1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21 #include "alloca-conf.h"
28 #include "elf64-hppa.h"
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
43 LDD PLTOFF+8(%r27),%r27
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub
[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
50 struct elf64_hppa_dyn_hash_entry
52 struct bfd_hash_entry root
;
54 /* Offsets for this symbol in various linker sections. */
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry
*h
;
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry
*next
;
85 /* The type of the relocation. */
88 /* The input section of the relocation. */
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
95 /* The offset within the input section of the relocation. */
98 /* The addend for the relocation. */
103 /* Nonzero if this symbol needs an entry in one of the linker
111 struct elf64_hppa_dyn_hash_table
113 struct bfd_hash_table root
;
116 struct elf64_hppa_link_hash_table
118 struct elf_link_hash_table root
;
120 /* Shortcuts to get to the various linker defined sections. */
122 asection
*dlt_rel_sec
;
124 asection
*plt_rel_sec
;
126 asection
*opd_rel_sec
;
127 asection
*other_rel_sec
;
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
139 bfd_vma text_segment_base
;
140 bfd_vma data_segment_base
;
142 struct elf64_hppa_dyn_hash_table dyn_hash_table
;
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
147 bfd
*section_syms_bfd
;
149 /* Array of symbol numbers for each input section attached to the
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
157 typedef struct bfd_hash_entry
*(*new_hash_entry_func
)
158 PARAMS ((struct bfd_hash_entry
*, struct bfd_hash_table
*, const char *));
160 static struct bfd_hash_entry
*elf64_hppa_new_dyn_hash_entry
161 PARAMS ((struct bfd_hash_entry
*entry
, struct bfd_hash_table
*table
,
162 const char *string
));
163 static struct bfd_link_hash_table
*elf64_hppa_hash_table_create
164 PARAMS ((bfd
*abfd
));
165 static struct elf64_hppa_dyn_hash_entry
*elf64_hppa_dyn_hash_lookup
166 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
, const char *string
,
167 bfd_boolean create
, bfd_boolean copy
));
168 static void elf64_hppa_dyn_hash_traverse
169 PARAMS ((struct elf64_hppa_dyn_hash_table
*table
,
170 bfd_boolean (*func
) (struct elf64_hppa_dyn_hash_entry
*, PTR
),
173 static const char *get_dyn_name
174 PARAMS ((bfd
*, struct elf_link_hash_entry
*,
175 const Elf_Internal_Rela
*, char **, size_t *));
177 /* This must follow the definitions of the various derived linker
178 hash tables and shared functions. */
179 #include "elf-hppa.h"
181 static bfd_boolean elf64_hppa_object_p
184 static void elf64_hppa_post_process_headers
185 PARAMS ((bfd
*, struct bfd_link_info
*));
187 static bfd_boolean elf64_hppa_create_dynamic_sections
188 PARAMS ((bfd
*, struct bfd_link_info
*));
190 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
191 PARAMS ((struct bfd_link_info
*, struct elf_link_hash_entry
*));
193 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
194 PARAMS ((struct elf_link_hash_entry
*, PTR
));
196 static bfd_boolean elf64_hppa_size_dynamic_sections
197 PARAMS ((bfd
*, struct bfd_link_info
*));
199 static bfd_boolean elf64_hppa_link_output_symbol_hook
200 PARAMS ((struct bfd_link_info
*, const char *, Elf_Internal_Sym
*,
201 asection
*, struct elf_link_hash_entry
*));
203 static bfd_boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd
*, struct bfd_link_info
*,
205 struct elf_link_hash_entry
*, Elf_Internal_Sym
*));
207 static int elf64_hppa_additional_program_headers
210 static bfd_boolean elf64_hppa_modify_segment_map
211 PARAMS ((bfd
*, struct bfd_link_info
*));
213 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
214 PARAMS ((const Elf_Internal_Rela
*));
216 static bfd_boolean elf64_hppa_finish_dynamic_sections
217 PARAMS ((bfd
*, struct bfd_link_info
*));
219 static bfd_boolean elf64_hppa_check_relocs
220 PARAMS ((bfd
*, struct bfd_link_info
*,
221 asection
*, const Elf_Internal_Rela
*));
223 static bfd_boolean elf64_hppa_dynamic_symbol_p
224 PARAMS ((struct elf_link_hash_entry
*, struct bfd_link_info
*));
226 static bfd_boolean elf64_hppa_mark_exported_functions
227 PARAMS ((struct elf_link_hash_entry
*, PTR
));
229 static bfd_boolean elf64_hppa_finalize_opd
230 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
232 static bfd_boolean elf64_hppa_finalize_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
235 static bfd_boolean allocate_global_data_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
238 static bfd_boolean allocate_global_data_plt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
241 static bfd_boolean allocate_global_data_stub
242 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
244 static bfd_boolean allocate_global_data_opd
245 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
247 static bfd_boolean get_reloc_section
248 PARAMS ((bfd
*, struct elf64_hppa_link_hash_table
*, asection
*));
250 static bfd_boolean count_dyn_reloc
251 PARAMS ((bfd
*, struct elf64_hppa_dyn_hash_entry
*,
252 int, asection
*, int, bfd_vma
, bfd_vma
));
254 static bfd_boolean allocate_dynrel_entries
255 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
257 static bfd_boolean elf64_hppa_finalize_dynreloc
258 PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
260 static bfd_boolean get_opd
261 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
263 static bfd_boolean get_plt
264 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
266 static bfd_boolean get_dlt
267 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
269 static bfd_boolean get_stub
270 PARAMS ((bfd
*, struct bfd_link_info
*, struct elf64_hppa_link_hash_table
*));
272 static int elf64_hppa_elf_get_symbol_type
273 PARAMS ((Elf_Internal_Sym
*, int));
276 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table
*ht
,
277 bfd
*abfd ATTRIBUTE_UNUSED
,
278 new_hash_entry_func
new,
279 unsigned int entsize
)
281 memset (ht
, 0, sizeof (*ht
));
282 return bfd_hash_table_init (&ht
->root
, new, entsize
);
285 static struct bfd_hash_entry
*
286 elf64_hppa_new_dyn_hash_entry (entry
, table
, string
)
287 struct bfd_hash_entry
*entry
;
288 struct bfd_hash_table
*table
;
291 struct elf64_hppa_dyn_hash_entry
*ret
;
292 ret
= (struct elf64_hppa_dyn_hash_entry
*) entry
;
294 /* Allocate the structure if it has not already been allocated by a
297 ret
= bfd_hash_allocate (table
, sizeof (*ret
));
302 /* Call the allocation method of the superclass. */
303 ret
= ((struct elf64_hppa_dyn_hash_entry
*)
304 bfd_hash_newfunc ((struct bfd_hash_entry
*) ret
, table
, string
));
306 /* Initialize our local data. All zeros. */
307 memset (&ret
->dlt_offset
, 0,
308 (sizeof (struct elf64_hppa_dyn_hash_entry
)
309 - offsetof (struct elf64_hppa_dyn_hash_entry
, dlt_offset
)));
314 /* Create the derived linker hash table. The PA64 ELF port uses this
315 derived hash table to keep information specific to the PA ElF
316 linker (without using static variables). */
318 static struct bfd_link_hash_table
*
319 elf64_hppa_hash_table_create (abfd
)
322 struct elf64_hppa_link_hash_table
*ret
;
324 ret
= bfd_zalloc (abfd
, (bfd_size_type
) sizeof (*ret
));
327 if (!_bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
328 _bfd_elf_link_hash_newfunc
,
329 sizeof (struct elf_link_hash_entry
)))
331 bfd_release (abfd
, ret
);
335 if (!elf64_hppa_dyn_hash_table_init (&ret
->dyn_hash_table
, abfd
,
336 elf64_hppa_new_dyn_hash_entry
,
337 sizeof (struct elf64_hppa_dyn_hash_entry
)))
339 return &ret
->root
.root
;
342 /* Look up an entry in a PA64 ELF linker hash table. */
344 static struct elf64_hppa_dyn_hash_entry
*
345 elf64_hppa_dyn_hash_lookup(table
, string
, create
, copy
)
346 struct elf64_hppa_dyn_hash_table
*table
;
348 bfd_boolean create
, copy
;
350 return ((struct elf64_hppa_dyn_hash_entry
*)
351 bfd_hash_lookup (&table
->root
, string
, create
, copy
));
354 /* Traverse a PA64 ELF linker hash table. */
357 elf64_hppa_dyn_hash_traverse (table
, func
, info
)
358 struct elf64_hppa_dyn_hash_table
*table
;
359 bfd_boolean (*func
) PARAMS ((struct elf64_hppa_dyn_hash_entry
*, PTR
));
364 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry
*, PTR
))) func
,
368 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
370 Additionally we set the default architecture and machine. */
372 elf64_hppa_object_p (abfd
)
375 Elf_Internal_Ehdr
* i_ehdrp
;
378 i_ehdrp
= elf_elfheader (abfd
);
379 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
381 /* GCC on hppa-linux produces binaries with OSABI=Linux,
382 but the kernel produces corefiles with OSABI=SysV. */
383 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_LINUX
384 && i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
389 /* HPUX produces binaries with OSABI=HPUX,
390 but the kernel produces corefiles with OSABI=SysV. */
391 if (i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_HPUX
392 && i_ehdrp
->e_ident
[EI_OSABI
] != ELFOSABI_NONE
) /* aka SYSV */
396 flags
= i_ehdrp
->e_flags
;
397 switch (flags
& (EF_PARISC_ARCH
| EF_PARISC_WIDE
))
400 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 10);
402 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 11);
404 if (i_ehdrp
->e_ident
[EI_CLASS
] == ELFCLASS64
)
405 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
407 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 20);
408 case EFA_PARISC_2_0
| EF_PARISC_WIDE
:
409 return bfd_default_set_arch_mach (abfd
, bfd_arch_hppa
, 25);
411 /* Don't be fussy. */
415 /* Given section type (hdr->sh_type), return a boolean indicating
416 whether or not the section is an elf64-hppa specific section. */
418 elf64_hppa_section_from_shdr (bfd
*abfd
,
419 Elf_Internal_Shdr
*hdr
,
425 switch (hdr
->sh_type
)
428 if (strcmp (name
, ".PARISC.archext") != 0)
431 case SHT_PARISC_UNWIND
:
432 if (strcmp (name
, ".PARISC.unwind") != 0)
436 case SHT_PARISC_ANNOT
:
441 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
443 newsect
= hdr
->bfd_section
;
448 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
449 name describes what was once potentially anonymous memory. We
450 allocate memory as necessary, possibly reusing PBUF/PLEN. */
453 get_dyn_name (abfd
, h
, rel
, pbuf
, plen
)
455 struct elf_link_hash_entry
*h
;
456 const Elf_Internal_Rela
*rel
;
460 asection
*sec
= abfd
->sections
;
465 if (h
&& rel
->r_addend
== 0)
466 return h
->root
.root
.string
;
469 nlen
= strlen (h
->root
.root
.string
);
471 nlen
= 8 + 1 + sizeof (rel
->r_info
) * 2 - 8;
472 tlen
= nlen
+ 1 + sizeof (rel
->r_addend
) * 2 + 1;
480 *pbuf
= buf
= malloc (tlen
);
488 memcpy (buf
, h
->root
.root
.string
, nlen
);
490 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
494 nlen
= sprintf (buf
, "%x:%lx",
495 sec
->id
& 0xffffffff,
496 (long) ELF64_R_SYM (rel
->r_info
));
500 sprintf_vma (buf
+ nlen
, rel
->r_addend
);
507 /* SEC is a section containing relocs for an input BFD when linking; return
508 a suitable section for holding relocs in the output BFD for a link. */
511 get_reloc_section (abfd
, hppa_info
, sec
)
513 struct elf64_hppa_link_hash_table
*hppa_info
;
516 const char *srel_name
;
520 srel_name
= (bfd_elf_string_from_elf_section
521 (abfd
, elf_elfheader(abfd
)->e_shstrndx
,
522 elf_section_data(sec
)->rel_hdr
.sh_name
));
523 if (srel_name
== NULL
)
526 BFD_ASSERT ((strncmp (srel_name
, ".rela", 5) == 0
527 && strcmp (bfd_get_section_name (abfd
, sec
),
529 || (strncmp (srel_name
, ".rel", 4) == 0
530 && strcmp (bfd_get_section_name (abfd
, sec
),
533 dynobj
= hppa_info
->root
.dynobj
;
535 hppa_info
->root
.dynobj
= dynobj
= abfd
;
537 srel
= bfd_get_section_by_name (dynobj
, srel_name
);
540 srel
= bfd_make_section_with_flags (dynobj
, srel_name
,
548 || !bfd_set_section_alignment (dynobj
, srel
, 3))
552 hppa_info
->other_rel_sec
= srel
;
556 /* Add a new entry to the list of dynamic relocations against DYN_H.
558 We use this to keep a record of all the FPTR relocations against a
559 particular symbol so that we can create FPTR relocations in the
563 count_dyn_reloc (abfd
, dyn_h
, type
, sec
, sec_symndx
, offset
, addend
)
565 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
572 struct elf64_hppa_dyn_reloc_entry
*rent
;
574 rent
= (struct elf64_hppa_dyn_reloc_entry
*)
575 bfd_alloc (abfd
, (bfd_size_type
) sizeof (*rent
));
579 rent
->next
= dyn_h
->reloc_entries
;
582 rent
->sec_symndx
= sec_symndx
;
583 rent
->offset
= offset
;
584 rent
->addend
= addend
;
585 dyn_h
->reloc_entries
= rent
;
590 /* Scan the RELOCS and record the type of dynamic entries that each
591 referenced symbol needs. */
594 elf64_hppa_check_relocs (abfd
, info
, sec
, relocs
)
596 struct bfd_link_info
*info
;
598 const Elf_Internal_Rela
*relocs
;
600 struct elf64_hppa_link_hash_table
*hppa_info
;
601 const Elf_Internal_Rela
*relend
;
602 Elf_Internal_Shdr
*symtab_hdr
;
603 const Elf_Internal_Rela
*rel
;
604 asection
*dlt
, *plt
, *stubs
;
609 if (info
->relocatable
)
612 /* If this is the first dynamic object found in the link, create
613 the special sections required for dynamic linking. */
614 if (! elf_hash_table (info
)->dynamic_sections_created
)
616 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
620 hppa_info
= elf64_hppa_hash_table (info
);
621 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
623 /* If necessary, build a new table holding section symbols indices
626 if (info
->shared
&& hppa_info
->section_syms_bfd
!= abfd
)
629 unsigned int highest_shndx
;
630 Elf_Internal_Sym
*local_syms
= NULL
;
631 Elf_Internal_Sym
*isym
, *isymend
;
634 /* We're done with the old cache of section index to section symbol
635 index information. Free it.
637 ?!? Note we leak the last section_syms array. Presumably we
638 could free it in one of the later routines in this file. */
639 if (hppa_info
->section_syms
)
640 free (hppa_info
->section_syms
);
642 /* Read this BFD's local symbols. */
643 if (symtab_hdr
->sh_info
!= 0)
645 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
646 if (local_syms
== NULL
)
647 local_syms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
648 symtab_hdr
->sh_info
, 0,
650 if (local_syms
== NULL
)
654 /* Record the highest section index referenced by the local symbols. */
656 isymend
= local_syms
+ symtab_hdr
->sh_info
;
657 for (isym
= local_syms
; isym
< isymend
; isym
++)
659 if (isym
->st_shndx
> highest_shndx
)
660 highest_shndx
= isym
->st_shndx
;
663 /* Allocate an array to hold the section index to section symbol index
664 mapping. Bump by one since we start counting at zero. */
668 hppa_info
->section_syms
= (int *) bfd_malloc (amt
);
670 /* Now walk the local symbols again. If we find a section symbol,
671 record the index of the symbol into the section_syms array. */
672 for (i
= 0, isym
= local_syms
; isym
< isymend
; i
++, isym
++)
674 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
675 hppa_info
->section_syms
[isym
->st_shndx
] = i
;
678 /* We are finished with the local symbols. */
679 if (local_syms
!= NULL
680 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
682 if (! info
->keep_memory
)
686 /* Cache the symbols for elf_link_input_bfd. */
687 symtab_hdr
->contents
= (unsigned char *) local_syms
;
691 /* Record which BFD we built the section_syms mapping for. */
692 hppa_info
->section_syms_bfd
= abfd
;
695 /* Record the symbol index for this input section. We may need it for
696 relocations when building shared libraries. When not building shared
697 libraries this value is never really used, but assign it to zero to
698 prevent out of bounds memory accesses in other routines. */
701 sec_symndx
= _bfd_elf_section_from_bfd_section (abfd
, sec
);
703 /* If we did not find a section symbol for this section, then
704 something went terribly wrong above. */
705 if (sec_symndx
== -1)
708 sec_symndx
= hppa_info
->section_syms
[sec_symndx
];
713 dlt
= plt
= stubs
= NULL
;
717 relend
= relocs
+ sec
->reloc_count
;
718 for (rel
= relocs
; rel
< relend
; ++rel
)
729 struct elf_link_hash_entry
*h
= NULL
;
730 unsigned long r_symndx
= ELF64_R_SYM (rel
->r_info
);
731 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
733 const char *addr_name
;
734 bfd_boolean maybe_dynamic
;
735 int dynrel_type
= R_PARISC_NONE
;
736 static reloc_howto_type
*howto
;
738 if (r_symndx
>= symtab_hdr
->sh_info
)
740 /* We're dealing with a global symbol -- find its hash entry
741 and mark it as being referenced. */
742 long indx
= r_symndx
- symtab_hdr
->sh_info
;
743 h
= elf_sym_hashes (abfd
)[indx
];
744 while (h
->root
.type
== bfd_link_hash_indirect
745 || h
->root
.type
== bfd_link_hash_warning
)
746 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
751 /* We can only get preliminary data on whether a symbol is
752 locally or externally defined, as not all of the input files
753 have yet been processed. Do something with what we know, as
754 this may help reduce memory usage and processing time later. */
755 maybe_dynamic
= FALSE
;
756 if (h
&& ((info
->shared
758 || info
->unresolved_syms_in_shared_libs
== RM_IGNORE
))
760 || h
->root
.type
== bfd_link_hash_defweak
))
761 maybe_dynamic
= TRUE
;
763 howto
= elf_hppa_howto_table
+ ELF64_R_TYPE (rel
->r_info
);
767 /* These are simple indirect references to symbols through the
768 DLT. We need to create a DLT entry for any symbols which
769 appears in a DLTIND relocation. */
770 case R_PARISC_DLTIND21L
:
771 case R_PARISC_DLTIND14R
:
772 case R_PARISC_DLTIND14F
:
773 case R_PARISC_DLTIND14WR
:
774 case R_PARISC_DLTIND14DR
:
775 need_entry
= NEED_DLT
;
778 /* ?!? These need a DLT entry. But I have no idea what to do with
779 the "link time TP value. */
780 case R_PARISC_LTOFF_TP21L
:
781 case R_PARISC_LTOFF_TP14R
:
782 case R_PARISC_LTOFF_TP14F
:
783 case R_PARISC_LTOFF_TP64
:
784 case R_PARISC_LTOFF_TP14WR
:
785 case R_PARISC_LTOFF_TP14DR
:
786 case R_PARISC_LTOFF_TP16F
:
787 case R_PARISC_LTOFF_TP16WF
:
788 case R_PARISC_LTOFF_TP16DF
:
789 need_entry
= NEED_DLT
;
792 /* These are function calls. Depending on their precise target we
793 may need to make a stub for them. The stub uses the PLT, so we
794 need to create PLT entries for these symbols too. */
795 case R_PARISC_PCREL12F
:
796 case R_PARISC_PCREL17F
:
797 case R_PARISC_PCREL22F
:
798 case R_PARISC_PCREL32
:
799 case R_PARISC_PCREL64
:
800 case R_PARISC_PCREL21L
:
801 case R_PARISC_PCREL17R
:
802 case R_PARISC_PCREL17C
:
803 case R_PARISC_PCREL14R
:
804 case R_PARISC_PCREL14F
:
805 case R_PARISC_PCREL22C
:
806 case R_PARISC_PCREL14WR
:
807 case R_PARISC_PCREL14DR
:
808 case R_PARISC_PCREL16F
:
809 case R_PARISC_PCREL16WF
:
810 case R_PARISC_PCREL16DF
:
811 need_entry
= (NEED_PLT
| NEED_STUB
);
814 case R_PARISC_PLTOFF21L
:
815 case R_PARISC_PLTOFF14R
:
816 case R_PARISC_PLTOFF14F
:
817 case R_PARISC_PLTOFF14WR
:
818 case R_PARISC_PLTOFF14DR
:
819 case R_PARISC_PLTOFF16F
:
820 case R_PARISC_PLTOFF16WF
:
821 case R_PARISC_PLTOFF16DF
:
822 need_entry
= (NEED_PLT
);
826 if (info
->shared
|| maybe_dynamic
)
827 need_entry
= (NEED_DYNREL
);
828 dynrel_type
= R_PARISC_DIR64
;
831 /* This is an indirect reference through the DLT to get the address
832 of a OPD descriptor. Thus we need to make a DLT entry that points
834 case R_PARISC_LTOFF_FPTR21L
:
835 case R_PARISC_LTOFF_FPTR14R
:
836 case R_PARISC_LTOFF_FPTR14WR
:
837 case R_PARISC_LTOFF_FPTR14DR
:
838 case R_PARISC_LTOFF_FPTR32
:
839 case R_PARISC_LTOFF_FPTR64
:
840 case R_PARISC_LTOFF_FPTR16F
:
841 case R_PARISC_LTOFF_FPTR16WF
:
842 case R_PARISC_LTOFF_FPTR16DF
:
843 if (info
->shared
|| maybe_dynamic
)
844 need_entry
= (NEED_DLT
| NEED_OPD
);
846 need_entry
= (NEED_DLT
| NEED_OPD
);
847 dynrel_type
= R_PARISC_FPTR64
;
850 /* This is a simple OPD entry. */
851 case R_PARISC_FPTR64
:
852 if (info
->shared
|| maybe_dynamic
)
853 need_entry
= (NEED_OPD
| NEED_DYNREL
);
855 need_entry
= (NEED_OPD
);
856 dynrel_type
= R_PARISC_FPTR64
;
859 /* Add more cases as needed. */
865 /* Collect a canonical name for this address. */
866 addr_name
= get_dyn_name (abfd
, h
, rel
, &buf
, &buf_len
);
868 /* Collect the canonical entry data for this address. */
869 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
870 addr_name
, TRUE
, TRUE
);
873 /* Stash away enough information to be able to find this symbol
874 regardless of whether or not it is local or global. */
877 dyn_h
->sym_indx
= r_symndx
;
879 /* ?!? We may need to do some error checking in here. */
880 /* Create what's needed. */
881 if (need_entry
& NEED_DLT
)
883 if (! hppa_info
->dlt_sec
884 && ! get_dlt (abfd
, info
, hppa_info
))
889 if (need_entry
& NEED_PLT
)
891 if (! hppa_info
->plt_sec
892 && ! get_plt (abfd
, info
, hppa_info
))
897 if (need_entry
& NEED_STUB
)
899 if (! hppa_info
->stub_sec
900 && ! get_stub (abfd
, info
, hppa_info
))
902 dyn_h
->want_stub
= 1;
905 if (need_entry
& NEED_OPD
)
907 if (! hppa_info
->opd_sec
908 && ! get_opd (abfd
, info
, hppa_info
))
913 /* FPTRs are not allocated by the dynamic linker for PA64, though
914 it is possible that will change in the future. */
916 /* This could be a local function that had its address taken, in
917 which case H will be NULL. */
922 /* Add a new dynamic relocation to the chain of dynamic
923 relocations for this symbol. */
924 if ((need_entry
& NEED_DYNREL
) && (sec
->flags
& SEC_ALLOC
))
926 if (! hppa_info
->other_rel_sec
927 && ! get_reloc_section (abfd
, hppa_info
, sec
))
930 if (!count_dyn_reloc (abfd
, dyn_h
, dynrel_type
, sec
,
931 sec_symndx
, rel
->r_offset
, rel
->r_addend
))
934 /* If we are building a shared library and we just recorded
935 a dynamic R_PARISC_FPTR64 relocation, then make sure the
936 section symbol for this section ends up in the dynamic
938 if (info
->shared
&& dynrel_type
== R_PARISC_FPTR64
939 && ! (bfd_elf_link_record_local_dynamic_symbol
940 (info
, abfd
, sec_symndx
)))
955 struct elf64_hppa_allocate_data
957 struct bfd_link_info
*info
;
961 /* Should we do dynamic things to this symbol? */
964 elf64_hppa_dynamic_symbol_p (h
, info
)
965 struct elf_link_hash_entry
*h
;
966 struct bfd_link_info
*info
;
968 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
969 and relocations that retrieve a function descriptor? Assume the
971 if (_bfd_elf_dynamic_symbol_p (h
, info
, 1))
973 /* ??? Why is this here and not elsewhere is_local_label_name. */
974 if (h
->root
.root
.string
[0] == '$' && h
->root
.root
.string
[1] == '$')
983 /* Mark all functions exported by this file so that we can later allocate
984 entries in .opd for them. */
987 elf64_hppa_mark_exported_functions (h
, data
)
988 struct elf_link_hash_entry
*h
;
991 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
992 struct elf64_hppa_link_hash_table
*hppa_info
;
994 hppa_info
= elf64_hppa_hash_table (info
);
996 if (h
->root
.type
== bfd_link_hash_warning
)
997 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1000 && (h
->root
.type
== bfd_link_hash_defined
1001 || h
->root
.type
== bfd_link_hash_defweak
)
1002 && h
->root
.u
.def
.section
->output_section
!= NULL
1003 && h
->type
== STT_FUNC
)
1005 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1009 h
->root
.root
.string
, TRUE
, TRUE
);
1013 if (! hppa_info
->opd_sec
1014 && ! get_opd (hppa_info
->root
.dynobj
, info
, hppa_info
))
1017 dyn_h
->want_opd
= 1;
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h
->st_shndx
= -1;
1026 /* Allocate space for a DLT entry. */
1029 allocate_global_data_dlt (dyn_h
, data
)
1030 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1033 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1035 if (dyn_h
->want_dlt
)
1037 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1039 if (x
->info
->shared
)
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1045 || (h
->dynindx
== -1 && h
->type
!= STT_PARISC_MILLI
))
1048 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1050 if (! (bfd_elf_link_record_local_dynamic_symbol
1051 (x
->info
, owner
, dyn_h
->sym_indx
)))
1056 dyn_h
->dlt_offset
= x
->ofs
;
1057 x
->ofs
+= DLT_ENTRY_SIZE
;
1062 /* Allocate space for a DLT.PLT entry. */
1065 allocate_global_data_plt (dyn_h
, data
)
1066 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1069 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1072 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1073 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1074 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1075 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1077 dyn_h
->plt_offset
= x
->ofs
;
1078 x
->ofs
+= PLT_ENTRY_SIZE
;
1079 if (dyn_h
->plt_offset
< 0x2000)
1080 elf64_hppa_hash_table (x
->info
)->gp_offset
= dyn_h
->plt_offset
;
1083 dyn_h
->want_plt
= 0;
1088 /* Allocate space for a STUB entry. */
1091 allocate_global_data_stub (dyn_h
, data
)
1092 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1095 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1097 if (dyn_h
->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
)
1099 && !((dyn_h
->h
->root
.type
== bfd_link_hash_defined
1100 || dyn_h
->h
->root
.type
== bfd_link_hash_defweak
)
1101 && dyn_h
->h
->root
.u
.def
.section
->output_section
!= NULL
))
1103 dyn_h
->stub_offset
= x
->ofs
;
1104 x
->ofs
+= sizeof (plt_stub
);
1107 dyn_h
->want_stub
= 0;
1111 /* Allocate space for a FPTR entry. */
1114 allocate_global_data_opd (dyn_h
, data
)
1115 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1118 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1120 if (dyn_h
->want_opd
)
1122 struct elf_link_hash_entry
*h
= dyn_h
->h
;
1125 while (h
->root
.type
== bfd_link_hash_indirect
1126 || h
->root
.type
== bfd_link_hash_warning
)
1127 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
1131 if (h
&& (h
->root
.type
== bfd_link_hash_undefined
1132 || h
->root
.type
== bfd_link_hash_undefweak
1133 || h
->root
.u
.def
.section
->output_section
== NULL
))
1134 dyn_h
->want_opd
= 0;
1136 /* If we are creating a shared library, took the address of a local
1137 function or might export this function from this object file, then
1138 we have to create an opd descriptor. */
1139 else if (x
->info
->shared
1141 || (h
->dynindx
== -1 && h
->type
!= STT_PARISC_MILLI
)
1142 || (h
->root
.type
== bfd_link_hash_defined
1143 || h
->root
.type
== bfd_link_hash_defweak
))
1145 /* If we are creating a shared library, then we will have to
1146 create a runtime relocation for the symbol to properly
1147 initialize the .opd entry. Make sure the symbol gets
1148 added to the dynamic symbol table. */
1150 && (h
== NULL
|| (h
->dynindx
== -1)))
1153 owner
= (h
? h
->root
.u
.def
.section
->owner
: dyn_h
->owner
);
1155 if (!bfd_elf_link_record_local_dynamic_symbol
1156 (x
->info
, owner
, dyn_h
->sym_indx
))
1160 /* This may not be necessary or desirable anymore now that
1161 we have some support for dealing with section symbols
1162 in dynamic relocs. But name munging does make the result
1163 much easier to debug. ie, the EPLT reloc will reference
1164 a symbol like .foobar, instead of .text + offset. */
1165 if (x
->info
->shared
&& h
)
1168 struct elf_link_hash_entry
*nh
;
1170 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
1172 strcpy (new_name
+ 1, h
->root
.root
.string
);
1174 nh
= elf_link_hash_lookup (elf_hash_table (x
->info
),
1175 new_name
, TRUE
, TRUE
, TRUE
);
1177 nh
->root
.type
= h
->root
.type
;
1178 nh
->root
.u
.def
.value
= h
->root
.u
.def
.value
;
1179 nh
->root
.u
.def
.section
= h
->root
.u
.def
.section
;
1181 if (! bfd_elf_link_record_dynamic_symbol (x
->info
, nh
))
1185 dyn_h
->opd_offset
= x
->ofs
;
1186 x
->ofs
+= OPD_ENTRY_SIZE
;
1189 /* Otherwise we do not need an opd entry. */
1191 dyn_h
->want_opd
= 0;
1196 /* HP requires the EI_OSABI field to be filled in. The assignment to
1197 EI_ABIVERSION may not be strictly necessary. */
1200 elf64_hppa_post_process_headers (abfd
, link_info
)
1202 struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
;
1204 Elf_Internal_Ehdr
* i_ehdrp
;
1206 i_ehdrp
= elf_elfheader (abfd
);
1208 if (strcmp (bfd_get_target (abfd
), "elf64-hppa-linux") == 0)
1210 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_LINUX
;
1214 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_HPUX
;
1215 i_ehdrp
->e_ident
[EI_ABIVERSION
] = 1;
1219 /* Create function descriptor section (.opd). This section is called .opd
1220 because it contains "official procedure descriptors". The "official"
1221 refers to the fact that these descriptors are used when taking the address
1222 of a procedure, thus ensuring a unique address for each procedure. */
1225 get_opd (abfd
, info
, hppa_info
)
1227 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1228 struct elf64_hppa_link_hash_table
*hppa_info
;
1233 opd
= hppa_info
->opd_sec
;
1236 dynobj
= hppa_info
->root
.dynobj
;
1238 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1240 opd
= bfd_make_section_with_flags (dynobj
, ".opd",
1245 | SEC_LINKER_CREATED
));
1247 || !bfd_set_section_alignment (abfd
, opd
, 3))
1253 hppa_info
->opd_sec
= opd
;
1259 /* Create the PLT section. */
1262 get_plt (abfd
, info
, hppa_info
)
1264 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1265 struct elf64_hppa_link_hash_table
*hppa_info
;
1270 plt
= hppa_info
->plt_sec
;
1273 dynobj
= hppa_info
->root
.dynobj
;
1275 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1277 plt
= bfd_make_section_with_flags (dynobj
, ".plt",
1282 | SEC_LINKER_CREATED
));
1284 || !bfd_set_section_alignment (abfd
, plt
, 3))
1290 hppa_info
->plt_sec
= plt
;
1296 /* Create the DLT section. */
1299 get_dlt (abfd
, info
, hppa_info
)
1301 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1302 struct elf64_hppa_link_hash_table
*hppa_info
;
1307 dlt
= hppa_info
->dlt_sec
;
1310 dynobj
= hppa_info
->root
.dynobj
;
1312 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1314 dlt
= bfd_make_section_with_flags (dynobj
, ".dlt",
1319 | SEC_LINKER_CREATED
));
1321 || !bfd_set_section_alignment (abfd
, dlt
, 3))
1327 hppa_info
->dlt_sec
= dlt
;
1333 /* Create the stubs section. */
1336 get_stub (abfd
, info
, hppa_info
)
1338 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1339 struct elf64_hppa_link_hash_table
*hppa_info
;
1344 stub
= hppa_info
->stub_sec
;
1347 dynobj
= hppa_info
->root
.dynobj
;
1349 hppa_info
->root
.dynobj
= dynobj
= abfd
;
1351 stub
= bfd_make_section_with_flags (dynobj
, ".stub",
1352 (SEC_ALLOC
| SEC_LOAD
1356 | SEC_LINKER_CREATED
));
1358 || !bfd_set_section_alignment (abfd
, stub
, 3))
1364 hppa_info
->stub_sec
= stub
;
1370 /* Create sections necessary for dynamic linking. This is only a rough
1371 cut and will likely change as we learn more about the somewhat
1372 unusual dynamic linking scheme HP uses.
1375 Contains code to implement cross-space calls. The first time one
1376 of the stubs is used it will call into the dynamic linker, later
1377 calls will go straight to the target.
1379 The only stub we support right now looks like
1383 ldd OFFSET+8(%dp),%dp
1385 Other stubs may be needed in the future. We may want the remove
1386 the break/nop instruction. It is only used right now to keep the
1387 offset of a .plt entry and a .stub entry in sync.
1390 This is what most people call the .got. HP used a different name.
1394 Relocations for the DLT.
1397 Function pointers as address,gp pairs.
1400 Should contain dynamic IPLT (and EPLT?) relocations.
1406 EPLT relocations for symbols exported from shared libraries. */
1409 elf64_hppa_create_dynamic_sections (abfd
, info
)
1411 struct bfd_link_info
*info
;
1415 if (! get_stub (abfd
, info
, elf64_hppa_hash_table (info
)))
1418 if (! get_dlt (abfd
, info
, elf64_hppa_hash_table (info
)))
1421 if (! get_plt (abfd
, info
, elf64_hppa_hash_table (info
)))
1424 if (! get_opd (abfd
, info
, elf64_hppa_hash_table (info
)))
1427 s
= bfd_make_section_with_flags (abfd
, ".rela.dlt",
1428 (SEC_ALLOC
| SEC_LOAD
1432 | SEC_LINKER_CREATED
));
1434 || !bfd_set_section_alignment (abfd
, s
, 3))
1436 elf64_hppa_hash_table (info
)->dlt_rel_sec
= s
;
1438 s
= bfd_make_section_with_flags (abfd
, ".rela.plt",
1439 (SEC_ALLOC
| SEC_LOAD
1443 | SEC_LINKER_CREATED
));
1445 || !bfd_set_section_alignment (abfd
, s
, 3))
1447 elf64_hppa_hash_table (info
)->plt_rel_sec
= s
;
1449 s
= bfd_make_section_with_flags (abfd
, ".rela.data",
1450 (SEC_ALLOC
| SEC_LOAD
1454 | SEC_LINKER_CREATED
));
1456 || !bfd_set_section_alignment (abfd
, s
, 3))
1458 elf64_hppa_hash_table (info
)->other_rel_sec
= s
;
1460 s
= bfd_make_section_with_flags (abfd
, ".rela.opd",
1461 (SEC_ALLOC
| SEC_LOAD
1465 | SEC_LINKER_CREATED
));
1467 || !bfd_set_section_alignment (abfd
, s
, 3))
1469 elf64_hppa_hash_table (info
)->opd_rel_sec
= s
;
1474 /* Allocate dynamic relocations for those symbols that turned out
1478 allocate_dynrel_entries (dyn_h
, data
)
1479 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1482 struct elf64_hppa_allocate_data
*x
= (struct elf64_hppa_allocate_data
*)data
;
1483 struct elf64_hppa_link_hash_table
*hppa_info
;
1484 struct elf64_hppa_dyn_reloc_entry
*rent
;
1485 bfd_boolean dynamic_symbol
, shared
;
1487 hppa_info
= elf64_hppa_hash_table (x
->info
);
1488 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, x
->info
);
1489 shared
= x
->info
->shared
;
1491 /* We may need to allocate relocations for a non-dynamic symbol
1492 when creating a shared library. */
1493 if (!dynamic_symbol
&& !shared
)
1496 /* Take care of the normal data relocations. */
1498 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
1500 /* Allocate one iff we are building a shared library, the relocation
1501 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1502 if (!shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
1505 hppa_info
->other_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1507 /* Make sure this symbol gets into the dynamic symbol table if it is
1508 not already recorded. ?!? This should not be in the loop since
1509 the symbol need only be added once. */
1511 || (dyn_h
->h
->dynindx
== -1 && dyn_h
->h
->type
!= STT_PARISC_MILLI
))
1512 if (!bfd_elf_link_record_local_dynamic_symbol
1513 (x
->info
, rent
->sec
->owner
, dyn_h
->sym_indx
))
1517 /* Take care of the GOT and PLT relocations. */
1519 if ((dynamic_symbol
|| shared
) && dyn_h
->want_dlt
)
1520 hppa_info
->dlt_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1522 /* If we are building a shared library, then every symbol that has an
1523 opd entry will need an EPLT relocation to relocate the symbol's address
1524 and __gp value based on the runtime load address. */
1525 if (shared
&& dyn_h
->want_opd
)
1526 hppa_info
->opd_rel_sec
->size
+= sizeof (Elf64_External_Rela
);
1528 if (dyn_h
->want_plt
&& dynamic_symbol
)
1530 bfd_size_type t
= 0;
1532 /* Dynamic symbols get one IPLT relocation. Local symbols in
1533 shared libraries get two REL relocations. Local symbols in
1534 main applications get nothing. */
1536 t
= sizeof (Elf64_External_Rela
);
1538 t
= 2 * sizeof (Elf64_External_Rela
);
1540 hppa_info
->plt_rel_sec
->size
+= t
;
1546 /* Adjust a symbol defined by a dynamic object and referenced by a
1550 elf64_hppa_adjust_dynamic_symbol (info
, h
)
1551 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
1552 struct elf_link_hash_entry
*h
;
1554 /* ??? Undefined symbols with PLT entries should be re-defined
1555 to be the PLT entry. */
1557 /* If this is a weak symbol, and there is a real definition, the
1558 processor independent code will have arranged for us to see the
1559 real definition first, and we can just use the same value. */
1560 if (h
->u
.weakdef
!= NULL
)
1562 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
1563 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
1564 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
1565 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
1569 /* If this is a reference to a symbol defined by a dynamic object which
1570 is not a function, we might allocate the symbol in our .dynbss section
1571 and allocate a COPY dynamic relocation.
1573 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1579 /* This function is called via elf_link_hash_traverse to mark millicode
1580 symbols with a dynindx of -1 and to remove the string table reference
1581 from the dynamic symbol table. If the symbol is not a millicode symbol,
1582 elf64_hppa_mark_exported_functions is called. */
1585 elf64_hppa_mark_milli_and_exported_functions (h
, data
)
1586 struct elf_link_hash_entry
*h
;
1589 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
1590 struct elf_link_hash_entry
*elf
= h
;
1592 if (elf
->root
.type
== bfd_link_hash_warning
)
1593 elf
= (struct elf_link_hash_entry
*) elf
->root
.u
.i
.link
;
1595 if (elf
->type
== STT_PARISC_MILLI
)
1597 if (elf
->dynindx
!= -1)
1600 _bfd_elf_strtab_delref (elf_hash_table (info
)->dynstr
,
1606 return elf64_hppa_mark_exported_functions (h
, data
);
1609 /* Set the final sizes of the dynamic sections and allocate memory for
1610 the contents of our special sections. */
1613 elf64_hppa_size_dynamic_sections (output_bfd
, info
)
1615 struct bfd_link_info
*info
;
1621 bfd_boolean reltext
;
1622 struct elf64_hppa_allocate_data data
;
1623 struct elf64_hppa_link_hash_table
*hppa_info
;
1625 hppa_info
= elf64_hppa_hash_table (info
);
1627 dynobj
= elf_hash_table (info
)->dynobj
;
1628 BFD_ASSERT (dynobj
!= NULL
);
1630 /* Mark each function this program exports so that we will allocate
1631 space in the .opd section for each function's FPTR. If we are
1632 creating dynamic sections, change the dynamic index of millicode
1633 symbols to -1 and remove them from the string table for .dynstr.
1635 We have to traverse the main linker hash table since we have to
1636 find functions which may not have been mentioned in any relocs. */
1637 elf_link_hash_traverse (elf_hash_table (info
),
1638 (elf_hash_table (info
)->dynamic_sections_created
1639 ? elf64_hppa_mark_milli_and_exported_functions
1640 : elf64_hppa_mark_exported_functions
),
1643 if (elf_hash_table (info
)->dynamic_sections_created
)
1645 /* Set the contents of the .interp section to the interpreter. */
1646 if (info
->executable
)
1648 s
= bfd_get_section_by_name (dynobj
, ".interp");
1649 BFD_ASSERT (s
!= NULL
);
1650 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1651 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1656 /* We may have created entries in the .rela.got section.
1657 However, if we are not creating the dynamic sections, we will
1658 not actually use these entries. Reset the size of .rela.dlt,
1659 which will cause it to get stripped from the output file
1661 s
= bfd_get_section_by_name (dynobj
, ".rela.dlt");
1666 /* Allocate the GOT entries. */
1669 if (elf64_hppa_hash_table (info
)->dlt_sec
)
1672 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1673 allocate_global_data_dlt
, &data
);
1674 hppa_info
->dlt_sec
->size
= data
.ofs
;
1677 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1678 allocate_global_data_plt
, &data
);
1679 hppa_info
->plt_sec
->size
= data
.ofs
;
1682 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1683 allocate_global_data_stub
, &data
);
1684 hppa_info
->stub_sec
->size
= data
.ofs
;
1687 /* Allocate space for entries in the .opd section. */
1688 if (elf64_hppa_hash_table (info
)->opd_sec
)
1691 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1692 allocate_global_data_opd
, &data
);
1693 hppa_info
->opd_sec
->size
= data
.ofs
;
1696 /* Now allocate space for dynamic relocations, if necessary. */
1697 if (hppa_info
->root
.dynamic_sections_created
)
1698 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
1699 allocate_dynrel_entries
, &data
);
1701 /* The sizes of all the sections are set. Allocate memory for them. */
1705 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1709 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1712 /* It's OK to base decisions on the section name, because none
1713 of the dynobj section names depend upon the input files. */
1714 name
= bfd_get_section_name (dynobj
, s
);
1716 if (strcmp (name
, ".plt") == 0)
1718 /* Remember whether there is a PLT. */
1721 else if (strcmp (name
, ".opd") == 0
1722 || strncmp (name
, ".dlt", 4) == 0
1723 || strcmp (name
, ".stub") == 0
1724 || strcmp (name
, ".got") == 0)
1726 /* Strip this section if we don't need it; see the comment below. */
1728 else if (strncmp (name
, ".rela", 5) == 0)
1734 /* Remember whether there are any reloc sections other
1736 if (strcmp (name
, ".rela.plt") != 0)
1738 const char *outname
;
1742 /* If this relocation section applies to a read only
1743 section, then we probably need a DT_TEXTREL
1744 entry. The entries in the .rela.plt section
1745 really apply to the .got section, which we
1746 created ourselves and so know is not readonly. */
1747 outname
= bfd_get_section_name (output_bfd
,
1749 target
= bfd_get_section_by_name (output_bfd
, outname
+ 4);
1751 && (target
->flags
& SEC_READONLY
) != 0
1752 && (target
->flags
& SEC_ALLOC
) != 0)
1756 /* We use the reloc_count field as a counter if we need
1757 to copy relocs into the output file. */
1763 /* It's not one of our sections, so don't allocate space. */
1769 /* If we don't need this section, strip it from the
1770 output file. This is mostly to handle .rela.bss and
1771 .rela.plt. We must create both sections in
1772 create_dynamic_sections, because they must be created
1773 before the linker maps input sections to output
1774 sections. The linker does that before
1775 adjust_dynamic_symbol is called, and it is that
1776 function which decides whether anything needs to go
1777 into these sections. */
1778 s
->flags
|= SEC_EXCLUDE
;
1782 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
1785 /* Allocate memory for the section contents if it has not
1786 been allocated already. We use bfd_zalloc here in case
1787 unused entries are not reclaimed before the section's
1788 contents are written out. This should not happen, but this
1789 way if it does, we get a R_PARISC_NONE reloc instead of
1791 if (s
->contents
== NULL
)
1793 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->size
);
1794 if (s
->contents
== NULL
)
1799 if (elf_hash_table (info
)->dynamic_sections_created
)
1801 /* Always create a DT_PLTGOT. It actually has nothing to do with
1802 the PLT, it is how we communicate the __gp value of a load
1803 module to the dynamic linker. */
1804 #define add_dynamic_entry(TAG, VAL) \
1805 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1807 if (!add_dynamic_entry (DT_HP_DLD_FLAGS
, 0)
1808 || !add_dynamic_entry (DT_PLTGOT
, 0))
1811 /* Add some entries to the .dynamic section. We fill in the
1812 values later, in elf64_hppa_finish_dynamic_sections, but we
1813 must add the entries now so that we get the correct size for
1814 the .dynamic section. The DT_DEBUG entry is filled in by the
1815 dynamic linker and used by the debugger. */
1818 if (!add_dynamic_entry (DT_DEBUG
, 0)
1819 || !add_dynamic_entry (DT_HP_DLD_HOOK
, 0)
1820 || !add_dynamic_entry (DT_HP_LOAD_MAP
, 0))
1824 /* Force DT_FLAGS to always be set.
1825 Required by HPUX 11.00 patch PHSS_26559. */
1826 if (!add_dynamic_entry (DT_FLAGS
, (info
)->flags
))
1831 if (!add_dynamic_entry (DT_PLTRELSZ
, 0)
1832 || !add_dynamic_entry (DT_PLTREL
, DT_RELA
)
1833 || !add_dynamic_entry (DT_JMPREL
, 0))
1839 if (!add_dynamic_entry (DT_RELA
, 0)
1840 || !add_dynamic_entry (DT_RELASZ
, 0)
1841 || !add_dynamic_entry (DT_RELAENT
, sizeof (Elf64_External_Rela
)))
1847 if (!add_dynamic_entry (DT_TEXTREL
, 0))
1849 info
->flags
|= DF_TEXTREL
;
1852 #undef add_dynamic_entry
1857 /* Called after we have output the symbol into the dynamic symbol
1858 table, but before we output the symbol into the normal symbol
1861 For some symbols we had to change their address when outputting
1862 the dynamic symbol table. We undo that change here so that
1863 the symbols have their expected value in the normal symbol
1867 elf64_hppa_link_output_symbol_hook (info
, name
, sym
, input_sec
, h
)
1868 struct bfd_link_info
*info
;
1870 Elf_Internal_Sym
*sym
;
1871 asection
*input_sec ATTRIBUTE_UNUSED
;
1872 struct elf_link_hash_entry
*h
;
1874 struct elf64_hppa_link_hash_table
*hppa_info
;
1875 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1877 /* We may be called with the file symbol or section symbols.
1878 They never need munging, so it is safe to ignore them. */
1882 /* Get the PA dyn_symbol (if any) associated with NAME. */
1883 hppa_info
= elf64_hppa_hash_table (info
);
1884 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1885 name
, FALSE
, FALSE
);
1886 if (!dyn_h
|| dyn_h
->h
!= h
)
1889 /* Function symbols for which we created .opd entries *may* have been
1890 munged by finish_dynamic_symbol and have to be un-munged here.
1892 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1893 into non-dynamic ones, so we initialize st_shndx to -1 in
1894 mark_exported_functions and check to see if it was overwritten
1895 here instead of just checking dyn_h->h->dynindx. */
1896 if (dyn_h
->want_opd
&& dyn_h
->st_shndx
!= -1)
1898 /* Restore the saved value and section index. */
1899 sym
->st_value
= dyn_h
->st_value
;
1900 sym
->st_shndx
= dyn_h
->st_shndx
;
1906 /* Finish up dynamic symbol handling. We set the contents of various
1907 dynamic sections here. */
1910 elf64_hppa_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
1912 struct bfd_link_info
*info
;
1913 struct elf_link_hash_entry
*h
;
1914 Elf_Internal_Sym
*sym
;
1916 asection
*stub
, *splt
, *sdlt
, *sopd
, *spltrel
, *sdltrel
;
1917 struct elf64_hppa_link_hash_table
*hppa_info
;
1918 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
1920 hppa_info
= elf64_hppa_hash_table (info
);
1921 dyn_h
= elf64_hppa_dyn_hash_lookup (&hppa_info
->dyn_hash_table
,
1922 h
->root
.root
.string
, FALSE
, FALSE
);
1924 stub
= hppa_info
->stub_sec
;
1925 splt
= hppa_info
->plt_sec
;
1926 sdlt
= hppa_info
->dlt_sec
;
1927 sopd
= hppa_info
->opd_sec
;
1928 spltrel
= hppa_info
->plt_rel_sec
;
1929 sdltrel
= hppa_info
->dlt_rel_sec
;
1931 /* Incredible. It is actually necessary to NOT use the symbol's real
1932 value when building the dynamic symbol table for a shared library.
1933 At least for symbols that refer to functions.
1935 We will store a new value and section index into the symbol long
1936 enough to output it into the dynamic symbol table, then we restore
1937 the original values (in elf64_hppa_link_output_symbol_hook). */
1938 if (dyn_h
&& dyn_h
->want_opd
)
1940 BFD_ASSERT (sopd
!= NULL
);
1942 /* Save away the original value and section index so that we
1943 can restore them later. */
1944 dyn_h
->st_value
= sym
->st_value
;
1945 dyn_h
->st_shndx
= sym
->st_shndx
;
1947 /* For the dynamic symbol table entry, we want the value to be
1948 address of this symbol's entry within the .opd section. */
1949 sym
->st_value
= (dyn_h
->opd_offset
1950 + sopd
->output_offset
1951 + sopd
->output_section
->vma
);
1952 sym
->st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
1953 sopd
->output_section
);
1956 /* Initialize a .plt entry if requested. */
1957 if (dyn_h
&& dyn_h
->want_plt
1958 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
1961 Elf_Internal_Rela rel
;
1964 BFD_ASSERT (splt
!= NULL
&& spltrel
!= NULL
);
1966 /* We do not actually care about the value in the PLT entry
1967 if we are creating a shared library and the symbol is
1968 still undefined, we create a dynamic relocation to fill
1969 in the correct value. */
1970 if (info
->shared
&& h
->root
.type
== bfd_link_hash_undefined
)
1973 value
= (h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->vma
);
1975 /* Fill in the entry in the procedure linkage table.
1977 The format of a plt entry is
1980 plt_offset is the offset within the PLT section at which to
1981 install the PLT entry.
1983 We are modifying the in-memory PLT contents here, so we do not add
1984 in the output_offset of the PLT section. */
1986 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
);
1987 value
= _bfd_get_gp_value (splt
->output_section
->owner
);
1988 bfd_put_64 (splt
->owner
, value
, splt
->contents
+ dyn_h
->plt_offset
+ 0x8);
1990 /* Create a dynamic IPLT relocation for this entry.
1992 We are creating a relocation in the output file's PLT section,
1993 which is included within the DLT secton. So we do need to include
1994 the PLT's output_offset in the computation of the relocation's
1996 rel
.r_offset
= (dyn_h
->plt_offset
+ splt
->output_offset
1997 + splt
->output_section
->vma
);
1998 rel
.r_info
= ELF64_R_INFO (h
->dynindx
, R_PARISC_IPLT
);
2001 loc
= spltrel
->contents
;
2002 loc
+= spltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2003 bfd_elf64_swap_reloca_out (splt
->output_section
->owner
, &rel
, loc
);
2006 /* Initialize an external call stub entry if requested. */
2007 if (dyn_h
&& dyn_h
->want_stub
2008 && elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
))
2012 unsigned int max_offset
;
2014 BFD_ASSERT (stub
!= NULL
);
2016 /* Install the generic stub template.
2018 We are modifying the contents of the stub section, so we do not
2019 need to include the stub section's output_offset here. */
2020 memcpy (stub
->contents
+ dyn_h
->stub_offset
, plt_stub
, sizeof (plt_stub
));
2022 /* Fix up the first ldd instruction.
2024 We are modifying the contents of the STUB section in memory,
2025 so we do not need to include its output offset in this computation.
2027 Note the plt_offset value is the value of the PLT entry relative to
2028 the start of the PLT section. These instructions will reference
2029 data relative to the value of __gp, which may not necessarily have
2030 the same address as the start of the PLT section.
2032 gp_offset contains the offset of __gp within the PLT section. */
2033 value
= dyn_h
->plt_offset
- hppa_info
->gp_offset
;
2035 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
);
2036 if (output_bfd
->arch_info
->mach
>= 25)
2038 /* Wide mode allows 16 bit offsets. */
2041 insn
|= re_assemble_16 ((int) value
);
2047 insn
|= re_assemble_14 ((int) value
);
2050 if ((value
& 7) || value
+ max_offset
>= 2*max_offset
- 8)
2052 (*_bfd_error_handler
) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2058 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2059 stub
->contents
+ dyn_h
->stub_offset
);
2061 /* Fix up the second ldd instruction. */
2063 insn
= bfd_get_32 (stub
->owner
, stub
->contents
+ dyn_h
->stub_offset
+ 8);
2064 if (output_bfd
->arch_info
->mach
>= 25)
2067 insn
|= re_assemble_16 ((int) value
);
2072 insn
|= re_assemble_14 ((int) value
);
2074 bfd_put_32 (stub
->owner
, (bfd_vma
) insn
,
2075 stub
->contents
+ dyn_h
->stub_offset
+ 8);
2081 /* The .opd section contains FPTRs for each function this file
2082 exports. Initialize the FPTR entries. */
2085 elf64_hppa_finalize_opd (dyn_h
, data
)
2086 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2089 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2090 struct elf64_hppa_link_hash_table
*hppa_info
;
2091 struct elf_link_hash_entry
*h
= dyn_h
? dyn_h
->h
: NULL
;
2095 hppa_info
= elf64_hppa_hash_table (info
);
2096 sopd
= hppa_info
->opd_sec
;
2097 sopdrel
= hppa_info
->opd_rel_sec
;
2099 if (h
&& dyn_h
->want_opd
)
2103 /* The first two words of an .opd entry are zero.
2105 We are modifying the contents of the OPD section in memory, so we
2106 do not need to include its output offset in this computation. */
2107 memset (sopd
->contents
+ dyn_h
->opd_offset
, 0, 16);
2109 value
= (h
->root
.u
.def
.value
2110 + h
->root
.u
.def
.section
->output_section
->vma
2111 + h
->root
.u
.def
.section
->output_offset
);
2113 /* The next word is the address of the function. */
2114 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 16);
2116 /* The last word is our local __gp value. */
2117 value
= _bfd_get_gp_value (sopd
->output_section
->owner
);
2118 bfd_put_64 (sopd
->owner
, value
, sopd
->contents
+ dyn_h
->opd_offset
+ 24);
2121 /* If we are generating a shared library, we must generate EPLT relocations
2122 for each entry in the .opd, even for static functions (they may have
2123 had their address taken). */
2124 if (info
->shared
&& dyn_h
&& dyn_h
->want_opd
)
2126 Elf_Internal_Rela rel
;
2130 /* We may need to do a relocation against a local symbol, in
2131 which case we have to look up it's dynamic symbol index off
2132 the local symbol hash table. */
2133 if (h
&& h
->dynindx
!= -1)
2134 dynindx
= h
->dynindx
;
2137 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2140 /* The offset of this relocation is the absolute address of the
2141 .opd entry for this symbol. */
2142 rel
.r_offset
= (dyn_h
->opd_offset
+ sopd
->output_offset
2143 + sopd
->output_section
->vma
);
2145 /* If H is non-null, then we have an external symbol.
2147 It is imperative that we use a different dynamic symbol for the
2148 EPLT relocation if the symbol has global scope.
2150 In the dynamic symbol table, the function symbol will have a value
2151 which is address of the function's .opd entry.
2153 Thus, we can not use that dynamic symbol for the EPLT relocation
2154 (if we did, the data in the .opd would reference itself rather
2155 than the actual address of the function). Instead we have to use
2156 a new dynamic symbol which has the same value as the original global
2159 We prefix the original symbol with a "." and use the new symbol in
2160 the EPLT relocation. This new symbol has already been recorded in
2161 the symbol table, we just have to look it up and use it.
2163 We do not have such problems with static functions because we do
2164 not make their addresses in the dynamic symbol table point to
2165 the .opd entry. Ultimately this should be safe since a static
2166 function can not be directly referenced outside of its shared
2169 We do have to play similar games for FPTR relocations in shared
2170 libraries, including those for static symbols. See the FPTR
2171 handling in elf64_hppa_finalize_dynreloc. */
2175 struct elf_link_hash_entry
*nh
;
2177 new_name
= alloca (strlen (h
->root
.root
.string
) + 2);
2179 strcpy (new_name
+ 1, h
->root
.root
.string
);
2181 nh
= elf_link_hash_lookup (elf_hash_table (info
),
2182 new_name
, FALSE
, FALSE
, FALSE
);
2184 /* All we really want from the new symbol is its dynamic
2186 dynindx
= nh
->dynindx
;
2190 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_EPLT
);
2192 loc
= sopdrel
->contents
;
2193 loc
+= sopdrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2194 bfd_elf64_swap_reloca_out (sopd
->output_section
->owner
, &rel
, loc
);
2199 /* The .dlt section contains addresses for items referenced through the
2200 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2201 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2204 elf64_hppa_finalize_dlt (dyn_h
, data
)
2205 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2208 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2209 struct elf64_hppa_link_hash_table
*hppa_info
;
2210 asection
*sdlt
, *sdltrel
;
2211 struct elf_link_hash_entry
*h
= dyn_h
? dyn_h
->h
: NULL
;
2213 hppa_info
= elf64_hppa_hash_table (info
);
2215 sdlt
= hppa_info
->dlt_sec
;
2216 sdltrel
= hppa_info
->dlt_rel_sec
;
2218 /* H/DYN_H may refer to a local variable and we know it's
2219 address, so there is no need to create a relocation. Just install
2220 the proper value into the DLT, note this shortcut can not be
2221 skipped when building a shared library. */
2222 if (! info
->shared
&& h
&& dyn_h
->want_dlt
)
2226 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2227 to point to the FPTR entry in the .opd section.
2229 We include the OPD's output offset in this computation as
2230 we are referring to an absolute address in the resulting
2232 if (dyn_h
->want_opd
)
2234 value
= (dyn_h
->opd_offset
2235 + hppa_info
->opd_sec
->output_offset
2236 + hppa_info
->opd_sec
->output_section
->vma
);
2238 else if ((h
->root
.type
== bfd_link_hash_defined
2239 || h
->root
.type
== bfd_link_hash_defweak
)
2240 && h
->root
.u
.def
.section
)
2242 value
= h
->root
.u
.def
.value
+ h
->root
.u
.def
.section
->output_offset
;
2243 if (h
->root
.u
.def
.section
->output_section
)
2244 value
+= h
->root
.u
.def
.section
->output_section
->vma
;
2246 value
+= h
->root
.u
.def
.section
->vma
;
2249 /* We have an undefined function reference. */
2252 /* We do not need to include the output offset of the DLT section
2253 here because we are modifying the in-memory contents. */
2254 bfd_put_64 (sdlt
->owner
, value
, sdlt
->contents
+ dyn_h
->dlt_offset
);
2257 /* Create a relocation for the DLT entry associated with this symbol.
2258 When building a shared library the symbol does not have to be dynamic. */
2260 && (elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
) || info
->shared
))
2262 Elf_Internal_Rela rel
;
2266 /* We may need to do a relocation against a local symbol, in
2267 which case we have to look up it's dynamic symbol index off
2268 the local symbol hash table. */
2269 if (h
&& h
->dynindx
!= -1)
2270 dynindx
= h
->dynindx
;
2273 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2276 /* Create a dynamic relocation for this entry. Do include the output
2277 offset of the DLT entry since we need an absolute address in the
2278 resulting object file. */
2279 rel
.r_offset
= (dyn_h
->dlt_offset
+ sdlt
->output_offset
2280 + sdlt
->output_section
->vma
);
2281 if (h
&& h
->type
== STT_FUNC
)
2282 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_FPTR64
);
2284 rel
.r_info
= ELF64_R_INFO (dynindx
, R_PARISC_DIR64
);
2287 loc
= sdltrel
->contents
;
2288 loc
+= sdltrel
->reloc_count
++ * sizeof (Elf64_External_Rela
);
2289 bfd_elf64_swap_reloca_out (sdlt
->output_section
->owner
, &rel
, loc
);
2294 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2295 for dynamic functions used to initialize static data. */
2298 elf64_hppa_finalize_dynreloc (dyn_h
, data
)
2299 struct elf64_hppa_dyn_hash_entry
*dyn_h
;
2302 struct bfd_link_info
*info
= (struct bfd_link_info
*)data
;
2303 struct elf64_hppa_link_hash_table
*hppa_info
;
2304 struct elf_link_hash_entry
*h
;
2307 dynamic_symbol
= elf64_hppa_dynamic_symbol_p (dyn_h
->h
, info
);
2309 if (!dynamic_symbol
&& !info
->shared
)
2312 if (dyn_h
->reloc_entries
)
2314 struct elf64_hppa_dyn_reloc_entry
*rent
;
2317 hppa_info
= elf64_hppa_hash_table (info
);
2320 /* We may need to do a relocation against a local symbol, in
2321 which case we have to look up it's dynamic symbol index off
2322 the local symbol hash table. */
2323 if (h
&& h
->dynindx
!= -1)
2324 dynindx
= h
->dynindx
;
2327 = _bfd_elf_link_lookup_local_dynindx (info
, dyn_h
->owner
,
2330 for (rent
= dyn_h
->reloc_entries
; rent
; rent
= rent
->next
)
2332 Elf_Internal_Rela rel
;
2335 /* Allocate one iff we are building a shared library, the relocation
2336 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2337 if (!info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
2340 /* Create a dynamic relocation for this entry.
2342 We need the output offset for the reloc's section because
2343 we are creating an absolute address in the resulting object
2345 rel
.r_offset
= (rent
->offset
+ rent
->sec
->output_offset
2346 + rent
->sec
->output_section
->vma
);
2348 /* An FPTR64 relocation implies that we took the address of
2349 a function and that the function has an entry in the .opd
2350 section. We want the FPTR64 relocation to reference the
2353 We could munge the symbol value in the dynamic symbol table
2354 (in fact we already do for functions with global scope) to point
2355 to the .opd entry. Then we could use that dynamic symbol in
2358 Or we could do something sensible, not munge the symbol's
2359 address and instead just use a different symbol to reference
2360 the .opd entry. At least that seems sensible until you
2361 realize there's no local dynamic symbols we can use for that
2362 purpose. Thus the hair in the check_relocs routine.
2364 We use a section symbol recorded by check_relocs as the
2365 base symbol for the relocation. The addend is the difference
2366 between the section symbol and the address of the .opd entry. */
2367 if (info
->shared
&& rent
->type
== R_PARISC_FPTR64
&& dyn_h
->want_opd
)
2369 bfd_vma value
, value2
;
2371 /* First compute the address of the opd entry for this symbol. */
2372 value
= (dyn_h
->opd_offset
2373 + hppa_info
->opd_sec
->output_section
->vma
2374 + hppa_info
->opd_sec
->output_offset
);
2376 /* Compute the value of the start of the section with
2378 value2
= (rent
->sec
->output_section
->vma
2379 + rent
->sec
->output_offset
);
2381 /* Compute the difference between the start of the section
2382 with the relocation and the opd entry. */
2385 /* The result becomes the addend of the relocation. */
2386 rel
.r_addend
= value
;
2388 /* The section symbol becomes the symbol for the dynamic
2391 = _bfd_elf_link_lookup_local_dynindx (info
,
2396 rel
.r_addend
= rent
->addend
;
2398 rel
.r_info
= ELF64_R_INFO (dynindx
, rent
->type
);
2400 loc
= hppa_info
->other_rel_sec
->contents
;
2401 loc
+= (hppa_info
->other_rel_sec
->reloc_count
++
2402 * sizeof (Elf64_External_Rela
));
2403 bfd_elf64_swap_reloca_out (hppa_info
->other_rel_sec
->output_section
->owner
,
2411 /* Used to decide how to sort relocs in an optimal manner for the
2412 dynamic linker, before writing them out. */
2414 static enum elf_reloc_type_class
2415 elf64_hppa_reloc_type_class (rela
)
2416 const Elf_Internal_Rela
*rela
;
2418 if (ELF64_R_SYM (rela
->r_info
) == 0)
2419 return reloc_class_relative
;
2421 switch ((int) ELF64_R_TYPE (rela
->r_info
))
2424 return reloc_class_plt
;
2426 return reloc_class_copy
;
2428 return reloc_class_normal
;
2432 /* Finish up the dynamic sections. */
2435 elf64_hppa_finish_dynamic_sections (output_bfd
, info
)
2437 struct bfd_link_info
*info
;
2441 struct elf64_hppa_link_hash_table
*hppa_info
;
2443 hppa_info
= elf64_hppa_hash_table (info
);
2445 /* Finalize the contents of the .opd section. */
2446 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2447 elf64_hppa_finalize_opd
,
2450 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2451 elf64_hppa_finalize_dynreloc
,
2454 /* Finalize the contents of the .dlt section. */
2455 dynobj
= elf_hash_table (info
)->dynobj
;
2456 /* Finalize the contents of the .dlt section. */
2457 elf64_hppa_dyn_hash_traverse (&hppa_info
->dyn_hash_table
,
2458 elf64_hppa_finalize_dlt
,
2461 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2463 if (elf_hash_table (info
)->dynamic_sections_created
)
2465 Elf64_External_Dyn
*dyncon
, *dynconend
;
2467 BFD_ASSERT (sdyn
!= NULL
);
2469 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2470 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
2471 for (; dyncon
< dynconend
; dyncon
++)
2473 Elf_Internal_Dyn dyn
;
2476 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2483 case DT_HP_LOAD_MAP
:
2484 /* Compute the absolute address of 16byte scratchpad area
2485 for the dynamic linker.
2487 By convention the linker script will allocate the scratchpad
2488 area at the start of the .data section. So all we have to
2489 to is find the start of the .data section. */
2490 s
= bfd_get_section_by_name (output_bfd
, ".data");
2491 dyn
.d_un
.d_ptr
= s
->vma
;
2492 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2496 /* HP's use PLTGOT to set the GOT register. */
2497 dyn
.d_un
.d_ptr
= _bfd_get_gp_value (output_bfd
);
2498 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2502 s
= hppa_info
->plt_rel_sec
;
2503 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2504 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2508 s
= hppa_info
->plt_rel_sec
;
2509 dyn
.d_un
.d_val
= s
->size
;
2510 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2514 s
= hppa_info
->other_rel_sec
;
2515 if (! s
|| ! s
->size
)
2516 s
= hppa_info
->dlt_rel_sec
;
2517 if (! s
|| ! s
->size
)
2518 s
= hppa_info
->opd_rel_sec
;
2519 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
2520 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2524 s
= hppa_info
->other_rel_sec
;
2525 dyn
.d_un
.d_val
= s
->size
;
2526 s
= hppa_info
->dlt_rel_sec
;
2527 dyn
.d_un
.d_val
+= s
->size
;
2528 s
= hppa_info
->opd_rel_sec
;
2529 dyn
.d_un
.d_val
+= s
->size
;
2530 /* There is some question about whether or not the size of
2531 the PLT relocs should be included here. HP's tools do
2532 it, so we'll emulate them. */
2533 s
= hppa_info
->plt_rel_sec
;
2534 dyn
.d_un
.d_val
+= s
->size
;
2535 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2545 /* Return the number of additional phdrs we will need.
2547 The generic ELF code only creates PT_PHDRs for executables. The HP
2548 dynamic linker requires PT_PHDRs for dynamic libraries too.
2550 This routine indicates that the backend needs one additional program
2551 header for that case.
2553 Note we do not have access to the link info structure here, so we have
2554 to guess whether or not we are building a shared library based on the
2555 existence of a .interp section. */
2558 elf64_hppa_additional_program_headers (abfd
)
2563 /* If we are creating a shared library, then we have to create a
2564 PT_PHDR segment. HP's dynamic linker chokes without it. */
2565 s
= bfd_get_section_by_name (abfd
, ".interp");
2571 /* Allocate and initialize any program headers required by this
2574 The generic ELF code only creates PT_PHDRs for executables. The HP
2575 dynamic linker requires PT_PHDRs for dynamic libraries too.
2577 This allocates the PT_PHDR and initializes it in a manner suitable
2580 Note we do not have access to the link info structure here, so we have
2581 to guess whether or not we are building a shared library based on the
2582 existence of a .interp section. */
2585 elf64_hppa_modify_segment_map (abfd
, info
)
2587 struct bfd_link_info
*info ATTRIBUTE_UNUSED
;
2589 struct elf_segment_map
*m
;
2592 s
= bfd_get_section_by_name (abfd
, ".interp");
2595 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2596 if (m
->p_type
== PT_PHDR
)
2600 m
= ((struct elf_segment_map
*)
2601 bfd_zalloc (abfd
, (bfd_size_type
) sizeof *m
));
2605 m
->p_type
= PT_PHDR
;
2606 m
->p_flags
= PF_R
| PF_X
;
2607 m
->p_flags_valid
= 1;
2608 m
->p_paddr_valid
= 1;
2609 m
->includes_phdrs
= 1;
2611 m
->next
= elf_tdata (abfd
)->segment_map
;
2612 elf_tdata (abfd
)->segment_map
= m
;
2616 for (m
= elf_tdata (abfd
)->segment_map
; m
!= NULL
; m
= m
->next
)
2617 if (m
->p_type
== PT_LOAD
)
2621 for (i
= 0; i
< m
->count
; i
++)
2623 /* The code "hint" is not really a hint. It is a requirement
2624 for certain versions of the HP dynamic linker. Worse yet,
2625 it must be set even if the shared library does not have
2626 any code in its "text" segment (thus the check for .hash
2627 to catch this situation). */
2628 if (m
->sections
[i
]->flags
& SEC_CODE
2629 || (strcmp (m
->sections
[i
]->name
, ".hash") == 0))
2630 m
->p_flags
|= (PF_X
| PF_HP_CODE
);
2637 /* Called when writing out an object file to decide the type of a
2640 elf64_hppa_elf_get_symbol_type (elf_sym
, type
)
2641 Elf_Internal_Sym
*elf_sym
;
2644 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_PARISC_MILLI
)
2645 return STT_PARISC_MILLI
;
2650 /* Support HP specific sections for core files. */
2652 elf64_hppa_section_from_phdr (bfd
*abfd
, Elf_Internal_Phdr
*hdr
, int index
,
2653 const char *typename
)
2655 if (hdr
->p_type
== PT_HP_CORE_KERNEL
)
2659 if (!_bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, typename
))
2662 sect
= bfd_make_section_anyway (abfd
, ".kernel");
2665 sect
->size
= hdr
->p_filesz
;
2666 sect
->filepos
= hdr
->p_offset
;
2667 sect
->flags
= SEC_HAS_CONTENTS
| SEC_READONLY
;
2671 if (hdr
->p_type
== PT_HP_CORE_PROC
)
2675 if (bfd_seek (abfd
, hdr
->p_offset
, SEEK_SET
) != 0)
2677 if (bfd_bread (&sig
, 4, abfd
) != 4)
2680 elf_tdata (abfd
)->core_signal
= sig
;
2682 if (!_bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, typename
))
2685 /* GDB uses the ".reg" section to read register contents. */
2686 return _bfd_elfcore_make_pseudosection (abfd
, ".reg", hdr
->p_filesz
,
2690 if (hdr
->p_type
== PT_HP_CORE_LOADABLE
2691 || hdr
->p_type
== PT_HP_CORE_STACK
2692 || hdr
->p_type
== PT_HP_CORE_MMF
)
2693 hdr
->p_type
= PT_LOAD
;
2695 return _bfd_elf_make_section_from_phdr (abfd
, hdr
, index
, typename
);
2698 static const struct bfd_elf_special_section elf64_hppa_special_sections
[] =
2700 { ".fini", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2701 { ".init", 5, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
},
2702 { ".plt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
2703 { ".dlt", 4, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
2704 { ".sdata", 6, 0, SHT_PROGBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
2705 { ".sbss", 5, 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_PARISC_SHORT
},
2706 { ".tbss", 5, 0, SHT_NOBITS
, SHF_ALLOC
+ SHF_WRITE
+ SHF_HP_TLS
},
2707 { NULL
, 0, 0, 0, 0 }
2710 /* The hash bucket size is the standard one, namely 4. */
2712 const struct elf_size_info hppa64_elf_size_info
=
2714 sizeof (Elf64_External_Ehdr
),
2715 sizeof (Elf64_External_Phdr
),
2716 sizeof (Elf64_External_Shdr
),
2717 sizeof (Elf64_External_Rel
),
2718 sizeof (Elf64_External_Rela
),
2719 sizeof (Elf64_External_Sym
),
2720 sizeof (Elf64_External_Dyn
),
2721 sizeof (Elf_External_Note
),
2725 ELFCLASS64
, EV_CURRENT
,
2726 bfd_elf64_write_out_phdrs
,
2727 bfd_elf64_write_shdrs_and_ehdr
,
2728 bfd_elf64_write_relocs
,
2729 bfd_elf64_swap_symbol_in
,
2730 bfd_elf64_swap_symbol_out
,
2731 bfd_elf64_slurp_reloc_table
,
2732 bfd_elf64_slurp_symbol_table
,
2733 bfd_elf64_swap_dyn_in
,
2734 bfd_elf64_swap_dyn_out
,
2735 bfd_elf64_swap_reloc_in
,
2736 bfd_elf64_swap_reloc_out
,
2737 bfd_elf64_swap_reloca_in
,
2738 bfd_elf64_swap_reloca_out
2741 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2742 #define TARGET_BIG_NAME "elf64-hppa"
2743 #define ELF_ARCH bfd_arch_hppa
2744 #define ELF_MACHINE_CODE EM_PARISC
2745 /* This is not strictly correct. The maximum page size for PA2.0 is
2746 64M. But everything still uses 4k. */
2747 #define ELF_MAXPAGESIZE 0x1000
2748 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2749 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2750 #define elf_info_to_howto elf_hppa_info_to_howto
2751 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2753 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2754 #define elf_backend_object_p elf64_hppa_object_p
2755 #define elf_backend_final_write_processing \
2756 elf_hppa_final_write_processing
2757 #define elf_backend_fake_sections elf_hppa_fake_sections
2758 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2760 #define elf_backend_relocate_section elf_hppa_relocate_section
2762 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2764 #define elf_backend_create_dynamic_sections \
2765 elf64_hppa_create_dynamic_sections
2766 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2768 #define elf_backend_adjust_dynamic_symbol \
2769 elf64_hppa_adjust_dynamic_symbol
2771 #define elf_backend_size_dynamic_sections \
2772 elf64_hppa_size_dynamic_sections
2774 #define elf_backend_finish_dynamic_symbol \
2775 elf64_hppa_finish_dynamic_symbol
2776 #define elf_backend_finish_dynamic_sections \
2777 elf64_hppa_finish_dynamic_sections
2779 /* Stuff for the BFD linker: */
2780 #define bfd_elf64_bfd_link_hash_table_create \
2781 elf64_hppa_hash_table_create
2783 #define elf_backend_check_relocs \
2784 elf64_hppa_check_relocs
2786 #define elf_backend_size_info \
2787 hppa64_elf_size_info
2789 #define elf_backend_additional_program_headers \
2790 elf64_hppa_additional_program_headers
2792 #define elf_backend_modify_segment_map \
2793 elf64_hppa_modify_segment_map
2795 #define elf_backend_link_output_symbol_hook \
2796 elf64_hppa_link_output_symbol_hook
2798 #define elf_backend_want_got_plt 0
2799 #define elf_backend_plt_readonly 0
2800 #define elf_backend_want_plt_sym 0
2801 #define elf_backend_got_header_size 0
2802 #define elf_backend_type_change_ok TRUE
2803 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2804 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2805 #define elf_backend_rela_normal 1
2806 #define elf_backend_special_sections elf64_hppa_special_sections
2807 #define elf_backend_action_discarded elf_hppa_action_discarded
2808 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2810 #include "elf64-target.h"
2812 #undef TARGET_BIG_SYM
2813 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2814 #undef TARGET_BIG_NAME
2815 #define TARGET_BIG_NAME "elf64-hppa-linux"
2817 #define INCLUDED_TARGET_FILE 1
2818 #include "elf64-target.h"