1 // layout.cc -- lay out output file sections for gold
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
6 // This file is part of gold.
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
32 #include "libiberty.h"
36 #include "parameters.h"
40 #include "script-sections.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
48 #include "descriptors.h"
55 // Layout_task_runner methods.
57 // Lay out the sections. This is called after all the input objects
61 Layout_task_runner::run(Workqueue
* workqueue
, const Task
* task
)
63 off_t file_size
= this->layout_
->finalize(this->input_objects_
,
68 // Now we know the final size of the output file and we know where
69 // each piece of information goes.
71 if (this->mapfile_
!= NULL
)
73 this->mapfile_
->print_discarded_sections(this->input_objects_
);
74 this->layout_
->print_to_mapfile(this->mapfile_
);
77 Output_file
* of
= new Output_file(parameters
->options().output_file_name());
78 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
79 of
->set_is_temporary();
82 // Queue up the final set of tasks.
83 gold::queue_final_tasks(this->options_
, this->input_objects_
,
84 this->symtab_
, this->layout_
, workqueue
, of
);
89 Layout::Layout(const General_options
& options
, Script_options
* script_options
)
91 script_options_(script_options
),
99 unattached_section_list_(),
100 sections_are_attached_(false),
101 special_output_list_(),
102 section_headers_(NULL
),
104 relro_segment_(NULL
),
105 symtab_section_(NULL
),
106 symtab_xindex_(NULL
),
107 dynsym_section_(NULL
),
108 dynsym_xindex_(NULL
),
109 dynamic_section_(NULL
),
111 eh_frame_section_(NULL
),
112 eh_frame_data_(NULL
),
113 added_eh_frame_data_(false),
114 eh_frame_hdr_section_(NULL
),
115 build_id_note_(NULL
),
119 output_file_size_(-1),
120 input_requires_executable_stack_(false),
121 input_with_gnu_stack_note_(false),
122 input_without_gnu_stack_note_(false),
123 has_static_tls_(false),
124 any_postprocessing_sections_(false)
126 // Make space for more than enough segments for a typical file.
127 // This is just for efficiency--it's OK if we wind up needing more.
128 this->segment_list_
.reserve(12);
130 // We expect two unattached Output_data objects: the file header and
131 // the segment headers.
132 this->special_output_list_
.reserve(2);
135 // Hash a key we use to look up an output section mapping.
138 Layout::Hash_key::operator()(const Layout::Key
& k
) const
140 return k
.first
+ k
.second
.first
+ k
.second
.second
;
143 // Returns whether the given section is in the list of
144 // debug-sections-used-by-some-version-of-gdb. Currently,
145 // we've checked versions of gdb up to and including 6.7.1.
147 static const char* gdb_sections
[] =
149 // ".debug_aranges", // not used by gdb as of 6.7.1
155 // ".debug_pubnames", // not used by gdb as of 6.7.1
160 static const char* lines_only_debug_sections
[] =
162 // ".debug_aranges", // not used by gdb as of 6.7.1
168 // ".debug_pubnames", // not used by gdb as of 6.7.1
174 is_gdb_debug_section(const char* str
)
176 // We can do this faster: binary search or a hashtable. But why bother?
177 for (size_t i
= 0; i
< sizeof(gdb_sections
)/sizeof(*gdb_sections
); ++i
)
178 if (strcmp(str
, gdb_sections
[i
]) == 0)
184 is_lines_only_debug_section(const char* str
)
186 // We can do this faster: binary search or a hashtable. But why bother?
188 i
< sizeof(lines_only_debug_sections
)/sizeof(*lines_only_debug_sections
);
190 if (strcmp(str
, lines_only_debug_sections
[i
]) == 0)
195 // Whether to include this section in the link.
197 template<int size
, bool big_endian
>
199 Layout::include_section(Sized_relobj
<size
, big_endian
>*, const char* name
,
200 const elfcpp::Shdr
<size
, big_endian
>& shdr
)
202 if (shdr
.get_sh_flags() & elfcpp::SHF_EXCLUDE
)
205 switch (shdr
.get_sh_type())
207 case elfcpp::SHT_NULL
:
208 case elfcpp::SHT_SYMTAB
:
209 case elfcpp::SHT_DYNSYM
:
210 case elfcpp::SHT_HASH
:
211 case elfcpp::SHT_DYNAMIC
:
212 case elfcpp::SHT_SYMTAB_SHNDX
:
215 case elfcpp::SHT_STRTAB
:
216 // Discard the sections which have special meanings in the ELF
217 // ABI. Keep others (e.g., .stabstr). We could also do this by
218 // checking the sh_link fields of the appropriate sections.
219 return (strcmp(name
, ".dynstr") != 0
220 && strcmp(name
, ".strtab") != 0
221 && strcmp(name
, ".shstrtab") != 0);
223 case elfcpp::SHT_RELA
:
224 case elfcpp::SHT_REL
:
225 case elfcpp::SHT_GROUP
:
226 // If we are emitting relocations these should be handled
228 gold_assert(!parameters
->options().relocatable()
229 && !parameters
->options().emit_relocs());
232 case elfcpp::SHT_PROGBITS
:
233 if (parameters
->options().strip_debug()
234 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
236 if (is_debug_info_section(name
))
239 if (parameters
->options().strip_debug_non_line()
240 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
242 // Debugging sections can only be recognized by name.
243 if (is_prefix_of(".debug", name
)
244 && !is_lines_only_debug_section(name
))
247 if (parameters
->options().strip_debug_gdb()
248 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
250 // Debugging sections can only be recognized by name.
251 if (is_prefix_of(".debug", name
)
252 && !is_gdb_debug_section(name
))
255 if (parameters
->options().strip_lto_sections()
256 && !parameters
->options().relocatable()
257 && (shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) == 0)
259 // Ignore LTO sections containing intermediate code.
260 if (is_prefix_of(".gnu.lto_", name
))
270 // Return an output section named NAME, or NULL if there is none.
273 Layout::find_output_section(const char* name
) const
275 for (Section_list::const_iterator p
= this->section_list_
.begin();
276 p
!= this->section_list_
.end();
278 if (strcmp((*p
)->name(), name
) == 0)
283 // Return an output segment of type TYPE, with segment flags SET set
284 // and segment flags CLEAR clear. Return NULL if there is none.
287 Layout::find_output_segment(elfcpp::PT type
, elfcpp::Elf_Word set
,
288 elfcpp::Elf_Word clear
) const
290 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
291 p
!= this->segment_list_
.end();
293 if (static_cast<elfcpp::PT
>((*p
)->type()) == type
294 && ((*p
)->flags() & set
) == set
295 && ((*p
)->flags() & clear
) == 0)
300 // Return the output section to use for section NAME with type TYPE
301 // and section flags FLAGS. NAME must be canonicalized in the string
302 // pool, and NAME_KEY is the key.
305 Layout::get_output_section(const char* name
, Stringpool::Key name_key
,
306 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
)
308 elfcpp::Elf_Xword lookup_flags
= flags
;
310 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
311 // read-write with read-only sections. Some other ELF linkers do
312 // not do this. FIXME: Perhaps there should be an option
314 lookup_flags
&= ~(elfcpp::SHF_WRITE
| elfcpp::SHF_EXECINSTR
);
316 const Key
key(name_key
, std::make_pair(type
, lookup_flags
));
317 const std::pair
<Key
, Output_section
*> v(key
, NULL
);
318 std::pair
<Section_name_map::iterator
, bool> ins(
319 this->section_name_map_
.insert(v
));
322 return ins
.first
->second
;
325 // This is the first time we've seen this name/type/flags
326 // combination. For compatibility with the GNU linker, we
327 // combine sections with contents and zero flags with sections
328 // with non-zero flags. This is a workaround for cases where
329 // assembler code forgets to set section flags. FIXME: Perhaps
330 // there should be an option to control this.
331 Output_section
* os
= NULL
;
333 if (type
== elfcpp::SHT_PROGBITS
)
337 Output_section
* same_name
= this->find_output_section(name
);
338 if (same_name
!= NULL
339 && same_name
->type() == elfcpp::SHT_PROGBITS
340 && (same_name
->flags() & elfcpp::SHF_TLS
) == 0)
343 else if ((flags
& elfcpp::SHF_TLS
) == 0)
345 elfcpp::Elf_Xword zero_flags
= 0;
346 const Key
zero_key(name_key
, std::make_pair(type
, zero_flags
));
347 Section_name_map::iterator p
=
348 this->section_name_map_
.find(zero_key
);
349 if (p
!= this->section_name_map_
.end())
355 os
= this->make_output_section(name
, type
, flags
);
356 ins
.first
->second
= os
;
361 // Pick the output section to use for section NAME, in input file
362 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
363 // linker created section. IS_INPUT_SECTION is true if we are
364 // choosing an output section for an input section found in a input
365 // file. This will return NULL if the input section should be
369 Layout::choose_output_section(const Relobj
* relobj
, const char* name
,
370 elfcpp::Elf_Word type
, elfcpp::Elf_Xword flags
,
371 bool is_input_section
)
373 // We should not see any input sections after we have attached
374 // sections to segments.
375 gold_assert(!is_input_section
|| !this->sections_are_attached_
);
377 // Some flags in the input section should not be automatically
378 // copied to the output section.
379 flags
&= ~ (elfcpp::SHF_INFO_LINK
380 | elfcpp::SHF_LINK_ORDER
383 | elfcpp::SHF_STRINGS
);
385 if (this->script_options_
->saw_sections_clause())
387 // We are using a SECTIONS clause, so the output section is
388 // chosen based only on the name.
390 Script_sections
* ss
= this->script_options_
->script_sections();
391 const char* file_name
= relobj
== NULL
? NULL
: relobj
->name().c_str();
392 Output_section
** output_section_slot
;
393 name
= ss
->output_section_name(file_name
, name
, &output_section_slot
);
396 // The SECTIONS clause says to discard this input section.
400 // If this is an orphan section--one not mentioned in the linker
401 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
402 // default processing below.
404 if (output_section_slot
!= NULL
)
406 if (*output_section_slot
!= NULL
)
407 return *output_section_slot
;
409 // We don't put sections found in the linker script into
410 // SECTION_NAME_MAP_. That keeps us from getting confused
411 // if an orphan section is mapped to a section with the same
412 // name as one in the linker script.
414 name
= this->namepool_
.add(name
, false, NULL
);
416 Output_section
* os
= this->make_output_section(name
, type
, flags
);
417 os
->set_found_in_sections_clause();
418 *output_section_slot
= os
;
423 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
425 // Turn NAME from the name of the input section into the name of the
428 size_t len
= strlen(name
);
429 if (is_input_section
&& !parameters
->options().relocatable())
430 name
= Layout::output_section_name(name
, &len
);
432 Stringpool::Key name_key
;
433 name
= this->namepool_
.add_with_length(name
, len
, true, &name_key
);
435 // Find or make the output section. The output section is selected
436 // based on the section name, type, and flags.
437 return this->get_output_section(name
, name_key
, type
, flags
);
440 // Return the output section to use for input section SHNDX, with name
441 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
442 // index of a relocation section which applies to this section, or 0
443 // if none, or -1U if more than one. RELOC_TYPE is the type of the
444 // relocation section if there is one. Set *OFF to the offset of this
445 // input section without the output section. Return NULL if the
446 // section should be discarded. Set *OFF to -1 if the section
447 // contents should not be written directly to the output file, but
448 // will instead receive special handling.
450 template<int size
, bool big_endian
>
452 Layout::layout(Sized_relobj
<size
, big_endian
>* object
, unsigned int shndx
,
453 const char* name
, const elfcpp::Shdr
<size
, big_endian
>& shdr
,
454 unsigned int reloc_shndx
, unsigned int, off_t
* off
)
458 if (!this->include_section(object
, name
, shdr
))
463 // In a relocatable link a grouped section must not be combined with
464 // any other sections.
465 if (parameters
->options().relocatable()
466 && (shdr
.get_sh_flags() & elfcpp::SHF_GROUP
) != 0)
468 name
= this->namepool_
.add(name
, true, NULL
);
469 os
= this->make_output_section(name
, shdr
.get_sh_type(),
470 shdr
.get_sh_flags());
474 os
= this->choose_output_section(object
, name
, shdr
.get_sh_type(),
475 shdr
.get_sh_flags(), true);
480 // By default the GNU linker sorts input sections whose names match
481 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
482 // are sorted by name. This is used to implement constructor
483 // priority ordering. We are compatible.
484 if (!this->script_options_
->saw_sections_clause()
485 && (is_prefix_of(".ctors.", name
)
486 || is_prefix_of(".dtors.", name
)
487 || is_prefix_of(".init_array.", name
)
488 || is_prefix_of(".fini_array.", name
)))
489 os
->set_must_sort_attached_input_sections();
491 // FIXME: Handle SHF_LINK_ORDER somewhere.
493 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
494 this->script_options_
->saw_sections_clause());
499 // Handle a relocation section when doing a relocatable link.
501 template<int size
, bool big_endian
>
503 Layout::layout_reloc(Sized_relobj
<size
, big_endian
>* object
,
505 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
506 Output_section
* data_section
,
507 Relocatable_relocs
* rr
)
509 gold_assert(parameters
->options().relocatable()
510 || parameters
->options().emit_relocs());
512 int sh_type
= shdr
.get_sh_type();
515 if (sh_type
== elfcpp::SHT_REL
)
517 else if (sh_type
== elfcpp::SHT_RELA
)
521 name
+= data_section
->name();
523 Output_section
* os
= this->choose_output_section(object
, name
.c_str(),
528 os
->set_should_link_to_symtab();
529 os
->set_info_section(data_section
);
531 Output_section_data
* posd
;
532 if (sh_type
== elfcpp::SHT_REL
)
534 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rel_size
);
535 posd
= new Output_relocatable_relocs
<elfcpp::SHT_REL
,
539 else if (sh_type
== elfcpp::SHT_RELA
)
541 os
->set_entsize(elfcpp::Elf_sizes
<size
>::rela_size
);
542 posd
= new Output_relocatable_relocs
<elfcpp::SHT_RELA
,
549 os
->add_output_section_data(posd
);
550 rr
->set_output_data(posd
);
555 // Handle a group section when doing a relocatable link.
557 template<int size
, bool big_endian
>
559 Layout::layout_group(Symbol_table
* symtab
,
560 Sized_relobj
<size
, big_endian
>* object
,
562 const char* group_section_name
,
563 const char* signature
,
564 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
565 elfcpp::Elf_Word flags
,
566 std::vector
<unsigned int>* shndxes
)
568 gold_assert(parameters
->options().relocatable());
569 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_GROUP
);
570 group_section_name
= this->namepool_
.add(group_section_name
, true, NULL
);
571 Output_section
* os
= this->make_output_section(group_section_name
,
573 shdr
.get_sh_flags());
575 // We need to find a symbol with the signature in the symbol table.
576 // If we don't find one now, we need to look again later.
577 Symbol
* sym
= symtab
->lookup(signature
, NULL
);
579 os
->set_info_symndx(sym
);
582 // We will wind up using a symbol whose name is the signature.
583 // So just put the signature in the symbol name pool to save it.
584 signature
= symtab
->canonicalize_name(signature
);
585 this->group_signatures_
.push_back(Group_signature(os
, signature
));
588 os
->set_should_link_to_symtab();
591 section_size_type entry_count
=
592 convert_to_section_size_type(shdr
.get_sh_size() / 4);
593 Output_section_data
* posd
=
594 new Output_data_group
<size
, big_endian
>(object
, entry_count
, flags
,
596 os
->add_output_section_data(posd
);
599 // Special GNU handling of sections name .eh_frame. They will
600 // normally hold exception frame data as defined by the C++ ABI
601 // (http://codesourcery.com/cxx-abi/).
603 template<int size
, bool big_endian
>
605 Layout::layout_eh_frame(Sized_relobj
<size
, big_endian
>* object
,
606 const unsigned char* symbols
,
608 const unsigned char* symbol_names
,
609 off_t symbol_names_size
,
611 const elfcpp::Shdr
<size
, big_endian
>& shdr
,
612 unsigned int reloc_shndx
, unsigned int reloc_type
,
615 gold_assert(shdr
.get_sh_type() == elfcpp::SHT_PROGBITS
);
616 gold_assert((shdr
.get_sh_flags() & elfcpp::SHF_ALLOC
) != 0);
618 const char* const name
= ".eh_frame";
619 Output_section
* os
= this->choose_output_section(object
,
621 elfcpp::SHT_PROGBITS
,
627 if (this->eh_frame_section_
== NULL
)
629 this->eh_frame_section_
= os
;
630 this->eh_frame_data_
= new Eh_frame();
632 if (this->options_
.eh_frame_hdr())
634 Output_section
* hdr_os
=
635 this->choose_output_section(NULL
,
637 elfcpp::SHT_PROGBITS
,
643 Eh_frame_hdr
* hdr_posd
= new Eh_frame_hdr(os
,
644 this->eh_frame_data_
);
645 hdr_os
->add_output_section_data(hdr_posd
);
647 hdr_os
->set_after_input_sections();
649 if (!this->script_options_
->saw_phdrs_clause())
651 Output_segment
* hdr_oseg
;
652 hdr_oseg
= this->make_output_segment(elfcpp::PT_GNU_EH_FRAME
,
654 hdr_oseg
->add_output_section(hdr_os
, elfcpp::PF_R
);
657 this->eh_frame_data_
->set_eh_frame_hdr(hdr_posd
);
662 gold_assert(this->eh_frame_section_
== os
);
664 if (this->eh_frame_data_
->add_ehframe_input_section(object
,
673 os
->update_flags_for_input_section(shdr
.get_sh_flags());
675 // We found a .eh_frame section we are going to optimize, so now
676 // we can add the set of optimized sections to the output
677 // section. We need to postpone adding this until we've found a
678 // section we can optimize so that the .eh_frame section in
679 // crtbegin.o winds up at the start of the output section.
680 if (!this->added_eh_frame_data_
)
682 os
->add_output_section_data(this->eh_frame_data_
);
683 this->added_eh_frame_data_
= true;
689 // We couldn't handle this .eh_frame section for some reason.
690 // Add it as a normal section.
691 bool saw_sections_clause
= this->script_options_
->saw_sections_clause();
692 *off
= os
->add_input_section(object
, shndx
, name
, shdr
, reloc_shndx
,
693 saw_sections_clause
);
699 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
700 // the output section.
703 Layout::add_output_section_data(const char* name
, elfcpp::Elf_Word type
,
704 elfcpp::Elf_Xword flags
,
705 Output_section_data
* posd
)
707 Output_section
* os
= this->choose_output_section(NULL
, name
, type
, flags
,
710 os
->add_output_section_data(posd
);
714 // Map section flags to segment flags.
717 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags
)
719 elfcpp::Elf_Word ret
= elfcpp::PF_R
;
720 if ((flags
& elfcpp::SHF_WRITE
) != 0)
722 if ((flags
& elfcpp::SHF_EXECINSTR
) != 0)
727 // Sometimes we compress sections. This is typically done for
728 // sections that are not part of normal program execution (such as
729 // .debug_* sections), and where the readers of these sections know
730 // how to deal with compressed sections. (To make it easier for them,
731 // we will rename the ouput section in such cases from .foo to
732 // .foo.zlib.nnnn, where nnnn is the uncompressed size.) This routine
733 // doesn't say for certain whether we'll compress -- it depends on
734 // commandline options as well -- just whether this section is a
735 // candidate for compression.
738 is_compressible_debug_section(const char* secname
)
740 return (strncmp(secname
, ".debug", sizeof(".debug") - 1) == 0);
743 // Make a new Output_section, and attach it to segments as
747 Layout::make_output_section(const char* name
, elfcpp::Elf_Word type
,
748 elfcpp::Elf_Xword flags
)
751 if ((flags
& elfcpp::SHF_ALLOC
) == 0
752 && strcmp(this->options_
.compress_debug_sections(), "none") != 0
753 && is_compressible_debug_section(name
))
754 os
= new Output_compressed_section(&this->options_
, name
, type
, flags
);
756 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
757 && this->options_
.strip_debug_non_line()
758 && strcmp(".debug_abbrev", name
) == 0)
760 os
= this->debug_abbrev_
= new Output_reduced_debug_abbrev_section(
762 if (this->debug_info_
)
763 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
765 else if ((flags
& elfcpp::SHF_ALLOC
) == 0
766 && this->options_
.strip_debug_non_line()
767 && strcmp(".debug_info", name
) == 0)
769 os
= this->debug_info_
= new Output_reduced_debug_info_section(
771 if (this->debug_abbrev_
)
772 this->debug_info_
->set_abbreviations(this->debug_abbrev_
);
775 os
= new Output_section(name
, type
, flags
);
777 this->section_list_
.push_back(os
);
779 // The GNU linker by default sorts some sections by priority, so we
780 // do the same. We need to know that this might happen before we
781 // attach any input sections.
782 if (!this->script_options_
->saw_sections_clause()
783 && (strcmp(name
, ".ctors") == 0
784 || strcmp(name
, ".dtors") == 0
785 || strcmp(name
, ".init_array") == 0
786 || strcmp(name
, ".fini_array") == 0))
787 os
->set_may_sort_attached_input_sections();
789 // With -z relro, we have to recognize the special sections by name.
790 // There is no other way.
791 if (!this->script_options_
->saw_sections_clause()
792 && parameters
->options().relro()
793 && type
== elfcpp::SHT_PROGBITS
794 && (flags
& elfcpp::SHF_ALLOC
) != 0
795 && (flags
& elfcpp::SHF_WRITE
) != 0)
797 if (strcmp(name
, ".data.rel.ro") == 0)
799 else if (strcmp(name
, ".data.rel.ro.local") == 0)
802 os
->set_is_relro_local();
806 // If we have already attached the sections to segments, then we
807 // need to attach this one now. This happens for sections created
808 // directly by the linker.
809 if (this->sections_are_attached_
)
810 this->attach_section_to_segment(os
);
815 // Attach output sections to segments. This is called after we have
816 // seen all the input sections.
819 Layout::attach_sections_to_segments()
821 for (Section_list::iterator p
= this->section_list_
.begin();
822 p
!= this->section_list_
.end();
824 this->attach_section_to_segment(*p
);
826 this->sections_are_attached_
= true;
829 // Attach an output section to a segment.
832 Layout::attach_section_to_segment(Output_section
* os
)
834 if ((os
->flags() & elfcpp::SHF_ALLOC
) == 0)
835 this->unattached_section_list_
.push_back(os
);
837 this->attach_allocated_section_to_segment(os
);
840 // Attach an allocated output section to a segment.
843 Layout::attach_allocated_section_to_segment(Output_section
* os
)
845 elfcpp::Elf_Xword flags
= os
->flags();
846 gold_assert((flags
& elfcpp::SHF_ALLOC
) != 0);
848 if (parameters
->options().relocatable())
851 // If we have a SECTIONS clause, we can't handle the attachment to
852 // segments until after we've seen all the sections.
853 if (this->script_options_
->saw_sections_clause())
856 gold_assert(!this->script_options_
->saw_phdrs_clause());
858 // This output section goes into a PT_LOAD segment.
860 elfcpp::Elf_Word seg_flags
= Layout::section_flags_to_segment(flags
);
862 // In general the only thing we really care about for PT_LOAD
863 // segments is whether or not they are writable, so that is how we
864 // search for them. People who need segments sorted on some other
865 // basis will have to use a linker script.
867 Segment_list::const_iterator p
;
868 for (p
= this->segment_list_
.begin();
869 p
!= this->segment_list_
.end();
872 if ((*p
)->type() == elfcpp::PT_LOAD
873 && (parameters
->options().omagic()
874 || ((*p
)->flags() & elfcpp::PF_W
) == (seg_flags
& elfcpp::PF_W
)))
876 // If -Tbss was specified, we need to separate the data
878 if (this->options_
.user_set_Tbss())
880 if ((os
->type() == elfcpp::SHT_NOBITS
)
881 == (*p
)->has_any_data_sections())
885 (*p
)->add_output_section(os
, seg_flags
);
890 if (p
== this->segment_list_
.end())
892 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_LOAD
,
894 oseg
->add_output_section(os
, seg_flags
);
897 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
899 if (os
->type() == elfcpp::SHT_NOTE
)
901 // See if we already have an equivalent PT_NOTE segment.
902 for (p
= this->segment_list_
.begin();
903 p
!= segment_list_
.end();
906 if ((*p
)->type() == elfcpp::PT_NOTE
907 && (((*p
)->flags() & elfcpp::PF_W
)
908 == (seg_flags
& elfcpp::PF_W
)))
910 (*p
)->add_output_section(os
, seg_flags
);
915 if (p
== this->segment_list_
.end())
917 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_NOTE
,
919 oseg
->add_output_section(os
, seg_flags
);
923 // If we see a loadable SHF_TLS section, we create a PT_TLS
924 // segment. There can only be one such segment.
925 if ((flags
& elfcpp::SHF_TLS
) != 0)
927 if (this->tls_segment_
== NULL
)
928 this->make_output_segment(elfcpp::PT_TLS
, seg_flags
);
929 this->tls_segment_
->add_output_section(os
, seg_flags
);
932 // If -z relro is in effect, and we see a relro section, we create a
933 // PT_GNU_RELRO segment. There can only be one such segment.
934 if (os
->is_relro() && parameters
->options().relro())
936 gold_assert(seg_flags
== (elfcpp::PF_R
| elfcpp::PF_W
));
937 if (this->relro_segment_
== NULL
)
938 this->make_output_segment(elfcpp::PT_GNU_RELRO
, seg_flags
);
939 this->relro_segment_
->add_output_section(os
, seg_flags
);
943 // Make an output section for a script.
946 Layout::make_output_section_for_script(const char* name
)
948 name
= this->namepool_
.add(name
, false, NULL
);
949 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_PROGBITS
,
951 os
->set_found_in_sections_clause();
955 // Return the number of segments we expect to see.
958 Layout::expected_segment_count() const
960 size_t ret
= this->segment_list_
.size();
962 // If we didn't see a SECTIONS clause in a linker script, we should
963 // already have the complete list of segments. Otherwise we ask the
964 // SECTIONS clause how many segments it expects, and add in the ones
965 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
967 if (!this->script_options_
->saw_sections_clause())
971 const Script_sections
* ss
= this->script_options_
->script_sections();
972 return ret
+ ss
->expected_segment_count(this);
976 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
977 // is whether we saw a .note.GNU-stack section in the object file.
978 // GNU_STACK_FLAGS is the section flags. The flags give the
979 // protection required for stack memory. We record this in an
980 // executable as a PT_GNU_STACK segment. If an object file does not
981 // have a .note.GNU-stack segment, we must assume that it is an old
982 // object. On some targets that will force an executable stack.
985 Layout::layout_gnu_stack(bool seen_gnu_stack
, uint64_t gnu_stack_flags
)
988 this->input_without_gnu_stack_note_
= true;
991 this->input_with_gnu_stack_note_
= true;
992 if ((gnu_stack_flags
& elfcpp::SHF_EXECINSTR
) != 0)
993 this->input_requires_executable_stack_
= true;
997 // Create the dynamic sections which are needed before we read the
1001 Layout::create_initial_dynamic_sections(Symbol_table
* symtab
)
1003 if (parameters
->doing_static_link())
1006 this->dynamic_section_
= this->choose_output_section(NULL
, ".dynamic",
1007 elfcpp::SHT_DYNAMIC
,
1009 | elfcpp::SHF_WRITE
),
1011 this->dynamic_section_
->set_is_relro();
1013 symtab
->define_in_output_data("_DYNAMIC", NULL
, this->dynamic_section_
, 0, 0,
1014 elfcpp::STT_OBJECT
, elfcpp::STB_LOCAL
,
1015 elfcpp::STV_HIDDEN
, 0, false, false);
1017 this->dynamic_data_
= new Output_data_dynamic(&this->dynpool_
);
1019 this->dynamic_section_
->add_output_section_data(this->dynamic_data_
);
1022 // For each output section whose name can be represented as C symbol,
1023 // define __start and __stop symbols for the section. This is a GNU
1027 Layout::define_section_symbols(Symbol_table
* symtab
)
1029 for (Section_list::const_iterator p
= this->section_list_
.begin();
1030 p
!= this->section_list_
.end();
1033 const char* const name
= (*p
)->name();
1034 if (name
[strspn(name
,
1036 "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1037 "abcdefghijklmnopqrstuvwxyz"
1041 const std::string
name_string(name
);
1042 const std::string
start_name("__start_" + name_string
);
1043 const std::string
stop_name("__stop_" + name_string
);
1045 symtab
->define_in_output_data(start_name
.c_str(),
1052 elfcpp::STV_DEFAULT
,
1054 false, // offset_is_from_end
1055 true); // only_if_ref
1057 symtab
->define_in_output_data(stop_name
.c_str(),
1064 elfcpp::STV_DEFAULT
,
1066 true, // offset_is_from_end
1067 true); // only_if_ref
1072 // Define symbols for group signatures.
1075 Layout::define_group_signatures(Symbol_table
* symtab
)
1077 for (Group_signatures::iterator p
= this->group_signatures_
.begin();
1078 p
!= this->group_signatures_
.end();
1081 Symbol
* sym
= symtab
->lookup(p
->signature
, NULL
);
1083 p
->section
->set_info_symndx(sym
);
1086 // Force the name of the group section to the group
1087 // signature, and use the group's section symbol as the
1088 // signature symbol.
1089 if (strcmp(p
->section
->name(), p
->signature
) != 0)
1091 const char* name
= this->namepool_
.add(p
->signature
,
1093 p
->section
->set_name(name
);
1095 p
->section
->set_needs_symtab_index();
1096 p
->section
->set_info_section_symndx(p
->section
);
1100 this->group_signatures_
.clear();
1103 // Find the first read-only PT_LOAD segment, creating one if
1107 Layout::find_first_load_seg()
1109 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
1110 p
!= this->segment_list_
.end();
1113 if ((*p
)->type() == elfcpp::PT_LOAD
1114 && ((*p
)->flags() & elfcpp::PF_R
) != 0
1115 && (parameters
->options().omagic()
1116 || ((*p
)->flags() & elfcpp::PF_W
) == 0))
1120 gold_assert(!this->script_options_
->saw_phdrs_clause());
1122 Output_segment
* load_seg
= this->make_output_segment(elfcpp::PT_LOAD
,
1127 // Finalize the layout. When this is called, we have created all the
1128 // output sections and all the output segments which are based on
1129 // input sections. We have several things to do, and we have to do
1130 // them in the right order, so that we get the right results correctly
1133 // 1) Finalize the list of output segments and create the segment
1136 // 2) Finalize the dynamic symbol table and associated sections.
1138 // 3) Determine the final file offset of all the output segments.
1140 // 4) Determine the final file offset of all the SHF_ALLOC output
1143 // 5) Create the symbol table sections and the section name table
1146 // 6) Finalize the symbol table: set symbol values to their final
1147 // value and make a final determination of which symbols are going
1148 // into the output symbol table.
1150 // 7) Create the section table header.
1152 // 8) Determine the final file offset of all the output sections which
1153 // are not SHF_ALLOC, including the section table header.
1155 // 9) Finalize the ELF file header.
1157 // This function returns the size of the output file.
1160 Layout::finalize(const Input_objects
* input_objects
, Symbol_table
* symtab
,
1161 Target
* target
, const Task
* task
)
1163 target
->finalize_sections(this);
1165 this->count_local_symbols(task
, input_objects
);
1167 this->create_gold_note();
1168 this->create_executable_stack_info(target
);
1169 this->create_build_id();
1171 Output_segment
* phdr_seg
= NULL
;
1172 if (!parameters
->options().relocatable() && !parameters
->doing_static_link())
1174 // There was a dynamic object in the link. We need to create
1175 // some information for the dynamic linker.
1177 // Create the PT_PHDR segment which will hold the program
1179 if (!this->script_options_
->saw_phdrs_clause())
1180 phdr_seg
= this->make_output_segment(elfcpp::PT_PHDR
, elfcpp::PF_R
);
1182 // Create the dynamic symbol table, including the hash table.
1183 Output_section
* dynstr
;
1184 std::vector
<Symbol
*> dynamic_symbols
;
1185 unsigned int local_dynamic_count
;
1186 Versions
versions(*this->script_options()->version_script_info(),
1188 this->create_dynamic_symtab(input_objects
, symtab
, &dynstr
,
1189 &local_dynamic_count
, &dynamic_symbols
,
1192 // Create the .interp section to hold the name of the
1193 // interpreter, and put it in a PT_INTERP segment.
1194 if (!parameters
->options().shared())
1195 this->create_interp(target
);
1197 // Finish the .dynamic section to hold the dynamic data, and put
1198 // it in a PT_DYNAMIC segment.
1199 this->finish_dynamic_section(input_objects
, symtab
);
1201 // We should have added everything we need to the dynamic string
1203 this->dynpool_
.set_string_offsets();
1205 // Create the version sections. We can't do this until the
1206 // dynamic string table is complete.
1207 this->create_version_sections(&versions
, symtab
, local_dynamic_count
,
1208 dynamic_symbols
, dynstr
);
1211 // If there is a SECTIONS clause, put all the input sections into
1212 // the required order.
1213 Output_segment
* load_seg
;
1214 if (this->script_options_
->saw_sections_clause())
1215 load_seg
= this->set_section_addresses_from_script(symtab
);
1216 else if (parameters
->options().relocatable())
1219 load_seg
= this->find_first_load_seg();
1221 if (this->options_
.oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
1224 gold_assert(phdr_seg
== NULL
|| load_seg
!= NULL
);
1226 // Lay out the segment headers.
1227 Output_segment_headers
* segment_headers
;
1228 if (parameters
->options().relocatable())
1229 segment_headers
= NULL
;
1232 segment_headers
= new Output_segment_headers(this->segment_list_
);
1233 if (load_seg
!= NULL
)
1234 load_seg
->add_initial_output_data(segment_headers
);
1235 if (phdr_seg
!= NULL
)
1236 phdr_seg
->add_initial_output_data(segment_headers
);
1239 // Lay out the file header.
1240 Output_file_header
* file_header
;
1241 file_header
= new Output_file_header(target
, symtab
, segment_headers
,
1242 this->options_
.entry());
1243 if (load_seg
!= NULL
)
1244 load_seg
->add_initial_output_data(file_header
);
1246 this->special_output_list_
.push_back(file_header
);
1247 if (segment_headers
!= NULL
)
1248 this->special_output_list_
.push_back(segment_headers
);
1250 if (this->script_options_
->saw_phdrs_clause()
1251 && !parameters
->options().relocatable())
1253 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1254 // clause in a linker script.
1255 Script_sections
* ss
= this->script_options_
->script_sections();
1256 ss
->put_headers_in_phdrs(file_header
, segment_headers
);
1259 // We set the output section indexes in set_segment_offsets and
1260 // set_section_indexes.
1261 unsigned int shndx
= 1;
1263 // Set the file offsets of all the segments, and all the sections
1266 if (!parameters
->options().relocatable())
1267 off
= this->set_segment_offsets(target
, load_seg
, &shndx
);
1269 off
= this->set_relocatable_section_offsets(file_header
, &shndx
);
1271 // Set the file offsets of all the non-data sections we've seen so
1272 // far which don't have to wait for the input sections. We need
1273 // this in order to finalize local symbols in non-allocated
1275 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1277 // Set the section indexes of all unallocated sections seen so far,
1278 // in case any of them are somehow referenced by a symbol.
1279 shndx
= this->set_section_indexes(shndx
);
1281 // Create the symbol table sections.
1282 this->create_symtab_sections(input_objects
, symtab
, shndx
, &off
);
1283 if (!parameters
->doing_static_link())
1284 this->assign_local_dynsym_offsets(input_objects
);
1286 // Process any symbol assignments from a linker script. This must
1287 // be called after the symbol table has been finalized.
1288 this->script_options_
->finalize_symbols(symtab
, this);
1290 // Create the .shstrtab section.
1291 Output_section
* shstrtab_section
= this->create_shstrtab();
1293 // Set the file offsets of the rest of the non-data sections which
1294 // don't have to wait for the input sections.
1295 off
= this->set_section_offsets(off
, BEFORE_INPUT_SECTIONS_PASS
);
1297 // Now that all sections have been created, set the section indexes
1298 // for any sections which haven't been done yet.
1299 shndx
= this->set_section_indexes(shndx
);
1301 // Create the section table header.
1302 this->create_shdrs(shstrtab_section
, &off
);
1304 // If there are no sections which require postprocessing, we can
1305 // handle the section names now, and avoid a resize later.
1306 if (!this->any_postprocessing_sections_
)
1307 off
= this->set_section_offsets(off
,
1308 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
1310 file_header
->set_section_info(this->section_headers_
, shstrtab_section
);
1312 // Now we know exactly where everything goes in the output file
1313 // (except for non-allocated sections which require postprocessing).
1314 Output_data::layout_complete();
1316 this->output_file_size_
= off
;
1321 // Create a note header following the format defined in the ELF ABI.
1322 // NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1323 // descriptor. ALLOCATE is true if the section should be allocated in
1324 // memory. This returns the new note section. It sets
1325 // *TRAILING_PADDING to the number of trailing zero bytes required.
1328 Layout::create_note(const char* name
, int note_type
, size_t descsz
,
1329 bool allocate
, size_t* trailing_padding
)
1331 // Authorities all agree that the values in a .note field should
1332 // be aligned on 4-byte boundaries for 32-bit binaries. However,
1333 // they differ on what the alignment is for 64-bit binaries.
1334 // The GABI says unambiguously they take 8-byte alignment:
1335 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1336 // Other documentation says alignment should always be 4 bytes:
1337 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1338 // GNU ld and GNU readelf both support the latter (at least as of
1339 // version 2.16.91), and glibc always generates the latter for
1340 // .note.ABI-tag (as of version 1.6), so that's the one we go with
1342 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
1343 const int size
= parameters
->target().get_size();
1345 const int size
= 32;
1348 // The contents of the .note section.
1349 size_t namesz
= strlen(name
) + 1;
1350 size_t aligned_namesz
= align_address(namesz
, size
/ 8);
1351 size_t aligned_descsz
= align_address(descsz
, size
/ 8);
1353 size_t notehdrsz
= 3 * (size
/ 8) + aligned_namesz
;
1355 unsigned char* buffer
= new unsigned char[notehdrsz
];
1356 memset(buffer
, 0, notehdrsz
);
1358 bool is_big_endian
= parameters
->target().is_big_endian();
1364 elfcpp::Swap
<32, false>::writeval(buffer
, namesz
);
1365 elfcpp::Swap
<32, false>::writeval(buffer
+ 4, descsz
);
1366 elfcpp::Swap
<32, false>::writeval(buffer
+ 8, note_type
);
1370 elfcpp::Swap
<32, true>::writeval(buffer
, namesz
);
1371 elfcpp::Swap
<32, true>::writeval(buffer
+ 4, descsz
);
1372 elfcpp::Swap
<32, true>::writeval(buffer
+ 8, note_type
);
1375 else if (size
== 64)
1379 elfcpp::Swap
<64, false>::writeval(buffer
, namesz
);
1380 elfcpp::Swap
<64, false>::writeval(buffer
+ 8, descsz
);
1381 elfcpp::Swap
<64, false>::writeval(buffer
+ 16, note_type
);
1385 elfcpp::Swap
<64, true>::writeval(buffer
, namesz
);
1386 elfcpp::Swap
<64, true>::writeval(buffer
+ 8, descsz
);
1387 elfcpp::Swap
<64, true>::writeval(buffer
+ 16, note_type
);
1393 memcpy(buffer
+ 3 * (size
/ 8), name
, namesz
);
1395 const char* note_name
= this->namepool_
.add(".note", false, NULL
);
1396 elfcpp::Elf_Xword flags
= 0;
1398 flags
= elfcpp::SHF_ALLOC
;
1399 Output_section
* os
= this->make_output_section(note_name
,
1402 Output_section_data
* posd
= new Output_data_const_buffer(buffer
, notehdrsz
,
1405 os
->add_output_section_data(posd
);
1407 *trailing_padding
= aligned_descsz
- descsz
;
1412 // For an executable or shared library, create a note to record the
1413 // version of gold used to create the binary.
1416 Layout::create_gold_note()
1418 if (parameters
->options().relocatable())
1421 std::string desc
= std::string("gold ") + gold::get_version_string();
1423 size_t trailing_padding
;
1424 Output_section
*os
= this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION
,
1425 desc
.size(), false, &trailing_padding
);
1427 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1428 os
->add_output_section_data(posd
);
1430 if (trailing_padding
> 0)
1432 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1433 os
->add_output_section_data(posd
);
1437 // Record whether the stack should be executable. This can be set
1438 // from the command line using the -z execstack or -z noexecstack
1439 // options. Otherwise, if any input file has a .note.GNU-stack
1440 // section with the SHF_EXECINSTR flag set, the stack should be
1441 // executable. Otherwise, if at least one input file a
1442 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1443 // section, we use the target default for whether the stack should be
1444 // executable. Otherwise, we don't generate a stack note. When
1445 // generating a object file, we create a .note.GNU-stack section with
1446 // the appropriate marking. When generating an executable or shared
1447 // library, we create a PT_GNU_STACK segment.
1450 Layout::create_executable_stack_info(const Target
* target
)
1452 bool is_stack_executable
;
1453 if (this->options_
.is_execstack_set())
1454 is_stack_executable
= this->options_
.is_stack_executable();
1455 else if (!this->input_with_gnu_stack_note_
)
1459 if (this->input_requires_executable_stack_
)
1460 is_stack_executable
= true;
1461 else if (this->input_without_gnu_stack_note_
)
1462 is_stack_executable
= target
->is_default_stack_executable();
1464 is_stack_executable
= false;
1467 if (parameters
->options().relocatable())
1469 const char* name
= this->namepool_
.add(".note.GNU-stack", false, NULL
);
1470 elfcpp::Elf_Xword flags
= 0;
1471 if (is_stack_executable
)
1472 flags
|= elfcpp::SHF_EXECINSTR
;
1473 this->make_output_section(name
, elfcpp::SHT_PROGBITS
, flags
);
1477 if (this->script_options_
->saw_phdrs_clause())
1479 int flags
= elfcpp::PF_R
| elfcpp::PF_W
;
1480 if (is_stack_executable
)
1481 flags
|= elfcpp::PF_X
;
1482 this->make_output_segment(elfcpp::PT_GNU_STACK
, flags
);
1486 // If --build-id was used, set up the build ID note.
1489 Layout::create_build_id()
1491 if (!parameters
->options().user_set_build_id())
1494 const char* style
= parameters
->options().build_id();
1495 if (strcmp(style
, "none") == 0)
1498 // Set DESCSZ to the size of the note descriptor. When possible,
1499 // set DESC to the note descriptor contents.
1502 if (strcmp(style
, "md5") == 0)
1504 else if (strcmp(style
, "sha1") == 0)
1506 else if (strcmp(style
, "uuid") == 0)
1508 const size_t uuidsz
= 128 / 8;
1510 char buffer
[uuidsz
];
1511 memset(buffer
, 0, uuidsz
);
1513 int descriptor
= open_descriptor(-1, "/dev/urandom", O_RDONLY
);
1515 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1519 ssize_t got
= ::read(descriptor
, buffer
, uuidsz
);
1520 release_descriptor(descriptor
, true);
1522 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno
));
1523 else if (static_cast<size_t>(got
) != uuidsz
)
1524 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1528 desc
.assign(buffer
, uuidsz
);
1531 else if (strncmp(style
, "0x", 2) == 0)
1534 const char* p
= style
+ 2;
1537 if (hex_p(p
[0]) && hex_p(p
[1]))
1539 char c
= (hex_value(p
[0]) << 4) | hex_value(p
[1]);
1543 else if (*p
== '-' || *p
== ':')
1546 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1549 descsz
= desc
.size();
1552 gold_fatal(_("unrecognized --build-id argument '%s'"), style
);
1555 size_t trailing_padding
;
1556 Output_section
* os
= this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID
,
1557 descsz
, true, &trailing_padding
);
1561 // We know the value already, so we fill it in now.
1562 gold_assert(desc
.size() == descsz
);
1564 Output_section_data
* posd
= new Output_data_const(desc
, 4);
1565 os
->add_output_section_data(posd
);
1567 if (trailing_padding
!= 0)
1569 posd
= new Output_data_zero_fill(trailing_padding
, 0);
1570 os
->add_output_section_data(posd
);
1575 // We need to compute a checksum after we have completed the
1577 gold_assert(trailing_padding
== 0);
1578 this->build_id_note_
= new Output_data_zero_fill(descsz
, 4);
1579 os
->add_output_section_data(this->build_id_note_
);
1580 os
->set_after_input_sections();
1584 // Return whether SEG1 should be before SEG2 in the output file. This
1585 // is based entirely on the segment type and flags. When this is
1586 // called the segment addresses has normally not yet been set.
1589 Layout::segment_precedes(const Output_segment
* seg1
,
1590 const Output_segment
* seg2
)
1592 elfcpp::Elf_Word type1
= seg1
->type();
1593 elfcpp::Elf_Word type2
= seg2
->type();
1595 // The single PT_PHDR segment is required to precede any loadable
1596 // segment. We simply make it always first.
1597 if (type1
== elfcpp::PT_PHDR
)
1599 gold_assert(type2
!= elfcpp::PT_PHDR
);
1602 if (type2
== elfcpp::PT_PHDR
)
1605 // The single PT_INTERP segment is required to precede any loadable
1606 // segment. We simply make it always second.
1607 if (type1
== elfcpp::PT_INTERP
)
1609 gold_assert(type2
!= elfcpp::PT_INTERP
);
1612 if (type2
== elfcpp::PT_INTERP
)
1615 // We then put PT_LOAD segments before any other segments.
1616 if (type1
== elfcpp::PT_LOAD
&& type2
!= elfcpp::PT_LOAD
)
1618 if (type2
== elfcpp::PT_LOAD
&& type1
!= elfcpp::PT_LOAD
)
1621 // We put the PT_TLS segment last except for the PT_GNU_RELRO
1622 // segment, because that is where the dynamic linker expects to find
1623 // it (this is just for efficiency; other positions would also work
1625 if (type1
== elfcpp::PT_TLS
1626 && type2
!= elfcpp::PT_TLS
1627 && type2
!= elfcpp::PT_GNU_RELRO
)
1629 if (type2
== elfcpp::PT_TLS
1630 && type1
!= elfcpp::PT_TLS
1631 && type1
!= elfcpp::PT_GNU_RELRO
)
1634 // We put the PT_GNU_RELRO segment last, because that is where the
1635 // dynamic linker expects to find it (as with PT_TLS, this is just
1637 if (type1
== elfcpp::PT_GNU_RELRO
&& type2
!= elfcpp::PT_GNU_RELRO
)
1639 if (type2
== elfcpp::PT_GNU_RELRO
&& type1
!= elfcpp::PT_GNU_RELRO
)
1642 const elfcpp::Elf_Word flags1
= seg1
->flags();
1643 const elfcpp::Elf_Word flags2
= seg2
->flags();
1645 // The order of non-PT_LOAD segments is unimportant. We simply sort
1646 // by the numeric segment type and flags values. There should not
1647 // be more than one segment with the same type and flags.
1648 if (type1
!= elfcpp::PT_LOAD
)
1651 return type1
< type2
;
1652 gold_assert(flags1
!= flags2
);
1653 return flags1
< flags2
;
1656 // If the addresses are set already, sort by load address.
1657 if (seg1
->are_addresses_set())
1659 if (!seg2
->are_addresses_set())
1662 unsigned int section_count1
= seg1
->output_section_count();
1663 unsigned int section_count2
= seg2
->output_section_count();
1664 if (section_count1
== 0 && section_count2
> 0)
1666 if (section_count1
> 0 && section_count2
== 0)
1669 uint64_t paddr1
= seg1
->first_section_load_address();
1670 uint64_t paddr2
= seg2
->first_section_load_address();
1671 if (paddr1
!= paddr2
)
1672 return paddr1
< paddr2
;
1674 else if (seg2
->are_addresses_set())
1677 // We sort PT_LOAD segments based on the flags. Readonly segments
1678 // come before writable segments. Then writable segments with data
1679 // come before writable segments without data. Then executable
1680 // segments come before non-executable segments. Then the unlikely
1681 // case of a non-readable segment comes before the normal case of a
1682 // readable segment. If there are multiple segments with the same
1683 // type and flags, we require that the address be set, and we sort
1684 // by virtual address and then physical address.
1685 if ((flags1
& elfcpp::PF_W
) != (flags2
& elfcpp::PF_W
))
1686 return (flags1
& elfcpp::PF_W
) == 0;
1687 if ((flags1
& elfcpp::PF_W
) != 0
1688 && seg1
->has_any_data_sections() != seg2
->has_any_data_sections())
1689 return seg1
->has_any_data_sections();
1690 if ((flags1
& elfcpp::PF_X
) != (flags2
& elfcpp::PF_X
))
1691 return (flags1
& elfcpp::PF_X
) != 0;
1692 if ((flags1
& elfcpp::PF_R
) != (flags2
& elfcpp::PF_R
))
1693 return (flags1
& elfcpp::PF_R
) == 0;
1695 // We shouldn't get here--we shouldn't create segments which we
1696 // can't distinguish.
1700 // Set the file offsets of all the segments, and all the sections they
1701 // contain. They have all been created. LOAD_SEG must be be laid out
1702 // first. Return the offset of the data to follow.
1705 Layout::set_segment_offsets(const Target
* target
, Output_segment
* load_seg
,
1706 unsigned int *pshndx
)
1708 // Sort them into the final order.
1709 std::sort(this->segment_list_
.begin(), this->segment_list_
.end(),
1710 Layout::Compare_segments());
1712 // Find the PT_LOAD segments, and set their addresses and offsets
1713 // and their section's addresses and offsets.
1715 if (this->options_
.user_set_Ttext())
1716 addr
= this->options_
.Ttext();
1717 else if (parameters
->options().shared())
1720 addr
= target
->default_text_segment_address();
1723 // If LOAD_SEG is NULL, then the file header and segment headers
1724 // will not be loadable. But they still need to be at offset 0 in
1725 // the file. Set their offsets now.
1726 if (load_seg
== NULL
)
1728 for (Data_list::iterator p
= this->special_output_list_
.begin();
1729 p
!= this->special_output_list_
.end();
1732 off
= align_address(off
, (*p
)->addralign());
1733 (*p
)->set_address_and_file_offset(0, off
);
1734 off
+= (*p
)->data_size();
1738 const bool check_sections
= parameters
->options().check_sections();
1739 Output_segment
* last_load_segment
= NULL
;
1741 bool was_readonly
= false;
1742 for (Segment_list::iterator p
= this->segment_list_
.begin();
1743 p
!= this->segment_list_
.end();
1746 if ((*p
)->type() == elfcpp::PT_LOAD
)
1748 if (load_seg
!= NULL
&& load_seg
!= *p
)
1752 bool are_addresses_set
= (*p
)->are_addresses_set();
1753 if (are_addresses_set
)
1755 // When it comes to setting file offsets, we care about
1756 // the physical address.
1757 addr
= (*p
)->paddr();
1759 else if (this->options_
.user_set_Tdata()
1760 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1761 && (!this->options_
.user_set_Tbss()
1762 || (*p
)->has_any_data_sections()))
1764 addr
= this->options_
.Tdata();
1765 are_addresses_set
= true;
1767 else if (this->options_
.user_set_Tbss()
1768 && ((*p
)->flags() & elfcpp::PF_W
) != 0
1769 && !(*p
)->has_any_data_sections())
1771 addr
= this->options_
.Tbss();
1772 are_addresses_set
= true;
1775 uint64_t orig_addr
= addr
;
1776 uint64_t orig_off
= off
;
1778 uint64_t aligned_addr
= 0;
1779 uint64_t abi_pagesize
= target
->abi_pagesize();
1780 uint64_t common_pagesize
= target
->common_pagesize();
1782 if (!parameters
->options().nmagic()
1783 && !parameters
->options().omagic())
1784 (*p
)->set_minimum_p_align(common_pagesize
);
1786 if (are_addresses_set
)
1788 if (!parameters
->options().nmagic()
1789 && !parameters
->options().omagic())
1791 // Adjust the file offset to the same address modulo
1793 uint64_t unsigned_off
= off
;
1794 uint64_t aligned_off
= ((unsigned_off
& ~(abi_pagesize
- 1))
1795 | (addr
& (abi_pagesize
- 1)));
1796 if (aligned_off
< unsigned_off
)
1797 aligned_off
+= abi_pagesize
;
1803 // If the last segment was readonly, and this one is
1804 // not, then skip the address forward one page,
1805 // maintaining the same position within the page. This
1806 // lets us store both segments overlapping on a single
1807 // page in the file, but the loader will put them on
1808 // different pages in memory.
1810 addr
= align_address(addr
, (*p
)->maximum_alignment());
1811 aligned_addr
= addr
;
1813 if (was_readonly
&& ((*p
)->flags() & elfcpp::PF_W
) != 0)
1815 if ((addr
& (abi_pagesize
- 1)) != 0)
1816 addr
= addr
+ abi_pagesize
;
1819 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1822 unsigned int shndx_hold
= *pshndx
;
1823 uint64_t new_addr
= (*p
)->set_section_addresses(this, false, addr
,
1826 // Now that we know the size of this segment, we may be able
1827 // to save a page in memory, at the cost of wasting some
1828 // file space, by instead aligning to the start of a new
1829 // page. Here we use the real machine page size rather than
1830 // the ABI mandated page size.
1832 if (!are_addresses_set
&& aligned_addr
!= addr
)
1834 uint64_t first_off
= (common_pagesize
1836 & (common_pagesize
- 1)));
1837 uint64_t last_off
= new_addr
& (common_pagesize
- 1);
1840 && ((aligned_addr
& ~ (common_pagesize
- 1))
1841 != (new_addr
& ~ (common_pagesize
- 1)))
1842 && first_off
+ last_off
<= common_pagesize
)
1844 *pshndx
= shndx_hold
;
1845 addr
= align_address(aligned_addr
, common_pagesize
);
1846 addr
= align_address(addr
, (*p
)->maximum_alignment());
1847 off
= orig_off
+ ((addr
- orig_addr
) & (abi_pagesize
- 1));
1848 new_addr
= (*p
)->set_section_addresses(this, true, addr
,
1855 if (((*p
)->flags() & elfcpp::PF_W
) == 0)
1856 was_readonly
= true;
1858 // Implement --check-sections. We know that the segments
1859 // are sorted by LMA.
1860 if (check_sections
&& last_load_segment
!= NULL
)
1862 gold_assert(last_load_segment
->paddr() <= (*p
)->paddr());
1863 if (last_load_segment
->paddr() + last_load_segment
->memsz()
1866 unsigned long long lb1
= last_load_segment
->paddr();
1867 unsigned long long le1
= lb1
+ last_load_segment
->memsz();
1868 unsigned long long lb2
= (*p
)->paddr();
1869 unsigned long long le2
= lb2
+ (*p
)->memsz();
1870 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1871 "[0x%llx -> 0x%llx]"),
1872 lb1
, le1
, lb2
, le2
);
1875 last_load_segment
= *p
;
1879 // Handle the non-PT_LOAD segments, setting their offsets from their
1880 // section's offsets.
1881 for (Segment_list::iterator p
= this->segment_list_
.begin();
1882 p
!= this->segment_list_
.end();
1885 if ((*p
)->type() != elfcpp::PT_LOAD
)
1889 // Set the TLS offsets for each section in the PT_TLS segment.
1890 if (this->tls_segment_
!= NULL
)
1891 this->tls_segment_
->set_tls_offsets();
1896 // Set the offsets of all the allocated sections when doing a
1897 // relocatable link. This does the same jobs as set_segment_offsets,
1898 // only for a relocatable link.
1901 Layout::set_relocatable_section_offsets(Output_data
* file_header
,
1902 unsigned int *pshndx
)
1906 file_header
->set_address_and_file_offset(0, 0);
1907 off
+= file_header
->data_size();
1909 for (Section_list::iterator p
= this->section_list_
.begin();
1910 p
!= this->section_list_
.end();
1913 // We skip unallocated sections here, except that group sections
1914 // have to come first.
1915 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) == 0
1916 && (*p
)->type() != elfcpp::SHT_GROUP
)
1919 off
= align_address(off
, (*p
)->addralign());
1921 // The linker script might have set the address.
1922 if (!(*p
)->is_address_valid())
1923 (*p
)->set_address(0);
1924 (*p
)->set_file_offset(off
);
1925 (*p
)->finalize_data_size();
1926 off
+= (*p
)->data_size();
1928 (*p
)->set_out_shndx(*pshndx
);
1935 // Set the file offset of all the sections not associated with a
1939 Layout::set_section_offsets(off_t off
, Layout::Section_offset_pass pass
)
1941 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1942 p
!= this->unattached_section_list_
.end();
1945 // The symtab section is handled in create_symtab_sections.
1946 if (*p
== this->symtab_section_
)
1949 // If we've already set the data size, don't set it again.
1950 if ((*p
)->is_offset_valid() && (*p
)->is_data_size_valid())
1953 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1954 && (*p
)->requires_postprocessing())
1956 (*p
)->create_postprocessing_buffer();
1957 this->any_postprocessing_sections_
= true;
1960 if (pass
== BEFORE_INPUT_SECTIONS_PASS
1961 && (*p
)->after_input_sections())
1963 else if (pass
== POSTPROCESSING_SECTIONS_PASS
1964 && (!(*p
)->after_input_sections()
1965 || (*p
)->type() == elfcpp::SHT_STRTAB
))
1967 else if (pass
== STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1968 && (!(*p
)->after_input_sections()
1969 || (*p
)->type() != elfcpp::SHT_STRTAB
))
1972 off
= align_address(off
, (*p
)->addralign());
1973 (*p
)->set_file_offset(off
);
1974 (*p
)->finalize_data_size();
1975 off
+= (*p
)->data_size();
1977 // At this point the name must be set.
1978 if (pass
!= STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
)
1979 this->namepool_
.add((*p
)->name(), false, NULL
);
1984 // Set the section indexes of all the sections not associated with a
1988 Layout::set_section_indexes(unsigned int shndx
)
1990 for (Section_list::iterator p
= this->unattached_section_list_
.begin();
1991 p
!= this->unattached_section_list_
.end();
1994 if (!(*p
)->has_out_shndx())
1996 (*p
)->set_out_shndx(shndx
);
2003 // Set the section addresses according to the linker script. This is
2004 // only called when we see a SECTIONS clause. This returns the
2005 // program segment which should hold the file header and segment
2006 // headers, if any. It will return NULL if they should not be in a
2010 Layout::set_section_addresses_from_script(Symbol_table
* symtab
)
2012 Script_sections
* ss
= this->script_options_
->script_sections();
2013 gold_assert(ss
->saw_sections_clause());
2015 // Place each orphaned output section in the script.
2016 for (Section_list::iterator p
= this->section_list_
.begin();
2017 p
!= this->section_list_
.end();
2020 if (!(*p
)->found_in_sections_clause())
2021 ss
->place_orphan(*p
);
2024 return this->script_options_
->set_section_addresses(symtab
, this);
2027 // Count the local symbols in the regular symbol table and the dynamic
2028 // symbol table, and build the respective string pools.
2031 Layout::count_local_symbols(const Task
* task
,
2032 const Input_objects
* input_objects
)
2034 // First, figure out an upper bound on the number of symbols we'll
2035 // be inserting into each pool. This helps us create the pools with
2036 // the right size, to avoid unnecessary hashtable resizing.
2037 unsigned int symbol_count
= 0;
2038 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2039 p
!= input_objects
->relobj_end();
2041 symbol_count
+= (*p
)->local_symbol_count();
2043 // Go from "upper bound" to "estimate." We overcount for two
2044 // reasons: we double-count symbols that occur in more than one
2045 // object file, and we count symbols that are dropped from the
2046 // output. Add it all together and assume we overcount by 100%.
2049 // We assume all symbols will go into both the sympool and dynpool.
2050 this->sympool_
.reserve(symbol_count
);
2051 this->dynpool_
.reserve(symbol_count
);
2053 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2054 p
!= input_objects
->relobj_end();
2057 Task_lock_obj
<Object
> tlo(task
, *p
);
2058 (*p
)->count_local_symbols(&this->sympool_
, &this->dynpool_
);
2062 // Create the symbol table sections. Here we also set the final
2063 // values of the symbols. At this point all the loadable sections are
2064 // fully laid out. SHNUM is the number of sections so far.
2067 Layout::create_symtab_sections(const Input_objects
* input_objects
,
2068 Symbol_table
* symtab
,
2074 if (parameters
->target().get_size() == 32)
2076 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2079 else if (parameters
->target().get_size() == 64)
2081 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2088 off
= align_address(off
, align
);
2089 off_t startoff
= off
;
2091 // Save space for the dummy symbol at the start of the section. We
2092 // never bother to write this out--it will just be left as zero.
2094 unsigned int local_symbol_index
= 1;
2096 // Add STT_SECTION symbols for each Output section which needs one.
2097 for (Section_list::iterator p
= this->section_list_
.begin();
2098 p
!= this->section_list_
.end();
2101 if (!(*p
)->needs_symtab_index())
2102 (*p
)->set_symtab_index(-1U);
2105 (*p
)->set_symtab_index(local_symbol_index
);
2106 ++local_symbol_index
;
2111 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2112 p
!= input_objects
->relobj_end();
2115 unsigned int index
= (*p
)->finalize_local_symbols(local_symbol_index
,
2117 off
+= (index
- local_symbol_index
) * symsize
;
2118 local_symbol_index
= index
;
2121 unsigned int local_symcount
= local_symbol_index
;
2122 gold_assert(local_symcount
* symsize
== off
- startoff
);
2125 size_t dyn_global_index
;
2127 if (this->dynsym_section_
== NULL
)
2130 dyn_global_index
= 0;
2135 dyn_global_index
= this->dynsym_section_
->info();
2136 off_t locsize
= dyn_global_index
* this->dynsym_section_
->entsize();
2137 dynoff
= this->dynsym_section_
->offset() + locsize
;
2138 dyncount
= (this->dynsym_section_
->data_size() - locsize
) / symsize
;
2139 gold_assert(static_cast<off_t
>(dyncount
* symsize
)
2140 == this->dynsym_section_
->data_size() - locsize
);
2143 off
= symtab
->finalize(off
, dynoff
, dyn_global_index
, dyncount
,
2144 &this->sympool_
, &local_symcount
);
2146 if (!parameters
->options().strip_all())
2148 this->sympool_
.set_string_offsets();
2150 const char* symtab_name
= this->namepool_
.add(".symtab", false, NULL
);
2151 Output_section
* osymtab
= this->make_output_section(symtab_name
,
2154 this->symtab_section_
= osymtab
;
2156 Output_section_data
* pos
= new Output_data_fixed_space(off
- startoff
,
2159 osymtab
->add_output_section_data(pos
);
2161 // We generate a .symtab_shndx section if we have more than
2162 // SHN_LORESERVE sections. Technically it is possible that we
2163 // don't need one, because it is possible that there are no
2164 // symbols in any of sections with indexes larger than
2165 // SHN_LORESERVE. That is probably unusual, though, and it is
2166 // easier to always create one than to compute section indexes
2167 // twice (once here, once when writing out the symbols).
2168 if (shnum
>= elfcpp::SHN_LORESERVE
)
2170 const char* symtab_xindex_name
= this->namepool_
.add(".symtab_shndx",
2172 Output_section
* osymtab_xindex
=
2173 this->make_output_section(symtab_xindex_name
,
2174 elfcpp::SHT_SYMTAB_SHNDX
, 0);
2176 size_t symcount
= (off
- startoff
) / symsize
;
2177 this->symtab_xindex_
= new Output_symtab_xindex(symcount
);
2179 osymtab_xindex
->add_output_section_data(this->symtab_xindex_
);
2181 osymtab_xindex
->set_link_section(osymtab
);
2182 osymtab_xindex
->set_addralign(4);
2183 osymtab_xindex
->set_entsize(4);
2185 osymtab_xindex
->set_after_input_sections();
2187 // This tells the driver code to wait until the symbol table
2188 // has written out before writing out the postprocessing
2189 // sections, including the .symtab_shndx section.
2190 this->any_postprocessing_sections_
= true;
2193 const char* strtab_name
= this->namepool_
.add(".strtab", false, NULL
);
2194 Output_section
* ostrtab
= this->make_output_section(strtab_name
,
2198 Output_section_data
* pstr
= new Output_data_strtab(&this->sympool_
);
2199 ostrtab
->add_output_section_data(pstr
);
2201 osymtab
->set_file_offset(startoff
);
2202 osymtab
->finalize_data_size();
2203 osymtab
->set_link_section(ostrtab
);
2204 osymtab
->set_info(local_symcount
);
2205 osymtab
->set_entsize(symsize
);
2211 // Create the .shstrtab section, which holds the names of the
2212 // sections. At the time this is called, we have created all the
2213 // output sections except .shstrtab itself.
2216 Layout::create_shstrtab()
2218 // FIXME: We don't need to create a .shstrtab section if we are
2219 // stripping everything.
2221 const char* name
= this->namepool_
.add(".shstrtab", false, NULL
);
2223 Output_section
* os
= this->make_output_section(name
, elfcpp::SHT_STRTAB
, 0);
2225 // We can't write out this section until we've set all the section
2226 // names, and we don't set the names of compressed output sections
2227 // until relocations are complete.
2228 os
->set_after_input_sections();
2230 Output_section_data
* posd
= new Output_data_strtab(&this->namepool_
);
2231 os
->add_output_section_data(posd
);
2236 // Create the section headers. SIZE is 32 or 64. OFF is the file
2240 Layout::create_shdrs(const Output_section
* shstrtab_section
, off_t
* poff
)
2242 Output_section_headers
* oshdrs
;
2243 oshdrs
= new Output_section_headers(this,
2244 &this->segment_list_
,
2245 &this->section_list_
,
2246 &this->unattached_section_list_
,
2249 off_t off
= align_address(*poff
, oshdrs
->addralign());
2250 oshdrs
->set_address_and_file_offset(0, off
);
2251 off
+= oshdrs
->data_size();
2253 this->section_headers_
= oshdrs
;
2256 // Count the allocated sections.
2259 Layout::allocated_output_section_count() const
2261 size_t section_count
= 0;
2262 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2263 p
!= this->segment_list_
.end();
2265 section_count
+= (*p
)->output_section_count();
2266 return section_count
;
2269 // Create the dynamic symbol table.
2272 Layout::create_dynamic_symtab(const Input_objects
* input_objects
,
2273 Symbol_table
* symtab
,
2274 Output_section
**pdynstr
,
2275 unsigned int* plocal_dynamic_count
,
2276 std::vector
<Symbol
*>* pdynamic_symbols
,
2277 Versions
* pversions
)
2279 // Count all the symbols in the dynamic symbol table, and set the
2280 // dynamic symbol indexes.
2282 // Skip symbol 0, which is always all zeroes.
2283 unsigned int index
= 1;
2285 // Add STT_SECTION symbols for each Output section which needs one.
2286 for (Section_list::iterator p
= this->section_list_
.begin();
2287 p
!= this->section_list_
.end();
2290 if (!(*p
)->needs_dynsym_index())
2291 (*p
)->set_dynsym_index(-1U);
2294 (*p
)->set_dynsym_index(index
);
2299 // Count the local symbols that need to go in the dynamic symbol table,
2300 // and set the dynamic symbol indexes.
2301 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2302 p
!= input_objects
->relobj_end();
2305 unsigned int new_index
= (*p
)->set_local_dynsym_indexes(index
);
2309 unsigned int local_symcount
= index
;
2310 *plocal_dynamic_count
= local_symcount
;
2312 index
= symtab
->set_dynsym_indexes(index
, pdynamic_symbols
,
2313 &this->dynpool_
, pversions
);
2317 const int size
= parameters
->target().get_size();
2320 symsize
= elfcpp::Elf_sizes
<32>::sym_size
;
2323 else if (size
== 64)
2325 symsize
= elfcpp::Elf_sizes
<64>::sym_size
;
2331 // Create the dynamic symbol table section.
2333 Output_section
* dynsym
= this->choose_output_section(NULL
, ".dynsym",
2338 Output_section_data
* odata
= new Output_data_fixed_space(index
* symsize
,
2341 dynsym
->add_output_section_data(odata
);
2343 dynsym
->set_info(local_symcount
);
2344 dynsym
->set_entsize(symsize
);
2345 dynsym
->set_addralign(align
);
2347 this->dynsym_section_
= dynsym
;
2349 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2350 odyn
->add_section_address(elfcpp::DT_SYMTAB
, dynsym
);
2351 odyn
->add_constant(elfcpp::DT_SYMENT
, symsize
);
2353 // If there are more than SHN_LORESERVE allocated sections, we
2354 // create a .dynsym_shndx section. It is possible that we don't
2355 // need one, because it is possible that there are no dynamic
2356 // symbols in any of the sections with indexes larger than
2357 // SHN_LORESERVE. This is probably unusual, though, and at this
2358 // time we don't know the actual section indexes so it is
2359 // inconvenient to check.
2360 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE
)
2362 Output_section
* dynsym_xindex
=
2363 this->choose_output_section(NULL
, ".dynsym_shndx",
2364 elfcpp::SHT_SYMTAB_SHNDX
,
2368 this->dynsym_xindex_
= new Output_symtab_xindex(index
);
2370 dynsym_xindex
->add_output_section_data(this->dynsym_xindex_
);
2372 dynsym_xindex
->set_link_section(dynsym
);
2373 dynsym_xindex
->set_addralign(4);
2374 dynsym_xindex
->set_entsize(4);
2376 dynsym_xindex
->set_after_input_sections();
2378 // This tells the driver code to wait until the symbol table has
2379 // written out before writing out the postprocessing sections,
2380 // including the .dynsym_shndx section.
2381 this->any_postprocessing_sections_
= true;
2384 // Create the dynamic string table section.
2386 Output_section
* dynstr
= this->choose_output_section(NULL
, ".dynstr",
2391 Output_section_data
* strdata
= new Output_data_strtab(&this->dynpool_
);
2392 dynstr
->add_output_section_data(strdata
);
2394 dynsym
->set_link_section(dynstr
);
2395 this->dynamic_section_
->set_link_section(dynstr
);
2397 odyn
->add_section_address(elfcpp::DT_STRTAB
, dynstr
);
2398 odyn
->add_section_size(elfcpp::DT_STRSZ
, dynstr
);
2402 // Create the hash tables.
2404 if (strcmp(parameters
->options().hash_style(), "sysv") == 0
2405 || strcmp(parameters
->options().hash_style(), "both") == 0)
2407 unsigned char* phash
;
2408 unsigned int hashlen
;
2409 Dynobj::create_elf_hash_table(*pdynamic_symbols
, local_symcount
,
2412 Output_section
* hashsec
= this->choose_output_section(NULL
, ".hash",
2417 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2421 hashsec
->add_output_section_data(hashdata
);
2423 hashsec
->set_link_section(dynsym
);
2424 hashsec
->set_entsize(4);
2426 odyn
->add_section_address(elfcpp::DT_HASH
, hashsec
);
2429 if (strcmp(parameters
->options().hash_style(), "gnu") == 0
2430 || strcmp(parameters
->options().hash_style(), "both") == 0)
2432 unsigned char* phash
;
2433 unsigned int hashlen
;
2434 Dynobj::create_gnu_hash_table(*pdynamic_symbols
, local_symcount
,
2437 Output_section
* hashsec
= this->choose_output_section(NULL
, ".gnu.hash",
2438 elfcpp::SHT_GNU_HASH
,
2442 Output_section_data
* hashdata
= new Output_data_const_buffer(phash
,
2446 hashsec
->add_output_section_data(hashdata
);
2448 hashsec
->set_link_section(dynsym
);
2449 hashsec
->set_entsize(4);
2451 odyn
->add_section_address(elfcpp::DT_GNU_HASH
, hashsec
);
2455 // Assign offsets to each local portion of the dynamic symbol table.
2458 Layout::assign_local_dynsym_offsets(const Input_objects
* input_objects
)
2460 Output_section
* dynsym
= this->dynsym_section_
;
2461 gold_assert(dynsym
!= NULL
);
2463 off_t off
= dynsym
->offset();
2465 // Skip the dummy symbol at the start of the section.
2466 off
+= dynsym
->entsize();
2468 for (Input_objects::Relobj_iterator p
= input_objects
->relobj_begin();
2469 p
!= input_objects
->relobj_end();
2472 unsigned int count
= (*p
)->set_local_dynsym_offset(off
);
2473 off
+= count
* dynsym
->entsize();
2477 // Create the version sections.
2480 Layout::create_version_sections(const Versions
* versions
,
2481 const Symbol_table
* symtab
,
2482 unsigned int local_symcount
,
2483 const std::vector
<Symbol
*>& dynamic_symbols
,
2484 const Output_section
* dynstr
)
2486 if (!versions
->any_defs() && !versions
->any_needs())
2489 switch (parameters
->size_and_endianness())
2491 #ifdef HAVE_TARGET_32_LITTLE
2492 case Parameters::TARGET_32_LITTLE
:
2493 this->sized_create_version_sections
<32, false>(versions
, symtab
,
2495 dynamic_symbols
, dynstr
);
2498 #ifdef HAVE_TARGET_32_BIG
2499 case Parameters::TARGET_32_BIG
:
2500 this->sized_create_version_sections
<32, true>(versions
, symtab
,
2502 dynamic_symbols
, dynstr
);
2505 #ifdef HAVE_TARGET_64_LITTLE
2506 case Parameters::TARGET_64_LITTLE
:
2507 this->sized_create_version_sections
<64, false>(versions
, symtab
,
2509 dynamic_symbols
, dynstr
);
2512 #ifdef HAVE_TARGET_64_BIG
2513 case Parameters::TARGET_64_BIG
:
2514 this->sized_create_version_sections
<64, true>(versions
, symtab
,
2516 dynamic_symbols
, dynstr
);
2524 // Create the version sections, sized version.
2526 template<int size
, bool big_endian
>
2528 Layout::sized_create_version_sections(
2529 const Versions
* versions
,
2530 const Symbol_table
* symtab
,
2531 unsigned int local_symcount
,
2532 const std::vector
<Symbol
*>& dynamic_symbols
,
2533 const Output_section
* dynstr
)
2535 Output_section
* vsec
= this->choose_output_section(NULL
, ".gnu.version",
2536 elfcpp::SHT_GNU_versym
,
2540 unsigned char* vbuf
;
2542 versions
->symbol_section_contents
<size
, big_endian
>(symtab
, &this->dynpool_
,
2547 Output_section_data
* vdata
= new Output_data_const_buffer(vbuf
, vsize
, 2,
2550 vsec
->add_output_section_data(vdata
);
2551 vsec
->set_entsize(2);
2552 vsec
->set_link_section(this->dynsym_section_
);
2554 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2555 odyn
->add_section_address(elfcpp::DT_VERSYM
, vsec
);
2557 if (versions
->any_defs())
2559 Output_section
* vdsec
;
2560 vdsec
= this->choose_output_section(NULL
, ".gnu.version_d",
2561 elfcpp::SHT_GNU_verdef
,
2565 unsigned char* vdbuf
;
2566 unsigned int vdsize
;
2567 unsigned int vdentries
;
2568 versions
->def_section_contents
<size
, big_endian
>(&this->dynpool_
, &vdbuf
,
2569 &vdsize
, &vdentries
);
2571 Output_section_data
* vddata
=
2572 new Output_data_const_buffer(vdbuf
, vdsize
, 4, "** version defs");
2574 vdsec
->add_output_section_data(vddata
);
2575 vdsec
->set_link_section(dynstr
);
2576 vdsec
->set_info(vdentries
);
2578 odyn
->add_section_address(elfcpp::DT_VERDEF
, vdsec
);
2579 odyn
->add_constant(elfcpp::DT_VERDEFNUM
, vdentries
);
2582 if (versions
->any_needs())
2584 Output_section
* vnsec
;
2585 vnsec
= this->choose_output_section(NULL
, ".gnu.version_r",
2586 elfcpp::SHT_GNU_verneed
,
2590 unsigned char* vnbuf
;
2591 unsigned int vnsize
;
2592 unsigned int vnentries
;
2593 versions
->need_section_contents
<size
, big_endian
>(&this->dynpool_
,
2597 Output_section_data
* vndata
=
2598 new Output_data_const_buffer(vnbuf
, vnsize
, 4, "** version refs");
2600 vnsec
->add_output_section_data(vndata
);
2601 vnsec
->set_link_section(dynstr
);
2602 vnsec
->set_info(vnentries
);
2604 odyn
->add_section_address(elfcpp::DT_VERNEED
, vnsec
);
2605 odyn
->add_constant(elfcpp::DT_VERNEEDNUM
, vnentries
);
2609 // Create the .interp section and PT_INTERP segment.
2612 Layout::create_interp(const Target
* target
)
2614 const char* interp
= this->options_
.dynamic_linker();
2617 interp
= target
->dynamic_linker();
2618 gold_assert(interp
!= NULL
);
2621 size_t len
= strlen(interp
) + 1;
2623 Output_section_data
* odata
= new Output_data_const(interp
, len
, 1);
2625 Output_section
* osec
= this->choose_output_section(NULL
, ".interp",
2626 elfcpp::SHT_PROGBITS
,
2629 osec
->add_output_section_data(odata
);
2631 if (!this->script_options_
->saw_phdrs_clause())
2633 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_INTERP
,
2635 oseg
->add_output_section(osec
, elfcpp::PF_R
);
2639 // Finish the .dynamic section and PT_DYNAMIC segment.
2642 Layout::finish_dynamic_section(const Input_objects
* input_objects
,
2643 const Symbol_table
* symtab
)
2645 if (!this->script_options_
->saw_phdrs_clause())
2647 Output_segment
* oseg
= this->make_output_segment(elfcpp::PT_DYNAMIC
,
2650 oseg
->add_output_section(this->dynamic_section_
,
2651 elfcpp::PF_R
| elfcpp::PF_W
);
2654 Output_data_dynamic
* const odyn
= this->dynamic_data_
;
2656 for (Input_objects::Dynobj_iterator p
= input_objects
->dynobj_begin();
2657 p
!= input_objects
->dynobj_end();
2660 // FIXME: Handle --as-needed.
2661 odyn
->add_string(elfcpp::DT_NEEDED
, (*p
)->soname());
2664 if (parameters
->options().shared())
2666 const char* soname
= this->options_
.soname();
2668 odyn
->add_string(elfcpp::DT_SONAME
, soname
);
2671 // FIXME: Support --init and --fini.
2672 Symbol
* sym
= symtab
->lookup("_init");
2673 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2674 odyn
->add_symbol(elfcpp::DT_INIT
, sym
);
2676 sym
= symtab
->lookup("_fini");
2677 if (sym
!= NULL
&& sym
->is_defined() && !sym
->is_from_dynobj())
2678 odyn
->add_symbol(elfcpp::DT_FINI
, sym
);
2680 // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2682 // Add a DT_RPATH entry if needed.
2683 const General_options::Dir_list
& rpath(this->options_
.rpath());
2686 std::string rpath_val
;
2687 for (General_options::Dir_list::const_iterator p
= rpath
.begin();
2691 if (rpath_val
.empty())
2692 rpath_val
= p
->name();
2695 // Eliminate duplicates.
2696 General_options::Dir_list::const_iterator q
;
2697 for (q
= rpath
.begin(); q
!= p
; ++q
)
2698 if (q
->name() == p
->name())
2703 rpath_val
+= p
->name();
2708 odyn
->add_string(elfcpp::DT_RPATH
, rpath_val
);
2709 if (parameters
->options().enable_new_dtags())
2710 odyn
->add_string(elfcpp::DT_RUNPATH
, rpath_val
);
2713 // Look for text segments that have dynamic relocations.
2714 bool have_textrel
= false;
2715 if (!this->script_options_
->saw_sections_clause())
2717 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
2718 p
!= this->segment_list_
.end();
2721 if (((*p
)->flags() & elfcpp::PF_W
) == 0
2722 && (*p
)->dynamic_reloc_count() > 0)
2724 have_textrel
= true;
2731 // We don't know the section -> segment mapping, so we are
2732 // conservative and just look for readonly sections with
2733 // relocations. If those sections wind up in writable segments,
2734 // then we have created an unnecessary DT_TEXTREL entry.
2735 for (Section_list::const_iterator p
= this->section_list_
.begin();
2736 p
!= this->section_list_
.end();
2739 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0
2740 && ((*p
)->flags() & elfcpp::SHF_WRITE
) == 0
2741 && ((*p
)->dynamic_reloc_count() > 0))
2743 have_textrel
= true;
2749 // Add a DT_FLAGS entry. We add it even if no flags are set so that
2750 // post-link tools can easily modify these flags if desired.
2751 unsigned int flags
= 0;
2754 // Add a DT_TEXTREL for compatibility with older loaders.
2755 odyn
->add_constant(elfcpp::DT_TEXTREL
, 0);
2756 flags
|= elfcpp::DF_TEXTREL
;
2758 if (parameters
->options().shared() && this->has_static_tls())
2759 flags
|= elfcpp::DF_STATIC_TLS
;
2760 if (parameters
->options().origin())
2761 flags
|= elfcpp::DF_ORIGIN
;
2762 odyn
->add_constant(elfcpp::DT_FLAGS
, flags
);
2765 if (parameters
->options().initfirst())
2766 flags
|= elfcpp::DF_1_INITFIRST
;
2767 if (parameters
->options().interpose())
2768 flags
|= elfcpp::DF_1_INTERPOSE
;
2769 if (parameters
->options().loadfltr())
2770 flags
|= elfcpp::DF_1_LOADFLTR
;
2771 if (parameters
->options().nodefaultlib())
2772 flags
|= elfcpp::DF_1_NODEFLIB
;
2773 if (parameters
->options().nodelete())
2774 flags
|= elfcpp::DF_1_NODELETE
;
2775 if (parameters
->options().nodlopen())
2776 flags
|= elfcpp::DF_1_NOOPEN
;
2777 if (parameters
->options().nodump())
2778 flags
|= elfcpp::DF_1_NODUMP
;
2779 if (!parameters
->options().shared())
2780 flags
&= ~(elfcpp::DF_1_INITFIRST
2781 | elfcpp::DF_1_NODELETE
2782 | elfcpp::DF_1_NOOPEN
);
2783 if (parameters
->options().origin())
2784 flags
|= elfcpp::DF_1_ORIGIN
;
2786 odyn
->add_constant(elfcpp::DT_FLAGS_1
, flags
);
2789 // The mapping of .gnu.linkonce section names to real section names.
2791 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2792 const Layout::Linkonce_mapping
Layout::linkonce_mapping
[] =
2794 MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2795 MAPPING_INIT("d.rel.ro", ".data.rel.ro"), // Before "d".
2796 MAPPING_INIT("t", ".text"),
2797 MAPPING_INIT("r", ".rodata"),
2798 MAPPING_INIT("d", ".data"),
2799 MAPPING_INIT("b", ".bss"),
2800 MAPPING_INIT("s", ".sdata"),
2801 MAPPING_INIT("sb", ".sbss"),
2802 MAPPING_INIT("s2", ".sdata2"),
2803 MAPPING_INIT("sb2", ".sbss2"),
2804 MAPPING_INIT("wi", ".debug_info"),
2805 MAPPING_INIT("td", ".tdata"),
2806 MAPPING_INIT("tb", ".tbss"),
2807 MAPPING_INIT("lr", ".lrodata"),
2808 MAPPING_INIT("l", ".ldata"),
2809 MAPPING_INIT("lb", ".lbss"),
2813 const int Layout::linkonce_mapping_count
=
2814 sizeof(Layout::linkonce_mapping
) / sizeof(Layout::linkonce_mapping
[0]);
2816 // Return the name of the output section to use for a .gnu.linkonce
2817 // section. This is based on the default ELF linker script of the old
2818 // GNU linker. For example, we map a name like ".gnu.linkonce.t.foo"
2819 // to ".text". Set *PLEN to the length of the name. *PLEN is
2820 // initialized to the length of NAME.
2823 Layout::linkonce_output_name(const char* name
, size_t *plen
)
2825 const char* s
= name
+ sizeof(".gnu.linkonce") - 1;
2829 const Linkonce_mapping
* plm
= linkonce_mapping
;
2830 for (int i
= 0; i
< linkonce_mapping_count
; ++i
, ++plm
)
2832 if (strncmp(s
, plm
->from
, plm
->fromlen
) == 0 && s
[plm
->fromlen
] == '.')
2841 // Choose the output section name to use given an input section name.
2842 // Set *PLEN to the length of the name. *PLEN is initialized to the
2846 Layout::output_section_name(const char* name
, size_t* plen
)
2848 if (Layout::is_linkonce(name
))
2850 // .gnu.linkonce sections are laid out as though they were named
2851 // for the sections are placed into.
2852 return Layout::linkonce_output_name(name
, plen
);
2855 // gcc 4.3 generates the following sorts of section names when it
2856 // needs a section name specific to a function:
2862 // .data.rel.local.FN
2864 // .data.rel.ro.local.FN
2871 // The GNU linker maps all of those to the part before the .FN,
2872 // except that .data.rel.local.FN is mapped to .data, and
2873 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
2874 // beginning with .data.rel.ro.local are grouped together.
2876 // For an anonymous namespace, the string FN can contain a '.'.
2878 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2879 // GNU linker maps to .rodata.
2881 // The .data.rel.ro sections enable a security feature triggered by
2882 // the -z relro option. Section which need to be relocated at
2883 // program startup time but which may be readonly after startup are
2884 // grouped into .data.rel.ro. They are then put into a PT_GNU_RELRO
2885 // segment. The dynamic linker will make that segment writable,
2886 // perform relocations, and then make it read-only. FIXME: We do
2887 // not yet implement this optimization.
2889 // It is hard to handle this in a principled way.
2891 // These are the rules we follow:
2893 // If the section name has no initial '.', or no dot other than an
2894 // initial '.', we use the name unchanged (i.e., "mysection" and
2895 // ".text" are unchanged).
2897 // If the name starts with ".data.rel.ro.local" we use
2898 // ".data.rel.ro.local".
2900 // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2902 // Otherwise, we drop the second '.' and everything that comes after
2903 // it (i.e., ".text.XXX" becomes ".text").
2905 const char* s
= name
;
2909 const char* sdot
= strchr(s
, '.');
2913 const char* const data_rel_ro_local
= ".data.rel.ro.local";
2914 if (strncmp(name
, data_rel_ro_local
, strlen(data_rel_ro_local
)) == 0)
2916 *plen
= strlen(data_rel_ro_local
);
2917 return data_rel_ro_local
;
2920 const char* const data_rel_ro
= ".data.rel.ro";
2921 if (strncmp(name
, data_rel_ro
, strlen(data_rel_ro
)) == 0)
2923 *plen
= strlen(data_rel_ro
);
2927 *plen
= sdot
- name
;
2931 // Record the signature of a comdat section, and return whether to
2932 // include it in the link. If GROUP is true, this is a regular
2933 // section group. If GROUP is false, this is a group signature
2934 // derived from the name of a linkonce section. We want linkonce
2935 // signatures and group signatures to block each other, but we don't
2936 // want a linkonce signature to block another linkonce signature.
2939 Layout::add_comdat(Relobj
* object
, unsigned int shndx
,
2940 const std::string
& signature
, bool group
)
2942 Kept_section
kept(object
, shndx
, group
);
2943 std::pair
<Signatures::iterator
, bool> ins(
2944 this->signatures_
.insert(std::make_pair(signature
, kept
)));
2948 // This is the first time we've seen this signature.
2952 if (ins
.first
->second
.group_
)
2954 // We've already seen a real section group with this signature.
2955 // If the kept group is from a plugin object, and we're in
2956 // the replacement phase, accept the new one as a replacement.
2957 if (ins
.first
->second
.object_
== NULL
2958 && parameters
->options().plugins()->in_replacement_phase())
2960 ins
.first
->second
= kept
;
2967 // This is a real section group, and we've already seen a
2968 // linkonce section with this signature. Record that we've seen
2969 // a section group, and don't include this section group.
2970 ins
.first
->second
.group_
= true;
2975 // We've already seen a linkonce section and this is a linkonce
2976 // section. These don't block each other--this may be the same
2977 // symbol name with different section types.
2982 // Find the given comdat signature, and return the object and section
2983 // index of the kept group.
2985 Layout::find_kept_object(const std::string
& signature
,
2986 unsigned int* pshndx
) const
2988 Signatures::const_iterator p
= this->signatures_
.find(signature
);
2989 if (p
== this->signatures_
.end())
2992 *pshndx
= p
->second
.shndx_
;
2993 return p
->second
.object_
;
2996 // Store the allocated sections into the section list.
2999 Layout::get_allocated_sections(Section_list
* section_list
) const
3001 for (Section_list::const_iterator p
= this->section_list_
.begin();
3002 p
!= this->section_list_
.end();
3004 if (((*p
)->flags() & elfcpp::SHF_ALLOC
) != 0)
3005 section_list
->push_back(*p
);
3008 // Create an output segment.
3011 Layout::make_output_segment(elfcpp::Elf_Word type
, elfcpp::Elf_Word flags
)
3013 gold_assert(!parameters
->options().relocatable());
3014 Output_segment
* oseg
= new Output_segment(type
, flags
);
3015 this->segment_list_
.push_back(oseg
);
3017 if (type
== elfcpp::PT_TLS
)
3018 this->tls_segment_
= oseg
;
3019 else if (type
== elfcpp::PT_GNU_RELRO
)
3020 this->relro_segment_
= oseg
;
3025 // Write out the Output_sections. Most won't have anything to write,
3026 // since most of the data will come from input sections which are
3027 // handled elsewhere. But some Output_sections do have Output_data.
3030 Layout::write_output_sections(Output_file
* of
) const
3032 for (Section_list::const_iterator p
= this->section_list_
.begin();
3033 p
!= this->section_list_
.end();
3036 if (!(*p
)->after_input_sections())
3041 // Write out data not associated with a section or the symbol table.
3044 Layout::write_data(const Symbol_table
* symtab
, Output_file
* of
) const
3046 if (!parameters
->options().strip_all())
3048 const Output_section
* symtab_section
= this->symtab_section_
;
3049 for (Section_list::const_iterator p
= this->section_list_
.begin();
3050 p
!= this->section_list_
.end();
3053 if ((*p
)->needs_symtab_index())
3055 gold_assert(symtab_section
!= NULL
);
3056 unsigned int index
= (*p
)->symtab_index();
3057 gold_assert(index
> 0 && index
!= -1U);
3058 off_t off
= (symtab_section
->offset()
3059 + index
* symtab_section
->entsize());
3060 symtab
->write_section_symbol(*p
, this->symtab_xindex_
, of
, off
);
3065 const Output_section
* dynsym_section
= this->dynsym_section_
;
3066 for (Section_list::const_iterator p
= this->section_list_
.begin();
3067 p
!= this->section_list_
.end();
3070 if ((*p
)->needs_dynsym_index())
3072 gold_assert(dynsym_section
!= NULL
);
3073 unsigned int index
= (*p
)->dynsym_index();
3074 gold_assert(index
> 0 && index
!= -1U);
3075 off_t off
= (dynsym_section
->offset()
3076 + index
* dynsym_section
->entsize());
3077 symtab
->write_section_symbol(*p
, this->dynsym_xindex_
, of
, off
);
3081 // Write out the Output_data which are not in an Output_section.
3082 for (Data_list::const_iterator p
= this->special_output_list_
.begin();
3083 p
!= this->special_output_list_
.end();
3088 // Write out the Output_sections which can only be written after the
3089 // input sections are complete.
3092 Layout::write_sections_after_input_sections(Output_file
* of
)
3094 // Determine the final section offsets, and thus the final output
3095 // file size. Note we finalize the .shstrab last, to allow the
3096 // after_input_section sections to modify their section-names before
3098 if (this->any_postprocessing_sections_
)
3100 off_t off
= this->output_file_size_
;
3101 off
= this->set_section_offsets(off
, POSTPROCESSING_SECTIONS_PASS
);
3103 // Now that we've finalized the names, we can finalize the shstrab.
3105 this->set_section_offsets(off
,
3106 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
);
3108 if (off
> this->output_file_size_
)
3111 this->output_file_size_
= off
;
3115 for (Section_list::const_iterator p
= this->section_list_
.begin();
3116 p
!= this->section_list_
.end();
3119 if ((*p
)->after_input_sections())
3123 this->section_headers_
->write(of
);
3126 // If the build ID requires computing a checksum, do so here, and
3127 // write it out. We compute a checksum over the entire file because
3128 // that is simplest.
3131 Layout::write_build_id(Output_file
* of
) const
3133 if (this->build_id_note_
== NULL
)
3136 const unsigned char* iv
= of
->get_input_view(0, this->output_file_size_
);
3138 unsigned char* ov
= of
->get_output_view(this->build_id_note_
->offset(),
3139 this->build_id_note_
->data_size());
3141 const char* style
= parameters
->options().build_id();
3142 if (strcmp(style
, "sha1") == 0)
3145 sha1_init_ctx(&ctx
);
3146 sha1_process_bytes(iv
, this->output_file_size_
, &ctx
);
3147 sha1_finish_ctx(&ctx
, ov
);
3149 else if (strcmp(style
, "md5") == 0)
3153 md5_process_bytes(iv
, this->output_file_size_
, &ctx
);
3154 md5_finish_ctx(&ctx
, ov
);
3159 of
->write_output_view(this->build_id_note_
->offset(),
3160 this->build_id_note_
->data_size(),
3163 of
->free_input_view(0, this->output_file_size_
, iv
);
3166 // Write out a binary file. This is called after the link is
3167 // complete. IN is the temporary output file we used to generate the
3168 // ELF code. We simply walk through the segments, read them from
3169 // their file offset in IN, and write them to their load address in
3170 // the output file. FIXME: with a bit more work, we could support
3171 // S-records and/or Intel hex format here.
3174 Layout::write_binary(Output_file
* in
) const
3176 gold_assert(this->options_
.oformat_enum()
3177 == General_options::OBJECT_FORMAT_BINARY
);
3179 // Get the size of the binary file.
3180 uint64_t max_load_address
= 0;
3181 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3182 p
!= this->segment_list_
.end();
3185 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3187 uint64_t max_paddr
= (*p
)->paddr() + (*p
)->filesz();
3188 if (max_paddr
> max_load_address
)
3189 max_load_address
= max_paddr
;
3193 Output_file
out(parameters
->options().output_file_name());
3194 out
.open(max_load_address
);
3196 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3197 p
!= this->segment_list_
.end();
3200 if ((*p
)->type() == elfcpp::PT_LOAD
&& (*p
)->filesz() > 0)
3202 const unsigned char* vin
= in
->get_input_view((*p
)->offset(),
3204 unsigned char* vout
= out
.get_output_view((*p
)->paddr(),
3206 memcpy(vout
, vin
, (*p
)->filesz());
3207 out
.write_output_view((*p
)->paddr(), (*p
)->filesz(), vout
);
3208 in
->free_input_view((*p
)->offset(), (*p
)->filesz(), vin
);
3215 // Print the output sections to the map file.
3218 Layout::print_to_mapfile(Mapfile
* mapfile
) const
3220 for (Segment_list::const_iterator p
= this->segment_list_
.begin();
3221 p
!= this->segment_list_
.end();
3223 (*p
)->print_sections_to_mapfile(mapfile
);
3226 // Print statistical information to stderr. This is used for --stats.
3229 Layout::print_stats() const
3231 this->namepool_
.print_stats("section name pool");
3232 this->sympool_
.print_stats("output symbol name pool");
3233 this->dynpool_
.print_stats("dynamic name pool");
3235 for (Section_list::const_iterator p
= this->section_list_
.begin();
3236 p
!= this->section_list_
.end();
3238 (*p
)->print_merge_stats();
3241 // Write_sections_task methods.
3243 // We can always run this task.
3246 Write_sections_task::is_runnable()
3251 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3255 Write_sections_task::locks(Task_locker
* tl
)
3257 tl
->add(this, this->output_sections_blocker_
);
3258 tl
->add(this, this->final_blocker_
);
3261 // Run the task--write out the data.
3264 Write_sections_task::run(Workqueue
*)
3266 this->layout_
->write_output_sections(this->of_
);
3269 // Write_data_task methods.
3271 // We can always run this task.
3274 Write_data_task::is_runnable()
3279 // We need to unlock FINAL_BLOCKER when finished.
3282 Write_data_task::locks(Task_locker
* tl
)
3284 tl
->add(this, this->final_blocker_
);
3287 // Run the task--write out the data.
3290 Write_data_task::run(Workqueue
*)
3292 this->layout_
->write_data(this->symtab_
, this->of_
);
3295 // Write_symbols_task methods.
3297 // We can always run this task.
3300 Write_symbols_task::is_runnable()
3305 // We need to unlock FINAL_BLOCKER when finished.
3308 Write_symbols_task::locks(Task_locker
* tl
)
3310 tl
->add(this, this->final_blocker_
);
3313 // Run the task--write out the symbols.
3316 Write_symbols_task::run(Workqueue
*)
3318 this->symtab_
->write_globals(this->input_objects_
, this->sympool_
,
3319 this->dynpool_
, this->layout_
->symtab_xindex(),
3320 this->layout_
->dynsym_xindex(), this->of_
);
3323 // Write_after_input_sections_task methods.
3325 // We can only run this task after the input sections have completed.
3328 Write_after_input_sections_task::is_runnable()
3330 if (this->input_sections_blocker_
->is_blocked())
3331 return this->input_sections_blocker_
;
3335 // We need to unlock FINAL_BLOCKER when finished.
3338 Write_after_input_sections_task::locks(Task_locker
* tl
)
3340 tl
->add(this, this->final_blocker_
);
3346 Write_after_input_sections_task::run(Workqueue
*)
3348 this->layout_
->write_sections_after_input_sections(this->of_
);
3351 // Close_task_runner methods.
3353 // Run the task--close the file.
3356 Close_task_runner::run(Workqueue
*, const Task
*)
3358 // If we need to compute a checksum for the BUILD if, we do so here.
3359 this->layout_
->write_build_id(this->of_
);
3361 // If we've been asked to create a binary file, we do so here.
3362 if (this->options_
->oformat_enum() != General_options::OBJECT_FORMAT_ELF
)
3363 this->layout_
->write_binary(this->of_
);
3368 // Instantiate the templates we need. We could use the configure
3369 // script to restrict this to only the ones for implemented targets.
3371 #ifdef HAVE_TARGET_32_LITTLE
3374 Layout::layout
<32, false>(Sized_relobj
<32, false>* object
, unsigned int shndx
,
3376 const elfcpp::Shdr
<32, false>& shdr
,
3377 unsigned int, unsigned int, off_t
*);
3380 #ifdef HAVE_TARGET_32_BIG
3383 Layout::layout
<32, true>(Sized_relobj
<32, true>* object
, unsigned int shndx
,
3385 const elfcpp::Shdr
<32, true>& shdr
,
3386 unsigned int, unsigned int, off_t
*);
3389 #ifdef HAVE_TARGET_64_LITTLE
3392 Layout::layout
<64, false>(Sized_relobj
<64, false>* object
, unsigned int shndx
,
3394 const elfcpp::Shdr
<64, false>& shdr
,
3395 unsigned int, unsigned int, off_t
*);
3398 #ifdef HAVE_TARGET_64_BIG
3401 Layout::layout
<64, true>(Sized_relobj
<64, true>* object
, unsigned int shndx
,
3403 const elfcpp::Shdr
<64, true>& shdr
,
3404 unsigned int, unsigned int, off_t
*);
3407 #ifdef HAVE_TARGET_32_LITTLE
3410 Layout::layout_reloc
<32, false>(Sized_relobj
<32, false>* object
,
3411 unsigned int reloc_shndx
,
3412 const elfcpp::Shdr
<32, false>& shdr
,
3413 Output_section
* data_section
,
3414 Relocatable_relocs
* rr
);
3417 #ifdef HAVE_TARGET_32_BIG
3420 Layout::layout_reloc
<32, true>(Sized_relobj
<32, true>* object
,
3421 unsigned int reloc_shndx
,
3422 const elfcpp::Shdr
<32, true>& shdr
,
3423 Output_section
* data_section
,
3424 Relocatable_relocs
* rr
);
3427 #ifdef HAVE_TARGET_64_LITTLE
3430 Layout::layout_reloc
<64, false>(Sized_relobj
<64, false>* object
,
3431 unsigned int reloc_shndx
,
3432 const elfcpp::Shdr
<64, false>& shdr
,
3433 Output_section
* data_section
,
3434 Relocatable_relocs
* rr
);
3437 #ifdef HAVE_TARGET_64_BIG
3440 Layout::layout_reloc
<64, true>(Sized_relobj
<64, true>* object
,
3441 unsigned int reloc_shndx
,
3442 const elfcpp::Shdr
<64, true>& shdr
,
3443 Output_section
* data_section
,
3444 Relocatable_relocs
* rr
);
3447 #ifdef HAVE_TARGET_32_LITTLE
3450 Layout::layout_group
<32, false>(Symbol_table
* symtab
,
3451 Sized_relobj
<32, false>* object
,
3453 const char* group_section_name
,
3454 const char* signature
,
3455 const elfcpp::Shdr
<32, false>& shdr
,
3456 elfcpp::Elf_Word flags
,
3457 std::vector
<unsigned int>* shndxes
);
3460 #ifdef HAVE_TARGET_32_BIG
3463 Layout::layout_group
<32, true>(Symbol_table
* symtab
,
3464 Sized_relobj
<32, true>* object
,
3466 const char* group_section_name
,
3467 const char* signature
,
3468 const elfcpp::Shdr
<32, true>& shdr
,
3469 elfcpp::Elf_Word flags
,
3470 std::vector
<unsigned int>* shndxes
);
3473 #ifdef HAVE_TARGET_64_LITTLE
3476 Layout::layout_group
<64, false>(Symbol_table
* symtab
,
3477 Sized_relobj
<64, false>* object
,
3479 const char* group_section_name
,
3480 const char* signature
,
3481 const elfcpp::Shdr
<64, false>& shdr
,
3482 elfcpp::Elf_Word flags
,
3483 std::vector
<unsigned int>* shndxes
);
3486 #ifdef HAVE_TARGET_64_BIG
3489 Layout::layout_group
<64, true>(Symbol_table
* symtab
,
3490 Sized_relobj
<64, true>* object
,
3492 const char* group_section_name
,
3493 const char* signature
,
3494 const elfcpp::Shdr
<64, true>& shdr
,
3495 elfcpp::Elf_Word flags
,
3496 std::vector
<unsigned int>* shndxes
);
3499 #ifdef HAVE_TARGET_32_LITTLE
3502 Layout::layout_eh_frame
<32, false>(Sized_relobj
<32, false>* object
,
3503 const unsigned char* symbols
,
3505 const unsigned char* symbol_names
,
3506 off_t symbol_names_size
,
3508 const elfcpp::Shdr
<32, false>& shdr
,
3509 unsigned int reloc_shndx
,
3510 unsigned int reloc_type
,
3514 #ifdef HAVE_TARGET_32_BIG
3517 Layout::layout_eh_frame
<32, true>(Sized_relobj
<32, true>* object
,
3518 const unsigned char* symbols
,
3520 const unsigned char* symbol_names
,
3521 off_t symbol_names_size
,
3523 const elfcpp::Shdr
<32, true>& shdr
,
3524 unsigned int reloc_shndx
,
3525 unsigned int reloc_type
,
3529 #ifdef HAVE_TARGET_64_LITTLE
3532 Layout::layout_eh_frame
<64, false>(Sized_relobj
<64, false>* object
,
3533 const unsigned char* symbols
,
3535 const unsigned char* symbol_names
,
3536 off_t symbol_names_size
,
3538 const elfcpp::Shdr
<64, false>& shdr
,
3539 unsigned int reloc_shndx
,
3540 unsigned int reloc_type
,
3544 #ifdef HAVE_TARGET_64_BIG
3547 Layout::layout_eh_frame
<64, true>(Sized_relobj
<64, true>* object
,
3548 const unsigned char* symbols
,
3550 const unsigned char* symbol_names
,
3551 off_t symbol_names_size
,
3553 const elfcpp::Shdr
<64, true>& shdr
,
3554 unsigned int reloc_shndx
,
3555 unsigned int reloc_type
,
3559 } // End namespace gold.