hdrpp
)->bfd_section
!= NULL
);
11064 name
= bfd_get_section_name (abfd
, (*hdrpp
)->bfd_section
);
11065 BFD_ASSERT (name
!= NULL
);
11066 if (CONST_STRNEQ (name
, ".MIPS.events"))
11067 sec
= bfd_get_section_by_name (abfd
,
11068 name
+ sizeof ".MIPS.events" - 1);
11071 BFD_ASSERT (CONST_STRNEQ (name
, ".MIPS.post_rel"));
11072 sec
= bfd_get_section_by_name (abfd
,
11074 + sizeof ".MIPS.post_rel" - 1));
11076 BFD_ASSERT (sec
!= NULL
);
11077 (*hdrpp
)->sh_link
= elf_section_data (sec
)->this_idx
;
11084 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11088 _bfd_mips_elf_additional_program_headers (bfd
*abfd
,
11089 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
11094 /* See if we need a PT_MIPS_REGINFO segment. */
11095 s
= bfd_get_section_by_name (abfd
, ".reginfo");
11096 if (s
&& (s
->flags
& SEC_LOAD
))
11099 /* See if we need a PT_MIPS_OPTIONS segment. */
11100 if (IRIX_COMPAT (abfd
) == ict_irix6
11101 && bfd_get_section_by_name (abfd
,
11102 MIPS_ELF_OPTIONS_SECTION_NAME (abfd
)))
11105 /* See if we need a PT_MIPS_RTPROC segment. */
11106 if (IRIX_COMPAT (abfd
) == ict_irix5
11107 && bfd_get_section_by_name (abfd
, ".dynamic")
11108 && bfd_get_section_by_name (abfd
, ".mdebug"))
11111 /* Allocate a PT_NULL header in dynamic objects. See
11112 _bfd_mips_elf_modify_segment_map for details. */
11113 if (!SGI_COMPAT (abfd
)
11114 && bfd_get_section_by_name (abfd
, ".dynamic"))
11120 /* Modify the segment map for an IRIX5 executable. */
11123 _bfd_mips_elf_modify_segment_map (bfd
*abfd
,
11124 struct bfd_link_info
*info
)
11127 struct elf_segment_map
*m
, **pm
;
11130 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11132 s
= bfd_get_section_by_name (abfd
, ".reginfo");
11133 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
11135 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
11136 if (m
->p_type
== PT_MIPS_REGINFO
)
11141 m
= bfd_zalloc (abfd
, amt
);
11145 m
->p_type
= PT_MIPS_REGINFO
;
11147 m
->sections
[0] = s
;
11149 /* We want to put it after the PHDR and INTERP segments. */
11150 pm
= &elf_tdata (abfd
)->segment_map
;
11152 && ((*pm
)->p_type
== PT_PHDR
11153 || (*pm
)->p_type
== PT_INTERP
))
11161 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11162 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11163 PT_MIPS_OPTIONS segment immediately following the program header
11165 if (NEWABI_P (abfd
)
11166 /* On non-IRIX6 new abi, we'll have already created a segment
11167 for this section, so don't create another. I'm not sure this
11168 is not also the case for IRIX 6, but I can't test it right
11170 && IRIX_COMPAT (abfd
) == ict_irix6
)
11172 for (s
= abfd
->sections
; s
; s
= s
->next
)
11173 if (elf_section_data (s
)->this_hdr
.sh_type
== SHT_MIPS_OPTIONS
)
11178 struct elf_segment_map
*options_segment
;
11180 pm
= &elf_tdata (abfd
)->segment_map
;
11182 && ((*pm
)->p_type
== PT_PHDR
11183 || (*pm
)->p_type
== PT_INTERP
))
11186 if (*pm
== NULL
|| (*pm
)->p_type
!= PT_MIPS_OPTIONS
)
11188 amt
= sizeof (struct elf_segment_map
);
11189 options_segment
= bfd_zalloc (abfd
, amt
);
11190 options_segment
->next
= *pm
;
11191 options_segment
->p_type
= PT_MIPS_OPTIONS
;
11192 options_segment
->p_flags
= PF_R
;
11193 options_segment
->p_flags_valid
= TRUE
;
11194 options_segment
->count
= 1;
11195 options_segment
->sections
[0] = s
;
11196 *pm
= options_segment
;
11202 if (IRIX_COMPAT (abfd
) == ict_irix5
)
11204 /* If there are .dynamic and .mdebug sections, we make a room
11205 for the RTPROC header. FIXME: Rewrite without section names. */
11206 if (bfd_get_section_by_name (abfd
, ".interp") == NULL
11207 && bfd_get_section_by_name (abfd
, ".dynamic") != NULL
11208 && bfd_get_section_by_name (abfd
, ".mdebug") != NULL
)
11210 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
11211 if (m
->p_type
== PT_MIPS_RTPROC
)
11216 m
= bfd_zalloc (abfd
, amt
);
11220 m
->p_type
= PT_MIPS_RTPROC
;
11222 s
= bfd_get_section_by_name (abfd
, ".rtproc");
11227 m
->p_flags_valid
= 1;
11232 m
->sections
[0] = s
;
11235 /* We want to put it after the DYNAMIC segment. */
11236 pm
= &elf_tdata (abfd
)->segment_map
;
11237 while (*pm
!= NULL
&& (*pm
)->p_type
!= PT_DYNAMIC
)
11247 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11248 .dynstr, .dynsym, and .hash sections, and everything in
11250 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
;
11252 if ((*pm
)->p_type
== PT_DYNAMIC
)
11255 if (m
!= NULL
&& IRIX_COMPAT (abfd
) == ict_none
)
11257 /* For a normal mips executable the permissions for the PT_DYNAMIC
11258 segment are read, write and execute. We do that here since
11259 the code in elf.c sets only the read permission. This matters
11260 sometimes for the dynamic linker. */
11261 if (bfd_get_section_by_name (abfd
, ".dynamic") != NULL
)
11263 m
->p_flags
= PF_R
| PF_W
| PF_X
;
11264 m
->p_flags_valid
= 1;
11267 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11268 glibc's dynamic linker has traditionally derived the number of
11269 tags from the p_filesz field, and sometimes allocates stack
11270 arrays of that size. An overly-big PT_DYNAMIC segment can
11271 be actively harmful in such cases. Making PT_DYNAMIC contain
11272 other sections can also make life hard for the prelinker,
11273 which might move one of the other sections to a different
11274 PT_LOAD segment. */
11275 if (SGI_COMPAT (abfd
)
11278 && strcmp (m
->sections
[0]->name
, ".dynamic") == 0)
11280 static const char *sec_names
[] =
11282 ".dynamic", ".dynstr", ".dynsym", ".hash"
11286 struct elf_segment_map
*n
;
11288 low
= ~(bfd_vma
) 0;
11290 for (i
= 0; i
< sizeof sec_names
/ sizeof sec_names
[0]; i
++)
11292 s
= bfd_get_section_by_name (abfd
, sec_names
[i
]);
11293 if (s
!= NULL
&& (s
->flags
& SEC_LOAD
) != 0)
11300 if (high
< s
->vma
+ sz
)
11301 high
= s
->vma
+ sz
;
11306 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
11307 if ((s
->flags
& SEC_LOAD
) != 0
11309 && s
->vma
+ s
->size
<= high
)
11312 amt
= sizeof *n
+ (bfd_size_type
) (c
- 1) * sizeof (asection
*);
11313 n
= bfd_zalloc (abfd
, amt
);
11320 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
11322 if ((s
->flags
& SEC_LOAD
) != 0
11324 && s
->vma
+ s
->size
<= high
)
11326 n
->sections
[i
] = s
;
11335 /* Allocate a spare program header in dynamic objects so that tools
11336 like the prelinker can add an extra PT_LOAD entry.
11338 If the prelinker needs to make room for a new PT_LOAD entry, its
11339 standard procedure is to move the first (read-only) sections into
11340 the new (writable) segment. However, the MIPS ABI requires
11341 .dynamic to be in a read-only segment, and the section will often
11342 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11344 Although the prelinker could in principle move .dynamic to a
11345 writable segment, it seems better to allocate a spare program
11346 header instead, and avoid the need to move any sections.
11347 There is a long tradition of allocating spare dynamic tags,
11348 so allocating a spare program header seems like a natural
11351 If INFO is NULL, we may be copying an already prelinked binary
11352 with objcopy or strip, so do not add this header. */
11354 && !SGI_COMPAT (abfd
)
11355 && bfd_get_section_by_name (abfd
, ".dynamic"))
11357 for (pm
= &elf_tdata (abfd
)->segment_map
; *pm
!= NULL
; pm
= &(*pm
)->next
)
11358 if ((*pm
)->p_type
== PT_NULL
)
11362 m
= bfd_zalloc (abfd
, sizeof (*m
));
11366 m
->p_type
= PT_NULL
;
11374 /* Return the section that should be marked against GC for a given
11378 _bfd_mips_elf_gc_mark_hook (asection
*sec
,
11379 struct bfd_link_info
*info
,
11380 Elf_Internal_Rela
*rel
,
11381 struct elf_link_hash_entry
*h
,
11382 Elf_Internal_Sym
*sym
)
11384 /* ??? Do mips16 stub sections need to be handled special? */
11387 switch (ELF_R_TYPE (sec
->owner
, rel
->r_info
))
11389 case R_MIPS_GNU_VTINHERIT
:
11390 case R_MIPS_GNU_VTENTRY
:
11394 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
11397 /* Update the got entry reference counts for the section being removed. */
11400 _bfd_mips_elf_gc_sweep_hook (bfd
*abfd ATTRIBUTE_UNUSED
,
11401 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
11402 asection
*sec ATTRIBUTE_UNUSED
,
11403 const Elf_Internal_Rela
*relocs ATTRIBUTE_UNUSED
)
11406 Elf_Internal_Shdr
*symtab_hdr
;
11407 struct elf_link_hash_entry
**sym_hashes
;
11408 bfd_signed_vma
*local_got_refcounts
;
11409 const Elf_Internal_Rela
*rel
, *relend
;
11410 unsigned long r_symndx
;
11411 struct elf_link_hash_entry
*h
;
11413 if (info
->relocatable
)
11416 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11417 sym_hashes
= elf_sym_hashes (abfd
);
11418 local_got_refcounts
= elf_local_got_refcounts (abfd
);
11420 relend
= relocs
+ sec
->reloc_count
;
11421 for (rel
= relocs
; rel
< relend
; rel
++)
11422 switch (ELF_R_TYPE (abfd
, rel
->r_info
))
11424 case R_MIPS16_GOT16
:
11425 case R_MIPS16_CALL16
:
11427 case R_MIPS_CALL16
:
11428 case R_MIPS_CALL_HI16
:
11429 case R_MIPS_CALL_LO16
:
11430 case R_MIPS_GOT_HI16
:
11431 case R_MIPS_GOT_LO16
:
11432 case R_MIPS_GOT_DISP
:
11433 case R_MIPS_GOT_PAGE
:
11434 case R_MIPS_GOT_OFST
:
11435 case R_MICROMIPS_GOT16
:
11436 case R_MICROMIPS_CALL16
:
11437 case R_MICROMIPS_CALL_HI16
:
11438 case R_MICROMIPS_CALL_LO16
:
11439 case R_MICROMIPS_GOT_HI16
:
11440 case R_MICROMIPS_GOT_LO16
:
11441 case R_MICROMIPS_GOT_DISP
:
11442 case R_MICROMIPS_GOT_PAGE
:
11443 case R_MICROMIPS_GOT_OFST
:
11444 /* ??? It would seem that the existing MIPS code does no sort
11445 of reference counting or whatnot on its GOT and PLT entries,
11446 so it is not possible to garbage collect them at this time. */
11457 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11458 hiding the old indirect symbol. Process additional relocation
11459 information. Also called for weakdefs, in which case we just let
11460 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11463 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info
*info
,
11464 struct elf_link_hash_entry
*dir
,
11465 struct elf_link_hash_entry
*ind
)
11467 struct mips_elf_link_hash_entry
*dirmips
, *indmips
;
11469 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
11471 dirmips
= (struct mips_elf_link_hash_entry
*) dir
;
11472 indmips
= (struct mips_elf_link_hash_entry
*) ind
;
11473 /* Any absolute non-dynamic relocations against an indirect or weak
11474 definition will be against the target symbol. */
11475 if (indmips
->has_static_relocs
)
11476 dirmips
->has_static_relocs
= TRUE
;
11478 if (ind
->root
.type
!= bfd_link_hash_indirect
)
11481 dirmips
->possibly_dynamic_relocs
+= indmips
->possibly_dynamic_relocs
;
11482 if (indmips
->readonly_reloc
)
11483 dirmips
->readonly_reloc
= TRUE
;
11484 if (indmips
->no_fn_stub
)
11485 dirmips
->no_fn_stub
= TRUE
;
11486 if (indmips
->fn_stub
)
11488 dirmips
->fn_stub
= indmips
->fn_stub
;
11489 indmips
->fn_stub
= NULL
;
11491 if (indmips
->need_fn_stub
)
11493 dirmips
->need_fn_stub
= TRUE
;
11494 indmips
->need_fn_stub
= FALSE
;
11496 if (indmips
->call_stub
)
11498 dirmips
->call_stub
= indmips
->call_stub
;
11499 indmips
->call_stub
= NULL
;
11501 if (indmips
->call_fp_stub
)
11503 dirmips
->call_fp_stub
= indmips
->call_fp_stub
;
11504 indmips
->call_fp_stub
= NULL
;
11506 if (indmips
->global_got_area
< dirmips
->global_got_area
)
11507 dirmips
->global_got_area
= indmips
->global_got_area
;
11508 if (indmips
->global_got_area
< GGA_NONE
)
11509 indmips
->global_got_area
= GGA_NONE
;
11510 if (indmips
->has_nonpic_branches
)
11511 dirmips
->has_nonpic_branches
= TRUE
;
11513 if (dirmips
->tls_type
== 0)
11514 dirmips
->tls_type
= indmips
->tls_type
;
11517 #define PDR_SIZE 32
11520 _bfd_mips_elf_discard_info (bfd
*abfd
, struct elf_reloc_cookie
*cookie
,
11521 struct bfd_link_info
*info
)
11524 bfd_boolean ret
= FALSE
;
11525 unsigned char *tdata
;
11528 o
= bfd_get_section_by_name (abfd
, ".pdr");
11533 if (o
->size
% PDR_SIZE
!= 0)
11535 if (o
->output_section
!= NULL
11536 && bfd_is_abs_section (o
->output_section
))
11539 tdata
= bfd_zmalloc (o
->size
/ PDR_SIZE
);
11543 cookie
->rels
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
11544 info
->keep_memory
);
11551 cookie
->rel
= cookie
->rels
;
11552 cookie
->relend
= cookie
->rels
+ o
->reloc_count
;
11554 for (i
= 0, skip
= 0; i
< o
->size
/ PDR_SIZE
; i
++)
11556 if (bfd_elf_reloc_symbol_deleted_p (i
* PDR_SIZE
, cookie
))
11565 mips_elf_section_data (o
)->u
.tdata
= tdata
;
11566 o
->size
-= skip
* PDR_SIZE
;
11572 if (! info
->keep_memory
)
11573 free (cookie
->rels
);
11579 _bfd_mips_elf_ignore_discarded_relocs (asection
*sec
)
11581 if (strcmp (sec
->name
, ".pdr") == 0)
11587 _bfd_mips_elf_write_section (bfd
*output_bfd
,
11588 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
,
11589 asection
*sec
, bfd_byte
*contents
)
11591 bfd_byte
*to
, *from
, *end
;
11594 if (strcmp (sec
->name
, ".pdr") != 0)
11597 if (mips_elf_section_data (sec
)->u
.tdata
== NULL
)
11601 end
= contents
+ sec
->size
;
11602 for (from
= contents
, i
= 0;
11604 from
+= PDR_SIZE
, i
++)
11606 if ((mips_elf_section_data (sec
)->u
.tdata
)[i
] == 1)
11609 memcpy (to
, from
, PDR_SIZE
);
11612 bfd_set_section_contents (output_bfd
, sec
->output_section
, contents
,
11613 sec
->output_offset
, sec
->size
);
11617 /* microMIPS code retains local labels for linker relaxation. Omit them
11618 from output by default for clarity. */
11621 _bfd_mips_elf_is_target_special_symbol (bfd
*abfd
, asymbol
*sym
)
11623 return _bfd_elf_is_local_label_name (abfd
, sym
->name
);
11626 /* MIPS ELF uses a special find_nearest_line routine in order the
11627 handle the ECOFF debugging information. */
11629 struct mips_elf_find_line
11631 struct ecoff_debug_info d
;
11632 struct ecoff_find_line i
;
11636 _bfd_mips_elf_find_nearest_line (bfd
*abfd
, asection
*section
,
11637 asymbol
**symbols
, bfd_vma offset
,
11638 const char **filename_ptr
,
11639 const char **functionname_ptr
,
11640 unsigned int *line_ptr
)
11644 if (_bfd_dwarf1_find_nearest_line (abfd
, section
, symbols
, offset
,
11645 filename_ptr
, functionname_ptr
,
11649 if (_bfd_dwarf2_find_nearest_line (abfd
, dwarf_debug_sections
,
11650 section
, symbols
, offset
,
11651 filename_ptr
, functionname_ptr
,
11652 line_ptr
, ABI_64_P (abfd
) ? 8 : 0,
11653 &elf_tdata (abfd
)->dwarf2_find_line_info
))
11656 msec
= bfd_get_section_by_name (abfd
, ".mdebug");
11659 flagword origflags
;
11660 struct mips_elf_find_line
*fi
;
11661 const struct ecoff_debug_swap
* const swap
=
11662 get_elf_backend_data (abfd
)->elf_backend_ecoff_debug_swap
;
11664 /* If we are called during a link, mips_elf_final_link may have
11665 cleared the SEC_HAS_CONTENTS field. We force it back on here
11666 if appropriate (which it normally will be). */
11667 origflags
= msec
->flags
;
11668 if (elf_section_data (msec
)->this_hdr
.sh_type
!= SHT_NOBITS
)
11669 msec
->flags
|= SEC_HAS_CONTENTS
;
11671 fi
= elf_tdata (abfd
)->find_line_info
;
11674 bfd_size_type external_fdr_size
;
11677 struct fdr
*fdr_ptr
;
11678 bfd_size_type amt
= sizeof (struct mips_elf_find_line
);
11680 fi
= bfd_zalloc (abfd
, amt
);
11683 msec
->flags
= origflags
;
11687 if (! _bfd_mips_elf_read_ecoff_info (abfd
, msec
, &fi
->d
))
11689 msec
->flags
= origflags
;
11693 /* Swap in the FDR information. */
11694 amt
= fi
->d
.symbolic_header
.ifdMax
* sizeof (struct fdr
);
11695 fi
->d
.fdr
= bfd_alloc (abfd
, amt
);
11696 if (fi
->d
.fdr
== NULL
)
11698 msec
->flags
= origflags
;
11701 external_fdr_size
= swap
->external_fdr_size
;
11702 fdr_ptr
= fi
->d
.fdr
;
11703 fraw_src
= (char *) fi
->d
.external_fdr
;
11704 fraw_end
= (fraw_src
11705 + fi
->d
.symbolic_header
.ifdMax
* external_fdr_size
);
11706 for (; fraw_src
< fraw_end
; fraw_src
+= external_fdr_size
, fdr_ptr
++)
11707 (*swap
->swap_fdr_in
) (abfd
, fraw_src
, fdr_ptr
);
11709 elf_tdata (abfd
)->find_line_info
= fi
;
11711 /* Note that we don't bother to ever free this information.
11712 find_nearest_line is either called all the time, as in
11713 objdump -l, so the information should be saved, or it is
11714 rarely called, as in ld error messages, so the memory
11715 wasted is unimportant. Still, it would probably be a
11716 good idea for free_cached_info to throw it away. */
11719 if (_bfd_ecoff_locate_line (abfd
, section
, offset
, &fi
->d
, swap
,
11720 &fi
->i
, filename_ptr
, functionname_ptr
,
11723 msec
->flags
= origflags
;
11727 msec
->flags
= origflags
;
11730 /* Fall back on the generic ELF find_nearest_line routine. */
11732 return _bfd_elf_find_nearest_line (abfd
, section
, symbols
, offset
,
11733 filename_ptr
, functionname_ptr
,
11738 _bfd_mips_elf_find_inliner_info (bfd
*abfd
,
11739 const char **filename_ptr
,
11740 const char **functionname_ptr
,
11741 unsigned int *line_ptr
)
11744 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
11745 functionname_ptr
, line_ptr
,
11746 & elf_tdata (abfd
)->dwarf2_find_line_info
);
11751 /* When are writing out the .options or .MIPS.options section,
11752 remember the bytes we are writing out, so that we can install the
11753 GP value in the section_processing routine. */
11756 _bfd_mips_elf_set_section_contents (bfd
*abfd
, sec_ptr section
,
11757 const void *location
,
11758 file_ptr offset
, bfd_size_type count
)
11760 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section
->name
))
11764 if (elf_section_data (section
) == NULL
)
11766 bfd_size_type amt
= sizeof (struct bfd_elf_section_data
);
11767 section
->used_by_bfd
= bfd_zalloc (abfd
, amt
);
11768 if (elf_section_data (section
) == NULL
)
11771 c
= mips_elf_section_data (section
)->u
.tdata
;
11774 c
= bfd_zalloc (abfd
, section
->size
);
11777 mips_elf_section_data (section
)->u
.tdata
= c
;
11780 memcpy (c
+ offset
, location
, count
);
11783 return _bfd_elf_set_section_contents (abfd
, section
, location
, offset
,
11787 /* This is almost identical to bfd_generic_get_... except that some
11788 MIPS relocations need to be handled specially. Sigh. */
11791 _bfd_elf_mips_get_relocated_section_contents
11793 struct bfd_link_info
*link_info
,
11794 struct bfd_link_order
*link_order
,
11796 bfd_boolean relocatable
,
11799 /* Get enough memory to hold the stuff */
11800 bfd
*input_bfd
= link_order
->u
.indirect
.section
->owner
;
11801 asection
*input_section
= link_order
->u
.indirect
.section
;
11804 long reloc_size
= bfd_get_reloc_upper_bound (input_bfd
, input_section
);
11805 arelent
**reloc_vector
= NULL
;
11808 if (reloc_size
< 0)
11811 reloc_vector
= bfd_malloc (reloc_size
);
11812 if (reloc_vector
== NULL
&& reloc_size
!= 0)
11815 /* read in the section */
11816 sz
= input_section
->rawsize
? input_section
->rawsize
: input_section
->size
;
11817 if (!bfd_get_section_contents (input_bfd
, input_section
, data
, 0, sz
))
11820 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
11824 if (reloc_count
< 0)
11827 if (reloc_count
> 0)
11832 bfd_vma gp
= 0x12345678; /* initialize just to shut gcc up */
11835 struct bfd_hash_entry
*h
;
11836 struct bfd_link_hash_entry
*lh
;
11837 /* Skip all this stuff if we aren't mixing formats. */
11838 if (abfd
&& input_bfd
11839 && abfd
->xvec
== input_bfd
->xvec
)
11843 h
= bfd_hash_lookup (&link_info
->hash
->table
, "_gp", FALSE
, FALSE
);
11844 lh
= (struct bfd_link_hash_entry
*) h
;
11851 case bfd_link_hash_undefined
:
11852 case bfd_link_hash_undefweak
:
11853 case bfd_link_hash_common
:
11856 case bfd_link_hash_defined
:
11857 case bfd_link_hash_defweak
:
11859 gp
= lh
->u
.def
.value
;
11861 case bfd_link_hash_indirect
:
11862 case bfd_link_hash_warning
:
11864 /* @@FIXME ignoring warning for now */
11866 case bfd_link_hash_new
:
11875 for (parent
= reloc_vector
; *parent
!= NULL
; parent
++)
11877 char *error_message
= NULL
;
11878 bfd_reloc_status_type r
;
11880 /* Specific to MIPS: Deal with relocation types that require
11881 knowing the gp of the output bfd. */
11882 asymbol
*sym
= *(*parent
)->sym_ptr_ptr
;
11884 /* If we've managed to find the gp and have a special
11885 function for the relocation then go ahead, else default
11886 to the generic handling. */
11888 && (*parent
)->howto
->special_function
11889 == _bfd_mips_elf32_gprel16_reloc
)
11890 r
= _bfd_mips_elf_gprel16_with_gp (input_bfd
, sym
, *parent
,
11891 input_section
, relocatable
,
11894 r
= bfd_perform_relocation (input_bfd
, *parent
, data
,
11896 relocatable
? abfd
: NULL
,
11901 asection
*os
= input_section
->output_section
;
11903 /* A partial link, so keep the relocs */
11904 os
->orelocation
[os
->reloc_count
] = *parent
;
11908 if (r
!= bfd_reloc_ok
)
11912 case bfd_reloc_undefined
:
11913 if (!((*link_info
->callbacks
->undefined_symbol
)
11914 (link_info
, bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11915 input_bfd
, input_section
, (*parent
)->address
, TRUE
)))
11918 case bfd_reloc_dangerous
:
11919 BFD_ASSERT (error_message
!= NULL
);
11920 if (!((*link_info
->callbacks
->reloc_dangerous
)
11921 (link_info
, error_message
, input_bfd
, input_section
,
11922 (*parent
)->address
)))
11925 case bfd_reloc_overflow
:
11926 if (!((*link_info
->callbacks
->reloc_overflow
)
11928 bfd_asymbol_name (*(*parent
)->sym_ptr_ptr
),
11929 (*parent
)->howto
->name
, (*parent
)->addend
,
11930 input_bfd
, input_section
, (*parent
)->address
)))
11933 case bfd_reloc_outofrange
:
11942 if (reloc_vector
!= NULL
)
11943 free (reloc_vector
);
11947 if (reloc_vector
!= NULL
)
11948 free (reloc_vector
);
11953 mips_elf_relax_delete_bytes (bfd
*abfd
,
11954 asection
*sec
, bfd_vma addr
, int count
)
11956 Elf_Internal_Shdr
*symtab_hdr
;
11957 unsigned int sec_shndx
;
11958 bfd_byte
*contents
;
11959 Elf_Internal_Rela
*irel
, *irelend
;
11960 Elf_Internal_Sym
*isym
;
11961 Elf_Internal_Sym
*isymend
;
11962 struct elf_link_hash_entry
**sym_hashes
;
11963 struct elf_link_hash_entry
**end_hashes
;
11964 struct elf_link_hash_entry
**start_hashes
;
11965 unsigned int symcount
;
11967 sec_shndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
11968 contents
= elf_section_data (sec
)->this_hdr
.contents
;
11970 irel
= elf_section_data (sec
)->relocs
;
11971 irelend
= irel
+ sec
->reloc_count
;
11973 /* Actually delete the bytes. */
11974 memmove (contents
+ addr
, contents
+ addr
+ count
,
11975 (size_t) (sec
->size
- addr
- count
));
11976 sec
->size
-= count
;
11978 /* Adjust all the relocs. */
11979 for (irel
= elf_section_data (sec
)->relocs
; irel
< irelend
; irel
++)
11981 /* Get the new reloc address. */
11982 if (irel
->r_offset
> addr
)
11983 irel
->r_offset
-= count
;
11986 BFD_ASSERT (addr
% 2 == 0);
11987 BFD_ASSERT (count
% 2 == 0);
11989 /* Adjust the local symbols defined in this section. */
11990 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
11991 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
11992 for (isymend
= isym
+ symtab_hdr
->sh_info
; isym
< isymend
; isym
++)
11993 if (isym
->st_shndx
== sec_shndx
&& isym
->st_value
> addr
)
11994 isym
->st_value
-= count
;
11996 /* Now adjust the global symbols defined in this section. */
11997 symcount
= (symtab_hdr
->sh_size
/ sizeof (Elf32_External_Sym
)
11998 - symtab_hdr
->sh_info
);
11999 sym_hashes
= start_hashes
= elf_sym_hashes (abfd
);
12000 end_hashes
= sym_hashes
+ symcount
;
12002 for (; sym_hashes
< end_hashes
; sym_hashes
++)
12004 struct elf_link_hash_entry
*sym_hash
= *sym_hashes
;
12006 if ((sym_hash
->root
.type
== bfd_link_hash_defined
12007 || sym_hash
->root
.type
== bfd_link_hash_defweak
)
12008 && sym_hash
->root
.u
.def
.section
== sec
)
12010 bfd_vma value
= sym_hash
->root
.u
.def
.value
;
12012 if (ELF_ST_IS_MICROMIPS (sym_hash
->other
))
12013 value
&= MINUS_TWO
;
12015 sym_hash
->root
.u
.def
.value
-= count
;
12023 /* Opcodes needed for microMIPS relaxation as found in
12024 opcodes/micromips-opc.c. */
12026 struct opcode_descriptor
{
12027 unsigned long match
;
12028 unsigned long mask
;
12031 /* The $ra register aka $31. */
12035 /* 32-bit instruction format register fields. */
12037 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12038 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12040 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12042 #define OP16_VALID_REG(r) \
12043 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12046 /* 32-bit and 16-bit branches. */
12048 static const struct opcode_descriptor b_insns_32
[] = {
12049 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12050 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12051 { 0, 0 } /* End marker for find_match(). */
12054 static const struct opcode_descriptor bc_insn_32
=
12055 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12057 static const struct opcode_descriptor bz_insn_32
=
12058 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12060 static const struct opcode_descriptor bzal_insn_32
=
12061 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12063 static const struct opcode_descriptor beq_insn_32
=
12064 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12066 static const struct opcode_descriptor b_insn_16
=
12067 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12069 static const struct opcode_descriptor bz_insn_16
=
12070 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12073 /* 32-bit and 16-bit branch EQ and NE zero. */
12075 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12076 eq and second the ne. This convention is used when replacing a
12077 32-bit BEQ/BNE with the 16-bit version. */
12079 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12081 static const struct opcode_descriptor bz_rs_insns_32
[] = {
12082 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12083 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12084 { 0, 0 } /* End marker for find_match(). */
12087 static const struct opcode_descriptor bz_rt_insns_32
[] = {
12088 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12089 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12090 { 0, 0 } /* End marker for find_match(). */
12093 static const struct opcode_descriptor bzc_insns_32
[] = {
12094 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12095 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12096 { 0, 0 } /* End marker for find_match(). */
12099 static const struct opcode_descriptor bz_insns_16
[] = {
12100 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12101 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12102 { 0, 0 } /* End marker for find_match(). */
12105 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12107 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12108 #define BZ16_REG_FIELD(r) \
12109 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12112 /* 32-bit instructions with a delay slot. */
12114 static const struct opcode_descriptor jal_insn_32_bd16
=
12115 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12117 static const struct opcode_descriptor jal_insn_32_bd32
=
12118 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12120 static const struct opcode_descriptor jal_x_insn_32_bd32
=
12121 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12123 static const struct opcode_descriptor j_insn_32
=
12124 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12126 static const struct opcode_descriptor jalr_insn_32
=
12127 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12129 /* This table can be compacted, because no opcode replacement is made. */
12131 static const struct opcode_descriptor ds_insns_32_bd16
[] = {
12132 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12134 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12135 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12137 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12138 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12139 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12140 { 0, 0 } /* End marker for find_match(). */
12143 /* This table can be compacted, because no opcode replacement is made. */
12145 static const struct opcode_descriptor ds_insns_32_bd32
[] = {
12146 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12148 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12149 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12150 { 0, 0 } /* End marker for find_match(). */
12154 /* 16-bit instructions with a delay slot. */
12156 static const struct opcode_descriptor jalr_insn_16_bd16
=
12157 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12159 static const struct opcode_descriptor jalr_insn_16_bd32
=
12160 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12162 static const struct opcode_descriptor jr_insn_16
=
12163 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12165 #define JR16_REG(opcode) ((opcode) & 0x1f)
12167 /* This table can be compacted, because no opcode replacement is made. */
12169 static const struct opcode_descriptor ds_insns_16_bd16
[] = {
12170 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12172 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12173 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12174 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12175 { 0, 0 } /* End marker for find_match(). */
12179 /* LUI instruction. */
12181 static const struct opcode_descriptor lui_insn
=
12182 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12185 /* ADDIU instruction. */
12187 static const struct opcode_descriptor addiu_insn
=
12188 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12190 static const struct opcode_descriptor addiupc_insn
=
12191 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12193 #define ADDIUPC_REG_FIELD(r) \
12194 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12197 /* Relaxable instructions in a JAL delay slot: MOVE. */
12199 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12200 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12201 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12202 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12204 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12205 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12207 static const struct opcode_descriptor move_insns_32
[] = {
12208 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12209 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12210 { 0, 0 } /* End marker for find_match(). */
12213 static const struct opcode_descriptor move_insn_16
=
12214 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12217 /* NOP instructions. */
12219 static const struct opcode_descriptor nop_insn_32
=
12220 { /* "nop", "", */ 0x00000000, 0xffffffff };
12222 static const struct opcode_descriptor nop_insn_16
=
12223 { /* "nop", "", */ 0x0c00, 0xffff };
12226 /* Instruction match support. */
12228 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12231 find_match (unsigned long opcode
, const struct opcode_descriptor insn
[])
12233 unsigned long indx
;
12235 for (indx
= 0; insn
[indx
].mask
!= 0; indx
++)
12236 if (MATCH (opcode
, insn
[indx
]))
12243 /* Branch and delay slot decoding support. */
12245 /* If PTR points to what *might* be a 16-bit branch or jump, then
12246 return the minimum length of its delay slot, otherwise return 0.
12247 Non-zero results are not definitive as we might be checking against
12248 the second half of another instruction. */
12251 check_br16_dslot (bfd
*abfd
, bfd_byte
*ptr
)
12253 unsigned long opcode
;
12256 opcode
= bfd_get_16 (abfd
, ptr
);
12257 if (MATCH (opcode
, jalr_insn_16_bd32
) != 0)
12258 /* 16-bit branch/jump with a 32-bit delay slot. */
12260 else if (MATCH (opcode
, jalr_insn_16_bd16
) != 0
12261 || find_match (opcode
, ds_insns_16_bd16
) >= 0)
12262 /* 16-bit branch/jump with a 16-bit delay slot. */
12265 /* No delay slot. */
12271 /* If PTR points to what *might* be a 32-bit branch or jump, then
12272 return the minimum length of its delay slot, otherwise return 0.
12273 Non-zero results are not definitive as we might be checking against
12274 the second half of another instruction. */
12277 check_br32_dslot (bfd
*abfd
, bfd_byte
*ptr
)
12279 unsigned long opcode
;
12282 opcode
= (bfd_get_16 (abfd
, ptr
) << 16) | bfd_get_16 (abfd
, ptr
+ 2);
12283 if (find_match (opcode
, ds_insns_32_bd32
) >= 0)
12284 /* 32-bit branch/jump with a 32-bit delay slot. */
12286 else if (find_match (opcode
, ds_insns_32_bd16
) >= 0)
12287 /* 32-bit branch/jump with a 16-bit delay slot. */
12290 /* No delay slot. */
12296 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12297 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12300 check_br16 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
12302 unsigned long opcode
;
12304 opcode
= bfd_get_16 (abfd
, ptr
);
12305 if (MATCH (opcode
, b_insn_16
)
12307 || (MATCH (opcode
, jr_insn_16
) && reg
!= JR16_REG (opcode
))
12309 || (MATCH (opcode
, bz_insn_16
) && reg
!= BZ16_REG (opcode
))
12310 /* BEQZ16, BNEZ16 */
12311 || (MATCH (opcode
, jalr_insn_16_bd32
)
12313 && reg
!= JR16_REG (opcode
) && reg
!= RA
))
12319 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12320 then return TRUE, otherwise FALSE. */
12323 check_br32 (bfd
*abfd
, bfd_byte
*ptr
, unsigned long reg
)
12325 unsigned long opcode
;
12327 opcode
= (bfd_get_16 (abfd
, ptr
) << 16) | bfd_get_16 (abfd
, ptr
+ 2);
12328 if (MATCH (opcode
, j_insn_32
)
12330 || MATCH (opcode
, bc_insn_32
)
12331 /* BC1F, BC1T, BC2F, BC2T */
12332 || (MATCH (opcode
, jal_x_insn_32_bd32
) && reg
!= RA
)
12334 || (MATCH (opcode
, bz_insn_32
) && reg
!= OP32_SREG (opcode
))
12335 /* BGEZ, BGTZ, BLEZ, BLTZ */
12336 || (MATCH (opcode
, bzal_insn_32
)
12337 /* BGEZAL, BLTZAL */
12338 && reg
!= OP32_SREG (opcode
) && reg
!= RA
)
12339 || ((MATCH (opcode
, jalr_insn_32
) || MATCH (opcode
, beq_insn_32
))
12340 /* JALR, JALR.HB, BEQ, BNE */
12341 && reg
!= OP32_SREG (opcode
) && reg
!= OP32_TREG (opcode
)))
12347 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12348 IRELEND) at OFFSET indicate that there must be a compact branch there,
12349 then return TRUE, otherwise FALSE. */
12352 check_relocated_bzc (bfd
*abfd
, const bfd_byte
*ptr
, bfd_vma offset
,
12353 const Elf_Internal_Rela
*internal_relocs
,
12354 const Elf_Internal_Rela
*irelend
)
12356 const Elf_Internal_Rela
*irel
;
12357 unsigned long opcode
;
12359 opcode
= bfd_get_16 (abfd
, ptr
);
12361 opcode
|= bfd_get_16 (abfd
, ptr
+ 2);
12362 if (find_match (opcode
, bzc_insns_32
) < 0)
12365 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
12366 if (irel
->r_offset
== offset
12367 && ELF32_R_TYPE (irel
->r_info
) == R_MICROMIPS_PC16_S1
)
12373 /* Bitsize checking. */
12374 #define IS_BITSIZE(val, N) \
12375 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12376 - (1ULL << ((N) - 1))) == (val))
12380 _bfd_mips_elf_relax_section (bfd
*abfd
, asection
*sec
,
12381 struct bfd_link_info
*link_info
,
12382 bfd_boolean
*again
)
12384 Elf_Internal_Shdr
*symtab_hdr
;
12385 Elf_Internal_Rela
*internal_relocs
;
12386 Elf_Internal_Rela
*irel
, *irelend
;
12387 bfd_byte
*contents
= NULL
;
12388 Elf_Internal_Sym
*isymbuf
= NULL
;
12390 /* Assume nothing changes. */
12393 /* We don't have to do anything for a relocatable link, if
12394 this section does not have relocs, or if this is not a
12397 if (link_info
->relocatable
12398 || (sec
->flags
& SEC_RELOC
) == 0
12399 || sec
->reloc_count
== 0
12400 || (sec
->flags
& SEC_CODE
) == 0)
12403 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
12405 /* Get a copy of the native relocations. */
12406 internal_relocs
= (_bfd_elf_link_read_relocs
12407 (abfd
, sec
, (PTR
) NULL
, (Elf_Internal_Rela
*) NULL
,
12408 link_info
->keep_memory
));
12409 if (internal_relocs
== NULL
)
12412 /* Walk through them looking for relaxing opportunities. */
12413 irelend
= internal_relocs
+ sec
->reloc_count
;
12414 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
12416 unsigned long r_symndx
= ELF32_R_SYM (irel
->r_info
);
12417 unsigned int r_type
= ELF32_R_TYPE (irel
->r_info
);
12418 bfd_boolean target_is_micromips_code_p
;
12419 unsigned long opcode
;
12425 /* The number of bytes to delete for relaxation and from where
12426 to delete these bytes starting at irel->r_offset. */
12430 /* If this isn't something that can be relaxed, then ignore
12432 if (r_type
!= R_MICROMIPS_HI16
12433 && r_type
!= R_MICROMIPS_PC16_S1
12434 && r_type
!= R_MICROMIPS_26_S1
)
12437 /* Get the section contents if we haven't done so already. */
12438 if (contents
== NULL
)
12440 /* Get cached copy if it exists. */
12441 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
12442 contents
= elf_section_data (sec
)->this_hdr
.contents
;
12443 /* Go get them off disk. */
12444 else if (!bfd_malloc_and_get_section (abfd
, sec
, &contents
))
12447 ptr
= contents
+ irel
->r_offset
;
12449 /* Read this BFD's local symbols if we haven't done so already. */
12450 if (isymbuf
== NULL
&& symtab_hdr
->sh_info
!= 0)
12452 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
12453 if (isymbuf
== NULL
)
12454 isymbuf
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
12455 symtab_hdr
->sh_info
, 0,
12457 if (isymbuf
== NULL
)
12461 /* Get the value of the symbol referred to by the reloc. */
12462 if (r_symndx
< symtab_hdr
->sh_info
)
12464 /* A local symbol. */
12465 Elf_Internal_Sym
*isym
;
12468 isym
= isymbuf
+ r_symndx
;
12469 if (isym
->st_shndx
== SHN_UNDEF
)
12470 sym_sec
= bfd_und_section_ptr
;
12471 else if (isym
->st_shndx
== SHN_ABS
)
12472 sym_sec
= bfd_abs_section_ptr
;
12473 else if (isym
->st_shndx
== SHN_COMMON
)
12474 sym_sec
= bfd_com_section_ptr
;
12476 sym_sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
12477 symval
= (isym
->st_value
12478 + sym_sec
->output_section
->vma
12479 + sym_sec
->output_offset
);
12480 target_is_micromips_code_p
= ELF_ST_IS_MICROMIPS (isym
->st_other
);
12484 unsigned long indx
;
12485 struct elf_link_hash_entry
*h
;
12487 /* An external symbol. */
12488 indx
= r_symndx
- symtab_hdr
->sh_info
;
12489 h
= elf_sym_hashes (abfd
)[indx
];
12490 BFD_ASSERT (h
!= NULL
);
12492 if (h
->root
.type
!= bfd_link_hash_defined
12493 && h
->root
.type
!= bfd_link_hash_defweak
)
12494 /* This appears to be a reference to an undefined
12495 symbol. Just ignore it -- it will be caught by the
12496 regular reloc processing. */
12499 symval
= (h
->root
.u
.def
.value
12500 + h
->root
.u
.def
.section
->output_section
->vma
12501 + h
->root
.u
.def
.section
->output_offset
);
12502 target_is_micromips_code_p
= (!h
->needs_plt
12503 && ELF_ST_IS_MICROMIPS (h
->other
));
12507 /* For simplicity of coding, we are going to modify the
12508 section contents, the section relocs, and the BFD symbol
12509 table. We must tell the rest of the code not to free up this
12510 information. It would be possible to instead create a table
12511 of changes which have to be made, as is done in coff-mips.c;
12512 that would be more work, but would require less memory when
12513 the linker is run. */
12515 /* Only 32-bit instructions relaxed. */
12516 if (irel
->r_offset
+ 4 > sec
->size
)
12519 opcode
= bfd_get_16 (abfd
, ptr
) << 16;
12520 opcode
|= bfd_get_16 (abfd
, ptr
+ 2);
12522 /* This is the pc-relative distance from the instruction the
12523 relocation is applied to, to the symbol referred. */
12525 - (sec
->output_section
->vma
+ sec
->output_offset
)
12528 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12529 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12530 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12532 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12534 where pcrval has first to be adjusted to apply against the LO16
12535 location (we make the adjustment later on, when we have figured
12536 out the offset). */
12537 if (r_type
== R_MICROMIPS_HI16
&& MATCH (opcode
, lui_insn
))
12539 bfd_boolean bzc
= FALSE
;
12540 unsigned long nextopc
;
12544 /* Give up if the previous reloc was a HI16 against this symbol
12546 if (irel
> internal_relocs
12547 && ELF32_R_TYPE (irel
[-1].r_info
) == R_MICROMIPS_HI16
12548 && ELF32_R_SYM (irel
[-1].r_info
) == r_symndx
)
12551 /* Or if the next reloc is not a LO16 against this symbol. */
12552 if (irel
+ 1 >= irelend
12553 || ELF32_R_TYPE (irel
[1].r_info
) != R_MICROMIPS_LO16
12554 || ELF32_R_SYM (irel
[1].r_info
) != r_symndx
)
12557 /* Or if the second next reloc is a LO16 against this symbol too. */
12558 if (irel
+ 2 >= irelend
12559 && ELF32_R_TYPE (irel
[2].r_info
) == R_MICROMIPS_LO16
12560 && ELF32_R_SYM (irel
[2].r_info
) == r_symndx
)
12563 /* See if the LUI instruction *might* be in a branch delay slot.
12564 We check whether what looks like a 16-bit branch or jump is
12565 actually an immediate argument to a compact branch, and let
12566 it through if so. */
12567 if (irel
->r_offset
>= 2
12568 && check_br16_dslot (abfd
, ptr
- 2)
12569 && !(irel
->r_offset
>= 4
12570 && (bzc
= check_relocated_bzc (abfd
,
12571 ptr
- 4, irel
->r_offset
- 4,
12572 internal_relocs
, irelend
))))
12574 if (irel
->r_offset
>= 4
12576 && check_br32_dslot (abfd
, ptr
- 4))
12579 reg
= OP32_SREG (opcode
);
12581 /* We only relax adjacent instructions or ones separated with
12582 a branch or jump that has a delay slot. The branch or jump
12583 must not fiddle with the register used to hold the address.
12584 Subtract 4 for the LUI itself. */
12585 offset
= irel
[1].r_offset
- irel
[0].r_offset
;
12586 switch (offset
- 4)
12591 if (check_br16 (abfd
, ptr
+ 4, reg
))
12595 if (check_br32 (abfd
, ptr
+ 4, reg
))
12602 nextopc
= bfd_get_16 (abfd
, contents
+ irel
[1].r_offset
) << 16;
12603 nextopc
|= bfd_get_16 (abfd
, contents
+ irel
[1].r_offset
+ 2);
12605 /* Give up unless the same register is used with both
12607 if (OP32_SREG (nextopc
) != reg
)
12610 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12611 and rounding up to take masking of the two LSBs into account. */
12612 pcrval
= ((pcrval
- offset
+ 3) | 3) ^ 3;
12614 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12615 if (IS_BITSIZE (symval
, 16))
12617 /* Fix the relocation's type. */
12618 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_HI0_LO16
);
12620 /* Instructions using R_MICROMIPS_LO16 have the base or
12621 source register in bits 20:16. This register becomes $0
12622 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12623 nextopc
&= ~0x001f0000;
12624 bfd_put_16 (abfd
, (nextopc
>> 16) & 0xffff,
12625 contents
+ irel
[1].r_offset
);
12628 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12629 We add 4 to take LUI deletion into account while checking
12630 the PC-relative distance. */
12631 else if (symval
% 4 == 0
12632 && IS_BITSIZE (pcrval
+ 4, 25)
12633 && MATCH (nextopc
, addiu_insn
)
12634 && OP32_TREG (nextopc
) == OP32_SREG (nextopc
)
12635 && OP16_VALID_REG (OP32_TREG (nextopc
)))
12637 /* Fix the relocation's type. */
12638 irel
[1].r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC23_S2
);
12640 /* Replace ADDIU with the ADDIUPC version. */
12641 nextopc
= (addiupc_insn
.match
12642 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc
)));
12644 bfd_put_16 (abfd
, (nextopc
>> 16) & 0xffff,
12645 contents
+ irel
[1].r_offset
);
12646 bfd_put_16 (abfd
, nextopc
& 0xffff,
12647 contents
+ irel
[1].r_offset
+ 2);
12650 /* Can't do anything, give up, sigh... */
12654 /* Fix the relocation's type. */
12655 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MIPS_NONE
);
12657 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12662 /* Compact branch relaxation -- due to the multitude of macros
12663 employed by the compiler/assembler, compact branches are not
12664 always generated. Obviously, this can/will be fixed elsewhere,
12665 but there is no drawback in double checking it here. */
12666 else if (r_type
== R_MICROMIPS_PC16_S1
12667 && irel
->r_offset
+ 5 < sec
->size
12668 && ((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
12669 || (fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0)
12670 && MATCH (bfd_get_16 (abfd
, ptr
+ 4), nop_insn_16
))
12674 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
12676 /* Replace BEQZ/BNEZ with the compact version. */
12677 opcode
= (bzc_insns_32
[fndopc
].match
12678 | BZC32_REG_FIELD (reg
)
12679 | (opcode
& 0xffff)); /* Addend value. */
12681 bfd_put_16 (abfd
, (opcode
>> 16) & 0xffff, ptr
);
12682 bfd_put_16 (abfd
, opcode
& 0xffff, ptr
+ 2);
12684 /* Delete the 16-bit delay slot NOP: two bytes from
12685 irel->offset + 4. */
12690 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12691 to check the distance from the next instruction, so subtract 2. */
12692 else if (r_type
== R_MICROMIPS_PC16_S1
12693 && IS_BITSIZE (pcrval
- 2, 11)
12694 && find_match (opcode
, b_insns_32
) >= 0)
12696 /* Fix the relocation's type. */
12697 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC10_S1
);
12699 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12702 | (opcode
& 0x3ff)), /* Addend value. */
12705 /* Delete 2 bytes from irel->r_offset + 2. */
12710 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12711 to check the distance from the next instruction, so subtract 2. */
12712 else if (r_type
== R_MICROMIPS_PC16_S1
12713 && IS_BITSIZE (pcrval
- 2, 8)
12714 && (((fndopc
= find_match (opcode
, bz_rs_insns_32
)) >= 0
12715 && OP16_VALID_REG (OP32_SREG (opcode
)))
12716 || ((fndopc
= find_match (opcode
, bz_rt_insns_32
)) >= 0
12717 && OP16_VALID_REG (OP32_TREG (opcode
)))))
12721 reg
= OP32_SREG (opcode
) ? OP32_SREG (opcode
) : OP32_TREG (opcode
);
12723 /* Fix the relocation's type. */
12724 irel
->r_info
= ELF32_R_INFO (r_symndx
, R_MICROMIPS_PC7_S1
);
12726 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12728 (bz_insns_16
[fndopc
].match
12729 | BZ16_REG_FIELD (reg
)
12730 | (opcode
& 0x7f)), /* Addend value. */
12733 /* Delete 2 bytes from irel->r_offset + 2. */
12738 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12739 else if (r_type
== R_MICROMIPS_26_S1
12740 && target_is_micromips_code_p
12741 && irel
->r_offset
+ 7 < sec
->size
12742 && MATCH (opcode
, jal_insn_32_bd32
))
12744 unsigned long n32opc
;
12745 bfd_boolean relaxed
= FALSE
;
12747 n32opc
= bfd_get_16 (abfd
, ptr
+ 4) << 16;
12748 n32opc
|= bfd_get_16 (abfd
, ptr
+ 6);
12750 if (MATCH (n32opc
, nop_insn_32
))
12752 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12753 bfd_put_16 (abfd
, nop_insn_16
.match
, ptr
+ 4);
12757 else if (find_match (n32opc
, move_insns_32
) >= 0)
12759 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12761 (move_insn_16
.match
12762 | MOVE16_RD_FIELD (MOVE32_RD (n32opc
))
12763 | MOVE16_RS_FIELD (MOVE32_RS (n32opc
))),
12768 /* Other 32-bit instructions relaxable to 16-bit
12769 instructions will be handled here later. */
12773 /* JAL with 32-bit delay slot that is changed to a JALS
12774 with 16-bit delay slot. */
12775 bfd_put_16 (abfd
, (jal_insn_32_bd16
.match
>> 16) & 0xffff,
12777 bfd_put_16 (abfd
, jal_insn_32_bd16
.match
& 0xffff,
12780 /* Delete 2 bytes from irel->r_offset + 6. */
12788 /* Note that we've changed the relocs, section contents, etc. */
12789 elf_section_data (sec
)->relocs
= internal_relocs
;
12790 elf_section_data (sec
)->this_hdr
.contents
= contents
;
12791 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
12793 /* Delete bytes depending on the delcnt and deloff. */
12794 if (!mips_elf_relax_delete_bytes (abfd
, sec
,
12795 irel
->r_offset
+ deloff
, delcnt
))
12798 /* That will change things, so we should relax again.
12799 Note that this is not required, and it may be slow. */
12804 if (isymbuf
!= NULL
12805 && symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
12807 if (! link_info
->keep_memory
)
12811 /* Cache the symbols for elf_link_input_bfd. */
12812 symtab_hdr
->contents
= (unsigned char *) isymbuf
;
12816 if (contents
!= NULL
12817 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
12819 if (! link_info
->keep_memory
)
12823 /* Cache the section contents for elf_link_input_bfd. */
12824 elf_section_data (sec
)->this_hdr
.contents
= contents
;
12828 if (internal_relocs
!= NULL
12829 && elf_section_data (sec
)->relocs
!= internal_relocs
)
12830 free (internal_relocs
);
12835 if (isymbuf
!= NULL
12836 && symtab_hdr
->contents
!= (unsigned char *) isymbuf
)
12838 if (contents
!= NULL
12839 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
12841 if (internal_relocs
!= NULL
12842 && elf_section_data (sec
)->relocs
!= internal_relocs
)
12843 free (internal_relocs
);
12848 /* Create a MIPS ELF linker hash table. */
12850 struct bfd_link_hash_table
*
12851 _bfd_mips_elf_link_hash_table_create (bfd
*abfd
)
12853 struct mips_elf_link_hash_table
*ret
;
12854 bfd_size_type amt
= sizeof (struct mips_elf_link_hash_table
);
12856 ret
= bfd_malloc (amt
);
12860 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
12861 mips_elf_link_hash_newfunc
,
12862 sizeof (struct mips_elf_link_hash_entry
),
12870 /* We no longer use this. */
12871 for (i
= 0; i
< SIZEOF_MIPS_DYNSYM_SECNAMES
; i
++)
12872 ret
->dynsym_sec_strindex
[i
] = (bfd_size_type
) -1;
12874 ret
->procedure_count
= 0;
12875 ret
->compact_rel_size
= 0;
12876 ret
->use_rld_obj_head
= FALSE
;
12877 ret
->rld_symbol
= NULL
;
12878 ret
->mips16_stubs_seen
= FALSE
;
12879 ret
->use_plts_and_copy_relocs
= FALSE
;
12880 ret
->is_vxworks
= FALSE
;
12881 ret
->small_data_overflow_reported
= FALSE
;
12882 ret
->srelbss
= NULL
;
12883 ret
->sdynbss
= NULL
;
12884 ret
->srelplt
= NULL
;
12885 ret
->srelplt2
= NULL
;
12886 ret
->sgotplt
= NULL
;
12888 ret
->sstubs
= NULL
;
12890 ret
->got_info
= NULL
;
12891 ret
->plt_header_size
= 0;
12892 ret
->plt_entry_size
= 0;
12893 ret
->lazy_stub_count
= 0;
12894 ret
->function_stub_size
= 0;
12895 ret
->strampoline
= NULL
;
12896 ret
->la25_stubs
= NULL
;
12897 ret
->add_stub_section
= NULL
;
12899 return &ret
->root
.root
;
12902 /* Likewise, but indicate that the target is VxWorks. */
12904 struct bfd_link_hash_table
*
12905 _bfd_mips_vxworks_link_hash_table_create (bfd
*abfd
)
12907 struct bfd_link_hash_table
*ret
;
12909 ret
= _bfd_mips_elf_link_hash_table_create (abfd
);
12912 struct mips_elf_link_hash_table
*htab
;
12914 htab
= (struct mips_elf_link_hash_table
*) ret
;
12915 htab
->use_plts_and_copy_relocs
= TRUE
;
12916 htab
->is_vxworks
= TRUE
;
12921 /* A function that the linker calls if we are allowed to use PLTs
12922 and copy relocs. */
12925 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info
*info
)
12927 mips_elf_hash_table (info
)->use_plts_and_copy_relocs
= TRUE
;
12930 /* We need to use a special link routine to handle the .reginfo and
12931 the .mdebug sections. We need to merge all instances of these
12932 sections together, not write them all out sequentially. */
12935 _bfd_mips_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
12938 struct bfd_link_order
*p
;
12939 asection
*reginfo_sec
, *mdebug_sec
, *gptab_data_sec
, *gptab_bss_sec
;
12940 asection
*rtproc_sec
;
12941 Elf32_RegInfo reginfo
;
12942 struct ecoff_debug_info debug
;
12943 struct mips_htab_traverse_info hti
;
12944 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
12945 const struct ecoff_debug_swap
*swap
= bed
->elf_backend_ecoff_debug_swap
;
12946 HDRR
*symhdr
= &debug
.symbolic_header
;
12947 void *mdebug_handle
= NULL
;
12952 struct mips_elf_link_hash_table
*htab
;
12954 static const char * const secname
[] =
12956 ".text", ".init", ".fini", ".data",
12957 ".rodata", ".sdata", ".sbss", ".bss"
12959 static const int sc
[] =
12961 scText
, scInit
, scFini
, scData
,
12962 scRData
, scSData
, scSBss
, scBss
12965 /* Sort the dynamic symbols so that those with GOT entries come after
12967 htab
= mips_elf_hash_table (info
);
12968 BFD_ASSERT (htab
!= NULL
);
12970 if (!mips_elf_sort_hash_table (abfd
, info
))
12973 /* Create any scheduled LA25 stubs. */
12975 hti
.output_bfd
= abfd
;
12977 htab_traverse (htab
->la25_stubs
, mips_elf_create_la25_stub
, &hti
);
12981 /* Get a value for the GP register. */
12982 if (elf_gp (abfd
) == 0)
12984 struct bfd_link_hash_entry
*h
;
12986 h
= bfd_link_hash_lookup (info
->hash
, "_gp", FALSE
, FALSE
, TRUE
);
12987 if (h
!= NULL
&& h
->type
== bfd_link_hash_defined
)
12988 elf_gp (abfd
) = (h
->u
.def
.value
12989 + h
->u
.def
.section
->output_section
->vma
12990 + h
->u
.def
.section
->output_offset
);
12991 else if (htab
->is_vxworks
12992 && (h
= bfd_link_hash_lookup (info
->hash
,
12993 "_GLOBAL_OFFSET_TABLE_",
12994 FALSE
, FALSE
, TRUE
))
12995 && h
->type
== bfd_link_hash_defined
)
12996 elf_gp (abfd
) = (h
->u
.def
.section
->output_section
->vma
12997 + h
->u
.def
.section
->output_offset
12999 else if (info
->relocatable
)
13001 bfd_vma lo
= MINUS_ONE
;
13003 /* Find the GP-relative section with the lowest offset. */
13004 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
13006 && (elf_section_data (o
)->this_hdr
.sh_flags
& SHF_MIPS_GPREL
))
13009 /* And calculate GP relative to that. */
13010 elf_gp (abfd
) = lo
+ ELF_MIPS_GP_OFFSET (info
);
13014 /* If the relocate_section function needs to do a reloc
13015 involving the GP value, it should make a reloc_dangerous
13016 callback to warn that GP is not defined. */
13020 /* Go through the sections and collect the .reginfo and .mdebug
13022 reginfo_sec
= NULL
;
13024 gptab_data_sec
= NULL
;
13025 gptab_bss_sec
= NULL
;
13026 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
13028 if (strcmp (o
->name
, ".reginfo") == 0)
13030 memset (®info
, 0, sizeof reginfo
);
13032 /* We have found the .reginfo section in the output file.
13033 Look through all the link_orders comprising it and merge
13034 the information together. */
13035 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
13037 asection
*input_section
;
13039 Elf32_External_RegInfo ext
;
13042 if (p
->type
!= bfd_indirect_link_order
)
13044 if (p
->type
== bfd_data_link_order
)
13049 input_section
= p
->u
.indirect
.section
;
13050 input_bfd
= input_section
->owner
;
13052 if (! bfd_get_section_contents (input_bfd
, input_section
,
13053 &ext
, 0, sizeof ext
))
13056 bfd_mips_elf32_swap_reginfo_in (input_bfd
, &ext
, &sub
);
13058 reginfo
.ri_gprmask
|= sub
.ri_gprmask
;
13059 reginfo
.ri_cprmask
[0] |= sub
.ri_cprmask
[0];
13060 reginfo
.ri_cprmask
[1] |= sub
.ri_cprmask
[1];
13061 reginfo
.ri_cprmask
[2] |= sub
.ri_cprmask
[2];
13062 reginfo
.ri_cprmask
[3] |= sub
.ri_cprmask
[3];
13064 /* ri_gp_value is set by the function
13065 mips_elf32_section_processing when the section is
13066 finally written out. */
13068 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13069 elf_link_input_bfd ignores this section. */
13070 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
13073 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13074 BFD_ASSERT(o
->size
== sizeof (Elf32_External_RegInfo
));
13076 /* Skip this section later on (I don't think this currently
13077 matters, but someday it might). */
13078 o
->map_head
.link_order
= NULL
;
13083 if (strcmp (o
->name
, ".mdebug") == 0)
13085 struct extsym_info einfo
;
13088 /* We have found the .mdebug section in the output file.
13089 Look through all the link_orders comprising it and merge
13090 the information together. */
13091 symhdr
->magic
= swap
->sym_magic
;
13092 /* FIXME: What should the version stamp be? */
13093 symhdr
->vstamp
= 0;
13094 symhdr
->ilineMax
= 0;
13095 symhdr
->cbLine
= 0;
13096 symhdr
->idnMax
= 0;
13097 symhdr
->ipdMax
= 0;
13098 symhdr
->isymMax
= 0;
13099 symhdr
->ioptMax
= 0;
13100 symhdr
->iauxMax
= 0;
13101 symhdr
->issMax
= 0;
13102 symhdr
->issExtMax
= 0;
13103 symhdr
->ifdMax
= 0;
13105 symhdr
->iextMax
= 0;
13107 /* We accumulate the debugging information itself in the
13108 debug_info structure. */
13110 debug
.external_dnr
= NULL
;
13111 debug
.external_pdr
= NULL
;
13112 debug
.external_sym
= NULL
;
13113 debug
.external_opt
= NULL
;
13114 debug
.external_aux
= NULL
;
13116 debug
.ssext
= debug
.ssext_end
= NULL
;
13117 debug
.external_fdr
= NULL
;
13118 debug
.external_rfd
= NULL
;
13119 debug
.external_ext
= debug
.external_ext_end
= NULL
;
13121 mdebug_handle
= bfd_ecoff_debug_init (abfd
, &debug
, swap
, info
);
13122 if (mdebug_handle
== NULL
)
13126 esym
.cobol_main
= 0;
13130 esym
.asym
.iss
= issNil
;
13131 esym
.asym
.st
= stLocal
;
13132 esym
.asym
.reserved
= 0;
13133 esym
.asym
.index
= indexNil
;
13135 for (i
= 0; i
< sizeof (secname
) / sizeof (secname
[0]); i
++)
13137 esym
.asym
.sc
= sc
[i
];
13138 s
= bfd_get_section_by_name (abfd
, secname
[i
]);
13141 esym
.asym
.value
= s
->vma
;
13142 last
= s
->vma
+ s
->size
;
13145 esym
.asym
.value
= last
;
13146 if (!bfd_ecoff_debug_one_external (abfd
, &debug
, swap
,
13147 secname
[i
], &esym
))
13151 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
13153 asection
*input_section
;
13155 const struct ecoff_debug_swap
*input_swap
;
13156 struct ecoff_debug_info input_debug
;
13160 if (p
->type
!= bfd_indirect_link_order
)
13162 if (p
->type
== bfd_data_link_order
)
13167 input_section
= p
->u
.indirect
.section
;
13168 input_bfd
= input_section
->owner
;
13170 if (!is_mips_elf (input_bfd
))
13172 /* I don't know what a non MIPS ELF bfd would be
13173 doing with a .mdebug section, but I don't really
13174 want to deal with it. */
13178 input_swap
= (get_elf_backend_data (input_bfd
)
13179 ->elf_backend_ecoff_debug_swap
);
13181 BFD_ASSERT (p
->size
== input_section
->size
);
13183 /* The ECOFF linking code expects that we have already
13184 read in the debugging information and set up an
13185 ecoff_debug_info structure, so we do that now. */
13186 if (! _bfd_mips_elf_read_ecoff_info (input_bfd
, input_section
,
13190 if (! (bfd_ecoff_debug_accumulate
13191 (mdebug_handle
, abfd
, &debug
, swap
, input_bfd
,
13192 &input_debug
, input_swap
, info
)))
13195 /* Loop through the external symbols. For each one with
13196 interesting information, try to find the symbol in
13197 the linker global hash table and save the information
13198 for the output external symbols. */
13199 eraw_src
= input_debug
.external_ext
;
13200 eraw_end
= (eraw_src
13201 + (input_debug
.symbolic_header
.iextMax
13202 * input_swap
->external_ext_size
));
13204 eraw_src
< eraw_end
;
13205 eraw_src
+= input_swap
->external_ext_size
)
13209 struct mips_elf_link_hash_entry
*h
;
13211 (*input_swap
->swap_ext_in
) (input_bfd
, eraw_src
, &ext
);
13212 if (ext
.asym
.sc
== scNil
13213 || ext
.asym
.sc
== scUndefined
13214 || ext
.asym
.sc
== scSUndefined
)
13217 name
= input_debug
.ssext
+ ext
.asym
.iss
;
13218 h
= mips_elf_link_hash_lookup (mips_elf_hash_table (info
),
13219 name
, FALSE
, FALSE
, TRUE
);
13220 if (h
== NULL
|| h
->esym
.ifd
!= -2)
13225 BFD_ASSERT (ext
.ifd
13226 < input_debug
.symbolic_header
.ifdMax
);
13227 ext
.ifd
= input_debug
.ifdmap
[ext
.ifd
];
13233 /* Free up the information we just read. */
13234 free (input_debug
.line
);
13235 free (input_debug
.external_dnr
);
13236 free (input_debug
.external_pdr
);
13237 free (input_debug
.external_sym
);
13238 free (input_debug
.external_opt
);
13239 free (input_debug
.external_aux
);
13240 free (input_debug
.ss
);
13241 free (input_debug
.ssext
);
13242 free (input_debug
.external_fdr
);
13243 free (input_debug
.external_rfd
);
13244 free (input_debug
.external_ext
);
13246 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13247 elf_link_input_bfd ignores this section. */
13248 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
13251 if (SGI_COMPAT (abfd
) && info
->shared
)
13253 /* Create .rtproc section. */
13254 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
13255 if (rtproc_sec
== NULL
)
13257 flagword flags
= (SEC_HAS_CONTENTS
| SEC_IN_MEMORY
13258 | SEC_LINKER_CREATED
| SEC_READONLY
);
13260 rtproc_sec
= bfd_make_section_with_flags (abfd
,
13263 if (rtproc_sec
== NULL
13264 || ! bfd_set_section_alignment (abfd
, rtproc_sec
, 4))
13268 if (! mips_elf_create_procedure_table (mdebug_handle
, abfd
,
13274 /* Build the external symbol information. */
13277 einfo
.debug
= &debug
;
13279 einfo
.failed
= FALSE
;
13280 mips_elf_link_hash_traverse (mips_elf_hash_table (info
),
13281 mips_elf_output_extsym
, &einfo
);
13285 /* Set the size of the .mdebug section. */
13286 o
->size
= bfd_ecoff_debug_size (abfd
, &debug
, swap
);
13288 /* Skip this section later on (I don't think this currently
13289 matters, but someday it might). */
13290 o
->map_head
.link_order
= NULL
;
13295 if (CONST_STRNEQ (o
->name
, ".gptab."))
13297 const char *subname
;
13300 Elf32_External_gptab
*ext_tab
;
13303 /* The .gptab.sdata and .gptab.sbss sections hold
13304 information describing how the small data area would
13305 change depending upon the -G switch. These sections
13306 not used in executables files. */
13307 if (! info
->relocatable
)
13309 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
13311 asection
*input_section
;
13313 if (p
->type
!= bfd_indirect_link_order
)
13315 if (p
->type
== bfd_data_link_order
)
13320 input_section
= p
->u
.indirect
.section
;
13322 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13323 elf_link_input_bfd ignores this section. */
13324 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
13327 /* Skip this section later on (I don't think this
13328 currently matters, but someday it might). */
13329 o
->map_head
.link_order
= NULL
;
13331 /* Really remove the section. */
13332 bfd_section_list_remove (abfd
, o
);
13333 --abfd
->section_count
;
13338 /* There is one gptab for initialized data, and one for
13339 uninitialized data. */
13340 if (strcmp (o
->name
, ".gptab.sdata") == 0)
13341 gptab_data_sec
= o
;
13342 else if (strcmp (o
->name
, ".gptab.sbss") == 0)
13346 (*_bfd_error_handler
)
13347 (_("%s: illegal section name `%s'"),
13348 bfd_get_filename (abfd
), o
->name
);
13349 bfd_set_error (bfd_error_nonrepresentable_section
);
13353 /* The linker script always combines .gptab.data and
13354 .gptab.sdata into .gptab.sdata, and likewise for
13355 .gptab.bss and .gptab.sbss. It is possible that there is
13356 no .sdata or .sbss section in the output file, in which
13357 case we must change the name of the output section. */
13358 subname
= o
->name
+ sizeof ".gptab" - 1;
13359 if (bfd_get_section_by_name (abfd
, subname
) == NULL
)
13361 if (o
== gptab_data_sec
)
13362 o
->name
= ".gptab.data";
13364 o
->name
= ".gptab.bss";
13365 subname
= o
->name
+ sizeof ".gptab" - 1;
13366 BFD_ASSERT (bfd_get_section_by_name (abfd
, subname
) != NULL
);
13369 /* Set up the first entry. */
13371 amt
= c
* sizeof (Elf32_gptab
);
13372 tab
= bfd_malloc (amt
);
13375 tab
[0].gt_header
.gt_current_g_value
= elf_gp_size (abfd
);
13376 tab
[0].gt_header
.gt_unused
= 0;
13378 /* Combine the input sections. */
13379 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
13381 asection
*input_section
;
13383 bfd_size_type size
;
13384 unsigned long last
;
13385 bfd_size_type gpentry
;
13387 if (p
->type
!= bfd_indirect_link_order
)
13389 if (p
->type
== bfd_data_link_order
)
13394 input_section
= p
->u
.indirect
.section
;
13395 input_bfd
= input_section
->owner
;
13397 /* Combine the gptab entries for this input section one
13398 by one. We know that the input gptab entries are
13399 sorted by ascending -G value. */
13400 size
= input_section
->size
;
13402 for (gpentry
= sizeof (Elf32_External_gptab
);
13404 gpentry
+= sizeof (Elf32_External_gptab
))
13406 Elf32_External_gptab ext_gptab
;
13407 Elf32_gptab int_gptab
;
13413 if (! (bfd_get_section_contents
13414 (input_bfd
, input_section
, &ext_gptab
, gpentry
,
13415 sizeof (Elf32_External_gptab
))))
13421 bfd_mips_elf32_swap_gptab_in (input_bfd
, &ext_gptab
,
13423 val
= int_gptab
.gt_entry
.gt_g_value
;
13424 add
= int_gptab
.gt_entry
.gt_bytes
- last
;
13427 for (look
= 1; look
< c
; look
++)
13429 if (tab
[look
].gt_entry
.gt_g_value
>= val
)
13430 tab
[look
].gt_entry
.gt_bytes
+= add
;
13432 if (tab
[look
].gt_entry
.gt_g_value
== val
)
13438 Elf32_gptab
*new_tab
;
13441 /* We need a new table entry. */
13442 amt
= (bfd_size_type
) (c
+ 1) * sizeof (Elf32_gptab
);
13443 new_tab
= bfd_realloc (tab
, amt
);
13444 if (new_tab
== NULL
)
13450 tab
[c
].gt_entry
.gt_g_value
= val
;
13451 tab
[c
].gt_entry
.gt_bytes
= add
;
13453 /* Merge in the size for the next smallest -G
13454 value, since that will be implied by this new
13457 for (look
= 1; look
< c
; look
++)
13459 if (tab
[look
].gt_entry
.gt_g_value
< val
13461 || (tab
[look
].gt_entry
.gt_g_value
13462 > tab
[max
].gt_entry
.gt_g_value
)))
13466 tab
[c
].gt_entry
.gt_bytes
+=
13467 tab
[max
].gt_entry
.gt_bytes
;
13472 last
= int_gptab
.gt_entry
.gt_bytes
;
13475 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13476 elf_link_input_bfd ignores this section. */
13477 input_section
->flags
&= ~SEC_HAS_CONTENTS
;
13480 /* The table must be sorted by -G value. */
13482 qsort (tab
+ 1, c
- 1, sizeof (tab
[0]), gptab_compare
);
13484 /* Swap out the table. */
13485 amt
= (bfd_size_type
) c
* sizeof (Elf32_External_gptab
);
13486 ext_tab
= bfd_alloc (abfd
, amt
);
13487 if (ext_tab
== NULL
)
13493 for (j
= 0; j
< c
; j
++)
13494 bfd_mips_elf32_swap_gptab_out (abfd
, tab
+ j
, ext_tab
+ j
);
13497 o
->size
= c
* sizeof (Elf32_External_gptab
);
13498 o
->contents
= (bfd_byte
*) ext_tab
;
13500 /* Skip this section later on (I don't think this currently
13501 matters, but someday it might). */
13502 o
->map_head
.link_order
= NULL
;
13506 /* Invoke the regular ELF backend linker to do all the work. */
13507 if (!bfd_elf_final_link (abfd
, info
))
13510 /* Now write out the computed sections. */
13512 if (reginfo_sec
!= NULL
)
13514 Elf32_External_RegInfo ext
;
13516 bfd_mips_elf32_swap_reginfo_out (abfd
, ®info
, &ext
);
13517 if (! bfd_set_section_contents (abfd
, reginfo_sec
, &ext
, 0, sizeof ext
))
13521 if (mdebug_sec
!= NULL
)
13523 BFD_ASSERT (abfd
->output_has_begun
);
13524 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle
, abfd
, &debug
,
13526 mdebug_sec
->filepos
))
13529 bfd_ecoff_debug_free (mdebug_handle
, abfd
, &debug
, swap
, info
);
13532 if (gptab_data_sec
!= NULL
)
13534 if (! bfd_set_section_contents (abfd
, gptab_data_sec
,
13535 gptab_data_sec
->contents
,
13536 0, gptab_data_sec
->size
))
13540 if (gptab_bss_sec
!= NULL
)
13542 if (! bfd_set_section_contents (abfd
, gptab_bss_sec
,
13543 gptab_bss_sec
->contents
,
13544 0, gptab_bss_sec
->size
))
13548 if (SGI_COMPAT (abfd
))
13550 rtproc_sec
= bfd_get_section_by_name (abfd
, ".rtproc");
13551 if (rtproc_sec
!= NULL
)
13553 if (! bfd_set_section_contents (abfd
, rtproc_sec
,
13554 rtproc_sec
->contents
,
13555 0, rtproc_sec
->size
))
13563 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13565 struct mips_mach_extension
{
13566 unsigned long extension
, base
;
13570 /* An array describing how BFD machines relate to one another. The entries
13571 are ordered topologically with MIPS I extensions listed last. */
13573 static const struct mips_mach_extension mips_mach_extensions
[] = {
13574 /* MIPS64r2 extensions. */
13575 { bfd_mach_mips_octeon2
, bfd_mach_mips_octeonp
},
13576 { bfd_mach_mips_octeonp
, bfd_mach_mips_octeon
},
13577 { bfd_mach_mips_octeon
, bfd_mach_mipsisa64r2
},
13579 /* MIPS64 extensions. */
13580 { bfd_mach_mipsisa64r2
, bfd_mach_mipsisa64
},
13581 { bfd_mach_mips_sb1
, bfd_mach_mipsisa64
},
13582 { bfd_mach_mips_xlr
, bfd_mach_mipsisa64
},
13583 { bfd_mach_mips_loongson_3a
, bfd_mach_mipsisa64
},
13585 /* MIPS V extensions. */
13586 { bfd_mach_mipsisa64
, bfd_mach_mips5
},
13588 /* R10000 extensions. */
13589 { bfd_mach_mips12000
, bfd_mach_mips10000
},
13590 { bfd_mach_mips14000
, bfd_mach_mips10000
},
13591 { bfd_mach_mips16000
, bfd_mach_mips10000
},
13593 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13594 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13595 better to allow vr5400 and vr5500 code to be merged anyway, since
13596 many libraries will just use the core ISA. Perhaps we could add
13597 some sort of ASE flag if this ever proves a problem. */
13598 { bfd_mach_mips5500
, bfd_mach_mips5400
},
13599 { bfd_mach_mips5400
, bfd_mach_mips5000
},
13601 /* MIPS IV extensions. */
13602 { bfd_mach_mips5
, bfd_mach_mips8000
},
13603 { bfd_mach_mips10000
, bfd_mach_mips8000
},
13604 { bfd_mach_mips5000
, bfd_mach_mips8000
},
13605 { bfd_mach_mips7000
, bfd_mach_mips8000
},
13606 { bfd_mach_mips9000
, bfd_mach_mips8000
},
13608 /* VR4100 extensions. */
13609 { bfd_mach_mips4120
, bfd_mach_mips4100
},
13610 { bfd_mach_mips4111
, bfd_mach_mips4100
},
13612 /* MIPS III extensions. */
13613 { bfd_mach_mips_loongson_2e
, bfd_mach_mips4000
},
13614 { bfd_mach_mips_loongson_2f
, bfd_mach_mips4000
},
13615 { bfd_mach_mips8000
, bfd_mach_mips4000
},
13616 { bfd_mach_mips4650
, bfd_mach_mips4000
},
13617 { bfd_mach_mips4600
, bfd_mach_mips4000
},
13618 { bfd_mach_mips4400
, bfd_mach_mips4000
},
13619 { bfd_mach_mips4300
, bfd_mach_mips4000
},
13620 { bfd_mach_mips4100
, bfd_mach_mips4000
},
13621 { bfd_mach_mips4010
, bfd_mach_mips4000
},
13623 /* MIPS32 extensions. */
13624 { bfd_mach_mipsisa32r2
, bfd_mach_mipsisa32
},
13626 /* MIPS II extensions. */
13627 { bfd_mach_mips4000
, bfd_mach_mips6000
},
13628 { bfd_mach_mipsisa32
, bfd_mach_mips6000
},
13630 /* MIPS I extensions. */
13631 { bfd_mach_mips6000
, bfd_mach_mips3000
},
13632 { bfd_mach_mips3900
, bfd_mach_mips3000
}
13636 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13639 mips_mach_extends_p (unsigned long base
, unsigned long extension
)
13643 if (extension
== base
)
13646 if (base
== bfd_mach_mipsisa32
13647 && mips_mach_extends_p (bfd_mach_mipsisa64
, extension
))
13650 if (base
== bfd_mach_mipsisa32r2
13651 && mips_mach_extends_p (bfd_mach_mipsisa64r2
, extension
))
13654 for (i
= 0; i
< ARRAY_SIZE (mips_mach_extensions
); i
++)
13655 if (extension
== mips_mach_extensions
[i
].extension
)
13657 extension
= mips_mach_extensions
[i
].base
;
13658 if (extension
== base
)
13666 /* Return true if the given ELF header flags describe a 32-bit binary. */
13669 mips_32bit_flags_p (flagword flags
)
13671 return ((flags
& EF_MIPS_32BITMODE
) != 0
13672 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
13673 || (flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
13674 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
13675 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
13676 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
13677 || (flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
);
13681 /* Merge object attributes from IBFD into OBFD. Raise an error if
13682 there are conflicting attributes. */
13684 mips_elf_merge_obj_attributes (bfd
*ibfd
, bfd
*obfd
)
13686 obj_attribute
*in_attr
;
13687 obj_attribute
*out_attr
;
13689 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
13691 /* This is the first object. Copy the attributes. */
13692 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
13694 /* Use the Tag_null value to indicate the attributes have been
13696 elf_known_obj_attributes_proc (obfd
)[0].i
= 1;
13701 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13702 non-conflicting ones. */
13703 in_attr
= elf_known_obj_attributes (ibfd
)[OBJ_ATTR_GNU
];
13704 out_attr
= elf_known_obj_attributes (obfd
)[OBJ_ATTR_GNU
];
13705 if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
!= out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
13707 out_attr
[Tag_GNU_MIPS_ABI_FP
].type
= 1;
13708 if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
13709 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
= in_attr
[Tag_GNU_MIPS_ABI_FP
].i
;
13710 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
== 0)
13712 else if (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
13714 (_("Warning: %B uses unknown floating point ABI %d"), ibfd
,
13715 in_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
13716 else if (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
> 4)
13718 (_("Warning: %B uses unknown floating point ABI %d"), obfd
,
13719 out_attr
[Tag_GNU_MIPS_ABI_FP
].i
);
13721 switch (out_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
13724 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
13728 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13734 (_("Warning: %B uses hard float, %B uses soft float"),
13740 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13750 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
13754 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13760 (_("Warning: %B uses hard float, %B uses soft float"),
13766 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13776 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
13782 (_("Warning: %B uses hard float, %B uses soft float"),
13792 switch (in_attr
[Tag_GNU_MIPS_ABI_FP
].i
)
13796 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13802 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13808 (_("Warning: %B uses hard float, %B uses soft float"),
13822 /* Merge Tag_compatibility attributes and any common GNU ones. */
13823 _bfd_elf_merge_object_attributes (ibfd
, obfd
);
13828 /* Merge backend specific data from an object file to the output
13829 object file when linking. */
13832 _bfd_mips_elf_merge_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
13834 flagword old_flags
;
13835 flagword new_flags
;
13837 bfd_boolean null_input_bfd
= TRUE
;
13840 /* Check if we have the same endianness. */
13841 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
13843 (*_bfd_error_handler
)
13844 (_("%B: endianness incompatible with that of the selected emulation"),
13849 if (!is_mips_elf (ibfd
) || !is_mips_elf (obfd
))
13852 if (strcmp (bfd_get_target (ibfd
), bfd_get_target (obfd
)) != 0)
13854 (*_bfd_error_handler
)
13855 (_("%B: ABI is incompatible with that of the selected emulation"),
13860 if (!mips_elf_merge_obj_attributes (ibfd
, obfd
))
13863 new_flags
= elf_elfheader (ibfd
)->e_flags
;
13864 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_NOREORDER
;
13865 old_flags
= elf_elfheader (obfd
)->e_flags
;
13867 if (! elf_flags_init (obfd
))
13869 elf_flags_init (obfd
) = TRUE
;
13870 elf_elfheader (obfd
)->e_flags
= new_flags
;
13871 elf_elfheader (obfd
)->e_ident
[EI_CLASS
]
13872 = elf_elfheader (ibfd
)->e_ident
[EI_CLASS
];
13874 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
13875 && (bfd_get_arch_info (obfd
)->the_default
13876 || mips_mach_extends_p (bfd_get_mach (obfd
),
13877 bfd_get_mach (ibfd
))))
13879 if (! bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
),
13880 bfd_get_mach (ibfd
)))
13887 /* Check flag compatibility. */
13889 new_flags
&= ~EF_MIPS_NOREORDER
;
13890 old_flags
&= ~EF_MIPS_NOREORDER
;
13892 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13893 doesn't seem to matter. */
13894 new_flags
&= ~EF_MIPS_XGOT
;
13895 old_flags
&= ~EF_MIPS_XGOT
;
13897 /* MIPSpro generates ucode info in n64 objects. Again, we should
13898 just be able to ignore this. */
13899 new_flags
&= ~EF_MIPS_UCODE
;
13900 old_flags
&= ~EF_MIPS_UCODE
;
13902 /* DSOs should only be linked with CPIC code. */
13903 if ((ibfd
->flags
& DYNAMIC
) != 0)
13904 new_flags
|= EF_MIPS_PIC
| EF_MIPS_CPIC
;
13906 if (new_flags
== old_flags
)
13909 /* Check to see if the input BFD actually contains any sections.
13910 If not, its flags may not have been initialised either, but it cannot
13911 actually cause any incompatibility. */
13912 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
13914 /* Ignore synthetic sections and empty .text, .data and .bss sections
13915 which are automatically generated by gas. Also ignore fake
13916 (s)common sections, since merely defining a common symbol does
13917 not affect compatibility. */
13918 if ((sec
->flags
& SEC_IS_COMMON
) == 0
13919 && strcmp (sec
->name
, ".reginfo")
13920 && strcmp (sec
->name
, ".mdebug")
13922 || (strcmp (sec
->name
, ".text")
13923 && strcmp (sec
->name
, ".data")
13924 && strcmp (sec
->name
, ".bss"))))
13926 null_input_bfd
= FALSE
;
13930 if (null_input_bfd
)
13935 if (((new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0)
13936 != ((old_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
)) != 0))
13938 (*_bfd_error_handler
)
13939 (_("%B: warning: linking abicalls files with non-abicalls files"),
13944 if (new_flags
& (EF_MIPS_PIC
| EF_MIPS_CPIC
))
13945 elf_elfheader (obfd
)->e_flags
|= EF_MIPS_CPIC
;
13946 if (! (new_flags
& EF_MIPS_PIC
))
13947 elf_elfheader (obfd
)->e_flags
&= ~EF_MIPS_PIC
;
13949 new_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
13950 old_flags
&= ~ (EF_MIPS_PIC
| EF_MIPS_CPIC
);
13952 /* Compare the ISAs. */
13953 if (mips_32bit_flags_p (old_flags
) != mips_32bit_flags_p (new_flags
))
13955 (*_bfd_error_handler
)
13956 (_("%B: linking 32-bit code with 64-bit code"),
13960 else if (!mips_mach_extends_p (bfd_get_mach (ibfd
), bfd_get_mach (obfd
)))
13962 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13963 if (mips_mach_extends_p (bfd_get_mach (obfd
), bfd_get_mach (ibfd
)))
13965 /* Copy the architecture info from IBFD to OBFD. Also copy
13966 the 32-bit flag (if set) so that we continue to recognise
13967 OBFD as a 32-bit binary. */
13968 bfd_set_arch_info (obfd
, bfd_get_arch_info (ibfd
));
13969 elf_elfheader (obfd
)->e_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
);
13970 elf_elfheader (obfd
)->e_flags
13971 |= new_flags
& (EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
13973 /* Copy across the ABI flags if OBFD doesn't use them
13974 and if that was what caused us to treat IBFD as 32-bit. */
13975 if ((old_flags
& EF_MIPS_ABI
) == 0
13976 && mips_32bit_flags_p (new_flags
)
13977 && !mips_32bit_flags_p (new_flags
& ~EF_MIPS_ABI
))
13978 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ABI
;
13982 /* The ISAs aren't compatible. */
13983 (*_bfd_error_handler
)
13984 (_("%B: linking %s module with previous %s modules"),
13986 bfd_printable_name (ibfd
),
13987 bfd_printable_name (obfd
));
13992 new_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
13993 old_flags
&= ~(EF_MIPS_ARCH
| EF_MIPS_MACH
| EF_MIPS_32BITMODE
);
13995 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13996 does set EI_CLASS differently from any 32-bit ABI. */
13997 if ((new_flags
& EF_MIPS_ABI
) != (old_flags
& EF_MIPS_ABI
)
13998 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
13999 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
14001 /* Only error if both are set (to different values). */
14002 if (((new_flags
& EF_MIPS_ABI
) && (old_flags
& EF_MIPS_ABI
))
14003 || (elf_elfheader (ibfd
)->e_ident
[EI_CLASS
]
14004 != elf_elfheader (obfd
)->e_ident
[EI_CLASS
]))
14006 (*_bfd_error_handler
)
14007 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14009 elf_mips_abi_name (ibfd
),
14010 elf_mips_abi_name (obfd
));
14013 new_flags
&= ~EF_MIPS_ABI
;
14014 old_flags
&= ~EF_MIPS_ABI
;
14017 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14018 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14019 if ((new_flags
& EF_MIPS_ARCH_ASE
) != (old_flags
& EF_MIPS_ARCH_ASE
))
14021 int old_micro
= old_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
14022 int new_micro
= new_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
;
14023 int old_m16
= old_flags
& EF_MIPS_ARCH_ASE_M16
;
14024 int new_m16
= new_flags
& EF_MIPS_ARCH_ASE_M16
;
14025 int micro_mis
= old_m16
&& new_micro
;
14026 int m16_mis
= old_micro
&& new_m16
;
14028 if (m16_mis
|| micro_mis
)
14030 (*_bfd_error_handler
)
14031 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14033 m16_mis
? "MIPS16" : "microMIPS",
14034 m16_mis
? "microMIPS" : "MIPS16");
14038 elf_elfheader (obfd
)->e_flags
|= new_flags
& EF_MIPS_ARCH_ASE
;
14040 new_flags
&= ~ EF_MIPS_ARCH_ASE
;
14041 old_flags
&= ~ EF_MIPS_ARCH_ASE
;
14044 /* Warn about any other mismatches */
14045 if (new_flags
!= old_flags
)
14047 (*_bfd_error_handler
)
14048 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14049 ibfd
, (unsigned long) new_flags
,
14050 (unsigned long) old_flags
);
14056 bfd_set_error (bfd_error_bad_value
);
14063 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14066 _bfd_mips_elf_set_private_flags (bfd
*abfd
, flagword flags
)
14068 BFD_ASSERT (!elf_flags_init (abfd
)
14069 || elf_elfheader (abfd
)->e_flags
== flags
);
14071 elf_elfheader (abfd
)->e_flags
= flags
;
14072 elf_flags_init (abfd
) = TRUE
;
14077 _bfd_mips_elf_get_target_dtag (bfd_vma dtag
)
14081 default: return "";
14082 case DT_MIPS_RLD_VERSION
:
14083 return "MIPS_RLD_VERSION";
14084 case DT_MIPS_TIME_STAMP
:
14085 return "MIPS_TIME_STAMP";
14086 case DT_MIPS_ICHECKSUM
:
14087 return "MIPS_ICHECKSUM";
14088 case DT_MIPS_IVERSION
:
14089 return "MIPS_IVERSION";
14090 case DT_MIPS_FLAGS
:
14091 return "MIPS_FLAGS";
14092 case DT_MIPS_BASE_ADDRESS
:
14093 return "MIPS_BASE_ADDRESS";
14095 return "MIPS_MSYM";
14096 case DT_MIPS_CONFLICT
:
14097 return "MIPS_CONFLICT";
14098 case DT_MIPS_LIBLIST
:
14099 return "MIPS_LIBLIST";
14100 case DT_MIPS_LOCAL_GOTNO
:
14101 return "MIPS_LOCAL_GOTNO";
14102 case DT_MIPS_CONFLICTNO
:
14103 return "MIPS_CONFLICTNO";
14104 case DT_MIPS_LIBLISTNO
:
14105 return "MIPS_LIBLISTNO";
14106 case DT_MIPS_SYMTABNO
:
14107 return "MIPS_SYMTABNO";
14108 case DT_MIPS_UNREFEXTNO
:
14109 return "MIPS_UNREFEXTNO";
14110 case DT_MIPS_GOTSYM
:
14111 return "MIPS_GOTSYM";
14112 case DT_MIPS_HIPAGENO
:
14113 return "MIPS_HIPAGENO";
14114 case DT_MIPS_RLD_MAP
:
14115 return "MIPS_RLD_MAP";
14116 case DT_MIPS_DELTA_CLASS
:
14117 return "MIPS_DELTA_CLASS";
14118 case DT_MIPS_DELTA_CLASS_NO
:
14119 return "MIPS_DELTA_CLASS_NO";
14120 case DT_MIPS_DELTA_INSTANCE
:
14121 return "MIPS_DELTA_INSTANCE";
14122 case DT_MIPS_DELTA_INSTANCE_NO
:
14123 return "MIPS_DELTA_INSTANCE_NO";
14124 case DT_MIPS_DELTA_RELOC
:
14125 return "MIPS_DELTA_RELOC";
14126 case DT_MIPS_DELTA_RELOC_NO
:
14127 return "MIPS_DELTA_RELOC_NO";
14128 case DT_MIPS_DELTA_SYM
:
14129 return "MIPS_DELTA_SYM";
14130 case DT_MIPS_DELTA_SYM_NO
:
14131 return "MIPS_DELTA_SYM_NO";
14132 case DT_MIPS_DELTA_CLASSSYM
:
14133 return "MIPS_DELTA_CLASSSYM";
14134 case DT_MIPS_DELTA_CLASSSYM_NO
:
14135 return "MIPS_DELTA_CLASSSYM_NO";
14136 case DT_MIPS_CXX_FLAGS
:
14137 return "MIPS_CXX_FLAGS";
14138 case DT_MIPS_PIXIE_INIT
:
14139 return "MIPS_PIXIE_INIT";
14140 case DT_MIPS_SYMBOL_LIB
:
14141 return "MIPS_SYMBOL_LIB";
14142 case DT_MIPS_LOCALPAGE_GOTIDX
:
14143 return "MIPS_LOCALPAGE_GOTIDX";
14144 case DT_MIPS_LOCAL_GOTIDX
:
14145 return "MIPS_LOCAL_GOTIDX";
14146 case DT_MIPS_HIDDEN_GOTIDX
:
14147 return "MIPS_HIDDEN_GOTIDX";
14148 case DT_MIPS_PROTECTED_GOTIDX
:
14149 return "MIPS_PROTECTED_GOT_IDX";
14150 case DT_MIPS_OPTIONS
:
14151 return "MIPS_OPTIONS";
14152 case DT_MIPS_INTERFACE
:
14153 return "MIPS_INTERFACE";
14154 case DT_MIPS_DYNSTR_ALIGN
:
14155 return "DT_MIPS_DYNSTR_ALIGN";
14156 case DT_MIPS_INTERFACE_SIZE
:
14157 return "DT_MIPS_INTERFACE_SIZE";
14158 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
14159 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14160 case DT_MIPS_PERF_SUFFIX
:
14161 return "DT_MIPS_PERF_SUFFIX";
14162 case DT_MIPS_COMPACT_SIZE
:
14163 return "DT_MIPS_COMPACT_SIZE";
14164 case DT_MIPS_GP_VALUE
:
14165 return "DT_MIPS_GP_VALUE";
14166 case DT_MIPS_AUX_DYNAMIC
:
14167 return "DT_MIPS_AUX_DYNAMIC";
14168 case DT_MIPS_PLTGOT
:
14169 return "DT_MIPS_PLTGOT";
14170 case DT_MIPS_RWPLT
:
14171 return "DT_MIPS_RWPLT";
14176 _bfd_mips_elf_print_private_bfd_data (bfd
*abfd
, void *ptr
)
14180 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
14182 /* Print normal ELF private data. */
14183 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
14185 /* xgettext:c-format */
14186 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
14188 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O32
)
14189 fprintf (file
, _(" [abi=O32]"));
14190 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_O64
)
14191 fprintf (file
, _(" [abi=O64]"));
14192 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI32
)
14193 fprintf (file
, _(" [abi=EABI32]"));
14194 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
) == E_MIPS_ABI_EABI64
)
14195 fprintf (file
, _(" [abi=EABI64]"));
14196 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ABI
))
14197 fprintf (file
, _(" [abi unknown]"));
14198 else if (ABI_N32_P (abfd
))
14199 fprintf (file
, _(" [abi=N32]"));
14200 else if (ABI_64_P (abfd
))
14201 fprintf (file
, _(" [abi=64]"));
14203 fprintf (file
, _(" [no abi set]"));
14205 if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_1
)
14206 fprintf (file
, " [mips1]");
14207 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_2
)
14208 fprintf (file
, " [mips2]");
14209 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_3
)
14210 fprintf (file
, " [mips3]");
14211 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_4
)
14212 fprintf (file
, " [mips4]");
14213 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_5
)
14214 fprintf (file
, " [mips5]");
14215 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32
)
14216 fprintf (file
, " [mips32]");
14217 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64
)
14218 fprintf (file
, " [mips64]");
14219 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_32R2
)
14220 fprintf (file
, " [mips32r2]");
14221 else if ((elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH
) == E_MIPS_ARCH_64R2
)
14222 fprintf (file
, " [mips64r2]");
14224 fprintf (file
, _(" [unknown ISA]"));
14226 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MDMX
)
14227 fprintf (file
, " [mdmx]");
14229 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_M16
)
14230 fprintf (file
, " [mips16]");
14232 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_ARCH_ASE_MICROMIPS
)
14233 fprintf (file
, " [micromips]");
14235 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_32BITMODE
)
14236 fprintf (file
, " [32bitmode]");
14238 fprintf (file
, _(" [not 32bitmode]"));
14240 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_NOREORDER
)
14241 fprintf (file
, " [noreorder]");
14243 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_PIC
)
14244 fprintf (file
, " [PIC]");
14246 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_CPIC
)
14247 fprintf (file
, " [CPIC]");
14249 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_XGOT
)
14250 fprintf (file
, " [XGOT]");
14252 if (elf_elfheader (abfd
)->e_flags
& EF_MIPS_UCODE
)
14253 fprintf (file
, " [UCODE]");
14255 fputc ('\n', file
);
14260 const struct bfd_elf_special_section _bfd_mips_elf_special_sections
[] =
14262 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
14263 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
14264 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG
, 0 },
14265 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
14266 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_MIPS_GPREL
},
14267 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE
, 0 },
14268 { NULL
, 0, 0, 0, 0 }
14271 /* Merge non visibility st_other attributes. Ensure that the
14272 STO_OPTIONAL flag is copied into h->other, even if this is not a
14273 definiton of the symbol. */
14275 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry
*h
,
14276 const Elf_Internal_Sym
*isym
,
14277 bfd_boolean definition
,
14278 bfd_boolean dynamic ATTRIBUTE_UNUSED
)
14280 if ((isym
->st_other
& ~ELF_ST_VISIBILITY (-1)) != 0)
14282 unsigned char other
;
14284 other
= (definition
? isym
->st_other
: h
->other
);
14285 other
&= ~ELF_ST_VISIBILITY (-1);
14286 h
->other
= other
| ELF_ST_VISIBILITY (h
->other
);
14290 && ELF_MIPS_IS_OPTIONAL (isym
->st_other
))
14291 h
->other
|= STO_OPTIONAL
;
14294 /* Decide whether an undefined symbol is special and can be ignored.
14295 This is the case for OPTIONAL symbols on IRIX. */
14297 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry
*h
)
14299 return ELF_MIPS_IS_OPTIONAL (h
->other
) ? TRUE
: FALSE
;
14303 _bfd_mips_elf_common_definition (Elf_Internal_Sym
*sym
)
14305 return (sym
->st_shndx
== SHN_COMMON
14306 || sym
->st_shndx
== SHN_MIPS_ACOMMON
14307 || sym
->st_shndx
== SHN_MIPS_SCOMMON
);
14310 /* Return address for Ith PLT stub in section PLT, for relocation REL
14311 or (bfd_vma) -1 if it should not be included. */
14314 _bfd_mips_elf_plt_sym_val (bfd_vma i
, const asection
*plt
,
14315 const arelent
*rel ATTRIBUTE_UNUSED
)
14318 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry
)
14319 + i
* 4 * ARRAY_SIZE (mips_exec_plt_entry
));
14323 _bfd_mips_post_process_headers (bfd
*abfd
, struct bfd_link_info
*link_info
)
14325 struct mips_elf_link_hash_table
*htab
;
14326 Elf_Internal_Ehdr
*i_ehdrp
;
14328 i_ehdrp
= elf_elfheader (abfd
);
14331 htab
= mips_elf_hash_table (link_info
);
14332 BFD_ASSERT (htab
!= NULL
);
14334 if (htab
->use_plts_and_copy_relocs
&& !htab
->is_vxworks
)
14335 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;