1 /* linker.c -- BFD linker routines
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
7 This file is part of BFD, the Binary File Descriptor library.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
35 The linker uses three special entry points in the BFD target
36 vector. It is not necessary to write special routines for
37 these entry points when creating a new BFD back end, since
38 generic versions are provided. However, writing them can
39 speed up linking and make it use significantly less runtime
42 The first routine creates a hash table used by the other
43 routines. The second routine adds the symbols from an object
44 file to the hash table. The third routine takes all the
45 object files and links them together to create the output
46 file. These routines are designed so that the linker proper
47 does not need to know anything about the symbols in the object
48 files that it is linking. The linker merely arranges the
49 sections as directed by the linker script and lets BFD handle
50 the details of symbols and relocs.
52 The second routine and third routines are passed a pointer to
53 a <<struct bfd_link_info>> structure (defined in
54 <<bfdlink.h>>) which holds information relevant to the link,
55 including the linker hash table (which was created by the
56 first routine) and a set of callback functions to the linker
59 The generic linker routines are in <<linker.c>>, and use the
60 header file <<genlink.h>>. As of this writing, the only back
61 ends which have implemented versions of these routines are
62 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
63 routines are used as examples throughout this section.
66 @* Creating a Linker Hash Table::
67 @* Adding Symbols to the Hash Table::
68 @* Performing the Final Link::
72 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
74 Creating a linker hash table
76 @cindex _bfd_link_hash_table_create in target vector
77 @cindex target vector (_bfd_link_hash_table_create)
78 The linker routines must create a hash table, which must be
79 derived from <<struct bfd_link_hash_table>> described in
80 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
81 create a derived hash table. This entry point is called using
82 the target vector of the linker output file.
84 The <<_bfd_link_hash_table_create>> entry point must allocate
85 and initialize an instance of the desired hash table. If the
86 back end does not require any additional information to be
87 stored with the entries in the hash table, the entry point may
88 simply create a <<struct bfd_link_hash_table>>. Most likely,
89 however, some additional information will be needed.
91 For example, with each entry in the hash table the a.out
92 linker keeps the index the symbol has in the final output file
93 (this index number is used so that when doing a relocatable
94 link the symbol index used in the output file can be quickly
95 filled in when copying over a reloc). The a.out linker code
96 defines the required structures and functions for a hash table
97 derived from <<struct bfd_link_hash_table>>. The a.out linker
98 hash table is created by the function
99 <<NAME(aout,link_hash_table_create)>>; it simply allocates
100 space for the hash table, initializes it, and returns a
103 When writing the linker routines for a new back end, you will
104 generally not know exactly which fields will be required until
105 you have finished. You should simply create a new hash table
106 which defines no additional fields, and then simply add fields
107 as they become necessary.
110 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
112 Adding symbols to the hash table
114 @cindex _bfd_link_add_symbols in target vector
115 @cindex target vector (_bfd_link_add_symbols)
116 The linker proper will call the <<_bfd_link_add_symbols>>
117 entry point for each object file or archive which is to be
118 linked (typically these are the files named on the command
119 line, but some may also come from the linker script). The
120 entry point is responsible for examining the file. For an
121 object file, BFD must add any relevant symbol information to
122 the hash table. For an archive, BFD must determine which
123 elements of the archive should be used and adding them to the
126 The a.out version of this entry point is
127 <<NAME(aout,link_add_symbols)>>.
130 @* Differing file formats::
131 @* Adding symbols from an object file::
132 @* Adding symbols from an archive::
136 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
138 Differing file formats
140 Normally all the files involved in a link will be of the same
141 format, but it is also possible to link together different
142 format object files, and the back end must support that. The
143 <<_bfd_link_add_symbols>> entry point is called via the target
144 vector of the file to be added. This has an important
145 consequence: the function may not assume that the hash table
146 is the type created by the corresponding
147 <<_bfd_link_hash_table_create>> vector. All the
148 <<_bfd_link_add_symbols>> function can assume about the hash
149 table is that it is derived from <<struct
150 bfd_link_hash_table>>.
152 Sometimes the <<_bfd_link_add_symbols>> function must store
153 some information in the hash table entry to be used by the
154 <<_bfd_final_link>> function. In such a case the output bfd
155 xvec must be checked to make sure that the hash table was
156 created by an object file of the same format.
158 The <<_bfd_final_link>> routine must be prepared to handle a
159 hash entry without any extra information added by the
160 <<_bfd_link_add_symbols>> function. A hash entry without
161 extra information will also occur when the linker script
162 directs the linker to create a symbol. Note that, regardless
163 of how a hash table entry is added, all the fields will be
164 initialized to some sort of null value by the hash table entry
165 initialization function.
167 See <<ecoff_link_add_externals>> for an example of how to
168 check the output bfd before saving information (in this
169 case, the ECOFF external symbol debugging information) in a
173 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
175 Adding symbols from an object file
177 When the <<_bfd_link_add_symbols>> routine is passed an object
178 file, it must add all externally visible symbols in that
179 object file to the hash table. The actual work of adding the
180 symbol to the hash table is normally handled by the function
181 <<_bfd_generic_link_add_one_symbol>>. The
182 <<_bfd_link_add_symbols>> routine is responsible for reading
183 all the symbols from the object file and passing the correct
184 information to <<_bfd_generic_link_add_one_symbol>>.
186 The <<_bfd_link_add_symbols>> routine should not use
187 <<bfd_canonicalize_symtab>> to read the symbols. The point of
188 providing this routine is to avoid the overhead of converting
189 the symbols into generic <<asymbol>> structures.
191 @findex _bfd_generic_link_add_one_symbol
192 <<_bfd_generic_link_add_one_symbol>> handles the details of
193 combining common symbols, warning about multiple definitions,
194 and so forth. It takes arguments which describe the symbol to
195 add, notably symbol flags, a section, and an offset. The
196 symbol flags include such things as <<BSF_WEAK>> or
197 <<BSF_INDIRECT>>. The section is a section in the object
198 file, or something like <<bfd_und_section_ptr>> for an undefined
199 symbol or <<bfd_com_section_ptr>> for a common symbol.
201 If the <<_bfd_final_link>> routine is also going to need to
202 read the symbol information, the <<_bfd_link_add_symbols>>
203 routine should save it somewhere attached to the object file
204 BFD. However, the information should only be saved if the
205 <<keep_memory>> field of the <<info>> argument is TRUE, so
206 that the <<-no-keep-memory>> linker switch is effective.
208 The a.out function which adds symbols from an object file is
209 <<aout_link_add_object_symbols>>, and most of the interesting
210 work is in <<aout_link_add_symbols>>. The latter saves
211 pointers to the hash tables entries created by
212 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
213 so that the <<_bfd_final_link>> routine does not have to call
214 the hash table lookup routine to locate the entry.
217 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
219 Adding symbols from an archive
221 When the <<_bfd_link_add_symbols>> routine is passed an
222 archive, it must look through the symbols defined by the
223 archive and decide which elements of the archive should be
224 included in the link. For each such element it must call the
225 <<add_archive_element>> linker callback, and it must add the
226 symbols from the object file to the linker hash table. (The
227 callback may in fact indicate that a replacement BFD should be
228 used, in which case the symbols from that BFD should be added
229 to the linker hash table instead.)
231 @findex _bfd_generic_link_add_archive_symbols
232 In most cases the work of looking through the symbols in the
233 archive should be done by the
234 <<_bfd_generic_link_add_archive_symbols>> function. This
235 function builds a hash table from the archive symbol table and
236 looks through the list of undefined symbols to see which
237 elements should be included.
238 <<_bfd_generic_link_add_archive_symbols>> is passed a function
239 to call to make the final decision about adding an archive
240 element to the link and to do the actual work of adding the
241 symbols to the linker hash table.
243 The function passed to
244 <<_bfd_generic_link_add_archive_symbols>> must read the
245 symbols of the archive element and decide whether the archive
246 element should be included in the link. If the element is to
247 be included, the <<add_archive_element>> linker callback
248 routine must be called with the element as an argument, and
249 the element's symbols must be added to the linker hash table
250 just as though the element had itself been passed to the
251 <<_bfd_link_add_symbols>> function. The <<add_archive_element>>
252 callback has the option to indicate that it would like to
253 replace the element archive with a substitute BFD, in which
254 case it is the symbols of that substitute BFD that must be
255 added to the linker hash table instead.
257 When the a.out <<_bfd_link_add_symbols>> function receives an
258 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
259 passing <<aout_link_check_archive_element>> as the function
260 argument. <<aout_link_check_archive_element>> calls
261 <<aout_link_check_ar_symbols>>. If the latter decides to add
262 the element (an element is only added if it provides a real,
263 non-common, definition for a previously undefined or common
264 symbol) it calls the <<add_archive_element>> callback and then
265 <<aout_link_check_archive_element>> calls
266 <<aout_link_add_symbols>> to actually add the symbols to the
267 linker hash table - possibly those of a substitute BFD, if the
268 <<add_archive_element>> callback avails itself of that option.
270 The ECOFF back end is unusual in that it does not normally
271 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
272 archives already contain a hash table of symbols. The ECOFF
273 back end searches the archive itself to avoid the overhead of
274 creating a new hash table.
277 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
279 Performing the final link
281 @cindex _bfd_link_final_link in target vector
282 @cindex target vector (_bfd_final_link)
283 When all the input files have been processed, the linker calls
284 the <<_bfd_final_link>> entry point of the output BFD. This
285 routine is responsible for producing the final output file,
286 which has several aspects. It must relocate the contents of
287 the input sections and copy the data into the output sections.
288 It must build an output symbol table including any local
289 symbols from the input files and the global symbols from the
290 hash table. When producing relocatable output, it must
291 modify the input relocs and write them into the output file.
292 There may also be object format dependent work to be done.
294 The linker will also call the <<write_object_contents>> entry
295 point when the BFD is closed. The two entry points must work
296 together in order to produce the correct output file.
298 The details of how this works are inevitably dependent upon
299 the specific object file format. The a.out
300 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
303 @* Information provided by the linker::
304 @* Relocating the section contents::
305 @* Writing the symbol table::
309 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
311 Information provided by the linker
313 Before the linker calls the <<_bfd_final_link>> entry point,
314 it sets up some data structures for the function to use.
316 The <<input_bfds>> field of the <<bfd_link_info>> structure
317 will point to a list of all the input files included in the
318 link. These files are linked through the <<link_next>> field
319 of the <<bfd>> structure.
321 Each section in the output file will have a list of
322 <<link_order>> structures attached to the <<map_head.link_order>>
323 field (the <<link_order>> structure is defined in
324 <<bfdlink.h>>). These structures describe how to create the
325 contents of the output section in terms of the contents of
326 various input sections, fill constants, and, eventually, other
327 types of information. They also describe relocs that must be
328 created by the BFD backend, but do not correspond to any input
329 file; this is used to support -Ur, which builds constructors
330 while generating a relocatable object file.
333 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
335 Relocating the section contents
337 The <<_bfd_final_link>> function should look through the
338 <<link_order>> structures attached to each section of the
339 output file. Each <<link_order>> structure should either be
340 handled specially, or it should be passed to the function
341 <<_bfd_default_link_order>> which will do the right thing
342 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
344 For efficiency, a <<link_order>> of type
345 <<bfd_indirect_link_order>> whose associated section belongs
346 to a BFD of the same format as the output BFD must be handled
347 specially. This type of <<link_order>> describes part of an
348 output section in terms of a section belonging to one of the
349 input files. The <<_bfd_final_link>> function should read the
350 contents of the section and any associated relocs, apply the
351 relocs to the section contents, and write out the modified
352 section contents. If performing a relocatable link, the
353 relocs themselves must also be modified and written out.
355 @findex _bfd_relocate_contents
356 @findex _bfd_final_link_relocate
357 The functions <<_bfd_relocate_contents>> and
358 <<_bfd_final_link_relocate>> provide some general support for
359 performing the actual relocations, notably overflow checking.
360 Their arguments include information about the symbol the
361 relocation is against and a <<reloc_howto_type>> argument
362 which describes the relocation to perform. These functions
363 are defined in <<reloc.c>>.
365 The a.out function which handles reading, relocating, and
366 writing section contents is <<aout_link_input_section>>. The
367 actual relocation is done in <<aout_link_input_section_std>>
368 and <<aout_link_input_section_ext>>.
371 Writing the symbol table, , Relocating the section contents, Performing the Final Link
373 Writing the symbol table
375 The <<_bfd_final_link>> function must gather all the symbols
376 in the input files and write them out. It must also write out
377 all the symbols in the global hash table. This must be
378 controlled by the <<strip>> and <<discard>> fields of the
379 <<bfd_link_info>> structure.
381 The local symbols of the input files will not have been
382 entered into the linker hash table. The <<_bfd_final_link>>
383 routine must consider each input file and include the symbols
384 in the output file. It may be convenient to do this when
385 looking through the <<link_order>> structures, or it may be
386 done by stepping through the <<input_bfds>> list.
388 The <<_bfd_final_link>> routine must also traverse the global
389 hash table to gather all the externally visible symbols. It
390 is possible that most of the externally visible symbols may be
391 written out when considering the symbols of each input file,
392 but it is still necessary to traverse the hash table since the
393 linker script may have defined some symbols that are not in
394 any of the input files.
396 The <<strip>> field of the <<bfd_link_info>> structure
397 controls which symbols are written out. The possible values
398 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
399 then the <<keep_hash>> field of the <<bfd_link_info>>
400 structure is a hash table of symbols to keep; each symbol
401 should be looked up in this hash table, and only symbols which
402 are present should be included in the output file.
404 If the <<strip>> field of the <<bfd_link_info>> structure
405 permits local symbols to be written out, the <<discard>> field
406 is used to further controls which local symbols are included
407 in the output file. If the value is <<discard_l>>, then all
408 local symbols which begin with a certain prefix are discarded;
409 this is controlled by the <<bfd_is_local_label_name>> entry point.
411 The a.out backend handles symbols by calling
412 <<aout_link_write_symbols>> on each input BFD and then
413 traversing the global hash table with the function
414 <<aout_link_write_other_symbol>>. It builds a string table
415 while writing out the symbols, which is written to the output
416 file at the end of <<NAME(aout,final_link)>>.
419 static bfd_boolean generic_link_add_object_symbols
420 (bfd
*, struct bfd_link_info
*, bfd_boolean collect
);
421 static bfd_boolean generic_link_add_symbols
422 (bfd
*, struct bfd_link_info
*, bfd_boolean
);
423 static bfd_boolean generic_link_check_archive_element_no_collect
424 (bfd
*, struct bfd_link_info
*, bfd_boolean
*);
425 static bfd_boolean generic_link_check_archive_element_collect
426 (bfd
*, struct bfd_link_info
*, bfd_boolean
*);
427 static bfd_boolean generic_link_check_archive_element
428 (bfd
*, struct bfd_link_info
*, bfd_boolean
*, bfd_boolean
);
429 static bfd_boolean generic_link_add_symbol_list
430 (bfd
*, struct bfd_link_info
*, bfd_size_type count
, asymbol
**,
432 static bfd_boolean generic_add_output_symbol
433 (bfd
*, size_t *psymalloc
, asymbol
*);
434 static bfd_boolean default_data_link_order
435 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*);
436 static bfd_boolean default_indirect_link_order
437 (bfd
*, struct bfd_link_info
*, asection
*, struct bfd_link_order
*,
440 /* The link hash table structure is defined in bfdlink.h. It provides
441 a base hash table which the backend specific hash tables are built
444 /* Routine to create an entry in the link hash table. */
446 struct bfd_hash_entry
*
447 _bfd_link_hash_newfunc (struct bfd_hash_entry
*entry
,
448 struct bfd_hash_table
*table
,
451 /* Allocate the structure if it has not already been allocated by a
455 entry
= (struct bfd_hash_entry
*)
456 bfd_hash_allocate (table
, sizeof (struct bfd_link_hash_entry
));
461 /* Call the allocation method of the superclass. */
462 entry
= bfd_hash_newfunc (entry
, table
, string
);
465 struct bfd_link_hash_entry
*h
= (struct bfd_link_hash_entry
*) entry
;
467 /* Initialize the local fields. */
468 memset ((char *) &h
->root
+ sizeof (h
->root
), 0,
469 sizeof (*h
) - sizeof (h
->root
));
475 /* Initialize a link hash table. The BFD argument is the one
476 responsible for creating this table. */
479 _bfd_link_hash_table_init
480 (struct bfd_link_hash_table
*table
,
481 bfd
*abfd ATTRIBUTE_UNUSED
,
482 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
483 struct bfd_hash_table
*,
485 unsigned int entsize
)
487 table
->undefs
= NULL
;
488 table
->undefs_tail
= NULL
;
489 table
->type
= bfd_link_generic_hash_table
;
491 return bfd_hash_table_init (&table
->table
, newfunc
, entsize
);
494 /* Look up a symbol in a link hash table. If follow is TRUE, we
495 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
498 struct bfd_link_hash_entry
*
499 bfd_link_hash_lookup (struct bfd_link_hash_table
*table
,
505 struct bfd_link_hash_entry
*ret
;
507 ret
= ((struct bfd_link_hash_entry
*)
508 bfd_hash_lookup (&table
->table
, string
, create
, copy
));
510 if (follow
&& ret
!= NULL
)
512 while (ret
->type
== bfd_link_hash_indirect
513 || ret
->type
== bfd_link_hash_warning
)
520 /* Look up a symbol in the main linker hash table if the symbol might
521 be wrapped. This should only be used for references to an
522 undefined symbol, not for definitions of a symbol. */
524 struct bfd_link_hash_entry
*
525 bfd_wrapped_link_hash_lookup (bfd
*abfd
,
526 struct bfd_link_info
*info
,
534 if (info
->wrap_hash
!= NULL
)
540 if (*l
== bfd_get_symbol_leading_char (abfd
) || *l
== info
->wrap_char
)
547 #define WRAP "__wrap_"
549 if (bfd_hash_lookup (info
->wrap_hash
, l
, FALSE
, FALSE
) != NULL
)
552 struct bfd_link_hash_entry
*h
;
554 /* This symbol is being wrapped. We want to replace all
555 references to SYM with references to __wrap_SYM. */
557 amt
= strlen (l
) + sizeof WRAP
+ 1;
558 n
= (char *) bfd_malloc (amt
);
566 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, TRUE
, follow
);
574 #define REAL "__real_"
577 && CONST_STRNEQ (l
, REAL
)
578 && bfd_hash_lookup (info
->wrap_hash
, l
+ sizeof REAL
- 1,
579 FALSE
, FALSE
) != NULL
)
582 struct bfd_link_hash_entry
*h
;
584 /* This is a reference to __real_SYM, where SYM is being
585 wrapped. We want to replace all references to __real_SYM
586 with references to SYM. */
588 amt
= strlen (l
+ sizeof REAL
- 1) + 2;
589 n
= (char *) bfd_malloc (amt
);
595 strcat (n
, l
+ sizeof REAL
- 1);
596 h
= bfd_link_hash_lookup (info
->hash
, n
, create
, TRUE
, follow
);
604 return bfd_link_hash_lookup (info
->hash
, string
, create
, copy
, follow
);
607 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
608 in the treatment of warning symbols. When warning symbols are
609 created they replace the real symbol, so you don't get to see the
610 real symbol in a bfd_hash_travere. This traversal calls func with
614 bfd_link_hash_traverse
615 (struct bfd_link_hash_table
*htab
,
616 bfd_boolean (*func
) (struct bfd_link_hash_entry
*, void *),
621 htab
->table
.frozen
= 1;
622 for (i
= 0; i
< htab
->table
.size
; i
++)
624 struct bfd_link_hash_entry
*p
;
626 p
= (struct bfd_link_hash_entry
*) htab
->table
.table
[i
];
627 for (; p
!= NULL
; p
= (struct bfd_link_hash_entry
*) p
->root
.next
)
628 if (!(*func
) (p
->type
== bfd_link_hash_warning
? p
->u
.i
.link
: p
, info
))
632 htab
->table
.frozen
= 0;
635 /* Add a symbol to the linker hash table undefs list. */
638 bfd_link_add_undef (struct bfd_link_hash_table
*table
,
639 struct bfd_link_hash_entry
*h
)
641 BFD_ASSERT (h
->u
.undef
.next
== NULL
);
642 if (table
->undefs_tail
!= NULL
)
643 table
->undefs_tail
->u
.undef
.next
= h
;
644 if (table
->undefs
== NULL
)
646 table
->undefs_tail
= h
;
649 /* The undefs list was designed so that in normal use we don't need to
650 remove entries. However, if symbols on the list are changed from
651 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
652 bfd_link_hash_new for some reason, then they must be removed from the
653 list. Failure to do so might result in the linker attempting to add
654 the symbol to the list again at a later stage. */
657 bfd_link_repair_undef_list (struct bfd_link_hash_table
*table
)
659 struct bfd_link_hash_entry
**pun
;
661 pun
= &table
->undefs
;
664 struct bfd_link_hash_entry
*h
= *pun
;
666 if (h
->type
== bfd_link_hash_new
667 || h
->type
== bfd_link_hash_undefweak
)
669 *pun
= h
->u
.undef
.next
;
670 h
->u
.undef
.next
= NULL
;
671 if (h
== table
->undefs_tail
)
673 if (pun
== &table
->undefs
)
674 table
->undefs_tail
= NULL
;
676 /* pun points at an u.undef.next field. Go back to
677 the start of the link_hash_entry. */
678 table
->undefs_tail
= (struct bfd_link_hash_entry
*)
679 ((char *) pun
- ((char *) &h
->u
.undef
.next
- (char *) h
));
684 pun
= &h
->u
.undef
.next
;
688 /* Routine to create an entry in a generic link hash table. */
690 struct bfd_hash_entry
*
691 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry
*entry
,
692 struct bfd_hash_table
*table
,
695 /* Allocate the structure if it has not already been allocated by a
699 entry
= (struct bfd_hash_entry
*)
700 bfd_hash_allocate (table
, sizeof (struct generic_link_hash_entry
));
705 /* Call the allocation method of the superclass. */
706 entry
= _bfd_link_hash_newfunc (entry
, table
, string
);
709 struct generic_link_hash_entry
*ret
;
711 /* Set local fields. */
712 ret
= (struct generic_link_hash_entry
*) entry
;
713 ret
->written
= FALSE
;
720 /* Create a generic link hash table. */
722 struct bfd_link_hash_table
*
723 _bfd_generic_link_hash_table_create (bfd
*abfd
)
725 struct generic_link_hash_table
*ret
;
726 bfd_size_type amt
= sizeof (struct generic_link_hash_table
);
728 ret
= (struct generic_link_hash_table
*) bfd_malloc (amt
);
731 if (! _bfd_link_hash_table_init (&ret
->root
, abfd
,
732 _bfd_generic_link_hash_newfunc
,
733 sizeof (struct generic_link_hash_entry
)))
742 _bfd_generic_link_hash_table_free (struct bfd_link_hash_table
*hash
)
744 struct generic_link_hash_table
*ret
745 = (struct generic_link_hash_table
*) hash
;
747 bfd_hash_table_free (&ret
->root
.table
);
751 /* Grab the symbols for an object file when doing a generic link. We
752 store the symbols in the outsymbols field. We need to keep them
753 around for the entire link to ensure that we only read them once.
754 If we read them multiple times, we might wind up with relocs and
755 the hash table pointing to different instances of the symbol
759 bfd_generic_link_read_symbols (bfd
*abfd
)
761 if (bfd_get_outsymbols (abfd
) == NULL
)
766 symsize
= bfd_get_symtab_upper_bound (abfd
);
769 bfd_get_outsymbols (abfd
) = (struct bfd_symbol
**) bfd_alloc (abfd
,
771 if (bfd_get_outsymbols (abfd
) == NULL
&& symsize
!= 0)
773 symcount
= bfd_canonicalize_symtab (abfd
, bfd_get_outsymbols (abfd
));
776 bfd_get_symcount (abfd
) = symcount
;
782 /* Generic function to add symbols to from an object file to the
783 global hash table. This version does not automatically collect
784 constructors by name. */
787 _bfd_generic_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
789 return generic_link_add_symbols (abfd
, info
, FALSE
);
792 /* Generic function to add symbols from an object file to the global
793 hash table. This version automatically collects constructors by
794 name, as the collect2 program does. It should be used for any
795 target which does not provide some other mechanism for setting up
796 constructors and destructors; these are approximately those targets
797 for which gcc uses collect2 and do not support stabs. */
800 _bfd_generic_link_add_symbols_collect (bfd
*abfd
, struct bfd_link_info
*info
)
802 return generic_link_add_symbols (abfd
, info
, TRUE
);
805 /* Indicate that we are only retrieving symbol values from this
806 section. We want the symbols to act as though the values in the
807 file are absolute. */
810 _bfd_generic_link_just_syms (asection
*sec
,
811 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
813 sec
->output_section
= bfd_abs_section_ptr
;
814 sec
->output_offset
= sec
->vma
;
817 /* Copy the type of a symbol assiciated with a linker hast table entry.
818 Override this so that symbols created in linker scripts get their
819 type from the RHS of the assignment.
820 The default implementation does nothing. */
822 _bfd_generic_copy_link_hash_symbol_type (bfd
*abfd ATTRIBUTE_UNUSED
,
823 struct bfd_link_hash_entry
* hdest ATTRIBUTE_UNUSED
,
824 struct bfd_link_hash_entry
* hsrc ATTRIBUTE_UNUSED
)
828 /* Add symbols from an object file to the global hash table. */
831 generic_link_add_symbols (bfd
*abfd
,
832 struct bfd_link_info
*info
,
837 switch (bfd_get_format (abfd
))
840 ret
= generic_link_add_object_symbols (abfd
, info
, collect
);
843 ret
= (_bfd_generic_link_add_archive_symbols
846 ? generic_link_check_archive_element_collect
847 : generic_link_check_archive_element_no_collect
)));
850 bfd_set_error (bfd_error_wrong_format
);
857 /* Add symbols from an object file to the global hash table. */
860 generic_link_add_object_symbols (bfd
*abfd
,
861 struct bfd_link_info
*info
,
864 bfd_size_type symcount
;
865 struct bfd_symbol
**outsyms
;
867 if (!bfd_generic_link_read_symbols (abfd
))
869 symcount
= _bfd_generic_link_get_symcount (abfd
);
870 outsyms
= _bfd_generic_link_get_symbols (abfd
);
871 return generic_link_add_symbol_list (abfd
, info
, symcount
, outsyms
, collect
);
874 /* We build a hash table of all symbols defined in an archive. */
876 /* An archive symbol may be defined by multiple archive elements.
877 This linked list is used to hold the elements. */
881 struct archive_list
*next
;
885 /* An entry in an archive hash table. */
887 struct archive_hash_entry
889 struct bfd_hash_entry root
;
890 /* Where the symbol is defined. */
891 struct archive_list
*defs
;
894 /* An archive hash table itself. */
896 struct archive_hash_table
898 struct bfd_hash_table table
;
901 /* Create a new entry for an archive hash table. */
903 static struct bfd_hash_entry
*
904 archive_hash_newfunc (struct bfd_hash_entry
*entry
,
905 struct bfd_hash_table
*table
,
908 struct archive_hash_entry
*ret
= (struct archive_hash_entry
*) entry
;
910 /* Allocate the structure if it has not already been allocated by a
913 ret
= (struct archive_hash_entry
*)
914 bfd_hash_allocate (table
, sizeof (struct archive_hash_entry
));
918 /* Call the allocation method of the superclass. */
919 ret
= ((struct archive_hash_entry
*)
920 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
924 /* Initialize the local fields. */
931 /* Initialize an archive hash table. */
934 archive_hash_table_init
935 (struct archive_hash_table
*table
,
936 struct bfd_hash_entry
*(*newfunc
) (struct bfd_hash_entry
*,
937 struct bfd_hash_table
*,
939 unsigned int entsize
)
941 return bfd_hash_table_init (&table
->table
, newfunc
, entsize
);
944 /* Look up an entry in an archive hash table. */
946 #define archive_hash_lookup(t, string, create, copy) \
947 ((struct archive_hash_entry *) \
948 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
950 /* Allocate space in an archive hash table. */
952 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
954 /* Free an archive hash table. */
956 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
958 /* Generic function to add symbols from an archive file to the global
959 hash file. This function presumes that the archive symbol table
960 has already been read in (this is normally done by the
961 bfd_check_format entry point). It looks through the undefined and
962 common symbols and searches the archive symbol table for them. If
963 it finds an entry, it includes the associated object file in the
966 The old linker looked through the archive symbol table for
967 undefined symbols. We do it the other way around, looking through
968 undefined symbols for symbols defined in the archive. The
969 advantage of the newer scheme is that we only have to look through
970 the list of undefined symbols once, whereas the old method had to
971 re-search the symbol table each time a new object file was added.
973 The CHECKFN argument is used to see if an object file should be
974 included. CHECKFN should set *PNEEDED to TRUE if the object file
975 should be included, and must also call the bfd_link_info
976 add_archive_element callback function and handle adding the symbols
977 to the global hash table. CHECKFN must notice if the callback
978 indicates a substitute BFD, and arrange to add those symbols instead
979 if it does so. CHECKFN should only return FALSE if some sort of
982 For some formats, such as a.out, it is possible to look through an
983 object file but not actually include it in the link. The
984 archive_pass field in a BFD is used to avoid checking the symbols
985 of an object files too many times. When an object is included in
986 the link, archive_pass is set to -1. If an object is scanned but
987 not included, archive_pass is set to the pass number. The pass
988 number is incremented each time a new object file is included. The
989 pass number is used because when a new object file is included it
990 may create new undefined symbols which cause a previously examined
991 object file to be included. */
994 _bfd_generic_link_add_archive_symbols
996 struct bfd_link_info
*info
,
997 bfd_boolean (*checkfn
) (bfd
*, struct bfd_link_info
*, bfd_boolean
*))
1001 register carsym
*arsym
;
1003 struct archive_hash_table arsym_hash
;
1005 struct bfd_link_hash_entry
**pundef
;
1007 if (! bfd_has_map (abfd
))
1009 /* An empty archive is a special case. */
1010 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
1012 bfd_set_error (bfd_error_no_armap
);
1016 arsyms
= bfd_ardata (abfd
)->symdefs
;
1017 arsym_end
= arsyms
+ bfd_ardata (abfd
)->symdef_count
;
1019 /* In order to quickly determine whether an symbol is defined in
1020 this archive, we build a hash table of the symbols. */
1021 if (! archive_hash_table_init (&arsym_hash
, archive_hash_newfunc
,
1022 sizeof (struct archive_hash_entry
)))
1024 for (arsym
= arsyms
, indx
= 0; arsym
< arsym_end
; arsym
++, indx
++)
1026 struct archive_hash_entry
*arh
;
1027 struct archive_list
*l
, **pp
;
1029 arh
= archive_hash_lookup (&arsym_hash
, arsym
->name
, TRUE
, FALSE
);
1032 l
= ((struct archive_list
*)
1033 archive_hash_allocate (&arsym_hash
, sizeof (struct archive_list
)));
1037 for (pp
= &arh
->defs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
1043 /* The archive_pass field in the archive itself is used to
1044 initialize PASS, sine we may search the same archive multiple
1046 pass
= abfd
->archive_pass
+ 1;
1048 /* New undefined symbols are added to the end of the list, so we
1049 only need to look through it once. */
1050 pundef
= &info
->hash
->undefs
;
1051 while (*pundef
!= NULL
)
1053 struct bfd_link_hash_entry
*h
;
1054 struct archive_hash_entry
*arh
;
1055 struct archive_list
*l
;
1059 /* When a symbol is defined, it is not necessarily removed from
1061 if (h
->type
!= bfd_link_hash_undefined
1062 && h
->type
!= bfd_link_hash_common
)
1064 /* Remove this entry from the list, for general cleanliness
1065 and because we are going to look through the list again
1066 if we search any more libraries. We can't remove the
1067 entry if it is the tail, because that would lose any
1068 entries we add to the list later on (it would also cause
1069 us to lose track of whether the symbol has been
1071 if (*pundef
!= info
->hash
->undefs_tail
)
1072 *pundef
= (*pundef
)->u
.undef
.next
;
1074 pundef
= &(*pundef
)->u
.undef
.next
;
1078 /* Look for this symbol in the archive symbol map. */
1079 arh
= archive_hash_lookup (&arsym_hash
, h
->root
.string
, FALSE
, FALSE
);
1082 /* If we haven't found the exact symbol we're looking for,
1083 let's look for its import thunk */
1084 if (info
->pei386_auto_import
)
1086 bfd_size_type amt
= strlen (h
->root
.string
) + 10;
1087 char *buf
= (char *) bfd_malloc (amt
);
1091 sprintf (buf
, "__imp_%s", h
->root
.string
);
1092 arh
= archive_hash_lookup (&arsym_hash
, buf
, FALSE
, FALSE
);
1097 pundef
= &(*pundef
)->u
.undef
.next
;
1101 /* Look at all the objects which define this symbol. */
1102 for (l
= arh
->defs
; l
!= NULL
; l
= l
->next
)
1107 /* If the symbol has gotten defined along the way, quit. */
1108 if (h
->type
!= bfd_link_hash_undefined
1109 && h
->type
!= bfd_link_hash_common
)
1112 element
= bfd_get_elt_at_index (abfd
, l
->indx
);
1113 if (element
== NULL
)
1116 /* If we've already included this element, or if we've
1117 already checked it on this pass, continue. */
1118 if (element
->archive_pass
== -1
1119 || element
->archive_pass
== pass
)
1122 /* If we can't figure this element out, just ignore it. */
1123 if (! bfd_check_format (element
, bfd_object
))
1125 element
->archive_pass
= -1;
1129 /* CHECKFN will see if this element should be included, and
1130 go ahead and include it if appropriate. */
1131 if (! (*checkfn
) (element
, info
, &needed
))
1135 element
->archive_pass
= pass
;
1138 element
->archive_pass
= -1;
1140 /* Increment the pass count to show that we may need to
1141 recheck object files which were already checked. */
1146 pundef
= &(*pundef
)->u
.undef
.next
;
1149 archive_hash_table_free (&arsym_hash
);
1151 /* Save PASS in case we are called again. */
1152 abfd
->archive_pass
= pass
;
1157 archive_hash_table_free (&arsym_hash
);
1161 /* See if we should include an archive element. This version is used
1162 when we do not want to automatically collect constructors based on
1163 the symbol name, presumably because we have some other mechanism
1164 for finding them. */
1167 generic_link_check_archive_element_no_collect (
1169 struct bfd_link_info
*info
,
1170 bfd_boolean
*pneeded
)
1172 return generic_link_check_archive_element (abfd
, info
, pneeded
, FALSE
);
1175 /* See if we should include an archive element. This version is used
1176 when we want to automatically collect constructors based on the
1177 symbol name, as collect2 does. */
1180 generic_link_check_archive_element_collect (bfd
*abfd
,
1181 struct bfd_link_info
*info
,
1182 bfd_boolean
*pneeded
)
1184 return generic_link_check_archive_element (abfd
, info
, pneeded
, TRUE
);
1187 /* See if we should include an archive element. Optionally collect
1191 generic_link_check_archive_element (bfd
*abfd
,
1192 struct bfd_link_info
*info
,
1193 bfd_boolean
*pneeded
,
1194 bfd_boolean collect
)
1196 asymbol
**pp
, **ppend
;
1200 if (!bfd_generic_link_read_symbols (abfd
))
1203 pp
= _bfd_generic_link_get_symbols (abfd
);
1204 ppend
= pp
+ _bfd_generic_link_get_symcount (abfd
);
1205 for (; pp
< ppend
; pp
++)
1208 struct bfd_link_hash_entry
*h
;
1212 /* We are only interested in globally visible symbols. */
1213 if (! bfd_is_com_section (p
->section
)
1214 && (p
->flags
& (BSF_GLOBAL
| BSF_INDIRECT
| BSF_WEAK
)) == 0)
1217 /* We are only interested if we know something about this
1218 symbol, and it is undefined or common. An undefined weak
1219 symbol (type bfd_link_hash_undefweak) is not considered to be
1220 a reference when pulling files out of an archive. See the
1221 SVR4 ABI, p. 4-27. */
1222 h
= bfd_link_hash_lookup (info
->hash
, bfd_asymbol_name (p
), FALSE
,
1225 || (h
->type
!= bfd_link_hash_undefined
1226 && h
->type
!= bfd_link_hash_common
))
1229 /* P is a symbol we are looking for. */
1231 if (! bfd_is_com_section (p
->section
))
1233 bfd_size_type symcount
;
1237 /* This object file defines this symbol, so pull it in. */
1238 if (!(*info
->callbacks
1239 ->add_archive_element
) (info
, abfd
, bfd_asymbol_name (p
),
1242 /* Potentially, the add_archive_element hook may have set a
1243 substitute BFD for us. */
1245 && !bfd_generic_link_read_symbols (abfd
))
1247 symcount
= _bfd_generic_link_get_symcount (abfd
);
1248 symbols
= _bfd_generic_link_get_symbols (abfd
);
1249 if (! generic_link_add_symbol_list (abfd
, info
, symcount
,
1256 /* P is a common symbol. */
1258 if (h
->type
== bfd_link_hash_undefined
)
1264 symbfd
= h
->u
.undef
.abfd
;
1267 /* This symbol was created as undefined from outside
1268 BFD. We assume that we should link in the object
1269 file. This is for the -u option in the linker. */
1270 if (!(*info
->callbacks
1271 ->add_archive_element
) (info
, abfd
, bfd_asymbol_name (p
),
1274 /* Potentially, the add_archive_element hook may have set a
1275 substitute BFD for us. But no symbols are going to get
1276 registered by anything we're returning to from here. */
1281 /* Turn the symbol into a common symbol but do not link in
1282 the object file. This is how a.out works. Object
1283 formats that require different semantics must implement
1284 this function differently. This symbol is already on the
1285 undefs list. We add the section to a common section
1286 attached to symbfd to ensure that it is in a BFD which
1287 will be linked in. */
1288 h
->type
= bfd_link_hash_common
;
1289 h
->u
.c
.p
= (struct bfd_link_hash_common_entry
*)
1290 bfd_hash_allocate (&info
->hash
->table
,
1291 sizeof (struct bfd_link_hash_common_entry
));
1292 if (h
->u
.c
.p
== NULL
)
1295 size
= bfd_asymbol_value (p
);
1298 power
= bfd_log2 (size
);
1301 h
->u
.c
.p
->alignment_power
= power
;
1303 if (p
->section
== bfd_com_section_ptr
)
1304 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
, "COMMON");
1306 h
->u
.c
.p
->section
= bfd_make_section_old_way (symbfd
,
1308 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1312 /* Adjust the size of the common symbol if necessary. This
1313 is how a.out works. Object formats that require
1314 different semantics must implement this function
1316 if (bfd_asymbol_value (p
) > h
->u
.c
.size
)
1317 h
->u
.c
.size
= bfd_asymbol_value (p
);
1321 /* This archive element is not needed. */
1325 /* Add the symbols from an object file to the global hash table. ABFD
1326 is the object file. INFO is the linker information. SYMBOL_COUNT
1327 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1328 is TRUE if constructors should be automatically collected by name
1329 as is done by collect2. */
1332 generic_link_add_symbol_list (bfd
*abfd
,
1333 struct bfd_link_info
*info
,
1334 bfd_size_type symbol_count
,
1336 bfd_boolean collect
)
1338 asymbol
**pp
, **ppend
;
1341 ppend
= symbols
+ symbol_count
;
1342 for (; pp
< ppend
; pp
++)
1348 if ((p
->flags
& (BSF_INDIRECT
1353 || bfd_is_und_section (bfd_get_section (p
))
1354 || bfd_is_com_section (bfd_get_section (p
))
1355 || bfd_is_ind_section (bfd_get_section (p
)))
1359 struct generic_link_hash_entry
*h
;
1360 struct bfd_link_hash_entry
*bh
;
1362 string
= name
= bfd_asymbol_name (p
);
1363 if (((p
->flags
& BSF_INDIRECT
) != 0
1364 || bfd_is_ind_section (p
->section
))
1368 string
= bfd_asymbol_name (*pp
);
1370 else if ((p
->flags
& BSF_WARNING
) != 0
1373 /* The name of P is actually the warning string, and the
1374 next symbol is the one to warn about. */
1376 name
= bfd_asymbol_name (*pp
);
1380 if (! (_bfd_generic_link_add_one_symbol
1381 (info
, abfd
, name
, p
->flags
, bfd_get_section (p
),
1382 p
->value
, string
, FALSE
, collect
, &bh
)))
1384 h
= (struct generic_link_hash_entry
*) bh
;
1386 /* If this is a constructor symbol, and the linker didn't do
1387 anything with it, then we want to just pass the symbol
1388 through to the output file. This will happen when
1390 if ((p
->flags
& BSF_CONSTRUCTOR
) != 0
1391 && (h
== NULL
|| h
->root
.type
== bfd_link_hash_new
))
1397 /* Save the BFD symbol so that we don't lose any backend
1398 specific information that may be attached to it. We only
1399 want this one if it gives more information than the
1400 existing one; we don't want to replace a defined symbol
1401 with an undefined one. This routine may be called with a
1402 hash table other than the generic hash table, so we only
1403 do this if we are certain that the hash table is a
1405 if (info
->output_bfd
->xvec
== abfd
->xvec
)
1408 || (! bfd_is_und_section (bfd_get_section (p
))
1409 && (! bfd_is_com_section (bfd_get_section (p
))
1410 || bfd_is_und_section (bfd_get_section (h
->sym
)))))
1413 /* BSF_OLD_COMMON is a hack to support COFF reloc
1414 reading, and it should go away when the COFF
1415 linker is switched to the new version. */
1416 if (bfd_is_com_section (bfd_get_section (p
)))
1417 p
->flags
|= BSF_OLD_COMMON
;
1421 /* Store a back pointer from the symbol to the hash
1422 table entry for the benefit of relaxation code until
1423 it gets rewritten to not use asymbol structures.
1424 Setting this is also used to check whether these
1425 symbols were set up by the generic linker. */
1433 /* We use a state table to deal with adding symbols from an object
1434 file. The first index into the state table describes the symbol
1435 from the object file. The second index into the state table is the
1436 type of the symbol in the hash table. */
1438 /* The symbol from the object file is turned into one of these row
1443 UNDEF_ROW
, /* Undefined. */
1444 UNDEFW_ROW
, /* Weak undefined. */
1445 DEF_ROW
, /* Defined. */
1446 DEFW_ROW
, /* Weak defined. */
1447 COMMON_ROW
, /* Common. */
1448 INDR_ROW
, /* Indirect. */
1449 WARN_ROW
, /* Warning. */
1450 SET_ROW
/* Member of set. */
1453 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1456 /* The actions to take in the state table. */
1461 UND
, /* Mark symbol undefined. */
1462 WEAK
, /* Mark symbol weak undefined. */
1463 DEF
, /* Mark symbol defined. */
1464 DEFW
, /* Mark symbol weak defined. */
1465 COM
, /* Mark symbol common. */
1466 REF
, /* Mark defined symbol referenced. */
1467 CREF
, /* Possibly warn about common reference to defined symbol. */
1468 CDEF
, /* Define existing common symbol. */
1469 NOACT
, /* No action. */
1470 BIG
, /* Mark symbol common using largest size. */
1471 MDEF
, /* Multiple definition error. */
1472 MIND
, /* Multiple indirect symbols. */
1473 IND
, /* Make indirect symbol. */
1474 CIND
, /* Make indirect symbol from existing common symbol. */
1475 SET
, /* Add value to set. */
1476 MWARN
, /* Make warning symbol. */
1477 WARN
, /* Issue warning. */
1478 CWARN
, /* Warn if referenced, else MWARN. */
1479 CYCLE
, /* Repeat with symbol pointed to. */
1480 REFC
, /* Mark indirect symbol referenced and then CYCLE. */
1481 WARNC
/* Issue warning and then CYCLE. */
1484 /* The state table itself. The first index is a link_row and the
1485 second index is a bfd_link_hash_type. */
1487 static const enum link_action link_action
[8][8] =
1489 /* current\prev new undef undefw def defw com indr warn */
1490 /* UNDEF_ROW */ {UND
, NOACT
, UND
, REF
, REF
, NOACT
, REFC
, WARNC
},
1491 /* UNDEFW_ROW */ {WEAK
, NOACT
, NOACT
, REF
, REF
, NOACT
, REFC
, WARNC
},
1492 /* DEF_ROW */ {DEF
, DEF
, DEF
, MDEF
, DEF
, CDEF
, MDEF
, CYCLE
},
1493 /* DEFW_ROW */ {DEFW
, DEFW
, DEFW
, NOACT
, NOACT
, NOACT
, NOACT
, CYCLE
},
1494 /* COMMON_ROW */ {COM
, COM
, COM
, CREF
, COM
, BIG
, REFC
, WARNC
},
1495 /* INDR_ROW */ {IND
, IND
, IND
, MDEF
, IND
, CIND
, MIND
, CYCLE
},
1496 /* WARN_ROW */ {MWARN
, WARN
, WARN
, CWARN
, CWARN
, WARN
, CWARN
, NOACT
},
1497 /* SET_ROW */ {SET
, SET
, SET
, SET
, SET
, SET
, CYCLE
, CYCLE
}
1500 /* Most of the entries in the LINK_ACTION table are straightforward,
1501 but a few are somewhat subtle.
1503 A reference to an indirect symbol (UNDEF_ROW/indr or
1504 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1505 symbol and to the symbol the indirect symbol points to.
1507 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1508 causes the warning to be issued.
1510 A common definition of an indirect symbol (COMMON_ROW/indr) is
1511 treated as a multiple definition error. Likewise for an indirect
1512 definition of a common symbol (INDR_ROW/com).
1514 An indirect definition of a warning (INDR_ROW/warn) does not cause
1515 the warning to be issued.
1517 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1518 warning is created for the symbol the indirect symbol points to.
1520 Adding an entry to a set does not count as a reference to a set,
1521 and no warning is issued (SET_ROW/warn). */
1523 /* Return the BFD in which a hash entry has been defined, if known. */
1526 hash_entry_bfd (struct bfd_link_hash_entry
*h
)
1528 while (h
->type
== bfd_link_hash_warning
)
1534 case bfd_link_hash_undefined
:
1535 case bfd_link_hash_undefweak
:
1536 return h
->u
.undef
.abfd
;
1537 case bfd_link_hash_defined
:
1538 case bfd_link_hash_defweak
:
1539 return h
->u
.def
.section
->owner
;
1540 case bfd_link_hash_common
:
1541 return h
->u
.c
.p
->section
->owner
;
1546 /* Add a symbol to the global hash table.
1547 ABFD is the BFD the symbol comes from.
1548 NAME is the name of the symbol.
1549 FLAGS is the BSF_* bits associated with the symbol.
1550 SECTION is the section in which the symbol is defined; this may be
1551 bfd_und_section_ptr or bfd_com_section_ptr.
1552 VALUE is the value of the symbol, relative to the section.
1553 STRING is used for either an indirect symbol, in which case it is
1554 the name of the symbol to indirect to, or a warning symbol, in
1555 which case it is the warning string.
1556 COPY is TRUE if NAME or STRING must be copied into locally
1557 allocated memory if they need to be saved.
1558 COLLECT is TRUE if we should automatically collect gcc constructor
1559 or destructor names as collect2 does.
1560 HASHP, if not NULL, is a place to store the created hash table
1561 entry; if *HASHP is not NULL, the caller has already looked up
1562 the hash table entry, and stored it in *HASHP. */
1565 _bfd_generic_link_add_one_symbol (struct bfd_link_info
*info
,
1573 bfd_boolean collect
,
1574 struct bfd_link_hash_entry
**hashp
)
1577 struct bfd_link_hash_entry
*h
;
1580 BFD_ASSERT (section
!= NULL
);
1582 if (bfd_is_ind_section (section
)
1583 || (flags
& BSF_INDIRECT
) != 0)
1585 else if ((flags
& BSF_WARNING
) != 0)
1587 else if ((flags
& BSF_CONSTRUCTOR
) != 0)
1589 else if (bfd_is_und_section (section
))
1591 if ((flags
& BSF_WEAK
) != 0)
1596 else if ((flags
& BSF_WEAK
) != 0)
1598 else if (bfd_is_com_section (section
))
1603 if (hashp
!= NULL
&& *hashp
!= NULL
)
1607 if (row
== UNDEF_ROW
|| row
== UNDEFW_ROW
)
1608 h
= bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, copy
, FALSE
);
1610 h
= bfd_link_hash_lookup (info
->hash
, name
, TRUE
, copy
, FALSE
);
1619 if (info
->notice_all
1620 || (info
->notice_hash
!= NULL
1621 && bfd_hash_lookup (info
->notice_hash
, name
, FALSE
, FALSE
) != NULL
))
1623 if (! (*info
->callbacks
->notice
) (info
, h
,
1624 abfd
, section
, value
, flags
, string
))
1633 enum link_action action
;
1636 action
= link_action
[(int) row
][(int) h
->type
];
1647 /* Make a new undefined symbol. */
1648 h
->type
= bfd_link_hash_undefined
;
1649 h
->u
.undef
.abfd
= abfd
;
1650 bfd_link_add_undef (info
->hash
, h
);
1654 /* Make a new weak undefined symbol. */
1655 h
->type
= bfd_link_hash_undefweak
;
1656 h
->u
.undef
.abfd
= abfd
;
1660 /* We have found a definition for a symbol which was
1661 previously common. */
1662 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1663 if (! ((*info
->callbacks
->multiple_common
)
1664 (info
, h
, abfd
, bfd_link_hash_defined
, 0)))
1670 enum bfd_link_hash_type oldtype
;
1672 /* Define a symbol. */
1675 h
->type
= bfd_link_hash_defweak
;
1677 h
->type
= bfd_link_hash_defined
;
1678 h
->u
.def
.section
= section
;
1679 h
->u
.def
.value
= value
;
1681 /* If we have been asked to, we act like collect2 and
1682 identify all functions that might be global
1683 constructors and destructors and pass them up in a
1684 callback. We only do this for certain object file
1685 types, since many object file types can handle this
1687 if (collect
&& name
[0] == '_')
1691 /* A constructor or destructor name starts like this:
1692 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1693 the second are the same character (we accept any
1694 character there, in case a new object file format
1695 comes along with even worse naming restrictions). */
1697 #define CONS_PREFIX "GLOBAL_"
1698 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1703 if (s
[0] == 'G' && CONST_STRNEQ (s
, CONS_PREFIX
))
1707 c
= s
[CONS_PREFIX_LEN
+ 1];
1708 if ((c
== 'I' || c
== 'D')
1709 && s
[CONS_PREFIX_LEN
] == s
[CONS_PREFIX_LEN
+ 2])
1711 /* If this is a definition of a symbol which
1712 was previously weakly defined, we are in
1713 trouble. We have already added a
1714 constructor entry for the weak defined
1715 symbol, and now we are trying to add one
1716 for the new symbol. Fortunately, this case
1717 should never arise in practice. */
1718 if (oldtype
== bfd_link_hash_defweak
)
1721 if (! ((*info
->callbacks
->constructor
)
1723 h
->root
.string
, abfd
, section
, value
)))
1733 /* We have found a common definition for a symbol. */
1734 if (h
->type
== bfd_link_hash_new
)
1735 bfd_link_add_undef (info
->hash
, h
);
1736 h
->type
= bfd_link_hash_common
;
1737 h
->u
.c
.p
= (struct bfd_link_hash_common_entry
*)
1738 bfd_hash_allocate (&info
->hash
->table
,
1739 sizeof (struct bfd_link_hash_common_entry
));
1740 if (h
->u
.c
.p
== NULL
)
1743 h
->u
.c
.size
= value
;
1745 /* Select a default alignment based on the size. This may
1746 be overridden by the caller. */
1750 power
= bfd_log2 (value
);
1753 h
->u
.c
.p
->alignment_power
= power
;
1756 /* The section of a common symbol is only used if the common
1757 symbol is actually allocated. It basically provides a
1758 hook for the linker script to decide which output section
1759 the common symbols should be put in. In most cases, the
1760 section of a common symbol will be bfd_com_section_ptr,
1761 the code here will choose a common symbol section named
1762 "COMMON", and the linker script will contain *(COMMON) in
1763 the appropriate place. A few targets use separate common
1764 sections for small symbols, and they require special
1766 if (section
== bfd_com_section_ptr
)
1768 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
, "COMMON");
1769 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1771 else if (section
->owner
!= abfd
)
1773 h
->u
.c
.p
->section
= bfd_make_section_old_way (abfd
,
1775 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1778 h
->u
.c
.p
->section
= section
;
1782 /* A reference to a defined symbol. */
1783 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1784 h
->u
.undef
.next
= h
;
1788 /* We have found a common definition for a symbol which
1789 already had a common definition. Use the maximum of the
1790 two sizes, and use the section required by the larger symbol. */
1791 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1792 if (! ((*info
->callbacks
->multiple_common
)
1793 (info
, h
, abfd
, bfd_link_hash_common
, value
)))
1795 if (value
> h
->u
.c
.size
)
1799 h
->u
.c
.size
= value
;
1801 /* Select a default alignment based on the size. This may
1802 be overridden by the caller. */
1803 power
= bfd_log2 (value
);
1806 h
->u
.c
.p
->alignment_power
= power
;
1808 /* Some systems have special treatment for small commons,
1809 hence we want to select the section used by the larger
1810 symbol. This makes sure the symbol does not go in a
1811 small common section if it is now too large. */
1812 if (section
== bfd_com_section_ptr
)
1815 = bfd_make_section_old_way (abfd
, "COMMON");
1816 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1818 else if (section
->owner
!= abfd
)
1821 = bfd_make_section_old_way (abfd
, section
->name
);
1822 h
->u
.c
.p
->section
->flags
|= SEC_ALLOC
;
1825 h
->u
.c
.p
->section
= section
;
1830 /* We have found a common definition for a symbol which
1831 was already defined. */
1832 if (! ((*info
->callbacks
->multiple_common
)
1833 (info
, h
, abfd
, bfd_link_hash_common
, value
)))
1838 /* Multiple indirect symbols. This is OK if they both point
1839 to the same symbol. */
1840 if (strcmp (h
->u
.i
.link
->root
.string
, string
) == 0)
1844 /* Handle a multiple definition. */
1845 if (! ((*info
->callbacks
->multiple_definition
)
1846 (info
, h
, abfd
, section
, value
)))
1851 /* Create an indirect symbol from an existing common symbol. */
1852 BFD_ASSERT (h
->type
== bfd_link_hash_common
);
1853 if (! ((*info
->callbacks
->multiple_common
)
1854 (info
, h
, abfd
, bfd_link_hash_indirect
, 0)))
1858 /* Create an indirect symbol. */
1860 struct bfd_link_hash_entry
*inh
;
1862 /* STRING is the name of the symbol we want to indirect
1864 inh
= bfd_wrapped_link_hash_lookup (abfd
, info
, string
, TRUE
,
1868 if (inh
->type
== bfd_link_hash_indirect
1869 && inh
->u
.i
.link
== h
)
1871 (*_bfd_error_handler
)
1872 (_("%B: indirect symbol `%s' to `%s' is a loop"),
1873 abfd
, name
, string
);
1874 bfd_set_error (bfd_error_invalid_operation
);
1877 if (inh
->type
== bfd_link_hash_new
)
1879 inh
->type
= bfd_link_hash_undefined
;
1880 inh
->u
.undef
.abfd
= abfd
;
1881 bfd_link_add_undef (info
->hash
, inh
);
1884 /* If the indirect symbol has been referenced, we need to
1885 push the reference down to the symbol we are
1887 if (h
->type
!= bfd_link_hash_new
)
1893 h
->type
= bfd_link_hash_indirect
;
1899 /* Add an entry to a set. */
1900 if (! (*info
->callbacks
->add_to_set
) (info
, h
, BFD_RELOC_CTOR
,
1901 abfd
, section
, value
))
1906 /* Issue a warning and cycle. */
1907 if (h
->u
.i
.warning
!= NULL
)
1909 if (! (*info
->callbacks
->warning
) (info
, h
->u
.i
.warning
,
1910 h
->root
.string
, abfd
,
1913 /* Only issue a warning once. */
1914 h
->u
.i
.warning
= NULL
;
1918 /* Try again with the referenced symbol. */
1924 /* A reference to an indirect symbol. */
1925 if (h
->u
.undef
.next
== NULL
&& info
->hash
->undefs_tail
!= h
)
1926 h
->u
.undef
.next
= h
;
1932 /* Issue a warning. */
1933 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1934 hash_entry_bfd (h
), NULL
, 0))
1939 /* Warn if this symbol has been referenced already,
1940 otherwise add a warning. A symbol has been referenced if
1941 the u.undef.next field is not NULL, or it is the tail of the
1942 undefined symbol list. The REF case above helps to
1944 if (h
->u
.undef
.next
!= NULL
|| info
->hash
->undefs_tail
== h
)
1946 if (! (*info
->callbacks
->warning
) (info
, string
, h
->root
.string
,
1947 hash_entry_bfd (h
), NULL
, 0))
1953 /* Make a warning symbol. */
1955 struct bfd_link_hash_entry
*sub
;
1957 /* STRING is the warning to give. */
1958 sub
= ((struct bfd_link_hash_entry
*)
1959 ((*info
->hash
->table
.newfunc
)
1960 (NULL
, &info
->hash
->table
, h
->root
.string
)));
1964 sub
->type
= bfd_link_hash_warning
;
1967 sub
->u
.i
.warning
= string
;
1971 size_t len
= strlen (string
) + 1;
1973 w
= (char *) bfd_hash_allocate (&info
->hash
->table
, len
);
1976 memcpy (w
, string
, len
);
1977 sub
->u
.i
.warning
= w
;
1980 bfd_hash_replace (&info
->hash
->table
,
1981 (struct bfd_hash_entry
*) h
,
1982 (struct bfd_hash_entry
*) sub
);
1994 /* Generic final link routine. */
1997 _bfd_generic_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
2001 struct bfd_link_order
*p
;
2003 struct generic_write_global_symbol_info wginfo
;
2005 bfd_get_outsymbols (abfd
) = NULL
;
2006 bfd_get_symcount (abfd
) = 0;
2009 /* Mark all sections which will be included in the output file. */
2010 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2011 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2012 if (p
->type
== bfd_indirect_link_order
)
2013 p
->u
.indirect
.section
->linker_mark
= TRUE
;
2015 /* Build the output symbol table. */
2016 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
2017 if (! _bfd_generic_link_output_symbols (abfd
, sub
, info
, &outsymalloc
))
2020 /* Accumulate the global symbols. */
2022 wginfo
.output_bfd
= abfd
;
2023 wginfo
.psymalloc
= &outsymalloc
;
2024 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info
),
2025 _bfd_generic_link_write_global_symbol
,
2028 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
2029 shouldn't really need one, since we have SYMCOUNT, but some old
2030 code still expects one. */
2031 if (! generic_add_output_symbol (abfd
, &outsymalloc
, NULL
))
2034 if (info
->relocatable
)
2036 /* Allocate space for the output relocs for each section. */
2037 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2040 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2042 if (p
->type
== bfd_section_reloc_link_order
2043 || p
->type
== bfd_symbol_reloc_link_order
)
2045 else if (p
->type
== bfd_indirect_link_order
)
2047 asection
*input_section
;
2054 input_section
= p
->u
.indirect
.section
;
2055 input_bfd
= input_section
->owner
;
2056 relsize
= bfd_get_reloc_upper_bound (input_bfd
,
2060 relocs
= (arelent
**) bfd_malloc (relsize
);
2061 if (!relocs
&& relsize
!= 0)
2063 symbols
= _bfd_generic_link_get_symbols (input_bfd
);
2064 reloc_count
= bfd_canonicalize_reloc (input_bfd
,
2069 if (reloc_count
< 0)
2071 BFD_ASSERT ((unsigned long) reloc_count
2072 == input_section
->reloc_count
);
2073 o
->reloc_count
+= reloc_count
;
2076 if (o
->reloc_count
> 0)
2080 amt
= o
->reloc_count
;
2081 amt
*= sizeof (arelent
*);
2082 o
->orelocation
= (struct reloc_cache_entry
**) bfd_alloc (abfd
, amt
);
2083 if (!o
->orelocation
)
2085 o
->flags
|= SEC_RELOC
;
2086 /* Reset the count so that it can be used as an index
2087 when putting in the output relocs. */
2093 /* Handle all the link order information for the sections. */
2094 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
2096 for (p
= o
->map_head
.link_order
; p
!= NULL
; p
= p
->next
)
2100 case bfd_section_reloc_link_order
:
2101 case bfd_symbol_reloc_link_order
:
2102 if (! _bfd_generic_reloc_link_order (abfd
, info
, o
, p
))
2105 case bfd_indirect_link_order
:
2106 if (! default_indirect_link_order (abfd
, info
, o
, p
, TRUE
))
2110 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
2120 /* Add an output symbol to the output BFD. */
2123 generic_add_output_symbol (bfd
*output_bfd
, size_t *psymalloc
, asymbol
*sym
)
2125 if (bfd_get_symcount (output_bfd
) >= *psymalloc
)
2130 if (*psymalloc
== 0)
2135 amt
*= sizeof (asymbol
*);
2136 newsyms
= (asymbol
**) bfd_realloc (bfd_get_outsymbols (output_bfd
), amt
);
2137 if (newsyms
== NULL
)
2139 bfd_get_outsymbols (output_bfd
) = newsyms
;
2142 bfd_get_outsymbols (output_bfd
) [bfd_get_symcount (output_bfd
)] = sym
;
2144 ++ bfd_get_symcount (output_bfd
);
2149 /* Handle the symbols for an input BFD. */
2152 _bfd_generic_link_output_symbols (bfd
*output_bfd
,
2154 struct bfd_link_info
*info
,
2160 if (!bfd_generic_link_read_symbols (input_bfd
))
2163 /* Create a filename symbol if we are supposed to. */
2164 if (info
->create_object_symbols_section
!= NULL
)
2168 for (sec
= input_bfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2170 if (sec
->output_section
== info
->create_object_symbols_section
)
2174 newsym
= bfd_make_empty_symbol (input_bfd
);
2177 newsym
->name
= input_bfd
->filename
;
2179 newsym
->flags
= BSF_LOCAL
| BSF_FILE
;
2180 newsym
->section
= sec
;
2182 if (! generic_add_output_symbol (output_bfd
, psymalloc
,
2191 /* Adjust the values of the globally visible symbols, and write out
2193 sym_ptr
= _bfd_generic_link_get_symbols (input_bfd
);
2194 sym_end
= sym_ptr
+ _bfd_generic_link_get_symcount (input_bfd
);
2195 for (; sym_ptr
< sym_end
; sym_ptr
++)
2198 struct generic_link_hash_entry
*h
;
2203 if ((sym
->flags
& (BSF_INDIRECT
2208 || bfd_is_und_section (bfd_get_section (sym
))
2209 || bfd_is_com_section (bfd_get_section (sym
))
2210 || bfd_is_ind_section (bfd_get_section (sym
)))
2212 if (sym
->udata
.p
!= NULL
)
2213 h
= (struct generic_link_hash_entry
*) sym
->udata
.p
;
2214 else if ((sym
->flags
& BSF_CONSTRUCTOR
) != 0)
2216 /* This case normally means that the main linker code
2217 deliberately ignored this constructor symbol. We
2218 should just pass it through. This will screw up if
2219 the constructor symbol is from a different,
2220 non-generic, object file format, but the case will
2221 only arise when linking with -r, which will probably
2222 fail anyhow, since there will be no way to represent
2223 the relocs in the output format being used. */
2226 else if (bfd_is_und_section (bfd_get_section (sym
)))
2227 h
= ((struct generic_link_hash_entry
*)
2228 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2229 bfd_asymbol_name (sym
),
2230 FALSE
, FALSE
, TRUE
));
2232 h
= _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info
),
2233 bfd_asymbol_name (sym
),
2234 FALSE
, FALSE
, TRUE
);
2238 /* Force all references to this symbol to point to
2239 the same area in memory. It is possible that
2240 this routine will be called with a hash table
2241 other than a generic hash table, so we double
2243 if (info
->output_bfd
->xvec
== input_bfd
->xvec
)
2246 *sym_ptr
= sym
= h
->sym
;
2249 switch (h
->root
.type
)
2252 case bfd_link_hash_new
:
2254 case bfd_link_hash_undefined
:
2256 case bfd_link_hash_undefweak
:
2257 sym
->flags
|= BSF_WEAK
;
2259 case bfd_link_hash_indirect
:
2260 h
= (struct generic_link_hash_entry
*) h
->root
.u
.i
.link
;
2262 case bfd_link_hash_defined
:
2263 sym
->flags
|= BSF_GLOBAL
;
2264 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2265 sym
->value
= h
->root
.u
.def
.value
;
2266 sym
->section
= h
->root
.u
.def
.section
;
2268 case bfd_link_hash_defweak
:
2269 sym
->flags
|= BSF_WEAK
;
2270 sym
->flags
&=~ BSF_CONSTRUCTOR
;
2271 sym
->value
= h
->root
.u
.def
.value
;
2272 sym
->section
= h
->root
.u
.def
.section
;
2274 case bfd_link_hash_common
:
2275 sym
->value
= h
->root
.u
.c
.size
;
2276 sym
->flags
|= BSF_GLOBAL
;
2277 if (! bfd_is_com_section (sym
->section
))
2279 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2280 sym
->section
= bfd_com_section_ptr
;
2282 /* We do not set the section of the symbol to
2283 h->root.u.c.p->section. That value was saved so
2284 that we would know where to allocate the symbol
2285 if it was defined. In this case the type is
2286 still bfd_link_hash_common, so we did not define
2287 it, so we do not want to use that section. */
2293 /* This switch is straight from the old code in
2294 write_file_locals in ldsym.c. */
2295 if (info
->strip
== strip_all
2296 || (info
->strip
== strip_some
2297 && bfd_hash_lookup (info
->keep_hash
, bfd_asymbol_name (sym
),
2298 FALSE
, FALSE
) == NULL
))
2300 else if ((sym
->flags
& (BSF_GLOBAL
| BSF_WEAK
)) != 0)
2302 /* If this symbol is marked as occurring now, rather
2303 than at the end, output it now. This is used for
2304 COFF C_EXT FCN symbols. FIXME: There must be a
2306 if (bfd_asymbol_bfd (sym
) == input_bfd
2307 && (sym
->flags
& BSF_NOT_AT_END
) != 0)
2312 else if (bfd_is_ind_section (sym
->section
))
2314 else if ((sym
->flags
& BSF_DEBUGGING
) != 0)
2316 if (info
->strip
== strip_none
)
2321 else if (bfd_is_und_section (sym
->section
)
2322 || bfd_is_com_section (sym
->section
))
2324 else if ((sym
->flags
& BSF_LOCAL
) != 0)
2326 if ((sym
->flags
& BSF_WARNING
) != 0)
2330 switch (info
->discard
)
2336 case discard_sec_merge
:
2338 if (info
->relocatable
2339 || ! (sym
->section
->flags
& SEC_MERGE
))
2343 if (bfd_is_local_label (input_bfd
, sym
))
2354 else if ((sym
->flags
& BSF_CONSTRUCTOR
))
2356 if (info
->strip
!= strip_all
)
2364 /* If this symbol is in a section which is not being included
2365 in the output file, then we don't want to output the
2367 if (!bfd_is_abs_section (sym
->section
)
2368 && bfd_section_removed_from_list (output_bfd
,
2369 sym
->section
->output_section
))
2374 if (! generic_add_output_symbol (output_bfd
, psymalloc
, sym
))
2384 /* Set the section and value of a generic BFD symbol based on a linker
2385 hash table entry. */
2388 set_symbol_from_hash (asymbol
*sym
, struct bfd_link_hash_entry
*h
)
2395 case bfd_link_hash_new
:
2396 /* This can happen when a constructor symbol is seen but we are
2397 not building constructors. */
2398 if (sym
->section
!= NULL
)
2400 BFD_ASSERT ((sym
->flags
& BSF_CONSTRUCTOR
) != 0);
2404 sym
->flags
|= BSF_CONSTRUCTOR
;
2405 sym
->section
= bfd_abs_section_ptr
;
2409 case bfd_link_hash_undefined
:
2410 sym
->section
= bfd_und_section_ptr
;
2413 case bfd_link_hash_undefweak
:
2414 sym
->section
= bfd_und_section_ptr
;
2416 sym
->flags
|= BSF_WEAK
;
2418 case bfd_link_hash_defined
:
2419 sym
->section
= h
->u
.def
.section
;
2420 sym
->value
= h
->u
.def
.value
;
2422 case bfd_link_hash_defweak
:
2423 sym
->flags
|= BSF_WEAK
;
2424 sym
->section
= h
->u
.def
.section
;
2425 sym
->value
= h
->u
.def
.value
;
2427 case bfd_link_hash_common
:
2428 sym
->value
= h
->u
.c
.size
;
2429 if (sym
->section
== NULL
)
2430 sym
->section
= bfd_com_section_ptr
;
2431 else if (! bfd_is_com_section (sym
->section
))
2433 BFD_ASSERT (bfd_is_und_section (sym
->section
));
2434 sym
->section
= bfd_com_section_ptr
;
2436 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2438 case bfd_link_hash_indirect
:
2439 case bfd_link_hash_warning
:
2440 /* FIXME: What should we do here? */
2445 /* Write out a global symbol, if it hasn't already been written out.
2446 This is called for each symbol in the hash table. */
2449 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry
*h
,
2452 struct generic_write_global_symbol_info
*wginfo
=
2453 (struct generic_write_global_symbol_info
*) data
;
2461 if (wginfo
->info
->strip
== strip_all
2462 || (wginfo
->info
->strip
== strip_some
2463 && bfd_hash_lookup (wginfo
->info
->keep_hash
, h
->root
.root
.string
,
2464 FALSE
, FALSE
) == NULL
))
2471 sym
= bfd_make_empty_symbol (wginfo
->output_bfd
);
2474 sym
->name
= h
->root
.root
.string
;
2478 set_symbol_from_hash (sym
, &h
->root
);
2480 sym
->flags
|= BSF_GLOBAL
;
2482 if (! generic_add_output_symbol (wginfo
->output_bfd
, wginfo
->psymalloc
,
2485 /* FIXME: No way to return failure. */
2492 /* Create a relocation. */
2495 _bfd_generic_reloc_link_order (bfd
*abfd
,
2496 struct bfd_link_info
*info
,
2498 struct bfd_link_order
*link_order
)
2502 if (! info
->relocatable
)
2504 if (sec
->orelocation
== NULL
)
2507 r
= (arelent
*) bfd_alloc (abfd
, sizeof (arelent
));
2511 r
->address
= link_order
->offset
;
2512 r
->howto
= bfd_reloc_type_lookup (abfd
, link_order
->u
.reloc
.p
->reloc
);
2515 bfd_set_error (bfd_error_bad_value
);
2519 /* Get the symbol to use for the relocation. */
2520 if (link_order
->type
== bfd_section_reloc_link_order
)
2521 r
->sym_ptr_ptr
= link_order
->u
.reloc
.p
->u
.section
->symbol_ptr_ptr
;
2524 struct generic_link_hash_entry
*h
;
2526 h
= ((struct generic_link_hash_entry
*)
2527 bfd_wrapped_link_hash_lookup (abfd
, info
,
2528 link_order
->u
.reloc
.p
->u
.name
,
2529 FALSE
, FALSE
, TRUE
));
2533 if (! ((*info
->callbacks
->unattached_reloc
)
2534 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
2536 bfd_set_error (bfd_error_bad_value
);
2539 r
->sym_ptr_ptr
= &h
->sym
;
2542 /* If this is an inplace reloc, write the addend to the object file.
2543 Otherwise, store it in the reloc addend. */
2544 if (! r
->howto
->partial_inplace
)
2545 r
->addend
= link_order
->u
.reloc
.p
->addend
;
2549 bfd_reloc_status_type rstat
;
2554 size
= bfd_get_reloc_size (r
->howto
);
2555 buf
= (bfd_byte
*) bfd_zmalloc (size
);
2558 rstat
= _bfd_relocate_contents (r
->howto
, abfd
,
2559 (bfd_vma
) link_order
->u
.reloc
.p
->addend
,
2566 case bfd_reloc_outofrange
:
2568 case bfd_reloc_overflow
:
2569 if (! ((*info
->callbacks
->reloc_overflow
)
2571 (link_order
->type
== bfd_section_reloc_link_order
2572 ? bfd_section_name (abfd
, link_order
->u
.reloc
.p
->u
.section
)
2573 : link_order
->u
.reloc
.p
->u
.name
),
2574 r
->howto
->name
, link_order
->u
.reloc
.p
->addend
,
2582 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2583 ok
= bfd_set_section_contents (abfd
, sec
, buf
, loc
, size
);
2591 sec
->orelocation
[sec
->reloc_count
] = r
;
2597 /* Allocate a new link_order for a section. */
2599 struct bfd_link_order
*
2600 bfd_new_link_order (bfd
*abfd
, asection
*section
)
2602 bfd_size_type amt
= sizeof (struct bfd_link_order
);
2603 struct bfd_link_order
*new_lo
;
2605 new_lo
= (struct bfd_link_order
*) bfd_zalloc (abfd
, amt
);
2609 new_lo
->type
= bfd_undefined_link_order
;
2611 if (section
->map_tail
.link_order
!= NULL
)
2612 section
->map_tail
.link_order
->next
= new_lo
;
2614 section
->map_head
.link_order
= new_lo
;
2615 section
->map_tail
.link_order
= new_lo
;
2620 /* Default link order processing routine. Note that we can not handle
2621 the reloc_link_order types here, since they depend upon the details
2622 of how the particular backends generates relocs. */
2625 _bfd_default_link_order (bfd
*abfd
,
2626 struct bfd_link_info
*info
,
2628 struct bfd_link_order
*link_order
)
2630 switch (link_order
->type
)
2632 case bfd_undefined_link_order
:
2633 case bfd_section_reloc_link_order
:
2634 case bfd_symbol_reloc_link_order
:
2637 case bfd_indirect_link_order
:
2638 return default_indirect_link_order (abfd
, info
, sec
, link_order
,
2640 case bfd_data_link_order
:
2641 return default_data_link_order (abfd
, info
, sec
, link_order
);
2645 /* Default routine to handle a bfd_data_link_order. */
2648 default_data_link_order (bfd
*abfd
,
2649 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
2651 struct bfd_link_order
*link_order
)
2659 BFD_ASSERT ((sec
->flags
& SEC_HAS_CONTENTS
) != 0);
2661 size
= link_order
->size
;
2665 fill
= link_order
->u
.data
.contents
;
2666 fill_size
= link_order
->u
.data
.size
;
2667 if (fill_size
!= 0 && fill_size
< size
)
2670 fill
= (bfd_byte
*) bfd_malloc (size
);
2675 memset (p
, (int) link_order
->u
.data
.contents
[0], (size_t) size
);
2680 memcpy (p
, link_order
->u
.data
.contents
, fill_size
);
2684 while (size
>= fill_size
);
2686 memcpy (p
, link_order
->u
.data
.contents
, (size_t) size
);
2687 size
= link_order
->size
;
2691 loc
= link_order
->offset
* bfd_octets_per_byte (abfd
);
2692 result
= bfd_set_section_contents (abfd
, sec
, fill
, loc
, size
);
2694 if (fill
!= link_order
->u
.data
.contents
)
2699 /* Default routine to handle a bfd_indirect_link_order. */
2702 default_indirect_link_order (bfd
*output_bfd
,
2703 struct bfd_link_info
*info
,
2704 asection
*output_section
,
2705 struct bfd_link_order
*link_order
,
2706 bfd_boolean generic_linker
)
2708 asection
*input_section
;
2710 bfd_byte
*contents
= NULL
;
2711 bfd_byte
*new_contents
;
2712 bfd_size_type sec_size
;
2715 BFD_ASSERT ((output_section
->flags
& SEC_HAS_CONTENTS
) != 0);
2717 input_section
= link_order
->u
.indirect
.section
;
2718 input_bfd
= input_section
->owner
;
2719 if (input_section
->size
== 0)
2722 BFD_ASSERT (input_section
->output_section
== output_section
);
2723 BFD_ASSERT (input_section
->output_offset
== link_order
->offset
);
2724 BFD_ASSERT (input_section
->size
== link_order
->size
);
2726 if (info
->relocatable
2727 && input_section
->reloc_count
> 0
2728 && output_section
->orelocation
== NULL
)
2730 /* Space has not been allocated for the output relocations.
2731 This can happen when we are called by a specific backend
2732 because somebody is attempting to link together different
2733 types of object files. Handling this case correctly is
2734 difficult, and sometimes impossible. */
2735 (*_bfd_error_handler
)
2736 (_("Attempt to do relocatable link with %s input and %s output"),
2737 bfd_get_target (input_bfd
), bfd_get_target (output_bfd
));
2738 bfd_set_error (bfd_error_wrong_format
);
2742 if (! generic_linker
)
2747 /* Get the canonical symbols. The generic linker will always
2748 have retrieved them by this point, but we are being called by
2749 a specific linker, presumably because we are linking
2750 different types of object files together. */
2751 if (!bfd_generic_link_read_symbols (input_bfd
))
2754 /* Since we have been called by a specific linker, rather than
2755 the generic linker, the values of the symbols will not be
2756 right. They will be the values as seen in the input file,
2757 not the values of the final link. We need to fix them up
2758 before we can relocate the section. */
2759 sympp
= _bfd_generic_link_get_symbols (input_bfd
);
2760 symppend
= sympp
+ _bfd_generic_link_get_symcount (input_bfd
);
2761 for (; sympp
< symppend
; sympp
++)
2764 struct bfd_link_hash_entry
*h
;
2768 if ((sym
->flags
& (BSF_INDIRECT
2773 || bfd_is_und_section (bfd_get_section (sym
))
2774 || bfd_is_com_section (bfd_get_section (sym
))
2775 || bfd_is_ind_section (bfd_get_section (sym
)))
2777 /* sym->udata may have been set by
2778 generic_link_add_symbol_list. */
2779 if (sym
->udata
.p
!= NULL
)
2780 h
= (struct bfd_link_hash_entry
*) sym
->udata
.p
;
2781 else if (bfd_is_und_section (bfd_get_section (sym
)))
2782 h
= bfd_wrapped_link_hash_lookup (output_bfd
, info
,
2783 bfd_asymbol_name (sym
),
2784 FALSE
, FALSE
, TRUE
);
2786 h
= bfd_link_hash_lookup (info
->hash
,
2787 bfd_asymbol_name (sym
),
2788 FALSE
, FALSE
, TRUE
);
2790 set_symbol_from_hash (sym
, h
);
2795 if ((output_section
->flags
& (SEC_GROUP
| SEC_LINKER_CREATED
)) == SEC_GROUP
2796 && input_section
->size
!= 0)
2798 /* Group section contents are set by bfd_elf_set_group_contents. */
2799 if (!output_bfd
->output_has_begun
)
2801 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2802 if (!bfd_set_section_contents (output_bfd
, output_section
, "", 0, 1))
2805 new_contents
= output_section
->contents
;
2806 BFD_ASSERT (new_contents
!= NULL
);
2807 BFD_ASSERT (input_section
->output_offset
== 0);
2811 /* Get and relocate the section contents. */
2812 sec_size
= (input_section
->rawsize
> input_section
->size
2813 ? input_section
->rawsize
2814 : input_section
->size
);
2815 contents
= (bfd_byte
*) bfd_malloc (sec_size
);
2816 if (contents
== NULL
&& sec_size
!= 0)
2818 new_contents
= (bfd_get_relocated_section_contents
2819 (output_bfd
, info
, link_order
, contents
,
2821 _bfd_generic_link_get_symbols (input_bfd
)));
2826 /* Output the section contents. */
2827 loc
= input_section
->output_offset
* bfd_octets_per_byte (output_bfd
);
2828 if (! bfd_set_section_contents (output_bfd
, output_section
,
2829 new_contents
, loc
, input_section
->size
))
2832 if (contents
!= NULL
)
2837 if (contents
!= NULL
)
2842 /* A little routine to count the number of relocs in a link_order
2846 _bfd_count_link_order_relocs (struct bfd_link_order
*link_order
)
2848 register unsigned int c
;
2849 register struct bfd_link_order
*l
;
2852 for (l
= link_order
; l
!= NULL
; l
= l
->next
)
2854 if (l
->type
== bfd_section_reloc_link_order
2855 || l
->type
== bfd_symbol_reloc_link_order
)
2864 bfd_link_split_section
2867 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2870 Return nonzero if @var{sec} should be split during a
2871 reloceatable or final link.
2873 .#define bfd_link_split_section(abfd, sec) \
2874 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2880 _bfd_generic_link_split_section (bfd
*abfd ATTRIBUTE_UNUSED
,
2881 asection
*sec ATTRIBUTE_UNUSED
)
2888 bfd_section_already_linked
2891 bfd_boolean bfd_section_already_linked (bfd *abfd,
2893 struct bfd_link_info *info);
2896 Check if @var{data} has been already linked during a reloceatable
2897 or final link. Return TRUE if it has.
2899 .#define bfd_section_already_linked(abfd, sec, info) \
2900 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2905 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2906 once into the output. This routine checks each section, and
2907 arrange to discard it if a section of the same name has already
2908 been linked. This code assumes that all relevant sections have the
2909 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2910 section name. bfd_section_already_linked is called via
2911 bfd_map_over_sections. */
2913 /* The hash table. */
2915 static struct bfd_hash_table _bfd_section_already_linked_table
;
2917 /* Support routines for the hash table used by section_already_linked,
2918 initialize the table, traverse, lookup, fill in an entry and remove
2922 bfd_section_already_linked_table_traverse
2923 (bfd_boolean (*func
) (struct bfd_section_already_linked_hash_entry
*,
2924 void *), void *info
)
2926 bfd_hash_traverse (&_bfd_section_already_linked_table
,
2927 (bfd_boolean (*) (struct bfd_hash_entry
*,
2932 struct bfd_section_already_linked_hash_entry
*
2933 bfd_section_already_linked_table_lookup (const char *name
)
2935 return ((struct bfd_section_already_linked_hash_entry
*)
2936 bfd_hash_lookup (&_bfd_section_already_linked_table
, name
,
2941 bfd_section_already_linked_table_insert
2942 (struct bfd_section_already_linked_hash_entry
*already_linked_list
,
2945 struct bfd_section_already_linked
*l
;
2947 /* Allocate the memory from the same obstack as the hash table is
2949 l
= (struct bfd_section_already_linked
*)
2950 bfd_hash_allocate (&_bfd_section_already_linked_table
, sizeof *l
);
2954 l
->next
= already_linked_list
->entry
;
2955 already_linked_list
->entry
= l
;
2959 static struct bfd_hash_entry
*
2960 already_linked_newfunc (struct bfd_hash_entry
*entry ATTRIBUTE_UNUSED
,
2961 struct bfd_hash_table
*table
,
2962 const char *string ATTRIBUTE_UNUSED
)
2964 struct bfd_section_already_linked_hash_entry
*ret
=
2965 (struct bfd_section_already_linked_hash_entry
*)
2966 bfd_hash_allocate (table
, sizeof *ret
);
2977 bfd_section_already_linked_table_init (void)
2979 return bfd_hash_table_init_n (&_bfd_section_already_linked_table
,
2980 already_linked_newfunc
,
2981 sizeof (struct bfd_section_already_linked_hash_entry
),
2986 bfd_section_already_linked_table_free (void)
2988 bfd_hash_table_free (&_bfd_section_already_linked_table
);
2991 /* Report warnings as appropriate for duplicate section SEC.
2992 Return FALSE if we decide to keep SEC after all. */
2995 _bfd_handle_already_linked (asection
*sec
,
2996 struct bfd_section_already_linked
*l
,
2997 struct bfd_link_info
*info
)
2999 switch (sec
->flags
& SEC_LINK_DUPLICATES
)
3004 case SEC_LINK_DUPLICATES_DISCARD
:
3005 /* If we found an LTO IR match for this comdat group on
3006 the first pass, replace it with the LTO output on the
3007 second pass. We can't simply choose real object
3008 files over IR because the first pass may contain a
3009 mix of LTO and normal objects and we must keep the
3010 first match, be it IR or real. */
3011 if (info
->loading_lto_outputs
3012 && (l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
3019 case SEC_LINK_DUPLICATES_ONE_ONLY
:
3020 info
->callbacks
->einfo
3021 (_("%B: ignoring duplicate section `%A'\n"),
3025 case SEC_LINK_DUPLICATES_SAME_SIZE
:
3026 if ((l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
3028 else if (sec
->size
!= l
->sec
->size
)
3029 info
->callbacks
->einfo
3030 (_("%B: duplicate section `%A' has different size\n"),
3034 case SEC_LINK_DUPLICATES_SAME_CONTENTS
:
3035 if ((l
->sec
->owner
->flags
& BFD_PLUGIN
) != 0)
3037 else if (sec
->size
!= l
->sec
->size
)
3038 info
->callbacks
->einfo
3039 (_("%B: duplicate section `%A' has different size\n"),
3041 else if (sec
->size
!= 0)
3043 bfd_byte
*sec_contents
, *l_sec_contents
= NULL
;
3045 if (!bfd_malloc_and_get_section (sec
->owner
, sec
, &sec_contents
))
3046 info
->callbacks
->einfo
3047 (_("%B: could not read contents of section `%A'\n"),
3049 else if (!bfd_malloc_and_get_section (l
->sec
->owner
, l
->sec
,
3051 info
->callbacks
->einfo
3052 (_("%B: could not read contents of section `%A'\n"),
3053 l
->sec
->owner
, l
->sec
);
3054 else if (memcmp (sec_contents
, l_sec_contents
, sec
->size
) != 0)
3055 info
->callbacks
->einfo
3056 (_("%B: duplicate section `%A' has different contents\n"),
3060 free (sec_contents
);
3062 free (l_sec_contents
);
3067 /* Set the output_section field so that lang_add_section
3068 does not create a lang_input_section structure for this
3069 section. Since there might be a symbol in the section
3070 being discarded, we must retain a pointer to the section
3071 which we are really going to use. */
3072 sec
->output_section
= bfd_abs_section_ptr
;
3073 sec
->kept_section
= l
->sec
;
3077 /* This is used on non-ELF inputs. */
3080 _bfd_generic_section_already_linked (bfd
*abfd ATTRIBUTE_UNUSED
,
3082 struct bfd_link_info
*info
)
3085 struct bfd_section_already_linked
*l
;
3086 struct bfd_section_already_linked_hash_entry
*already_linked_list
;
3088 if ((sec
->flags
& SEC_LINK_ONCE
) == 0)
3091 /* The generic linker doesn't handle section groups. */
3092 if ((sec
->flags
& SEC_GROUP
) != 0)
3095 /* FIXME: When doing a relocatable link, we may have trouble
3096 copying relocations in other sections that refer to local symbols
3097 in the section being discarded. Those relocations will have to
3098 be converted somehow; as of this writing I'm not sure that any of
3099 the backends handle that correctly.
3101 It is tempting to instead not discard link once sections when
3102 doing a relocatable link (technically, they should be discarded
3103 whenever we are building constructors). However, that fails,
3104 because the linker winds up combining all the link once sections
3105 into a single large link once section, which defeats the purpose
3106 of having link once sections in the first place. */
3108 name
= bfd_get_section_name (abfd
, sec
);
3110 already_linked_list
= bfd_section_already_linked_table_lookup (name
);
3112 l
= already_linked_list
->entry
;
3115 /* The section has already been linked. See if we should
3117 return _bfd_handle_already_linked (sec
, l
, info
);
3120 /* This is the first section with this name. Record it. */
3121 if (!bfd_section_already_linked_table_insert (already_linked_list
, sec
))
3122 info
->callbacks
->einfo (_("%F%P: already_linked_table: %E\n"));
3126 /* Convert symbols in excluded output sections to use a kept section. */
3129 fix_syms (struct bfd_link_hash_entry
*h
, void *data
)
3131 bfd
*obfd
= (bfd
*) data
;
3133 if (h
->type
== bfd_link_hash_defined
3134 || h
->type
== bfd_link_hash_defweak
)
3136 asection
*s
= h
->u
.def
.section
;
3138 && s
->output_section
!= NULL
3139 && (s
->output_section
->flags
& SEC_EXCLUDE
) != 0
3140 && bfd_section_removed_from_list (obfd
, s
->output_section
))
3144 h
->u
.def
.value
+= s
->output_offset
+ s
->output_section
->vma
;
3146 /* Find preceding kept section. */
3147 for (op1
= s
->output_section
->prev
; op1
!= NULL
; op1
= op1
->prev
)
3148 if ((op1
->flags
& SEC_EXCLUDE
) == 0
3149 && !bfd_section_removed_from_list (obfd
, op1
))
3152 /* Find following kept section. Start at prev->next because
3153 other sections may have been added after S was removed. */
3154 if (s
->output_section
->prev
!= NULL
)
3155 op
= s
->output_section
->prev
->next
;
3157 op
= s
->output_section
->owner
->sections
;
3158 for (; op
!= NULL
; op
= op
->next
)
3159 if ((op
->flags
& SEC_EXCLUDE
) == 0
3160 && !bfd_section_removed_from_list (obfd
, op
))
3163 /* Choose better of two sections, based on flags. The idea
3164 is to choose a section that will be in the same segment
3165 as S would have been if it was kept. */
3169 op
= bfd_abs_section_ptr
;
3171 else if (op
== NULL
)
3173 else if (((op1
->flags
^ op
->flags
)
3174 & (SEC_ALLOC
| SEC_THREAD_LOCAL
| SEC_LOAD
)) != 0)
3176 if (((op
->flags
^ s
->flags
)
3177 & (SEC_ALLOC
| SEC_THREAD_LOCAL
)) != 0
3178 /* We prefer to choose a loaded section. Section S
3179 doesn't have SEC_LOAD set (it being excluded, that
3180 part of the flag processing didn't happen) so we
3181 can't compare that flag to those of OP and OP1. */
3182 || ((op1
->flags
& SEC_LOAD
) != 0
3183 && (op
->flags
& SEC_LOAD
) == 0))
3186 else if (((op1
->flags
^ op
->flags
) & SEC_READONLY
) != 0)
3188 if (((op
->flags
^ s
->flags
) & SEC_READONLY
) != 0)
3191 else if (((op1
->flags
^ op
->flags
) & SEC_CODE
) != 0)
3193 if (((op
->flags
^ s
->flags
) & SEC_CODE
) != 0)
3198 /* Flags we care about are the same. Prefer the following
3199 section if that will result in a positive valued sym. */
3200 if (h
->u
.def
.value
< op
->vma
)
3204 h
->u
.def
.value
-= op
->vma
;
3205 h
->u
.def
.section
= op
;
3213 _bfd_fix_excluded_sec_syms (bfd
*obfd
, struct bfd_link_info
*info
)
3215 bfd_link_hash_traverse (info
->hash
, fix_syms
, obfd
);
3220 bfd_generic_define_common_symbol
3223 bfd_boolean bfd_generic_define_common_symbol
3224 (bfd *output_bfd, struct bfd_link_info *info,
3225 struct bfd_link_hash_entry *h);
3228 Convert common symbol @var{h} into a defined symbol.
3229 Return TRUE on success and FALSE on failure.
3231 .#define bfd_define_common_symbol(output_bfd, info, h) \
3232 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3237 bfd_generic_define_common_symbol (bfd
*output_bfd
,
3238 struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
3239 struct bfd_link_hash_entry
*h
)
3241 unsigned int power_of_two
;
3242 bfd_vma alignment
, size
;
3245 BFD_ASSERT (h
!= NULL
&& h
->type
== bfd_link_hash_common
);
3248 power_of_two
= h
->u
.c
.p
->alignment_power
;
3249 section
= h
->u
.c
.p
->section
;
3251 /* Increase the size of the section to align the common symbol.
3252 The alignment must be a power of two. */
3253 alignment
= bfd_octets_per_byte (output_bfd
) << power_of_two
;
3254 BFD_ASSERT (alignment
!= 0 && (alignment
& -alignment
) == alignment
);
3255 section
->size
+= alignment
- 1;
3256 section
->size
&= -alignment
;
3258 /* Adjust the section's overall alignment if necessary. */
3259 if (power_of_two
> section
->alignment_power
)
3260 section
->alignment_power
= power_of_two
;
3262 /* Change the symbol from common to defined. */
3263 h
->type
= bfd_link_hash_defined
;
3264 h
->u
.def
.section
= section
;
3265 h
->u
.def
.value
= section
->size
;
3267 /* Increase the size of the section. */
3268 section
->size
+= size
;
3270 /* Make sure the section is allocated in memory, and make sure that
3271 it is no longer a common section. */
3272 section
->flags
|= SEC_ALLOC
;
3273 section
->flags
&= ~SEC_IS_COMMON
;
3279 bfd_find_version_for_sym
3282 struct bfd_elf_version_tree * bfd_find_version_for_sym
3283 (struct bfd_elf_version_tree *verdefs,
3284 const char *sym_name, bfd_boolean *hide);
3287 Search an elf version script tree for symbol versioning
3288 info and export / don't-export status for a given symbol.
3289 Return non-NULL on success and NULL on failure; also sets
3290 the output @samp{hide} boolean parameter.
3294 struct bfd_elf_version_tree
*
3295 bfd_find_version_for_sym (struct bfd_elf_version_tree
*verdefs
,
3296 const char *sym_name
,
3299 struct bfd_elf_version_tree
*t
;
3300 struct bfd_elf_version_tree
*local_ver
, *global_ver
, *exist_ver
;
3301 struct bfd_elf_version_tree
*star_local_ver
, *star_global_ver
;
3305 star_local_ver
= NULL
;
3306 star_global_ver
= NULL
;
3308 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
3310 if (t
->globals
.list
!= NULL
)
3312 struct bfd_elf_version_expr
*d
= NULL
;
3314 while ((d
= (*t
->match
) (&t
->globals
, d
, sym_name
)) != NULL
)
3316 if (d
->literal
|| strcmp (d
->pattern
, "*") != 0)
3319 star_global_ver
= t
;
3323 /* If the match is a wildcard pattern, keep looking for
3324 a more explicit, perhaps even local, match. */
3333 if (t
->locals
.list
!= NULL
)
3335 struct bfd_elf_version_expr
*d
= NULL
;
3337 while ((d
= (*t
->match
) (&t
->locals
, d
, sym_name
)) != NULL
)
3339 if (d
->literal
|| strcmp (d
->pattern
, "*") != 0)
3343 /* If the match is a wildcard pattern, keep looking for
3344 a more explicit, perhaps even global, match. */
3347 /* An exact match overrides a global wildcard. */
3349 star_global_ver
= NULL
;
3359 if (global_ver
== NULL
&& local_ver
== NULL
)
3360 global_ver
= star_global_ver
;
3362 if (global_ver
!= NULL
)
3364 /* If we already have a versioned symbol that matches the
3365 node for this symbol, then we don't want to create a
3366 duplicate from the unversioned symbol. Instead hide the
3367 unversioned symbol. */
3368 *hide
= exist_ver
== global_ver
;
3372 if (local_ver
== NULL
)
3373 local_ver
= star_local_ver
;
3375 if (local_ver
!= NULL
)
3386 bfd_hide_sym_by_version
3389 bfd_boolean bfd_hide_sym_by_version
3390 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3393 Search an elf version script tree for symbol versioning
3394 info for a given symbol. Return TRUE if the symbol is hidden.
3399 bfd_hide_sym_by_version (struct bfd_elf_version_tree
*verdefs
,
3400 const char *sym_name
)
3402 bfd_boolean hidden
= FALSE
;
3403 bfd_find_version_for_sym (verdefs
, sym_name
, &hidden
);