1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
34 #include "libiberty.h"
38 #include "parameters.h"
42 #include "script-sections.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
50 #include "descriptors.h"
52 #include "incremental.h"
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists
= 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes
= 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes
= 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits
= 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates
= 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits
= 0;
73 // Initialize the free list. Creates a single free list node that
74 // describes the entire region of length LEN. If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
79 Free_list::init(off_t len
, bool extend
)
81 this->list_
.push_front(Free_list_node(0, len
));
82 this->last_remove_
= this->list_
.begin();
83 this->extend_
= extend
;
85 ++Free_list::num_lists
;
86 ++Free_list::num_nodes
;
89 // Remove a chunk from the free list. Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node. We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
99 Free_list::remove(off_t start
, off_t end
)
103 gold_assert(start
< end
);
105 ++Free_list::num_removes
;
107 Iterator p
= this->last_remove_
;
108 if (p
->start_
> start
)
109 p
= this->list_
.begin();
111 for (; p
!= this->list_
.end(); ++p
)
113 ++Free_list::num_remove_visits
;
114 // Find a node that wholly contains the indicated region.
115 if (p
->start_
<= start
&& p
->end_
>= end
)
117 // Case 1: the indicated region spans the whole node.
118 // Add some fuzz to avoid creating tiny free chunks.
119 if (p
->start_
+ 3 >= start
&& p
->end_
<= end
+ 3)
120 p
= this->list_
.erase(p
);
121 // Case 2: remove a chunk from the start of the node.
122 else if (p
->start_
+ 3 >= start
)
124 // Case 3: remove a chunk from the end of the node.
125 else if (p
->end_
<= end
+ 3)
127 // Case 4: remove a chunk from the middle, and split
128 // the node into two.
131 Free_list_node
newnode(p
->start_
, start
);
133 this->list_
.insert(p
, newnode
);
134 ++Free_list::num_nodes
;
136 this->last_remove_
= p
;
141 // Did not find a node containing the given chunk. This could happen
142 // because a small chunk was already removed due to the fuzz.
143 gold_debug(DEBUG_INCREMENTAL
,
144 "Free_list::remove(%d,%d) not found",
145 static_cast<int>(start
), static_cast<int>(end
));
148 // Allocate a chunk of size LEN from the free list. Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
153 Free_list::allocate(off_t len
, uint64_t align
, off_t minoff
)
155 gold_debug(DEBUG_INCREMENTAL
,
156 "Free_list::allocate(%08lx, %d, %08lx)",
157 static_cast<long>(len
), static_cast<int>(align
),
158 static_cast<long>(minoff
));
160 return align_address(minoff
, align
);
162 ++Free_list::num_allocates
;
164 for (Iterator p
= this->list_
.begin(); p
!= this->list_
.end(); ++p
)
166 ++Free_list::num_allocate_visits
;
167 off_t start
= p
->start_
> minoff
? p
->start_
: minoff
;
168 start
= align_address(start
, align
);
169 off_t end
= start
+ len
;
172 if (p
->start_
+ 3 >= start
&& p
->end_
<= end
+ 3)
173 this->list_
.erase(p
);
174 else if (p
->start_
+ 3 >= start
)
176 else if (p
->end_
<= end
+ 3)
180 Free_list_node
newnode(p
->start_
, start
);
182 this->list_
.insert(p
, newnode
);
183 ++Free_list::num_nodes
;
191 // Dump the free list (for debugging).
195 gold_info("Free list:\n start end length\n");
196 for (Iterator p
= this->list_
.begin(); p
!= this->list_
.end(); ++p
)
197 gold_info(" %08lx %08lx %08lx", static_cast<long>(p
->start_
),
198 static_cast<long>(p
->end_
),
199 static_cast<long>(p
->end_
- p
->start_
));
202 // Print the statistics for the free lists.
204 Free_list::print_stats()
206 fprintf(stderr
, _("%s: total free lists: %u\n"),
207 program_name
, Free_list::num_lists
);
208 fprintf(stderr
, _("%s: total free list nodes: %u\n"),
209 program_name
, Free_list::num_nodes
);
210 fprintf(stderr
, _("%s: calls to Free_list::remove: %u\n"),
211 program_name
, Free_list::num_removes
);
212 fprintf(stderr
, _("%s: nodes visited: %u\n"),
213 program_name
, Free_list::num_remove_visits
);
214 fprintf(stderr
, _("%s: calls to Free_list::allocate: %u\n"),
215 program_name
, Free_list::num_allocates
);
216 fprintf(stderr
, _("%s: nodes visited: %u\n"),
217 program_name
, Free_list::num_allocate_visits
);
220 // Layout::Relaxation_debug_check methods.
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228 const Layout::Section_list
& sections
,
229 const Layout::Data_list
& special_outputs
)
231 for(Layout::Section_list::const_iterator p
= sections
.begin();
234 gold_assert((*p
)->address_and_file_offset_have_reset_values());
236 for(Layout::Data_list::const_iterator p
= special_outputs
.begin();
237 p
!= special_outputs
.end();
239 gold_assert((*p
)->address_and_file_offset_have_reset_values());
242 // Save information of SECTIONS for checking later.
245 Layout::Relaxation_debug_check::read_sections(
246 const Layout::Section_list
& sections
)
248 for(Layout::Section_list::const_iterator p
= sections
.begin();
252 Output_section
* os
= *p
;
254 info
.output_section
= os
;
255 info
.address
= os
->is_address_valid() ? os
->address() : 0;
256 info
.data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
257 info
.offset
= os
->is_offset_valid()? os
->offset() : -1 ;
258 this->section_infos_
.push_back(info
);
262 // Verify SECTIONS using previously recorded information.
265 Layout::Relaxation_debug_check::verify_sections(
266 const Layout::Section_list
& sections
)
269 for(Layout::Section_list::const_iterator p
= sections
.begin();
273 Output_section
* os
= *p
;
274 uint64_t address
= os
->is_address_valid() ? os
->address() : 0;
275 off_t data_size
= os
->is_data_size_valid() ? os
->data_size() : -1;
276 off_t offset
= os
->is_offset_valid()? os
->offset() : -1 ;
278 if (i
>= this->section_infos_
.size())
280 gold_fatal("Section_info of %s missing.\n", os
->name());
282 const Section_info
& info
= this->section_infos_
[i
];
283 if (os
!= info
.output_section
)
284 gold_fatal("Section order changed. Expecting %s but see %s\n",
285 info
.output_section
->name(), os
->name());
286 if (address
!= info
.address
287 || data_size
!= info
.data_size
288 || offset
!= info
.offset
)
289 gold_fatal("Section %s changed.\n", os
->name());
293 // Layout_task_runner methods.
295 // Lay out the sections. This is called after all the input objects
299 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
301 Layout
* layout
= this->layout_
;
302 off_t file_size
= layout
->finalize(this->input_objects_
,
307 // Now we know the final size of the output file and we know where
308 // each piece of information goes.
310 if (this->mapfile_
!= NULL
)
312 this->mapfile_
->print_discarded_sections(this->input_objects_
);
313 layout
->print_to_mapfile(this->mapfile_
);
317 if (layout
->incremental_base() == NULL
)
319 of
= new Output_file(parameters
->options().output_file_name());
320 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
321 of
->set_is_temporary();
326 of
= layout
->incremental_base()->output_file();
328 // Apply the incremental relocations for symbols whose values
329 // have changed. We do this before we resize the file and start
330 // writing anything else to it, so that we can read the old
331 // incremental information from the file before (possibly)
333 if (parameters
->incremental_update())
334 layout
->incremental_base()->apply_incremental_relocs(this->symtab_
,
338 of
->resize(file_size
);
341 // Queue up the final set of tasks.
342 gold::queue_final_tasks(this->options_
, this->input_objects_
,
343 this->symtab_
, layout
, workqueue
, of
);
348 Layout::Layout(int number_of_input_files
, Script_options
* script_options
)
349 : number_of_input_files_(number_of_input_files
),
350 script_options_(script_options
),
358 unattached_section_list_(),
359 special_output_list_(),
360 section_headers_(NULL
),
362 relro_segment_(NULL
),
363 interp_segment_(NULL
),
365 symtab_section_(NULL
),
366 symtab_xindex_(NULL
),
367 dynsym_section_(NULL
),
368 dynsym_xindex_(NULL
),
369 dynamic_section_(NULL
),
370 dynamic_symbol_(NULL
),
372 eh_frame_section_(NULL
),
373 eh_frame_data_(NULL
),
374 added_eh_frame_data_(false),
375 eh_frame_hdr_section_(NULL
),
376 build_id_note_(NULL
),
380 output_file_size_(-1),
381 have_added_input_section_(false),
382 sections_are_attached_(false),
383 input_requires_executable_stack_(false),
384 input_with_gnu_stack_note_(false),
385 input_without_gnu_stack_note_(false),
386 has_static_tls_(false),
387 any_postprocessing_sections_(false),
388 resized_signatures_(false),
389 have_stabstr_section_(false),
390 incremental_inputs_(NULL
),
391 record_output_section_data_from_script_(false),
392 script_output_section_data_list_(),
393 segment_states_(NULL
),
394 relaxation_debug_check_(NULL
),
395 incremental_base_(NULL
),
398 // Make space for more than enough segments for a typical file.
399 // This is just for efficiency--it's OK if we wind up needing more.
400 this->segment_list_
.reserve(12);
402 // We expect two unattached Output_data objects: the file header and
403 // the segment headers.
404 this->special_output_list_
.reserve(2);
406 // Initialize structure needed for an incremental build.
407 if (parameters
->incremental())
408 this->incremental_inputs_
= new Incremental_inputs
;
410 // The section name pool is worth optimizing in all cases, because
411 // it is small, but there are often overlaps due to .rel sections.
412 this->namepool_
.set_optimize();
415 // For incremental links, record the base file to be modified.
418 Layout::set_incremental_base(Incremental_binary
* base
)
420 this->incremental_base_
= base
;
421 this->free_list_
.init(base
->output_file()->filesize(), true);
424 // Hash a key we use to look up an output section mapping.
427 Layout::Hash_key::operator()(const Layout::Key
& k
) const
429 return k
.first
+ k
.second
.first
+ k
.second
.second
;
432 // Returns whether the given section is in the list of
433 // debug-sections-used-by-some-version-of-gdb. Currently,
434 // we've checked versions of gdb up to and including 6.7.1.
436 static const char* gdb_sections
[] =
438 // ".debug_aranges", // not used by gdb as of 6.7.1
445 // ".debug_pubnames", // not used by gdb as of 6.7.1
450 static const char* lines_only_debug_sections
[] =
452 // ".debug_aranges", // not used by gdb as of 6.7.1
459 // ".debug_pubnames", // not used by gdb as of 6.7.1
465 is_gdb_debug_section(const char* str
)
467 // We can do this faster: binary search or a hashtable. But why bother?
468 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
469 if (strcmp(str
, gdb_sections
[i
]) == 0)
475 is_lines_only_debug_section(const char* str
)
477 // We can do this faster: binary search or a hashtable. But why bother?
479 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
481 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
486 // Sometimes we compress sections. This is typically done for
487 // sections that are not part of normal program execution (such as
488 // .debug_* sections), and where the readers of these sections know
489 // how to deal with compressed sections. This routine doesn't say for
490 // certain whether we'll compress -- it depends on commandline options
491 // as well -- just whether this section is a candidate for compression.
492 // (The Output_compressed_section class decides whether to compress
493 // a given section, and picks the name of the compressed section.)
496 is_compressible_debug_section(const char* secname
)
498 return (is_prefix_of(".debug", secname
));
501 // We may see compressed debug sections in input files. Return TRUE
502 // if this is the name of a compressed debug section.
505 is_compressed_debug_section(const char* secname
)
507 return (is_prefix_of(".zdebug", secname
));
510 // Whether to include this section in the link.
512 template<int size
, bool big_endian
>
514 Layout::include_section(Sized_relobj_file
<size
, big_endian
>*, const char* name
,
515 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
517 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
520 switch (shdr
.get_sh_type())
522 case elfcpp::SHT_NULL
:
523 case elfcpp::SHT_SYMTAB
:
524 case elfcpp::SHT_DYNSYM
:
525 case elfcpp::SHT_HASH
:
526 case elfcpp::SHT_DYNAMIC
:
527 case elfcpp::SHT_SYMTAB_SHNDX
:
530 case elfcpp::SHT_STRTAB
:
531 // Discard the sections which have special meanings in the ELF
532 // ABI. Keep others (e.g., .stabstr). We could also do this by
533 // checking the sh_link fields of the appropriate sections.
534 return (strcmp(name
, ".dynstr") != 0
535 && strcmp(name
, ".strtab") != 0
536 && strcmp(name
, ".shstrtab") != 0);
538 case elfcpp::SHT_RELA
:
539 case elfcpp::SHT_REL
:
540 case elfcpp::SHT_GROUP
:
541 // If we are emitting relocations these should be handled
543 gold_assert(!parameters
->options().relocatable()
544 && !parameters
->options().emit_relocs());
547 case elfcpp::SHT_PROGBITS
:
548 if (parameters
->options().strip_debug()
549 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
551 if (is_debug_info_section(name
))
554 if (parameters
->options().strip_debug_non_line()
555 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
557 // Debugging sections can only be recognized by name.
558 if (is_prefix_of(".debug", name
)
559 && !is_lines_only_debug_section(name
))
562 if (parameters
->options().strip_debug_gdb()
563 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
565 // Debugging sections can only be recognized by name.
566 if (is_prefix_of(".debug", name
)
567 && !is_gdb_debug_section(name
))
570 if (parameters
->options().strip_lto_sections()
571 && !parameters
->options().relocatable()
572 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
574 // Ignore LTO sections containing intermediate code.
575 if (is_prefix_of(".gnu.lto_", name
))
578 // The GNU linker strips .gnu_debuglink sections, so we do too.
579 // This is a feature used to keep debugging information in
581 if (strcmp(name
, ".gnu_debuglink") == 0)
590 // Return an output section named NAME, or NULL if there is none.
593 Layout::find_output_section(const char* name
) const
595 for (Section_list::const_iterator p
= this->section_list_
.begin();
596 p
!= this->section_list_
.end();
598 if (strcmp((*p
)->name(), name
) == 0)
603 // Return an output segment of type TYPE, with segment flags SET set
604 // and segment flags CLEAR clear. Return NULL if there is none.
607 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
608 elfcpp::Elf_Word clear
) const
610 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
611 p
!= this->segment_list_
.end();
613 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
614 && ((*p
)->flags() & set
) == set
615 && ((*p
)->flags() & clear
) == 0)
620 // Return the output section to use for section NAME with type TYPE
621 // and section flags FLAGS. NAME must be canonicalized in the string
622 // pool, and NAME_KEY is the key. ORDER is where this should appear
623 // in the output sections. IS_RELRO is true for a relro section.
626 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
627 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
628 Output_section_order order
, bool is_relro
)
630 elfcpp::Elf_Xword lookup_flags
= flags
;
632 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
633 // read-write with read-only sections. Some other ELF linkers do
634 // not do this. FIXME: Perhaps there should be an option
636 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
638 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
639 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
640 std::pair
<Section_name_map::iterator
, bool> ins(
641 this->section_name_map_
.insert(v
));
644 return ins
.first
->second
;
647 // This is the first time we've seen this name/type/flags
648 // combination. For compatibility with the GNU linker, we
649 // combine sections with contents and zero flags with sections
650 // with non-zero flags. This is a workaround for cases where
651 // assembler code forgets to set section flags. FIXME: Perhaps
652 // there should be an option to control this.
653 Output_section
* os
= NULL
;
655 if (type
== elfcpp::SHT_PROGBITS
)
659 Output_section
* same_name
= this->find_output_section(name
);
660 if (same_name
!= NULL
661 && same_name
->type() == elfcpp::SHT_PROGBITS
662 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
665 else if ((flags
& elfcpp::SHF_TLS
) == 0)
667 elfcpp::Elf_Xword zero_flags
= 0;
668 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
669 Section_name_map::iterator p
=
670 this->section_name_map_
.find(zero_key
);
671 if (p
!= this->section_name_map_
.end())
677 os
= this->make_output_section(name
, type
, flags
, order
, is_relro
);
679 ins
.first
->second
= os
;
684 // Pick the output section to use for section NAME, in input file
685 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
686 // linker created section. IS_INPUT_SECTION is true if we are
687 // choosing an output section for an input section found in a input
688 // file. ORDER is where this section should appear in the output
689 // sections. IS_RELRO is true for a relro section. This will return
690 // NULL if the input section should be discarded.
693 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
694 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
695 bool is_input_section
, Output_section_order order
,
698 // We should not see any input sections after we have attached
699 // sections to segments.
700 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
702 // Some flags in the input section should not be automatically
703 // copied to the output section.
704 flags
&= ~ (elfcpp::SHF_INFO_LINK
707 | elfcpp::SHF_STRINGS
);
709 // We only clear the SHF_LINK_ORDER flag in for
710 // a non-relocatable link.
711 if (!parameters
->options().relocatable())
712 flags
&= ~elfcpp::SHF_LINK_ORDER
;
714 if (this->script_options_
->saw_sections_clause())
716 // We are using a SECTIONS clause, so the output section is
717 // chosen based only on the name.
719 Script_sections
* ss
= this->script_options_
->script_sections();
720 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
721 Output_section
** output_section_slot
;
722 Script_sections::Section_type script_section_type
;
723 const char* orig_name
= name
;
724 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
,
725 &script_section_type
);
728 gold_debug(DEBUG_SCRIPT
, _("Unable to create output section '%s' "
729 "because it is not allowed by the "
730 "SECTIONS clause of the linker script"),
732 // The SECTIONS clause says to discard this input section.
736 // We can only handle script section types ST_NONE and ST_NOLOAD.
737 switch (script_section_type
)
739 case Script_sections::ST_NONE
:
741 case Script_sections::ST_NOLOAD
:
742 flags
&= elfcpp::SHF_ALLOC
;
748 // If this is an orphan section--one not mentioned in the linker
749 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
750 // default processing below.
752 if (output_section_slot
!= NULL
)
754 if (*output_section_slot
!= NULL
)
756 (*output_section_slot
)->update_flags_for_input_section(flags
);
757 return *output_section_slot
;
760 // We don't put sections found in the linker script into
761 // SECTION_NAME_MAP_. That keeps us from getting confused
762 // if an orphan section is mapped to a section with the same
763 // name as one in the linker script.
765 name
= this->namepool_
.add(name
, false, NULL
);
767 Output_section
* os
= this->make_output_section(name
, type
, flags
,
770 os
->set_found_in_sections_clause();
772 // Special handling for NOLOAD sections.
773 if (script_section_type
== Script_sections::ST_NOLOAD
)
777 // The constructor of Output_section sets addresses of non-ALLOC
778 // sections to 0 by default. We don't want that for NOLOAD
779 // sections even if they have no SHF_ALLOC flag.
780 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0
781 && os
->is_address_valid())
783 gold_assert(os
->address() == 0
784 && !os
->is_offset_valid()
785 && !os
->is_data_size_valid());
786 os
->reset_address_and_file_offset();
790 *output_section_slot
= os
;
795 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
797 size_t len
= strlen(name
);
798 char* uncompressed_name
= NULL
;
800 // Compressed debug sections should be mapped to the corresponding
801 // uncompressed section.
802 if (is_compressed_debug_section(name
))
804 uncompressed_name
= new char[len
];
805 uncompressed_name
[0] = '.';
806 gold_assert(name
[0] == '.' && name
[1] == 'z');
807 strncpy(&uncompressed_name
[1], &name
[2], len
- 2);
808 uncompressed_name
[len
- 1] = '\0';
810 name
= uncompressed_name
;
813 // Turn NAME from the name of the input section into the name of the
816 && !this->script_options_
->saw_sections_clause()
817 && !parameters
->options().relocatable())
818 name
= Layout::output_section_name(name
, &len
);
820 Stringpool::Key name_key
;
821 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
823 if (uncompressed_name
!= NULL
)
824 delete[] uncompressed_name
;
826 // Find or make the output section. The output section is selected
827 // based on the section name, type, and flags.
828 return this->get_output_section(name
, name_key
, type
, flags
, order
, is_relro
);
831 // For incremental links, record the initial fixed layout of a section
832 // from the base file, and return a pointer to the Output_section.
834 template<int size
, bool big_endian
>
836 Layout::init_fixed_output_section(const char* name
,
837 elfcpp::Shdr
<size
, big_endian
>& shdr
)
839 unsigned int sh_type
= shdr
.get_sh_type();
841 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
842 // All others will be created from scratch and reallocated.
843 if (sh_type
!= elfcpp::SHT_PROGBITS
844 && sh_type
!= elfcpp::SHT_NOBITS
845 && sh_type
!= elfcpp::SHT_NOTE
)
848 typename
elfcpp::Elf_types
<size
>::Elf_Addr sh_addr
= shdr
.get_sh_addr();
849 typename
elfcpp::Elf_types
<size
>::Elf_Off sh_offset
= shdr
.get_sh_offset();
850 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_size
= shdr
.get_sh_size();
851 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_flags
= shdr
.get_sh_flags();
852 typename
elfcpp::Elf_types
<size
>::Elf_WXword sh_addralign
=
853 shdr
.get_sh_addralign();
855 // Make the output section.
856 Stringpool::Key name_key
;
857 name
= this->namepool_
.add(name
, true, &name_key
);
858 Output_section
* os
= this->get_output_section(name
, name_key
, sh_type
,
859 sh_flags
, ORDER_INVALID
, false);
860 os
->set_fixed_layout(sh_addr
, sh_offset
, sh_size
, sh_addralign
);
861 if (sh_type
!= elfcpp::SHT_NOBITS
)
862 this->free_list_
.remove(sh_offset
, sh_offset
+ sh_size
);
866 // Return the output section to use for input section SHNDX, with name
867 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
868 // index of a relocation section which applies to this section, or 0
869 // if none, or -1U if more than one. RELOC_TYPE is the type of the
870 // relocation section if there is one. Set *OFF to the offset of this
871 // input section without the output section. Return NULL if the
872 // section should be discarded. Set *OFF to -1 if the section
873 // contents should not be written directly to the output file, but
874 // will instead receive special handling.
876 template<int size
, bool big_endian
>
878 Layout::layout(Sized_relobj_file
<size
, big_endian
>* object
, unsigned int shndx
,
879 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
880 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
884 if (!this->include_section(object
, name
, shdr
))
889 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
890 // correct section types. Force them here.
891 elfcpp::Elf_Word sh_type
= shdr
.get_sh_type();
892 if (sh_type
== elfcpp::SHT_PROGBITS
)
894 static const char init_array_prefix
[] = ".init_array";
895 static const char preinit_array_prefix
[] = ".preinit_array";
896 static const char fini_array_prefix
[] = ".fini_array";
897 static size_t init_array_prefix_size
= sizeof(init_array_prefix
) - 1;
898 static size_t preinit_array_prefix_size
=
899 sizeof(preinit_array_prefix
) - 1;
900 static size_t fini_array_prefix_size
= sizeof(fini_array_prefix
) - 1;
902 if (strncmp(name
, init_array_prefix
, init_array_prefix_size
) == 0)
903 sh_type
= elfcpp::SHT_INIT_ARRAY
;
904 else if (strncmp(name
, preinit_array_prefix
, preinit_array_prefix_size
)
906 sh_type
= elfcpp::SHT_PREINIT_ARRAY
;
907 else if (strncmp(name
, fini_array_prefix
, fini_array_prefix_size
) == 0)
908 sh_type
= elfcpp::SHT_FINI_ARRAY
;
911 // In a relocatable link a grouped section must not be combined with
912 // any other sections.
913 if (parameters
->options().relocatable()
914 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
916 name
= this->namepool_
.add(name
, true, NULL
);
917 os
= this->make_output_section(name
, sh_type
, shdr
.get_sh_flags(),
918 ORDER_INVALID
, false);
922 os
= this->choose_output_section(object
, name
, sh_type
,
923 shdr
.get_sh_flags(), true,
924 ORDER_INVALID
, false);
929 // By default the GNU linker sorts input sections whose names match
930 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
931 // are sorted by name. This is used to implement constructor
932 // priority ordering. We are compatible.
933 if (!this->script_options_
->saw_sections_clause()
934 && (is_prefix_of(".ctors.", name
)
935 || is_prefix_of(".dtors.", name
)
936 || is_prefix_of(".init_array.", name
)
937 || is_prefix_of(".fini_array.", name
)))
938 os
->set_must_sort_attached_input_sections();
940 // FIXME: Handle SHF_LINK_ORDER somewhere.
942 elfcpp::Elf_Xword orig_flags
= os
->flags();
944 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
945 this->script_options_
->saw_sections_clause());
947 // If the flags changed, we may have to change the order.
948 if ((orig_flags
& elfcpp::SHF_ALLOC
) != 0)
950 orig_flags
&= (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
951 elfcpp::Elf_Xword new_flags
=
952 os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
953 if (orig_flags
!= new_flags
)
954 os
->set_order(this->default_section_order(os
, false));
957 this->have_added_input_section_
= true;
962 // Handle a relocation section when doing a relocatable link.
964 template<int size
, bool big_endian
>
966 Layout::layout_reloc(Sized_relobj_file
<size
, big_endian
>* object
,
968 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
969 Output_section
* data_section
,
970 Relocatable_relocs
* rr
)
972 gold_assert(parameters
->options().relocatable()
973 || parameters
->options().emit_relocs());
975 int sh_type
= shdr
.get_sh_type();
978 if (sh_type
== elfcpp::SHT_REL
)
980 else if (sh_type
== elfcpp::SHT_RELA
)
984 name
+= data_section
->name();
986 // In a relocatable link relocs for a grouped section must not be
987 // combined with other reloc sections.
989 if (!parameters
->options().relocatable()
990 || (data_section
->flags() & elfcpp::SHF_GROUP
) == 0)
991 os
= this->choose_output_section(object
, name
.c_str(), sh_type
,
992 shdr
.get_sh_flags(), false,
993 ORDER_INVALID
, false);
996 const char* n
= this->namepool_
.add(name
.c_str(), true, NULL
);
997 os
= this->make_output_section(n
, sh_type
, shdr
.get_sh_flags(),
998 ORDER_INVALID
, false);
1001 os
->set_should_link_to_symtab();
1002 os
->set_info_section(data_section
);
1004 Output_section_data
* posd
;
1005 if (sh_type
== elfcpp::SHT_REL
)
1007 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
1008 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
1012 else if (sh_type
== elfcpp::SHT_RELA
)
1014 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
1015 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
1022 os
->add_output_section_data(posd
);
1023 rr
->set_output_data(posd
);
1028 // Handle a group section when doing a relocatable link.
1030 template<int size
, bool big_endian
>
1032 Layout::layout_group(Symbol_table
* symtab
,
1033 Sized_relobj_file
<size
, big_endian
>* object
,
1035 const char* group_section_name
,
1036 const char* signature
,
1037 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1038 elfcpp::Elf_Word flags
,
1039 std::vector
<unsigned int>* shndxes
)
1041 gold_assert(parameters
->options().relocatable());
1042 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
1043 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
1044 Output_section
* os
= this->make_output_section(group_section_name
,
1046 shdr
.get_sh_flags(),
1047 ORDER_INVALID
, false);
1049 // We need to find a symbol with the signature in the symbol table.
1050 // If we don't find one now, we need to look again later.
1051 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
1053 os
->set_info_symndx(sym
);
1056 // Reserve some space to minimize reallocations.
1057 if (this->group_signatures_
.empty())
1058 this->group_signatures_
.reserve(this->number_of_input_files_
* 16);
1060 // We will wind up using a symbol whose name is the signature.
1061 // So just put the signature in the symbol name pool to save it.
1062 signature
= symtab
->canonicalize_name(signature
);
1063 this->group_signatures_
.push_back(Group_signature(os
, signature
));
1066 os
->set_should_link_to_symtab();
1069 section_size_type entry_count
=
1070 convert_to_section_size_type(shdr
.get_sh_size() / 4);
1071 Output_section_data
* posd
=
1072 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
1074 os
->add_output_section_data(posd
);
1077 // Special GNU handling of sections name .eh_frame. They will
1078 // normally hold exception frame data as defined by the C++ ABI
1079 // (http://codesourcery.com/cxx-abi/).
1081 template<int size
, bool big_endian
>
1083 Layout::layout_eh_frame(Sized_relobj_file
<size
, big_endian
>* object
,
1084 const unsigned char* symbols
,
1086 const unsigned char* symbol_names
,
1087 off_t symbol_names_size
,
1089 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
1090 unsigned int reloc_shndx
, unsigned int reloc_type
,
1093 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
1094 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
1096 const char* const name
= ".eh_frame";
1097 Output_section
* os
= this->choose_output_section(object
, name
,
1098 elfcpp::SHT_PROGBITS
,
1099 elfcpp::SHF_ALLOC
, false,
1100 ORDER_EHFRAME
, false);
1104 if (this->eh_frame_section_
== NULL
)
1106 this->eh_frame_section_
= os
;
1107 this->eh_frame_data_
= new Eh_frame();
1109 // For incremental linking, we do not optimize .eh_frame sections
1110 // or create a .eh_frame_hdr section.
1111 if (parameters
->options().eh_frame_hdr() && !parameters
->incremental())
1113 Output_section
* hdr_os
=
1114 this->choose_output_section(NULL
, ".eh_frame_hdr",
1115 elfcpp::SHT_PROGBITS
,
1116 elfcpp::SHF_ALLOC
, false,
1117 ORDER_EHFRAME
, false);
1121 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
1122 this->eh_frame_data_
);
1123 hdr_os
->add_output_section_data(hdr_posd
);
1125 hdr_os
->set_after_input_sections();
1127 if (!this->script_options_
->saw_phdrs_clause())
1129 Output_segment
* hdr_oseg
;
1130 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
1132 hdr_oseg
->add_output_section_to_nonload(hdr_os
,
1136 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
1141 gold_assert(this->eh_frame_section_
== os
);
1143 elfcpp::Elf_Xword orig_flags
= os
->flags();
1145 if (!parameters
->incremental()
1146 && this->eh_frame_data_
->add_ehframe_input_section(object
,
1155 os
->update_flags_for_input_section(shdr
.get_sh_flags());
1157 // A writable .eh_frame section is a RELRO section.
1158 if ((orig_flags
& (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
))
1159 != (os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
)))
1162 os
->set_order(ORDER_RELRO
);
1165 // We found a .eh_frame section we are going to optimize, so now
1166 // we can add the set of optimized sections to the output
1167 // section. We need to postpone adding this until we've found a
1168 // section we can optimize so that the .eh_frame section in
1169 // crtbegin.o winds up at the start of the output section.
1170 if (!this->added_eh_frame_data_
)
1172 os
->add_output_section_data(this->eh_frame_data_
);
1173 this->added_eh_frame_data_
= true;
1179 // We couldn't handle this .eh_frame section for some reason.
1180 // Add it as a normal section.
1181 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
1182 *off
= os
->add_input_section(this, object
, shndx
, name
, shdr
, reloc_shndx
,
1183 saw_sections_clause
);
1184 this->have_added_input_section_
= true;
1186 if ((orig_flags
& (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
))
1187 != (os
->flags() & (elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
)))
1188 os
->set_order(this->default_section_order(os
, false));
1194 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1195 // the output section.
1198 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
1199 elfcpp::Elf_Xword flags
,
1200 Output_section_data
* posd
,
1201 Output_section_order order
, bool is_relro
)
1203 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
1204 false, order
, is_relro
);
1206 os
->add_output_section_data(posd
);
1210 // Map section flags to segment flags.
1213 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
1215 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
1216 if ((flags
& elfcpp::SHF_WRITE
) != 0)
1217 ret
|= elfcpp::PF_W
;
1218 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
1219 ret
|= elfcpp::PF_X
;
1223 // Make a new Output_section, and attach it to segments as
1224 // appropriate. ORDER is the order in which this section should
1225 // appear in the output segment. IS_RELRO is true if this is a relro
1226 // (read-only after relocations) section.
1229 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
1230 elfcpp::Elf_Xword flags
,
1231 Output_section_order order
, bool is_relro
)
1234 if ((flags
& elfcpp::SHF_ALLOC
) == 0
1235 && strcmp(parameters
->options().compress_debug_sections(), "none") != 0
1236 && is_compressible_debug_section(name
))
1237 os
= new Output_compressed_section(¶meters
->options(), name
, type
,
1239 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
1240 && parameters
->options().strip_debug_non_line()
1241 && strcmp(".debug_abbrev", name
) == 0)
1243 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
1245 if (this->debug_info_
)
1246 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1248 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
1249 && parameters
->options().strip_debug_non_line()
1250 && strcmp(".debug_info", name
) == 0)
1252 os
= this->debug_info_
= new Output_reduced_debug_info_section(
1254 if (this->debug_abbrev_
)
1255 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
1259 // FIXME: const_cast is ugly.
1260 Target
* target
= const_cast<Target
*>(¶meters
->target());
1261 os
= target
->make_output_section(name
, type
, flags
);
1264 // With -z relro, we have to recognize the special sections by name.
1265 // There is no other way.
1266 bool is_relro_local
= false;
1267 if (!this->script_options_
->saw_sections_clause()
1268 && parameters
->options().relro()
1269 && type
== elfcpp::SHT_PROGBITS
1270 && (flags
& elfcpp::SHF_ALLOC
) != 0
1271 && (flags
& elfcpp::SHF_WRITE
) != 0)
1273 if (strcmp(name
, ".data.rel.ro") == 0)
1275 else if (strcmp(name
, ".data.rel.ro.local") == 0)
1278 is_relro_local
= true;
1280 else if (type
== elfcpp::SHT_INIT_ARRAY
1281 || type
== elfcpp::SHT_FINI_ARRAY
1282 || type
== elfcpp::SHT_PREINIT_ARRAY
)
1284 else if (strcmp(name
, ".ctors") == 0
1285 || strcmp(name
, ".dtors") == 0
1286 || strcmp(name
, ".jcr") == 0)
1293 if (order
== ORDER_INVALID
&& (flags
& elfcpp::SHF_ALLOC
) != 0)
1294 order
= this->default_section_order(os
, is_relro_local
);
1296 os
->set_order(order
);
1298 parameters
->target().new_output_section(os
);
1300 this->section_list_
.push_back(os
);
1302 // The GNU linker by default sorts some sections by priority, so we
1303 // do the same. We need to know that this might happen before we
1304 // attach any input sections.
1305 if (!this->script_options_
->saw_sections_clause()
1306 && (strcmp(name
, ".ctors") == 0
1307 || strcmp(name
, ".dtors") == 0
1308 || strcmp(name
, ".init_array") == 0
1309 || strcmp(name
, ".fini_array") == 0))
1310 os
->set_may_sort_attached_input_sections();
1312 // Check for .stab*str sections, as .stab* sections need to link to
1314 if (type
== elfcpp::SHT_STRTAB
1315 && !this->have_stabstr_section_
1316 && strncmp(name
, ".stab", 5) == 0
1317 && strcmp(name
+ strlen(name
) - 3, "str") == 0)
1318 this->have_stabstr_section_
= true;
1320 // If we have already attached the sections to segments, then we
1321 // need to attach this one now. This happens for sections created
1322 // directly by the linker.
1323 if (this->sections_are_attached_
)
1324 this->attach_section_to_segment(os
);
1329 // Return the default order in which a section should be placed in an
1330 // output segment. This function captures a lot of the ideas in
1331 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1332 // linker created section is normally set when the section is created;
1333 // this function is used for input sections.
1335 Output_section_order
1336 Layout::default_section_order(Output_section
* os
, bool is_relro_local
)
1338 gold_assert((os
->flags() & elfcpp::SHF_ALLOC
) != 0);
1339 bool is_write
= (os
->flags() & elfcpp::SHF_WRITE
) != 0;
1340 bool is_execinstr
= (os
->flags() & elfcpp::SHF_EXECINSTR
) != 0;
1341 bool is_bss
= false;
1346 case elfcpp::SHT_PROGBITS
:
1348 case elfcpp::SHT_NOBITS
:
1351 case elfcpp::SHT_RELA
:
1352 case elfcpp::SHT_REL
:
1354 return ORDER_DYNAMIC_RELOCS
;
1356 case elfcpp::SHT_HASH
:
1357 case elfcpp::SHT_DYNAMIC
:
1358 case elfcpp::SHT_SHLIB
:
1359 case elfcpp::SHT_DYNSYM
:
1360 case elfcpp::SHT_GNU_HASH
:
1361 case elfcpp::SHT_GNU_verdef
:
1362 case elfcpp::SHT_GNU_verneed
:
1363 case elfcpp::SHT_GNU_versym
:
1365 return ORDER_DYNAMIC_LINKER
;
1367 case elfcpp::SHT_NOTE
:
1368 return is_write
? ORDER_RW_NOTE
: ORDER_RO_NOTE
;
1371 if ((os
->flags() & elfcpp::SHF_TLS
) != 0)
1372 return is_bss
? ORDER_TLS_BSS
: ORDER_TLS_DATA
;
1374 if (!is_bss
&& !is_write
)
1378 if (strcmp(os
->name(), ".init") == 0)
1380 else if (strcmp(os
->name(), ".fini") == 0)
1383 return is_execinstr
? ORDER_TEXT
: ORDER_READONLY
;
1387 return is_relro_local
? ORDER_RELRO_LOCAL
: ORDER_RELRO
;
1389 if (os
->is_small_section())
1390 return is_bss
? ORDER_SMALL_BSS
: ORDER_SMALL_DATA
;
1391 if (os
->is_large_section())
1392 return is_bss
? ORDER_LARGE_BSS
: ORDER_LARGE_DATA
;
1394 return is_bss
? ORDER_BSS
: ORDER_DATA
;
1397 // Attach output sections to segments. This is called after we have
1398 // seen all the input sections.
1401 Layout::attach_sections_to_segments()
1403 for (Section_list::iterator p
= this->section_list_
.begin();
1404 p
!= this->section_list_
.end();
1406 this->attach_section_to_segment(*p
);
1408 this->sections_are_attached_
= true;
1411 // Attach an output section to a segment.
1414 Layout::attach_section_to_segment(Output_section
* os
)
1416 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
1417 this->unattached_section_list_
.push_back(os
);
1419 this->attach_allocated_section_to_segment(os
);
1422 // Attach an allocated output section to a segment.
1425 Layout::attach_allocated_section_to_segment(Output_section
* os
)
1427 elfcpp::Elf_Xword flags
= os
->flags();
1428 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
1430 if (parameters
->options().relocatable())
1433 // If we have a SECTIONS clause, we can't handle the attachment to
1434 // segments until after we've seen all the sections.
1435 if (this->script_options_
->saw_sections_clause())
1438 gold_assert(!this->script_options_
->saw_phdrs_clause());
1440 // This output section goes into a PT_LOAD segment.
1442 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
1444 // Check for --section-start.
1446 bool is_address_set
= parameters
->options().section_start(os
->name(), &addr
);
1448 // In general the only thing we really care about for PT_LOAD
1449 // segments is whether or not they are writable or executable,
1450 // so that is how we search for them.
1451 // Large data sections also go into their own PT_LOAD segment.
1452 // People who need segments sorted on some other basis will
1453 // have to use a linker script.
1455 Segment_list::const_iterator p
;
1456 for (p
= this->segment_list_
.begin();
1457 p
!= this->segment_list_
.end();
1460 if ((*p
)->type() != elfcpp::PT_LOAD
)
1462 if (!parameters
->options().omagic()
1463 && ((*p
)->flags() & elfcpp::PF_W
) != (seg_flags
& elfcpp::PF_W
))
1465 if (parameters
->options().rosegment()
1466 && ((*p
)->flags() & elfcpp::PF_X
) != (seg_flags
& elfcpp::PF_X
))
1468 // If -Tbss was specified, we need to separate the data and BSS
1470 if (parameters
->options().user_set_Tbss())
1472 if ((os
->type() == elfcpp::SHT_NOBITS
)
1473 == (*p
)->has_any_data_sections())
1476 if (os
->is_large_data_section() && !(*p
)->is_large_data_segment())
1481 if ((*p
)->are_addresses_set())
1484 (*p
)->add_initial_output_data(os
);
1485 (*p
)->update_flags_for_output_section(seg_flags
);
1486 (*p
)->set_addresses(addr
, addr
);
1490 (*p
)->add_output_section_to_load(this, os
, seg_flags
);
1494 if (p
== this->segment_list_
.end())
1496 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
1498 if (os
->is_large_data_section())
1499 oseg
->set_is_large_data_segment();
1500 oseg
->add_output_section_to_load(this, os
, seg_flags
);
1502 oseg
->set_addresses(addr
, addr
);
1505 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1507 if (os
->type() == elfcpp::SHT_NOTE
)
1509 // See if we already have an equivalent PT_NOTE segment.
1510 for (p
= this->segment_list_
.begin();
1511 p
!= segment_list_
.end();
1514 if ((*p
)->type() == elfcpp::PT_NOTE
1515 && (((*p
)->flags() & elfcpp::PF_W
)
1516 == (seg_flags
& elfcpp::PF_W
)))
1518 (*p
)->add_output_section_to_nonload(os
, seg_flags
);
1523 if (p
== this->segment_list_
.end())
1525 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
1527 oseg
->add_output_section_to_nonload(os
, seg_flags
);
1531 // If we see a loadable SHF_TLS section, we create a PT_TLS
1532 // segment. There can only be one such segment.
1533 if ((flags
& elfcpp::SHF_TLS
) != 0)
1535 if (this->tls_segment_
== NULL
)
1536 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
1537 this->tls_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1540 // If -z relro is in effect, and we see a relro section, we create a
1541 // PT_GNU_RELRO segment. There can only be one such segment.
1542 if (os
->is_relro() && parameters
->options().relro())
1544 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
1545 if (this->relro_segment_
== NULL
)
1546 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
1547 this->relro_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1550 // If we see a section named .interp, put it into a PT_INTERP
1551 // segment. This seems broken to me, but this is what GNU ld does,
1552 // and glibc expects it.
1553 if (strcmp(os
->name(), ".interp") == 0
1554 && !this->script_options_
->saw_phdrs_clause())
1556 if (this->interp_segment_
== NULL
)
1557 this->make_output_segment(elfcpp::PT_INTERP
, seg_flags
);
1559 gold_warning(_("multiple '.interp' sections in input files "
1560 "may cause confusing PT_INTERP segment"));
1561 this->interp_segment_
->add_output_section_to_nonload(os
, seg_flags
);
1565 // Make an output section for a script.
1568 Layout::make_output_section_for_script(
1570 Script_sections::Section_type section_type
)
1572 name
= this->namepool_
.add(name
, false, NULL
);
1573 elfcpp::Elf_Xword sh_flags
= elfcpp::SHF_ALLOC
;
1574 if (section_type
== Script_sections::ST_NOLOAD
)
1576 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
1577 sh_flags
, ORDER_INVALID
,
1579 os
->set_found_in_sections_clause();
1580 if (section_type
== Script_sections::ST_NOLOAD
)
1581 os
->set_is_noload();
1585 // Return the number of segments we expect to see.
1588 Layout::expected_segment_count() const
1590 size_t ret
= this->segment_list_
.size();
1592 // If we didn't see a SECTIONS clause in a linker script, we should
1593 // already have the complete list of segments. Otherwise we ask the
1594 // SECTIONS clause how many segments it expects, and add in the ones
1595 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1597 if (!this->script_options_
->saw_sections_clause())
1601 const Script_sections
* ss
= this->script_options_
->script_sections();
1602 return ret
+ ss
->expected_segment_count(this);
1606 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1607 // is whether we saw a .note.GNU-stack section in the object file.
1608 // GNU_STACK_FLAGS is the section flags. The flags give the
1609 // protection required for stack memory. We record this in an
1610 // executable as a PT_GNU_STACK segment. If an object file does not
1611 // have a .note.GNU-stack segment, we must assume that it is an old
1612 // object. On some targets that will force an executable stack.
1615 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
,
1618 if (!seen_gnu_stack
)
1620 this->input_without_gnu_stack_note_
= true;
1621 if (parameters
->options().warn_execstack()
1622 && parameters
->target().is_default_stack_executable())
1623 gold_warning(_("%s: missing .note.GNU-stack section"
1624 " implies executable stack"),
1625 obj
->name().c_str());
1629 this->input_with_gnu_stack_note_
= true;
1630 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
1632 this->input_requires_executable_stack_
= true;
1633 if (parameters
->options().warn_execstack()
1634 || parameters
->options().is_stack_executable())
1635 gold_warning(_("%s: requires executable stack"),
1636 obj
->name().c_str());
1641 // Create automatic note sections.
1644 Layout::create_notes()
1646 this->create_gold_note();
1647 this->create_executable_stack_info();
1648 this->create_build_id();
1651 // Create the dynamic sections which are needed before we read the
1655 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1657 if (parameters
->doing_static_link())
1660 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1661 elfcpp::SHT_DYNAMIC
,
1663 | elfcpp::SHF_WRITE
),
1667 this->dynamic_symbol_
=
1668 symtab
->define_in_output_data("_DYNAMIC", NULL
, Symbol_table::PREDEFINED
,
1669 this->dynamic_section_
, 0, 0,
1670 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1671 elfcpp::STV_HIDDEN
, 0, false, false);
1673 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1675 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1678 // For each output section whose name can be represented as C symbol,
1679 // define __start and __stop symbols for the section. This is a GNU
1683 Layout::define_section_symbols(Symbol_table
* symtab
)
1685 for (Section_list::const_iterator p
= this->section_list_
.begin();
1686 p
!= this->section_list_
.end();
1689 const char* const name
= (*p
)->name();
1690 if (is_cident(name
))
1692 const std::string
name_string(name
);
1693 const std::string
start_name(cident_section_start_prefix
1695 const std::string
stop_name(cident_section_stop_prefix
1698 symtab
->define_in_output_data(start_name
.c_str(),
1700 Symbol_table::PREDEFINED
,
1706 elfcpp::STV_DEFAULT
,
1708 false, // offset_is_from_end
1709 true); // only_if_ref
1711 symtab
->define_in_output_data(stop_name
.c_str(),
1713 Symbol_table::PREDEFINED
,
1719 elfcpp::STV_DEFAULT
,
1721 true, // offset_is_from_end
1722 true); // only_if_ref
1727 // Define symbols for group signatures.
1730 Layout::define_group_signatures(Symbol_table
* symtab
)
1732 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1733 p
!= this->group_signatures_
.end();
1736 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1738 p
->section
->set_info_symndx(sym
);
1741 // Force the name of the group section to the group
1742 // signature, and use the group's section symbol as the
1743 // signature symbol.
1744 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1746 const char* name
= this->namepool_
.add(p
->signature
,
1748 p
->section
->set_name(name
);
1750 p
->section
->set_needs_symtab_index();
1751 p
->section
->set_info_section_symndx(p
->section
);
1755 this->group_signatures_
.clear();
1758 // Find the first read-only PT_LOAD segment, creating one if
1762 Layout::find_first_load_seg()
1764 Output_segment
* best
= NULL
;
1765 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1766 p
!= this->segment_list_
.end();
1769 if ((*p
)->type() == elfcpp::PT_LOAD
1770 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1771 && (parameters
->options().omagic()
1772 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1774 if (best
== NULL
|| this->segment_precedes(*p
, best
))
1781 gold_assert(!this->script_options_
->saw_phdrs_clause());
1783 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1788 // Save states of all current output segments. Store saved states
1789 // in SEGMENT_STATES.
1792 Layout::save_segments(Segment_states
* segment_states
)
1794 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1795 p
!= this->segment_list_
.end();
1798 Output_segment
* segment
= *p
;
1800 Output_segment
* copy
= new Output_segment(*segment
);
1801 (*segment_states
)[segment
] = copy
;
1805 // Restore states of output segments and delete any segment not found in
1809 Layout::restore_segments(const Segment_states
* segment_states
)
1811 // Go through the segment list and remove any segment added in the
1813 this->tls_segment_
= NULL
;
1814 this->relro_segment_
= NULL
;
1815 Segment_list::iterator list_iter
= this->segment_list_
.begin();
1816 while (list_iter
!= this->segment_list_
.end())
1818 Output_segment
* segment
= *list_iter
;
1819 Segment_states::const_iterator states_iter
=
1820 segment_states
->find(segment
);
1821 if (states_iter
!= segment_states
->end())
1823 const Output_segment
* copy
= states_iter
->second
;
1824 // Shallow copy to restore states.
1827 // Also fix up TLS and RELRO segment pointers as appropriate.
1828 if (segment
->type() == elfcpp::PT_TLS
)
1829 this->tls_segment_
= segment
;
1830 else if (segment
->type() == elfcpp::PT_GNU_RELRO
)
1831 this->relro_segment_
= segment
;
1837 list_iter
= this->segment_list_
.erase(list_iter
);
1838 // This is a segment created during section layout. It should be
1839 // safe to remove it since we should have removed all pointers to it.
1845 // Clean up after relaxation so that sections can be laid out again.
1848 Layout::clean_up_after_relaxation()
1850 // Restore the segments to point state just prior to the relaxation loop.
1851 Script_sections
* script_section
= this->script_options_
->script_sections();
1852 script_section
->release_segments();
1853 this->restore_segments(this->segment_states_
);
1855 // Reset section addresses and file offsets
1856 for (Section_list::iterator p
= this->section_list_
.begin();
1857 p
!= this->section_list_
.end();
1860 (*p
)->restore_states();
1862 // If an input section changes size because of relaxation,
1863 // we need to adjust the section offsets of all input sections.
1864 // after such a section.
1865 if ((*p
)->section_offsets_need_adjustment())
1866 (*p
)->adjust_section_offsets();
1868 (*p
)->reset_address_and_file_offset();
1871 // Reset special output object address and file offsets.
1872 for (Data_list::iterator p
= this->special_output_list_
.begin();
1873 p
!= this->special_output_list_
.end();
1875 (*p
)->reset_address_and_file_offset();
1877 // A linker script may have created some output section data objects.
1878 // They are useless now.
1879 for (Output_section_data_list::const_iterator p
=
1880 this->script_output_section_data_list_
.begin();
1881 p
!= this->script_output_section_data_list_
.end();
1884 this->script_output_section_data_list_
.clear();
1887 // Prepare for relaxation.
1890 Layout::prepare_for_relaxation()
1892 // Create an relaxation debug check if in debugging mode.
1893 if (is_debugging_enabled(DEBUG_RELAXATION
))
1894 this->relaxation_debug_check_
= new Relaxation_debug_check();
1896 // Save segment states.
1897 this->segment_states_
= new Segment_states();
1898 this->save_segments(this->segment_states_
);
1900 for(Section_list::const_iterator p
= this->section_list_
.begin();
1901 p
!= this->section_list_
.end();
1903 (*p
)->save_states();
1905 if (is_debugging_enabled(DEBUG_RELAXATION
))
1906 this->relaxation_debug_check_
->check_output_data_for_reset_values(
1907 this->section_list_
, this->special_output_list_
);
1909 // Also enable recording of output section data from scripts.
1910 this->record_output_section_data_from_script_
= true;
1913 // Relaxation loop body: If target has no relaxation, this runs only once
1914 // Otherwise, the target relaxation hook is called at the end of
1915 // each iteration. If the hook returns true, it means re-layout of
1916 // section is required.
1918 // The number of segments created by a linking script without a PHDRS
1919 // clause may be affected by section sizes and alignments. There is
1920 // a remote chance that relaxation causes different number of PT_LOAD
1921 // segments are created and sections are attached to different segments.
1922 // Therefore, we always throw away all segments created during section
1923 // layout. In order to be able to restart the section layout, we keep
1924 // a copy of the segment list right before the relaxation loop and use
1925 // that to restore the segments.
1927 // PASS is the current relaxation pass number.
1928 // SYMTAB is a symbol table.
1929 // PLOAD_SEG is the address of a pointer for the load segment.
1930 // PHDR_SEG is a pointer to the PHDR segment.
1931 // SEGMENT_HEADERS points to the output segment header.
1932 // FILE_HEADER points to the output file header.
1933 // PSHNDX is the address to store the output section index.
1936 Layout::relaxation_loop_body(
1939 Symbol_table
* symtab
,
1940 Output_segment
** pload_seg
,
1941 Output_segment
* phdr_seg
,
1942 Output_segment_headers
* segment_headers
,
1943 Output_file_header
* file_header
,
1944 unsigned int* pshndx
)
1946 // If this is not the first iteration, we need to clean up after
1947 // relaxation so that we can lay out the sections again.
1949 this->clean_up_after_relaxation();
1951 // If there is a SECTIONS clause, put all the input sections into
1952 // the required order.
1953 Output_segment
* load_seg
;
1954 if (this->script_options_
->saw_sections_clause())
1955 load_seg
= this->set_section_addresses_from_script(symtab
);
1956 else if (parameters
->options().relocatable())
1959 load_seg
= this->find_first_load_seg();
1961 if (parameters
->options().oformat_enum()
1962 != General_options::OBJECT_FORMAT_ELF
)
1965 // If the user set the address of the text segment, that may not be
1966 // compatible with putting the segment headers and file headers into
1968 if (parameters
->options().user_set_Ttext())
1971 gold_assert(phdr_seg
== NULL
1973 || this->script_options_
->saw_sections_clause());
1975 // If the address of the load segment we found has been set by
1976 // --section-start rather than by a script, then adjust the VMA and
1977 // LMA downward if possible to include the file and section headers.
1978 uint64_t header_gap
= 0;
1979 if (load_seg
!= NULL
1980 && load_seg
->are_addresses_set()
1981 && !this->script_options_
->saw_sections_clause()
1982 && !parameters
->options().relocatable())
1984 file_header
->finalize_data_size();
1985 segment_headers
->finalize_data_size();
1986 size_t sizeof_headers
= (file_header
->data_size()
1987 + segment_headers
->data_size());
1988 const uint64_t abi_pagesize
= target
->abi_pagesize();
1989 uint64_t hdr_paddr
= load_seg
->paddr() - sizeof_headers
;
1990 hdr_paddr
&= ~(abi_pagesize
- 1);
1991 uint64_t subtract
= load_seg
->paddr() - hdr_paddr
;
1992 if (load_seg
->paddr() < subtract
|| load_seg
->vaddr() < subtract
)
1996 load_seg
->set_addresses(load_seg
->vaddr() - subtract
,
1997 load_seg
->paddr() - subtract
);
1998 header_gap
= subtract
- sizeof_headers
;
2002 // Lay out the segment headers.
2003 if (!parameters
->options().relocatable())
2005 gold_assert(segment_headers
!= NULL
);
2006 if (header_gap
!= 0 && load_seg
!= NULL
)
2008 Output_data_zero_fill
* z
= new Output_data_zero_fill(header_gap
, 1);
2009 load_seg
->add_initial_output_data(z
);
2011 if (load_seg
!= NULL
)
2012 load_seg
->add_initial_output_data(segment_headers
);
2013 if (phdr_seg
!= NULL
)
2014 phdr_seg
->add_initial_output_data(segment_headers
);
2017 // Lay out the file header.
2018 if (load_seg
!= NULL
)
2019 load_seg
->add_initial_output_data(file_header
);
2021 if (this->script_options_
->saw_phdrs_clause()
2022 && !parameters
->options().relocatable())
2024 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2025 // clause in a linker script.
2026 Script_sections
* ss
= this->script_options_
->script_sections();
2027 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
2030 // We set the output section indexes in set_segment_offsets and
2031 // set_section_indexes.
2034 // Set the file offsets of all the segments, and all the sections
2037 if (!parameters
->options().relocatable())
2038 off
= this->set_segment_offsets(target
, load_seg
, pshndx
);
2040 off
= this->set_relocatable_section_offsets(file_header
, pshndx
);
2042 // Verify that the dummy relaxation does not change anything.
2043 if (is_debugging_enabled(DEBUG_RELAXATION
))
2046 this->relaxation_debug_check_
->read_sections(this->section_list_
);
2048 this->relaxation_debug_check_
->verify_sections(this->section_list_
);
2051 *pload_seg
= load_seg
;
2055 // Search the list of patterns and find the postion of the given section
2056 // name in the output section. If the section name matches a glob
2057 // pattern and a non-glob name, then the non-glob position takes
2058 // precedence. Return 0 if no match is found.
2061 Layout::find_section_order_index(const std::string
& section_name
)
2063 Unordered_map
<std::string
, unsigned int>::iterator map_it
;
2064 map_it
= this->input_section_position_
.find(section_name
);
2065 if (map_it
!= this->input_section_position_
.end())
2066 return map_it
->second
;
2068 // Absolute match failed. Linear search the glob patterns.
2069 std::vector
<std::string
>::iterator it
;
2070 for (it
= this->input_section_glob_
.begin();
2071 it
!= this->input_section_glob_
.end();
2074 if (fnmatch((*it
).c_str(), section_name
.c_str(), FNM_NOESCAPE
) == 0)
2076 map_it
= this->input_section_position_
.find(*it
);
2077 gold_assert(map_it
!= this->input_section_position_
.end());
2078 return map_it
->second
;
2084 // Read the sequence of input sections from the file specified with
2085 // --section-ordering-file.
2088 Layout::read_layout_from_file()
2090 const char* filename
= parameters
->options().section_ordering_file();
2096 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2097 filename
, strerror(errno
));
2099 std::getline(in
, line
); // this chops off the trailing \n, if any
2100 unsigned int position
= 1;
2104 if (!line
.empty() && line
[line
.length() - 1] == '\r') // Windows
2105 line
.resize(line
.length() - 1);
2106 // Ignore comments, beginning with '#'
2109 std::getline(in
, line
);
2112 this->input_section_position_
[line
] = position
;
2113 // Store all glob patterns in a vector.
2114 if (is_wildcard_string(line
.c_str()))
2115 this->input_section_glob_
.push_back(line
);
2117 std::getline(in
, line
);
2121 // Finalize the layout. When this is called, we have created all the
2122 // output sections and all the output segments which are based on
2123 // input sections. We have several things to do, and we have to do
2124 // them in the right order, so that we get the right results correctly
2127 // 1) Finalize the list of output segments and create the segment
2130 // 2) Finalize the dynamic symbol table and associated sections.
2132 // 3) Determine the final file offset of all the output segments.
2134 // 4) Determine the final file offset of all the SHF_ALLOC output
2137 // 5) Create the symbol table sections and the section name table
2140 // 6) Finalize the symbol table: set symbol values to their final
2141 // value and make a final determination of which symbols are going
2142 // into the output symbol table.
2144 // 7) Create the section table header.
2146 // 8) Determine the final file offset of all the output sections which
2147 // are not SHF_ALLOC, including the section table header.
2149 // 9) Finalize the ELF file header.
2151 // This function returns the size of the output file.
2154 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
2155 Target
* target
, const Task
* task
)
2157 target
->finalize_sections(this, input_objects
, symtab
);
2159 this->count_local_symbols(task
, input_objects
);
2161 this->link_stabs_sections();
2163 Output_segment
* phdr_seg
= NULL
;
2164 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
2166 // There was a dynamic object in the link. We need to create
2167 // some information for the dynamic linker.
2169 // Create the PT_PHDR segment which will hold the program
2171 if (!this->script_options_
->saw_phdrs_clause())
2172 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
2174 // Create the dynamic symbol table, including the hash table.
2175 Output_section
* dynstr
;
2176 std::vector
<Symbol
*> dynamic_symbols
;
2177 unsigned int local_dynamic_count
;
2178 Versions
versions(*this->script_options()->version_script_info(),
2180 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
2181 &local_dynamic_count
, &dynamic_symbols
,
2184 // Create the .interp section to hold the name of the
2185 // interpreter, and put it in a PT_INTERP segment. Don't do it
2186 // if we saw a .interp section in an input file.
2187 if ((!parameters
->options().shared()
2188 || parameters
->options().dynamic_linker() != NULL
)
2189 && this->interp_segment_
== NULL
)
2190 this->create_interp(target
);
2192 // Finish the .dynamic section to hold the dynamic data, and put
2193 // it in a PT_DYNAMIC segment.
2194 this->finish_dynamic_section(input_objects
, symtab
);
2196 // We should have added everything we need to the dynamic string
2198 this->dynpool_
.set_string_offsets();
2200 // Create the version sections. We can't do this until the
2201 // dynamic string table is complete.
2202 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
2203 dynamic_symbols
, dynstr
);
2205 // Set the size of the _DYNAMIC symbol. We can't do this until
2206 // after we call create_version_sections.
2207 this->set_dynamic_symbol_size(symtab
);
2210 // Create segment headers.
2211 Output_segment_headers
* segment_headers
=
2212 (parameters
->options().relocatable()
2214 : new Output_segment_headers(this->segment_list_
));
2216 // Lay out the file header.
2217 Output_file_header
* file_header
= new Output_file_header(target
, symtab
,
2220 this->special_output_list_
.push_back(file_header
);
2221 if (segment_headers
!= NULL
)
2222 this->special_output_list_
.push_back(segment_headers
);
2224 // Find approriate places for orphan output sections if we are using
2226 if (this->script_options_
->saw_sections_clause())
2227 this->place_orphan_sections_in_script();
2229 Output_segment
* load_seg
;
2234 // Take a snapshot of the section layout as needed.
2235 if (target
->may_relax())
2236 this->prepare_for_relaxation();
2238 // Run the relaxation loop to lay out sections.
2241 off
= this->relaxation_loop_body(pass
, target
, symtab
, &load_seg
,
2242 phdr_seg
, segment_headers
, file_header
,
2246 while (target
->may_relax()
2247 && target
->relax(pass
, input_objects
, symtab
, this, task
));
2249 // Set the file offsets of all the non-data sections we've seen so
2250 // far which don't have to wait for the input sections. We need
2251 // this in order to finalize local symbols in non-allocated
2253 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
2255 // Set the section indexes of all unallocated sections seen so far,
2256 // in case any of them are somehow referenced by a symbol.
2257 shndx
= this->set_section_indexes(shndx
);
2259 // Create the symbol table sections.
2260 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
2261 if (!parameters
->doing_static_link())
2262 this->assign_local_dynsym_offsets(input_objects
);
2264 // Process any symbol assignments from a linker script. This must
2265 // be called after the symbol table has been finalized.
2266 this->script_options_
->finalize_symbols(symtab
, this);
2268 // Create the incremental inputs sections.
2269 if (this->incremental_inputs_
)
2271 this->incremental_inputs_
->finalize();
2272 this->create_incremental_info_sections(symtab
);
2275 // Create the .shstrtab section.
2276 Output_section
* shstrtab_section
= this->create_shstrtab();
2278 // Set the file offsets of the rest of the non-data sections which
2279 // don't have to wait for the input sections.
2280 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
2282 // Now that all sections have been created, set the section indexes
2283 // for any sections which haven't been done yet.
2284 shndx
= this->set_section_indexes(shndx
);
2286 // Create the section table header.
2287 this->create_shdrs(shstrtab_section
, &off
);
2289 // If there are no sections which require postprocessing, we can
2290 // handle the section names now, and avoid a resize later.
2291 if (!this->any_postprocessing_sections_
)
2293 off
= this->set_section_offsets(off
,
2294 POSTPROCESSING_SECTIONS_PASS
);
2296 this->set_section_offsets(off
,
2297 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
2300 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
2302 // Now we know exactly where everything goes in the output file
2303 // (except for non-allocated sections which require postprocessing).
2304 Output_data::layout_complete();
2306 this->output_file_size_
= off
;
2311 // Create a note header following the format defined in the ELF ABI.
2312 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2313 // of the section to create, DESCSZ is the size of the descriptor.
2314 // ALLOCATE is true if the section should be allocated in memory.
2315 // This returns the new note section. It sets *TRAILING_PADDING to
2316 // the number of trailing zero bytes required.
2319 Layout::create_note(const char* name
, int note_type
,
2320 const char* section_name
, size_t descsz
,
2321 bool allocate
, size_t* trailing_padding
)
2323 // Authorities all agree that the values in a .note field should
2324 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2325 // they differ on what the alignment is for 64-bit binaries.
2326 // The GABI says unambiguously they take 8-byte alignment:
2327 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2328 // Other documentation says alignment should always be 4 bytes:
2329 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2330 // GNU ld and GNU readelf both support the latter (at least as of
2331 // version 2.16.91), and glibc always generates the latter for
2332 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2334 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2335 const int size
= parameters
->target().get_size();
2337 const int size
= 32;
2340 // The contents of the .note section.
2341 size_t namesz
= strlen(name
) + 1;
2342 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
2343 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
2345 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
2347 unsigned char* buffer
= new unsigned char[notehdrsz
];
2348 memset(buffer
, 0, notehdrsz
);
2350 bool is_big_endian
= parameters
->target().is_big_endian();
2356 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
2357 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
2358 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
2362 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
2363 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
2364 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
2367 else if (size
== 64)
2371 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
2372 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
2373 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
2377 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
2378 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
2379 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
2385 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
2387 elfcpp::Elf_Xword flags
= 0;
2388 Output_section_order order
= ORDER_INVALID
;
2391 flags
= elfcpp::SHF_ALLOC
;
2392 order
= ORDER_RO_NOTE
;
2394 Output_section
* os
= this->choose_output_section(NULL
, section_name
,
2396 flags
, false, order
, false);
2400 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
2403 os
->add_output_section_data(posd
);
2405 *trailing_padding
= aligned_descsz
- descsz
;
2410 // For an executable or shared library, create a note to record the
2411 // version of gold used to create the binary.
2414 Layout::create_gold_note()
2416 if (parameters
->options().relocatable()
2417 || parameters
->incremental_update())
2420 std::string desc
= std::string("gold ") + gold::get_version_string();
2422 size_t trailing_padding
;
2423 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
2424 ".note.gnu.gold-version", desc
.size(),
2425 false, &trailing_padding
);
2429 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2430 os
->add_output_section_data(posd
);
2432 if (trailing_padding
> 0)
2434 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2435 os
->add_output_section_data(posd
);
2439 // Record whether the stack should be executable. This can be set
2440 // from the command line using the -z execstack or -z noexecstack
2441 // options. Otherwise, if any input file has a .note.GNU-stack
2442 // section with the SHF_EXECINSTR flag set, the stack should be
2443 // executable. Otherwise, if at least one input file a
2444 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2445 // section, we use the target default for whether the stack should be
2446 // executable. Otherwise, we don't generate a stack note. When
2447 // generating a object file, we create a .note.GNU-stack section with
2448 // the appropriate marking. When generating an executable or shared
2449 // library, we create a PT_GNU_STACK segment.
2452 Layout::create_executable_stack_info()
2454 bool is_stack_executable
;
2455 if (parameters
->options().is_execstack_set())
2456 is_stack_executable
= parameters
->options().is_stack_executable();
2457 else if (!this->input_with_gnu_stack_note_
)
2461 if (this->input_requires_executable_stack_
)
2462 is_stack_executable
= true;
2463 else if (this->input_without_gnu_stack_note_
)
2464 is_stack_executable
=
2465 parameters
->target().is_default_stack_executable();
2467 is_stack_executable
= false;
2470 if (parameters
->options().relocatable())
2472 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
2473 elfcpp::Elf_Xword flags
= 0;
2474 if (is_stack_executable
)
2475 flags
|= elfcpp::SHF_EXECINSTR
;
2476 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
,
2477 ORDER_INVALID
, false);
2481 if (this->script_options_
->saw_phdrs_clause())
2483 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
2484 if (is_stack_executable
)
2485 flags
|= elfcpp::PF_X
;
2486 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
2490 // If --build-id was used, set up the build ID note.
2493 Layout::create_build_id()
2495 if (!parameters
->options().user_set_build_id())
2498 const char* style
= parameters
->options().build_id();
2499 if (strcmp(style
, "none") == 0)
2502 // Set DESCSZ to the size of the note descriptor. When possible,
2503 // set DESC to the note descriptor contents.
2506 if (strcmp(style
, "md5") == 0)
2508 else if (strcmp(style
, "sha1") == 0)
2510 else if (strcmp(style
, "uuid") == 0)
2512 const size_t uuidsz
= 128 / 8;
2514 char buffer
[uuidsz
];
2515 memset(buffer
, 0, uuidsz
);
2517 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
2519 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2523 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
2524 release_descriptor(descriptor
, true);
2526 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
2527 else if (static_cast<size_t>(got
) != uuidsz
)
2528 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2532 desc
.assign(buffer
, uuidsz
);
2535 else if (strncmp(style
, "0x", 2) == 0)
2538 const char* p
= style
+ 2;
2541 if (hex_p(p
[0]) && hex_p(p
[1]))
2543 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
2547 else if (*p
== '-' || *p
== ':')
2550 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2553 descsz
= desc
.size();
2556 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
2559 size_t trailing_padding
;
2560 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
2561 ".note.gnu.build-id", descsz
, true,
2568 // We know the value already, so we fill it in now.
2569 gold_assert(desc
.size() == descsz
);
2571 Output_section_data
* posd
= new Output_data_const(desc
, 4);
2572 os
->add_output_section_data(posd
);
2574 if (trailing_padding
!= 0)
2576 posd
= new Output_data_zero_fill(trailing_padding
, 0);
2577 os
->add_output_section_data(posd
);
2582 // We need to compute a checksum after we have completed the
2584 gold_assert(trailing_padding
== 0);
2585 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
2586 os
->add_output_section_data(this->build_id_note_
);
2590 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2591 // field of the former should point to the latter. I'm not sure who
2592 // started this, but the GNU linker does it, and some tools depend
2596 Layout::link_stabs_sections()
2598 if (!this->have_stabstr_section_
)
2601 for (Section_list::iterator p
= this->section_list_
.begin();
2602 p
!= this->section_list_
.end();
2605 if ((*p
)->type() != elfcpp::SHT_STRTAB
)
2608 const char* name
= (*p
)->name();
2609 if (strncmp(name
, ".stab", 5) != 0)
2612 size_t len
= strlen(name
);
2613 if (strcmp(name
+ len
- 3, "str") != 0)
2616 std::string
stab_name(name
, len
- 3);
2617 Output_section
* stab_sec
;
2618 stab_sec
= this->find_output_section(stab_name
.c_str());
2619 if (stab_sec
!= NULL
)
2620 stab_sec
->set_link_section(*p
);
2624 // Create .gnu_incremental_inputs and related sections needed
2625 // for the next run of incremental linking to check what has changed.
2628 Layout::create_incremental_info_sections(Symbol_table
* symtab
)
2630 Incremental_inputs
* incr
= this->incremental_inputs_
;
2632 gold_assert(incr
!= NULL
);
2634 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2635 incr
->create_data_sections(symtab
);
2637 // Add the .gnu_incremental_inputs section.
2638 const char* incremental_inputs_name
=
2639 this->namepool_
.add(".gnu_incremental_inputs", false, NULL
);
2640 Output_section
* incremental_inputs_os
=
2641 this->make_output_section(incremental_inputs_name
,
2642 elfcpp::SHT_GNU_INCREMENTAL_INPUTS
, 0,
2643 ORDER_INVALID
, false);
2644 incremental_inputs_os
->add_output_section_data(incr
->inputs_section());
2646 // Add the .gnu_incremental_symtab section.
2647 const char* incremental_symtab_name
=
2648 this->namepool_
.add(".gnu_incremental_symtab", false, NULL
);
2649 Output_section
* incremental_symtab_os
=
2650 this->make_output_section(incremental_symtab_name
,
2651 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB
, 0,
2652 ORDER_INVALID
, false);
2653 incremental_symtab_os
->add_output_section_data(incr
->symtab_section());
2654 incremental_symtab_os
->set_entsize(4);
2656 // Add the .gnu_incremental_relocs section.
2657 const char* incremental_relocs_name
=
2658 this->namepool_
.add(".gnu_incremental_relocs", false, NULL
);
2659 Output_section
* incremental_relocs_os
=
2660 this->make_output_section(incremental_relocs_name
,
2661 elfcpp::SHT_GNU_INCREMENTAL_RELOCS
, 0,
2662 ORDER_INVALID
, false);
2663 incremental_relocs_os
->add_output_section_data(incr
->relocs_section());
2664 incremental_relocs_os
->set_entsize(incr
->relocs_entsize());
2666 // Add the .gnu_incremental_got_plt section.
2667 const char* incremental_got_plt_name
=
2668 this->namepool_
.add(".gnu_incremental_got_plt", false, NULL
);
2669 Output_section
* incremental_got_plt_os
=
2670 this->make_output_section(incremental_got_plt_name
,
2671 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT
, 0,
2672 ORDER_INVALID
, false);
2673 incremental_got_plt_os
->add_output_section_data(incr
->got_plt_section());
2675 // Add the .gnu_incremental_strtab section.
2676 const char* incremental_strtab_name
=
2677 this->namepool_
.add(".gnu_incremental_strtab", false, NULL
);
2678 Output_section
* incremental_strtab_os
= this->make_output_section(incremental_strtab_name
,
2679 elfcpp::SHT_STRTAB
, 0,
2680 ORDER_INVALID
, false);
2681 Output_data_strtab
* strtab_data
=
2682 new Output_data_strtab(incr
->get_stringpool());
2683 incremental_strtab_os
->add_output_section_data(strtab_data
);
2685 incremental_inputs_os
->set_after_input_sections();
2686 incremental_symtab_os
->set_after_input_sections();
2687 incremental_relocs_os
->set_after_input_sections();
2688 incremental_got_plt_os
->set_after_input_sections();
2690 incremental_inputs_os
->set_link_section(incremental_strtab_os
);
2691 incremental_symtab_os
->set_link_section(incremental_inputs_os
);
2692 incremental_relocs_os
->set_link_section(incremental_inputs_os
);
2693 incremental_got_plt_os
->set_link_section(incremental_inputs_os
);
2696 // Return whether SEG1 should be before SEG2 in the output file. This
2697 // is based entirely on the segment type and flags. When this is
2698 // called the segment addresses has normally not yet been set.
2701 Layout::segment_precedes(const Output_segment
* seg1
,
2702 const Output_segment
* seg2
)
2704 elfcpp::Elf_Word type1
= seg1
->type();
2705 elfcpp::Elf_Word type2
= seg2
->type();
2707 // The single PT_PHDR segment is required to precede any loadable
2708 // segment. We simply make it always first.
2709 if (type1
== elfcpp::PT_PHDR
)
2711 gold_assert(type2
!= elfcpp::PT_PHDR
);
2714 if (type2
== elfcpp::PT_PHDR
)
2717 // The single PT_INTERP segment is required to precede any loadable
2718 // segment. We simply make it always second.
2719 if (type1
== elfcpp::PT_INTERP
)
2721 gold_assert(type2
!= elfcpp::PT_INTERP
);
2724 if (type2
== elfcpp::PT_INTERP
)
2727 // We then put PT_LOAD segments before any other segments.
2728 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
2730 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
2733 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2734 // segment, because that is where the dynamic linker expects to find
2735 // it (this is just for efficiency; other positions would also work
2737 if (type1
== elfcpp::PT_TLS
2738 && type2
!= elfcpp::PT_TLS
2739 && type2
!= elfcpp::PT_GNU_RELRO
)
2741 if (type2
== elfcpp::PT_TLS
2742 && type1
!= elfcpp::PT_TLS
2743 && type1
!= elfcpp::PT_GNU_RELRO
)
2746 // We put the PT_GNU_RELRO segment last, because that is where the
2747 // dynamic linker expects to find it (as with PT_TLS, this is just
2749 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
2751 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
2754 const elfcpp::Elf_Word flags1
= seg1
->flags();
2755 const elfcpp::Elf_Word flags2
= seg2
->flags();
2757 // The order of non-PT_LOAD segments is unimportant. We simply sort
2758 // by the numeric segment type and flags values. There should not
2759 // be more than one segment with the same type and flags.
2760 if (type1
!= elfcpp::PT_LOAD
)
2763 return type1
< type2
;
2764 gold_assert(flags1
!= flags2
);
2765 return flags1
< flags2
;
2768 // If the addresses are set already, sort by load address.
2769 if (seg1
->are_addresses_set())
2771 if (!seg2
->are_addresses_set())
2774 unsigned int section_count1
= seg1
->output_section_count();
2775 unsigned int section_count2
= seg2
->output_section_count();
2776 if (section_count1
== 0 && section_count2
> 0)
2778 if (section_count1
> 0 && section_count2
== 0)
2781 uint64_t paddr1
= (seg1
->are_addresses_set()
2783 : seg1
->first_section_load_address());
2784 uint64_t paddr2
= (seg2
->are_addresses_set()
2786 : seg2
->first_section_load_address());
2788 if (paddr1
!= paddr2
)
2789 return paddr1
< paddr2
;
2791 else if (seg2
->are_addresses_set())
2794 // A segment which holds large data comes after a segment which does
2795 // not hold large data.
2796 if (seg1
->is_large_data_segment())
2798 if (!seg2
->is_large_data_segment())
2801 else if (seg2
->is_large_data_segment())
2804 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2805 // segments come before writable segments. Then writable segments
2806 // with data come before writable segments without data. Then
2807 // executable segments come before non-executable segments. Then
2808 // the unlikely case of a non-readable segment comes before the
2809 // normal case of a readable segment. If there are multiple
2810 // segments with the same type and flags, we require that the
2811 // address be set, and we sort by virtual address and then physical
2813 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
2814 return (flags1
& elfcpp::PF_W
) == 0;
2815 if ((flags1
& elfcpp::PF_W
) != 0
2816 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
2817 return seg1
->has_any_data_sections();
2818 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
2819 return (flags1
& elfcpp::PF_X
) != 0;
2820 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
2821 return (flags1
& elfcpp::PF_R
) == 0;
2823 // We shouldn't get here--we shouldn't create segments which we
2824 // can't distinguish.
2828 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2831 align_file_offset(off_t off
, uint64_t addr
, uint64_t abi_pagesize
)
2833 uint64_t unsigned_off
= off
;
2834 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
2835 | (addr
& (abi_pagesize
- 1)));
2836 if (aligned_off
< unsigned_off
)
2837 aligned_off
+= abi_pagesize
;
2841 // Set the file offsets of all the segments, and all the sections they
2842 // contain. They have all been created. LOAD_SEG must be be laid out
2843 // first. Return the offset of the data to follow.
2846 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
2847 unsigned int* pshndx
)
2849 // Sort them into the final order.
2850 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
2851 Layout::Compare_segments());
2853 // Find the PT_LOAD segments, and set their addresses and offsets
2854 // and their section's addresses and offsets.
2856 if (parameters
->options().user_set_Ttext())
2857 addr
= parameters
->options().Ttext();
2858 else if (parameters
->options().output_is_position_independent())
2861 addr
= target
->default_text_segment_address();
2864 // If LOAD_SEG is NULL, then the file header and segment headers
2865 // will not be loadable. But they still need to be at offset 0 in
2866 // the file. Set their offsets now.
2867 if (load_seg
== NULL
)
2869 for (Data_list::iterator p
= this->special_output_list_
.begin();
2870 p
!= this->special_output_list_
.end();
2873 off
= align_address(off
, (*p
)->addralign());
2874 (*p
)->set_address_and_file_offset(0, off
);
2875 off
+= (*p
)->data_size();
2879 unsigned int increase_relro
= this->increase_relro_
;
2880 if (this->script_options_
->saw_sections_clause())
2883 const bool check_sections
= parameters
->options().check_sections();
2884 Output_segment
* last_load_segment
= NULL
;
2886 for (Segment_list::iterator p
= this->segment_list_
.begin();
2887 p
!= this->segment_list_
.end();
2890 if ((*p
)->type() == elfcpp::PT_LOAD
)
2892 if (load_seg
!= NULL
&& load_seg
!= *p
)
2896 bool are_addresses_set
= (*p
)->are_addresses_set();
2897 if (are_addresses_set
)
2899 // When it comes to setting file offsets, we care about
2900 // the physical address.
2901 addr
= (*p
)->paddr();
2903 else if (parameters
->options().user_set_Tdata()
2904 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2905 && (!parameters
->options().user_set_Tbss()
2906 || (*p
)->has_any_data_sections()))
2908 addr
= parameters
->options().Tdata();
2909 are_addresses_set
= true;
2911 else if (parameters
->options().user_set_Tbss()
2912 && ((*p
)->flags() & elfcpp::PF_W
) != 0
2913 && !(*p
)->has_any_data_sections())
2915 addr
= parameters
->options().Tbss();
2916 are_addresses_set
= true;
2919 uint64_t orig_addr
= addr
;
2920 uint64_t orig_off
= off
;
2922 uint64_t aligned_addr
= 0;
2923 uint64_t abi_pagesize
= target
->abi_pagesize();
2924 uint64_t common_pagesize
= target
->common_pagesize();
2926 if (!parameters
->options().nmagic()
2927 && !parameters
->options().omagic())
2928 (*p
)->set_minimum_p_align(common_pagesize
);
2930 if (!are_addresses_set
)
2932 // Skip the address forward one page, maintaining the same
2933 // position within the page. This lets us store both segments
2934 // overlapping on a single page in the file, but the loader will
2935 // put them on different pages in memory. We will revisit this
2936 // decision once we know the size of the segment.
2938 addr
= align_address(addr
, (*p
)->maximum_alignment());
2939 aligned_addr
= addr
;
2941 if ((addr
& (abi_pagesize
- 1)) != 0)
2942 addr
= addr
+ abi_pagesize
;
2944 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2947 if (!parameters
->options().nmagic()
2948 && !parameters
->options().omagic())
2949 off
= align_file_offset(off
, addr
, abi_pagesize
);
2950 else if (load_seg
== NULL
)
2952 // This is -N or -n with a section script which prevents
2953 // us from using a load segment. We need to ensure that
2954 // the file offset is aligned to the alignment of the
2955 // segment. This is because the linker script
2956 // implicitly assumed a zero offset. If we don't align
2957 // here, then the alignment of the sections in the
2958 // linker script may not match the alignment of the
2959 // sections in the set_section_addresses call below,
2960 // causing an error about dot moving backward.
2961 off
= align_address(off
, (*p
)->maximum_alignment());
2964 unsigned int shndx_hold
= *pshndx
;
2965 bool has_relro
= false;
2966 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
2971 // Now that we know the size of this segment, we may be able
2972 // to save a page in memory, at the cost of wasting some
2973 // file space, by instead aligning to the start of a new
2974 // page. Here we use the real machine page size rather than
2975 // the ABI mandated page size. If the segment has been
2976 // aligned so that the relro data ends at a page boundary,
2977 // we do not try to realign it.
2979 if (!are_addresses_set
2981 && aligned_addr
!= addr
2982 && !parameters
->incremental())
2984 uint64_t first_off
= (common_pagesize
2986 & (common_pagesize
- 1)));
2987 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
2990 && ((aligned_addr
& ~ (common_pagesize
- 1))
2991 != (new_addr
& ~ (common_pagesize
- 1)))
2992 && first_off
+ last_off
<= common_pagesize
)
2994 *pshndx
= shndx_hold
;
2995 addr
= align_address(aligned_addr
, common_pagesize
);
2996 addr
= align_address(addr
, (*p
)->maximum_alignment());
2997 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
2998 off
= align_file_offset(off
, addr
, abi_pagesize
);
3000 increase_relro
= this->increase_relro_
;
3001 if (this->script_options_
->saw_sections_clause())
3005 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
3014 // Implement --check-sections. We know that the segments
3015 // are sorted by LMA.
3016 if (check_sections
&& last_load_segment
!= NULL
)
3018 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
3019 if (last_load_segment
->paddr() + last_load_segment
->memsz()
3022 unsigned long long lb1
= last_load_segment
->paddr();
3023 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
3024 unsigned long long lb2
= (*p
)->paddr();
3025 unsigned long long le2
= lb2
+ (*p
)->memsz();
3026 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3027 "[0x%llx -> 0x%llx]"),
3028 lb1
, le1
, lb2
, le2
);
3031 last_load_segment
= *p
;
3035 // Handle the non-PT_LOAD segments, setting their offsets from their
3036 // section's offsets.
3037 for (Segment_list::iterator p
= this->segment_list_
.begin();
3038 p
!= this->segment_list_
.end();
3041 if ((*p
)->type() != elfcpp::PT_LOAD
)
3042 (*p
)->set_offset((*p
)->type() == elfcpp::PT_GNU_RELRO
3047 // Set the TLS offsets for each section in the PT_TLS segment.
3048 if (this->tls_segment_
!= NULL
)
3049 this->tls_segment_
->set_tls_offsets();
3054 // Set the offsets of all the allocated sections when doing a
3055 // relocatable link. This does the same jobs as set_segment_offsets,
3056 // only for a relocatable link.
3059 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
3060 unsigned int* pshndx
)
3064 file_header
->set_address_and_file_offset(0, 0);
3065 off
+= file_header
->data_size();
3067 for (Section_list::iterator p
= this->section_list_
.begin();
3068 p
!= this->section_list_
.end();
3071 // We skip unallocated sections here, except that group sections
3072 // have to come first.
3073 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
3074 && (*p
)->type() != elfcpp::SHT_GROUP
)
3077 off
= align_address(off
, (*p
)->addralign());
3079 // The linker script might have set the address.
3080 if (!(*p
)->is_address_valid())
3081 (*p
)->set_address(0);
3082 (*p
)->set_file_offset(off
);
3083 (*p
)->finalize_data_size();
3084 off
+= (*p
)->data_size();
3086 (*p
)->set_out_shndx(*pshndx
);
3093 // Set the file offset of all the sections not associated with a
3097 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
3099 off_t startoff
= off
;
3102 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
3103 p
!= this->unattached_section_list_
.end();
3106 // The symtab section is handled in create_symtab_sections.
3107 if (*p
== this->symtab_section_
)
3110 // If we've already set the data size, don't set it again.
3111 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
3114 if (pass
== BEFORE_INPUT_SECTIONS_PASS
3115 && (*p
)->requires_postprocessing())
3117 (*p
)->create_postprocessing_buffer();
3118 this->any_postprocessing_sections_
= true;
3121 if (pass
== BEFORE_INPUT_SECTIONS_PASS
3122 && (*p
)->after_input_sections())
3124 else if (pass
== POSTPROCESSING_SECTIONS_PASS
3125 && (!(*p
)->after_input_sections()
3126 || (*p
)->type() == elfcpp::SHT_STRTAB
))
3128 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3129 && (!(*p
)->after_input_sections()
3130 || (*p
)->type() != elfcpp::SHT_STRTAB
))
3133 if (!parameters
->incremental_update())
3135 off
= align_address(off
, (*p
)->addralign());
3136 (*p
)->set_file_offset(off
);
3137 (*p
)->finalize_data_size();
3141 // Incremental update: allocate file space from free list.
3142 (*p
)->pre_finalize_data_size();
3143 off_t current_size
= (*p
)->current_data_size();
3144 off
= this->allocate(current_size
, (*p
)->addralign(), startoff
);
3147 if (is_debugging_enabled(DEBUG_INCREMENTAL
))
3148 this->free_list_
.dump();
3149 gold_assert((*p
)->output_section() != NULL
);
3150 gold_fallback(_("out of patch space for section %s; "
3151 "relink with --incremental-full"),
3152 (*p
)->output_section()->name());
3154 (*p
)->set_file_offset(off
);
3155 (*p
)->finalize_data_size();
3156 if ((*p
)->data_size() > current_size
)
3158 gold_assert((*p
)->output_section() != NULL
);
3159 gold_fallback(_("%s: section changed size; "
3160 "relink with --incremental-full"),
3161 (*p
)->output_section()->name());
3163 gold_debug(DEBUG_INCREMENTAL
,
3164 "set_section_offsets: %08lx %08lx %s",
3165 static_cast<long>(off
),
3166 static_cast<long>((*p
)->data_size()),
3167 ((*p
)->output_section() != NULL
3168 ? (*p
)->output_section()->name() : "(special)"));
3171 off
+= (*p
)->data_size();
3175 // At this point the name must be set.
3176 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
3177 this->namepool_
.add((*p
)->name(), false, NULL
);
3182 // Set the section indexes of all the sections not associated with a
3186 Layout::set_section_indexes(unsigned int shndx
)
3188 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
3189 p
!= this->unattached_section_list_
.end();
3192 if (!(*p
)->has_out_shndx())
3194 (*p
)->set_out_shndx(shndx
);
3201 // Set the section addresses according to the linker script. This is
3202 // only called when we see a SECTIONS clause. This returns the
3203 // program segment which should hold the file header and segment
3204 // headers, if any. It will return NULL if they should not be in a
3208 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
3210 Script_sections
* ss
= this->script_options_
->script_sections();
3211 gold_assert(ss
->saw_sections_clause());
3212 return this->script_options_
->set_section_addresses(symtab
, this);
3215 // Place the orphan sections in the linker script.
3218 Layout::place_orphan_sections_in_script()
3220 Script_sections
* ss
= this->script_options_
->script_sections();
3221 gold_assert(ss
->saw_sections_clause());
3223 // Place each orphaned output section in the script.
3224 for (Section_list::iterator p
= this->section_list_
.begin();
3225 p
!= this->section_list_
.end();
3228 if (!(*p
)->found_in_sections_clause())
3229 ss
->place_orphan(*p
);
3233 // Count the local symbols in the regular symbol table and the dynamic
3234 // symbol table, and build the respective string pools.
3237 Layout::count_local_symbols(const Task
* task
,
3238 const Input_objects
* input_objects
)
3240 // First, figure out an upper bound on the number of symbols we'll
3241 // be inserting into each pool. This helps us create the pools with
3242 // the right size, to avoid unnecessary hashtable resizing.
3243 unsigned int symbol_count
= 0;
3244 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3245 p
!= input_objects
->relobj_end();
3247 symbol_count
+= (*p
)->local_symbol_count();
3249 // Go from "upper bound" to "estimate." We overcount for two
3250 // reasons: we double-count symbols that occur in more than one
3251 // object file, and we count symbols that are dropped from the
3252 // output. Add it all together and assume we overcount by 100%.
3255 // We assume all symbols will go into both the sympool and dynpool.
3256 this->sympool_
.reserve(symbol_count
);
3257 this->dynpool_
.reserve(symbol_count
);
3259 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3260 p
!= input_objects
->relobj_end();
3263 Task_lock_obj
<Object
> tlo(task
, *p
);
3264 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
3268 // Create the symbol table sections. Here we also set the final
3269 // values of the symbols. At this point all the loadable sections are
3270 // fully laid out. SHNUM is the number of sections so far.
3273 Layout::create_symtab_sections(const Input_objects
* input_objects
,
3274 Symbol_table
* symtab
,
3280 if (parameters
->target().get_size() == 32)
3282 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3285 else if (parameters
->target().get_size() == 64)
3287 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3293 // Compute file offsets relative to the start of the symtab section.
3296 // Save space for the dummy symbol at the start of the section. We
3297 // never bother to write this out--it will just be left as zero.
3299 unsigned int local_symbol_index
= 1;
3301 // Add STT_SECTION symbols for each Output section which needs one.
3302 for (Section_list::iterator p
= this->section_list_
.begin();
3303 p
!= this->section_list_
.end();
3306 if (!(*p
)->needs_symtab_index())
3307 (*p
)->set_symtab_index(-1U);
3310 (*p
)->set_symtab_index(local_symbol_index
);
3311 ++local_symbol_index
;
3316 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3317 p
!= input_objects
->relobj_end();
3320 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
3322 off
+= (index
- local_symbol_index
) * symsize
;
3323 local_symbol_index
= index
;
3326 unsigned int local_symcount
= local_symbol_index
;
3327 gold_assert(static_cast<off_t
>(local_symcount
* symsize
) == off
);
3330 size_t dyn_global_index
;
3332 if (this->dynsym_section_
== NULL
)
3335 dyn_global_index
= 0;
3340 dyn_global_index
= this->dynsym_section_
->info();
3341 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
3342 dynoff
= this->dynsym_section_
->offset() + locsize
;
3343 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
3344 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
3345 == this->dynsym_section_
->data_size() - locsize
);
3348 off_t global_off
= off
;
3349 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
3350 &this->sympool_
, &local_symcount
);
3352 if (!parameters
->options().strip_all())
3354 this->sympool_
.set_string_offsets();
3356 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
3357 Output_section
* osymtab
= this->make_output_section(symtab_name
,
3361 this->symtab_section_
= osymtab
;
3363 Output_section_data
* pos
= new Output_data_fixed_space(off
, align
,
3365 osymtab
->add_output_section_data(pos
);
3367 // We generate a .symtab_shndx section if we have more than
3368 // SHN_LORESERVE sections. Technically it is possible that we
3369 // don't need one, because it is possible that there are no
3370 // symbols in any of sections with indexes larger than
3371 // SHN_LORESERVE. That is probably unusual, though, and it is
3372 // easier to always create one than to compute section indexes
3373 // twice (once here, once when writing out the symbols).
3374 if (shnum
>= elfcpp::SHN_LORESERVE
)
3376 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
3378 Output_section
* osymtab_xindex
=
3379 this->make_output_section(symtab_xindex_name
,
3380 elfcpp::SHT_SYMTAB_SHNDX
, 0,
3381 ORDER_INVALID
, false);
3383 size_t symcount
= off
/ symsize
;
3384 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
3386 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
3388 osymtab_xindex
->set_link_section(osymtab
);
3389 osymtab_xindex
->set_addralign(4);
3390 osymtab_xindex
->set_entsize(4);
3392 osymtab_xindex
->set_after_input_sections();
3394 // This tells the driver code to wait until the symbol table
3395 // has written out before writing out the postprocessing
3396 // sections, including the .symtab_shndx section.
3397 this->any_postprocessing_sections_
= true;
3400 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
3401 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
3406 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
3407 ostrtab
->add_output_section_data(pstr
);
3410 if (!parameters
->incremental_update())
3411 symtab_off
= align_address(*poff
, align
);
3414 symtab_off
= this->allocate(off
, align
, *poff
);
3416 gold_fallback(_("out of patch space for symbol table; "
3417 "relink with --incremental-full"));
3418 gold_debug(DEBUG_INCREMENTAL
,
3419 "create_symtab_sections: %08lx %08lx .symtab",
3420 static_cast<long>(symtab_off
),
3421 static_cast<long>(off
));
3424 symtab
->set_file_offset(symtab_off
+ global_off
);
3425 osymtab
->set_file_offset(symtab_off
);
3426 osymtab
->finalize_data_size();
3427 osymtab
->set_link_section(ostrtab
);
3428 osymtab
->set_info(local_symcount
);
3429 osymtab
->set_entsize(symsize
);
3431 if (symtab_off
+ off
> *poff
)
3432 *poff
= symtab_off
+ off
;
3436 // Create the .shstrtab section, which holds the names of the
3437 // sections. At the time this is called, we have created all the
3438 // output sections except .shstrtab itself.
3441 Layout::create_shstrtab()
3443 // FIXME: We don't need to create a .shstrtab section if we are
3444 // stripping everything.
3446 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
3448 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0,
3449 ORDER_INVALID
, false);
3451 if (strcmp(parameters
->options().compress_debug_sections(), "none") != 0)
3453 // We can't write out this section until we've set all the
3454 // section names, and we don't set the names of compressed
3455 // output sections until relocations are complete. FIXME: With
3456 // the current names we use, this is unnecessary.
3457 os
->set_after_input_sections();
3460 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
3461 os
->add_output_section_data(posd
);
3466 // Create the section headers. SIZE is 32 or 64. OFF is the file
3470 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
3472 Output_section_headers
* oshdrs
;
3473 oshdrs
= new Output_section_headers(this,
3474 &this->segment_list_
,
3475 &this->section_list_
,
3476 &this->unattached_section_list_
,
3480 if (!parameters
->incremental_update())
3481 off
= align_address(*poff
, oshdrs
->addralign());
3484 oshdrs
->pre_finalize_data_size();
3485 off
= this->allocate(oshdrs
->data_size(), oshdrs
->addralign(), *poff
);
3487 gold_fallback(_("out of patch space for section header table; "
3488 "relink with --incremental-full"));
3489 gold_debug(DEBUG_INCREMENTAL
,
3490 "create_shdrs: %08lx %08lx (section header table)",
3491 static_cast<long>(off
),
3492 static_cast<long>(off
+ oshdrs
->data_size()));
3494 oshdrs
->set_address_and_file_offset(0, off
);
3495 off
+= oshdrs
->data_size();
3498 this->section_headers_
= oshdrs
;
3501 // Count the allocated sections.
3504 Layout::allocated_output_section_count() const
3506 size_t section_count
= 0;
3507 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3508 p
!= this->segment_list_
.end();
3510 section_count
+= (*p
)->output_section_count();
3511 return section_count
;
3514 // Create the dynamic symbol table.
3517 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
3518 Symbol_table
* symtab
,
3519 Output_section
** pdynstr
,
3520 unsigned int* plocal_dynamic_count
,
3521 std::vector
<Symbol
*>* pdynamic_symbols
,
3522 Versions
* pversions
)
3524 // Count all the symbols in the dynamic symbol table, and set the
3525 // dynamic symbol indexes.
3527 // Skip symbol 0, which is always all zeroes.
3528 unsigned int index
= 1;
3530 // Add STT_SECTION symbols for each Output section which needs one.
3531 for (Section_list::iterator p
= this->section_list_
.begin();
3532 p
!= this->section_list_
.end();
3535 if (!(*p
)->needs_dynsym_index())
3536 (*p
)->set_dynsym_index(-1U);
3539 (*p
)->set_dynsym_index(index
);
3544 // Count the local symbols that need to go in the dynamic symbol table,
3545 // and set the dynamic symbol indexes.
3546 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3547 p
!= input_objects
->relobj_end();
3550 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
3554 unsigned int local_symcount
= index
;
3555 *plocal_dynamic_count
= local_symcount
;
3557 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
3558 &this->dynpool_
, pversions
);
3562 const int size
= parameters
->target().get_size();
3565 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
3568 else if (size
== 64)
3570 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
3576 // Create the dynamic symbol table section.
3578 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
3582 ORDER_DYNAMIC_LINKER
,
3585 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
3588 dynsym
->add_output_section_data(odata
);
3590 dynsym
->set_info(local_symcount
);
3591 dynsym
->set_entsize(symsize
);
3592 dynsym
->set_addralign(align
);
3594 this->dynsym_section_
= dynsym
;
3596 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3597 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
3598 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
3600 // If there are more than SHN_LORESERVE allocated sections, we
3601 // create a .dynsym_shndx section. It is possible that we don't
3602 // need one, because it is possible that there are no dynamic
3603 // symbols in any of the sections with indexes larger than
3604 // SHN_LORESERVE. This is probably unusual, though, and at this
3605 // time we don't know the actual section indexes so it is
3606 // inconvenient to check.
3607 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
3609 Output_section
* dynsym_xindex
=
3610 this->choose_output_section(NULL
, ".dynsym_shndx",
3611 elfcpp::SHT_SYMTAB_SHNDX
,
3613 false, ORDER_DYNAMIC_LINKER
, false);
3615 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
3617 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
3619 dynsym_xindex
->set_link_section(dynsym
);
3620 dynsym_xindex
->set_addralign(4);
3621 dynsym_xindex
->set_entsize(4);
3623 dynsym_xindex
->set_after_input_sections();
3625 // This tells the driver code to wait until the symbol table has
3626 // written out before writing out the postprocessing sections,
3627 // including the .dynsym_shndx section.
3628 this->any_postprocessing_sections_
= true;
3631 // Create the dynamic string table section.
3633 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
3637 ORDER_DYNAMIC_LINKER
,
3640 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
3641 dynstr
->add_output_section_data(strdata
);
3643 dynsym
->set_link_section(dynstr
);
3644 this->dynamic_section_
->set_link_section(dynstr
);
3646 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
3647 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
3651 // Create the hash tables.
3653 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
3654 || strcmp(parameters
->options().hash_style(), "both") == 0)
3656 unsigned char* phash
;
3657 unsigned int hashlen
;
3658 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
3661 Output_section
* hashsec
=
3662 this->choose_output_section(NULL
, ".hash", elfcpp::SHT_HASH
,
3663 elfcpp::SHF_ALLOC
, false,
3664 ORDER_DYNAMIC_LINKER
, false);
3666 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3670 hashsec
->add_output_section_data(hashdata
);
3672 hashsec
->set_link_section(dynsym
);
3673 hashsec
->set_entsize(4);
3675 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
3678 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
3679 || strcmp(parameters
->options().hash_style(), "both") == 0)
3681 unsigned char* phash
;
3682 unsigned int hashlen
;
3683 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
3686 Output_section
* hashsec
=
3687 this->choose_output_section(NULL
, ".gnu.hash", elfcpp::SHT_GNU_HASH
,
3688 elfcpp::SHF_ALLOC
, false,
3689 ORDER_DYNAMIC_LINKER
, false);
3691 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
3695 hashsec
->add_output_section_data(hashdata
);
3697 hashsec
->set_link_section(dynsym
);
3699 // For a 64-bit target, the entries in .gnu.hash do not have a
3700 // uniform size, so we only set the entry size for a 32-bit
3702 if (parameters
->target().get_size() == 32)
3703 hashsec
->set_entsize(4);
3705 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
3709 // Assign offsets to each local portion of the dynamic symbol table.
3712 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
3714 Output_section
* dynsym
= this->dynsym_section_
;
3715 gold_assert(dynsym
!= NULL
);
3717 off_t off
= dynsym
->offset();
3719 // Skip the dummy symbol at the start of the section.
3720 off
+= dynsym
->entsize();
3722 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
3723 p
!= input_objects
->relobj_end();
3726 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
3727 off
+= count
* dynsym
->entsize();
3731 // Create the version sections.
3734 Layout::create_version_sections(const Versions
* versions
,
3735 const Symbol_table
* symtab
,
3736 unsigned int local_symcount
,
3737 const std::vector
<Symbol
*>& dynamic_symbols
,
3738 const Output_section
* dynstr
)
3740 if (!versions
->any_defs() && !versions
->any_needs())
3743 switch (parameters
->size_and_endianness())
3745 #ifdef HAVE_TARGET_32_LITTLE
3746 case Parameters::TARGET_32_LITTLE
:
3747 this->sized_create_version_sections
<32, false>(versions
, symtab
,
3749 dynamic_symbols
, dynstr
);
3752 #ifdef HAVE_TARGET_32_BIG
3753 case Parameters::TARGET_32_BIG
:
3754 this->sized_create_version_sections
<32, true>(versions
, symtab
,
3756 dynamic_symbols
, dynstr
);
3759 #ifdef HAVE_TARGET_64_LITTLE
3760 case Parameters::TARGET_64_LITTLE
:
3761 this->sized_create_version_sections
<64, false>(versions
, symtab
,
3763 dynamic_symbols
, dynstr
);
3766 #ifdef HAVE_TARGET_64_BIG
3767 case Parameters::TARGET_64_BIG
:
3768 this->sized_create_version_sections
<64, true>(versions
, symtab
,
3770 dynamic_symbols
, dynstr
);
3778 // Create the version sections, sized version.
3780 template<int size
, bool big_endian
>
3782 Layout::sized_create_version_sections(
3783 const Versions
* versions
,
3784 const Symbol_table
* symtab
,
3785 unsigned int local_symcount
,
3786 const std::vector
<Symbol
*>& dynamic_symbols
,
3787 const Output_section
* dynstr
)
3789 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
3790 elfcpp::SHT_GNU_versym
,
3793 ORDER_DYNAMIC_LINKER
,
3796 unsigned char* vbuf
;
3798 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
3803 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
3806 vsec
->add_output_section_data(vdata
);
3807 vsec
->set_entsize(2);
3808 vsec
->set_link_section(this->dynsym_section_
);
3810 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
3811 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
3813 if (versions
->any_defs())
3815 Output_section
* vdsec
;
3816 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
3817 elfcpp::SHT_GNU_verdef
,
3819 false, ORDER_DYNAMIC_LINKER
, false);
3821 unsigned char* vdbuf
;
3822 unsigned int vdsize
;
3823 unsigned int vdentries
;
3824 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
3825 &vdsize
, &vdentries
);
3827 Output_section_data
* vddata
=
3828 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
3830 vdsec
->add_output_section_data(vddata
);
3831 vdsec
->set_link_section(dynstr
);
3832 vdsec
->set_info(vdentries
);
3834 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
3835 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
3838 if (versions
->any_needs())
3840 Output_section
* vnsec
;
3841 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
3842 elfcpp::SHT_GNU_verneed
,
3844 false, ORDER_DYNAMIC_LINKER
, false);
3846 unsigned char* vnbuf
;
3847 unsigned int vnsize
;
3848 unsigned int vnentries
;
3849 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
3853 Output_section_data
* vndata
=
3854 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
3856 vnsec
->add_output_section_data(vndata
);
3857 vnsec
->set_link_section(dynstr
);
3858 vnsec
->set_info(vnentries
);
3860 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
3861 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
3865 // Create the .interp section and PT_INTERP segment.
3868 Layout::create_interp(const Target
* target
)
3870 gold_assert(this->interp_segment_
== NULL
);
3872 const char* interp
= parameters
->options().dynamic_linker();
3875 interp
= target
->dynamic_linker();
3876 gold_assert(interp
!= NULL
);
3879 size_t len
= strlen(interp
) + 1;
3881 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
3883 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
3884 elfcpp::SHT_PROGBITS
,
3886 false, ORDER_INTERP
,
3888 osec
->add_output_section_data(odata
);
3891 // Add dynamic tags for the PLT and the dynamic relocs. This is
3892 // called by the target-specific code. This does nothing if not doing
3895 // USE_REL is true for REL relocs rather than RELA relocs.
3897 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3899 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3900 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3901 // some targets have multiple reloc sections in PLT_REL.
3903 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3904 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3906 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3910 Layout::add_target_dynamic_tags(bool use_rel
, const Output_data
* plt_got
,
3911 const Output_data
* plt_rel
,
3912 const Output_data_reloc_generic
* dyn_rel
,
3913 bool add_debug
, bool dynrel_includes_plt
)
3915 Output_data_dynamic
* odyn
= this->dynamic_data_
;
3919 if (plt_got
!= NULL
&& plt_got
->output_section() != NULL
)
3920 odyn
->add_section_address(elfcpp::DT_PLTGOT
, plt_got
);
3922 if (plt_rel
!= NULL
&& plt_rel
->output_section() != NULL
)
3924 odyn
->add_section_size(elfcpp::DT_PLTRELSZ
, plt_rel
->output_section());
3925 odyn
->add_section_address(elfcpp::DT_JMPREL
, plt_rel
->output_section());
3926 odyn
->add_constant(elfcpp::DT_PLTREL
,
3927 use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
);
3930 if (dyn_rel
!= NULL
&& dyn_rel
->output_section() != NULL
)
3932 odyn
->add_section_address(use_rel
? elfcpp::DT_REL
: elfcpp::DT_RELA
,
3934 if (plt_rel
!= NULL
&& dynrel_includes_plt
)
3935 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3938 odyn
->add_section_size(use_rel
? elfcpp::DT_RELSZ
: elfcpp::DT_RELASZ
,
3940 const int size
= parameters
->target().get_size();
3945 rel_tag
= elfcpp::DT_RELENT
;
3947 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 32, false>::reloc_size
;
3948 else if (size
== 64)
3949 rel_size
= Reloc_types
<elfcpp::SHT_REL
, 64, false>::reloc_size
;
3955 rel_tag
= elfcpp::DT_RELAENT
;
3957 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 32, false>::reloc_size
;
3958 else if (size
== 64)
3959 rel_size
= Reloc_types
<elfcpp::SHT_RELA
, 64, false>::reloc_size
;
3963 odyn
->add_constant(rel_tag
, rel_size
);
3965 if (parameters
->options().combreloc())
3967 size_t c
= dyn_rel
->relative_reloc_count();
3969 odyn
->add_constant((use_rel
3970 ? elfcpp::DT_RELCOUNT
3971 : elfcpp::DT_RELACOUNT
),
3976 if (add_debug
&& !parameters
->options().shared())
3978 // The value of the DT_DEBUG tag is filled in by the dynamic
3979 // linker at run time, and used by the debugger.
3980 odyn
->add_constant(elfcpp::DT_DEBUG
, 0);
3984 // Finish the .dynamic section and PT_DYNAMIC segment.
3987 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
3988 const Symbol_table
* symtab
)
3990 if (!this->script_options_
->saw_phdrs_clause())
3992 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
3995 oseg
->add_output_section_to_nonload(this->dynamic_section_
,
3996 elfcpp::PF_R
| elfcpp::PF_W
);
3999 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
4001 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
4002 p
!= input_objects
->dynobj_end();
4005 if (!(*p
)->is_needed() && (*p
)->as_needed())
4007 // This dynamic object was linked with --as-needed, but it
4012 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
4015 if (parameters
->options().shared())
4017 const char* soname
= parameters
->options().soname();
4019 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
4022 Symbol
* sym
= symtab
->lookup(parameters
->options().init());
4023 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
4024 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
4026 sym
= symtab
->lookup(parameters
->options().fini());
4027 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
4028 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
4030 // Look for .init_array, .preinit_array and .fini_array by checking
4032 for(Layout::Section_list::const_iterator p
= this->section_list_
.begin();
4033 p
!= this->section_list_
.end();
4035 switch((*p
)->type())
4037 case elfcpp::SHT_FINI_ARRAY
:
4038 odyn
->add_section_address(elfcpp::DT_FINI_ARRAY
, *p
);
4039 odyn
->add_section_size(elfcpp::DT_FINI_ARRAYSZ
, *p
);
4041 case elfcpp::SHT_INIT_ARRAY
:
4042 odyn
->add_section_address(elfcpp::DT_INIT_ARRAY
, *p
);
4043 odyn
->add_section_size(elfcpp::DT_INIT_ARRAYSZ
, *p
);
4045 case elfcpp::SHT_PREINIT_ARRAY
:
4046 odyn
->add_section_address(elfcpp::DT_PREINIT_ARRAY
, *p
);
4047 odyn
->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ
, *p
);
4053 // Add a DT_RPATH entry if needed.
4054 const General_options::Dir_list
& rpath(parameters
->options().rpath());
4057 std::string rpath_val
;
4058 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
4062 if (rpath_val
.empty())
4063 rpath_val
= p
->name();
4066 // Eliminate duplicates.
4067 General_options::Dir_list::const_iterator q
;
4068 for (q
= rpath
.begin(); q
!= p
; ++q
)
4069 if (q
->name() == p
->name())
4074 rpath_val
+= p
->name();
4079 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
4080 if (parameters
->options().enable_new_dtags())
4081 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
4084 // Look for text segments that have dynamic relocations.
4085 bool have_textrel
= false;
4086 if (!this->script_options_
->saw_sections_clause())
4088 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4089 p
!= this->segment_list_
.end();
4092 if ((*p
)->type() == elfcpp::PT_LOAD
4093 && ((*p
)->flags() & elfcpp::PF_W
) == 0
4094 && (*p
)->has_dynamic_reloc())
4096 have_textrel
= true;
4103 // We don't know the section -> segment mapping, so we are
4104 // conservative and just look for readonly sections with
4105 // relocations. If those sections wind up in writable segments,
4106 // then we have created an unnecessary DT_TEXTREL entry.
4107 for (Section_list::const_iterator p
= this->section_list_
.begin();
4108 p
!= this->section_list_
.end();
4111 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
4112 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
4113 && (*p
)->has_dynamic_reloc())
4115 have_textrel
= true;
4121 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4122 // post-link tools can easily modify these flags if desired.
4123 unsigned int flags
= 0;
4126 // Add a DT_TEXTREL for compatibility with older loaders.
4127 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
4128 flags
|= elfcpp::DF_TEXTREL
;
4130 if (parameters
->options().text())
4131 gold_error(_("read-only segment has dynamic relocations"));
4132 else if (parameters
->options().warn_shared_textrel()
4133 && parameters
->options().shared())
4134 gold_warning(_("shared library text segment is not shareable"));
4136 if (parameters
->options().shared() && this->has_static_tls())
4137 flags
|= elfcpp::DF_STATIC_TLS
;
4138 if (parameters
->options().origin())
4139 flags
|= elfcpp::DF_ORIGIN
;
4140 if (parameters
->options().Bsymbolic())
4142 flags
|= elfcpp::DF_SYMBOLIC
;
4143 // Add DT_SYMBOLIC for compatibility with older loaders.
4144 odyn
->add_constant(elfcpp::DT_SYMBOLIC
, 0);
4146 if (parameters
->options().now())
4147 flags
|= elfcpp::DF_BIND_NOW
;
4149 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
4152 if (parameters
->options().initfirst())
4153 flags
|= elfcpp::DF_1_INITFIRST
;
4154 if (parameters
->options().interpose())
4155 flags
|= elfcpp::DF_1_INTERPOSE
;
4156 if (parameters
->options().loadfltr())
4157 flags
|= elfcpp::DF_1_LOADFLTR
;
4158 if (parameters
->options().nodefaultlib())
4159 flags
|= elfcpp::DF_1_NODEFLIB
;
4160 if (parameters
->options().nodelete())
4161 flags
|= elfcpp::DF_1_NODELETE
;
4162 if (parameters
->options().nodlopen())
4163 flags
|= elfcpp::DF_1_NOOPEN
;
4164 if (parameters
->options().nodump())
4165 flags
|= elfcpp::DF_1_NODUMP
;
4166 if (!parameters
->options().shared())
4167 flags
&= ~(elfcpp::DF_1_INITFIRST
4168 | elfcpp::DF_1_NODELETE
4169 | elfcpp::DF_1_NOOPEN
);
4170 if (parameters
->options().origin())
4171 flags
|= elfcpp::DF_1_ORIGIN
;
4172 if (parameters
->options().now())
4173 flags
|= elfcpp::DF_1_NOW
;
4175 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
4178 // Set the size of the _DYNAMIC symbol table to be the size of the
4182 Layout::set_dynamic_symbol_size(const Symbol_table
* symtab
)
4184 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
4185 odyn
->finalize_data_size();
4186 off_t data_size
= odyn
->data_size();
4187 const int size
= parameters
->target().get_size();
4189 symtab
->get_sized_symbol
<32>(this->dynamic_symbol_
)->set_symsize(data_size
);
4190 else if (size
== 64)
4191 symtab
->get_sized_symbol
<64>(this->dynamic_symbol_
)->set_symsize(data_size
);
4196 // The mapping of input section name prefixes to output section names.
4197 // In some cases one prefix is itself a prefix of another prefix; in
4198 // such a case the longer prefix must come first. These prefixes are
4199 // based on the GNU linker default ELF linker script.
4201 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4202 const Layout::Section_name_mapping
Layout::section_name_mapping
[] =
4204 MAPPING_INIT(".text.", ".text"),
4205 MAPPING_INIT(".ctors.", ".ctors"),
4206 MAPPING_INIT(".dtors.", ".dtors"),
4207 MAPPING_INIT(".rodata.", ".rodata"),
4208 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4209 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4210 MAPPING_INIT(".data.", ".data"),
4211 MAPPING_INIT(".bss.", ".bss"),
4212 MAPPING_INIT(".tdata.", ".tdata"),
4213 MAPPING_INIT(".tbss.", ".tbss"),
4214 MAPPING_INIT(".init_array.", ".init_array"),
4215 MAPPING_INIT(".fini_array.", ".fini_array"),
4216 MAPPING_INIT(".sdata.", ".sdata"),
4217 MAPPING_INIT(".sbss.", ".sbss"),
4218 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4219 // differently depending on whether it is creating a shared library.
4220 MAPPING_INIT(".sdata2.", ".sdata"),
4221 MAPPING_INIT(".sbss2.", ".sbss"),
4222 MAPPING_INIT(".lrodata.", ".lrodata"),
4223 MAPPING_INIT(".ldata.", ".ldata"),
4224 MAPPING_INIT(".lbss.", ".lbss"),
4225 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4226 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4227 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4228 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4229 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4230 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4231 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4232 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4233 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4234 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4235 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4236 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4237 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4238 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4239 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4240 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4241 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4242 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4243 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4244 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4245 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4249 const int Layout::section_name_mapping_count
=
4250 (sizeof(Layout::section_name_mapping
)
4251 / sizeof(Layout::section_name_mapping
[0]));
4253 // Choose the output section name to use given an input section name.
4254 // Set *PLEN to the length of the name. *PLEN is initialized to the
4258 Layout::output_section_name(const char* name
, size_t* plen
)
4260 // gcc 4.3 generates the following sorts of section names when it
4261 // needs a section name specific to a function:
4267 // .data.rel.local.FN
4269 // .data.rel.ro.local.FN
4276 // The GNU linker maps all of those to the part before the .FN,
4277 // except that .data.rel.local.FN is mapped to .data, and
4278 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4279 // beginning with .data.rel.ro.local are grouped together.
4281 // For an anonymous namespace, the string FN can contain a '.'.
4283 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4284 // GNU linker maps to .rodata.
4286 // The .data.rel.ro sections are used with -z relro. The sections
4287 // are recognized by name. We use the same names that the GNU
4288 // linker does for these sections.
4290 // It is hard to handle this in a principled way, so we don't even
4291 // try. We use a table of mappings. If the input section name is
4292 // not found in the table, we simply use it as the output section
4295 const Section_name_mapping
* psnm
= section_name_mapping
;
4296 for (int i
= 0; i
< section_name_mapping_count
; ++i
, ++psnm
)
4298 if (strncmp(name
, psnm
->from
, psnm
->fromlen
) == 0)
4300 *plen
= psnm
->tolen
;
4308 // Check if a comdat group or .gnu.linkonce section with the given
4309 // NAME is selected for the link. If there is already a section,
4310 // *KEPT_SECTION is set to point to the existing section and the
4311 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4312 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4313 // *KEPT_SECTION is set to the internal copy and the function returns
4317 Layout::find_or_add_kept_section(const std::string
& name
,
4322 Kept_section
** kept_section
)
4324 // It's normal to see a couple of entries here, for the x86 thunk
4325 // sections. If we see more than a few, we're linking a C++
4326 // program, and we resize to get more space to minimize rehashing.
4327 if (this->signatures_
.size() > 4
4328 && !this->resized_signatures_
)
4330 reserve_unordered_map(&this->signatures_
,
4331 this->number_of_input_files_
* 64);
4332 this->resized_signatures_
= true;
4335 Kept_section candidate
;
4336 std::pair
<Signatures::iterator
, bool> ins
=
4337 this->signatures_
.insert(std::make_pair(name
, candidate
));
4339 if (kept_section
!= NULL
)
4340 *kept_section
= &ins
.first
->second
;
4343 // This is the first time we've seen this signature.
4344 ins
.first
->second
.set_object(object
);
4345 ins
.first
->second
.set_shndx(shndx
);
4347 ins
.first
->second
.set_is_comdat();
4349 ins
.first
->second
.set_is_group_name();
4353 // We have already seen this signature.
4355 if (ins
.first
->second
.is_group_name())
4357 // We've already seen a real section group with this signature.
4358 // If the kept group is from a plugin object, and we're in the
4359 // replacement phase, accept the new one as a replacement.
4360 if (ins
.first
->second
.object() == NULL
4361 && parameters
->options().plugins()->in_replacement_phase())
4363 ins
.first
->second
.set_object(object
);
4364 ins
.first
->second
.set_shndx(shndx
);
4369 else if (is_group_name
)
4371 // This is a real section group, and we've already seen a
4372 // linkonce section with this signature. Record that we've seen
4373 // a section group, and don't include this section group.
4374 ins
.first
->second
.set_is_group_name();
4379 // We've already seen a linkonce section and this is a linkonce
4380 // section. These don't block each other--this may be the same
4381 // symbol name with different section types.
4386 // Store the allocated sections into the section list.
4389 Layout::get_allocated_sections(Section_list
* section_list
) const
4391 for (Section_list::const_iterator p
= this->section_list_
.begin();
4392 p
!= this->section_list_
.end();
4394 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
4395 section_list
->push_back(*p
);
4398 // Create an output segment.
4401 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
4403 gold_assert(!parameters
->options().relocatable());
4404 Output_segment
* oseg
= new Output_segment(type
, flags
);
4405 this->segment_list_
.push_back(oseg
);
4407 if (type
== elfcpp::PT_TLS
)
4408 this->tls_segment_
= oseg
;
4409 else if (type
== elfcpp::PT_GNU_RELRO
)
4410 this->relro_segment_
= oseg
;
4411 else if (type
== elfcpp::PT_INTERP
)
4412 this->interp_segment_
= oseg
;
4417 // Return the file offset of the normal symbol table.
4420 Layout::symtab_section_offset() const
4422 if (this->symtab_section_
!= NULL
)
4423 return this->symtab_section_
->offset();
4427 // Write out the Output_sections. Most won't have anything to write,
4428 // since most of the data will come from input sections which are
4429 // handled elsewhere. But some Output_sections do have Output_data.
4432 Layout::write_output_sections(Output_file
* of
) const
4434 for (Section_list::const_iterator p
= this->section_list_
.begin();
4435 p
!= this->section_list_
.end();
4438 if (!(*p
)->after_input_sections())
4443 // Write out data not associated with a section or the symbol table.
4446 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
4448 if (!parameters
->options().strip_all())
4450 const Output_section
* symtab_section
= this->symtab_section_
;
4451 for (Section_list::const_iterator p
= this->section_list_
.begin();
4452 p
!= this->section_list_
.end();
4455 if ((*p
)->needs_symtab_index())
4457 gold_assert(symtab_section
!= NULL
);
4458 unsigned int index
= (*p
)->symtab_index();
4459 gold_assert(index
> 0 && index
!= -1U);
4460 off_t off
= (symtab_section
->offset()
4461 + index
* symtab_section
->entsize());
4462 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
4467 const Output_section
* dynsym_section
= this->dynsym_section_
;
4468 for (Section_list::const_iterator p
= this->section_list_
.begin();
4469 p
!= this->section_list_
.end();
4472 if ((*p
)->needs_dynsym_index())
4474 gold_assert(dynsym_section
!= NULL
);
4475 unsigned int index
= (*p
)->dynsym_index();
4476 gold_assert(index
> 0 && index
!= -1U);
4477 off_t off
= (dynsym_section
->offset()
4478 + index
* dynsym_section
->entsize());
4479 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
4483 // Write out the Output_data which are not in an Output_section.
4484 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
4485 p
!= this->special_output_list_
.end();
4490 // Write out the Output_sections which can only be written after the
4491 // input sections are complete.
4494 Layout::write_sections_after_input_sections(Output_file
* of
)
4496 // Determine the final section offsets, and thus the final output
4497 // file size. Note we finalize the .shstrab last, to allow the
4498 // after_input_section sections to modify their section-names before
4500 if (this->any_postprocessing_sections_
)
4502 off_t off
= this->output_file_size_
;
4503 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
4505 // Now that we've finalized the names, we can finalize the shstrab.
4507 this->set_section_offsets(off
,
4508 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
4510 if (off
> this->output_file_size_
)
4513 this->output_file_size_
= off
;
4517 for (Section_list::const_iterator p
= this->section_list_
.begin();
4518 p
!= this->section_list_
.end();
4521 if ((*p
)->after_input_sections())
4525 this->section_headers_
->write(of
);
4528 // If the build ID requires computing a checksum, do so here, and
4529 // write it out. We compute a checksum over the entire file because
4530 // that is simplest.
4533 Layout::write_build_id(Output_file
* of
) const
4535 if (this->build_id_note_
== NULL
)
4538 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
4540 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
4541 this->build_id_note_
->data_size());
4543 const char* style
= parameters
->options().build_id();
4544 if (strcmp(style
, "sha1") == 0)
4547 sha1_init_ctx(&ctx
);
4548 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
4549 sha1_finish_ctx(&ctx
, ov
);
4551 else if (strcmp(style
, "md5") == 0)
4555 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
4556 md5_finish_ctx(&ctx
, ov
);
4561 of
->write_output_view(this->build_id_note_
->offset(),
4562 this->build_id_note_
->data_size(),
4565 of
->free_input_view(0, this->output_file_size_
, iv
);
4568 // Write out a binary file. This is called after the link is
4569 // complete. IN is the temporary output file we used to generate the
4570 // ELF code. We simply walk through the segments, read them from
4571 // their file offset in IN, and write them to their load address in
4572 // the output file. FIXME: with a bit more work, we could support
4573 // S-records and/or Intel hex format here.
4576 Layout::write_binary(Output_file
* in
) const
4578 gold_assert(parameters
->options().oformat_enum()
4579 == General_options::OBJECT_FORMAT_BINARY
);
4581 // Get the size of the binary file.
4582 uint64_t max_load_address
= 0;
4583 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4584 p
!= this->segment_list_
.end();
4587 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4589 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
4590 if (max_paddr
> max_load_address
)
4591 max_load_address
= max_paddr
;
4595 Output_file
out(parameters
->options().output_file_name());
4596 out
.open(max_load_address
);
4598 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4599 p
!= this->segment_list_
.end();
4602 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
4604 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
4606 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
4608 memcpy(vout
, vin
, (*p
)->filesz());
4609 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
4610 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
4617 // Print the output sections to the map file.
4620 Layout::print_to_mapfile(Mapfile
* mapfile
) const
4622 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
4623 p
!= this->segment_list_
.end();
4625 (*p
)->print_sections_to_mapfile(mapfile
);
4628 // Print statistical information to stderr. This is used for --stats.
4631 Layout::print_stats() const
4633 this->namepool_
.print_stats("section name pool");
4634 this->sympool_
.print_stats("output symbol name pool");
4635 this->dynpool_
.print_stats("dynamic name pool");
4637 for (Section_list::const_iterator p
= this->section_list_
.begin();
4638 p
!= this->section_list_
.end();
4640 (*p
)->print_merge_stats();
4643 // Write_sections_task methods.
4645 // We can always run this task.
4648 Write_sections_task::is_runnable()
4653 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4657 Write_sections_task::locks(Task_locker
* tl
)
4659 tl
->add(this, this->output_sections_blocker_
);
4660 tl
->add(this, this->final_blocker_
);
4663 // Run the task--write out the data.
4666 Write_sections_task::run(Workqueue
*)
4668 this->layout_
->write_output_sections(this->of_
);
4671 // Write_data_task methods.
4673 // We can always run this task.
4676 Write_data_task::is_runnable()
4681 // We need to unlock FINAL_BLOCKER when finished.
4684 Write_data_task::locks(Task_locker
* tl
)
4686 tl
->add(this, this->final_blocker_
);
4689 // Run the task--write out the data.
4692 Write_data_task::run(Workqueue
*)
4694 this->layout_
->write_data(this->symtab_
, this->of_
);
4697 // Write_symbols_task methods.
4699 // We can always run this task.
4702 Write_symbols_task::is_runnable()
4707 // We need to unlock FINAL_BLOCKER when finished.
4710 Write_symbols_task::locks(Task_locker
* tl
)
4712 tl
->add(this, this->final_blocker_
);
4715 // Run the task--write out the symbols.
4718 Write_symbols_task::run(Workqueue
*)
4720 this->symtab_
->write_globals(this->sympool_
, this->dynpool_
,
4721 this->layout_
->symtab_xindex(),
4722 this->layout_
->dynsym_xindex(), this->of_
);
4725 // Write_after_input_sections_task methods.
4727 // We can only run this task after the input sections have completed.
4730 Write_after_input_sections_task::is_runnable()
4732 if (this->input_sections_blocker_
->is_blocked())
4733 return this->input_sections_blocker_
;
4737 // We need to unlock FINAL_BLOCKER when finished.
4740 Write_after_input_sections_task::locks(Task_locker
* tl
)
4742 tl
->add(this, this->final_blocker_
);
4748 Write_after_input_sections_task::run(Workqueue
*)
4750 this->layout_
->write_sections_after_input_sections(this->of_
);
4753 // Close_task_runner methods.
4755 // Run the task--close the file.
4758 Close_task_runner::run(Workqueue
*, const Task
*)
4760 // If we need to compute a checksum for the BUILD if, we do so here.
4761 this->layout_
->write_build_id(this->of_
);
4763 // If we've been asked to create a binary file, we do so here.
4764 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
4765 this->layout_
->write_binary(this->of_
);
4770 // Instantiate the templates we need. We could use the configure
4771 // script to restrict this to only the ones for implemented targets.
4773 #ifdef HAVE_TARGET_32_LITTLE
4776 Layout::init_fixed_output_section
<32, false>(
4778 elfcpp::Shdr
<32, false>& shdr
);
4781 #ifdef HAVE_TARGET_32_BIG
4784 Layout::init_fixed_output_section
<32, true>(
4786 elfcpp::Shdr
<32, true>& shdr
);
4789 #ifdef HAVE_TARGET_64_LITTLE
4792 Layout::init_fixed_output_section
<64, false>(
4794 elfcpp::Shdr
<64, false>& shdr
);
4797 #ifdef HAVE_TARGET_64_BIG
4800 Layout::init_fixed_output_section
<64, true>(
4802 elfcpp::Shdr
<64, true>& shdr
);
4805 #ifdef HAVE_TARGET_32_LITTLE
4808 Layout::layout
<32, false>(Sized_relobj_file
<32, false>* object
,
4811 const elfcpp::Shdr
<32, false>& shdr
,
4812 unsigned int, unsigned int, off_t
*);
4815 #ifdef HAVE_TARGET_32_BIG
4818 Layout::layout
<32, true>(Sized_relobj_file
<32, true>* object
,
4821 const elfcpp::Shdr
<32, true>& shdr
,
4822 unsigned int, unsigned int, off_t
*);
4825 #ifdef HAVE_TARGET_64_LITTLE
4828 Layout::layout
<64, false>(Sized_relobj_file
<64, false>* object
,
4831 const elfcpp::Shdr
<64, false>& shdr
,
4832 unsigned int, unsigned int, off_t
*);
4835 #ifdef HAVE_TARGET_64_BIG
4838 Layout::layout
<64, true>(Sized_relobj_file
<64, true>* object
,
4841 const elfcpp::Shdr
<64, true>& shdr
,
4842 unsigned int, unsigned int, off_t
*);
4845 #ifdef HAVE_TARGET_32_LITTLE
4848 Layout::layout_reloc
<32, false>(Sized_relobj_file
<32, false>* object
,
4849 unsigned int reloc_shndx
,
4850 const elfcpp::Shdr
<32, false>& shdr
,
4851 Output_section
* data_section
,
4852 Relocatable_relocs
* rr
);
4855 #ifdef HAVE_TARGET_32_BIG
4858 Layout::layout_reloc
<32, true>(Sized_relobj_file
<32, true>* object
,
4859 unsigned int reloc_shndx
,
4860 const elfcpp::Shdr
<32, true>& shdr
,
4861 Output_section
* data_section
,
4862 Relocatable_relocs
* rr
);
4865 #ifdef HAVE_TARGET_64_LITTLE
4868 Layout::layout_reloc
<64, false>(Sized_relobj_file
<64, false>* object
,
4869 unsigned int reloc_shndx
,
4870 const elfcpp::Shdr
<64, false>& shdr
,
4871 Output_section
* data_section
,
4872 Relocatable_relocs
* rr
);
4875 #ifdef HAVE_TARGET_64_BIG
4878 Layout::layout_reloc
<64, true>(Sized_relobj_file
<64, true>* object
,
4879 unsigned int reloc_shndx
,
4880 const elfcpp::Shdr
<64, true>& shdr
,
4881 Output_section
* data_section
,
4882 Relocatable_relocs
* rr
);
4885 #ifdef HAVE_TARGET_32_LITTLE
4888 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
4889 Sized_relobj_file
<32, false>* object
,
4891 const char* group_section_name
,
4892 const char* signature
,
4893 const elfcpp::Shdr
<32, false>& shdr
,
4894 elfcpp::Elf_Word flags
,
4895 std::vector
<unsigned int>* shndxes
);
4898 #ifdef HAVE_TARGET_32_BIG
4901 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
4902 Sized_relobj_file
<32, true>* object
,
4904 const char* group_section_name
,
4905 const char* signature
,
4906 const elfcpp::Shdr
<32, true>& shdr
,
4907 elfcpp::Elf_Word flags
,
4908 std::vector
<unsigned int>* shndxes
);
4911 #ifdef HAVE_TARGET_64_LITTLE
4914 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
4915 Sized_relobj_file
<64, false>* object
,
4917 const char* group_section_name
,
4918 const char* signature
,
4919 const elfcpp::Shdr
<64, false>& shdr
,
4920 elfcpp::Elf_Word flags
,
4921 std::vector
<unsigned int>* shndxes
);
4924 #ifdef HAVE_TARGET_64_BIG
4927 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
4928 Sized_relobj_file
<64, true>* object
,
4930 const char* group_section_name
,
4931 const char* signature
,
4932 const elfcpp::Shdr
<64, true>& shdr
,
4933 elfcpp::Elf_Word flags
,
4934 std::vector
<unsigned int>* shndxes
);
4937 #ifdef HAVE_TARGET_32_LITTLE
4940 Layout::layout_eh_frame
<32, false>(Sized_relobj_file
<32, false>* object
,
4941 const unsigned char* symbols
,
4943 const unsigned char* symbol_names
,
4944 off_t symbol_names_size
,
4946 const elfcpp::Shdr
<32, false>& shdr
,
4947 unsigned int reloc_shndx
,
4948 unsigned int reloc_type
,
4952 #ifdef HAVE_TARGET_32_BIG
4955 Layout::layout_eh_frame
<32, true>(Sized_relobj_file
<32, true>* object
,
4956 const unsigned char* symbols
,
4958 const unsigned char* symbol_names
,
4959 off_t symbol_names_size
,
4961 const elfcpp::Shdr
<32, true>& shdr
,
4962 unsigned int reloc_shndx
,
4963 unsigned int reloc_type
,
4967 #ifdef HAVE_TARGET_64_LITTLE
4970 Layout::layout_eh_frame
<64, false>(Sized_relobj_file
<64, false>* object
,
4971 const unsigned char* symbols
,
4973 const unsigned char* symbol_names
,
4974 off_t symbol_names_size
,
4976 const elfcpp::Shdr
<64, false>& shdr
,
4977 unsigned int reloc_shndx
,
4978 unsigned int reloc_type
,
4982 #ifdef HAVE_TARGET_64_BIG
4985 Layout::layout_eh_frame
<64, true>(Sized_relobj_file
<64, true>* object
,
4986 const unsigned char* symbols
,
4988 const unsigned char* symbol_names
,
4989 off_t symbol_names_size
,
4991 const elfcpp::Shdr
<64, true>& shdr
,
4992 unsigned int reloc_shndx
,
4993 unsigned int reloc_type
,
4997 } // End namespace gold.