1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "safe-ctype.h"
26 #include "tc-xtensa.h"
29 #include "xtensa-relax.h"
30 #include "xtensa-istack.h"
31 #include "dwarf2dbg.h"
32 #include "struc-symbol.h"
33 #include "xtensa-config.h"
36 #define uint32 unsigned int
39 #define int32 signed int
44 Naming conventions (used somewhat inconsistently):
45 The xtensa_ functions are exported
46 The xg_ functions are internal
48 We also have a couple of different extensibility mechanisms.
49 1) The idiom replacement:
50 This is used when a line is first parsed to
51 replace an instruction pattern with another instruction
52 It is currently limited to replacements of instructions
53 with constant operands.
54 2) The xtensa-relax.c mechanism that has stronger instruction
55 replacement patterns. When an instruction's immediate field
56 does not fit the next instruction sequence is attempted.
57 In addition, "narrow" opcodes are supported this way. */
60 /* Define characters with special meanings to GAS. */
61 const char comment_chars
[] = "#";
62 const char line_comment_chars
[] = "#";
63 const char line_separator_chars
[] = ";";
64 const char EXP_CHARS
[] = "eE";
65 const char FLT_CHARS
[] = "rRsSfFdDxXpP";
68 /* Flags to indicate whether the hardware supports the density and
69 absolute literals options. */
71 bfd_boolean density_supported
= XCHAL_HAVE_DENSITY
;
72 bfd_boolean absolute_literals_supported
= XSHAL_USE_ABSOLUTE_LITERALS
;
74 /* Maximum width we would pad an unreachable frag to get alignment. */
75 #define UNREACHABLE_MAX_WIDTH 8
77 static vliw_insn cur_vinsn
;
79 unsigned xtensa_fetch_width
= XCHAL_INST_FETCH_WIDTH
;
81 static enum debug_info_type xt_saved_debug_type
= DEBUG_NONE
;
83 /* Some functions are only valid in the front end. This variable
84 allows us to assert that we haven't crossed over into the
86 static bfd_boolean past_xtensa_end
= FALSE
;
88 /* Flags for properties of the last instruction in a segment. */
89 #define FLAG_IS_A0_WRITER 0x1
90 #define FLAG_IS_BAD_LOOPEND 0x2
93 /* We define a special segment names ".literal" to place literals
94 into. The .fini and .init sections are special because they
95 contain code that is moved together by the linker. We give them
96 their own special .fini.literal and .init.literal sections. */
98 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
99 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
100 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
101 #define INIT_SECTION_NAME xtensa_section_rename (".init")
102 #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal")
103 #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal")
106 /* This type is used for the directive_stack to keep track of the
107 state of the literal collection pools. */
109 typedef struct lit_state_struct
111 const char *lit_seg_name
;
112 const char *lit4_seg_name
;
113 const char *init_lit_seg_name
;
114 const char *fini_lit_seg_name
;
121 static lit_state default_lit_sections
;
124 /* We keep lists of literal segments. The seg_list type is the node
125 for such a list. The *_literal_head locals are the heads of the
126 various lists. All of these lists have a dummy node at the start. */
128 typedef struct seg_list_struct
130 struct seg_list_struct
*next
;
134 static seg_list literal_head_h
;
135 static seg_list
*literal_head
= &literal_head_h
;
136 static seg_list init_literal_head_h
;
137 static seg_list
*init_literal_head
= &init_literal_head_h
;
138 static seg_list fini_literal_head_h
;
139 static seg_list
*fini_literal_head
= &fini_literal_head_h
;
142 /* Lists of symbols. We keep a list of symbols that label the current
143 instruction, so that we can adjust the symbols when inserting alignment
144 for various instructions. We also keep a list of all the symbols on
145 literals, so that we can fix up those symbols when the literals are
146 later moved into the text sections. */
148 typedef struct sym_list_struct
150 struct sym_list_struct
*next
;
154 static sym_list
*insn_labels
= NULL
;
155 static sym_list
*free_insn_labels
= NULL
;
156 static sym_list
*saved_insn_labels
= NULL
;
158 static sym_list
*literal_syms
;
161 /* Flags to determine whether to prefer const16 or l32r
162 if both options are available. */
163 int prefer_const16
= 0;
166 /* Global flag to indicate when we are emitting literals. */
167 int generating_literals
= 0;
169 /* The following PROPERTY table definitions are copied from
170 <elf/xtensa.h> and must be kept in sync with the code there. */
172 /* Flags in the property tables to specify whether blocks of memory
173 are literals, instructions, data, or unreachable. For
174 instructions, blocks that begin loop targets and branch targets are
175 designated. Blocks that do not allow density, instruction
176 reordering or transformation are also specified. Finally, for
177 branch targets, branch target alignment priority is included.
178 Alignment of the next block is specified in the current block
179 and the size of the current block does not include any fill required
180 to align to the next block. */
182 #define XTENSA_PROP_LITERAL 0x00000001
183 #define XTENSA_PROP_INSN 0x00000002
184 #define XTENSA_PROP_DATA 0x00000004
185 #define XTENSA_PROP_UNREACHABLE 0x00000008
186 /* Instruction only properties at beginning of code. */
187 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
188 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
189 /* Instruction only properties about code. */
190 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
191 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
192 #define XTENSA_PROP_INSN_NO_TRANSFORM 0x00000100
194 /* Branch target alignment information. This transmits information
195 to the linker optimization about the priority of aligning a
196 particular block for branch target alignment: None, low priority,
197 high priority, or required. These only need to be checked in
198 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
201 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
202 case XTENSA_PROP_BT_ALIGN_NONE:
203 case XTENSA_PROP_BT_ALIGN_LOW:
204 case XTENSA_PROP_BT_ALIGN_HIGH:
205 case XTENSA_PROP_BT_ALIGN_REQUIRE:
207 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
209 /* No branch target alignment. */
210 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
211 /* Low priority branch target alignment. */
212 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
213 /* High priority branch target alignment. */
214 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
215 /* Required branch target alignment. */
216 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
218 #define GET_XTENSA_PROP_BT_ALIGN(flag) \
219 (((unsigned) ((flag) & (XTENSA_PROP_BT_ALIGN_MASK))) >> 9)
220 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
221 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
222 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
225 /* Alignment is specified in the block BEFORE the one that needs
226 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
227 get the required alignment specified as a power of 2. Use
228 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
229 alignment. Be careful of side effects since the SET will evaluate
230 flags twice. Also, note that the SIZE of a block in the property
231 table does not include the alignment size, so the alignment fill
232 must be calculated to determine if two blocks are contiguous.
233 TEXT_ALIGN is not currently implemented but is a placeholder for a
234 possible future implementation. */
236 #define XTENSA_PROP_ALIGN 0x00000800
238 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
240 #define GET_XTENSA_PROP_ALIGNMENT(flag) \
241 (((unsigned) ((flag) & (XTENSA_PROP_ALIGNMENT_MASK))) >> 12)
242 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
243 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
244 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
246 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
249 /* Structure for saving instruction and alignment per-fragment data
250 that will be written to the object file. This structure is
251 equivalent to the actual data that will be written out to the file
252 but is easier to use. We provide a conversion to file flags
253 in frag_flags_to_number. */
255 typedef struct frag_flags_struct frag_flags
;
257 struct frag_flags_struct
259 /* is_literal should only be used after xtensa_move_literals.
260 If you need to check if you are generating a literal fragment,
261 then use the generating_literals global. */
263 unsigned is_literal
: 1;
264 unsigned is_insn
: 1;
265 unsigned is_data
: 1;
266 unsigned is_unreachable
: 1;
270 unsigned is_loop_target
: 1;
271 unsigned is_branch_target
: 1; /* Branch targets have a priority. */
272 unsigned bt_align_priority
: 2;
274 unsigned is_no_density
: 1;
275 /* no_longcalls flag does not need to be placed in the object file. */
276 /* is_specific_opcode implies no_transform. */
277 unsigned is_no_transform
: 1;
279 unsigned is_no_reorder
: 1;
281 /* Uses absolute literal addressing for l32r. */
282 unsigned is_abslit
: 1;
284 unsigned is_align
: 1;
285 unsigned alignment
: 5;
289 /* Structure for saving information about a block of property data
290 for frags that have the same flags. */
291 struct xtensa_block_info_struct
297 struct xtensa_block_info_struct
*next
;
301 /* Structure for saving the current state before emitting literals. */
302 typedef struct emit_state_struct
307 int generating_literals
;
311 /* Opcode placement information */
313 typedef unsigned long long bitfield
;
314 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
315 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
316 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
318 #define MAX_FORMATS 32
320 typedef struct op_placement_info_struct
323 /* A number describing how restrictive the issue is for this
324 opcode. For example, an opcode that fits lots of different
325 formats has a high freedom, as does an opcode that fits
326 only one format but many slots in that format. The most
327 restrictive is the opcode that fits only one slot in one
330 xtensa_format narrowest
;
334 /* formats is a bitfield with the Nth bit set
335 if the opcode fits in the Nth xtensa_format. */
338 /* slots[N]'s Mth bit is set if the op fits in the
339 Mth slot of the Nth xtensa_format. */
340 bitfield slots
[MAX_FORMATS
];
342 /* A count of the number of slots in a given format
343 an op can fit (i.e., the bitcount of the slot field above). */
344 char slots_in_format
[MAX_FORMATS
];
346 } op_placement_info
, *op_placement_info_table
;
348 op_placement_info_table op_placement_table
;
351 /* Extra expression types. */
353 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
354 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
355 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
368 directive_literal_prefix
,
370 directive_absolute_literals
,
371 directive_last_directive
377 bfd_boolean can_be_negated
;
380 const directive_infoS directive_info
[] =
383 { "literal", FALSE
},
385 { "transform", TRUE
},
386 { "freeregs", FALSE
},
387 { "longcalls", TRUE
},
388 { "literal_prefix", FALSE
},
389 { "schedule", TRUE
},
390 { "absolute-literals", TRUE
}
393 bfd_boolean directive_state
[] =
397 #if !XCHAL_HAVE_DENSITY
402 TRUE
, /* transform */
403 FALSE
, /* freeregs */
404 FALSE
, /* longcalls */
405 FALSE
, /* literal_prefix */
407 #if XSHAL_USE_ABSOLUTE_LITERALS
408 TRUE
/* absolute_literals */
410 FALSE
/* absolute_literals */
415 /* Directive functions. */
417 static void xtensa_begin_directive (int);
418 static void xtensa_end_directive (int);
419 static void xtensa_literal_prefix (char const *, int);
420 static void xtensa_literal_position (int);
421 static void xtensa_literal_pseudo (int);
422 static void xtensa_frequency_pseudo (int);
423 static void xtensa_elf_cons (int);
425 /* Parsing and Idiom Translation. */
427 static bfd_reloc_code_real_type
xtensa_elf_suffix (char **, expressionS
*);
429 /* Various Other Internal Functions. */
431 extern bfd_boolean
xg_is_single_relaxable_insn (TInsn
*, TInsn
*, bfd_boolean
);
432 static bfd_boolean
xg_build_to_insn (TInsn
*, TInsn
*, BuildInstr
*);
433 static void xtensa_mark_literal_pool_location (void);
434 static addressT
get_expanded_loop_offset (xtensa_opcode
);
435 static fragS
*get_literal_pool_location (segT
);
436 static void set_literal_pool_location (segT
, fragS
*);
437 static void xtensa_set_frag_assembly_state (fragS
*);
438 static void finish_vinsn (vliw_insn
*);
439 static bfd_boolean
emit_single_op (TInsn
*);
440 static int total_frag_text_expansion (fragS
*);
442 /* Alignment Functions. */
444 static int get_text_align_power (unsigned);
445 static int get_text_align_max_fill_size (int, bfd_boolean
, bfd_boolean
);
446 static int branch_align_power (segT
);
448 /* Helpers for xtensa_relax_frag(). */
450 static long relax_frag_add_nop (fragS
*);
452 /* Accessors for additional per-subsegment information. */
454 static unsigned get_last_insn_flags (segT
, subsegT
);
455 static void set_last_insn_flags (segT
, subsegT
, unsigned, bfd_boolean
);
456 static float get_subseg_total_freq (segT
, subsegT
);
457 static float get_subseg_target_freq (segT
, subsegT
);
458 static void set_subseg_freq (segT
, subsegT
, float, float);
460 /* Segment list functions. */
462 static void xtensa_move_literals (void);
463 static void xtensa_reorder_segments (void);
464 static void xtensa_switch_to_literal_fragment (emit_state
*);
465 static void xtensa_switch_to_non_abs_literal_fragment (emit_state
*);
466 static void xtensa_switch_section_emit_state (emit_state
*, segT
, subsegT
);
467 static void xtensa_restore_emit_state (emit_state
*);
468 static void cache_literal_section
469 (seg_list
*, const char *, segT
*, bfd_boolean
);
471 /* Import from elf32-xtensa.c in BFD library. */
473 extern char *xtensa_get_property_section_name (asection
*, const char *);
475 /* op_placement_info functions. */
477 static void init_op_placement_info_table (void);
478 extern bfd_boolean
opcode_fits_format_slot (xtensa_opcode
, xtensa_format
, int);
479 static int xg_get_single_size (xtensa_opcode
);
480 static xtensa_format
xg_get_single_format (xtensa_opcode
);
481 static int xg_get_single_slot (xtensa_opcode
);
483 /* TInsn and IStack functions. */
485 static bfd_boolean
tinsn_has_symbolic_operands (const TInsn
*);
486 static bfd_boolean
tinsn_has_invalid_symbolic_operands (const TInsn
*);
487 static bfd_boolean
tinsn_has_complex_operands (const TInsn
*);
488 static bfd_boolean
tinsn_to_insnbuf (TInsn
*, xtensa_insnbuf
);
489 static bfd_boolean
tinsn_check_arguments (const TInsn
*);
490 static void tinsn_from_chars (TInsn
*, char *, int);
491 static void tinsn_immed_from_frag (TInsn
*, fragS
*, int);
492 static int get_num_stack_text_bytes (IStack
*);
493 static int get_num_stack_literal_bytes (IStack
*);
495 /* vliw_insn functions. */
497 static void xg_init_vinsn (vliw_insn
*);
498 static void xg_clear_vinsn (vliw_insn
*);
499 static bfd_boolean
vinsn_has_specific_opcodes (vliw_insn
*);
500 static void xg_free_vinsn (vliw_insn
*);
501 static bfd_boolean vinsn_to_insnbuf
502 (vliw_insn
*, char *, fragS
*, bfd_boolean
);
503 static void vinsn_from_chars (vliw_insn
*, char *);
505 /* Expression Utilities. */
507 bfd_boolean
expr_is_const (const expressionS
*);
508 offsetT
get_expr_const (const expressionS
*);
509 void set_expr_const (expressionS
*, offsetT
);
510 bfd_boolean
expr_is_register (const expressionS
*);
511 offsetT
get_expr_register (const expressionS
*);
512 void set_expr_symbol_offset (expressionS
*, symbolS
*, offsetT
);
513 bfd_boolean
expr_is_equal (expressionS
*, expressionS
*);
514 static void copy_expr (expressionS
*, const expressionS
*);
516 /* Section renaming. */
518 static void build_section_rename (const char *);
521 /* ISA imported from bfd. */
522 extern xtensa_isa xtensa_default_isa
;
524 extern int target_big_endian
;
526 static xtensa_opcode xtensa_addi_opcode
;
527 static xtensa_opcode xtensa_addmi_opcode
;
528 static xtensa_opcode xtensa_call0_opcode
;
529 static xtensa_opcode xtensa_call4_opcode
;
530 static xtensa_opcode xtensa_call8_opcode
;
531 static xtensa_opcode xtensa_call12_opcode
;
532 static xtensa_opcode xtensa_callx0_opcode
;
533 static xtensa_opcode xtensa_callx4_opcode
;
534 static xtensa_opcode xtensa_callx8_opcode
;
535 static xtensa_opcode xtensa_callx12_opcode
;
536 static xtensa_opcode xtensa_const16_opcode
;
537 static xtensa_opcode xtensa_entry_opcode
;
538 static xtensa_opcode xtensa_movi_opcode
;
539 static xtensa_opcode xtensa_movi_n_opcode
;
540 static xtensa_opcode xtensa_isync_opcode
;
541 static xtensa_opcode xtensa_jx_opcode
;
542 static xtensa_opcode xtensa_l32r_opcode
;
543 static xtensa_opcode xtensa_loop_opcode
;
544 static xtensa_opcode xtensa_loopnez_opcode
;
545 static xtensa_opcode xtensa_loopgtz_opcode
;
546 static xtensa_opcode xtensa_nop_opcode
;
547 static xtensa_opcode xtensa_nop_n_opcode
;
548 static xtensa_opcode xtensa_or_opcode
;
549 static xtensa_opcode xtensa_ret_opcode
;
550 static xtensa_opcode xtensa_ret_n_opcode
;
551 static xtensa_opcode xtensa_retw_opcode
;
552 static xtensa_opcode xtensa_retw_n_opcode
;
553 static xtensa_opcode xtensa_rsr_lcount_opcode
;
554 static xtensa_opcode xtensa_waiti_opcode
;
557 /* Command-line Options. */
559 bfd_boolean use_literal_section
= TRUE
;
560 static bfd_boolean align_targets
= TRUE
;
561 static bfd_boolean warn_unaligned_branch_targets
= FALSE
;
562 static bfd_boolean has_a0_b_retw
= FALSE
;
563 static bfd_boolean workaround_a0_b_retw
= FALSE
;
564 static bfd_boolean workaround_b_j_loop_end
= FALSE
;
565 static bfd_boolean workaround_short_loop
= FALSE
;
566 static bfd_boolean maybe_has_short_loop
= FALSE
;
567 static bfd_boolean workaround_close_loop_end
= FALSE
;
568 static bfd_boolean maybe_has_close_loop_end
= FALSE
;
569 static bfd_boolean enforce_three_byte_loop_align
= FALSE
;
571 /* When workaround_short_loops is TRUE, all loops with early exits must
572 have at least 3 instructions. workaround_all_short_loops is a modifier
573 to the workaround_short_loop flag. In addition to the
574 workaround_short_loop actions, all straightline loopgtz and loopnez
575 must have at least 3 instructions. */
577 static bfd_boolean workaround_all_short_loops
= FALSE
;
581 xtensa_setup_hw_workarounds (int earliest
, int latest
)
583 if (earliest
> latest
)
584 as_fatal (_("illegal range of target hardware versions"));
586 /* Enable all workarounds for pre-T1050.0 hardware. */
587 if (earliest
< 105000 || latest
< 105000)
589 workaround_a0_b_retw
|= TRUE
;
590 workaround_b_j_loop_end
|= TRUE
;
591 workaround_short_loop
|= TRUE
;
592 workaround_close_loop_end
|= TRUE
;
593 workaround_all_short_loops
|= TRUE
;
594 enforce_three_byte_loop_align
= TRUE
;
601 option_density
= OPTION_MD_BASE
,
608 option_no_link_relax
,
616 option_text_section_literals
,
617 option_no_text_section_literals
,
619 option_absolute_literals
,
620 option_no_absolute_literals
,
622 option_align_targets
,
623 option_no_align_targets
,
625 option_warn_unaligned_targets
,
630 option_workaround_a0_b_retw
,
631 option_no_workaround_a0_b_retw
,
633 option_workaround_b_j_loop_end
,
634 option_no_workaround_b_j_loop_end
,
636 option_workaround_short_loop
,
637 option_no_workaround_short_loop
,
639 option_workaround_all_short_loops
,
640 option_no_workaround_all_short_loops
,
642 option_workaround_close_loop_end
,
643 option_no_workaround_close_loop_end
,
645 option_no_workarounds
,
647 option_rename_section_name
,
650 option_prefer_const16
,
652 option_target_hardware
655 const char *md_shortopts
= "";
657 struct option md_longopts
[] =
659 { "density", no_argument
, NULL
, option_density
},
660 { "no-density", no_argument
, NULL
, option_no_density
},
662 /* Both "relax" and "generics" are deprecated and treated as equivalent
663 to the "transform" option. */
664 { "relax", no_argument
, NULL
, option_relax
},
665 { "no-relax", no_argument
, NULL
, option_no_relax
},
666 { "generics", no_argument
, NULL
, option_generics
},
667 { "no-generics", no_argument
, NULL
, option_no_generics
},
669 { "transform", no_argument
, NULL
, option_transform
},
670 { "no-transform", no_argument
, NULL
, option_no_transform
},
671 { "text-section-literals", no_argument
, NULL
, option_text_section_literals
},
672 { "no-text-section-literals", no_argument
, NULL
,
673 option_no_text_section_literals
},
674 { "absolute-literals", no_argument
, NULL
, option_absolute_literals
},
675 { "no-absolute-literals", no_argument
, NULL
, option_no_absolute_literals
},
676 /* This option was changed from -align-target to -target-align
677 because it conflicted with the "-al" option. */
678 { "target-align", no_argument
, NULL
, option_align_targets
},
679 { "no-target-align", no_argument
, NULL
, option_no_align_targets
},
680 { "warn-unaligned-targets", no_argument
, NULL
,
681 option_warn_unaligned_targets
},
682 { "longcalls", no_argument
, NULL
, option_longcalls
},
683 { "no-longcalls", no_argument
, NULL
, option_no_longcalls
},
685 { "no-workaround-a0-b-retw", no_argument
, NULL
,
686 option_no_workaround_a0_b_retw
},
687 { "workaround-a0-b-retw", no_argument
, NULL
, option_workaround_a0_b_retw
},
689 { "no-workaround-b-j-loop-end", no_argument
, NULL
,
690 option_no_workaround_b_j_loop_end
},
691 { "workaround-b-j-loop-end", no_argument
, NULL
,
692 option_workaround_b_j_loop_end
},
694 { "no-workaround-short-loops", no_argument
, NULL
,
695 option_no_workaround_short_loop
},
696 { "workaround-short-loops", no_argument
, NULL
,
697 option_workaround_short_loop
},
699 { "no-workaround-all-short-loops", no_argument
, NULL
,
700 option_no_workaround_all_short_loops
},
701 { "workaround-all-short-loop", no_argument
, NULL
,
702 option_workaround_all_short_loops
},
704 { "prefer-l32r", no_argument
, NULL
, option_prefer_l32r
},
705 { "prefer-const16", no_argument
, NULL
, option_prefer_const16
},
707 { "no-workarounds", no_argument
, NULL
, option_no_workarounds
},
709 { "no-workaround-close-loop-end", no_argument
, NULL
,
710 option_no_workaround_close_loop_end
},
711 { "workaround-close-loop-end", no_argument
, NULL
,
712 option_workaround_close_loop_end
},
714 { "rename-section", required_argument
, NULL
, option_rename_section_name
},
716 { "link-relax", no_argument
, NULL
, option_link_relax
},
717 { "no-link-relax", no_argument
, NULL
, option_no_link_relax
},
719 { "target-hardware", required_argument
, NULL
, option_target_hardware
},
721 { NULL
, no_argument
, NULL
, 0 }
724 size_t md_longopts_size
= sizeof md_longopts
;
728 md_parse_option (int c
, char *arg
)
733 as_warn (_("--density option is ignored"));
735 case option_no_density
:
736 as_warn (_("--no-density option is ignored"));
738 case option_link_relax
:
741 case option_no_link_relax
:
744 case option_generics
:
745 as_warn (_("--generics is deprecated; use --transform instead"));
746 return md_parse_option (option_transform
, arg
);
747 case option_no_generics
:
748 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
749 return md_parse_option (option_no_transform
, arg
);
751 as_warn (_("--relax is deprecated; use --transform instead"));
752 return md_parse_option (option_transform
, arg
);
753 case option_no_relax
:
754 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
755 return md_parse_option (option_no_transform
, arg
);
756 case option_longcalls
:
757 directive_state
[directive_longcalls
] = TRUE
;
759 case option_no_longcalls
:
760 directive_state
[directive_longcalls
] = FALSE
;
762 case option_text_section_literals
:
763 use_literal_section
= FALSE
;
765 case option_no_text_section_literals
:
766 use_literal_section
= TRUE
;
768 case option_absolute_literals
:
769 if (!absolute_literals_supported
)
771 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
774 directive_state
[directive_absolute_literals
] = TRUE
;
776 case option_no_absolute_literals
:
777 directive_state
[directive_absolute_literals
] = FALSE
;
780 case option_workaround_a0_b_retw
:
781 workaround_a0_b_retw
= TRUE
;
783 case option_no_workaround_a0_b_retw
:
784 workaround_a0_b_retw
= FALSE
;
786 case option_workaround_b_j_loop_end
:
787 workaround_b_j_loop_end
= TRUE
;
789 case option_no_workaround_b_j_loop_end
:
790 workaround_b_j_loop_end
= FALSE
;
793 case option_workaround_short_loop
:
794 workaround_short_loop
= TRUE
;
796 case option_no_workaround_short_loop
:
797 workaround_short_loop
= FALSE
;
800 case option_workaround_all_short_loops
:
801 workaround_all_short_loops
= TRUE
;
803 case option_no_workaround_all_short_loops
:
804 workaround_all_short_loops
= FALSE
;
807 case option_workaround_close_loop_end
:
808 workaround_close_loop_end
= TRUE
;
810 case option_no_workaround_close_loop_end
:
811 workaround_close_loop_end
= FALSE
;
814 case option_no_workarounds
:
815 workaround_a0_b_retw
= FALSE
;
816 workaround_b_j_loop_end
= FALSE
;
817 workaround_short_loop
= FALSE
;
818 workaround_all_short_loops
= FALSE
;
819 workaround_close_loop_end
= FALSE
;
822 case option_align_targets
:
823 align_targets
= TRUE
;
825 case option_no_align_targets
:
826 align_targets
= FALSE
;
829 case option_warn_unaligned_targets
:
830 warn_unaligned_branch_targets
= TRUE
;
833 case option_rename_section_name
:
834 build_section_rename (arg
);
838 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
839 should be emitted or not. FIXME: Not implemented. */
842 case option_prefer_l32r
:
844 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
848 case option_prefer_const16
:
850 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
854 case option_target_hardware
:
856 int earliest
, latest
= 0;
857 if (*arg
== 0 || *arg
== '-')
858 as_fatal (_("invalid target hardware version"));
860 earliest
= strtol (arg
, &arg
, 0);
864 else if (*arg
== '-')
867 as_fatal (_("invalid target hardware version"));
868 latest
= strtol (arg
, &arg
, 0);
871 as_fatal (_("invalid target hardware version"));
873 xtensa_setup_hw_workarounds (earliest
, latest
);
877 case option_transform
:
878 /* This option has no affect other than to use the defaults,
879 which are already set. */
882 case option_no_transform
:
883 /* This option turns off all transformations of any kind.
884 However, because we want to preserve the state of other
885 directives, we only change its own field. Thus, before
886 you perform any transformation, always check if transform
887 is available. If you use the functions we provide for this
888 purpose, you will be ok. */
889 directive_state
[directive_transform
] = FALSE
;
899 md_show_usage (FILE *stream
)
903 --[no-]text-section-literals\n\
904 [Do not] put literals in the text section\n\
905 --[no-]absolute-literals\n\
906 [Do not] default to use non-PC-relative literals\n\
907 --[no-]target-align [Do not] try to align branch targets\n\
908 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
909 --[no-]transform [Do not] transform instructions\n\
910 --rename-section old=new Rename section 'old' to 'new'\n", stream
);
914 /* Functions related to the list of current label symbols. */
917 xtensa_add_insn_label (symbolS
*sym
)
921 if (!free_insn_labels
)
922 l
= (sym_list
*) xmalloc (sizeof (sym_list
));
925 l
= free_insn_labels
;
926 free_insn_labels
= l
->next
;
930 l
->next
= insn_labels
;
936 xtensa_clear_insn_labels (void)
940 for (pl
= &free_insn_labels
; *pl
!= NULL
; pl
= &(*pl
)->next
)
947 /* The "loops_ok" argument is provided to allow ignoring labels that
948 define loop ends. This fixes a bug where the NOPs to align a
949 loop opcode were included in a previous zero-cost loop:
968 This argument is used to prevent moving the NOP to before the
969 loop-end label, which is what you want in this special case. */
972 xtensa_move_labels (fragS
*new_frag
, valueT new_offset
, bfd_boolean loops_ok
)
976 for (lit
= insn_labels
; lit
; lit
= lit
->next
)
978 symbolS
*lit_sym
= lit
->sym
;
979 if (loops_ok
|| ! symbol_get_tc (lit_sym
)->is_loop_target
)
981 S_SET_VALUE (lit_sym
, new_offset
);
982 symbol_set_frag (lit_sym
, new_frag
);
988 /* Directive data and functions. */
990 typedef struct state_stackS_struct
992 directiveE directive
;
994 bfd_boolean old_state
;
998 struct state_stackS_struct
*prev
;
1001 state_stackS
*directive_state_stack
;
1003 const pseudo_typeS md_pseudo_table
[] =
1005 { "align", s_align_bytes
, 0 }, /* Defaulting is invalid (0). */
1006 { "literal_position", xtensa_literal_position
, 0 },
1007 { "frame", s_ignore
, 0 }, /* Formerly used for STABS debugging. */
1008 { "long", xtensa_elf_cons
, 4 },
1009 { "word", xtensa_elf_cons
, 4 },
1010 { "short", xtensa_elf_cons
, 2 },
1011 { "begin", xtensa_begin_directive
, 0 },
1012 { "end", xtensa_end_directive
, 0 },
1013 { "literal", xtensa_literal_pseudo
, 0 },
1014 { "frequency", xtensa_frequency_pseudo
, 0 },
1020 use_transform (void)
1022 /* After md_end, you should be checking frag by frag, rather
1023 than state directives. */
1024 assert (!past_xtensa_end
);
1025 return directive_state
[directive_transform
];
1030 do_align_targets (void)
1032 /* Do not use this function after md_end; just look at align_targets
1033 instead. There is no target-align directive, so alignment is either
1034 enabled for all frags or not done at all. */
1035 assert (!past_xtensa_end
);
1036 return align_targets
&& use_transform ();
1041 directive_push (directiveE directive
, bfd_boolean negated
, const void *datum
)
1045 state_stackS
*stack
= (state_stackS
*) xmalloc (sizeof (state_stackS
));
1047 as_where (&file
, &line
);
1049 stack
->directive
= directive
;
1050 stack
->negated
= negated
;
1051 stack
->old_state
= directive_state
[directive
];
1054 stack
->datum
= datum
;
1055 stack
->prev
= directive_state_stack
;
1056 directive_state_stack
= stack
;
1058 directive_state
[directive
] = !negated
;
1063 directive_pop (directiveE
*directive
,
1064 bfd_boolean
*negated
,
1069 state_stackS
*top
= directive_state_stack
;
1071 if (!directive_state_stack
)
1073 as_bad (_("unmatched end directive"));
1074 *directive
= directive_none
;
1078 directive_state
[directive_state_stack
->directive
] = top
->old_state
;
1079 *directive
= top
->directive
;
1080 *negated
= top
->negated
;
1083 *datum
= top
->datum
;
1084 directive_state_stack
= top
->prev
;
1090 directive_balance (void)
1092 while (directive_state_stack
)
1094 directiveE directive
;
1095 bfd_boolean negated
;
1100 directive_pop (&directive
, &negated
, &file
, &line
, &datum
);
1101 as_warn_where ((char *) file
, line
,
1102 _(".begin directive with no matching .end directive"));
1108 inside_directive (directiveE dir
)
1110 state_stackS
*top
= directive_state_stack
;
1112 while (top
&& top
->directive
!= dir
)
1115 return (top
!= NULL
);
1120 get_directive (directiveE
*directive
, bfd_boolean
*negated
)
1124 char *directive_string
;
1126 if (strncmp (input_line_pointer
, "no-", 3) != 0)
1131 input_line_pointer
+= 3;
1134 len
= strspn (input_line_pointer
,
1135 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1137 /* This code is a hack to make .begin [no-][generics|relax] exactly
1138 equivalent to .begin [no-]transform. We should remove it when
1139 we stop accepting those options. */
1141 if (strncmp (input_line_pointer
, "generics", strlen ("generics")) == 0)
1143 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1144 directive_string
= "transform";
1146 else if (strncmp (input_line_pointer
, "relax", strlen ("relax")) == 0)
1148 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1149 directive_string
= "transform";
1152 directive_string
= input_line_pointer
;
1154 for (i
= 0; i
< sizeof (directive_info
) / sizeof (*directive_info
); ++i
)
1156 if (strncmp (directive_string
, directive_info
[i
].name
, len
) == 0)
1158 input_line_pointer
+= len
;
1159 *directive
= (directiveE
) i
;
1160 if (*negated
&& !directive_info
[i
].can_be_negated
)
1161 as_bad (_("directive %s cannot be negated"),
1162 directive_info
[i
].name
);
1167 as_bad (_("unknown directive"));
1168 *directive
= (directiveE
) XTENSA_UNDEFINED
;
1173 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED
)
1175 directiveE directive
;
1176 bfd_boolean negated
;
1181 get_directive (&directive
, &negated
);
1182 if (directive
== (directiveE
) XTENSA_UNDEFINED
)
1184 discard_rest_of_line ();
1188 if (cur_vinsn
.inside_bundle
)
1189 as_bad (_("directives are not valid inside bundles"));
1193 case directive_literal
:
1194 if (!inside_directive (directive_literal
))
1196 /* Previous labels go with whatever follows this directive, not with
1197 the literal, so save them now. */
1198 saved_insn_labels
= insn_labels
;
1201 as_warn (_(".begin literal is deprecated; use .literal instead"));
1202 state
= (emit_state
*) xmalloc (sizeof (emit_state
));
1203 xtensa_switch_to_literal_fragment (state
);
1204 directive_push (directive_literal
, negated
, state
);
1207 case directive_literal_prefix
:
1208 /* Have to flush pending output because a movi relaxed to an l32r
1209 might produce a literal. */
1210 md_flush_pending_output ();
1211 /* Check to see if the current fragment is a literal
1212 fragment. If it is, then this operation is not allowed. */
1213 if (generating_literals
)
1215 as_bad (_("cannot set literal_prefix inside literal fragment"));
1219 /* Allocate the literal state for this section and push
1220 onto the directive stack. */
1221 ls
= xmalloc (sizeof (lit_state
));
1224 *ls
= default_lit_sections
;
1226 directive_push (directive_literal_prefix
, negated
, ls
);
1228 /* Parse the new prefix from the input_line_pointer. */
1230 len
= strspn (input_line_pointer
,
1231 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1232 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1234 /* Process the new prefix. */
1235 xtensa_literal_prefix (input_line_pointer
, len
);
1237 /* Skip the name in the input line. */
1238 input_line_pointer
+= len
;
1241 case directive_freeregs
:
1242 /* This information is currently unused, but we'll accept the statement
1243 and just discard the rest of the line. This won't check the syntax,
1244 but it will accept every correct freeregs directive. */
1245 input_line_pointer
+= strcspn (input_line_pointer
, "\n");
1246 directive_push (directive_freeregs
, negated
, 0);
1249 case directive_schedule
:
1250 md_flush_pending_output ();
1251 frag_var (rs_fill
, 0, 0, frag_now
->fr_subtype
,
1252 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
1253 directive_push (directive_schedule
, negated
, 0);
1254 xtensa_set_frag_assembly_state (frag_now
);
1257 case directive_density
:
1258 as_warn (_(".begin [no-]density is ignored"));
1261 case directive_absolute_literals
:
1262 md_flush_pending_output ();
1263 if (!absolute_literals_supported
&& !negated
)
1265 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1268 xtensa_set_frag_assembly_state (frag_now
);
1269 directive_push (directive
, negated
, 0);
1273 md_flush_pending_output ();
1274 xtensa_set_frag_assembly_state (frag_now
);
1275 directive_push (directive
, negated
, 0);
1279 demand_empty_rest_of_line ();
1284 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED
)
1286 directiveE begin_directive
, end_directive
;
1287 bfd_boolean begin_negated
, end_negated
;
1291 emit_state
**state_ptr
;
1294 if (cur_vinsn
.inside_bundle
)
1295 as_bad (_("directives are not valid inside bundles"));
1297 get_directive (&end_directive
, &end_negated
);
1299 md_flush_pending_output ();
1301 switch (end_directive
)
1303 case (directiveE
) XTENSA_UNDEFINED
:
1304 discard_rest_of_line ();
1307 case directive_density
:
1308 as_warn (_(".end [no-]density is ignored"));
1309 demand_empty_rest_of_line ();
1312 case directive_absolute_literals
:
1313 if (!absolute_literals_supported
&& !end_negated
)
1315 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1316 demand_empty_rest_of_line ();
1325 state_ptr
= &state
; /* use state_ptr to avoid type-punning warning */
1326 directive_pop (&begin_directive
, &begin_negated
, &file
, &line
,
1327 (const void **) state_ptr
);
1329 if (begin_directive
!= directive_none
)
1331 if (begin_directive
!= end_directive
|| begin_negated
!= end_negated
)
1333 as_bad (_("does not match begin %s%s at %s:%d"),
1334 begin_negated
? "no-" : "",
1335 directive_info
[begin_directive
].name
, file
, line
);
1339 switch (end_directive
)
1341 case directive_literal
:
1342 frag_var (rs_fill
, 0, 0, 0, NULL
, 0, NULL
);
1343 xtensa_restore_emit_state (state
);
1344 xtensa_set_frag_assembly_state (frag_now
);
1346 if (!inside_directive (directive_literal
))
1348 /* Restore the list of current labels. */
1349 xtensa_clear_insn_labels ();
1350 insn_labels
= saved_insn_labels
;
1354 case directive_literal_prefix
:
1355 /* Restore the default collection sections from saved state. */
1356 s
= (lit_state
*) state
;
1359 default_lit_sections
= *s
;
1361 /* free the state storage */
1365 case directive_schedule
:
1366 case directive_freeregs
:
1370 xtensa_set_frag_assembly_state (frag_now
);
1376 demand_empty_rest_of_line ();
1380 /* Place an aligned literal fragment at the current location. */
1383 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED
)
1385 md_flush_pending_output ();
1387 if (inside_directive (directive_literal
))
1388 as_warn (_(".literal_position inside literal directive; ignoring"));
1389 xtensa_mark_literal_pool_location ();
1391 demand_empty_rest_of_line ();
1392 xtensa_clear_insn_labels ();
1396 /* Support .literal label, expr, ... */
1399 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED
)
1402 char *p
, *base_name
;
1406 if (inside_directive (directive_literal
))
1408 as_bad (_(".literal not allowed inside .begin literal region"));
1409 ignore_rest_of_line ();
1413 md_flush_pending_output ();
1415 /* Previous labels go with whatever follows this directive, not with
1416 the literal, so save them now. */
1417 saved_insn_labels
= insn_labels
;
1420 /* If we are using text-section literals, then this is the right value... */
1423 base_name
= input_line_pointer
;
1425 xtensa_switch_to_literal_fragment (&state
);
1427 /* ...but if we aren't using text-section-literals, then we
1428 need to put them in the section we just switched to. */
1429 if (use_literal_section
|| directive_state
[directive_absolute_literals
])
1432 /* All literals are aligned to four-byte boundaries. */
1433 frag_align (2, 0, 0);
1434 record_alignment (now_seg
, 2);
1436 c
= get_symbol_end ();
1437 /* Just after name is now '\0'. */
1438 p
= input_line_pointer
;
1442 if (*input_line_pointer
!= ',' && *input_line_pointer
!= ':')
1444 as_bad (_("expected comma or colon after symbol name; "
1445 "rest of line ignored"));
1446 ignore_rest_of_line ();
1447 xtensa_restore_emit_state (&state
);
1455 input_line_pointer
++; /* skip ',' or ':' */
1457 xtensa_elf_cons (4);
1459 xtensa_restore_emit_state (&state
);
1461 /* Restore the list of current labels. */
1462 xtensa_clear_insn_labels ();
1463 insn_labels
= saved_insn_labels
;
1468 xtensa_literal_prefix (char const *start
, int len
)
1470 char *name
, *linkonce_suffix
;
1471 char *newname
, *newname4
;
1472 size_t linkonce_len
;
1474 /* Get a null-terminated copy of the name. */
1475 name
= xmalloc (len
+ 1);
1478 strncpy (name
, start
, len
);
1481 /* Allocate the sections (interesting note: the memory pointing to
1482 the name is actually used for the name by the new section). */
1484 newname
= xmalloc (len
+ strlen (".literal") + 1);
1485 newname4
= xmalloc (len
+ strlen (".lit4") + 1);
1487 linkonce_len
= sizeof (".gnu.linkonce.") - 1;
1488 if (strncmp (name
, ".gnu.linkonce.", linkonce_len
) == 0
1489 && (linkonce_suffix
= strchr (name
+ linkonce_len
, '.')) != 0)
1491 strcpy (newname
, ".gnu.linkonce.literal");
1492 strcpy (newname4
, ".gnu.linkonce.lit4");
1494 strcat (newname
, linkonce_suffix
);
1495 strcat (newname4
, linkonce_suffix
);
1499 int suffix_pos
= len
;
1501 /* If the section name ends with ".text", then replace that suffix
1502 instead of appending an additional suffix. */
1503 if (len
>= 5 && strcmp (name
+ len
- 5, ".text") == 0)
1506 strcpy (newname
, name
);
1507 strcpy (newname4
, name
);
1509 strcpy (newname
+ suffix_pos
, ".literal");
1510 strcpy (newname4
+ suffix_pos
, ".lit4");
1513 /* Note that cache_literal_section does not create a segment if
1514 it already exists. */
1515 default_lit_sections
.lit_seg
= NULL
;
1516 default_lit_sections
.lit4_seg
= NULL
;
1518 /* Canonicalizing section names allows renaming literal
1519 sections to occur correctly. */
1520 default_lit_sections
.lit_seg_name
= tc_canonicalize_symbol_name (newname
);
1521 default_lit_sections
.lit4_seg_name
= tc_canonicalize_symbol_name (newname4
);
1527 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1530 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED
)
1532 float fall_through_f
, target_f
;
1534 fall_through_f
= (float) strtod (input_line_pointer
, &input_line_pointer
);
1535 if (fall_through_f
< 0)
1537 as_bad (_("fall through frequency must be greater than 0"));
1538 ignore_rest_of_line ();
1542 target_f
= (float) strtod (input_line_pointer
, &input_line_pointer
);
1545 as_bad (_("branch target frequency must be greater than 0"));
1546 ignore_rest_of_line ();
1550 set_subseg_freq (now_seg
, now_subseg
, target_f
+ fall_through_f
, target_f
);
1552 demand_empty_rest_of_line ();
1556 /* Like normal .long/.short/.word, except support @plt, etc.
1557 Clobbers input_line_pointer, checks end-of-line. */
1560 xtensa_elf_cons (int nbytes
)
1563 bfd_reloc_code_real_type reloc
;
1565 md_flush_pending_output ();
1567 if (cur_vinsn
.inside_bundle
)
1568 as_bad (_("directives are not valid inside bundles"));
1570 if (is_it_end_of_statement ())
1572 demand_empty_rest_of_line ();
1579 if (exp
.X_op
== O_symbol
1580 && *input_line_pointer
== '@'
1581 && ((reloc
= xtensa_elf_suffix (&input_line_pointer
, &exp
))
1584 reloc_howto_type
*reloc_howto
=
1585 bfd_reloc_type_lookup (stdoutput
, reloc
);
1587 if (reloc
== BFD_RELOC_UNUSED
|| !reloc_howto
)
1588 as_bad (_("unsupported relocation"));
1589 else if ((reloc
>= BFD_RELOC_XTENSA_SLOT0_OP
1590 && reloc
<= BFD_RELOC_XTENSA_SLOT14_OP
)
1591 || (reloc
>= BFD_RELOC_XTENSA_SLOT0_ALT
1592 && reloc
<= BFD_RELOC_XTENSA_SLOT14_ALT
))
1593 as_bad (_("opcode-specific %s relocation used outside "
1594 "an instruction"), reloc_howto
->name
);
1595 else if (nbytes
!= (int) bfd_get_reloc_size (reloc_howto
))
1596 as_bad (_("%s relocations do not fit in %d bytes"),
1597 reloc_howto
->name
, nbytes
);
1600 char *p
= frag_more ((int) nbytes
);
1601 xtensa_set_frag_assembly_state (frag_now
);
1602 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
,
1603 nbytes
, &exp
, 0, reloc
);
1607 emit_expr (&exp
, (unsigned int) nbytes
);
1609 while (*input_line_pointer
++ == ',');
1611 input_line_pointer
--; /* Put terminator back into stream. */
1612 demand_empty_rest_of_line ();
1616 /* Parsing and Idiom Translation. */
1618 /* Parse @plt, etc. and return the desired relocation. */
1619 static bfd_reloc_code_real_type
1620 xtensa_elf_suffix (char **str_p
, expressionS
*exp_p
)
1626 bfd_reloc_code_real_type reloc
;
1634 struct map_bfd
*ptr
;
1636 #define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
1638 static struct map_bfd mapping
[] =
1640 MAP ("l", BFD_RELOC_LO16
),
1641 MAP ("h", BFD_RELOC_HI16
),
1642 MAP ("plt", BFD_RELOC_XTENSA_PLT
),
1643 { (char *) 0, 0, BFD_RELOC_UNUSED
}
1647 return BFD_RELOC_NONE
;
1649 for (ch
= *str
, str2
= ident
;
1650 (str2
< ident
+ sizeof (ident
) - 1
1651 && (ISALNUM (ch
) || ch
== '@'));
1654 *str2
++ = (ISLOWER (ch
)) ? ch
: TOLOWER (ch
);
1661 for (ptr
= &mapping
[0]; ptr
->length
> 0; ptr
++)
1662 if (ch
== ptr
->string
[0]
1663 && len
== ptr
->length
1664 && memcmp (ident
, ptr
->string
, ptr
->length
) == 0)
1666 /* Now check for "identifier@suffix+constant". */
1667 if (*str
== '-' || *str
== '+')
1669 char *orig_line
= input_line_pointer
;
1670 expressionS new_exp
;
1672 input_line_pointer
= str
;
1673 expression (&new_exp
);
1674 if (new_exp
.X_op
== O_constant
)
1676 exp_p
->X_add_number
+= new_exp
.X_add_number
;
1677 str
= input_line_pointer
;
1680 if (&input_line_pointer
!= str_p
)
1681 input_line_pointer
= orig_line
;
1688 return BFD_RELOC_UNUSED
;
1693 expression_end (const char *name
)
1716 #define ERROR_REG_NUM ((unsigned) -1)
1719 tc_get_register (const char *prefix
)
1722 const char *next_expr
;
1723 const char *old_line_pointer
;
1726 old_line_pointer
= input_line_pointer
;
1728 if (*input_line_pointer
== '$')
1729 ++input_line_pointer
;
1731 /* Accept "sp" as a synonym for "a1". */
1732 if (input_line_pointer
[0] == 's' && input_line_pointer
[1] == 'p'
1733 && expression_end (input_line_pointer
+ 2))
1735 input_line_pointer
+= 2;
1736 return 1; /* AR[1] */
1739 while (*input_line_pointer
++ == *prefix
++)
1741 --input_line_pointer
;
1746 as_bad (_("bad register name: %s"), old_line_pointer
);
1747 return ERROR_REG_NUM
;
1750 if (!ISDIGIT ((unsigned char) *input_line_pointer
))
1752 as_bad (_("bad register number: %s"), input_line_pointer
);
1753 return ERROR_REG_NUM
;
1758 while (ISDIGIT ((int) *input_line_pointer
))
1759 reg
= reg
* 10 + *input_line_pointer
++ - '0';
1761 if (!(next_expr
= expression_end (input_line_pointer
)))
1763 as_bad (_("bad register name: %s"), old_line_pointer
);
1764 return ERROR_REG_NUM
;
1767 input_line_pointer
= (char *) next_expr
;
1774 expression_maybe_register (xtensa_opcode opc
, int opnd
, expressionS
*tok
)
1776 xtensa_isa isa
= xtensa_default_isa
;
1778 /* Check if this is an immediate operand. */
1779 if (xtensa_operand_is_register (isa
, opc
, opnd
) == 0)
1781 bfd_reloc_code_real_type reloc
;
1782 segT t
= expression (tok
);
1783 if (t
== absolute_section
1784 && xtensa_operand_is_PCrelative (isa
, opc
, opnd
) == 1)
1786 assert (tok
->X_op
== O_constant
);
1787 tok
->X_op
= O_symbol
;
1788 tok
->X_add_symbol
= &abs_symbol
;
1791 if ((tok
->X_op
== O_constant
|| tok
->X_op
== O_symbol
)
1792 && (reloc
= xtensa_elf_suffix (&input_line_pointer
, tok
))
1793 && (reloc
!= BFD_RELOC_NONE
))
1798 case BFD_RELOC_UNUSED
:
1799 as_bad (_("unsupported relocation"));
1802 case BFD_RELOC_XTENSA_PLT
:
1803 tok
->X_op
= O_pltrel
;
1806 case BFD_RELOC_LO16
:
1807 if (tok
->X_op
== O_constant
)
1808 tok
->X_add_number
&= 0xffff;
1813 case BFD_RELOC_HI16
:
1814 if (tok
->X_op
== O_constant
)
1815 tok
->X_add_number
= ((unsigned) tok
->X_add_number
) >> 16;
1824 xtensa_regfile opnd_rf
= xtensa_operand_regfile (isa
, opc
, opnd
);
1825 unsigned reg
= tc_get_register (xtensa_regfile_shortname (isa
, opnd_rf
));
1827 if (reg
!= ERROR_REG_NUM
) /* Already errored */
1830 if (xtensa_operand_encode (isa
, opc
, opnd
, &buf
))
1831 as_bad (_("register number out of range"));
1834 tok
->X_op
= O_register
;
1835 tok
->X_add_symbol
= 0;
1836 tok
->X_add_number
= reg
;
1841 /* Split up the arguments for an opcode or pseudo-op. */
1844 tokenize_arguments (char **args
, char *str
)
1846 char *old_input_line_pointer
;
1847 bfd_boolean saw_comma
= FALSE
;
1848 bfd_boolean saw_arg
= FALSE
;
1849 bfd_boolean saw_colon
= FALSE
;
1851 char *arg_end
, *arg
;
1854 /* Save and restore input_line_pointer around this function. */
1855 old_input_line_pointer
= input_line_pointer
;
1856 input_line_pointer
= str
;
1858 while (*input_line_pointer
)
1861 switch (*input_line_pointer
)
1868 input_line_pointer
++;
1869 if (saw_comma
|| saw_colon
|| !saw_arg
)
1875 input_line_pointer
++;
1876 if (saw_comma
|| saw_colon
|| !saw_arg
)
1882 if (!saw_comma
&& !saw_colon
&& saw_arg
)
1885 arg_end
= input_line_pointer
+ 1;
1886 while (!expression_end (arg_end
))
1889 arg_len
= arg_end
- input_line_pointer
;
1890 arg
= (char *) xmalloc ((saw_colon
? 1 : 0) + arg_len
+ 1);
1891 args
[num_args
] = arg
;
1895 strncpy (arg
, input_line_pointer
, arg_len
);
1896 arg
[arg_len
] = '\0';
1898 input_line_pointer
= arg_end
;
1908 if (saw_comma
|| saw_colon
)
1910 input_line_pointer
= old_input_line_pointer
;
1915 as_bad (_("extra comma"));
1917 as_bad (_("extra colon"));
1919 as_bad (_("missing argument"));
1921 as_bad (_("missing comma or colon"));
1922 input_line_pointer
= old_input_line_pointer
;
1927 /* Parse the arguments to an opcode. Return TRUE on error. */
1930 parse_arguments (TInsn
*insn
, int num_args
, char **arg_strings
)
1932 expressionS
*tok
, *last_tok
;
1933 xtensa_opcode opcode
= insn
->opcode
;
1934 bfd_boolean had_error
= TRUE
;
1935 xtensa_isa isa
= xtensa_default_isa
;
1936 int n
, num_regs
= 0;
1937 int opcode_operand_count
;
1938 int opnd_cnt
, last_opnd_cnt
;
1939 unsigned int next_reg
= 0;
1940 char *old_input_line_pointer
;
1942 if (insn
->insn_type
== ITYPE_LITERAL
)
1943 opcode_operand_count
= 1;
1945 opcode_operand_count
= xtensa_opcode_num_operands (isa
, opcode
);
1948 memset (tok
, 0, sizeof (*tok
) * MAX_INSN_ARGS
);
1950 /* Save and restore input_line_pointer around this function. */
1951 old_input_line_pointer
= input_line_pointer
;
1957 /* Skip invisible operands. */
1958 while (xtensa_operand_is_visible (isa
, opcode
, opnd_cnt
) == 0)
1964 for (n
= 0; n
< num_args
; n
++)
1966 input_line_pointer
= arg_strings
[n
];
1967 if (*input_line_pointer
== ':')
1969 xtensa_regfile opnd_rf
;
1970 input_line_pointer
++;
1973 assert (opnd_cnt
> 0);
1975 opnd_rf
= xtensa_operand_regfile (isa
, opcode
, last_opnd_cnt
);
1977 != tc_get_register (xtensa_regfile_shortname (isa
, opnd_rf
)))
1978 as_warn (_("incorrect register number, ignoring"));
1983 if (opnd_cnt
>= opcode_operand_count
)
1985 as_warn (_("too many arguments"));
1988 assert (opnd_cnt
< MAX_INSN_ARGS
);
1990 expression_maybe_register (opcode
, opnd_cnt
, tok
);
1991 next_reg
= tok
->X_add_number
+ 1;
1993 if (tok
->X_op
== O_illegal
|| tok
->X_op
== O_absent
)
1995 if (xtensa_operand_is_register (isa
, opcode
, opnd_cnt
) == 1)
1997 num_regs
= xtensa_operand_num_regs (isa
, opcode
, opnd_cnt
) - 1;
1998 /* minus 1 because we are seeing one right now */
2004 last_opnd_cnt
= opnd_cnt
;
2011 while (xtensa_operand_is_visible (isa
, opcode
, opnd_cnt
) == 0);
2015 if (num_regs
> 0 && ((int) next_reg
!= last_tok
->X_add_number
+ 1))
2018 insn
->ntok
= tok
- insn
->tok
;
2022 input_line_pointer
= old_input_line_pointer
;
2028 get_invisible_operands (TInsn
*insn
)
2030 xtensa_isa isa
= xtensa_default_isa
;
2031 static xtensa_insnbuf slotbuf
= NULL
;
2033 xtensa_opcode opc
= insn
->opcode
;
2034 int slot
, opnd
, fmt_found
;
2038 slotbuf
= xtensa_insnbuf_alloc (isa
);
2040 /* Find format/slot where this can be encoded. */
2043 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
2045 for (slot
= 0; slot
< xtensa_format_num_slots (isa
, fmt
); slot
++)
2047 if (xtensa_opcode_encode (isa
, fmt
, slot
, slotbuf
, opc
) == 0)
2053 if (fmt_found
) break;
2058 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa
, opc
));
2062 /* First encode all the visible operands
2063 (to deal with shared field operands). */
2064 for (opnd
= 0; opnd
< insn
->ntok
; opnd
++)
2066 if (xtensa_operand_is_visible (isa
, opc
, opnd
) == 1
2067 && (insn
->tok
[opnd
].X_op
== O_register
2068 || insn
->tok
[opnd
].X_op
== O_constant
))
2070 val
= insn
->tok
[opnd
].X_add_number
;
2071 xtensa_operand_encode (isa
, opc
, opnd
, &val
);
2072 xtensa_operand_set_field (isa
, opc
, opnd
, fmt
, slot
, slotbuf
, val
);
2076 /* Then pull out the values for the invisible ones. */
2077 for (opnd
= 0; opnd
< insn
->ntok
; opnd
++)
2079 if (xtensa_operand_is_visible (isa
, opc
, opnd
) == 0)
2081 xtensa_operand_get_field (isa
, opc
, opnd
, fmt
, slot
, slotbuf
, &val
);
2082 xtensa_operand_decode (isa
, opc
, opnd
, &val
);
2083 insn
->tok
[opnd
].X_add_number
= val
;
2084 if (xtensa_operand_is_register (isa
, opc
, opnd
) == 1)
2085 insn
->tok
[opnd
].X_op
= O_register
;
2087 insn
->tok
[opnd
].X_op
= O_constant
;
2096 xg_reverse_shift_count (char **cnt_argp
)
2098 char *cnt_arg
, *new_arg
;
2099 cnt_arg
= *cnt_argp
;
2101 /* replace the argument with "31-(argument)" */
2102 new_arg
= (char *) xmalloc (strlen (cnt_arg
) + 6);
2103 sprintf (new_arg
, "31-(%s)", cnt_arg
);
2106 *cnt_argp
= new_arg
;
2110 /* If "arg" is a constant expression, return non-zero with the value
2114 xg_arg_is_constant (char *arg
, offsetT
*valp
)
2117 char *save_ptr
= input_line_pointer
;
2119 input_line_pointer
= arg
;
2121 input_line_pointer
= save_ptr
;
2123 if (exp
.X_op
== O_constant
)
2125 *valp
= exp
.X_add_number
;
2134 xg_replace_opname (char **popname
, char *newop
)
2137 *popname
= (char *) xmalloc (strlen (newop
) + 1);
2138 strcpy (*popname
, newop
);
2143 xg_check_num_args (int *pnum_args
,
2148 int num_args
= *pnum_args
;
2150 if (num_args
< expected_num
)
2152 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2153 num_args
, opname
, expected_num
);
2157 if (num_args
> expected_num
)
2159 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2160 num_args
, opname
, expected_num
);
2161 while (num_args
-- > expected_num
)
2163 free (arg_strings
[num_args
]);
2164 arg_strings
[num_args
] = 0;
2166 *pnum_args
= expected_num
;
2174 /* If the register is not specified as part of the opcode,
2175 then get it from the operand and move it to the opcode. */
2178 xg_translate_sysreg_op (char **popname
, int *pnum_args
, char **arg_strings
)
2180 xtensa_isa isa
= xtensa_default_isa
;
2182 char *opname
, *new_opname
;
2183 const char *sr_name
;
2184 int is_user
, is_write
;
2189 is_user
= (opname
[1] == 'u');
2190 is_write
= (opname
[0] == 'w');
2192 /* Opname == [rw]ur or [rwx]sr... */
2194 if (xg_check_num_args (pnum_args
, 2, opname
, arg_strings
))
2197 /* Check if the argument is a symbolic register name. */
2198 sr
= xtensa_sysreg_lookup_name (isa
, arg_strings
[1]);
2199 /* Handle WSR to "INTSET" as a special case. */
2200 if (sr
== XTENSA_UNDEFINED
&& is_write
&& !is_user
2201 && !strcasecmp (arg_strings
[1], "intset"))
2202 sr
= xtensa_sysreg_lookup_name (isa
, "interrupt");
2203 if (sr
== XTENSA_UNDEFINED
2204 || (xtensa_sysreg_is_user (isa
, sr
) == 1) != is_user
)
2206 /* Maybe it's a register number.... */
2208 if (!xg_arg_is_constant (arg_strings
[1], &val
))
2210 as_bad (_("invalid register '%s' for '%s' instruction"),
2211 arg_strings
[1], opname
);
2214 sr
= xtensa_sysreg_lookup (isa
, val
, is_user
);
2215 if (sr
== XTENSA_UNDEFINED
)
2217 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2218 (long) val
, opname
);
2223 /* Remove the last argument, which is now part of the opcode. */
2224 free (arg_strings
[1]);
2228 /* Translate the opcode. */
2229 sr_name
= xtensa_sysreg_name (isa
, sr
);
2230 /* Another special case for "WSR.INTSET".... */
2231 if (is_write
&& !is_user
&& !strcasecmp ("interrupt", sr_name
))
2233 new_opname
= (char *) xmalloc (strlen (sr_name
) + 6);
2234 sprintf (new_opname
, "%s.%s", *popname
, sr_name
);
2236 *popname
= new_opname
;
2243 xtensa_translate_old_userreg_ops (char **popname
)
2245 xtensa_isa isa
= xtensa_default_isa
;
2247 char *opname
, *new_opname
;
2248 const char *sr_name
;
2249 bfd_boolean has_underbar
= FALSE
;
2252 if (opname
[0] == '_')
2254 has_underbar
= TRUE
;
2258 sr
= xtensa_sysreg_lookup_name (isa
, opname
+ 1);
2259 if (sr
!= XTENSA_UNDEFINED
)
2261 /* The new default name ("nnn") is different from the old default
2262 name ("URnnn"). The old default is handled below, and we don't
2263 want to recognize [RW]nnn, so do nothing if the name is the (new)
2265 static char namebuf
[10];
2266 sprintf (namebuf
, "%d", xtensa_sysreg_number (isa
, sr
));
2267 if (strcmp (namebuf
, opname
+ 1) == 0)
2275 /* Only continue if the reg name is "URnnn". */
2276 if (opname
[1] != 'u' || opname
[2] != 'r')
2278 val
= strtoul (opname
+ 3, &end
, 10);
2282 sr
= xtensa_sysreg_lookup (isa
, val
, 1);
2283 if (sr
== XTENSA_UNDEFINED
)
2285 as_bad (_("invalid register number (%ld) for '%s'"),
2286 (long) val
, opname
);
2291 /* Translate the opcode. */
2292 sr_name
= xtensa_sysreg_name (isa
, sr
);
2293 new_opname
= (char *) xmalloc (strlen (sr_name
) + 6);
2294 sprintf (new_opname
, "%s%cur.%s", (has_underbar
? "_" : ""),
2295 opname
[0], sr_name
);
2297 *popname
= new_opname
;
2304 xtensa_translate_zero_immed (char *old_op
,
2314 assert (opname
[0] != '_');
2316 if (strcmp (opname
, old_op
) != 0)
2319 if (xg_check_num_args (pnum_args
, 3, opname
, arg_strings
))
2321 if (xg_arg_is_constant (arg_strings
[1], &val
) && val
== 0)
2323 xg_replace_opname (popname
, new_op
);
2324 free (arg_strings
[1]);
2325 arg_strings
[1] = arg_strings
[2];
2334 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2335 Returns non-zero if an error was found. */
2338 xg_translate_idioms (char **popname
, int *pnum_args
, char **arg_strings
)
2340 char *opname
= *popname
;
2341 bfd_boolean has_underbar
= FALSE
;
2343 if (cur_vinsn
.inside_bundle
)
2348 has_underbar
= TRUE
;
2352 if (strcmp (opname
, "mov") == 0)
2354 if (use_transform () && !has_underbar
&& density_supported
)
2355 xg_replace_opname (popname
, "mov.n");
2358 if (xg_check_num_args (pnum_args
, 2, opname
, arg_strings
))
2360 xg_replace_opname (popname
, (has_underbar
? "_or" : "or"));
2361 arg_strings
[2] = (char *) xmalloc (strlen (arg_strings
[1]) + 1);
2362 strcpy (arg_strings
[2], arg_strings
[1]);
2368 if (strcmp (opname
, "bbsi.l") == 0)
2370 if (xg_check_num_args (pnum_args
, 3, opname
, arg_strings
))
2372 xg_replace_opname (popname
, (has_underbar
? "_bbsi" : "bbsi"));
2373 if (target_big_endian
)
2374 xg_reverse_shift_count (&arg_strings
[1]);
2378 if (strcmp (opname
, "bbci.l") == 0)
2380 if (xg_check_num_args (pnum_args
, 3, opname
, arg_strings
))
2382 xg_replace_opname (popname
, (has_underbar
? "_bbci" : "bbci"));
2383 if (target_big_endian
)
2384 xg_reverse_shift_count (&arg_strings
[1]);
2388 if (xtensa_nop_opcode
== XTENSA_UNDEFINED
2389 && strcmp (opname
, "nop") == 0)
2391 if (use_transform () && !has_underbar
&& density_supported
)
2392 xg_replace_opname (popname
, "nop.n");
2395 if (xg_check_num_args (pnum_args
, 0, opname
, arg_strings
))
2397 xg_replace_opname (popname
, (has_underbar
? "_or" : "or"));
2398 arg_strings
[0] = (char *) xmalloc (3);
2399 arg_strings
[1] = (char *) xmalloc (3);
2400 arg_strings
[2] = (char *) xmalloc (3);
2401 strcpy (arg_strings
[0], "a1");
2402 strcpy (arg_strings
[1], "a1");
2403 strcpy (arg_strings
[2], "a1");
2409 /* Recognize [RW]UR and [RWX]SR. */
2410 if ((((opname
[0] == 'r' || opname
[0] == 'w')
2411 && (opname
[1] == 'u' || opname
[1] == 's'))
2412 || (opname
[0] == 'x' && opname
[1] == 's'))
2414 && opname
[3] == '\0')
2415 return xg_translate_sysreg_op (popname
, pnum_args
, arg_strings
);
2417 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2418 [RW]<name> if <name> is the non-default name of a user register. */
2419 if ((opname
[0] == 'r' || opname
[0] == 'w')
2420 && xtensa_opcode_lookup (xtensa_default_isa
, opname
) == XTENSA_UNDEFINED
)
2421 return xtensa_translate_old_userreg_ops (popname
);
2423 /* Relax branches that don't allow comparisons against an immediate value
2424 of zero to the corresponding branches with implicit zero immediates. */
2425 if (!has_underbar
&& use_transform ())
2427 if (xtensa_translate_zero_immed ("bnei", "bnez", popname
,
2428 pnum_args
, arg_strings
))
2431 if (xtensa_translate_zero_immed ("beqi", "beqz", popname
,
2432 pnum_args
, arg_strings
))
2435 if (xtensa_translate_zero_immed ("bgei", "bgez", popname
,
2436 pnum_args
, arg_strings
))
2439 if (xtensa_translate_zero_immed ("blti", "bltz", popname
,
2440 pnum_args
, arg_strings
))
2448 /* Functions for dealing with the Xtensa ISA. */
2450 /* Currently the assembler only allows us to use a single target per
2451 fragment. Because of this, only one operand for a given
2452 instruction may be symbolic. If there is a PC-relative operand,
2453 the last one is chosen. Otherwise, the result is the number of the
2454 last immediate operand, and if there are none of those, we fail and
2458 get_relaxable_immed (xtensa_opcode opcode
)
2460 int last_immed
= -1;
2463 if (opcode
== XTENSA_UNDEFINED
)
2466 noperands
= xtensa_opcode_num_operands (xtensa_default_isa
, opcode
);
2467 for (opi
= noperands
- 1; opi
>= 0; opi
--)
2469 if (xtensa_operand_is_visible (xtensa_default_isa
, opcode
, opi
) == 0)
2471 if (xtensa_operand_is_PCrelative (xtensa_default_isa
, opcode
, opi
) == 1)
2473 if (last_immed
== -1
2474 && xtensa_operand_is_register (xtensa_default_isa
, opcode
, opi
) == 0)
2481 static xtensa_opcode
2482 get_opcode_from_buf (const char *buf
, int slot
)
2484 static xtensa_insnbuf insnbuf
= NULL
;
2485 static xtensa_insnbuf slotbuf
= NULL
;
2486 xtensa_isa isa
= xtensa_default_isa
;
2491 insnbuf
= xtensa_insnbuf_alloc (isa
);
2492 slotbuf
= xtensa_insnbuf_alloc (isa
);
2495 xtensa_insnbuf_from_chars (isa
, insnbuf
, (const unsigned char *) buf
, 0);
2496 fmt
= xtensa_format_decode (isa
, insnbuf
);
2497 if (fmt
== XTENSA_UNDEFINED
)
2498 return XTENSA_UNDEFINED
;
2500 if (slot
>= xtensa_format_num_slots (isa
, fmt
))
2501 return XTENSA_UNDEFINED
;
2503 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
2504 return xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
2508 #ifdef TENSILICA_DEBUG
2510 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2513 xtensa_print_insn_table (void)
2515 int num_opcodes
, num_operands
;
2516 xtensa_opcode opcode
;
2517 xtensa_isa isa
= xtensa_default_isa
;
2519 num_opcodes
= xtensa_isa_num_opcodes (xtensa_default_isa
);
2520 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
2523 fprintf (stderr
, "%d: %s: ", opcode
, xtensa_opcode_name (isa
, opcode
));
2524 num_operands
= xtensa_opcode_num_operands (isa
, opcode
);
2525 for (opn
= 0; opn
< num_operands
; opn
++)
2527 if (xtensa_operand_is_visible (isa
, opcode
, opn
) == 0)
2529 if (xtensa_operand_is_register (isa
, opcode
, opn
) == 1)
2531 xtensa_regfile opnd_rf
=
2532 xtensa_operand_regfile (isa
, opcode
, opn
);
2533 fprintf (stderr
, "%s ", xtensa_regfile_shortname (isa
, opnd_rf
));
2535 else if (xtensa_operand_is_PCrelative (isa
, opcode
, opn
) == 1)
2536 fputs ("[lLr] ", stderr
);
2538 fputs ("i ", stderr
);
2540 fprintf (stderr
, "\n");
2546 print_vliw_insn (xtensa_insnbuf vbuf
)
2548 xtensa_isa isa
= xtensa_default_isa
;
2549 xtensa_format f
= xtensa_format_decode (isa
, vbuf
);
2550 xtensa_insnbuf sbuf
= xtensa_insnbuf_alloc (isa
);
2553 fprintf (stderr
, "format = %d\n", f
);
2555 for (op
= 0; op
< xtensa_format_num_slots (isa
, f
); op
++)
2557 xtensa_opcode opcode
;
2561 xtensa_format_get_slot (isa
, f
, op
, vbuf
, sbuf
);
2562 opcode
= xtensa_opcode_decode (isa
, f
, op
, sbuf
);
2563 opname
= xtensa_opcode_name (isa
, opcode
);
2565 fprintf (stderr
, "op in slot %i is %s;\n", op
, opname
);
2566 fprintf (stderr
, " operands = ");
2568 operands
< xtensa_opcode_num_operands (isa
, opcode
);
2572 if (xtensa_operand_is_visible (isa
, opcode
, operands
) == 0)
2574 xtensa_operand_get_field (isa
, opcode
, operands
, f
, op
, sbuf
, &val
);
2575 xtensa_operand_decode (isa
, opcode
, operands
, &val
);
2576 fprintf (stderr
, "%d ", val
);
2578 fprintf (stderr
, "\n");
2580 xtensa_insnbuf_free (isa
, sbuf
);
2583 #endif /* TENSILICA_DEBUG */
2587 is_direct_call_opcode (xtensa_opcode opcode
)
2589 xtensa_isa isa
= xtensa_default_isa
;
2590 int n
, num_operands
;
2592 if (xtensa_opcode_is_call (isa
, opcode
) == 0)
2595 num_operands
= xtensa_opcode_num_operands (isa
, opcode
);
2596 for (n
= 0; n
< num_operands
; n
++)
2598 if (xtensa_operand_is_register (isa
, opcode
, n
) == 0
2599 && xtensa_operand_is_PCrelative (isa
, opcode
, n
) == 1)
2606 /* Convert from BFD relocation type code to slot and operand number.
2607 Returns non-zero on failure. */
2610 decode_reloc (bfd_reloc_code_real_type reloc
, int *slot
, bfd_boolean
*is_alt
)
2612 if (reloc
>= BFD_RELOC_XTENSA_SLOT0_OP
2613 && reloc
<= BFD_RELOC_XTENSA_SLOT14_OP
)
2615 *slot
= reloc
- BFD_RELOC_XTENSA_SLOT0_OP
;
2618 else if (reloc
>= BFD_RELOC_XTENSA_SLOT0_ALT
2619 && reloc
<= BFD_RELOC_XTENSA_SLOT14_ALT
)
2621 *slot
= reloc
- BFD_RELOC_XTENSA_SLOT0_ALT
;
2631 /* Convert from slot number to BFD relocation type code for the
2632 standard PC-relative relocations. Return BFD_RELOC_NONE on
2635 static bfd_reloc_code_real_type
2636 encode_reloc (int slot
)
2638 if (slot
< 0 || slot
> 14)
2639 return BFD_RELOC_NONE
;
2641 return BFD_RELOC_XTENSA_SLOT0_OP
+ slot
;
2645 /* Convert from slot numbers to BFD relocation type code for the
2646 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2648 static bfd_reloc_code_real_type
2649 encode_alt_reloc (int slot
)
2651 if (slot
< 0 || slot
> 14)
2652 return BFD_RELOC_NONE
;
2654 return BFD_RELOC_XTENSA_SLOT0_ALT
+ slot
;
2659 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf
,
2662 xtensa_opcode opcode
,
2668 uint32 valbuf
= value
;
2670 if (xtensa_operand_encode (xtensa_default_isa
, opcode
, operand
, &valbuf
))
2672 if (xtensa_operand_is_PCrelative (xtensa_default_isa
, opcode
, operand
)
2674 as_bad_where ((char *) file
, line
,
2675 _("operand %d of '%s' has out of range value '%u'"),
2677 xtensa_opcode_name (xtensa_default_isa
, opcode
),
2680 as_bad_where ((char *) file
, line
,
2681 _("operand %d of '%s' has invalid value '%u'"),
2683 xtensa_opcode_name (xtensa_default_isa
, opcode
),
2688 xtensa_operand_set_field (xtensa_default_isa
, opcode
, operand
, fmt
, slot
,
2694 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf
,
2697 xtensa_opcode opcode
,
2701 (void) xtensa_operand_get_field (xtensa_default_isa
, opcode
, opnum
,
2702 fmt
, slot
, slotbuf
, &val
);
2703 (void) xtensa_operand_decode (xtensa_default_isa
, opcode
, opnum
, &val
);
2708 /* Checks for rules from xtensa-relax tables. */
2710 /* The routine xg_instruction_matches_option_term must return TRUE
2711 when a given option term is true. The meaning of all of the option
2712 terms is given interpretation by this function. This is needed when
2713 an option depends on the state of a directive, but there are no such
2714 options in use right now. */
2717 xg_instruction_matches_option_term (TInsn
*insn ATTRIBUTE_UNUSED
,
2718 const ReqOrOption
*option
)
2720 if (strcmp (option
->option_name
, "realnop") == 0
2721 || strncmp (option
->option_name
, "IsaUse", 6) == 0)
2723 /* These conditions were evaluated statically when building the
2724 relaxation table. There's no need to reevaluate them now. */
2729 as_fatal (_("internal error: unknown option name '%s'"),
2730 option
->option_name
);
2736 xg_instruction_matches_or_options (TInsn
*insn
,
2737 const ReqOrOptionList
*or_option
)
2739 const ReqOrOption
*option
;
2740 /* Must match each of the AND terms. */
2741 for (option
= or_option
; option
!= NULL
; option
= option
->next
)
2743 if (xg_instruction_matches_option_term (insn
, option
))
2751 xg_instruction_matches_options (TInsn
*insn
, const ReqOptionList
*options
)
2753 const ReqOption
*req_options
;
2754 /* Must match each of the AND terms. */
2755 for (req_options
= options
;
2756 req_options
!= NULL
;
2757 req_options
= req_options
->next
)
2759 /* Must match one of the OR clauses. */
2760 if (!xg_instruction_matches_or_options (insn
,
2761 req_options
->or_option_terms
))
2768 /* Return the transition rule that matches or NULL if none matches. */
2771 xg_instruction_matches_rule (TInsn
*insn
, TransitionRule
*rule
)
2773 PreconditionList
*condition_l
;
2775 if (rule
->opcode
!= insn
->opcode
)
2778 for (condition_l
= rule
->conditions
;
2779 condition_l
!= NULL
;
2780 condition_l
= condition_l
->next
)
2784 Precondition
*cond
= condition_l
->precond
;
2789 /* The expression must be the constant. */
2790 assert (cond
->op_num
< insn
->ntok
);
2791 exp1
= &insn
->tok
[cond
->op_num
];
2792 if (expr_is_const (exp1
))
2797 if (get_expr_const (exp1
) != cond
->op_data
)
2801 if (get_expr_const (exp1
) == cond
->op_data
)
2808 else if (expr_is_register (exp1
))
2813 if (get_expr_register (exp1
) != cond
->op_data
)
2817 if (get_expr_register (exp1
) == cond
->op_data
)
2829 assert (cond
->op_num
< insn
->ntok
);
2830 assert (cond
->op_data
< insn
->ntok
);
2831 exp1
= &insn
->tok
[cond
->op_num
];
2832 exp2
= &insn
->tok
[cond
->op_data
];
2837 if (!expr_is_equal (exp1
, exp2
))
2841 if (expr_is_equal (exp1
, exp2
))
2853 if (!xg_instruction_matches_options (insn
, rule
->options
))
2861 transition_rule_cmp (const TransitionRule
*a
, const TransitionRule
*b
)
2863 bfd_boolean a_greater
= FALSE
;
2864 bfd_boolean b_greater
= FALSE
;
2866 ReqOptionList
*l_a
= a
->options
;
2867 ReqOptionList
*l_b
= b
->options
;
2869 /* We only care if they both are the same except for
2870 a const16 vs. an l32r. */
2872 while (l_a
&& l_b
&& ((l_a
->next
== NULL
) == (l_b
->next
== NULL
)))
2874 ReqOrOptionList
*l_or_a
= l_a
->or_option_terms
;
2875 ReqOrOptionList
*l_or_b
= l_b
->or_option_terms
;
2876 while (l_or_a
&& l_or_b
&& ((l_a
->next
== NULL
) == (l_b
->next
== NULL
)))
2878 if (l_or_a
->is_true
!= l_or_b
->is_true
)
2880 if (strcmp (l_or_a
->option_name
, l_or_b
->option_name
) != 0)
2882 /* This is the case we care about. */
2883 if (strcmp (l_or_a
->option_name
, "IsaUseConst16") == 0
2884 && strcmp (l_or_b
->option_name
, "IsaUseL32R") == 0)
2891 else if (strcmp (l_or_a
->option_name
, "IsaUseL32R") == 0
2892 && strcmp (l_or_b
->option_name
, "IsaUseConst16") == 0)
2902 l_or_a
= l_or_a
->next
;
2903 l_or_b
= l_or_b
->next
;
2905 if (l_or_a
|| l_or_b
)
2914 /* Incomparable if the substitution was used differently in two cases. */
2915 if (a_greater
&& b_greater
)
2927 static TransitionRule
*
2928 xg_instruction_match (TInsn
*insn
)
2930 TransitionTable
*table
= xg_build_simplify_table (&transition_rule_cmp
);
2932 assert (insn
->opcode
< table
->num_opcodes
);
2934 /* Walk through all of the possible transitions. */
2935 for (l
= table
->table
[insn
->opcode
]; l
!= NULL
; l
= l
->next
)
2937 TransitionRule
*rule
= l
->rule
;
2938 if (xg_instruction_matches_rule (insn
, rule
))
2945 /* Various Other Internal Functions. */
2948 is_unique_insn_expansion (TransitionRule
*r
)
2950 if (!r
->to_instr
|| r
->to_instr
->next
!= NULL
)
2952 if (r
->to_instr
->typ
!= INSTR_INSTR
)
2958 /* Check if there is exactly one relaxation for INSN that converts it to
2959 another instruction of equal or larger size. If so, and if TARG is
2960 non-null, go ahead and generate the relaxed instruction into TARG. If
2961 NARROW_ONLY is true, then only consider relaxations that widen a narrow
2962 instruction, i.e., ignore relaxations that convert to an instruction of
2963 equal size. In some contexts where this function is used, only
2964 a single widening is allowed and the NARROW_ONLY argument is used to
2965 exclude cases like ADDI being "widened" to an ADDMI, which may
2966 later be relaxed to an ADDMI/ADDI pair. */
2969 xg_is_single_relaxable_insn (TInsn
*insn
, TInsn
*targ
, bfd_boolean narrow_only
)
2971 TransitionTable
*table
= xg_build_widen_table (&transition_rule_cmp
);
2973 TransitionRule
*match
= 0;
2975 assert (insn
->insn_type
== ITYPE_INSN
);
2976 assert (insn
->opcode
< table
->num_opcodes
);
2978 for (l
= table
->table
[insn
->opcode
]; l
!= NULL
; l
= l
->next
)
2980 TransitionRule
*rule
= l
->rule
;
2982 if (xg_instruction_matches_rule (insn
, rule
)
2983 && is_unique_insn_expansion (rule
)
2984 && (xg_get_single_size (insn
->opcode
) + (narrow_only
? 1 : 0)
2985 <= xg_get_single_size (rule
->to_instr
->opcode
)))
2996 xg_build_to_insn (targ
, insn
, match
->to_instr
);
3001 /* Return the maximum number of bytes this opcode can expand to. */
3004 xg_get_max_insn_widen_size (xtensa_opcode opcode
)
3006 TransitionTable
*table
= xg_build_widen_table (&transition_rule_cmp
);
3008 int max_size
= xg_get_single_size (opcode
);
3010 assert (opcode
< table
->num_opcodes
);
3012 for (l
= table
->table
[opcode
]; l
!= NULL
; l
= l
->next
)
3014 TransitionRule
*rule
= l
->rule
;
3015 BuildInstr
*build_list
;
3020 build_list
= rule
->to_instr
;
3021 if (is_unique_insn_expansion (rule
))
3023 assert (build_list
->typ
== INSTR_INSTR
);
3024 this_size
= xg_get_max_insn_widen_size (build_list
->opcode
);
3027 for (; build_list
!= NULL
; build_list
= build_list
->next
)
3029 switch (build_list
->typ
)
3032 this_size
+= xg_get_single_size (build_list
->opcode
);
3034 case INSTR_LITERAL_DEF
:
3035 case INSTR_LABEL_DEF
:
3040 if (this_size
> max_size
)
3041 max_size
= this_size
;
3047 /* Return the maximum number of literal bytes this opcode can generate. */
3050 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode
)
3052 TransitionTable
*table
= xg_build_widen_table (&transition_rule_cmp
);
3056 assert (opcode
< table
->num_opcodes
);
3058 for (l
= table
->table
[opcode
]; l
!= NULL
; l
= l
->next
)
3060 TransitionRule
*rule
= l
->rule
;
3061 BuildInstr
*build_list
;
3066 build_list
= rule
->to_instr
;
3067 if (is_unique_insn_expansion (rule
))
3069 assert (build_list
->typ
== INSTR_INSTR
);
3070 this_size
= xg_get_max_insn_widen_literal_size (build_list
->opcode
);
3073 for (; build_list
!= NULL
; build_list
= build_list
->next
)
3075 switch (build_list
->typ
)
3077 case INSTR_LITERAL_DEF
:
3078 /* Hard-coded 4-byte literal. */
3082 case INSTR_LABEL_DEF
:
3087 if (this_size
> max_size
)
3088 max_size
= this_size
;
3095 xg_is_relaxable_insn (TInsn
*insn
, int lateral_steps
)
3097 int steps_taken
= 0;
3098 TransitionTable
*table
= xg_build_widen_table (&transition_rule_cmp
);
3101 assert (insn
->insn_type
== ITYPE_INSN
);
3102 assert (insn
->opcode
< table
->num_opcodes
);
3104 for (l
= table
->table
[insn
->opcode
]; l
!= NULL
; l
= l
->next
)
3106 TransitionRule
*rule
= l
->rule
;
3108 if (xg_instruction_matches_rule (insn
, rule
))
3110 if (steps_taken
== lateral_steps
)
3120 get_special_literal_symbol (void)
3122 static symbolS
*sym
= NULL
;
3125 sym
= symbol_find_or_make ("SPECIAL_LITERAL0\001");
3131 get_special_label_symbol (void)
3133 static symbolS
*sym
= NULL
;
3136 sym
= symbol_find_or_make ("SPECIAL_LABEL0\001");
3142 xg_valid_literal_expression (const expressionS
*exp
)
3159 /* This will check to see if the value can be converted into the
3160 operand type. It will return TRUE if it does not fit. */
3163 xg_check_operand (int32 value
, xtensa_opcode opcode
, int operand
)
3165 uint32 valbuf
= value
;
3166 if (xtensa_operand_encode (xtensa_default_isa
, opcode
, operand
, &valbuf
))
3172 /* Assumes: All immeds are constants. Check that all constants fit
3173 into their immeds; return FALSE if not. */
3176 xg_immeds_fit (const TInsn
*insn
)
3178 xtensa_isa isa
= xtensa_default_isa
;
3182 assert (insn
->insn_type
== ITYPE_INSN
);
3183 for (i
= 0; i
< n
; ++i
)
3185 const expressionS
*expr
= &insn
->tok
[i
];
3186 if (xtensa_operand_is_register (isa
, insn
->opcode
, i
) == 1)
3193 if (xg_check_operand (expr
->X_add_number
, insn
->opcode
, i
))
3198 /* The symbol should have a fixup associated with it. */
3207 /* This should only be called after we have an initial
3208 estimate of the addresses. */
3211 xg_symbolic_immeds_fit (const TInsn
*insn
,
3217 xtensa_isa isa
= xtensa_default_isa
;
3225 assert (insn
->insn_type
== ITYPE_INSN
);
3227 for (i
= 0; i
< n
; ++i
)
3229 const expressionS
*expr
= &insn
->tok
[i
];
3230 if (xtensa_operand_is_register (isa
, insn
->opcode
, i
) == 1)
3237 if (xg_check_operand (expr
->X_add_number
, insn
->opcode
, i
))
3243 /* Check for the worst case. */
3244 if (xg_check_operand (0xffff, insn
->opcode
, i
))
3249 /* We only allow symbols for PC-relative references.
3250 If pc_frag == 0, then we don't have frag locations yet. */
3252 || xtensa_operand_is_PCrelative (isa
, insn
->opcode
, i
) == 0)
3255 /* If it is a weak symbol, then assume it won't reach. */
3256 if (S_IS_WEAK (expr
->X_add_symbol
))
3259 if (is_direct_call_opcode (insn
->opcode
)
3260 && ! pc_frag
->tc_frag_data
.use_longcalls
)
3262 /* If callee is undefined or in a different segment, be
3263 optimistic and assume it will be in range. */
3264 if (S_GET_SEGMENT (expr
->X_add_symbol
) != pc_seg
)
3268 /* Only references within a segment can be known to fit in the
3269 operands at assembly time. */
3270 if (S_GET_SEGMENT (expr
->X_add_symbol
) != pc_seg
)
3273 symbolP
= expr
->X_add_symbol
;
3274 sym_frag
= symbol_get_frag (symbolP
);
3275 target
= S_GET_VALUE (symbolP
) + expr
->X_add_number
;
3276 pc
= pc_frag
->fr_address
+ pc_offset
;
3278 /* If frag has yet to be reached on this pass, assume it
3279 will move by STRETCH just as we did. If this is not so,
3280 it will be because some frag between grows, and that will
3281 force another pass. Beware zero-length frags. There
3282 should be a faster way to do this. */
3285 && sym_frag
->relax_marker
!= pc_frag
->relax_marker
3286 && S_GET_SEGMENT (symbolP
) == pc_seg
)
3291 new_offset
= target
;
3292 xtensa_operand_do_reloc (isa
, insn
->opcode
, i
, &new_offset
, pc
);
3293 if (xg_check_operand (new_offset
, insn
->opcode
, i
))
3298 /* The symbol should have a fixup associated with it. */
3307 /* Return TRUE on success. */
3310 xg_build_to_insn (TInsn
*targ
, TInsn
*insn
, BuildInstr
*bi
)
3315 memset (targ
, 0, sizeof (TInsn
));
3316 targ
->linenum
= insn
->linenum
;
3321 targ
->opcode
= bi
->opcode
;
3322 targ
->insn_type
= ITYPE_INSN
;
3323 targ
->is_specific_opcode
= FALSE
;
3325 for (; op
!= NULL
; op
= op
->next
)
3327 int op_num
= op
->op_num
;
3328 int op_data
= op
->op_data
;
3330 assert (op
->op_num
< MAX_INSN_ARGS
);
3332 if (targ
->ntok
<= op_num
)
3333 targ
->ntok
= op_num
+ 1;
3338 set_expr_const (&targ
->tok
[op_num
], op_data
);
3341 assert (op_data
< insn
->ntok
);
3342 copy_expr (&targ
->tok
[op_num
], &insn
->tok
[op_data
]);
3345 sym
= get_special_literal_symbol ();
3346 set_expr_symbol_offset (&targ
->tok
[op_num
], sym
, 0);
3349 sym
= get_special_label_symbol ();
3350 set_expr_symbol_offset (&targ
->tok
[op_num
], sym
, 0);
3352 case OP_OPERAND_HI16U
:
3353 case OP_OPERAND_LOW16U
:
3354 assert (op_data
< insn
->ntok
);
3355 if (expr_is_const (&insn
->tok
[op_data
]))
3358 copy_expr (&targ
->tok
[op_num
], &insn
->tok
[op_data
]);
3359 val
= xg_apply_userdef_op_fn (op
->typ
,
3362 targ
->tok
[op_num
].X_add_number
= val
;
3366 /* For const16 we can create relocations for these. */
3367 if (targ
->opcode
== XTENSA_UNDEFINED
3368 || (targ
->opcode
!= xtensa_const16_opcode
))
3370 assert (op_data
< insn
->ntok
);
3371 /* Need to build a O_lo16 or O_hi16. */
3372 copy_expr (&targ
->tok
[op_num
], &insn
->tok
[op_data
]);
3373 if (targ
->tok
[op_num
].X_op
== O_symbol
)
3375 if (op
->typ
== OP_OPERAND_HI16U
)
3376 targ
->tok
[op_num
].X_op
= O_hi16
;
3377 else if (op
->typ
== OP_OPERAND_LOW16U
)
3378 targ
->tok
[op_num
].X_op
= O_lo16
;
3385 /* currently handles:
3388 OP_OPERAND_F32MINUS */
3389 if (xg_has_userdef_op_fn (op
->typ
))
3391 assert (op_data
< insn
->ntok
);
3392 if (expr_is_const (&insn
->tok
[op_data
]))
3395 copy_expr (&targ
->tok
[op_num
], &insn
->tok
[op_data
]);
3396 val
= xg_apply_userdef_op_fn (op
->typ
,
3399 targ
->tok
[op_num
].X_add_number
= val
;
3402 return FALSE
; /* We cannot use a relocation for this. */
3411 case INSTR_LITERAL_DEF
:
3413 targ
->opcode
= XTENSA_UNDEFINED
;
3414 targ
->insn_type
= ITYPE_LITERAL
;
3415 targ
->is_specific_opcode
= FALSE
;
3416 for (; op
!= NULL
; op
= op
->next
)
3418 int op_num
= op
->op_num
;
3419 int op_data
= op
->op_data
;
3420 assert (op
->op_num
< MAX_INSN_ARGS
);
3422 if (targ
->ntok
<= op_num
)
3423 targ
->ntok
= op_num
+ 1;
3428 assert (op_data
< insn
->ntok
);
3429 /* We can only pass resolvable literals through. */
3430 if (!xg_valid_literal_expression (&insn
->tok
[op_data
]))
3432 copy_expr (&targ
->tok
[op_num
], &insn
->tok
[op_data
]);
3444 case INSTR_LABEL_DEF
:
3446 targ
->opcode
= XTENSA_UNDEFINED
;
3447 targ
->insn_type
= ITYPE_LABEL
;
3448 targ
->is_specific_opcode
= FALSE
;
3449 /* Literal with no ops is a label? */
3450 assert (op
== NULL
);
3461 /* Return TRUE on success. */
3464 xg_build_to_stack (IStack
*istack
, TInsn
*insn
, BuildInstr
*bi
)
3466 for (; bi
!= NULL
; bi
= bi
->next
)
3468 TInsn
*next_insn
= istack_push_space (istack
);
3470 if (!xg_build_to_insn (next_insn
, insn
, bi
))
3477 /* Return TRUE on valid expansion. */
3480 xg_expand_to_stack (IStack
*istack
, TInsn
*insn
, int lateral_steps
)
3482 int stack_size
= istack
->ninsn
;
3483 int steps_taken
= 0;
3484 TransitionTable
*table
= xg_build_widen_table (&transition_rule_cmp
);
3487 assert (insn
->insn_type
== ITYPE_INSN
);
3488 assert (insn
->opcode
< table
->num_opcodes
);
3490 for (l
= table
->table
[insn
->opcode
]; l
!= NULL
; l
= l
->next
)
3492 TransitionRule
*rule
= l
->rule
;
3494 if (xg_instruction_matches_rule (insn
, rule
))
3496 if (lateral_steps
== steps_taken
)
3500 /* This is it. Expand the rule to the stack. */
3501 if (!xg_build_to_stack (istack
, insn
, rule
->to_instr
))
3504 /* Check to see if it fits. */
3505 for (i
= stack_size
; i
< istack
->ninsn
; i
++)
3507 TInsn
*insn
= &istack
->insn
[i
];
3509 if (insn
->insn_type
== ITYPE_INSN
3510 && !tinsn_has_symbolic_operands (insn
)
3511 && !xg_immeds_fit (insn
))
3513 istack
->ninsn
= stack_size
;
3526 /* Relax the assembly instruction at least "min_steps".
3527 Return the number of steps taken. */
3530 xg_assembly_relax (IStack
*istack
,
3533 fragS
*pc_frag
, /* if pc_frag == 0, not pc-relative */
3534 offsetT pc_offset
, /* offset in fragment */
3535 int min_steps
, /* minimum conversion steps */
3536 long stretch
) /* number of bytes stretched so far */
3538 int steps_taken
= 0;
3540 /* assert (has no symbolic operands)
3541 Some of its immeds don't fit.
3542 Try to build a relaxed version.
3543 This may go through a couple of stages
3544 of single instruction transformations before
3547 TInsn single_target
;
3549 int lateral_steps
= 0;
3550 int istack_size
= istack
->ninsn
;
3552 if (xg_symbolic_immeds_fit (insn
, pc_seg
, pc_frag
, pc_offset
, stretch
)
3553 && steps_taken
>= min_steps
)
3555 istack_push (istack
, insn
);
3558 current_insn
= *insn
;
3560 /* Walk through all of the single instruction expansions. */
3561 while (xg_is_single_relaxable_insn (¤t_insn
, &single_target
, FALSE
))
3564 if (xg_symbolic_immeds_fit (&single_target
, pc_seg
, pc_frag
, pc_offset
,
3567 if (steps_taken
>= min_steps
)
3569 istack_push (istack
, &single_target
);
3573 current_insn
= single_target
;
3576 /* Now check for a multi-instruction expansion. */
3577 while (xg_is_relaxable_insn (¤t_insn
, lateral_steps
))
3579 if (xg_symbolic_immeds_fit (¤t_insn
, pc_seg
, pc_frag
, pc_offset
,
3582 if (steps_taken
>= min_steps
)
3584 istack_push (istack
, ¤t_insn
);
3589 if (xg_expand_to_stack (istack
, ¤t_insn
, lateral_steps
))
3591 if (steps_taken
>= min_steps
)
3595 istack
->ninsn
= istack_size
;
3598 /* It's not going to work -- use the original. */
3599 istack_push (istack
, insn
);
3605 xg_force_frag_space (int size
)
3607 /* This may have the side effect of creating a new fragment for the
3608 space to go into. I just do not like the name of the "frag"
3615 xg_finish_frag (char *last_insn
,
3616 enum xtensa_relax_statesE frag_state
,
3617 enum xtensa_relax_statesE slot0_state
,
3619 bfd_boolean is_insn
)
3621 /* Finish off this fragment so that it has at LEAST the desired
3622 max_growth. If it doesn't fit in this fragment, close this one
3623 and start a new one. In either case, return a pointer to the
3624 beginning of the growth area. */
3628 xg_force_frag_space (max_growth
);
3630 old_frag
= frag_now
;
3632 frag_now
->fr_opcode
= last_insn
;
3634 frag_now
->tc_frag_data
.is_insn
= TRUE
;
3636 frag_var (rs_machine_dependent
, max_growth
, max_growth
,
3637 frag_state
, frag_now
->fr_symbol
, frag_now
->fr_offset
, last_insn
);
3639 old_frag
->tc_frag_data
.slot_subtypes
[0] = slot0_state
;
3640 xtensa_set_frag_assembly_state (frag_now
);
3642 /* Just to make sure that we did not split it up. */
3643 assert (old_frag
->fr_next
== frag_now
);
3647 /* Return TRUE if the target frag is one of the next non-empty frags. */
3650 is_next_frag_target (const fragS
*fragP
, const fragS
*target
)
3655 for (; fragP
; fragP
= fragP
->fr_next
)
3657 if (fragP
== target
)
3659 if (fragP
->fr_fix
!= 0)
3661 if (fragP
->fr_type
== rs_fill
&& fragP
->fr_offset
!= 0)
3663 if ((fragP
->fr_type
== rs_align
|| fragP
->fr_type
== rs_align_code
)
3664 && ((fragP
->fr_address
% (1 << fragP
->fr_offset
)) != 0))
3666 if (fragP
->fr_type
== rs_space
)
3674 is_branch_jmp_to_next (TInsn
*insn
, fragS
*fragP
)
3676 xtensa_isa isa
= xtensa_default_isa
;
3678 int num_ops
= xtensa_opcode_num_operands (isa
, insn
->opcode
);
3683 if (xtensa_opcode_is_branch (isa
, insn
->opcode
) == 0
3684 && xtensa_opcode_is_jump (isa
, insn
->opcode
) == 0)
3687 for (i
= 0; i
< num_ops
; i
++)
3689 if (xtensa_operand_is_PCrelative (isa
, insn
->opcode
, i
) == 1)
3695 if (target_op
== -1)
3698 if (insn
->ntok
<= target_op
)
3701 if (insn
->tok
[target_op
].X_op
!= O_symbol
)
3704 sym
= insn
->tok
[target_op
].X_add_symbol
;
3708 if (insn
->tok
[target_op
].X_add_number
!= 0)
3711 target_frag
= symbol_get_frag (sym
);
3712 if (target_frag
== NULL
)
3715 if (is_next_frag_target (fragP
->fr_next
, target_frag
)
3716 && S_GET_VALUE (sym
) == target_frag
->fr_address
)
3724 xg_add_branch_and_loop_targets (TInsn
*insn
)
3726 xtensa_isa isa
= xtensa_default_isa
;
3727 int num_ops
= xtensa_opcode_num_operands (isa
, insn
->opcode
);
3729 if (xtensa_opcode_is_loop (isa
, insn
->opcode
) == 1)
3732 if (xtensa_operand_is_PCrelative (isa
, insn
->opcode
, i
) == 1
3733 && insn
->tok
[i
].X_op
== O_symbol
)
3734 symbol_get_tc (insn
->tok
[i
].X_add_symbol
)->is_loop_target
= TRUE
;
3738 if (xtensa_opcode_is_branch (isa
, insn
->opcode
) == 1
3739 || xtensa_opcode_is_loop (isa
, insn
->opcode
) == 1)
3743 for (i
= 0; i
< insn
->ntok
&& i
< num_ops
; i
++)
3745 if (xtensa_operand_is_PCrelative (isa
, insn
->opcode
, i
) == 1
3746 && insn
->tok
[i
].X_op
== O_symbol
)
3748 symbolS
*sym
= insn
->tok
[i
].X_add_symbol
;
3749 symbol_get_tc (sym
)->is_branch_target
= TRUE
;
3750 if (S_IS_DEFINED (sym
))
3751 symbol_get_frag (sym
)->tc_frag_data
.is_branch_target
= TRUE
;
3758 /* Return FALSE if no error. */
3761 xg_build_token_insn (BuildInstr
*instr_spec
, TInsn
*old_insn
, TInsn
*new_insn
)
3766 switch (instr_spec
->typ
)
3769 new_insn
->insn_type
= ITYPE_INSN
;
3770 new_insn
->opcode
= instr_spec
->opcode
;
3771 new_insn
->is_specific_opcode
= FALSE
;
3772 new_insn
->linenum
= old_insn
->linenum
;
3774 case INSTR_LITERAL_DEF
:
3775 new_insn
->insn_type
= ITYPE_LITERAL
;
3776 new_insn
->opcode
= XTENSA_UNDEFINED
;
3777 new_insn
->is_specific_opcode
= FALSE
;
3778 new_insn
->linenum
= old_insn
->linenum
;
3780 case INSTR_LABEL_DEF
:
3781 as_bad (_("INSTR_LABEL_DEF not supported yet"));
3785 for (b_op
= instr_spec
->ops
; b_op
!= NULL
; b_op
= b_op
->next
)
3788 const expressionS
*src_exp
;
3794 /* The expression must be the constant. */
3795 assert (b_op
->op_num
< MAX_INSN_ARGS
);
3796 exp
= &new_insn
->tok
[b_op
->op_num
];
3797 set_expr_const (exp
, b_op
->op_data
);
3801 assert (b_op
->op_num
< MAX_INSN_ARGS
);
3802 assert (b_op
->op_data
< (unsigned) old_insn
->ntok
);
3803 src_exp
= &old_insn
->tok
[b_op
->op_data
];
3804 exp
= &new_insn
->tok
[b_op
->op_num
];
3805 copy_expr (exp
, src_exp
);
3810 as_bad (_("can't handle generation of literal/labels yet"));
3814 as_bad (_("can't handle undefined OP TYPE"));
3819 new_insn
->ntok
= num_ops
;
3824 /* Return TRUE if it was simplified. */
3827 xg_simplify_insn (TInsn
*old_insn
, TInsn
*new_insn
)
3829 TransitionRule
*rule
;
3830 BuildInstr
*insn_spec
;
3832 if (old_insn
->is_specific_opcode
|| !density_supported
)
3835 rule
= xg_instruction_match (old_insn
);
3839 insn_spec
= rule
->to_instr
;
3840 /* There should only be one. */
3841 assert (insn_spec
!= NULL
);
3842 assert (insn_spec
->next
== NULL
);
3843 if (insn_spec
->next
!= NULL
)
3846 xg_build_token_insn (insn_spec
, old_insn
, new_insn
);
3852 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
3853 l32i.n. (2) Check the number of operands. (3) Place the instruction
3854 tokens into the stack or relax it and place multiple
3855 instructions/literals onto the stack. Return FALSE if no error. */
3858 xg_expand_assembly_insn (IStack
*istack
, TInsn
*orig_insn
)
3862 bfd_boolean do_expand
;
3864 memset (&new_insn
, 0, sizeof (TInsn
));
3866 /* Narrow it if we can. xg_simplify_insn now does all the
3867 appropriate checking (e.g., for the density option). */
3868 if (xg_simplify_insn (orig_insn
, &new_insn
))
3869 orig_insn
= &new_insn
;
3871 noperands
= xtensa_opcode_num_operands (xtensa_default_isa
,
3873 if (orig_insn
->ntok
< noperands
)
3875 as_bad (_("found %d operands for '%s': Expected %d"),
3877 xtensa_opcode_name (xtensa_default_isa
, orig_insn
->opcode
),
3881 if (orig_insn
->ntok
> noperands
)
3882 as_warn (_("found too many (%d) operands for '%s': Expected %d"),
3884 xtensa_opcode_name (xtensa_default_isa
, orig_insn
->opcode
),
3887 /* If there are not enough operands, we will assert above. If there
3888 are too many, just cut out the extras here. */
3889 orig_insn
->ntok
= noperands
;
3891 if (tinsn_has_invalid_symbolic_operands (orig_insn
))
3894 /* If the instruction will definitely need to be relaxed, it is better
3895 to expand it now for better scheduling. Decide whether to expand
3897 do_expand
= (!orig_insn
->is_specific_opcode
&& use_transform ());
3899 /* Calls should be expanded to longcalls only in the backend relaxation
3900 so that the assembly scheduler will keep the L32R/CALLX instructions
3902 if (is_direct_call_opcode (orig_insn
->opcode
))
3905 if (tinsn_has_symbolic_operands (orig_insn
))
3907 /* The values of symbolic operands are not known yet, so only expand
3908 now if an operand is "complex" (e.g., difference of symbols) and
3909 will have to be stored as a literal regardless of the value. */
3910 if (!tinsn_has_complex_operands (orig_insn
))
3913 else if (xg_immeds_fit (orig_insn
))
3917 xg_assembly_relax (istack
, orig_insn
, 0, 0, 0, 0, 0);
3919 istack_push (istack
, orig_insn
);
3925 /* Return TRUE if the section flags are marked linkonce
3926 or the name is .gnu.linkonce*. */
3929 get_is_linkonce_section (bfd
*abfd ATTRIBUTE_UNUSED
, segT sec
)
3931 flagword flags
, link_once_flags
;
3933 flags
= bfd_get_section_flags (abfd
, sec
);
3934 link_once_flags
= (flags
& SEC_LINK_ONCE
);
3936 /* Flags might not be set yet. */
3937 if (!link_once_flags
)
3939 static size_t len
= sizeof ".gnu.linkonce.t.";
3941 if (strncmp (segment_name (sec
), ".gnu.linkonce.t.", len
- 1) == 0)
3942 link_once_flags
= SEC_LINK_ONCE
;
3944 return (link_once_flags
!= 0);
3949 xtensa_add_literal_sym (symbolS
*sym
)
3953 l
= (sym_list
*) xmalloc (sizeof (sym_list
));
3955 l
->next
= literal_syms
;
3961 xtensa_create_literal_symbol (segT sec
, fragS
*frag
)
3963 static int lit_num
= 0;
3964 static char name
[256];
3967 sprintf (name
, ".L_lit_sym%d", lit_num
);
3969 /* Create a local symbol. If it is in a linkonce section, we have to
3970 be careful to make sure that if it is used in a relocation that the
3971 symbol will be in the output file. */
3972 if (get_is_linkonce_section (stdoutput
, sec
))
3974 symbolP
= symbol_new (name
, sec
, 0, frag
);
3975 S_CLEAR_EXTERNAL (symbolP
);
3976 /* symbolP->local = 1; */
3979 symbolP
= symbol_new (name
, sec
, 0, frag
);
3981 xtensa_add_literal_sym (symbolP
);
3988 /* Currently all literals that are generated here are 32-bit L32R targets. */
3991 xg_assemble_literal (/* const */ TInsn
*insn
)
3994 symbolS
*lit_sym
= NULL
;
3996 /* size = 4 for L32R. It could easily be larger when we move to
3997 larger constants. Add a parameter later. */
3998 offsetT litsize
= 4;
3999 offsetT litalign
= 2; /* 2^2 = 4 */
4000 expressionS saved_loc
;
4001 expressionS
* emit_val
;
4003 set_expr_symbol_offset (&saved_loc
, frag_now
->fr_symbol
, frag_now_fix ());
4005 assert (insn
->insn_type
== ITYPE_LITERAL
);
4006 assert (insn
->ntok
== 1); /* must be only one token here */
4008 xtensa_switch_to_literal_fragment (&state
);
4010 emit_val
= &insn
->tok
[0];
4011 if (emit_val
->X_op
== O_big
)
4013 int size
= emit_val
->X_add_number
* CHARS_PER_LITTLENUM
;
4016 /* This happens when someone writes a "movi a2, big_number". */
4017 as_bad_where (frag_now
->fr_file
, frag_now
->fr_line
,
4018 _("invalid immediate"));
4019 xtensa_restore_emit_state (&state
);
4024 /* Force a 4-byte align here. Note that this opens a new frag, so all
4025 literals done with this function have a frag to themselves. That's
4026 important for the way text section literals work. */
4027 frag_align (litalign
, 0, 0);
4028 record_alignment (now_seg
, litalign
);
4030 if (emit_val
->X_op
== O_pltrel
)
4032 char *p
= frag_more (litsize
);
4033 xtensa_set_frag_assembly_state (frag_now
);
4034 if (emit_val
->X_add_symbol
)
4035 emit_val
->X_op
= O_symbol
;
4037 emit_val
->X_op
= O_constant
;
4038 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
,
4039 litsize
, emit_val
, 0, BFD_RELOC_XTENSA_PLT
);
4042 emit_expr (emit_val
, litsize
);
4044 assert (frag_now
->tc_frag_data
.literal_frag
== NULL
);
4045 frag_now
->tc_frag_data
.literal_frag
= get_literal_pool_location (now_seg
);
4046 frag_now
->fr_symbol
= xtensa_create_literal_symbol (now_seg
, frag_now
);
4047 lit_sym
= frag_now
->fr_symbol
;
4050 xtensa_restore_emit_state (&state
);
4056 xg_assemble_literal_space (/* const */ int size
, int slot
)
4059 /* We might have to do something about this alignment. It only
4060 takes effect if something is placed here. */
4061 offsetT litalign
= 2; /* 2^2 = 4 */
4062 fragS
*lit_saved_frag
;
4064 assert (size
% 4 == 0);
4066 xtensa_switch_to_literal_fragment (&state
);
4068 /* Force a 4-byte align here. */
4069 frag_align (litalign
, 0, 0);
4070 record_alignment (now_seg
, litalign
);
4072 xg_force_frag_space (size
);
4074 lit_saved_frag
= frag_now
;
4075 frag_now
->tc_frag_data
.literal_frag
= get_literal_pool_location (now_seg
);
4076 frag_now
->fr_symbol
= xtensa_create_literal_symbol (now_seg
, frag_now
);
4077 xg_finish_frag (0, RELAX_LITERAL
, 0, size
, FALSE
);
4080 xtensa_restore_emit_state (&state
);
4081 frag_now
->tc_frag_data
.literal_frags
[slot
] = lit_saved_frag
;
4085 /* Put in a fixup record based on the opcode.
4086 Return TRUE on success. */
4089 xg_add_opcode_fix (TInsn
*tinsn
,
4097 xtensa_opcode opcode
= tinsn
->opcode
;
4098 bfd_reloc_code_real_type reloc
;
4099 reloc_howto_type
*howto
;
4103 reloc
= BFD_RELOC_NONE
;
4105 /* First try the special cases for "alternate" relocs. */
4106 if (opcode
== xtensa_l32r_opcode
)
4108 if (fragP
->tc_frag_data
.use_absolute_literals
)
4109 reloc
= encode_alt_reloc (slot
);
4111 else if (opcode
== xtensa_const16_opcode
)
4113 if (expr
->X_op
== O_lo16
)
4115 reloc
= encode_reloc (slot
);
4116 expr
->X_op
= O_symbol
;
4118 else if (expr
->X_op
== O_hi16
)
4120 reloc
= encode_alt_reloc (slot
);
4121 expr
->X_op
= O_symbol
;
4125 if (opnum
!= get_relaxable_immed (opcode
))
4127 as_bad (_("invalid relocation for operand %i of '%s'"),
4128 opnum
+ 1, xtensa_opcode_name (xtensa_default_isa
, opcode
));
4132 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4133 into the symbol table where the generic portions of the assembler
4134 won't know what to do with them. */
4135 if (expr
->X_op
== O_lo16
|| expr
->X_op
== O_hi16
)
4137 as_bad (_("invalid expression for operand %i of '%s'"),
4138 opnum
+ 1, xtensa_opcode_name (xtensa_default_isa
, opcode
));
4142 /* Next try the generic relocs. */
4143 if (reloc
== BFD_RELOC_NONE
)
4144 reloc
= encode_reloc (slot
);
4145 if (reloc
== BFD_RELOC_NONE
)
4147 as_bad (_("invalid relocation in instruction slot %i"), slot
);
4151 howto
= bfd_reloc_type_lookup (stdoutput
, reloc
);
4154 as_bad (_("undefined symbol for opcode \"%s\""),
4155 xtensa_opcode_name (xtensa_default_isa
, opcode
));
4159 fmt_length
= xtensa_format_length (xtensa_default_isa
, fmt
);
4160 the_fix
= fix_new_exp (fragP
, offset
, fmt_length
, expr
,
4161 howto
->pc_relative
, reloc
);
4162 the_fix
->fx_no_overflow
= 1;
4164 if (expr
->X_add_symbol
4165 && (S_IS_EXTERNAL (expr
->X_add_symbol
)
4166 || S_IS_WEAK (expr
->X_add_symbol
)))
4167 the_fix
->fx_plt
= TRUE
;
4169 the_fix
->tc_fix_data
.X_add_symbol
= expr
->X_add_symbol
;
4170 the_fix
->tc_fix_data
.X_add_number
= expr
->X_add_number
;
4171 the_fix
->tc_fix_data
.slot
= slot
;
4178 xg_emit_insn_to_buf (TInsn
*tinsn
,
4182 bfd_boolean build_fix
)
4184 static xtensa_insnbuf insnbuf
= NULL
;
4185 bfd_boolean has_symbolic_immed
= FALSE
;
4186 bfd_boolean ok
= TRUE
;
4189 insnbuf
= xtensa_insnbuf_alloc (xtensa_default_isa
);
4191 has_symbolic_immed
= tinsn_to_insnbuf (tinsn
, insnbuf
);
4192 if (has_symbolic_immed
&& build_fix
)
4195 xtensa_format fmt
= xg_get_single_format (tinsn
->opcode
);
4196 int slot
= xg_get_single_slot (tinsn
->opcode
);
4197 int opnum
= get_relaxable_immed (tinsn
->opcode
);
4198 expressionS
*exp
= &tinsn
->tok
[opnum
];
4200 if (!xg_add_opcode_fix (tinsn
, opnum
, fmt
, slot
, exp
, fragP
, offset
))
4203 fragP
->tc_frag_data
.is_insn
= TRUE
;
4204 xtensa_insnbuf_to_chars (xtensa_default_isa
, insnbuf
,
4205 (unsigned char *) buf
, 0);
4211 xg_resolve_literals (TInsn
*insn
, symbolS
*lit_sym
)
4213 symbolS
*sym
= get_special_literal_symbol ();
4217 assert (insn
->insn_type
== ITYPE_INSN
);
4218 for (i
= 0; i
< insn
->ntok
; i
++)
4219 if (insn
->tok
[i
].X_add_symbol
== sym
)
4220 insn
->tok
[i
].X_add_symbol
= lit_sym
;
4226 xg_resolve_labels (TInsn
*insn
, symbolS
*label_sym
)
4228 symbolS
*sym
= get_special_label_symbol ();
4230 for (i
= 0; i
< insn
->ntok
; i
++)
4231 if (insn
->tok
[i
].X_add_symbol
== sym
)
4232 insn
->tok
[i
].X_add_symbol
= label_sym
;
4237 /* Return TRUE if the instruction can write to the specified
4238 integer register. */
4241 is_register_writer (const TInsn
*insn
, const char *regset
, int regnum
)
4245 xtensa_isa isa
= xtensa_default_isa
;
4247 num_ops
= xtensa_opcode_num_operands (isa
, insn
->opcode
);
4249 for (i
= 0; i
< num_ops
; i
++)
4252 inout
= xtensa_operand_inout (isa
, insn
->opcode
, i
);
4253 if ((inout
== 'o' || inout
== 'm')
4254 && xtensa_operand_is_register (isa
, insn
->opcode
, i
) == 1)
4256 xtensa_regfile opnd_rf
=
4257 xtensa_operand_regfile (isa
, insn
->opcode
, i
);
4258 if (!strcmp (xtensa_regfile_shortname (isa
, opnd_rf
), regset
))
4260 if ((insn
->tok
[i
].X_op
== O_register
)
4261 && (insn
->tok
[i
].X_add_number
== regnum
))
4271 is_bad_loopend_opcode (const TInsn
*tinsn
)
4273 xtensa_opcode opcode
= tinsn
->opcode
;
4275 if (opcode
== XTENSA_UNDEFINED
)
4278 if (opcode
== xtensa_call0_opcode
4279 || opcode
== xtensa_callx0_opcode
4280 || opcode
== xtensa_call4_opcode
4281 || opcode
== xtensa_callx4_opcode
4282 || opcode
== xtensa_call8_opcode
4283 || opcode
== xtensa_callx8_opcode
4284 || opcode
== xtensa_call12_opcode
4285 || opcode
== xtensa_callx12_opcode
4286 || opcode
== xtensa_isync_opcode
4287 || opcode
== xtensa_ret_opcode
4288 || opcode
== xtensa_ret_n_opcode
4289 || opcode
== xtensa_retw_opcode
4290 || opcode
== xtensa_retw_n_opcode
4291 || opcode
== xtensa_waiti_opcode
4292 || opcode
== xtensa_rsr_lcount_opcode
)
4299 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4300 This allows the debugger to add unaligned labels.
4301 Also, the assembler generates stabs labels that need
4302 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4305 is_unaligned_label (symbolS
*sym
)
4307 const char *name
= S_GET_NAME (sym
);
4308 static size_t fake_size
= 0;
4312 && name
[1] == 'L' && (name
[2] == 'n' || name
[2] == 'M'))
4315 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4317 fake_size
= strlen (FAKE_LABEL_NAME
);
4320 && strncmp (FAKE_LABEL_NAME
, name
, fake_size
) == 0
4321 && (name
[fake_size
] == 'F'
4322 || name
[fake_size
] == 'L'
4323 || (name
[fake_size
] == 'e'
4324 && strncmp ("endfunc", name
+fake_size
, 7) == 0)))
4332 next_non_empty_frag (const fragS
*fragP
)
4334 fragS
*next_fragP
= fragP
->fr_next
;
4336 /* Sometimes an empty will end up here due storage allocation issues.
4337 So we have to skip until we find something legit. */
4338 while (next_fragP
&& next_fragP
->fr_fix
== 0)
4339 next_fragP
= next_fragP
->fr_next
;
4341 if (next_fragP
== NULL
|| next_fragP
->fr_fix
== 0)
4349 next_frag_opcode_is_loop (const fragS
*fragP
, xtensa_opcode
*opcode
)
4351 xtensa_opcode out_opcode
;
4352 const fragS
*next_fragP
= next_non_empty_frag (fragP
);
4354 if (next_fragP
== NULL
)
4357 out_opcode
= get_opcode_from_buf (next_fragP
->fr_literal
, 0);
4358 if (xtensa_opcode_is_loop (xtensa_default_isa
, out_opcode
) == 1)
4360 *opcode
= out_opcode
;
4368 frag_format_size (const fragS
*fragP
)
4370 static xtensa_insnbuf insnbuf
= NULL
;
4371 xtensa_isa isa
= xtensa_default_isa
;
4376 insnbuf
= xtensa_insnbuf_alloc (isa
);
4379 return XTENSA_UNDEFINED
;
4381 xtensa_insnbuf_from_chars (isa
, insnbuf
,
4382 (unsigned char *) fragP
->fr_literal
, 0);
4384 fmt
= xtensa_format_decode (isa
, insnbuf
);
4385 if (fmt
== XTENSA_UNDEFINED
)
4386 return XTENSA_UNDEFINED
;
4387 fmt_size
= xtensa_format_length (isa
, fmt
);
4389 /* If the next format won't be changing due to relaxation, just
4390 return the length of the first format. */
4391 if (fragP
->fr_opcode
!= fragP
->fr_literal
)
4394 /* If during relaxation we have to pull an instruction out of a
4395 multi-slot instruction, we will return the more conservative
4396 number. This works because alignment on bigger instructions
4397 is more restrictive than alignment on smaller instructions.
4398 This is more conservative than we would like, but it happens
4401 if (xtensa_format_num_slots (xtensa_default_isa
, fmt
) > 1)
4404 /* If we aren't doing one of our own relaxations or it isn't
4405 slot-based, then the insn size won't change. */
4406 if (fragP
->fr_type
!= rs_machine_dependent
)
4408 if (fragP
->fr_subtype
!= RELAX_SLOTS
)
4411 /* If an instruction is about to grow, return the longer size. */
4412 if (fragP
->tc_frag_data
.slot_subtypes
[0] == RELAX_IMMED_STEP1
4413 || fragP
->tc_frag_data
.slot_subtypes
[0] == RELAX_IMMED_STEP2
)
4416 if (fragP
->tc_frag_data
.slot_subtypes
[0] == RELAX_NARROW
)
4417 return 2 + fragP
->tc_frag_data
.text_expansion
[0];
4424 next_frag_format_size (const fragS
*fragP
)
4426 const fragS
*next_fragP
= next_non_empty_frag (fragP
);
4427 return frag_format_size (next_fragP
);
4431 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4432 required two-byte instructions to be treated as three-byte instructions
4433 for loop instruction alignment. This restriction was removed beginning
4434 with Xtensa LX. Now the only requirement on loop instruction alignment
4435 is that the first instruction of the loop must appear at an address that
4436 does not cross a fetch boundary. */
4439 get_loop_align_size (int insn_size
)
4441 if (insn_size
== XTENSA_UNDEFINED
)
4442 return xtensa_fetch_width
;
4444 if (enforce_three_byte_loop_align
&& insn_size
== 2)
4451 /* If the next legit fragment is an end-of-loop marker,
4452 switch its state so it will instantiate a NOP. */
4455 update_next_frag_state (fragS
*fragP
)
4457 fragS
*next_fragP
= fragP
->fr_next
;
4458 fragS
*new_target
= NULL
;
4462 /* We are guaranteed there will be one of these... */
4463 while (!(next_fragP
->fr_type
== rs_machine_dependent
4464 && (next_fragP
->fr_subtype
== RELAX_MAYBE_UNREACHABLE
4465 || next_fragP
->fr_subtype
== RELAX_UNREACHABLE
)))
4466 next_fragP
= next_fragP
->fr_next
;
4468 assert (next_fragP
->fr_type
== rs_machine_dependent
4469 && (next_fragP
->fr_subtype
== RELAX_MAYBE_UNREACHABLE
4470 || next_fragP
->fr_subtype
== RELAX_UNREACHABLE
));
4472 /* ...and one of these. */
4473 new_target
= next_fragP
->fr_next
;
4474 while (!(new_target
->fr_type
== rs_machine_dependent
4475 && (new_target
->fr_subtype
== RELAX_MAYBE_DESIRE_ALIGN
4476 || new_target
->fr_subtype
== RELAX_DESIRE_ALIGN
)))
4477 new_target
= new_target
->fr_next
;
4479 assert (new_target
->fr_type
== rs_machine_dependent
4480 && (new_target
->fr_subtype
== RELAX_MAYBE_DESIRE_ALIGN
4481 || new_target
->fr_subtype
== RELAX_DESIRE_ALIGN
));
4484 while (next_fragP
&& next_fragP
->fr_fix
== 0)
4486 if (next_fragP
->fr_type
== rs_machine_dependent
4487 && next_fragP
->fr_subtype
== RELAX_LOOP_END
)
4489 next_fragP
->fr_subtype
= RELAX_LOOP_END_ADD_NOP
;
4493 next_fragP
= next_fragP
->fr_next
;
4499 next_frag_is_branch_target (const fragS
*fragP
)
4501 /* Sometimes an empty will end up here due to storage allocation issues,
4502 so we have to skip until we find something legit. */
4503 for (fragP
= fragP
->fr_next
; fragP
; fragP
= fragP
->fr_next
)
4505 if (fragP
->tc_frag_data
.is_branch_target
)
4507 if (fragP
->fr_fix
!= 0)
4515 next_frag_is_loop_target (const fragS
*fragP
)
4517 /* Sometimes an empty will end up here due storage allocation issues.
4518 So we have to skip until we find something legit. */
4519 for (fragP
= fragP
->fr_next
; fragP
; fragP
= fragP
->fr_next
)
4521 if (fragP
->tc_frag_data
.is_loop_target
)
4523 if (fragP
->fr_fix
!= 0)
4531 next_frag_pre_opcode_bytes (const fragS
*fragp
)
4533 const fragS
*next_fragp
= fragp
->fr_next
;
4534 xtensa_opcode next_opcode
;
4536 if (!next_frag_opcode_is_loop (fragp
, &next_opcode
))
4539 /* Sometimes an empty will end up here due to storage allocation issues,
4540 so we have to skip until we find something legit. */
4541 while (next_fragp
->fr_fix
== 0)
4542 next_fragp
= next_fragp
->fr_next
;
4544 if (next_fragp
->fr_type
!= rs_machine_dependent
)
4547 /* There is some implicit knowledge encoded in here.
4548 The LOOP instructions that are NOT RELAX_IMMED have
4549 been relaxed. Note that we can assume that the LOOP
4550 instruction is in slot 0 because loops aren't bundleable. */
4551 if (next_fragp
->tc_frag_data
.slot_subtypes
[0] > RELAX_IMMED
)
4552 return get_expanded_loop_offset (next_opcode
);
4558 /* Mark a location where we can later insert literal frags. Update
4559 the section's literal_pool_loc, so subsequent literals can be
4560 placed nearest to their use. */
4563 xtensa_mark_literal_pool_location (void)
4565 /* Any labels pointing to the current location need
4566 to be adjusted to after the literal pool. */
4568 fragS
*pool_location
;
4570 if (use_literal_section
&& !directive_state
[directive_absolute_literals
])
4573 frag_align (2, 0, 0);
4574 record_alignment (now_seg
, 2);
4576 /* We stash info in these frags so we can later move the literal's
4577 fixes into this frchain's fix list. */
4578 pool_location
= frag_now
;
4579 frag_now
->tc_frag_data
.lit_frchain
= frchain_now
;
4580 frag_variant (rs_machine_dependent
, 0, 0,
4581 RELAX_LITERAL_POOL_BEGIN
, NULL
, 0, NULL
);
4582 xtensa_set_frag_assembly_state (frag_now
);
4583 frag_now
->tc_frag_data
.lit_seg
= now_seg
;
4584 frag_variant (rs_machine_dependent
, 0, 0,
4585 RELAX_LITERAL_POOL_END
, NULL
, 0, NULL
);
4586 xtensa_set_frag_assembly_state (frag_now
);
4588 /* Now put a frag into the literal pool that points to this location. */
4589 set_literal_pool_location (now_seg
, pool_location
);
4590 xtensa_switch_to_non_abs_literal_fragment (&s
);
4591 frag_align (2, 0, 0);
4592 record_alignment (now_seg
, 2);
4594 /* Close whatever frag is there. */
4595 frag_variant (rs_fill
, 0, 0, 0, NULL
, 0, NULL
);
4596 xtensa_set_frag_assembly_state (frag_now
);
4597 frag_now
->tc_frag_data
.literal_frag
= pool_location
;
4598 frag_variant (rs_fill
, 0, 0, 0, NULL
, 0, NULL
);
4599 xtensa_restore_emit_state (&s
);
4600 xtensa_set_frag_assembly_state (frag_now
);
4604 /* Build a nop of the correct size into tinsn. */
4607 build_nop (TInsn
*tinsn
, int size
)
4613 tinsn
->opcode
= xtensa_nop_n_opcode
;
4615 if (tinsn
->opcode
== XTENSA_UNDEFINED
)
4616 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4620 if (xtensa_nop_opcode
== XTENSA_UNDEFINED
)
4622 tinsn
->opcode
= xtensa_or_opcode
;
4623 set_expr_const (&tinsn
->tok
[0], 1);
4624 set_expr_const (&tinsn
->tok
[1], 1);
4625 set_expr_const (&tinsn
->tok
[2], 1);
4629 tinsn
->opcode
= xtensa_nop_opcode
;
4631 assert (tinsn
->opcode
!= XTENSA_UNDEFINED
);
4636 /* Assemble a NOP of the requested size in the buffer. User must have
4637 allocated "buf" with at least "size" bytes. */
4640 assemble_nop (int size
, char *buf
)
4642 static xtensa_insnbuf insnbuf
= NULL
;
4645 build_nop (&tinsn
, size
);
4648 insnbuf
= xtensa_insnbuf_alloc (xtensa_default_isa
);
4650 tinsn_to_insnbuf (&tinsn
, insnbuf
);
4651 xtensa_insnbuf_to_chars (xtensa_default_isa
, insnbuf
,
4652 (unsigned char *) buf
, 0);
4656 /* Return the number of bytes for the offset of the expanded loop
4657 instruction. This should be incorporated into the relaxation
4658 specification but is hard-coded here. This is used to auto-align
4659 the loop instruction. It is invalid to call this function if the
4660 configuration does not have loops or if the opcode is not a loop
4664 get_expanded_loop_offset (xtensa_opcode opcode
)
4666 /* This is the OFFSET of the loop instruction in the expanded loop.
4667 This MUST correspond directly to the specification of the loop
4668 expansion. It will be validated on fragment conversion. */
4669 assert (opcode
!= XTENSA_UNDEFINED
);
4670 if (opcode
== xtensa_loop_opcode
)
4672 if (opcode
== xtensa_loopnez_opcode
)
4674 if (opcode
== xtensa_loopgtz_opcode
)
4676 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4682 get_literal_pool_location (segT seg
)
4684 return seg_info (seg
)->tc_segment_info_data
.literal_pool_loc
;
4689 set_literal_pool_location (segT seg
, fragS
*literal_pool_loc
)
4691 seg_info (seg
)->tc_segment_info_data
.literal_pool_loc
= literal_pool_loc
;
4695 /* Set frag assembly state should be called when a new frag is
4696 opened and after a frag has been closed. */
4699 xtensa_set_frag_assembly_state (fragS
*fragP
)
4701 if (!density_supported
)
4702 fragP
->tc_frag_data
.is_no_density
= TRUE
;
4704 /* This function is called from subsegs_finish, which is called
4705 after xtensa_end, so we can't use "use_transform" or
4706 "use_schedule" here. */
4707 if (!directive_state
[directive_transform
])
4708 fragP
->tc_frag_data
.is_no_transform
= TRUE
;
4709 if (directive_state
[directive_longcalls
])
4710 fragP
->tc_frag_data
.use_longcalls
= TRUE
;
4711 fragP
->tc_frag_data
.use_absolute_literals
=
4712 directive_state
[directive_absolute_literals
];
4713 fragP
->tc_frag_data
.is_assembly_state_set
= TRUE
;
4718 relaxable_section (asection
*sec
)
4720 return (sec
->flags
& SEC_DEBUGGING
) == 0;
4725 xtensa_find_unmarked_state_frags (void)
4729 /* Walk over each fragment of all of the current segments. For each
4730 unmarked fragment, mark it with the same info as the previous
4732 for (seclist
= &stdoutput
->sections
;
4733 seclist
&& *seclist
;
4734 seclist
= &(*seclist
)->next
)
4736 segT sec
= *seclist
;
4737 segment_info_type
*seginfo
;
4740 flags
= bfd_get_section_flags (stdoutput
, sec
);
4741 if (flags
& SEC_DEBUGGING
)
4743 if (!(flags
& SEC_ALLOC
))
4746 seginfo
= seg_info (sec
);
4747 if (seginfo
&& seginfo
->frchainP
)
4749 fragS
*last_fragP
= 0;
4750 for (fragP
= seginfo
->frchainP
->frch_root
; fragP
;
4751 fragP
= fragP
->fr_next
)
4753 if (fragP
->fr_fix
!= 0
4754 && !fragP
->tc_frag_data
.is_assembly_state_set
)
4756 if (last_fragP
== 0)
4758 as_warn_where (fragP
->fr_file
, fragP
->fr_line
,
4759 _("assembly state not set for first frag in section %s"),
4764 fragP
->tc_frag_data
.is_assembly_state_set
= TRUE
;
4765 fragP
->tc_frag_data
.is_no_density
=
4766 last_fragP
->tc_frag_data
.is_no_density
;
4767 fragP
->tc_frag_data
.is_no_transform
=
4768 last_fragP
->tc_frag_data
.is_no_transform
;
4769 fragP
->tc_frag_data
.use_longcalls
=
4770 last_fragP
->tc_frag_data
.use_longcalls
;
4771 fragP
->tc_frag_data
.use_absolute_literals
=
4772 last_fragP
->tc_frag_data
.use_absolute_literals
;
4775 if (fragP
->tc_frag_data
.is_assembly_state_set
)
4784 xtensa_find_unaligned_branch_targets (bfd
*abfd ATTRIBUTE_UNUSED
,
4786 void *unused ATTRIBUTE_UNUSED
)
4788 flagword flags
= bfd_get_section_flags (abfd
, sec
);
4789 segment_info_type
*seginfo
= seg_info (sec
);
4790 fragS
*frag
= seginfo
->frchainP
->frch_root
;
4792 if (flags
& SEC_CODE
)
4794 xtensa_isa isa
= xtensa_default_isa
;
4795 xtensa_insnbuf insnbuf
= xtensa_insnbuf_alloc (isa
);
4796 while (frag
!= NULL
)
4798 if (frag
->tc_frag_data
.is_branch_target
)
4801 addressT branch_align
, frag_addr
;
4804 xtensa_insnbuf_from_chars
4805 (isa
, insnbuf
, (unsigned char *) frag
->fr_literal
, 0);
4806 fmt
= xtensa_format_decode (isa
, insnbuf
);
4807 op_size
= xtensa_format_length (isa
, fmt
);
4808 branch_align
= 1 << branch_align_power (sec
);
4809 frag_addr
= frag
->fr_address
% branch_align
;
4810 if (frag_addr
+ op_size
> branch_align
)
4811 as_warn_where (frag
->fr_file
, frag
->fr_line
,
4812 _("unaligned branch target: %d bytes at 0x%lx"),
4813 op_size
, (long) frag
->fr_address
);
4815 frag
= frag
->fr_next
;
4817 xtensa_insnbuf_free (isa
, insnbuf
);
4823 xtensa_find_unaligned_loops (bfd
*abfd ATTRIBUTE_UNUSED
,
4825 void *unused ATTRIBUTE_UNUSED
)
4827 flagword flags
= bfd_get_section_flags (abfd
, sec
);
4828 segment_info_type
*seginfo
= seg_info (sec
);
4829 fragS
*frag
= seginfo
->frchainP
->frch_root
;
4830 xtensa_isa isa
= xtensa_default_isa
;
4832 if (flags
& SEC_CODE
)
4834 xtensa_insnbuf insnbuf
= xtensa_insnbuf_alloc (isa
);
4835 while (frag
!= NULL
)
4837 if (frag
->tc_frag_data
.is_first_loop_insn
)
4843 xtensa_insnbuf_from_chars
4844 (isa
, insnbuf
, (unsigned char *) frag
->fr_literal
, 0);
4845 fmt
= xtensa_format_decode (isa
, insnbuf
);
4846 op_size
= xtensa_format_length (isa
, fmt
);
4847 frag_addr
= frag
->fr_address
% xtensa_fetch_width
;
4849 if (frag_addr
+ op_size
> xtensa_fetch_width
)
4850 as_warn_where (frag
->fr_file
, frag
->fr_line
,
4851 _("unaligned loop: %d bytes at 0x%lx"),
4852 op_size
, (long) frag
->fr_address
);
4854 frag
= frag
->fr_next
;
4856 xtensa_insnbuf_free (isa
, insnbuf
);
4862 xg_apply_fix_value (fixS
*fixP
, valueT val
)
4864 xtensa_isa isa
= xtensa_default_isa
;
4865 static xtensa_insnbuf insnbuf
= NULL
;
4866 static xtensa_insnbuf slotbuf
= NULL
;
4869 bfd_boolean alt_reloc
;
4870 xtensa_opcode opcode
;
4871 char *const fixpos
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
4873 (void) decode_reloc (fixP
->fx_r_type
, &slot
, &alt_reloc
);
4875 as_fatal (_("unexpected fix"));
4879 insnbuf
= xtensa_insnbuf_alloc (isa
);
4880 slotbuf
= xtensa_insnbuf_alloc (isa
);
4883 xtensa_insnbuf_from_chars (isa
, insnbuf
, (unsigned char *) fixpos
, 0);
4884 fmt
= xtensa_format_decode (isa
, insnbuf
);
4885 if (fmt
== XTENSA_UNDEFINED
)
4886 as_fatal (_("undecodable fix"));
4887 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
4888 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
4889 if (opcode
== XTENSA_UNDEFINED
)
4890 as_fatal (_("undecodable fix"));
4892 /* CONST16 immediates are not PC-relative, despite the fact that we
4893 reuse the normal PC-relative operand relocations for the low part
4894 of a CONST16 operand. */
4895 if (opcode
== xtensa_const16_opcode
)
4898 xtensa_insnbuf_set_operand (slotbuf
, fmt
, slot
, opcode
,
4899 get_relaxable_immed (opcode
), val
,
4900 fixP
->fx_file
, fixP
->fx_line
);
4902 xtensa_format_set_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
4903 xtensa_insnbuf_to_chars (isa
, insnbuf
, (unsigned char *) fixpos
, 0);
4909 /* External Functions and Other GAS Hooks. */
4912 xtensa_target_format (void)
4914 return (target_big_endian
? "elf32-xtensa-be" : "elf32-xtensa-le");
4919 xtensa_file_arch_init (bfd
*abfd
)
4921 bfd_set_private_flags (abfd
, 0x100 | 0x200);
4926 md_number_to_chars (char *buf
, valueT val
, int n
)
4928 if (target_big_endian
)
4929 number_to_chars_bigendian (buf
, val
, n
);
4931 number_to_chars_littleendian (buf
, val
, n
);
4935 /* This function is called once, at assembler startup time. It should
4936 set up all the tables, etc. that the MD part of the assembler will
4942 segT current_section
= now_seg
;
4943 int current_subsec
= now_subseg
;
4946 xtensa_default_isa
= xtensa_isa_init (0, 0);
4947 isa
= xtensa_default_isa
;
4951 /* Set up the .literal, .fini.literal and .init.literal sections. */
4952 memset (&default_lit_sections
, 0, sizeof (default_lit_sections
));
4953 default_lit_sections
.init_lit_seg_name
= INIT_LITERAL_SECTION_NAME
;
4954 default_lit_sections
.fini_lit_seg_name
= FINI_LITERAL_SECTION_NAME
;
4955 default_lit_sections
.lit_seg_name
= LITERAL_SECTION_NAME
;
4956 default_lit_sections
.lit4_seg_name
= LIT4_SECTION_NAME
;
4958 subseg_set (current_section
, current_subsec
);
4960 xg_init_vinsn (&cur_vinsn
);
4962 xtensa_addi_opcode
= xtensa_opcode_lookup (isa
, "addi");
4963 xtensa_addmi_opcode
= xtensa_opcode_lookup (isa
, "addmi");
4964 xtensa_call0_opcode
= xtensa_opcode_lookup (isa
, "call0");
4965 xtensa_call4_opcode
= xtensa_opcode_lookup (isa
, "call4");
4966 xtensa_call8_opcode
= xtensa_opcode_lookup (isa
, "call8");
4967 xtensa_call12_opcode
= xtensa_opcode_lookup (isa
, "call12");
4968 xtensa_callx0_opcode
= xtensa_opcode_lookup (isa
, "callx0");
4969 xtensa_callx4_opcode
= xtensa_opcode_lookup (isa
, "callx4");
4970 xtensa_callx8_opcode
= xtensa_opcode_lookup (isa
, "callx8");
4971 xtensa_callx12_opcode
= xtensa_opcode_lookup (isa
, "callx12");
4972 xtensa_const16_opcode
= xtensa_opcode_lookup (isa
, "const16");
4973 xtensa_entry_opcode
= xtensa_opcode_lookup (isa
, "entry");
4974 xtensa_movi_opcode
= xtensa_opcode_lookup (isa
, "movi");
4975 xtensa_movi_n_opcode
= xtensa_opcode_lookup (isa
, "movi.n");
4976 xtensa_isync_opcode
= xtensa_opcode_lookup (isa
, "isync");
4977 xtensa_jx_opcode
= xtensa_opcode_lookup (isa
, "jx");
4978 xtensa_l32r_opcode
= xtensa_opcode_lookup (isa
, "l32r");
4979 xtensa_loop_opcode
= xtensa_opcode_lookup (isa
, "loop");
4980 xtensa_loopnez_opcode
= xtensa_opcode_lookup (isa
, "loopnez");
4981 xtensa_loopgtz_opcode
= xtensa_opcode_lookup (isa
, "loopgtz");
4982 xtensa_nop_opcode
= xtensa_opcode_lookup (isa
, "nop");
4983 xtensa_nop_n_opcode
= xtensa_opcode_lookup (isa
, "nop.n");
4984 xtensa_or_opcode
= xtensa_opcode_lookup (isa
, "or");
4985 xtensa_ret_opcode
= xtensa_opcode_lookup (isa
, "ret");
4986 xtensa_ret_n_opcode
= xtensa_opcode_lookup (isa
, "ret.n");
4987 xtensa_retw_opcode
= xtensa_opcode_lookup (isa
, "retw");
4988 xtensa_retw_n_opcode
= xtensa_opcode_lookup (isa
, "retw.n");
4989 xtensa_rsr_lcount_opcode
= xtensa_opcode_lookup (isa
, "rsr.lcount");
4990 xtensa_waiti_opcode
= xtensa_opcode_lookup (isa
, "waiti");
4992 init_op_placement_info_table ();
4994 /* Set up the assembly state. */
4995 if (!frag_now
->tc_frag_data
.is_assembly_state_set
)
4996 xtensa_set_frag_assembly_state (frag_now
);
5000 /* TC_INIT_FIX_DATA hook */
5003 xtensa_init_fix_data (fixS
*x
)
5005 x
->tc_fix_data
.slot
= 0;
5006 x
->tc_fix_data
.X_add_symbol
= NULL
;
5007 x
->tc_fix_data
.X_add_number
= 0;
5011 /* tc_frob_label hook */
5014 xtensa_frob_label (symbolS
*sym
)
5018 if (cur_vinsn
.inside_bundle
)
5020 as_bad (_("labels are not valid inside bundles"));
5024 freq
= get_subseg_target_freq (now_seg
, now_subseg
);
5026 /* Since the label was already attached to a frag associated with the
5027 previous basic block, it now needs to be reset to the current frag. */
5028 symbol_set_frag (sym
, frag_now
);
5029 S_SET_VALUE (sym
, (valueT
) frag_now_fix ());
5031 if (generating_literals
)
5032 xtensa_add_literal_sym (sym
);
5034 xtensa_add_insn_label (sym
);
5036 if (symbol_get_tc (sym
)->is_loop_target
)
5038 if ((get_last_insn_flags (now_seg
, now_subseg
)
5039 & FLAG_IS_BAD_LOOPEND
) != 0)
5040 as_bad (_("invalid last instruction for a zero-overhead loop"));
5042 xtensa_set_frag_assembly_state (frag_now
);
5043 frag_var (rs_machine_dependent
, 4, 4, RELAX_LOOP_END
,
5044 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
5046 xtensa_set_frag_assembly_state (frag_now
);
5047 xtensa_move_labels (frag_now
, 0, TRUE
);
5050 /* No target aligning in the absolute section. */
5051 if (now_seg
!= absolute_section
5052 && do_align_targets ()
5053 && !is_unaligned_label (sym
)
5054 && !generating_literals
)
5056 xtensa_set_frag_assembly_state (frag_now
);
5058 frag_var (rs_machine_dependent
,
5060 RELAX_DESIRE_ALIGN_IF_TARGET
,
5061 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
5062 xtensa_set_frag_assembly_state (frag_now
);
5063 xtensa_move_labels (frag_now
, 0, TRUE
);
5066 /* We need to mark the following properties even if we aren't aligning. */
5068 /* If the label is already known to be a branch target, i.e., a
5069 forward branch, mark the frag accordingly. Backward branches
5070 are handled by xg_add_branch_and_loop_targets. */
5071 if (symbol_get_tc (sym
)->is_branch_target
)
5072 symbol_get_frag (sym
)->tc_frag_data
.is_branch_target
= TRUE
;
5074 /* Loops only go forward, so they can be identified here. */
5075 if (symbol_get_tc (sym
)->is_loop_target
)
5076 symbol_get_frag (sym
)->tc_frag_data
.is_loop_target
= TRUE
;
5078 dwarf2_emit_label (sym
);
5082 /* tc_unrecognized_line hook */
5085 xtensa_unrecognized_line (int ch
)
5090 if (cur_vinsn
.inside_bundle
== 0)
5092 /* PR8110: Cannot emit line number info inside a FLIX bundle
5093 when using --gstabs. Temporarily disable debug info. */
5094 generate_lineno_debug ();
5095 if (debug_type
== DEBUG_STABS
)
5097 xt_saved_debug_type
= debug_type
;
5098 debug_type
= DEBUG_NONE
;
5101 cur_vinsn
.inside_bundle
= 1;
5105 as_bad (_("extra opening brace"));
5111 if (cur_vinsn
.inside_bundle
)
5112 finish_vinsn (&cur_vinsn
);
5115 as_bad (_("extra closing brace"));
5120 as_bad (_("syntax error"));
5127 /* md_flush_pending_output hook */
5130 xtensa_flush_pending_output (void)
5132 if (cur_vinsn
.inside_bundle
)
5133 as_bad (_("missing closing brace"));
5135 /* If there is a non-zero instruction fragment, close it. */
5136 if (frag_now_fix () != 0 && frag_now
->tc_frag_data
.is_insn
)
5138 frag_wane (frag_now
);
5140 xtensa_set_frag_assembly_state (frag_now
);
5142 frag_now
->tc_frag_data
.is_insn
= FALSE
;
5144 xtensa_clear_insn_labels ();
5148 /* We had an error while parsing an instruction. The string might look
5149 like this: "insn arg1, arg2 }". If so, we need to see the closing
5150 brace and reset some fields. Otherwise, the vinsn never gets closed
5151 and the num_slots field will grow past the end of the array of slots,
5152 and bad things happen. */
5155 error_reset_cur_vinsn (void)
5157 if (cur_vinsn
.inside_bundle
)
5159 if (*input_line_pointer
== '}'
5160 || *(input_line_pointer
- 1) == '}'
5161 || *(input_line_pointer
- 2) == '}')
5162 xg_clear_vinsn (&cur_vinsn
);
5168 md_assemble (char *str
)
5170 xtensa_isa isa
= xtensa_default_isa
;
5171 char *opname
, *file_name
;
5173 bfd_boolean has_underbar
= FALSE
;
5174 char *arg_strings
[MAX_INSN_ARGS
];
5176 TInsn orig_insn
; /* Original instruction from the input. */
5178 tinsn_init (&orig_insn
);
5180 /* Split off the opcode. */
5181 opnamelen
= strspn (str
, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5182 opname
= xmalloc (opnamelen
+ 1);
5183 memcpy (opname
, str
, opnamelen
);
5184 opname
[opnamelen
] = '\0';
5186 num_args
= tokenize_arguments (arg_strings
, str
+ opnamelen
);
5189 as_bad (_("syntax error"));
5193 if (xg_translate_idioms (&opname
, &num_args
, arg_strings
))
5196 /* Check for an underbar prefix. */
5199 has_underbar
= TRUE
;
5203 orig_insn
.insn_type
= ITYPE_INSN
;
5205 orig_insn
.is_specific_opcode
= (has_underbar
|| !use_transform ());
5207 orig_insn
.opcode
= xtensa_opcode_lookup (isa
, opname
);
5208 if (orig_insn
.opcode
== XTENSA_UNDEFINED
)
5210 xtensa_format fmt
= xtensa_format_lookup (isa
, opname
);
5211 if (fmt
== XTENSA_UNDEFINED
)
5213 as_bad (_("unknown opcode or format name '%s'"), opname
);
5214 error_reset_cur_vinsn ();
5217 if (!cur_vinsn
.inside_bundle
)
5219 as_bad (_("format names only valid inside bundles"));
5220 error_reset_cur_vinsn ();
5223 if (cur_vinsn
.format
!= XTENSA_UNDEFINED
)
5224 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5226 cur_vinsn
.format
= fmt
;
5227 free (has_underbar
? opname
- 1 : opname
);
5228 error_reset_cur_vinsn ();
5232 /* Parse the arguments. */
5233 if (parse_arguments (&orig_insn
, num_args
, arg_strings
))
5235 as_bad (_("syntax error"));
5236 error_reset_cur_vinsn ();
5240 /* Free the opcode and argument strings, now that they've been parsed. */
5241 free (has_underbar
? opname
- 1 : opname
);
5243 while (num_args
-- > 0)
5244 free (arg_strings
[num_args
]);
5246 /* Get expressions for invisible operands. */
5247 if (get_invisible_operands (&orig_insn
))
5249 error_reset_cur_vinsn ();
5253 /* Check for the right number and type of arguments. */
5254 if (tinsn_check_arguments (&orig_insn
))
5256 error_reset_cur_vinsn ();
5260 /* A FLIX bundle may be spread across multiple input lines. We want to
5261 report the first such line in the debug information. Record the line
5262 number for each TInsn (assume the file name doesn't change), so the
5263 first line can be found later. */
5264 as_where (&file_name
, &orig_insn
.linenum
);
5266 xg_add_branch_and_loop_targets (&orig_insn
);
5268 /* Check that immediate value for ENTRY is >= 16. */
5269 if (orig_insn
.opcode
== xtensa_entry_opcode
&& orig_insn
.ntok
>= 3)
5271 expressionS
*exp
= &orig_insn
.tok
[2];
5272 if (exp
->X_op
== O_constant
&& exp
->X_add_number
< 16)
5273 as_warn (_("entry instruction with stack decrement < 16"));
5277 assemble_tokens (opcode, tok, ntok);
5278 expand the tokens from the orig_insn into the
5279 stack of instructions that will not expand
5280 unless required at relaxation time. */
5282 if (!cur_vinsn
.inside_bundle
)
5283 emit_single_op (&orig_insn
);
5284 else /* We are inside a bundle. */
5286 cur_vinsn
.slots
[cur_vinsn
.num_slots
] = orig_insn
;
5287 cur_vinsn
.num_slots
++;
5288 if (*input_line_pointer
== '}'
5289 || *(input_line_pointer
- 1) == '}'
5290 || *(input_line_pointer
- 2) == '}')
5291 finish_vinsn (&cur_vinsn
);
5294 /* We've just emitted a new instruction so clear the list of labels. */
5295 xtensa_clear_insn_labels ();
5299 /* HANDLE_ALIGN hook */
5301 /* For a .align directive, we mark the previous block with the alignment
5302 information. This will be placed in the object file in the
5303 property section corresponding to this section. */
5306 xtensa_handle_align (fragS
*fragP
)
5309 && ! fragP
->tc_frag_data
.is_literal
5310 && (fragP
->fr_type
== rs_align
5311 || fragP
->fr_type
== rs_align_code
)
5312 && fragP
->fr_address
+ fragP
->fr_fix
> 0
5313 && fragP
->fr_offset
> 0
5314 && now_seg
!= bss_section
)
5316 fragP
->tc_frag_data
.is_align
= TRUE
;
5317 fragP
->tc_frag_data
.alignment
= fragP
->fr_offset
;
5320 if (fragP
->fr_type
== rs_align_test
)
5323 count
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
5325 as_bad_where (fragP
->fr_file
, fragP
->fr_line
,
5326 _("unaligned entry instruction"));
5331 /* TC_FRAG_INIT hook */
5334 xtensa_frag_init (fragS
*frag
)
5336 xtensa_set_frag_assembly_state (frag
);
5341 md_undefined_symbol (char *name ATTRIBUTE_UNUSED
)
5347 /* Round up a section size to the appropriate boundary. */
5350 md_section_align (segT segment ATTRIBUTE_UNUSED
, valueT size
)
5352 return size
; /* Byte alignment is fine. */
5357 md_pcrel_from (fixS
*fixP
)
5360 static xtensa_insnbuf insnbuf
= NULL
;
5361 static xtensa_insnbuf slotbuf
= NULL
;
5364 xtensa_opcode opcode
;
5367 xtensa_isa isa
= xtensa_default_isa
;
5368 valueT addr
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
5369 bfd_boolean alt_reloc
;
5371 if (fixP
->fx_r_type
== BFD_RELOC_XTENSA_ASM_EXPAND
)
5376 insnbuf
= xtensa_insnbuf_alloc (isa
);
5377 slotbuf
= xtensa_insnbuf_alloc (isa
);
5380 insn_p
= &fixP
->fx_frag
->fr_literal
[fixP
->fx_where
];
5381 xtensa_insnbuf_from_chars (isa
, insnbuf
, (unsigned char *) insn_p
, 0);
5382 fmt
= xtensa_format_decode (isa
, insnbuf
);
5384 if (fmt
== XTENSA_UNDEFINED
)
5385 as_fatal (_("bad instruction format"));
5387 if (decode_reloc (fixP
->fx_r_type
, &slot
, &alt_reloc
) != 0)
5388 as_fatal (_("invalid relocation"));
5390 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
5391 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
5393 /* Check for "alternate" relocations (operand not specified). None
5394 of the current uses for these are really PC-relative. */
5395 if (alt_reloc
|| opcode
== xtensa_const16_opcode
)
5397 if (opcode
!= xtensa_l32r_opcode
5398 && opcode
!= xtensa_const16_opcode
)
5399 as_fatal (_("invalid relocation for '%s' instruction"),
5400 xtensa_opcode_name (isa
, opcode
));
5404 opnum
= get_relaxable_immed (opcode
);
5406 if (xtensa_operand_is_PCrelative (isa
, opcode
, opnum
) != 1
5407 || xtensa_operand_do_reloc (isa
, opcode
, opnum
, &opnd_value
, addr
))
5409 as_bad_where (fixP
->fx_file
,
5411 _("invalid relocation for operand %d of '%s'"),
5412 opnum
, xtensa_opcode_name (isa
, opcode
));
5415 return 0 - opnd_value
;
5419 /* TC_FORCE_RELOCATION hook */
5422 xtensa_force_relocation (fixS
*fix
)
5424 switch (fix
->fx_r_type
)
5426 case BFD_RELOC_XTENSA_ASM_EXPAND
:
5427 case BFD_RELOC_XTENSA_SLOT0_ALT
:
5428 case BFD_RELOC_XTENSA_SLOT1_ALT
:
5429 case BFD_RELOC_XTENSA_SLOT2_ALT
:
5430 case BFD_RELOC_XTENSA_SLOT3_ALT
:
5431 case BFD_RELOC_XTENSA_SLOT4_ALT
:
5432 case BFD_RELOC_XTENSA_SLOT5_ALT
:
5433 case BFD_RELOC_XTENSA_SLOT6_ALT
:
5434 case BFD_RELOC_XTENSA_SLOT7_ALT
:
5435 case BFD_RELOC_XTENSA_SLOT8_ALT
:
5436 case BFD_RELOC_XTENSA_SLOT9_ALT
:
5437 case BFD_RELOC_XTENSA_SLOT10_ALT
:
5438 case BFD_RELOC_XTENSA_SLOT11_ALT
:
5439 case BFD_RELOC_XTENSA_SLOT12_ALT
:
5440 case BFD_RELOC_XTENSA_SLOT13_ALT
:
5441 case BFD_RELOC_XTENSA_SLOT14_ALT
:
5447 if (linkrelax
&& fix
->fx_addsy
5448 && relaxable_section (S_GET_SEGMENT (fix
->fx_addsy
)))
5451 return generic_force_reloc (fix
);
5455 /* TC_VALIDATE_FIX_SUB hook */
5458 xtensa_validate_fix_sub (fixS
*fix
)
5460 segT add_symbol_segment
, sub_symbol_segment
;
5462 /* The difference of two symbols should be resolved by the assembler when
5463 linkrelax is not set. If the linker may relax the section containing
5464 the symbols, then an Xtensa DIFF relocation must be generated so that
5465 the linker knows to adjust the difference value. */
5466 if (!linkrelax
|| fix
->fx_addsy
== NULL
)
5469 /* Make sure both symbols are in the same segment, and that segment is
5470 "normal" and relaxable. If the segment is not "normal", then the
5471 fix is not valid. If the segment is not "relaxable", then the fix
5472 should have been handled earlier. */
5473 add_symbol_segment
= S_GET_SEGMENT (fix
->fx_addsy
);
5474 if (! SEG_NORMAL (add_symbol_segment
) ||
5475 ! relaxable_section (add_symbol_segment
))
5477 sub_symbol_segment
= S_GET_SEGMENT (fix
->fx_subsy
);
5478 return (sub_symbol_segment
== add_symbol_segment
);
5482 /* NO_PSEUDO_DOT hook */
5484 /* This function has nothing to do with pseudo dots, but this is the
5485 nearest macro to where the check needs to take place. FIXME: This
5489 xtensa_check_inside_bundle (void)
5491 if (cur_vinsn
.inside_bundle
&& input_line_pointer
[-1] == '.')
5492 as_bad (_("directives are not valid inside bundles"));
5494 /* This function must always return FALSE because it is called via a
5495 macro that has nothing to do with bundling. */
5500 /* md_elf_section_change_hook */
5503 xtensa_elf_section_change_hook (void)
5505 /* Set up the assembly state. */
5506 if (!frag_now
->tc_frag_data
.is_assembly_state_set
)
5507 xtensa_set_frag_assembly_state (frag_now
);
5511 /* tc_fix_adjustable hook */
5514 xtensa_fix_adjustable (fixS
*fixP
)
5516 /* An offset is not allowed in combination with the difference of two
5517 symbols, but that cannot be easily detected after a local symbol
5518 has been adjusted to a (section+offset) form. Return 0 so that such
5519 an fix will not be adjusted. */
5520 if (fixP
->fx_subsy
&& fixP
->fx_addsy
&& fixP
->fx_offset
5521 && relaxable_section (S_GET_SEGMENT (fixP
->fx_subsy
)))
5524 /* We need the symbol name for the VTABLE entries. */
5525 if (fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
5526 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
5534 md_apply_fix (fixS
*fixP
, valueT
*valP
, segT seg
)
5536 char *const fixpos
= fixP
->fx_frag
->fr_literal
+ fixP
->fx_where
;
5539 /* Subtracted symbols are only allowed for a few relocation types, and
5540 unless linkrelax is enabled, they should not make it to this point. */
5541 if (fixP
->fx_subsy
&& !(linkrelax
&& (fixP
->fx_r_type
== BFD_RELOC_32
5542 || fixP
->fx_r_type
== BFD_RELOC_16
5543 || fixP
->fx_r_type
== BFD_RELOC_8
)))
5544 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, _("expression too complex"));
5546 switch (fixP
->fx_r_type
)
5553 switch (fixP
->fx_r_type
)
5556 fixP
->fx_r_type
= BFD_RELOC_XTENSA_DIFF8
;
5559 fixP
->fx_r_type
= BFD_RELOC_XTENSA_DIFF16
;
5562 fixP
->fx_r_type
= BFD_RELOC_XTENSA_DIFF32
;
5568 /* An offset is only allowed when it results from adjusting a
5569 local symbol into a section-relative offset. If the offset
5570 came from the original expression, tc_fix_adjustable will have
5571 prevented the fix from being converted to a section-relative
5572 form so that we can flag the error here. */
5573 if (fixP
->fx_offset
!= 0 && !symbol_section_p (fixP
->fx_addsy
))
5574 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
5575 _("cannot represent subtraction with an offset"));
5577 val
= (S_GET_VALUE (fixP
->fx_addsy
) + fixP
->fx_offset
5578 - S_GET_VALUE (fixP
->fx_subsy
));
5580 /* The difference value gets written out, and the DIFF reloc
5581 identifies the address of the subtracted symbol (i.e., the one
5582 with the lowest address). */
5584 fixP
->fx_offset
-= val
;
5585 fixP
->fx_subsy
= NULL
;
5587 else if (! fixP
->fx_addsy
)
5594 case BFD_RELOC_XTENSA_PLT
:
5595 md_number_to_chars (fixpos
, val
, fixP
->fx_size
);
5596 fixP
->fx_no_overflow
= 0; /* Use the standard overflow check. */
5599 case BFD_RELOC_XTENSA_SLOT0_OP
:
5600 case BFD_RELOC_XTENSA_SLOT1_OP
:
5601 case BFD_RELOC_XTENSA_SLOT2_OP
:
5602 case BFD_RELOC_XTENSA_SLOT3_OP
:
5603 case BFD_RELOC_XTENSA_SLOT4_OP
:
5604 case BFD_RELOC_XTENSA_SLOT5_OP
:
5605 case BFD_RELOC_XTENSA_SLOT6_OP
:
5606 case BFD_RELOC_XTENSA_SLOT7_OP
:
5607 case BFD_RELOC_XTENSA_SLOT8_OP
:
5608 case BFD_RELOC_XTENSA_SLOT9_OP
:
5609 case BFD_RELOC_XTENSA_SLOT10_OP
:
5610 case BFD_RELOC_XTENSA_SLOT11_OP
:
5611 case BFD_RELOC_XTENSA_SLOT12_OP
:
5612 case BFD_RELOC_XTENSA_SLOT13_OP
:
5613 case BFD_RELOC_XTENSA_SLOT14_OP
:
5616 /* Write the tentative value of a PC-relative relocation to a
5617 local symbol into the instruction. The value will be ignored
5618 by the linker, and it makes the object file disassembly
5619 readable when all branch targets are encoded in relocations. */
5621 assert (fixP
->fx_addsy
);
5622 if (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
&& !fixP
->fx_plt
5623 && !S_FORCE_RELOC (fixP
->fx_addsy
, 1))
5625 val
= (S_GET_VALUE (fixP
->fx_addsy
) + fixP
->fx_offset
5626 - md_pcrel_from (fixP
));
5627 (void) xg_apply_fix_value (fixP
, val
);
5630 else if (! fixP
->fx_addsy
)
5633 if (xg_apply_fix_value (fixP
, val
))
5638 case BFD_RELOC_XTENSA_ASM_EXPAND
:
5639 case BFD_RELOC_XTENSA_SLOT0_ALT
:
5640 case BFD_RELOC_XTENSA_SLOT1_ALT
:
5641 case BFD_RELOC_XTENSA_SLOT2_ALT
:
5642 case BFD_RELOC_XTENSA_SLOT3_ALT
:
5643 case BFD_RELOC_XTENSA_SLOT4_ALT
:
5644 case BFD_RELOC_XTENSA_SLOT5_ALT
:
5645 case BFD_RELOC_XTENSA_SLOT6_ALT
:
5646 case BFD_RELOC_XTENSA_SLOT7_ALT
:
5647 case BFD_RELOC_XTENSA_SLOT8_ALT
:
5648 case BFD_RELOC_XTENSA_SLOT9_ALT
:
5649 case BFD_RELOC_XTENSA_SLOT10_ALT
:
5650 case BFD_RELOC_XTENSA_SLOT11_ALT
:
5651 case BFD_RELOC_XTENSA_SLOT12_ALT
:
5652 case BFD_RELOC_XTENSA_SLOT13_ALT
:
5653 case BFD_RELOC_XTENSA_SLOT14_ALT
:
5654 /* These all need to be resolved at link-time. Do nothing now. */
5657 case BFD_RELOC_VTABLE_INHERIT
:
5658 case BFD_RELOC_VTABLE_ENTRY
:
5663 as_bad (_("unhandled local relocation fix %s"),
5664 bfd_get_reloc_code_name (fixP
->fx_r_type
));
5670 md_atof (int type
, char *litP
, int *sizeP
)
5673 LITTLENUM_TYPE words
[4];
5689 return "bad call to md_atof";
5692 t
= atof_ieee (input_line_pointer
, type
, words
);
5694 input_line_pointer
= t
;
5698 for (i
= prec
- 1; i
>= 0; i
--)
5701 if (target_big_endian
)
5702 idx
= (prec
- 1 - i
);
5704 md_number_to_chars (litP
, (valueT
) words
[idx
], 2);
5713 md_estimate_size_before_relax (fragS
*fragP
, segT seg ATTRIBUTE_UNUSED
)
5715 return total_frag_text_expansion (fragP
);
5719 /* Translate internal representation of relocation info to BFD target
5723 tc_gen_reloc (asection
*section ATTRIBUTE_UNUSED
, fixS
*fixp
)
5727 reloc
= (arelent
*) xmalloc (sizeof (arelent
));
5728 reloc
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
5729 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
5730 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
5732 /* Make sure none of our internal relocations make it this far.
5733 They'd better have been fully resolved by this point. */
5734 assert ((int) fixp
->fx_r_type
> 0);
5736 reloc
->addend
= fixp
->fx_offset
;
5738 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, fixp
->fx_r_type
);
5739 if (reloc
->howto
== NULL
)
5741 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
5742 _("cannot represent `%s' relocation in object file"),
5743 bfd_get_reloc_code_name (fixp
->fx_r_type
));
5744 free (reloc
->sym_ptr_ptr
);
5749 if (!fixp
->fx_pcrel
!= !reloc
->howto
->pc_relative
)
5750 as_fatal (_("internal error? cannot generate `%s' relocation"),
5751 bfd_get_reloc_code_name (fixp
->fx_r_type
));
5757 /* Checks for resource conflicts between instructions. */
5759 /* The func unit stuff could be implemented as bit-vectors rather
5760 than the iterative approach here. If it ends up being too
5761 slow, we will switch it. */
5764 new_resource_table (void *data
,
5767 unit_num_copies_func uncf
,
5768 opcode_num_units_func onuf
,
5769 opcode_funcUnit_use_unit_func ouuf
,
5770 opcode_funcUnit_use_stage_func ousf
)
5773 resource_table
*rt
= (resource_table
*) xmalloc (sizeof (resource_table
));
5775 rt
->cycles
= cycles
;
5776 rt
->allocated_cycles
= cycles
;
5778 rt
->unit_num_copies
= uncf
;
5779 rt
->opcode_num_units
= onuf
;
5780 rt
->opcode_unit_use
= ouuf
;
5781 rt
->opcode_unit_stage
= ousf
;
5783 rt
->units
= (unsigned char **) xcalloc (cycles
, sizeof (unsigned char *));
5784 for (i
= 0; i
< cycles
; i
++)
5785 rt
->units
[i
] = (unsigned char *) xcalloc (nu
, sizeof (unsigned char));
5792 clear_resource_table (resource_table
*rt
)
5795 for (i
= 0; i
< rt
->allocated_cycles
; i
++)
5796 for (j
= 0; j
< rt
->num_units
; j
++)
5797 rt
->units
[i
][j
] = 0;
5801 /* We never shrink it, just fake it into thinking so. */
5804 resize_resource_table (resource_table
*rt
, int cycles
)
5808 rt
->cycles
= cycles
;
5809 if (cycles
<= rt
->allocated_cycles
)
5812 old_cycles
= rt
->allocated_cycles
;
5813 rt
->allocated_cycles
= cycles
;
5815 rt
->units
= xrealloc (rt
->units
,
5816 rt
->allocated_cycles
* sizeof (unsigned char *));
5817 for (i
= 0; i
< old_cycles
; i
++)
5818 rt
->units
[i
] = xrealloc (rt
->units
[i
],
5819 rt
->num_units
* sizeof (unsigned char));
5820 for (i
= old_cycles
; i
< cycles
; i
++)
5821 rt
->units
[i
] = xcalloc (rt
->num_units
, sizeof (unsigned char));
5826 resources_available (resource_table
*rt
, xtensa_opcode opcode
, int cycle
)
5829 int uses
= (rt
->opcode_num_units
) (rt
->data
, opcode
);
5831 for (i
= 0; i
< uses
; i
++)
5833 xtensa_funcUnit unit
= (rt
->opcode_unit_use
) (rt
->data
, opcode
, i
);
5834 int stage
= (rt
->opcode_unit_stage
) (rt
->data
, opcode
, i
);
5835 int copies_in_use
= rt
->units
[stage
+ cycle
][unit
];
5836 int copies
= (rt
->unit_num_copies
) (rt
->data
, unit
);
5837 if (copies_in_use
>= copies
)
5845 reserve_resources (resource_table
*rt
, xtensa_opcode opcode
, int cycle
)
5848 int uses
= (rt
->opcode_num_units
) (rt
->data
, opcode
);
5850 for (i
= 0; i
< uses
; i
++)
5852 xtensa_funcUnit unit
= (rt
->opcode_unit_use
) (rt
->data
, opcode
, i
);
5853 int stage
= (rt
->opcode_unit_stage
) (rt
->data
, opcode
, i
);
5854 /* Note that this allows resources to be oversubscribed. That's
5855 essential to the way the optional scheduler works.
5856 resources_available reports when a resource is over-subscribed,
5857 so it's easy to tell. */
5858 rt
->units
[stage
+ cycle
][unit
]++;
5864 release_resources (resource_table
*rt
, xtensa_opcode opcode
, int cycle
)
5867 int uses
= (rt
->opcode_num_units
) (rt
->data
, opcode
);
5869 for (i
= 0; i
< uses
; i
++)
5871 xtensa_funcUnit unit
= (rt
->opcode_unit_use
) (rt
->data
, opcode
, i
);
5872 int stage
= (rt
->opcode_unit_stage
) (rt
->data
, opcode
, i
);
5873 assert (rt
->units
[stage
+ cycle
][unit
] > 0);
5874 rt
->units
[stage
+ cycle
][unit
]--;
5879 /* Wrapper functions make parameterized resource reservation
5883 opcode_funcUnit_use_unit (void *data
, xtensa_opcode opcode
, int idx
)
5885 xtensa_funcUnit_use
*use
= xtensa_opcode_funcUnit_use (data
, opcode
, idx
);
5891 opcode_funcUnit_use_stage (void *data
, xtensa_opcode opcode
, int idx
)
5893 xtensa_funcUnit_use
*use
= xtensa_opcode_funcUnit_use (data
, opcode
, idx
);
5898 /* Note that this function does not check issue constraints, but
5899 solely whether the hardware is available to execute the given
5900 instructions together. It also doesn't check if the tinsns
5901 write the same state, or access the same tieports. That is
5902 checked by check_t1_t2_reads_and_writes. */
5905 resources_conflict (vliw_insn
*vinsn
)
5908 static resource_table
*rt
= NULL
;
5910 /* This is the most common case by far. Optimize it. */
5911 if (vinsn
->num_slots
== 1)
5916 xtensa_isa isa
= xtensa_default_isa
;
5917 rt
= new_resource_table
5918 (isa
, xtensa_isa_num_pipe_stages (isa
),
5919 xtensa_isa_num_funcUnits (isa
),
5920 (unit_num_copies_func
) xtensa_funcUnit_num_copies
,
5921 (opcode_num_units_func
) xtensa_opcode_num_funcUnit_uses
,
5922 opcode_funcUnit_use_unit
,
5923 opcode_funcUnit_use_stage
);
5926 clear_resource_table (rt
);
5928 for (i
= 0; i
< vinsn
->num_slots
; i
++)
5930 if (!resources_available (rt
, vinsn
->slots
[i
].opcode
, 0))
5932 reserve_resources (rt
, vinsn
->slots
[i
].opcode
, 0);
5939 /* finish_vinsn, emit_single_op and helper functions. */
5941 static bfd_boolean
find_vinsn_conflicts (vliw_insn
*);
5942 static xtensa_format
xg_find_narrowest_format (vliw_insn
*);
5943 static void xg_assemble_vliw_tokens (vliw_insn
*);
5946 /* We have reached the end of a bundle; emit into the frag. */
5949 finish_vinsn (vliw_insn
*vinsn
)
5956 if (find_vinsn_conflicts (vinsn
))
5958 xg_clear_vinsn (vinsn
);
5962 /* First, find a format that works. */
5963 if (vinsn
->format
== XTENSA_UNDEFINED
)
5964 vinsn
->format
= xg_find_narrowest_format (vinsn
);
5966 if (vinsn
->format
== XTENSA_UNDEFINED
)
5968 as_where (&file_name
, &line
);
5969 as_bad_where (file_name
, line
,
5970 _("couldn't find a valid instruction format"));
5971 fprintf (stderr
, _(" ops were: "));
5972 for (i
= 0; i
< vinsn
->num_slots
; i
++)
5973 fprintf (stderr
, _(" %s;"),
5974 xtensa_opcode_name (xtensa_default_isa
,
5975 vinsn
->slots
[i
].opcode
));
5976 fprintf (stderr
, _("\n"));
5977 xg_clear_vinsn (vinsn
);
5981 if (vinsn
->num_slots
5982 != xtensa_format_num_slots (xtensa_default_isa
, vinsn
->format
))
5984 as_bad (_("format '%s' allows %d slots, but there are %d opcodes"),
5985 xtensa_format_name (xtensa_default_isa
, vinsn
->format
),
5986 xtensa_format_num_slots (xtensa_default_isa
, vinsn
->format
),
5988 xg_clear_vinsn (vinsn
);
5992 if (resources_conflict (vinsn
))
5994 as_where (&file_name
, &line
);
5995 as_bad_where (file_name
, line
, _("illegal resource usage in bundle"));
5996 fprintf (stderr
, " ops were: ");
5997 for (i
= 0; i
< vinsn
->num_slots
; i
++)
5998 fprintf (stderr
, " %s;",
5999 xtensa_opcode_name (xtensa_default_isa
,
6000 vinsn
->slots
[i
].opcode
));
6001 fprintf (stderr
, "\n");
6002 xg_clear_vinsn (vinsn
);
6006 for (i
= 0; i
< vinsn
->num_slots
; i
++)
6008 if (vinsn
->slots
[i
].opcode
!= XTENSA_UNDEFINED
)
6010 symbolS
*lit_sym
= NULL
;
6012 bfd_boolean e
= FALSE
;
6013 bfd_boolean saved_density
= density_supported
;
6015 /* We don't want to narrow ops inside multi-slot bundles. */
6016 if (vinsn
->num_slots
> 1)
6017 density_supported
= FALSE
;
6019 istack_init (&slotstack
);
6020 if (vinsn
->slots
[i
].opcode
== xtensa_nop_opcode
)
6022 vinsn
->slots
[i
].opcode
=
6023 xtensa_format_slot_nop_opcode (xtensa_default_isa
,
6025 vinsn
->slots
[i
].ntok
= 0;
6028 if (xg_expand_assembly_insn (&slotstack
, &vinsn
->slots
[i
]))
6034 density_supported
= saved_density
;
6038 xg_clear_vinsn (vinsn
);
6042 for (j
= 0; j
< slotstack
.ninsn
; j
++)
6044 TInsn
*insn
= &slotstack
.insn
[j
];
6045 if (insn
->insn_type
== ITYPE_LITERAL
)
6047 assert (lit_sym
== NULL
);
6048 lit_sym
= xg_assemble_literal (insn
);
6052 assert (insn
->insn_type
== ITYPE_INSN
);
6054 xg_resolve_literals (insn
, lit_sym
);
6055 if (j
!= slotstack
.ninsn
- 1)
6056 emit_single_op (insn
);
6060 if (vinsn
->num_slots
> 1)
6062 if (opcode_fits_format_slot
6063 (slotstack
.insn
[slotstack
.ninsn
- 1].opcode
,
6066 vinsn
->slots
[i
] = slotstack
.insn
[slotstack
.ninsn
- 1];
6070 emit_single_op (&slotstack
.insn
[slotstack
.ninsn
- 1]);
6071 if (vinsn
->format
== XTENSA_UNDEFINED
)
6072 vinsn
->slots
[i
].opcode
= xtensa_nop_opcode
;
6074 vinsn
->slots
[i
].opcode
6075 = xtensa_format_slot_nop_opcode (xtensa_default_isa
,
6078 vinsn
->slots
[i
].ntok
= 0;
6083 vinsn
->slots
[0] = slotstack
.insn
[slotstack
.ninsn
- 1];
6084 vinsn
->format
= XTENSA_UNDEFINED
;
6089 /* Now check resource conflicts on the modified bundle. */
6090 if (resources_conflict (vinsn
))
6092 as_where (&file_name
, &line
);
6093 as_bad_where (file_name
, line
, _("illegal resource usage in bundle"));
6094 fprintf (stderr
, " ops were: ");
6095 for (i
= 0; i
< vinsn
->num_slots
; i
++)
6096 fprintf (stderr
, " %s;",
6097 xtensa_opcode_name (xtensa_default_isa
,
6098 vinsn
->slots
[i
].opcode
));
6099 fprintf (stderr
, "\n");
6100 xg_clear_vinsn (vinsn
);
6104 /* First, find a format that works. */
6105 if (vinsn
->format
== XTENSA_UNDEFINED
)
6106 vinsn
->format
= xg_find_narrowest_format (vinsn
);
6108 xg_assemble_vliw_tokens (vinsn
);
6110 xg_clear_vinsn (vinsn
);
6114 /* Given an vliw instruction, what conflicts are there in register
6115 usage and in writes to states and queues?
6117 This function does two things:
6118 1. Reports an error when a vinsn contains illegal combinations
6119 of writes to registers states or queues.
6120 2. Marks individual tinsns as not relaxable if the combination
6121 contains antidependencies.
6123 Job 2 handles things like swap semantics in instructions that need
6124 to be relaxed. For example,
6128 normally would be relaxed to
6133 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6135 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6137 then we can't relax it into
6140 { add a0, a1, a0 ; add a2, a0, a4 ; }
6142 because the value of a0 is trashed before the second add can read it. */
6144 static char check_t1_t2_reads_and_writes (TInsn
*, TInsn
*);
6147 find_vinsn_conflicts (vliw_insn
*vinsn
)
6151 xtensa_isa isa
= xtensa_default_isa
;
6153 assert (!past_xtensa_end
);
6155 for (i
= 0 ; i
< vinsn
->num_slots
; i
++)
6157 TInsn
*op1
= &vinsn
->slots
[i
];
6158 if (op1
->is_specific_opcode
)
6159 op1
->keep_wide
= TRUE
;
6161 op1
->keep_wide
= FALSE
;
6164 for (i
= 0 ; i
< vinsn
->num_slots
; i
++)
6166 TInsn
*op1
= &vinsn
->slots
[i
];
6168 if (xtensa_opcode_is_branch (isa
, op1
->opcode
) == 1)
6171 for (j
= 0; j
< vinsn
->num_slots
; j
++)
6175 TInsn
*op2
= &vinsn
->slots
[j
];
6176 char conflict_type
= check_t1_t2_reads_and_writes (op1
, op2
);
6177 switch (conflict_type
)
6180 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6181 xtensa_opcode_name (isa
, op1
->opcode
), i
,
6182 xtensa_opcode_name (isa
, op2
->opcode
), j
);
6185 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6186 xtensa_opcode_name (isa
, op1
->opcode
), i
,
6187 xtensa_opcode_name (isa
, op2
->opcode
), j
);
6190 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6191 xtensa_opcode_name (isa
, op1
->opcode
), i
,
6192 xtensa_opcode_name (isa
, op2
->opcode
), j
);
6195 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6196 xtensa_opcode_name (isa
, op1
->opcode
), i
,
6197 xtensa_opcode_name (isa
, op2
->opcode
), j
);
6200 /* Everything is OK. */
6203 op2
->is_specific_opcode
= (op2
->is_specific_opcode
6204 || conflict_type
== 'a');
6211 as_bad (_("multiple branches or jumps in the same bundle"));
6219 /* Check how the state used by t1 and t2 relate.
6222 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6223 case B: no relationship between what is read and written (both could
6224 read the same reg though)
6225 case C: t1 writes a register t2 writes (a register conflict within a
6227 case D: t1 writes a state that t2 also writes
6228 case E: t1 writes a tie queue that t2 also writes
6229 case F: two volatile queue accesses
6233 check_t1_t2_reads_and_writes (TInsn
*t1
, TInsn
*t2
)
6235 xtensa_isa isa
= xtensa_default_isa
;
6236 xtensa_regfile t1_regfile
, t2_regfile
;
6238 int t1_base_reg
, t1_last_reg
;
6239 int t2_base_reg
, t2_last_reg
;
6240 char t1_inout
, t2_inout
;
6242 char conflict
= 'b';
6247 bfd_boolean t1_volatile
= FALSE
;
6248 bfd_boolean t2_volatile
= FALSE
;
6250 /* Check registers. */
6251 for (j
= 0; j
< t2
->ntok
; j
++)
6253 if (xtensa_operand_is_register (isa
, t2
->opcode
, j
) != 1)
6256 t2_regfile
= xtensa_operand_regfile (isa
, t2
->opcode
, j
);
6257 t2_base_reg
= t2
->tok
[j
].X_add_number
;
6258 t2_last_reg
= t2_base_reg
+ xtensa_operand_num_regs (isa
, t2
->opcode
, j
);
6260 for (i
= 0; i
< t1
->ntok
; i
++)
6262 if (xtensa_operand_is_register (isa
, t1
->opcode
, i
) != 1)
6265 t1_regfile
= xtensa_operand_regfile (isa
, t1
->opcode
, i
);
6267 if (t1_regfile
!= t2_regfile
)
6270 t1_inout
= xtensa_operand_inout (isa
, t1
->opcode
, i
);
6271 t2_inout
= xtensa_operand_inout (isa
, t2
->opcode
, j
);
6273 if (xtensa_operand_is_known_reg (isa
, t1
->opcode
, i
) == 0
6274 || xtensa_operand_is_known_reg (isa
, t2
->opcode
, j
) == 0)
6276 if (t1_inout
== 'm' || t1_inout
== 'o'
6277 || t2_inout
== 'm' || t2_inout
== 'o')
6284 t1_base_reg
= t1
->tok
[i
].X_add_number
;
6285 t1_last_reg
= (t1_base_reg
6286 + xtensa_operand_num_regs (isa
, t1
->opcode
, i
));
6288 for (t1_reg
= t1_base_reg
; t1_reg
< t1_last_reg
; t1_reg
++)
6290 for (t2_reg
= t2_base_reg
; t2_reg
< t2_last_reg
; t2_reg
++)
6292 if (t1_reg
!= t2_reg
)
6295 if (t2_inout
== 'i' && (t1_inout
== 'm' || t1_inout
== 'o'))
6301 if (t1_inout
== 'i' && (t2_inout
== 'm' || t2_inout
== 'o'))
6307 if (t1_inout
!= 'i' && t2_inout
!= 'i')
6315 t1_states
= xtensa_opcode_num_stateOperands (isa
, t1
->opcode
);
6316 t2_states
= xtensa_opcode_num_stateOperands (isa
, t2
->opcode
);
6317 for (j
= 0; j
< t2_states
; j
++)
6319 xtensa_state t2_so
= xtensa_stateOperand_state (isa
, t2
->opcode
, j
);
6320 t2_inout
= xtensa_stateOperand_inout (isa
, t2
->opcode
, j
);
6321 for (i
= 0; i
< t1_states
; i
++)
6323 xtensa_state t1_so
= xtensa_stateOperand_state (isa
, t1
->opcode
, i
);
6324 t1_inout
= xtensa_stateOperand_inout (isa
, t1
->opcode
, i
);
6328 if (t2_inout
== 'i' && (t1_inout
== 'm' || t1_inout
== 'o'))
6334 if (t1_inout
== 'i' && (t2_inout
== 'm' || t2_inout
== 'o'))
6340 if (t1_inout
!= 'i' && t2_inout
!= 'i')
6345 /* Check tieports. */
6346 t1_interfaces
= xtensa_opcode_num_interfaceOperands (isa
, t1
->opcode
);
6347 t2_interfaces
= xtensa_opcode_num_interfaceOperands (isa
, t2
->opcode
);
6348 for (j
= 0; j
< t2_interfaces
; j
++)
6350 xtensa_interface t2_int
6351 = xtensa_interfaceOperand_interface (isa
, t2
->opcode
, j
);
6352 int t2_class
= xtensa_interface_class_id (isa
, t2_int
);
6354 t2_inout
= xtensa_interface_inout (isa
, t2_int
);
6355 if (xtensa_interface_has_side_effect (isa
, t2_int
) == 1)
6358 for (i
= 0; i
< t1_interfaces
; i
++)
6360 xtensa_interface t1_int
6361 = xtensa_interfaceOperand_interface (isa
, t1
->opcode
, j
);
6362 int t1_class
= xtensa_interface_class_id (isa
, t1_int
);
6364 t1_inout
= xtensa_interface_inout (isa
, t1_int
);
6365 if (xtensa_interface_has_side_effect (isa
, t1_int
) == 1)
6368 if (t1_volatile
&& t2_volatile
&& (t1_class
== t2_class
))
6371 if (t1_int
!= t2_int
)
6374 if (t2_inout
== 'i' && t1_inout
== 'o')
6380 if (t1_inout
== 'i' && t2_inout
== 'o')
6386 if (t1_inout
!= 'i' && t2_inout
!= 'i')
6395 static xtensa_format
6396 xg_find_narrowest_format (vliw_insn
*vinsn
)
6398 /* Right now we assume that the ops within the vinsn are properly
6399 ordered for the slots that the programmer wanted them in. In
6400 other words, we don't rearrange the ops in hopes of finding a
6401 better format. The scheduler handles that. */
6403 xtensa_isa isa
= xtensa_default_isa
;
6404 xtensa_format format
;
6405 vliw_insn v_copy
= *vinsn
;
6406 xtensa_opcode nop_opcode
= xtensa_nop_opcode
;
6408 if (vinsn
->num_slots
== 1)
6409 return xg_get_single_format (vinsn
->slots
[0].opcode
);
6411 for (format
= 0; format
< xtensa_isa_num_formats (isa
); format
++)
6414 if (xtensa_format_num_slots (isa
, format
) == v_copy
.num_slots
)
6418 for (slot
= 0; slot
< v_copy
.num_slots
; slot
++)
6420 if (v_copy
.slots
[slot
].opcode
== nop_opcode
)
6422 v_copy
.slots
[slot
].opcode
=
6423 xtensa_format_slot_nop_opcode (isa
, format
, slot
);
6424 v_copy
.slots
[slot
].ntok
= 0;
6427 if (opcode_fits_format_slot (v_copy
.slots
[slot
].opcode
,
6430 else if (v_copy
.num_slots
> 1)
6433 /* Try the widened version. */
6434 if (!v_copy
.slots
[slot
].keep_wide
6435 && !v_copy
.slots
[slot
].is_specific_opcode
6436 && xg_is_single_relaxable_insn (&v_copy
.slots
[slot
],
6438 && opcode_fits_format_slot (widened
.opcode
,
6441 v_copy
.slots
[slot
] = widened
;
6446 if (fit
== v_copy
.num_slots
)
6449 xtensa_format_encode (isa
, format
, vinsn
->insnbuf
);
6450 vinsn
->format
= format
;
6456 if (format
== xtensa_isa_num_formats (isa
))
6457 return XTENSA_UNDEFINED
;
6463 /* Return the additional space needed in a frag
6464 for possible relaxations of any ops in a VLIW insn.
6465 Also fill out the relaxations that might be required of
6466 each tinsn in the vinsn. */
6469 relaxation_requirements (vliw_insn
*vinsn
, bfd_boolean
*pfinish_frag
)
6471 bfd_boolean finish_frag
= FALSE
;
6472 int extra_space
= 0;
6475 for (slot
= 0; slot
< vinsn
->num_slots
; slot
++)
6477 TInsn
*tinsn
= &vinsn
->slots
[slot
];
6478 if (!tinsn_has_symbolic_operands (tinsn
))
6480 /* A narrow instruction could be widened later to help
6481 alignment issues. */
6482 if (xg_is_single_relaxable_insn (tinsn
, 0, TRUE
)
6483 && !tinsn
->is_specific_opcode
6484 && vinsn
->num_slots
== 1)
6486 /* Difference in bytes between narrow and wide insns... */
6488 tinsn
->subtype
= RELAX_NARROW
;
6493 if (workaround_b_j_loop_end
6494 && tinsn
->opcode
== xtensa_jx_opcode
6495 && use_transform ())
6497 /* Add 2 of these. */
6498 extra_space
+= 3; /* for the nop size */
6499 tinsn
->subtype
= RELAX_ADD_NOP_IF_PRE_LOOP_END
;
6502 /* Need to assemble it with space for the relocation. */
6503 if (xg_is_relaxable_insn (tinsn
, 0)
6504 && !tinsn
->is_specific_opcode
)
6506 int max_size
= xg_get_max_insn_widen_size (tinsn
->opcode
);
6507 int max_literal_size
=
6508 xg_get_max_insn_widen_literal_size (tinsn
->opcode
);
6510 tinsn
->literal_space
= max_literal_size
;
6512 tinsn
->subtype
= RELAX_IMMED
;
6513 extra_space
+= max_size
;
6517 /* A fix record will be added for this instruction prior
6518 to relaxation, so make it end the frag. */
6523 *pfinish_frag
= finish_frag
;
6529 bundle_tinsn (TInsn
*tinsn
, vliw_insn
*vinsn
)
6531 xtensa_isa isa
= xtensa_default_isa
;
6532 int slot
, chosen_slot
;
6534 vinsn
->format
= xg_get_single_format (tinsn
->opcode
);
6535 assert (vinsn
->format
!= XTENSA_UNDEFINED
);
6536 vinsn
->num_slots
= xtensa_format_num_slots (isa
, vinsn
->format
);
6538 chosen_slot
= xg_get_single_slot (tinsn
->opcode
);
6539 for (slot
= 0; slot
< vinsn
->num_slots
; slot
++)
6541 if (slot
== chosen_slot
)
6542 vinsn
->slots
[slot
] = *tinsn
;
6545 vinsn
->slots
[slot
].opcode
=
6546 xtensa_format_slot_nop_opcode (isa
, vinsn
->format
, slot
);
6547 vinsn
->slots
[slot
].ntok
= 0;
6548 vinsn
->slots
[slot
].insn_type
= ITYPE_INSN
;
6555 emit_single_op (TInsn
*orig_insn
)
6558 IStack istack
; /* put instructions into here */
6559 symbolS
*lit_sym
= NULL
;
6560 symbolS
*label_sym
= NULL
;
6562 istack_init (&istack
);
6564 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
6565 Because the scheduling and bundling characteristics of movi and
6566 l32r or const16 are so different, we can do much better if we relax
6567 it prior to scheduling and bundling, rather than after. */
6568 if ((orig_insn
->opcode
== xtensa_movi_opcode
6569 || orig_insn
->opcode
== xtensa_movi_n_opcode
)
6570 && !cur_vinsn
.inside_bundle
6571 && (orig_insn
->tok
[1].X_op
== O_symbol
6572 || orig_insn
->tok
[1].X_op
== O_pltrel
)
6573 && !orig_insn
->is_specific_opcode
&& use_transform ())
6574 xg_assembly_relax (&istack
, orig_insn
, now_seg
, frag_now
, 0, 1, 0);
6576 if (xg_expand_assembly_insn (&istack
, orig_insn
))
6579 for (i
= 0; i
< istack
.ninsn
; i
++)
6581 TInsn
*insn
= &istack
.insn
[i
];
6582 switch (insn
->insn_type
)
6585 assert (lit_sym
== NULL
);
6586 lit_sym
= xg_assemble_literal (insn
);
6590 static int relaxed_sym_idx
= 0;
6591 char *label
= xmalloc (strlen (FAKE_LABEL_NAME
) + 12);
6592 sprintf (label
, "%s_rl_%x", FAKE_LABEL_NAME
, relaxed_sym_idx
++);
6594 assert (label_sym
== NULL
);
6595 label_sym
= symbol_find_or_make (label
);
6604 xg_resolve_literals (insn
, lit_sym
);
6606 xg_resolve_labels (insn
, label_sym
);
6608 bundle_tinsn (insn
, &v
);
6623 total_frag_text_expansion (fragS
*fragP
)
6626 int total_expansion
= 0;
6628 for (slot
= 0; slot
< MAX_SLOTS
; slot
++)
6629 total_expansion
+= fragP
->tc_frag_data
.text_expansion
[slot
];
6631 return total_expansion
;
6635 /* Emit a vliw instruction to the current fragment. */
6638 xg_assemble_vliw_tokens (vliw_insn
*vinsn
)
6640 bfd_boolean finish_frag
;
6641 bfd_boolean is_jump
= FALSE
;
6642 bfd_boolean is_branch
= FALSE
;
6643 xtensa_isa isa
= xtensa_default_isa
;
6649 unsigned current_line
, best_linenum
;
6652 best_linenum
= UINT_MAX
;
6654 if (generating_literals
)
6656 static int reported
= 0;
6658 as_bad_where (frag_now
->fr_file
, frag_now
->fr_line
,
6659 _("cannot assemble into a literal fragment"));
6666 if (frag_now_fix () != 0
6667 && (! frag_now
->tc_frag_data
.is_insn
6668 || (vinsn_has_specific_opcodes (vinsn
) && use_transform ())
6669 || !use_transform () != frag_now
->tc_frag_data
.is_no_transform
6670 || (directive_state
[directive_longcalls
]
6671 != frag_now
->tc_frag_data
.use_longcalls
)
6672 || (directive_state
[directive_absolute_literals
]
6673 != frag_now
->tc_frag_data
.use_absolute_literals
)))
6675 frag_wane (frag_now
);
6677 xtensa_set_frag_assembly_state (frag_now
);
6680 if (workaround_a0_b_retw
6681 && vinsn
->num_slots
== 1
6682 && (get_last_insn_flags (now_seg
, now_subseg
) & FLAG_IS_A0_WRITER
) != 0
6683 && xtensa_opcode_is_branch (isa
, vinsn
->slots
[0].opcode
) == 1
6684 && use_transform ())
6686 has_a0_b_retw
= TRUE
;
6688 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
6689 After the first assembly pass we will check all of them and
6690 add a nop if needed. */
6691 frag_now
->tc_frag_data
.is_insn
= TRUE
;
6692 frag_var (rs_machine_dependent
, 4, 4,
6693 RELAX_ADD_NOP_IF_A0_B_RETW
,
6694 frag_now
->fr_symbol
,
6695 frag_now
->fr_offset
,
6697 xtensa_set_frag_assembly_state (frag_now
);
6698 frag_now
->tc_frag_data
.is_insn
= TRUE
;
6699 frag_var (rs_machine_dependent
, 4, 4,
6700 RELAX_ADD_NOP_IF_A0_B_RETW
,
6701 frag_now
->fr_symbol
,
6702 frag_now
->fr_offset
,
6704 xtensa_set_frag_assembly_state (frag_now
);
6707 for (i
= 0; i
< vinsn
->num_slots
; i
++)
6709 /* See if the instruction implies an aligned section. */
6710 if (xtensa_opcode_is_loop (isa
, vinsn
->slots
[i
].opcode
) == 1)
6711 record_alignment (now_seg
, 2);
6713 /* Also determine the best line number for debug info. */
6714 best_linenum
= vinsn
->slots
[i
].linenum
< best_linenum
6715 ? vinsn
->slots
[i
].linenum
: best_linenum
;
6718 /* Special cases for instructions that force an alignment... */
6719 /* None of these opcodes are bundle-able. */
6720 if (xtensa_opcode_is_loop (isa
, vinsn
->slots
[0].opcode
) == 1)
6724 /* Remember the symbol that marks the end of the loop in the frag
6725 that marks the start of the loop. This way we can easily find
6726 the end of the loop at the beginning, without adding special code
6727 to mark the loop instructions themselves. */
6728 symbolS
*target_sym
= NULL
;
6729 if (vinsn
->slots
[0].tok
[1].X_op
== O_symbol
)
6730 target_sym
= vinsn
->slots
[0].tok
[1].X_add_symbol
;
6732 xtensa_set_frag_assembly_state (frag_now
);
6733 frag_now
->tc_frag_data
.is_insn
= TRUE
;
6735 max_fill
= get_text_align_max_fill_size
6736 (get_text_align_power (xtensa_fetch_width
),
6737 TRUE
, frag_now
->tc_frag_data
.is_no_density
);
6739 if (use_transform ())
6740 frag_var (rs_machine_dependent
, max_fill
, max_fill
,
6741 RELAX_ALIGN_NEXT_OPCODE
, target_sym
, 0, NULL
);
6743 frag_var (rs_machine_dependent
, 0, 0,
6744 RELAX_CHECK_ALIGN_NEXT_OPCODE
, target_sym
, 0, NULL
);
6745 xtensa_set_frag_assembly_state (frag_now
);
6747 xtensa_move_labels (frag_now
, 0, FALSE
);
6750 if (vinsn
->slots
[0].opcode
== xtensa_entry_opcode
6751 && !vinsn
->slots
[0].is_specific_opcode
)
6753 xtensa_mark_literal_pool_location ();
6754 xtensa_move_labels (frag_now
, 0, TRUE
);
6755 frag_var (rs_align_test
, 1, 1, 0, NULL
, 2, NULL
);
6758 if (vinsn
->num_slots
== 1)
6760 if (workaround_a0_b_retw
&& use_transform ())
6761 set_last_insn_flags (now_seg
, now_subseg
, FLAG_IS_A0_WRITER
,
6762 is_register_writer (&vinsn
->slots
[0], "a", 0));
6764 set_last_insn_flags (now_seg
, now_subseg
, FLAG_IS_BAD_LOOPEND
,
6765 is_bad_loopend_opcode (&vinsn
->slots
[0]));
6768 set_last_insn_flags (now_seg
, now_subseg
, FLAG_IS_BAD_LOOPEND
, FALSE
);
6770 insn_size
= xtensa_format_length (isa
, vinsn
->format
);
6772 extra_space
= relaxation_requirements (vinsn
, &finish_frag
);
6774 /* vinsn_to_insnbuf will produce the error. */
6775 if (vinsn
->format
!= XTENSA_UNDEFINED
)
6777 f
= frag_more (insn_size
+ extra_space
);
6778 xtensa_set_frag_assembly_state (frag_now
);
6779 frag_now
->tc_frag_data
.is_insn
= TRUE
;
6782 vinsn_to_insnbuf (vinsn
, f
, frag_now
, FALSE
);
6783 if (vinsn
->format
== XTENSA_UNDEFINED
)
6786 xtensa_insnbuf_to_chars (isa
, vinsn
->insnbuf
, (unsigned char *) f
, 0);
6788 /* Temporarily set the logical line number to the one we want to appear
6789 in the debug information. */
6790 as_where (¤t_file
, ¤t_line
);
6791 new_logical_line (current_file
, best_linenum
);
6792 dwarf2_emit_insn (insn_size
+ extra_space
);
6793 new_logical_line (current_file
, current_line
);
6795 for (slot
= 0; slot
< vinsn
->num_slots
; slot
++)
6797 TInsn
*tinsn
= &vinsn
->slots
[slot
];
6798 frag_now
->tc_frag_data
.slot_subtypes
[slot
] = tinsn
->subtype
;
6799 frag_now
->tc_frag_data
.slot_symbols
[slot
] = tinsn
->symbol
;
6800 frag_now
->tc_frag_data
.slot_offsets
[slot
] = tinsn
->offset
;
6801 frag_now
->tc_frag_data
.literal_frags
[slot
] = tinsn
->literal_frag
;
6802 if (tinsn
->literal_space
!= 0)
6803 xg_assemble_literal_space (tinsn
->literal_space
, slot
);
6805 if (tinsn
->subtype
== RELAX_NARROW
)
6806 assert (vinsn
->num_slots
== 1);
6807 if (xtensa_opcode_is_jump (isa
, tinsn
->opcode
) == 1)
6809 if (xtensa_opcode_is_branch (isa
, tinsn
->opcode
) == 1)
6812 if (tinsn
->subtype
|| tinsn
->symbol
|| tinsn
->offset
6813 || tinsn
->literal_frag
|| is_jump
|| is_branch
)
6817 if (vinsn_has_specific_opcodes (vinsn
) && use_transform ())
6818 frag_now
->tc_frag_data
.is_specific_opcode
= TRUE
;
6822 frag_variant (rs_machine_dependent
,
6823 extra_space
, extra_space
, RELAX_SLOTS
,
6824 frag_now
->fr_symbol
, frag_now
->fr_offset
, f
);
6825 xtensa_set_frag_assembly_state (frag_now
);
6828 /* Special cases for loops:
6829 close_loop_end should be inserted AFTER short_loop.
6830 Make sure that CLOSE loops are processed BEFORE short_loops
6831 when converting them. */
6833 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
6834 if (xtensa_opcode_is_loop (isa
, vinsn
->slots
[0].opcode
)
6835 && !vinsn
->slots
[0].is_specific_opcode
)
6837 if (workaround_short_loop
&& use_transform ())
6839 maybe_has_short_loop
= TRUE
;
6840 frag_now
->tc_frag_data
.is_insn
= TRUE
;
6841 frag_var (rs_machine_dependent
, 4, 4,
6842 RELAX_ADD_NOP_IF_SHORT_LOOP
,
6843 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
6844 frag_now
->tc_frag_data
.is_insn
= TRUE
;
6845 frag_var (rs_machine_dependent
, 4, 4,
6846 RELAX_ADD_NOP_IF_SHORT_LOOP
,
6847 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
6850 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
6851 loop at least 12 bytes away from another loop's end. */
6852 if (workaround_close_loop_end
&& use_transform ())
6854 maybe_has_close_loop_end
= TRUE
;
6855 frag_now
->tc_frag_data
.is_insn
= TRUE
;
6856 frag_var (rs_machine_dependent
, 12, 12,
6857 RELAX_ADD_NOP_IF_CLOSE_LOOP_END
,
6858 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
6862 if (use_transform ())
6866 assert (finish_frag
);
6867 frag_var (rs_machine_dependent
,
6868 UNREACHABLE_MAX_WIDTH
, UNREACHABLE_MAX_WIDTH
,
6870 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
6871 xtensa_set_frag_assembly_state (frag_now
);
6873 else if (is_branch
&& do_align_targets ())
6875 assert (finish_frag
);
6876 frag_var (rs_machine_dependent
,
6877 UNREACHABLE_MAX_WIDTH
, UNREACHABLE_MAX_WIDTH
,
6878 RELAX_MAYBE_UNREACHABLE
,
6879 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
6880 xtensa_set_frag_assembly_state (frag_now
);
6881 frag_var (rs_machine_dependent
,
6883 RELAX_MAYBE_DESIRE_ALIGN
,
6884 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
6885 xtensa_set_frag_assembly_state (frag_now
);
6889 /* Now, if the original opcode was a call... */
6890 if (do_align_targets ()
6891 && xtensa_opcode_is_call (isa
, vinsn
->slots
[0].opcode
) == 1)
6893 float freq
= get_subseg_total_freq (now_seg
, now_subseg
);
6894 frag_now
->tc_frag_data
.is_insn
= TRUE
;
6895 frag_var (rs_machine_dependent
, 4, (int) freq
, RELAX_DESIRE_ALIGN
,
6896 frag_now
->fr_symbol
, frag_now
->fr_offset
, NULL
);
6897 xtensa_set_frag_assembly_state (frag_now
);
6900 if (vinsn_has_specific_opcodes (vinsn
) && use_transform ())
6902 frag_wane (frag_now
);
6904 xtensa_set_frag_assembly_state (frag_now
);
6909 /* xtensa_end and helper functions. */
6911 static void xtensa_cleanup_align_frags (void);
6912 static void xtensa_fix_target_frags (void);
6913 static void xtensa_mark_narrow_branches (void);
6914 static void xtensa_mark_zcl_first_insns (void);
6915 static void xtensa_fix_a0_b_retw_frags (void);
6916 static void xtensa_fix_b_j_loop_end_frags (void);
6917 static void xtensa_fix_close_loop_end_frags (void);
6918 static void xtensa_fix_short_loop_frags (void);
6919 static void xtensa_sanity_check (void);
6924 directive_balance ();
6925 xtensa_flush_pending_output ();
6927 past_xtensa_end
= TRUE
;
6929 xtensa_move_literals ();
6931 xtensa_reorder_segments ();
6932 xtensa_cleanup_align_frags ();
6933 xtensa_fix_target_frags ();
6934 if (workaround_a0_b_retw
&& has_a0_b_retw
)
6935 xtensa_fix_a0_b_retw_frags ();
6936 if (workaround_b_j_loop_end
)
6937 xtensa_fix_b_j_loop_end_frags ();
6939 /* "close_loop_end" should be processed BEFORE "short_loop". */
6940 if (workaround_close_loop_end
&& maybe_has_close_loop_end
)
6941 xtensa_fix_close_loop_end_frags ();
6943 if (workaround_short_loop
&& maybe_has_short_loop
)
6944 xtensa_fix_short_loop_frags ();
6946 xtensa_mark_narrow_branches ();
6947 xtensa_mark_zcl_first_insns ();
6949 xtensa_sanity_check ();
6954 xtensa_cleanup_align_frags (void)
6958 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
6961 /* Walk over all of the fragments in a subsection. */
6962 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
6964 if ((fragP
->fr_type
== rs_align
6965 || fragP
->fr_type
== rs_align_code
6966 || (fragP
->fr_type
== rs_machine_dependent
6967 && (fragP
->fr_subtype
== RELAX_DESIRE_ALIGN
6968 || fragP
->fr_subtype
== RELAX_DESIRE_ALIGN_IF_TARGET
)))
6969 && fragP
->fr_fix
== 0)
6971 fragS
*next
= fragP
->fr_next
;
6974 && next
->fr_fix
== 0
6975 && next
->fr_type
== rs_machine_dependent
6976 && next
->fr_subtype
== RELAX_DESIRE_ALIGN_IF_TARGET
)
6979 next
= next
->fr_next
;
6982 /* If we don't widen branch targets, then they
6983 will be easier to align. */
6984 if (fragP
->tc_frag_data
.is_branch_target
6985 && fragP
->fr_opcode
== fragP
->fr_literal
6986 && fragP
->fr_type
== rs_machine_dependent
6987 && fragP
->fr_subtype
== RELAX_SLOTS
6988 && fragP
->tc_frag_data
.slot_subtypes
[0] == RELAX_NARROW
)
6990 if (fragP
->fr_type
== rs_machine_dependent
6991 && fragP
->fr_subtype
== RELAX_UNREACHABLE
)
6992 fragP
->tc_frag_data
.is_unreachable
= TRUE
;
6998 /* Re-process all of the fragments looking to convert all of the
6999 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
7000 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
7001 Otherwise, convert to a .fill 0. */
7004 xtensa_fix_target_frags (void)
7008 /* When this routine is called, all of the subsections are still intact
7009 so we walk over subsections instead of sections. */
7010 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
7014 /* Walk over all of the fragments in a subsection. */
7015 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
7017 if (fragP
->fr_type
== rs_machine_dependent
7018 && fragP
->fr_subtype
== RELAX_DESIRE_ALIGN_IF_TARGET
)
7020 if (next_frag_is_branch_target (fragP
))
7021 fragP
->fr_subtype
= RELAX_DESIRE_ALIGN
;
7030 static bfd_boolean
is_narrow_branch_guaranteed_in_range (fragS
*, TInsn
*);
7033 xtensa_mark_narrow_branches (void)
7037 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
7040 /* Walk over all of the fragments in a subsection. */
7041 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
7043 if (fragP
->fr_type
== rs_machine_dependent
7044 && fragP
->fr_subtype
== RELAX_SLOTS
7045 && fragP
->tc_frag_data
.slot_subtypes
[0] == RELAX_IMMED
)
7049 vinsn_from_chars (&vinsn
, fragP
->fr_opcode
);
7050 tinsn_immed_from_frag (&vinsn
.slots
[0], fragP
, 0);
7052 if (vinsn
.num_slots
== 1
7053 && xtensa_opcode_is_branch (xtensa_default_isa
,
7054 vinsn
.slots
[0].opcode
)
7055 && xg_get_single_size (vinsn
.slots
[0].opcode
) == 2
7056 && is_narrow_branch_guaranteed_in_range (fragP
,
7059 fragP
->fr_subtype
= RELAX_SLOTS
;
7060 fragP
->tc_frag_data
.slot_subtypes
[0] = RELAX_NARROW
;
7061 fragP
->tc_frag_data
.is_aligning_branch
= 1;
7069 /* A branch is typically widened only when its target is out of
7070 range. However, we would like to widen them to align a subsequent
7071 branch target when possible.
7073 Because the branch relaxation code is so convoluted, the optimal solution
7074 (combining the two cases) is difficult to get right in all circumstances.
7075 We therefore go with an "almost as good" solution, where we only
7076 use for alignment narrow branches that definitely will not expand to a
7077 jump and a branch. These functions find and mark these cases. */
7079 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
7080 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
7081 We start counting beginning with the frag after the 2-byte branch, so the
7082 maximum offset is (4 - 2) + 63 = 65. */
7083 #define MAX_IMMED6 65
7085 static offsetT
unrelaxed_frag_max_size (fragS
*);
7088 is_narrow_branch_guaranteed_in_range (fragS
*fragP
, TInsn
*tinsn
)
7090 const expressionS
*expr
= &tinsn
->tok
[1];
7091 symbolS
*symbolP
= expr
->X_add_symbol
;
7092 offsetT max_distance
= expr
->X_add_number
;
7095 if (expr
->X_op
!= O_symbol
)
7098 target_frag
= symbol_get_frag (symbolP
);
7100 max_distance
+= (S_GET_VALUE (symbolP
) - target_frag
->fr_address
);
7101 if (is_branch_jmp_to_next (tinsn
, fragP
))
7104 /* The branch doesn't branch over it's own frag,
7105 but over the subsequent ones. */
7106 fragP
= fragP
->fr_next
;
7107 while (fragP
!= NULL
&& fragP
!= target_frag
&& max_distance
<= MAX_IMMED6
)
7109 max_distance
+= unrelaxed_frag_max_size (fragP
);
7110 fragP
= fragP
->fr_next
;
7112 if (max_distance
<= MAX_IMMED6
&& fragP
== target_frag
)
7119 xtensa_mark_zcl_first_insns (void)
7123 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
7126 /* Walk over all of the fragments in a subsection. */
7127 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
7129 if (fragP
->fr_type
== rs_machine_dependent
7130 && (fragP
->fr_subtype
== RELAX_ALIGN_NEXT_OPCODE
7131 || fragP
->fr_subtype
== RELAX_CHECK_ALIGN_NEXT_OPCODE
))
7133 /* Find the loop frag. */
7134 fragS
*targ_frag
= next_non_empty_frag (fragP
);
7135 /* Find the first insn frag. */
7136 targ_frag
= next_non_empty_frag (targ_frag
);
7138 /* Of course, sometimes (mostly for toy test cases) a
7139 zero-cost loop instruction is the last in a section. */
7142 targ_frag
->tc_frag_data
.is_first_loop_insn
= TRUE
;
7143 /* Do not widen a frag that is the first instruction of a
7144 zero-cost loop. It makes that loop harder to align. */
7145 if (targ_frag
->fr_type
== rs_machine_dependent
7146 && targ_frag
->fr_subtype
== RELAX_SLOTS
7147 && (targ_frag
->tc_frag_data
.slot_subtypes
[0]
7150 if (targ_frag
->tc_frag_data
.is_aligning_branch
)
7151 targ_frag
->tc_frag_data
.slot_subtypes
[0] = RELAX_IMMED
;
7154 frag_wane (targ_frag
);
7155 targ_frag
->tc_frag_data
.slot_subtypes
[0] = 0;
7159 if (fragP
->fr_subtype
== RELAX_CHECK_ALIGN_NEXT_OPCODE
)
7167 /* Re-process all of the fragments looking to convert all of the
7168 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
7169 conditional branch or a retw/retw.n, convert this frag to one that
7170 will generate a NOP. In any case close it off with a .fill 0. */
7172 static bfd_boolean
next_instrs_are_b_retw (fragS
*);
7175 xtensa_fix_a0_b_retw_frags (void)
7179 /* When this routine is called, all of the subsections are still intact
7180 so we walk over subsections instead of sections. */
7181 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
7185 /* Walk over all of the fragments in a subsection. */
7186 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
7188 if (fragP
->fr_type
== rs_machine_dependent
7189 && fragP
->fr_subtype
== RELAX_ADD_NOP_IF_A0_B_RETW
)
7191 if (next_instrs_are_b_retw (fragP
))
7193 if (fragP
->tc_frag_data
.is_no_transform
)
7194 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
7196 relax_frag_add_nop (fragP
);
7206 next_instrs_are_b_retw (fragS
*fragP
)
7208 xtensa_opcode opcode
;
7210 const fragS
*next_fragP
= next_non_empty_frag (fragP
);
7211 static xtensa_insnbuf insnbuf
= NULL
;
7212 static xtensa_insnbuf slotbuf
= NULL
;
7213 xtensa_isa isa
= xtensa_default_isa
;
7216 bfd_boolean branch_seen
= FALSE
;
7220 insnbuf
= xtensa_insnbuf_alloc (isa
);
7221 slotbuf
= xtensa_insnbuf_alloc (isa
);
7224 if (next_fragP
== NULL
)
7227 /* Check for the conditional branch. */
7228 xtensa_insnbuf_from_chars
7229 (isa
, insnbuf
, (unsigned char *) &next_fragP
->fr_literal
[offset
], 0);
7230 fmt
= xtensa_format_decode (isa
, insnbuf
);
7231 if (fmt
== XTENSA_UNDEFINED
)
7234 for (slot
= 0; slot
< xtensa_format_num_slots (isa
, fmt
); slot
++)
7236 xtensa_format_get_slot (isa
, fmt
, slot
, insnbuf
, slotbuf
);
7237 opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
7239 branch_seen
= (branch_seen
7240 || xtensa_opcode_is_branch (isa
, opcode
) == 1);
7246 offset
+= xtensa_format_length (isa
, fmt
);
7247 if (offset
== next_fragP
->fr_fix
)
7249 next_fragP
= next_non_empty_frag (next_fragP
);
7253 if (next_fragP
== NULL
)
7256 /* Check for the retw/retw.n. */
7257 xtensa_insnbuf_from_chars
7258 (isa
, insnbuf
, (unsigned char *) &next_fragP
->fr_literal
[offset
], 0);
7259 fmt
= xtensa_format_decode (isa
, insnbuf
);
7261 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
7262 have no problems. */
7263 if (fmt
== XTENSA_UNDEFINED
7264 || xtensa_format_num_slots (isa
, fmt
) != 1)
7267 xtensa_format_get_slot (isa
, fmt
, 0, insnbuf
, slotbuf
);
7268 opcode
= xtensa_opcode_decode (isa
, fmt
, 0, slotbuf
);
7270 if (opcode
== xtensa_retw_opcode
|| opcode
== xtensa_retw_n_opcode
)
7277 /* Re-process all of the fragments looking to convert all of the
7278 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
7279 loop end label, convert this frag to one that will generate a NOP.
7280 In any case close it off with a .fill 0. */
7282 static bfd_boolean
next_instr_is_loop_end (fragS
*);
7285 xtensa_fix_b_j_loop_end_frags (void)
7289 /* When this routine is called, all of the subsections are still intact
7290 so we walk over subsections instead of sections. */
7291 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
7295 /* Walk over all of the fragments in a subsection. */
7296 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
7298 if (fragP
->fr_type
== rs_machine_dependent
7299 && fragP
->fr_subtype
== RELAX_ADD_NOP_IF_PRE_LOOP_END
)
7301 if (next_instr_is_loop_end (fragP
))
7303 if (fragP
->tc_frag_data
.is_no_transform
)
7304 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
7306 relax_frag_add_nop (fragP
);
7316 next_instr_is_loop_end (fragS
*fragP
)
7318 const fragS
*next_fragP
;
7320 if (next_frag_is_loop_target (fragP
))
7323 next_fragP
= next_non_empty_frag (fragP
);
7324 if (next_fragP
== NULL
)
7327 if (!next_frag_is_loop_target (next_fragP
))
7330 /* If the size is >= 3 then there is more than one instruction here.
7331 The hardware bug will not fire. */
7332 if (next_fragP
->fr_fix
> 3)
7339 /* Re-process all of the fragments looking to convert all of the
7340 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
7341 not MY loop's loop end within 12 bytes, add enough nops here to
7342 make it at least 12 bytes away. In any case close it off with a
7345 static offsetT min_bytes_to_other_loop_end
7346 (fragS
*, fragS
*, offsetT
);
7349 xtensa_fix_close_loop_end_frags (void)
7353 /* When this routine is called, all of the subsections are still intact
7354 so we walk over subsections instead of sections. */
7355 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
7359 fragS
*current_target
= NULL
;
7361 /* Walk over all of the fragments in a subsection. */
7362 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
7364 if (fragP
->fr_type
== rs_machine_dependent
7365 && ((fragP
->fr_subtype
== RELAX_ALIGN_NEXT_OPCODE
)
7366 || (fragP
->fr_subtype
== RELAX_CHECK_ALIGN_NEXT_OPCODE
)))
7367 current_target
= symbol_get_frag (fragP
->fr_symbol
);
7370 && fragP
->fr_type
== rs_machine_dependent
7371 && fragP
->fr_subtype
== RELAX_ADD_NOP_IF_CLOSE_LOOP_END
)
7374 int bytes_added
= 0;
7376 #define REQUIRED_LOOP_DIVIDING_BYTES 12
7377 /* Max out at 12. */
7378 min_bytes
= min_bytes_to_other_loop_end
7379 (fragP
->fr_next
, current_target
, REQUIRED_LOOP_DIVIDING_BYTES
);
7381 if (min_bytes
< REQUIRED_LOOP_DIVIDING_BYTES
)
7383 if (fragP
->tc_frag_data
.is_no_transform
)
7384 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
7387 while (min_bytes
+ bytes_added
7388 < REQUIRED_LOOP_DIVIDING_BYTES
)
7392 if (fragP
->fr_var
< length
)
7393 as_fatal (_("fr_var %lu < length %d"),
7394 (long) fragP
->fr_var
, length
);
7397 assemble_nop (length
,
7398 fragP
->fr_literal
+ fragP
->fr_fix
);
7399 fragP
->fr_fix
+= length
;
7400 fragP
->fr_var
-= length
;
7402 bytes_added
+= length
;
7408 assert (fragP
->fr_type
!= rs_machine_dependent
7409 || fragP
->fr_subtype
!= RELAX_ADD_NOP_IF_CLOSE_LOOP_END
);
7415 static offsetT
unrelaxed_frag_min_size (fragS
*);
7418 min_bytes_to_other_loop_end (fragS
*fragP
,
7419 fragS
*current_target
,
7423 fragS
*current_fragP
;
7425 for (current_fragP
= fragP
;
7427 current_fragP
= current_fragP
->fr_next
)
7429 if (current_fragP
->tc_frag_data
.is_loop_target
7430 && current_fragP
!= current_target
)
7433 offset
+= unrelaxed_frag_min_size (current_fragP
);
7435 if (offset
>= max_size
)
7443 unrelaxed_frag_min_size (fragS
*fragP
)
7445 offsetT size
= fragP
->fr_fix
;
7447 /* Add fill size. */
7448 if (fragP
->fr_type
== rs_fill
)
7449 size
+= fragP
->fr_offset
;
7456 unrelaxed_frag_max_size (fragS
*fragP
)
7458 offsetT size
= fragP
->fr_fix
;
7459 switch (fragP
->fr_type
)
7462 /* Empty frags created by the obstack allocation scheme
7463 end up with type 0. */
7468 size
+= fragP
->fr_offset
;
7476 /* No further adjustments needed. */
7478 case rs_machine_dependent
:
7479 if (fragP
->fr_subtype
!= RELAX_DESIRE_ALIGN
)
7480 size
+= fragP
->fr_var
;
7483 /* We had darn well better know how big it is. */
7492 /* Re-process all of the fragments looking to convert all
7493 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
7496 1) the instruction size count to the loop end label
7497 is too short (<= 2 instructions),
7498 2) loop has a jump or branch in it
7501 1) workaround_all_short_loops is TRUE
7502 2) The generating loop was a 'loopgtz' or 'loopnez'
7503 3) the instruction size count to the loop end label is too short
7505 then convert this frag (and maybe the next one) to generate a NOP.
7506 In any case close it off with a .fill 0. */
7508 static int count_insns_to_loop_end (fragS
*, bfd_boolean
, int);
7509 static bfd_boolean
branch_before_loop_end (fragS
*);
7512 xtensa_fix_short_loop_frags (void)
7516 /* When this routine is called, all of the subsections are still intact
7517 so we walk over subsections instead of sections. */
7518 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
7521 fragS
*current_target
= NULL
;
7522 xtensa_opcode current_opcode
= XTENSA_UNDEFINED
;
7524 /* Walk over all of the fragments in a subsection. */
7525 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
7527 if (fragP
->fr_type
== rs_machine_dependent
7528 && ((fragP
->fr_subtype
== RELAX_ALIGN_NEXT_OPCODE
)
7529 || (fragP
->fr_subtype
== RELAX_CHECK_ALIGN_NEXT_OPCODE
)))
7532 fragS
*loop_frag
= next_non_empty_frag (fragP
);
7533 tinsn_from_chars (&t_insn
, loop_frag
->fr_opcode
, 0);
7534 current_target
= symbol_get_frag (fragP
->fr_symbol
);
7535 current_opcode
= t_insn
.opcode
;
7536 assert (xtensa_opcode_is_loop (xtensa_default_isa
,
7540 if (fragP
->fr_type
== rs_machine_dependent
7541 && fragP
->fr_subtype
== RELAX_ADD_NOP_IF_SHORT_LOOP
)
7543 if (count_insns_to_loop_end (fragP
->fr_next
, TRUE
, 3) < 3
7544 && (branch_before_loop_end (fragP
->fr_next
)
7545 || (workaround_all_short_loops
7546 && current_opcode
!= XTENSA_UNDEFINED
7547 && current_opcode
!= xtensa_loop_opcode
)))
7549 if (fragP
->tc_frag_data
.is_no_transform
)
7550 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
7552 relax_frag_add_nop (fragP
);
7561 static int unrelaxed_frag_min_insn_count (fragS
*);
7564 count_insns_to_loop_end (fragS
*base_fragP
,
7565 bfd_boolean count_relax_add
,
7568 fragS
*fragP
= NULL
;
7573 for (; fragP
&& !fragP
->tc_frag_data
.is_loop_target
; fragP
= fragP
->fr_next
)
7575 insn_count
+= unrelaxed_frag_min_insn_count (fragP
);
7576 if (insn_count
>= max_count
)
7579 if (count_relax_add
)
7581 if (fragP
->fr_type
== rs_machine_dependent
7582 && fragP
->fr_subtype
== RELAX_ADD_NOP_IF_SHORT_LOOP
)
7584 /* In order to add the appropriate number of
7585 NOPs, we count an instruction for downstream
7588 if (insn_count
>= max_count
)
7598 unrelaxed_frag_min_insn_count (fragS
*fragP
)
7600 xtensa_isa isa
= xtensa_default_isa
;
7601 static xtensa_insnbuf insnbuf
= NULL
;
7605 if (!fragP
->tc_frag_data
.is_insn
)
7609 insnbuf
= xtensa_insnbuf_alloc (isa
);
7611 /* Decode the fixed instructions. */
7612 while (offset
< fragP
->fr_fix
)
7616 xtensa_insnbuf_from_chars
7617 (isa
, insnbuf
, (unsigned char *) fragP
->fr_literal
+ offset
, 0);
7618 fmt
= xtensa_format_decode (isa
, insnbuf
);
7620 if (fmt
== XTENSA_UNDEFINED
)
7622 as_fatal (_("undecodable instruction in instruction frag"));
7625 offset
+= xtensa_format_length (isa
, fmt
);
7633 static bfd_boolean
unrelaxed_frag_has_b_j (fragS
*);
7636 branch_before_loop_end (fragS
*base_fragP
)
7640 for (fragP
= base_fragP
;
7641 fragP
&& !fragP
->tc_frag_data
.is_loop_target
;
7642 fragP
= fragP
->fr_next
)
7644 if (unrelaxed_frag_has_b_j (fragP
))
7652 unrelaxed_frag_has_b_j (fragS
*fragP
)
7654 static xtensa_insnbuf insnbuf
= NULL
;
7655 xtensa_isa isa
= xtensa_default_isa
;
7658 if (!fragP
->tc_frag_data
.is_insn
)
7662 insnbuf
= xtensa_insnbuf_alloc (isa
);
7664 /* Decode the fixed instructions. */
7665 while (offset
< fragP
->fr_fix
)
7670 xtensa_insnbuf_from_chars
7671 (isa
, insnbuf
, (unsigned char *) fragP
->fr_literal
+ offset
, 0);
7672 fmt
= xtensa_format_decode (isa
, insnbuf
);
7673 if (fmt
== XTENSA_UNDEFINED
)
7676 for (slot
= 0; slot
< xtensa_format_num_slots (isa
, fmt
); slot
++)
7678 xtensa_opcode opcode
=
7679 get_opcode_from_buf (fragP
->fr_literal
+ offset
, slot
);
7680 if (xtensa_opcode_is_branch (isa
, opcode
) == 1
7681 || xtensa_opcode_is_jump (isa
, opcode
) == 1)
7684 offset
+= xtensa_format_length (isa
, fmt
);
7690 /* Checks to be made after initial assembly but before relaxation. */
7692 static bfd_boolean
is_empty_loop (const TInsn
*, fragS
*);
7693 static bfd_boolean
is_local_forward_loop (const TInsn
*, fragS
*);
7696 xtensa_sanity_check (void)
7703 as_where (&file_name
, &line
);
7704 for (frchP
= frchain_root
; frchP
; frchP
= frchP
->frch_next
)
7708 /* Walk over all of the fragments in a subsection. */
7709 for (fragP
= frchP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
7711 /* Currently we only check for empty loops here. */
7712 if (fragP
->fr_type
== rs_machine_dependent
7713 && fragP
->fr_subtype
== RELAX_IMMED
)
7715 static xtensa_insnbuf insnbuf
= NULL
;
7718 if (fragP
->fr_opcode
!= NULL
)
7721 insnbuf
= xtensa_insnbuf_alloc (xtensa_default_isa
);
7722 tinsn_from_chars (&t_insn
, fragP
->fr_opcode
, 0);
7723 tinsn_immed_from_frag (&t_insn
, fragP
, 0);
7725 if (xtensa_opcode_is_loop (xtensa_default_isa
,
7726 t_insn
.opcode
) == 1)
7728 if (is_empty_loop (&t_insn
, fragP
))
7730 new_logical_line (fragP
->fr_file
, fragP
->fr_line
);
7731 as_bad (_("invalid empty loop"));
7733 if (!is_local_forward_loop (&t_insn
, fragP
))
7735 new_logical_line (fragP
->fr_file
, fragP
->fr_line
);
7736 as_bad (_("loop target does not follow "
7737 "loop instruction in section"));
7744 new_logical_line (file_name
, line
);
7748 #define LOOP_IMMED_OPN 1
7750 /* Return TRUE if the loop target is the next non-zero fragment. */
7753 is_empty_loop (const TInsn
*insn
, fragS
*fragP
)
7755 const expressionS
*expr
;
7759 if (insn
->insn_type
!= ITYPE_INSN
)
7762 if (xtensa_opcode_is_loop (xtensa_default_isa
, insn
->opcode
) != 1)
7765 if (insn
->ntok
<= LOOP_IMMED_OPN
)
7768 expr
= &insn
->tok
[LOOP_IMMED_OPN
];
7770 if (expr
->X_op
!= O_symbol
)
7773 symbolP
= expr
->X_add_symbol
;
7777 if (symbol_get_frag (symbolP
) == NULL
)
7780 if (S_GET_VALUE (symbolP
) != 0)
7783 /* Walk through the zero-size fragments from this one. If we find
7784 the target fragment, then this is a zero-size loop. */
7786 for (next_fragP
= fragP
->fr_next
;
7788 next_fragP
= next_fragP
->fr_next
)
7790 if (next_fragP
== symbol_get_frag (symbolP
))
7792 if (next_fragP
->fr_fix
!= 0)
7800 is_local_forward_loop (const TInsn
*insn
, fragS
*fragP
)
7802 const expressionS
*expr
;
7806 if (insn
->insn_type
!= ITYPE_INSN
)
7809 if (xtensa_opcode_is_loop (xtensa_default_isa
, insn
->opcode
) == 0)
7812 if (insn
->ntok
<= LOOP_IMMED_OPN
)
7815 expr
= &insn
->tok
[LOOP_IMMED_OPN
];
7817 if (expr
->X_op
!= O_symbol
)
7820 symbolP
= expr
->X_add_symbol
;
7824 if (symbol_get_frag (symbolP
) == NULL
)
7827 /* Walk through fragments until we find the target.
7828 If we do not find the target, then this is an invalid loop. */
7830 for (next_fragP
= fragP
->fr_next
;
7832 next_fragP
= next_fragP
->fr_next
)
7834 if (next_fragP
== symbol_get_frag (symbolP
))
7842 /* Alignment Functions. */
7845 get_text_align_power (unsigned target_size
)
7847 if (target_size
<= 4)
7849 assert (target_size
== 8);
7855 get_text_align_max_fill_size (int align_pow
,
7856 bfd_boolean use_nops
,
7857 bfd_boolean use_no_density
)
7860 return (1 << align_pow
);
7862 return 3 * (1 << align_pow
);
7864 return 1 + (1 << align_pow
);
7868 /* Calculate the minimum bytes of fill needed at "address" to align a
7869 target instruction of size "target_size" so that it does not cross a
7870 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
7871 the fill can be an arbitrary number of bytes. Otherwise, the space must
7872 be filled by NOP instructions. */
7875 get_text_align_fill_size (addressT address
,
7878 bfd_boolean use_nops
,
7879 bfd_boolean use_no_density
)
7881 addressT alignment
, fill
, fill_limit
, fill_step
;
7882 bfd_boolean skip_one
= FALSE
;
7884 alignment
= (1 << align_pow
);
7885 assert (target_size
> 0 && alignment
>= (addressT
) target_size
);
7889 fill_limit
= alignment
;
7892 else if (!use_no_density
)
7894 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
7895 fill_limit
= alignment
* 2;
7901 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
7902 fill_limit
= alignment
* 3;
7906 /* Try all fill sizes until finding one that works. */
7907 for (fill
= 0; fill
< fill_limit
; fill
+= fill_step
)
7909 if (skip_one
&& fill
== 1)
7911 if ((address
+ fill
) >> align_pow
7912 == (address
+ fill
+ target_size
- 1) >> align_pow
)
7921 branch_align_power (segT sec
)
7923 /* If the Xtensa processor has a fetch width of 8 bytes, and the section
7924 is aligned to at least an 8-byte boundary, then a branch target need
7925 only fit within an 8-byte aligned block of memory to avoid a stall.
7926 Otherwise, try to fit branch targets within 4-byte aligned blocks
7927 (which may be insufficient, e.g., if the section has no alignment, but
7928 it's good enough). */
7929 if (xtensa_fetch_width
== 8)
7931 if (get_recorded_alignment (sec
) >= 3)
7935 assert (xtensa_fetch_width
== 4);
7941 /* This will assert if it is not possible. */
7944 get_text_align_nop_count (offsetT fill_size
, bfd_boolean use_no_density
)
7950 assert (fill_size
% 3 == 0);
7951 return (fill_size
/ 3);
7954 assert (fill_size
!= 1); /* Bad argument. */
7956 while (fill_size
> 1)
7959 if (fill_size
== 2 || fill_size
== 4)
7961 fill_size
-= insn_size
;
7964 assert (fill_size
!= 1); /* Bad algorithm. */
7970 get_text_align_nth_nop_size (offsetT fill_size
,
7972 bfd_boolean use_no_density
)
7979 assert (fill_size
!= 1); /* Bad argument. */
7981 while (fill_size
> 1)
7984 if (fill_size
== 2 || fill_size
== 4)
7986 fill_size
-= insn_size
;
7996 /* For the given fragment, find the appropriate address
7997 for it to begin at if we are using NOPs to align it. */
8000 get_noop_aligned_address (fragS
*fragP
, addressT address
)
8002 /* The rule is: get next fragment's FIRST instruction. Find
8003 the smallest number of bytes that need to be added to
8004 ensure that the next fragment's FIRST instruction will fit
8007 E.G., 2 bytes : 0, 1, 2 mod 4
8010 If the FIRST instruction MIGHT be relaxed,
8011 assume that it will become a 3-byte instruction.
8013 Note again here that LOOP instructions are not bundleable,
8014 and this relaxation only applies to LOOP opcodes. */
8017 int first_insn_size
;
8019 addressT pre_opcode_bytes
;
8022 xtensa_opcode opcode
;
8023 bfd_boolean is_loop
;
8025 assert (fragP
->fr_type
== rs_machine_dependent
);
8026 assert (fragP
->fr_subtype
== RELAX_ALIGN_NEXT_OPCODE
);
8028 /* Find the loop frag. */
8029 first_insn
= next_non_empty_frag (fragP
);
8030 /* Now find the first insn frag. */
8031 first_insn
= next_non_empty_frag (first_insn
);
8033 is_loop
= next_frag_opcode_is_loop (fragP
, &opcode
);
8035 loop_insn_size
= xg_get_single_size (opcode
);
8037 pre_opcode_bytes
= next_frag_pre_opcode_bytes (fragP
);
8038 pre_opcode_bytes
+= loop_insn_size
;
8040 /* For loops, the alignment depends on the size of the
8041 instruction following the loop, not the LOOP instruction. */
8043 if (first_insn
== NULL
)
8044 first_insn_size
= xtensa_fetch_width
;
8046 first_insn_size
= get_loop_align_size (frag_format_size (first_insn
));
8048 /* If it was 8, then we'll need a larger alignment for the section. */
8049 align_power
= get_text_align_power (first_insn_size
);
8050 record_alignment (now_seg
, align_power
);
8052 fill_size
= get_text_align_fill_size
8053 (address
+ pre_opcode_bytes
, align_power
, first_insn_size
, TRUE
,
8054 fragP
->tc_frag_data
.is_no_density
);
8056 return address
+ fill_size
;
8060 /* 3 mechanisms for relaxing an alignment:
8062 Align to a power of 2.
8063 Align so the next fragment's instruction does not cross a word boundary.
8064 Align the current instruction so that if the next instruction
8065 were 3 bytes, it would not cross a word boundary.
8069 zeros - This is easy; always insert zeros.
8070 nops - 3-byte and 2-byte instructions
8074 >=5 : 3-byte instruction + fn (n-3)
8075 widening - widen previous instructions. */
8078 get_aligned_diff (fragS
*fragP
, addressT address
, offsetT
*max_diff
)
8080 addressT target_address
, loop_insn_offset
;
8082 xtensa_opcode loop_opcode
;
8083 bfd_boolean is_loop
;
8086 offsetT branch_align
;
8088 assert (fragP
->fr_type
== rs_machine_dependent
);
8089 switch (fragP
->fr_subtype
)
8091 case RELAX_DESIRE_ALIGN
:
8092 target_size
= next_frag_format_size (fragP
);
8093 if (target_size
== XTENSA_UNDEFINED
)
8095 align_power
= branch_align_power (now_seg
);
8096 branch_align
= 1 << align_power
;
8097 /* Don't count on the section alignment being as large as the target. */
8098 if (target_size
> branch_align
)
8099 target_size
= branch_align
;
8100 opt_diff
= get_text_align_fill_size (address
, align_power
,
8101 target_size
, FALSE
, FALSE
);
8103 *max_diff
= (opt_diff
+ branch_align
8104 - (target_size
+ ((address
+ opt_diff
) % branch_align
)));
8105 assert (*max_diff
>= opt_diff
);
8108 case RELAX_ALIGN_NEXT_OPCODE
:
8109 target_size
= get_loop_align_size (next_frag_format_size (fragP
));
8110 loop_insn_offset
= 0;
8111 is_loop
= next_frag_opcode_is_loop (fragP
, &loop_opcode
);
8114 /* If the loop has been expanded then the LOOP instruction
8115 could be at an offset from this fragment. */
8116 if (next_non_empty_frag(fragP
)->tc_frag_data
.slot_subtypes
[0]
8118 loop_insn_offset
= get_expanded_loop_offset (loop_opcode
);
8120 /* In an ideal world, which is what we are shooting for here,
8121 we wouldn't need to use any NOPs immediately prior to the
8122 LOOP instruction. If this approach fails, relax_frag_loop_align
8123 will call get_noop_aligned_address. */
8125 address
+ loop_insn_offset
+ xg_get_single_size (loop_opcode
);
8126 align_power
= get_text_align_power (target_size
),
8127 opt_diff
= get_text_align_fill_size (target_address
, align_power
,
8128 target_size
, FALSE
, FALSE
);
8130 *max_diff
= xtensa_fetch_width
8131 - ((target_address
+ opt_diff
) % xtensa_fetch_width
)
8132 - target_size
+ opt_diff
;
8133 assert (*max_diff
>= opt_diff
);
8144 /* md_relax_frag Hook and Helper Functions. */
8146 static long relax_frag_loop_align (fragS
*, long);
8147 static long relax_frag_for_align (fragS
*, long);
8148 static long relax_frag_immed
8149 (segT
, fragS
*, long, int, xtensa_format
, int, int *, bfd_boolean
);
8152 /* Return the number of bytes added to this fragment, given that the
8153 input has been stretched already by "stretch". */
8156 xtensa_relax_frag (fragS
*fragP
, long stretch
, int *stretched_p
)
8158 xtensa_isa isa
= xtensa_default_isa
;
8159 int unreported
= fragP
->tc_frag_data
.unreported_expansion
;
8160 long new_stretch
= 0;
8164 static xtensa_insnbuf vbuf
= NULL
;
8165 int slot
, num_slots
;
8168 as_where (&file_name
, &line
);
8169 new_logical_line (fragP
->fr_file
, fragP
->fr_line
);
8171 fragP
->tc_frag_data
.unreported_expansion
= 0;
8173 switch (fragP
->fr_subtype
)
8175 case RELAX_ALIGN_NEXT_OPCODE
:
8176 /* Always convert. */
8177 if (fragP
->tc_frag_data
.relax_seen
)
8178 new_stretch
= relax_frag_loop_align (fragP
, stretch
);
8181 case RELAX_LOOP_END
:
8185 case RELAX_LOOP_END_ADD_NOP
:
8186 /* Add a NOP and switch to .fill 0. */
8187 new_stretch
= relax_frag_add_nop (fragP
);
8191 case RELAX_DESIRE_ALIGN
:
8192 /* Do nothing. The narrowing before this frag will either align
8197 case RELAX_LITERAL_FINAL
:
8200 case RELAX_LITERAL_NR
:
8202 fragP
->fr_subtype
= RELAX_LITERAL_FINAL
;
8203 assert (unreported
== lit_size
);
8204 memset (&fragP
->fr_literal
[fragP
->fr_fix
], 0, 4);
8205 fragP
->fr_var
-= lit_size
;
8206 fragP
->fr_fix
+= lit_size
;
8212 vbuf
= xtensa_insnbuf_alloc (isa
);
8214 xtensa_insnbuf_from_chars
8215 (isa
, vbuf
, (unsigned char *) fragP
->fr_opcode
, 0);
8216 fmt
= xtensa_format_decode (isa
, vbuf
);
8217 num_slots
= xtensa_format_num_slots (isa
, fmt
);
8219 for (slot
= 0; slot
< num_slots
; slot
++)
8221 switch (fragP
->tc_frag_data
.slot_subtypes
[slot
])
8224 if (fragP
->tc_frag_data
.relax_seen
)
8225 new_stretch
+= relax_frag_for_align (fragP
, stretch
);
8229 case RELAX_IMMED_STEP1
:
8230 case RELAX_IMMED_STEP2
:
8231 /* Place the immediate. */
8232 new_stretch
+= relax_frag_immed
8233 (now_seg
, fragP
, stretch
,
8234 fragP
->tc_frag_data
.slot_subtypes
[slot
] - RELAX_IMMED
,
8235 fmt
, slot
, stretched_p
, FALSE
);
8239 /* This is OK; see the note in xg_assemble_vliw_tokens. */
8245 case RELAX_LITERAL_POOL_BEGIN
:
8246 case RELAX_LITERAL_POOL_END
:
8247 case RELAX_MAYBE_UNREACHABLE
:
8248 case RELAX_MAYBE_DESIRE_ALIGN
:
8249 /* No relaxation required. */
8252 case RELAX_FILL_NOP
:
8253 case RELAX_UNREACHABLE
:
8254 if (fragP
->tc_frag_data
.relax_seen
)
8255 new_stretch
+= relax_frag_for_align (fragP
, stretch
);
8259 as_bad (_("bad relaxation state"));
8262 /* Tell gas we need another relaxation pass. */
8263 if (! fragP
->tc_frag_data
.relax_seen
)
8265 fragP
->tc_frag_data
.relax_seen
= TRUE
;
8269 new_logical_line (file_name
, line
);
8275 relax_frag_loop_align (fragS
*fragP
, long stretch
)
8277 addressT old_address
, old_next_address
, old_size
;
8278 addressT new_address
, new_next_address
, new_size
;
8281 /* All the frags with relax_frag_for_alignment prior to this one in the
8282 section have been done, hopefully eliminating the need for a NOP here.
8283 But, this will put it in if necessary. */
8285 /* Calculate the old address of this fragment and the next fragment. */
8286 old_address
= fragP
->fr_address
- stretch
;
8287 old_next_address
= (fragP
->fr_address
- stretch
+ fragP
->fr_fix
+
8288 fragP
->tc_frag_data
.text_expansion
[0]);
8289 old_size
= old_next_address
- old_address
;
8291 /* Calculate the new address of this fragment and the next fragment. */
8292 new_address
= fragP
->fr_address
;
8294 get_noop_aligned_address (fragP
, fragP
->fr_address
+ fragP
->fr_fix
);
8295 new_size
= new_next_address
- new_address
;
8297 growth
= new_size
- old_size
;
8299 /* Fix up the text_expansion field and return the new growth. */
8300 fragP
->tc_frag_data
.text_expansion
[0] += growth
;
8305 /* Add a NOP instruction. */
8308 relax_frag_add_nop (fragS
*fragP
)
8310 char *nop_buf
= fragP
->fr_literal
+ fragP
->fr_fix
;
8311 int length
= fragP
->tc_frag_data
.is_no_density
? 3 : 2;
8312 assemble_nop (length
, nop_buf
);
8313 fragP
->tc_frag_data
.is_insn
= TRUE
;
8315 if (fragP
->fr_var
< length
)
8317 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP
->fr_var
, length
);
8321 fragP
->fr_fix
+= length
;
8322 fragP
->fr_var
-= length
;
8327 static long future_alignment_required (fragS
*, long);
8330 relax_frag_for_align (fragS
*fragP
, long stretch
)
8332 /* Overview of the relaxation procedure for alignment:
8333 We can widen with NOPs or by widening instructions or by filling
8334 bytes after jump instructions. Find the opportune places and widen
8335 them if necessary. */
8340 assert (fragP
->fr_subtype
== RELAX_FILL_NOP
8341 || fragP
->fr_subtype
== RELAX_UNREACHABLE
8342 || (fragP
->fr_subtype
== RELAX_SLOTS
8343 && fragP
->tc_frag_data
.slot_subtypes
[0] == RELAX_NARROW
));
8345 stretch_me
= future_alignment_required (fragP
, stretch
);
8346 diff
= stretch_me
- fragP
->tc_frag_data
.text_expansion
[0];
8352 /* We expanded on a previous pass. Can we shrink now? */
8353 long shrink
= fragP
->tc_frag_data
.text_expansion
[0] - stretch_me
;
8354 if (shrink
<= stretch
&& stretch
> 0)
8356 fragP
->tc_frag_data
.text_expansion
[0] = stretch_me
;
8362 /* Below here, diff > 0. */
8363 fragP
->tc_frag_data
.text_expansion
[0] = stretch_me
;
8369 /* Return the address of the next frag that should be aligned.
8371 By "address" we mean the address it _would_ be at if there
8372 is no action taken to align it between here and the target frag.
8373 In other words, if no narrows and no fill nops are used between
8374 here and the frag to align, _even_if_ some of the frags we use
8375 to align targets have already expanded on a previous relaxation
8378 Also, count each frag that may be used to help align the target.
8380 Return 0 if there are no frags left in the chain that need to be
8384 find_address_of_next_align_frag (fragS
**fragPP
,
8388 bfd_boolean
*paddable
)
8390 fragS
*fragP
= *fragPP
;
8391 addressT address
= fragP
->fr_address
;
8393 /* Do not reset the counts to 0. */
8397 /* Limit this to a small search. */
8398 if (*widens
>= (int) xtensa_fetch_width
)
8403 address
+= fragP
->fr_fix
;
8405 if (fragP
->fr_type
== rs_fill
)
8406 address
+= fragP
->fr_offset
* fragP
->fr_var
;
8407 else if (fragP
->fr_type
== rs_machine_dependent
)
8409 switch (fragP
->fr_subtype
)
8411 case RELAX_UNREACHABLE
:
8415 case RELAX_FILL_NOP
:
8417 if (!fragP
->tc_frag_data
.is_no_density
)
8422 if (fragP
->tc_frag_data
.slot_subtypes
[0] == RELAX_NARROW
)
8427 address
+= total_frag_text_expansion (fragP
);;
8431 address
+= fragP
->tc_frag_data
.text_expansion
[0];
8434 case RELAX_ALIGN_NEXT_OPCODE
:
8435 case RELAX_DESIRE_ALIGN
:
8439 case RELAX_MAYBE_UNREACHABLE
:
8440 case RELAX_MAYBE_DESIRE_ALIGN
:
8445 /* Just punt if we don't know the type. */
8452 /* Just punt if we don't know the type. */
8456 fragP
= fragP
->fr_next
;
8464 static long bytes_to_stretch (fragS
*, int, int, int, int);
8467 future_alignment_required (fragS
*fragP
, long stretch ATTRIBUTE_UNUSED
)
8469 fragS
*this_frag
= fragP
;
8473 int narrow_nops
= 0;
8474 bfd_boolean paddable
= FALSE
;
8475 offsetT local_opt_diff
;
8478 int stretch_amount
= 0;
8479 int local_stretch_amount
;
8480 int global_stretch_amount
;
8482 address
= find_address_of_next_align_frag
8483 (&fragP
, &wide_nops
, &narrow_nops
, &num_widens
, &paddable
);
8487 if (this_frag
->tc_frag_data
.is_aligning_branch
)
8488 this_frag
->tc_frag_data
.slot_subtypes
[0] = RELAX_IMMED
;
8490 frag_wane (this_frag
);
8494 local_opt_diff
= get_aligned_diff (fragP
, address
, &max_diff
);
8495 opt_diff
= local_opt_diff
;
8496 assert (opt_diff
>= 0);
8497 assert (max_diff
>= opt_diff
);
8502 fragP
= fragP
->fr_next
;
8504 while (fragP
&& opt_diff
< max_diff
&& address
)
8506 /* We only use these to determine if we can exit early
8507 because there will be plenty of ways to align future
8509 int glob_widens
= 0;
8512 bfd_boolean glob_pad
= 0;
8513 address
= find_address_of_next_align_frag
8514 (&fragP
, &glob_widens
, &dnn
, &dw
, &glob_pad
);
8515 /* If there is a padable portion, then skip. */
8516 if (glob_pad
|| glob_widens
>= (1 << branch_align_power (now_seg
)))
8521 offsetT next_m_diff
;
8522 offsetT next_o_diff
;
8524 /* Downrange frags haven't had stretch added to them yet. */
8527 /* The address also includes any text expansion from this
8528 frag in a previous pass, but we don't want that. */
8529 address
-= this_frag
->tc_frag_data
.text_expansion
[0];
8531 /* Assume we are going to move at least opt_diff. In
8532 reality, we might not be able to, but assuming that
8533 we will helps catch cases where moving opt_diff pushes
8534 the next target from aligned to unaligned. */
8535 address
+= opt_diff
;
8537 next_o_diff
= get_aligned_diff (fragP
, address
, &next_m_diff
);
8539 /* Now cleanup for the adjustments to address. */
8540 next_o_diff
+= opt_diff
;
8541 next_m_diff
+= opt_diff
;
8542 if (next_o_diff
<= max_diff
&& next_o_diff
> opt_diff
)
8543 opt_diff
= next_o_diff
;
8544 if (next_m_diff
< max_diff
)
8545 max_diff
= next_m_diff
;
8546 fragP
= fragP
->fr_next
;
8550 /* If there are enough wideners in between, do it. */
8553 if (this_frag
->fr_subtype
== RELAX_UNREACHABLE
)
8555 assert (opt_diff
<= UNREACHABLE_MAX_WIDTH
);
8560 local_stretch_amount
8561 = bytes_to_stretch (this_frag
, wide_nops
, narrow_nops
,
8562 num_widens
, local_opt_diff
);
8563 global_stretch_amount
8564 = bytes_to_stretch (this_frag
, wide_nops
, narrow_nops
,
8565 num_widens
, opt_diff
);
8566 /* If the condition below is true, then the frag couldn't
8567 stretch the correct amount for the global case, so we just
8568 optimize locally. We'll rely on the subsequent frags to get
8569 the correct alignment in the global case. */
8570 if (global_stretch_amount
< local_stretch_amount
)
8571 stretch_amount
= local_stretch_amount
;
8573 stretch_amount
= global_stretch_amount
;
8575 if (this_frag
->fr_subtype
== RELAX_SLOTS
8576 && this_frag
->tc_frag_data
.slot_subtypes
[0] == RELAX_NARROW
)
8577 assert (stretch_amount
<= 1);
8578 else if (this_frag
->fr_subtype
== RELAX_FILL_NOP
)
8580 if (this_frag
->tc_frag_data
.is_no_density
)
8581 assert (stretch_amount
== 3 || stretch_amount
== 0);
8583 assert (stretch_amount
<= 3);
8586 return stretch_amount
;
8590 /* The idea: widen everything you can to get a target or loop aligned,
8591 then start using NOPs.
8593 When we must have a NOP, here is a table of how we decide
8594 (so you don't have to fight through the control flow below):
8596 wide_nops = the number of wide NOPs available for aligning
8597 narrow_nops = the number of narrow NOPs available for aligning
8598 (a subset of wide_nops)
8599 widens = the number of narrow instructions that should be widened
8606 b 0 1 1 (case 3a makes this case unnecessary)
8609 c 0 1 2 (case 4a makes this case unnecessary)
8612 c 0 2 1 (case 5b makes this case unnecessary)
8615 c 0 1 4 (case 6b makes this case unneccesary)
8616 d 1 1 1 (case 6a makes this case unnecessary)
8617 e 0 2 2 (case 6a makes this case unnecessary)
8618 f 0 3 0 (case 6a makes this case unnecessary)
8621 c 1 1 2 (case 7b makes this case unnecessary)
8622 d 0 1 5 (case 7a makes this case unnecessary)
8623 e 0 2 3 (case 7b makes this case unnecessary)
8624 f 0 3 1 (case 7b makes this case unnecessary)
8625 g 1 2 1 (case 7b makes this case unnecessary)
8629 bytes_to_stretch (fragS
*this_frag
,
8635 int bytes_short
= desired_diff
- num_widens
;
8637 assert (desired_diff
>= 0 && desired_diff
< 8);
8638 if (desired_diff
== 0)
8641 assert (wide_nops
> 0 || num_widens
> 0);
8643 /* Always prefer widening to NOP-filling. */
8644 if (bytes_short
< 0)
8646 /* There are enough RELAX_NARROW frags after this one
8647 to align the target without widening this frag in any way. */
8651 if (bytes_short
== 0)
8653 /* Widen every narrow between here and the align target
8654 and the align target will be properly aligned. */
8655 if (this_frag
->fr_subtype
== RELAX_FILL_NOP
)
8661 /* From here we will need at least one NOP to get an alignment.
8662 However, we may not be able to align at all, in which case,
8664 if (this_frag
->fr_subtype
== RELAX_FILL_NOP
)
8666 switch (desired_diff
)
8671 if (!this_frag
->tc_frag_data
.is_no_density
&& narrow_nops
== 1)
8672 return 2; /* case 2 */
8678 return 3; /* case 3a */
8680 if (num_widens
>= 1 && wide_nops
== 1)
8681 return 3; /* case 4a */
8682 if (!this_frag
->tc_frag_data
.is_no_density
&& narrow_nops
== 2)
8683 return 2; /* case 4b */
8686 if (num_widens
>= 2 && wide_nops
== 1)
8687 return 3; /* case 5a */
8688 /* We will need two nops. Are there enough nops
8689 between here and the align target? */
8690 if (wide_nops
< 2 || narrow_nops
== 0)
8692 /* Are there other nops closer that can serve instead? */
8693 if (wide_nops
> 2 && narrow_nops
> 1)
8695 /* Take the density one first, because there might not be
8696 another density one available. */
8697 if (!this_frag
->tc_frag_data
.is_no_density
)
8698 return 2; /* case 5b narrow */
8700 return 3; /* case 5b wide */
8704 return 3; /* case 6a */
8705 else if (num_widens
>= 3 && wide_nops
== 1)
8706 return 3; /* case 6b */
8709 if (wide_nops
== 1 && num_widens
>= 4)
8710 return 3; /* case 7a */
8711 else if (wide_nops
== 2 && num_widens
>= 1)
8712 return 3; /* case 7b */
8720 /* We will need a NOP no matter what, but should we widen
8721 this instruction to help?
8723 This is a RELAX_NARROW frag. */
8724 switch (desired_diff
)
8733 if (wide_nops
>= 1 && num_widens
== 1)
8734 return 1; /* case 4a */
8737 if (wide_nops
>= 1 && num_widens
== 2)
8738 return 1; /* case 5a */
8742 return 0; /* case 6a */
8743 else if (wide_nops
>= 1 && num_widens
== 3)
8744 return 1; /* case 6b */
8747 if (wide_nops
>= 1 && num_widens
== 4)
8748 return 1; /* case 7a */
8749 else if (wide_nops
>= 2 && num_widens
== 1)
8750 return 1; /* case 7b */
8763 relax_frag_immed (segT segP
,
8770 bfd_boolean estimate_only
)
8774 bfd_boolean negatable_branch
= FALSE
;
8775 bfd_boolean branch_jmp_to_next
= FALSE
;
8776 bfd_boolean wide_insn
= FALSE
;
8777 xtensa_isa isa
= xtensa_default_isa
;
8779 offsetT frag_offset
;
8782 int num_text_bytes
, num_literal_bytes
;
8783 int literal_diff
, total_text_diff
, this_text_diff
, first
;
8785 assert (fragP
->fr_opcode
!= NULL
);
8787 xg_clear_vinsn (&cur_vinsn
);
8788 vinsn_from_chars (&cur_vinsn
, fragP
->fr_opcode
);
8789 if (cur_vinsn
.num_slots
> 1)
8792 tinsn
= cur_vinsn
.slots
[slot
];
8793 tinsn_immed_from_frag (&tinsn
, fragP
, slot
);
8795 if (estimate_only
&& xtensa_opcode_is_loop (isa
, tinsn
.opcode
))
8798 if (workaround_b_j_loop_end
&& ! fragP
->tc_frag_data
.is_no_transform
)
8799 branch_jmp_to_next
= is_branch_jmp_to_next (&tinsn
, fragP
);
8801 negatable_branch
= (xtensa_opcode_is_branch (isa
, tinsn
.opcode
) == 1);
8803 old_size
= xtensa_format_length (isa
, fmt
);
8805 /* Special case: replace a branch to the next instruction with a NOP.
8806 This is required to work around a hardware bug in T1040.0 and also
8807 serves as an optimization. */
8809 if (branch_jmp_to_next
8810 && ((old_size
== 2) || (old_size
== 3))
8811 && !next_frag_is_loop_target (fragP
))
8814 /* Here is the fun stuff: Get the immediate field from this
8815 instruction. If it fits, we are done. If not, find the next
8816 instruction sequence that fits. */
8818 frag_offset
= fragP
->fr_opcode
- fragP
->fr_literal
;
8819 istack_init (&istack
);
8820 num_steps
= xg_assembly_relax (&istack
, &tinsn
, segP
, fragP
, frag_offset
,
8821 min_steps
, stretch
);
8822 if (num_steps
< min_steps
)
8824 as_fatal (_("internal error: relaxation failed"));
8828 if (num_steps
> RELAX_IMMED_MAXSTEPS
)
8830 as_fatal (_("internal error: relaxation requires too many steps"));
8834 fragP
->tc_frag_data
.slot_subtypes
[slot
] = (int) RELAX_IMMED
+ num_steps
;
8836 /* Figure out the number of bytes needed. */
8838 num_literal_bytes
= get_num_stack_literal_bytes (&istack
);
8840 num_literal_bytes
- fragP
->tc_frag_data
.literal_expansion
[slot
];
8842 while (istack
.insn
[first
].opcode
== XTENSA_UNDEFINED
)
8844 num_text_bytes
= get_num_stack_text_bytes (&istack
);
8847 num_text_bytes
+= old_size
;
8848 if (opcode_fits_format_slot (istack
.insn
[first
].opcode
, fmt
, slot
))
8849 num_text_bytes
-= xg_get_single_size (istack
.insn
[first
].opcode
);
8851 total_text_diff
= num_text_bytes
- old_size
;
8852 this_text_diff
= total_text_diff
- fragP
->tc_frag_data
.text_expansion
[slot
];
8854 /* It MUST get larger. If not, we could get an infinite loop. */
8855 assert (num_text_bytes
>= 0);
8856 assert (literal_diff
>= 0);
8857 assert (total_text_diff
>= 0);
8859 fragP
->tc_frag_data
.text_expansion
[slot
] = total_text_diff
;
8860 fragP
->tc_frag_data
.literal_expansion
[slot
] = num_literal_bytes
;
8861 assert (fragP
->tc_frag_data
.text_expansion
[slot
] >= 0);
8862 assert (fragP
->tc_frag_data
.literal_expansion
[slot
] >= 0);
8864 /* Find the associated expandable literal for this. */
8865 if (literal_diff
!= 0)
8867 lit_fragP
= fragP
->tc_frag_data
.literal_frags
[slot
];
8870 assert (literal_diff
== 4);
8871 lit_fragP
->tc_frag_data
.unreported_expansion
+= literal_diff
;
8873 /* We expect that the literal section state has NOT been
8875 assert (lit_fragP
->fr_type
== rs_machine_dependent
8876 && lit_fragP
->fr_subtype
== RELAX_LITERAL
);
8877 lit_fragP
->fr_subtype
= RELAX_LITERAL_NR
;
8879 /* We need to mark this section for another iteration
8885 if (negatable_branch
&& istack
.ninsn
> 1)
8886 update_next_frag_state (fragP
);
8888 return this_text_diff
;
8892 /* md_convert_frag Hook and Helper Functions. */
8894 static void convert_frag_align_next_opcode (fragS
*);
8895 static void convert_frag_narrow (segT
, fragS
*, xtensa_format
, int);
8896 static void convert_frag_fill_nop (fragS
*);
8897 static void convert_frag_immed (segT
, fragS
*, int, xtensa_format
, int);
8900 md_convert_frag (bfd
*abfd ATTRIBUTE_UNUSED
, segT sec
, fragS
*fragp
)
8902 static xtensa_insnbuf vbuf
= NULL
;
8903 xtensa_isa isa
= xtensa_default_isa
;
8910 as_where (&file_name
, &line
);
8911 new_logical_line (fragp
->fr_file
, fragp
->fr_line
);
8913 switch (fragp
->fr_subtype
)
8915 case RELAX_ALIGN_NEXT_OPCODE
:
8916 /* Always convert. */
8917 convert_frag_align_next_opcode (fragp
);
8920 case RELAX_DESIRE_ALIGN
:
8921 /* Do nothing. If not aligned already, too bad. */
8925 case RELAX_LITERAL_FINAL
:
8930 vbuf
= xtensa_insnbuf_alloc (isa
);
8932 xtensa_insnbuf_from_chars
8933 (isa
, vbuf
, (unsigned char *) fragp
->fr_opcode
, 0);
8934 fmt
= xtensa_format_decode (isa
, vbuf
);
8935 num_slots
= xtensa_format_num_slots (isa
, fmt
);
8937 for (slot
= 0; slot
< num_slots
; slot
++)
8939 switch (fragp
->tc_frag_data
.slot_subtypes
[slot
])
8942 convert_frag_narrow (sec
, fragp
, fmt
, slot
);
8946 case RELAX_IMMED_STEP1
:
8947 case RELAX_IMMED_STEP2
:
8948 /* Place the immediate. */
8951 fragp
->tc_frag_data
.slot_subtypes
[slot
] - RELAX_IMMED
,
8956 /* This is OK because some slots could have
8957 relaxations and others have none. */
8963 case RELAX_UNREACHABLE
:
8964 memset (&fragp
->fr_literal
[fragp
->fr_fix
], 0, fragp
->fr_var
);
8965 fragp
->fr_fix
+= fragp
->tc_frag_data
.text_expansion
[0];
8966 fragp
->fr_var
-= fragp
->tc_frag_data
.text_expansion
[0];
8970 case RELAX_MAYBE_UNREACHABLE
:
8971 case RELAX_MAYBE_DESIRE_ALIGN
:
8975 case RELAX_FILL_NOP
:
8976 convert_frag_fill_nop (fragp
);
8979 case RELAX_LITERAL_NR
:
8980 if (use_literal_section
)
8982 /* This should have been handled during relaxation. When
8983 relaxing a code segment, literals sometimes need to be
8984 added to the corresponding literal segment. If that
8985 literal segment has already been relaxed, then we end up
8986 in this situation. Marking the literal segments as data
8987 would make this happen less often (since GAS always relaxes
8988 code before data), but we could still get into trouble if
8989 there are instructions in a segment that is not marked as
8990 containing code. Until we can implement a better solution,
8991 cheat and adjust the addresses of all the following frags.
8992 This could break subsequent alignments, but the linker's
8993 literal coalescing will do that anyway. */
8996 fragp
->fr_subtype
= RELAX_LITERAL_FINAL
;
8997 assert (fragp
->tc_frag_data
.unreported_expansion
== 4);
8998 memset (&fragp
->fr_literal
[fragp
->fr_fix
], 0, 4);
9001 for (f
= fragp
->fr_next
; f
; f
= f
->fr_next
)
9005 as_bad (_("invalid relaxation fragment result"));
9010 new_logical_line (file_name
, line
);
9015 convert_frag_align_next_opcode (fragS
*fragp
)
9017 char *nop_buf
; /* Location for Writing. */
9018 bfd_boolean use_no_density
= fragp
->tc_frag_data
.is_no_density
;
9019 addressT aligned_address
;
9023 aligned_address
= get_noop_aligned_address (fragp
, fragp
->fr_address
+
9025 fill_size
= aligned_address
- (fragp
->fr_address
+ fragp
->fr_fix
);
9026 nop_count
= get_text_align_nop_count (fill_size
, use_no_density
);
9027 nop_buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
9029 for (nop
= 0; nop
< nop_count
; nop
++)
9032 nop_size
= get_text_align_nth_nop_size (fill_size
, nop
, use_no_density
);
9034 assemble_nop (nop_size
, nop_buf
);
9035 nop_buf
+= nop_size
;
9038 fragp
->fr_fix
+= fill_size
;
9039 fragp
->fr_var
-= fill_size
;
9044 convert_frag_narrow (segT segP
, fragS
*fragP
, xtensa_format fmt
, int slot
)
9046 TInsn tinsn
, single_target
;
9047 int size
, old_size
, diff
;
9048 offsetT frag_offset
;
9051 tinsn_from_chars (&tinsn
, fragP
->fr_opcode
, 0);
9053 if (fragP
->tc_frag_data
.is_aligning_branch
== 1)
9055 assert (fragP
->tc_frag_data
.text_expansion
[0] == 1
9056 || fragP
->tc_frag_data
.text_expansion
[0] == 0);
9057 convert_frag_immed (segP
, fragP
, fragP
->tc_frag_data
.text_expansion
[0],
9062 if (fragP
->tc_frag_data
.text_expansion
[0] == 0)
9064 /* No conversion. */
9069 assert (fragP
->fr_opcode
!= NULL
);
9071 /* Frags in this relaxation state should only contain
9072 single instruction bundles. */
9073 tinsn_immed_from_frag (&tinsn
, fragP
, 0);
9075 /* Just convert it to a wide form.... */
9077 old_size
= xg_get_single_size (tinsn
.opcode
);
9079 tinsn_init (&single_target
);
9080 frag_offset
= fragP
->fr_opcode
- fragP
->fr_literal
;
9082 if (! xg_is_single_relaxable_insn (&tinsn
, &single_target
, FALSE
))
9084 as_bad (_("unable to widen instruction"));
9088 size
= xg_get_single_size (single_target
.opcode
);
9089 xg_emit_insn_to_buf (&single_target
, fragP
->fr_opcode
, fragP
,
9092 diff
= size
- old_size
;
9094 assert (diff
<= fragP
->fr_var
);
9095 fragP
->fr_var
-= diff
;
9096 fragP
->fr_fix
+= diff
;
9104 convert_frag_fill_nop (fragS
*fragP
)
9106 char *loc
= &fragP
->fr_literal
[fragP
->fr_fix
];
9107 int size
= fragP
->tc_frag_data
.text_expansion
[0];
9108 assert ((unsigned) size
== (fragP
->fr_next
->fr_address
9109 - fragP
->fr_address
- fragP
->fr_fix
));
9112 /* No conversion. */
9116 assemble_nop (size
, loc
);
9117 fragP
->tc_frag_data
.is_insn
= TRUE
;
9118 fragP
->fr_var
-= size
;
9119 fragP
->fr_fix
+= size
;
9124 static fixS
*fix_new_exp_in_seg
9125 (segT
, subsegT
, fragS
*, int, int, expressionS
*, int,
9126 bfd_reloc_code_real_type
);
9127 static void convert_frag_immed_finish_loop (segT
, fragS
*, TInsn
*);
9130 convert_frag_immed (segT segP
,
9136 char *immed_instr
= fragP
->fr_opcode
;
9138 bfd_boolean expanded
= FALSE
;
9139 bfd_boolean branch_jmp_to_next
= FALSE
;
9140 char *fr_opcode
= fragP
->fr_opcode
;
9141 xtensa_isa isa
= xtensa_default_isa
;
9142 bfd_boolean wide_insn
= FALSE
;
9144 bfd_boolean is_loop
;
9146 assert (fr_opcode
!= NULL
);
9148 xg_clear_vinsn (&cur_vinsn
);
9150 vinsn_from_chars (&cur_vinsn
, fr_opcode
);
9151 if (cur_vinsn
.num_slots
> 1)
9154 orig_tinsn
= cur_vinsn
.slots
[slot
];
9155 tinsn_immed_from_frag (&orig_tinsn
, fragP
, slot
);
9157 is_loop
= xtensa_opcode_is_loop (xtensa_default_isa
, orig_tinsn
.opcode
) == 1;
9159 if (workaround_b_j_loop_end
&& ! fragP
->tc_frag_data
.is_no_transform
)
9160 branch_jmp_to_next
= is_branch_jmp_to_next (&orig_tinsn
, fragP
);
9162 if (branch_jmp_to_next
&& !next_frag_is_loop_target (fragP
))
9164 /* Conversion just inserts a NOP and marks the fix as completed. */
9165 bytes
= xtensa_format_length (isa
, fmt
);
9168 cur_vinsn
.slots
[slot
].opcode
=
9169 xtensa_format_slot_nop_opcode (isa
, cur_vinsn
.format
, slot
);
9170 cur_vinsn
.slots
[slot
].ntok
= 0;
9174 bytes
+= fragP
->tc_frag_data
.text_expansion
[0];
9175 assert (bytes
== 2 || bytes
== 3);
9176 build_nop (&cur_vinsn
.slots
[0], bytes
);
9177 fragP
->fr_fix
+= fragP
->tc_frag_data
.text_expansion
[0];
9179 vinsn_to_insnbuf (&cur_vinsn
, fr_opcode
, frag_now
, TRUE
);
9180 xtensa_insnbuf_to_chars
9181 (isa
, cur_vinsn
.insnbuf
, (unsigned char *) fr_opcode
, 0);
9186 /* Here is the fun stuff: Get the immediate field from this
9187 instruction. If it fits, we're done. If not, find the next
9188 instruction sequence that fits. */
9192 symbolS
*lit_sym
= NULL
;
9194 int target_offset
= 0;
9197 symbolS
*gen_label
= NULL
;
9198 offsetT frag_offset
;
9199 bfd_boolean first
= TRUE
;
9200 bfd_boolean last_is_jump
;
9202 /* It does not fit. Find something that does and
9203 convert immediately. */
9204 frag_offset
= fr_opcode
- fragP
->fr_literal
;
9205 istack_init (&istack
);
9206 xg_assembly_relax (&istack
, &orig_tinsn
,
9207 segP
, fragP
, frag_offset
, min_steps
, 0);
9209 old_size
= xtensa_format_length (isa
, fmt
);
9211 /* Assemble this right inline. */
9213 /* First, create the mapping from a label name to the REAL label. */
9215 for (i
= 0; i
< istack
.ninsn
; i
++)
9217 TInsn
*tinsn
= &istack
.insn
[i
];
9220 switch (tinsn
->insn_type
)
9223 if (lit_sym
!= NULL
)
9224 as_bad (_("multiple literals in expansion"));
9225 /* First find the appropriate space in the literal pool. */
9226 lit_frag
= fragP
->tc_frag_data
.literal_frags
[slot
];
9227 if (lit_frag
== NULL
)
9228 as_bad (_("no registered fragment for literal"));
9229 if (tinsn
->ntok
!= 1)
9230 as_bad (_("number of literal tokens != 1"));
9232 /* Set the literal symbol and add a fixup. */
9233 lit_sym
= lit_frag
->fr_symbol
;
9237 if (align_targets
&& !is_loop
)
9239 fragS
*unreach
= fragP
->fr_next
;
9240 while (!(unreach
->fr_type
== rs_machine_dependent
9241 && (unreach
->fr_subtype
== RELAX_MAYBE_UNREACHABLE
9242 || unreach
->fr_subtype
== RELAX_UNREACHABLE
)))
9244 unreach
= unreach
->fr_next
;
9247 assert (unreach
->fr_type
== rs_machine_dependent
9248 && (unreach
->fr_subtype
== RELAX_MAYBE_UNREACHABLE
9249 || unreach
->fr_subtype
== RELAX_UNREACHABLE
));
9251 target_offset
+= unreach
->tc_frag_data
.text_expansion
[0];
9253 assert (gen_label
== NULL
);
9254 gen_label
= symbol_new (FAKE_LABEL_NAME
, now_seg
,
9255 fr_opcode
- fragP
->fr_literal
9256 + target_offset
, fragP
);
9260 if (first
&& wide_insn
)
9262 target_offset
+= xtensa_format_length (isa
, fmt
);
9264 if (!opcode_fits_format_slot (tinsn
->opcode
, fmt
, slot
))
9265 target_offset
+= xg_get_single_size (tinsn
->opcode
);
9268 target_offset
+= xg_get_single_size (tinsn
->opcode
);
9275 last_is_jump
= FALSE
;
9276 for (i
= 0; i
< istack
.ninsn
; i
++)
9278 TInsn
*tinsn
= &istack
.insn
[i
];
9282 bfd_reloc_code_real_type reloc_type
;
9284 switch (tinsn
->insn_type
)
9287 lit_frag
= fragP
->tc_frag_data
.literal_frags
[slot
];
9288 /* Already checked. */
9289 assert (lit_frag
!= NULL
);
9290 assert (lit_sym
!= NULL
);
9291 assert (tinsn
->ntok
== 1);
9293 target_seg
= S_GET_SEGMENT (lit_sym
);
9294 assert (target_seg
);
9295 if (tinsn
->tok
[0].X_op
== O_pltrel
)
9296 reloc_type
= BFD_RELOC_XTENSA_PLT
;
9298 reloc_type
= BFD_RELOC_32
;
9299 fix_new_exp_in_seg (target_seg
, 0, lit_frag
, 0, 4,
9300 &tinsn
->tok
[0], FALSE
, reloc_type
);
9307 xg_resolve_labels (tinsn
, gen_label
);
9308 xg_resolve_literals (tinsn
, lit_sym
);
9309 if (wide_insn
&& first
)
9312 if (opcode_fits_format_slot (tinsn
->opcode
, fmt
, slot
))
9314 cur_vinsn
.slots
[slot
] = *tinsn
;
9318 cur_vinsn
.slots
[slot
].opcode
=
9319 xtensa_format_slot_nop_opcode (isa
, fmt
, slot
);
9320 cur_vinsn
.slots
[slot
].ntok
= 0;
9322 vinsn_to_insnbuf (&cur_vinsn
, immed_instr
, fragP
, TRUE
);
9323 xtensa_insnbuf_to_chars (isa
, cur_vinsn
.insnbuf
,
9324 (unsigned char *) immed_instr
, 0);
9325 fragP
->tc_frag_data
.is_insn
= TRUE
;
9326 size
= xtensa_format_length (isa
, fmt
);
9327 if (!opcode_fits_format_slot (tinsn
->opcode
, fmt
, slot
))
9330 (tinsn
, immed_instr
+ size
, fragP
,
9331 immed_instr
- fragP
->fr_literal
+ size
, TRUE
);
9332 size
+= xg_get_single_size (tinsn
->opcode
);
9337 size
= xg_get_single_size (tinsn
->opcode
);
9338 xg_emit_insn_to_buf (tinsn
, immed_instr
, fragP
,
9339 immed_instr
- fragP
->fr_literal
, TRUE
);
9341 immed_instr
+= size
;
9347 diff
= total_size
- old_size
;
9351 assert (diff
<= fragP
->fr_var
);
9352 fragP
->fr_var
-= diff
;
9353 fragP
->fr_fix
+= diff
;
9356 /* Check for undefined immediates in LOOP instructions. */
9360 sym
= orig_tinsn
.tok
[1].X_add_symbol
;
9361 if (sym
!= NULL
&& !S_IS_DEFINED (sym
))
9363 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym
));
9366 sym
= orig_tinsn
.tok
[1].X_op_symbol
;
9367 if (sym
!= NULL
&& !S_IS_DEFINED (sym
))
9369 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym
));
9374 if (expanded
&& xtensa_opcode_is_loop (isa
, orig_tinsn
.opcode
) == 1)
9375 convert_frag_immed_finish_loop (segP
, fragP
, &orig_tinsn
);
9377 if (expanded
&& is_direct_call_opcode (orig_tinsn
.opcode
))
9379 /* Add an expansion note on the expanded instruction. */
9380 fix_new_exp_in_seg (now_seg
, 0, fragP
, fr_opcode
- fragP
->fr_literal
, 4,
9381 &orig_tinsn
.tok
[0], TRUE
,
9382 BFD_RELOC_XTENSA_ASM_EXPAND
);
9387 /* Add a new fix expression into the desired segment. We have to
9388 switch to that segment to do this. */
9391 fix_new_exp_in_seg (segT new_seg
,
9398 bfd_reloc_code_real_type r_type
)
9402 subsegT subseg
= now_subseg
;
9404 assert (new_seg
!= 0);
9405 subseg_set (new_seg
, new_subseg
);
9407 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pcrel
, r_type
);
9408 subseg_set (seg
, subseg
);
9413 /* Relax a loop instruction so that it can span loop >256 bytes.
9419 addi as, as, lo8 (label-.L1)
9420 addmi as, as, mid8 (label-.L1)
9431 convert_frag_immed_finish_loop (segT segP
, fragS
*fragP
, TInsn
*tinsn
)
9436 unsigned long target
;
9437 static xtensa_insnbuf insnbuf
= NULL
;
9438 unsigned int loop_length
, loop_length_hi
, loop_length_lo
;
9439 xtensa_isa isa
= xtensa_default_isa
;
9440 addressT loop_offset
;
9441 addressT addi_offset
= 9;
9442 addressT addmi_offset
= 12;
9447 insnbuf
= xtensa_insnbuf_alloc (isa
);
9449 /* Get the loop offset. */
9450 loop_offset
= get_expanded_loop_offset (tinsn
->opcode
);
9452 /* Validate that there really is a LOOP at the loop_offset. Because
9453 loops are not bundleable, we can assume that the instruction will be
9455 tinsn_from_chars (&loop_insn
, fragP
->fr_opcode
+ loop_offset
, 0);
9456 tinsn_immed_from_frag (&loop_insn
, fragP
, 0);
9458 assert (xtensa_opcode_is_loop (isa
, loop_insn
.opcode
) == 1);
9459 addi_offset
+= loop_offset
;
9460 addmi_offset
+= loop_offset
;
9462 assert (tinsn
->ntok
== 2);
9463 if (tinsn
->tok
[1].X_op
== O_constant
)
9464 target
= tinsn
->tok
[1].X_add_number
;
9465 else if (tinsn
->tok
[1].X_op
== O_symbol
)
9467 /* Find the fragment. */
9468 symbolS
*sym
= tinsn
->tok
[1].X_add_symbol
;
9469 assert (S_GET_SEGMENT (sym
) == segP
9470 || S_GET_SEGMENT (sym
) == absolute_section
);
9471 target
= (S_GET_VALUE (sym
) + tinsn
->tok
[1].X_add_number
);
9475 as_bad (_("invalid expression evaluation type %d"), tinsn
->tok
[1].X_op
);
9480 know (symbolP
->sy_frag
);
9481 know (!(S_GET_SEGMENT (symbolP
) == absolute_section
)
9482 || symbol_get_frag (symbolP
) == &zero_address_frag
);
9484 loop_length
= target
- (fragP
->fr_address
+ fragP
->fr_fix
);
9485 loop_length_hi
= loop_length
& ~0x0ff;
9486 loop_length_lo
= loop_length
& 0x0ff;
9487 if (loop_length_lo
>= 128)
9489 loop_length_lo
-= 256;
9490 loop_length_hi
+= 256;
9493 /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most
9494 32512. If the loop is larger than that, then we just fail. */
9495 if (loop_length_hi
> 32512)
9496 as_bad_where (fragP
->fr_file
, fragP
->fr_line
,
9497 _("loop too long for LOOP instruction"));
9499 tinsn_from_chars (&addi_insn
, fragP
->fr_opcode
+ addi_offset
, 0);
9500 assert (addi_insn
.opcode
== xtensa_addi_opcode
);
9502 tinsn_from_chars (&addmi_insn
, fragP
->fr_opcode
+ addmi_offset
, 0);
9503 assert (addmi_insn
.opcode
== xtensa_addmi_opcode
);
9505 set_expr_const (&addi_insn
.tok
[2], loop_length_lo
);
9506 tinsn_to_insnbuf (&addi_insn
, insnbuf
);
9508 fragP
->tc_frag_data
.is_insn
= TRUE
;
9509 xtensa_insnbuf_to_chars
9510 (isa
, insnbuf
, (unsigned char *) fragP
->fr_opcode
+ addi_offset
, 0);
9512 set_expr_const (&addmi_insn
.tok
[2], loop_length_hi
);
9513 tinsn_to_insnbuf (&addmi_insn
, insnbuf
);
9514 xtensa_insnbuf_to_chars
9515 (isa
, insnbuf
, (unsigned char *) fragP
->fr_opcode
+ addmi_offset
, 0);
9517 /* Walk through all of the frags from here to the loop end
9518 and mark them as no_transform to keep them from being modified
9519 by the linker. If we ever have a relocation for the
9520 addi/addmi of the difference of two symbols we can remove this. */
9523 for (next_fragP
= fragP
; next_fragP
!= NULL
;
9524 next_fragP
= next_fragP
->fr_next
)
9526 next_fragP
->tc_frag_data
.is_no_transform
= TRUE
;
9527 if (next_fragP
->tc_frag_data
.is_loop_target
)
9529 if (target_count
== 2)
9535 /* A map that keeps information on a per-subsegment basis. This is
9536 maintained during initial assembly, but is invalid once the
9537 subsegments are smashed together. I.E., it cannot be used during
9540 typedef struct subseg_map_struct
9548 float total_freq
; /* fall-through + branch target frequency */
9549 float target_freq
; /* branch target frequency alone */
9551 struct subseg_map_struct
*next
;
9555 static subseg_map
*sseg_map
= NULL
;
9558 get_subseg_info (segT seg
, subsegT subseg
)
9560 subseg_map
*subseg_e
;
9562 for (subseg_e
= sseg_map
; subseg_e
; subseg_e
= subseg_e
->next
)
9564 if (seg
== subseg_e
->seg
&& subseg
== subseg_e
->subseg
)
9572 add_subseg_info (segT seg
, subsegT subseg
)
9574 subseg_map
*subseg_e
= (subseg_map
*) xmalloc (sizeof (subseg_map
));
9575 memset (subseg_e
, 0, sizeof (subseg_map
));
9576 subseg_e
->seg
= seg
;
9577 subseg_e
->subseg
= subseg
;
9578 subseg_e
->flags
= 0;
9579 /* Start off considering every branch target very important. */
9580 subseg_e
->target_freq
= 1.0;
9581 subseg_e
->total_freq
= 1.0;
9582 subseg_e
->next
= sseg_map
;
9583 sseg_map
= subseg_e
;
9589 get_last_insn_flags (segT seg
, subsegT subseg
)
9591 subseg_map
*subseg_e
= get_subseg_info (seg
, subseg
);
9593 return subseg_e
->flags
;
9599 set_last_insn_flags (segT seg
,
9604 subseg_map
*subseg_e
= get_subseg_info (seg
, subseg
);
9606 subseg_e
= add_subseg_info (seg
, subseg
);
9608 subseg_e
->flags
|= fl
;
9610 subseg_e
->flags
&= ~fl
;
9615 get_subseg_total_freq (segT seg
, subsegT subseg
)
9617 subseg_map
*subseg_e
= get_subseg_info (seg
, subseg
);
9619 return subseg_e
->total_freq
;
9625 get_subseg_target_freq (segT seg
, subsegT subseg
)
9627 subseg_map
*subseg_e
= get_subseg_info (seg
, subseg
);
9629 return subseg_e
->target_freq
;
9635 set_subseg_freq (segT seg
, subsegT subseg
, float total_f
, float target_f
)
9637 subseg_map
*subseg_e
= get_subseg_info (seg
, subseg
);
9639 subseg_e
= add_subseg_info (seg
, subseg
);
9640 subseg_e
->total_freq
= total_f
;
9641 subseg_e
->target_freq
= target_f
;
9645 /* Segment Lists and emit_state Stuff. */
9648 xtensa_move_seg_list_to_beginning (seg_list
*head
)
9653 segT literal_section
= head
->seg
;
9655 /* Move the literal section to the front of the section list. */
9656 assert (literal_section
);
9657 if (literal_section
!= stdoutput
->sections
)
9659 bfd_section_list_remove (stdoutput
, literal_section
);
9660 bfd_section_list_prepend (stdoutput
, literal_section
);
9667 static void mark_literal_frags (seg_list
*);
9670 xtensa_move_literals (void)
9673 frchainS
*frchain_from
, *frchain_to
;
9674 fragS
*search_frag
, *next_frag
, *last_frag
, *literal_pool
, *insert_after
;
9675 fragS
**frag_splice
;
9678 fixS
*fix
, *next_fix
, **fix_splice
;
9681 mark_literal_frags (literal_head
->next
);
9682 mark_literal_frags (init_literal_head
->next
);
9683 mark_literal_frags (fini_literal_head
->next
);
9685 if (use_literal_section
)
9688 segment
= literal_head
->next
;
9691 frchain_from
= seg_info (segment
->seg
)->frchainP
;
9692 search_frag
= frchain_from
->frch_root
;
9693 literal_pool
= NULL
;
9695 frag_splice
= &(frchain_from
->frch_root
);
9697 while (!search_frag
->tc_frag_data
.literal_frag
)
9699 assert (search_frag
->fr_fix
== 0
9700 || search_frag
->fr_type
== rs_align
);
9701 search_frag
= search_frag
->fr_next
;
9704 assert (search_frag
->tc_frag_data
.literal_frag
->fr_subtype
9705 == RELAX_LITERAL_POOL_BEGIN
);
9706 xtensa_switch_section_emit_state (&state
, segment
->seg
, 0);
9708 /* Make sure that all the frags in this series are closed, and
9709 that there is at least one left over of zero-size. This
9710 prevents us from making a segment with an frchain without any
9712 frag_variant (rs_fill
, 0, 0, 0, NULL
, 0, NULL
);
9713 xtensa_set_frag_assembly_state (frag_now
);
9714 last_frag
= frag_now
;
9715 frag_variant (rs_fill
, 0, 0, 0, NULL
, 0, NULL
);
9716 xtensa_set_frag_assembly_state (frag_now
);
9718 while (search_frag
!= frag_now
)
9720 next_frag
= search_frag
->fr_next
;
9722 /* First, move the frag out of the literal section and
9723 to the appropriate place. */
9724 if (search_frag
->tc_frag_data
.literal_frag
)
9726 literal_pool
= search_frag
->tc_frag_data
.literal_frag
;
9727 assert (literal_pool
->fr_subtype
== RELAX_LITERAL_POOL_BEGIN
);
9728 frchain_to
= literal_pool
->tc_frag_data
.lit_frchain
;
9729 assert (frchain_to
);
9731 insert_after
= literal_pool
;
9733 while (insert_after
->fr_next
->fr_subtype
!= RELAX_LITERAL_POOL_END
)
9734 insert_after
= insert_after
->fr_next
;
9736 dest_seg
= insert_after
->fr_next
->tc_frag_data
.lit_seg
;
9738 *frag_splice
= next_frag
;
9739 search_frag
->fr_next
= insert_after
->fr_next
;
9740 insert_after
->fr_next
= search_frag
;
9741 search_frag
->tc_frag_data
.lit_seg
= dest_seg
;
9743 /* Now move any fixups associated with this frag to the
9745 fix
= frchain_from
->fix_root
;
9746 fix_splice
= &(frchain_from
->fix_root
);
9749 next_fix
= fix
->fx_next
;
9750 if (fix
->fx_frag
== search_frag
)
9752 *fix_splice
= next_fix
;
9753 fix
->fx_next
= frchain_to
->fix_root
;
9754 frchain_to
->fix_root
= fix
;
9755 if (frchain_to
->fix_tail
== NULL
)
9756 frchain_to
->fix_tail
= fix
;
9759 fix_splice
= &(fix
->fx_next
);
9762 search_frag
= next_frag
;
9765 if (frchain_from
->fix_root
!= NULL
)
9767 frchain_from
= seg_info (segment
->seg
)->frchainP
;
9768 as_warn (_("fixes not all moved from %s"), segment
->seg
->name
);
9770 assert (frchain_from
->fix_root
== NULL
);
9772 frchain_from
->fix_tail
= NULL
;
9773 xtensa_restore_emit_state (&state
);
9774 segment
= segment
->next
;
9777 /* Now fix up the SEGMENT value for all the literal symbols. */
9778 for (lit
= literal_syms
; lit
; lit
= lit
->next
)
9780 symbolS
*lit_sym
= lit
->sym
;
9781 segT dest_seg
= symbol_get_frag (lit_sym
)->tc_frag_data
.lit_seg
;
9783 S_SET_SEGMENT (lit_sym
, dest_seg
);
9788 /* Walk over all the frags for segments in a list and mark them as
9789 containing literals. As clunky as this is, we can't rely on frag_var
9790 and frag_variant to get called in all situations. */
9793 mark_literal_frags (seg_list
*segment
)
9795 frchainS
*frchain_from
;
9800 frchain_from
= seg_info (segment
->seg
)->frchainP
;
9801 search_frag
= frchain_from
->frch_root
;
9804 search_frag
->tc_frag_data
.is_literal
= TRUE
;
9805 search_frag
= search_frag
->fr_next
;
9807 segment
= segment
->next
;
9813 xtensa_reorder_seg_list (seg_list
*head
, segT after
)
9815 /* Move all of the sections in the section list to come
9816 after "after" in the gnu segment list. */
9821 segT literal_section
= head
->seg
;
9823 /* Move the literal section after "after". */
9824 assert (literal_section
);
9825 if (literal_section
!= after
)
9827 bfd_section_list_remove (stdoutput
, literal_section
);
9828 bfd_section_list_insert_after (stdoutput
, after
, literal_section
);
9836 /* Push all the literal segments to the end of the gnu list. */
9839 xtensa_reorder_segments (void)
9846 for (sec
= stdoutput
->sections
; sec
!= NULL
; sec
= sec
->next
)
9852 /* Now that we have the last section, push all the literal
9853 sections to the end. */
9854 xtensa_reorder_seg_list (literal_head
, last_sec
);
9855 xtensa_reorder_seg_list (init_literal_head
, last_sec
);
9856 xtensa_reorder_seg_list (fini_literal_head
, last_sec
);
9858 /* Now perform the final error check. */
9859 for (sec
= stdoutput
->sections
; sec
!= NULL
; sec
= sec
->next
)
9861 assert (new_count
== old_count
);
9865 /* Change the emit state (seg, subseg, and frag related stuff) to the
9866 correct location. Return a emit_state which can be passed to
9867 xtensa_restore_emit_state to return to current fragment. */
9870 xtensa_switch_to_literal_fragment (emit_state
*result
)
9872 if (directive_state
[directive_absolute_literals
])
9874 cache_literal_section (0, default_lit_sections
.lit4_seg_name
,
9875 &default_lit_sections
.lit4_seg
, FALSE
);
9876 xtensa_switch_section_emit_state (result
,
9877 default_lit_sections
.lit4_seg
, 0);
9880 xtensa_switch_to_non_abs_literal_fragment (result
);
9882 /* Do a 4-byte align here. */
9883 frag_align (2, 0, 0);
9884 record_alignment (now_seg
, 2);
9889 xtensa_switch_to_non_abs_literal_fragment (emit_state
*result
)
9891 /* When we mark a literal pool location, we want to put a frag in
9892 the literal pool that points to it. But to do that, we want to
9893 switch_to_literal_fragment. But literal sections don't have
9894 literal pools, so their location is always null, so we would
9895 recurse forever. This is kind of hacky, but it works. */
9897 static bfd_boolean recursive
= FALSE
;
9898 fragS
*pool_location
= get_literal_pool_location (now_seg
);
9899 bfd_boolean is_init
=
9900 (now_seg
&& !strcmp (segment_name (now_seg
), INIT_SECTION_NAME
));
9902 bfd_boolean is_fini
=
9903 (now_seg
&& !strcmp (segment_name (now_seg
), FINI_SECTION_NAME
));
9905 if (pool_location
== NULL
9906 && !use_literal_section
9908 && !is_init
&& ! is_fini
)
9910 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
9912 xtensa_mark_literal_pool_location ();
9916 /* Special case: If we are in the ".fini" or ".init" section, then
9917 we will ALWAYS be generating to the ".fini.literal" and
9918 ".init.literal" sections. */
9922 cache_literal_section (init_literal_head
,
9923 default_lit_sections
.init_lit_seg_name
,
9924 &default_lit_sections
.init_lit_seg
, TRUE
);
9925 xtensa_switch_section_emit_state (result
,
9926 default_lit_sections
.init_lit_seg
, 0);
9930 cache_literal_section (fini_literal_head
,
9931 default_lit_sections
.fini_lit_seg_name
,
9932 &default_lit_sections
.fini_lit_seg
, TRUE
);
9933 xtensa_switch_section_emit_state (result
,
9934 default_lit_sections
.fini_lit_seg
, 0);
9938 cache_literal_section (literal_head
,
9939 default_lit_sections
.lit_seg_name
,
9940 &default_lit_sections
.lit_seg
, TRUE
);
9941 xtensa_switch_section_emit_state (result
,
9942 default_lit_sections
.lit_seg
, 0);
9945 if (!use_literal_section
9946 && !is_init
&& !is_fini
9947 && get_literal_pool_location (now_seg
) != pool_location
)
9949 /* Close whatever frag is there. */
9950 frag_variant (rs_fill
, 0, 0, 0, NULL
, 0, NULL
);
9951 xtensa_set_frag_assembly_state (frag_now
);
9952 frag_now
->tc_frag_data
.literal_frag
= pool_location
;
9953 frag_variant (rs_fill
, 0, 0, 0, NULL
, 0, NULL
);
9954 xtensa_set_frag_assembly_state (frag_now
);
9959 /* Call this function before emitting data into the literal section.
9960 This is a helper function for xtensa_switch_to_literal_fragment.
9961 This is similar to a .section new_now_seg subseg. */
9964 xtensa_switch_section_emit_state (emit_state
*state
,
9966 subsegT new_now_subseg
)
9968 state
->name
= now_seg
->name
;
9969 state
->now_seg
= now_seg
;
9970 state
->now_subseg
= now_subseg
;
9971 state
->generating_literals
= generating_literals
;
9972 generating_literals
++;
9973 subseg_set (new_now_seg
, new_now_subseg
);
9977 /* Use to restore the emitting into the normal place. */
9980 xtensa_restore_emit_state (emit_state
*state
)
9982 generating_literals
= state
->generating_literals
;
9983 subseg_set (state
->now_seg
, state
->now_subseg
);
9987 /* Get a segment of a given name. If the segment is already
9988 present, return it; otherwise, create a new one. */
9991 cache_literal_section (seg_list
*head
,
9994 bfd_boolean is_code
)
9996 segT current_section
= now_seg
;
9997 int current_subsec
= now_subseg
;
10003 /* Check if the named section exists. */
10004 for (seg
= stdoutput
->sections
; seg
; seg
= seg
->next
)
10006 if (!strcmp (segment_name (seg
), name
))
10012 /* Create a new literal section. */
10013 seg
= subseg_new (name
, (subsegT
) 0);
10016 /* Add the newly created literal segment to the specified list. */
10017 seg_list
*n
= (seg_list
*) xmalloc (sizeof (seg_list
));
10019 n
->next
= head
->next
;
10022 bfd_set_section_flags (stdoutput
, seg
, SEC_HAS_CONTENTS
|
10023 SEC_READONLY
| SEC_ALLOC
| SEC_LOAD
10024 | (is_code
? SEC_CODE
: SEC_DATA
));
10025 bfd_set_section_alignment (stdoutput
, seg
, 2);
10029 subseg_set (current_section
, current_subsec
);
10033 /* Property Tables Stuff. */
10035 #define XTENSA_INSN_SEC_NAME ".xt.insn"
10036 #define XTENSA_LIT_SEC_NAME ".xt.lit"
10037 #define XTENSA_PROP_SEC_NAME ".xt.prop"
10039 typedef bfd_boolean (*frag_predicate
) (const fragS
*);
10040 typedef void (*frag_flags_fn
) (const fragS
*, frag_flags
*);
10042 static bfd_boolean
get_frag_is_literal (const fragS
*);
10043 static void xtensa_create_property_segments
10044 (frag_predicate
, frag_predicate
, const char *, xt_section_type
);
10045 static void xtensa_create_xproperty_segments
10046 (frag_flags_fn
, const char *, xt_section_type
);
10047 static segment_info_type
*retrieve_segment_info (segT
);
10048 static segT
retrieve_xtensa_section (char *);
10049 static bfd_boolean
section_has_property (segT
, frag_predicate
);
10050 static bfd_boolean
section_has_xproperty (segT
, frag_flags_fn
);
10051 static void add_xt_block_frags
10052 (segT
, segT
, xtensa_block_info
**, frag_predicate
, frag_predicate
);
10053 static bfd_boolean
xtensa_frag_flags_is_empty (const frag_flags
*);
10054 static void xtensa_frag_flags_init (frag_flags
*);
10055 static void get_frag_property_flags (const fragS
*, frag_flags
*);
10056 static bfd_vma
frag_flags_to_number (const frag_flags
*);
10057 static void add_xt_prop_frags
10058 (segT
, segT
, xtensa_block_info
**, frag_flags_fn
);
10060 /* Set up property tables after relaxation. */
10063 xtensa_post_relax_hook (void)
10065 xtensa_move_seg_list_to_beginning (literal_head
);
10066 xtensa_move_seg_list_to_beginning (init_literal_head
);
10067 xtensa_move_seg_list_to_beginning (fini_literal_head
);
10069 xtensa_find_unmarked_state_frags ();
10071 xtensa_create_property_segments (get_frag_is_literal
,
10073 XTENSA_LIT_SEC_NAME
,
10075 xtensa_create_xproperty_segments (get_frag_property_flags
,
10076 XTENSA_PROP_SEC_NAME
,
10079 if (warn_unaligned_branch_targets
)
10080 bfd_map_over_sections (stdoutput
, xtensa_find_unaligned_branch_targets
, 0);
10081 bfd_map_over_sections (stdoutput
, xtensa_find_unaligned_loops
, 0);
10085 /* This function is only meaningful after xtensa_move_literals. */
10088 get_frag_is_literal (const fragS
*fragP
)
10090 assert (fragP
!= NULL
);
10091 return fragP
->tc_frag_data
.is_literal
;
10096 xtensa_create_property_segments (frag_predicate property_function
,
10097 frag_predicate end_property_function
,
10098 const char *section_name_base
,
10099 xt_section_type sec_type
)
10103 /* Walk over all of the current segments.
10104 Walk over each fragment
10105 For each non-empty fragment,
10106 Build a property record (append where possible). */
10108 for (seclist
= &stdoutput
->sections
;
10109 seclist
&& *seclist
;
10110 seclist
= &(*seclist
)->next
)
10112 segT sec
= *seclist
;
10115 flags
= bfd_get_section_flags (stdoutput
, sec
);
10116 if (flags
& SEC_DEBUGGING
)
10118 if (!(flags
& SEC_ALLOC
))
10121 if (section_has_property (sec
, property_function
))
10123 char *property_section_name
=
10124 xtensa_get_property_section_name (sec
, section_name_base
);
10125 segT insn_sec
= retrieve_xtensa_section (property_section_name
);
10126 segment_info_type
*xt_seg_info
= retrieve_segment_info (insn_sec
);
10127 xtensa_block_info
**xt_blocks
=
10128 &xt_seg_info
->tc_segment_info_data
.blocks
[sec_type
];
10129 /* Walk over all of the frchains here and add new sections. */
10130 add_xt_block_frags (sec
, insn_sec
, xt_blocks
, property_function
,
10131 end_property_function
);
10135 /* Now we fill them out.... */
10137 for (seclist
= &stdoutput
->sections
;
10138 seclist
&& *seclist
;
10139 seclist
= &(*seclist
)->next
)
10141 segment_info_type
*seginfo
;
10142 xtensa_block_info
*block
;
10143 segT sec
= *seclist
;
10145 seginfo
= seg_info (sec
);
10146 block
= seginfo
->tc_segment_info_data
.blocks
[sec_type
];
10150 xtensa_block_info
*cur_block
;
10151 /* This is a section with some data. */
10153 bfd_size_type rec_size
;
10155 for (cur_block
= block
; cur_block
; cur_block
= cur_block
->next
)
10158 rec_size
= num_recs
* 8;
10159 bfd_set_section_size (stdoutput
, sec
, rec_size
);
10161 /* In order to make this work with the assembler, we have to
10162 build some frags and then build the "fixups" for it. It
10163 would be easier to just set the contents then set the
10168 /* Allocate a fragment and leak it. */
10170 bfd_size_type frag_size
;
10172 frchainS
*frchainP
;
10176 frag_size
= sizeof (fragS
) + rec_size
;
10177 fragP
= (fragS
*) xmalloc (frag_size
);
10179 memset (fragP
, 0, frag_size
);
10180 fragP
->fr_address
= 0;
10181 fragP
->fr_next
= NULL
;
10182 fragP
->fr_fix
= rec_size
;
10184 fragP
->fr_type
= rs_fill
;
10185 /* The rest are zeros. */
10187 frchainP
= seginfo
->frchainP
;
10188 frchainP
->frch_root
= fragP
;
10189 frchainP
->frch_last
= fragP
;
10191 fixes
= (fixS
*) xmalloc (sizeof (fixS
) * num_recs
);
10192 memset (fixes
, 0, sizeof (fixS
) * num_recs
);
10194 seginfo
->fix_root
= fixes
;
10195 seginfo
->fix_tail
= &fixes
[num_recs
- 1];
10197 frag_data
= &fragP
->fr_literal
[0];
10198 for (i
= 0; i
< num_recs
; i
++)
10200 fixS
*fix
= &fixes
[i
];
10201 assert (cur_block
);
10203 /* Write the fixup. */
10204 if (i
!= num_recs
- 1)
10205 fix
->fx_next
= &fixes
[i
+ 1];
10207 fix
->fx_next
= NULL
;
10210 fix
->fx_frag
= fragP
;
10211 fix
->fx_where
= i
* 8;
10212 fix
->fx_addsy
= section_symbol (cur_block
->sec
);
10213 fix
->fx_offset
= cur_block
->offset
;
10214 fix
->fx_r_type
= BFD_RELOC_32
;
10215 fix
->fx_file
= "Internal Assembly";
10218 /* Write the length. */
10219 md_number_to_chars (&frag_data
[4 + 8 * i
],
10220 cur_block
->size
, 4);
10221 cur_block
= cur_block
->next
;
10230 xtensa_create_xproperty_segments (frag_flags_fn flag_fn
,
10231 const char *section_name_base
,
10232 xt_section_type sec_type
)
10236 /* Walk over all of the current segments.
10237 Walk over each fragment.
10238 For each fragment that has instructions,
10239 build an instruction record (append where possible). */
10241 for (seclist
= &stdoutput
->sections
;
10242 seclist
&& *seclist
;
10243 seclist
= &(*seclist
)->next
)
10245 segT sec
= *seclist
;
10248 flags
= bfd_get_section_flags (stdoutput
, sec
);
10249 if ((flags
& SEC_DEBUGGING
)
10250 || !(flags
& SEC_ALLOC
)
10251 || (flags
& SEC_MERGE
))
10254 if (section_has_xproperty (sec
, flag_fn
))
10256 char *property_section_name
=
10257 xtensa_get_property_section_name (sec
, section_name_base
);
10258 segT insn_sec
= retrieve_xtensa_section (property_section_name
);
10259 segment_info_type
*xt_seg_info
= retrieve_segment_info (insn_sec
);
10260 xtensa_block_info
**xt_blocks
=
10261 &xt_seg_info
->tc_segment_info_data
.blocks
[sec_type
];
10262 /* Walk over all of the frchains here and add new sections. */
10263 add_xt_prop_frags (sec
, insn_sec
, xt_blocks
, flag_fn
);
10267 /* Now we fill them out.... */
10269 for (seclist
= &stdoutput
->sections
;
10270 seclist
&& *seclist
;
10271 seclist
= &(*seclist
)->next
)
10273 segment_info_type
*seginfo
;
10274 xtensa_block_info
*block
;
10275 segT sec
= *seclist
;
10277 seginfo
= seg_info (sec
);
10278 block
= seginfo
->tc_segment_info_data
.blocks
[sec_type
];
10282 xtensa_block_info
*cur_block
;
10283 /* This is a section with some data. */
10285 bfd_size_type rec_size
;
10287 for (cur_block
= block
; cur_block
; cur_block
= cur_block
->next
)
10290 rec_size
= num_recs
* (8 + 4);
10291 bfd_set_section_size (stdoutput
, sec
, rec_size
);
10293 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
10295 /* In order to make this work with the assembler, we have to build
10296 some frags then build the "fixups" for it. It would be easier to
10297 just set the contents then set the arlents. */
10301 /* Allocate a fragment and (unfortunately) leak it. */
10303 bfd_size_type frag_size
;
10305 frchainS
*frchainP
;
10309 frag_size
= sizeof (fragS
) + rec_size
;
10310 fragP
= (fragS
*) xmalloc (frag_size
);
10312 memset (fragP
, 0, frag_size
);
10313 fragP
->fr_address
= 0;
10314 fragP
->fr_next
= NULL
;
10315 fragP
->fr_fix
= rec_size
;
10317 fragP
->fr_type
= rs_fill
;
10318 /* The rest are zeros. */
10320 frchainP
= seginfo
->frchainP
;
10321 frchainP
->frch_root
= fragP
;
10322 frchainP
->frch_last
= fragP
;
10324 fixes
= (fixS
*) xmalloc (sizeof (fixS
) * num_recs
);
10325 memset (fixes
, 0, sizeof (fixS
) * num_recs
);
10327 seginfo
->fix_root
= fixes
;
10328 seginfo
->fix_tail
= &fixes
[num_recs
- 1];
10330 frag_data
= &fragP
->fr_literal
[0];
10331 for (i
= 0; i
< num_recs
; i
++)
10333 fixS
*fix
= &fixes
[i
];
10334 assert (cur_block
);
10336 /* Write the fixup. */
10337 if (i
!= num_recs
- 1)
10338 fix
->fx_next
= &fixes
[i
+ 1];
10340 fix
->fx_next
= NULL
;
10343 fix
->fx_frag
= fragP
;
10344 fix
->fx_where
= i
* (8 + 4);
10345 fix
->fx_addsy
= section_symbol (cur_block
->sec
);
10346 fix
->fx_offset
= cur_block
->offset
;
10347 fix
->fx_r_type
= BFD_RELOC_32
;
10348 fix
->fx_file
= "Internal Assembly";
10351 /* Write the length. */
10352 md_number_to_chars (&frag_data
[4 + (8+4) * i
],
10353 cur_block
->size
, 4);
10354 md_number_to_chars (&frag_data
[8 + (8+4) * i
],
10355 frag_flags_to_number (&cur_block
->flags
),
10357 cur_block
= cur_block
->next
;
10365 static segment_info_type
*
10366 retrieve_segment_info (segT seg
)
10368 segment_info_type
*seginfo
;
10369 seginfo
= (segment_info_type
*) bfd_get_section_userdata (stdoutput
, seg
);
10372 frchainS
*frchainP
;
10374 seginfo
= (segment_info_type
*) xmalloc (sizeof (*seginfo
));
10375 memset ((void *) seginfo
, 0, sizeof (*seginfo
));
10376 seginfo
->fix_root
= NULL
;
10377 seginfo
->fix_tail
= NULL
;
10378 seginfo
->bfd_section
= seg
;
10380 /* We will not be dealing with these, only our special ones. */
10381 bfd_set_section_userdata (stdoutput
, seg
, (void *) seginfo
);
10383 frchainP
= (frchainS
*) xmalloc (sizeof (frchainS
));
10384 frchainP
->frch_root
= NULL
;
10385 frchainP
->frch_last
= NULL
;
10386 frchainP
->frch_next
= NULL
;
10387 frchainP
->frch_seg
= seg
;
10388 frchainP
->frch_subseg
= 0;
10389 frchainP
->fix_root
= NULL
;
10390 frchainP
->fix_tail
= NULL
;
10391 /* Do not init the objstack. */
10392 /* obstack_begin (&frchainP->frch_obstack, chunksize); */
10393 /* frchainP->frch_frag_now = fragP; */
10394 frchainP
->frch_frag_now
= NULL
;
10396 seginfo
->frchainP
= frchainP
;
10404 retrieve_xtensa_section (char *sec_name
)
10406 bfd
*abfd
= stdoutput
;
10407 flagword flags
, out_flags
, link_once_flags
;
10410 flags
= bfd_get_section_flags (abfd
, now_seg
);
10411 link_once_flags
= (flags
& SEC_LINK_ONCE
);
10412 if (link_once_flags
)
10413 link_once_flags
|= (flags
& SEC_LINK_DUPLICATES
);
10414 out_flags
= (SEC_RELOC
| SEC_HAS_CONTENTS
| SEC_READONLY
| link_once_flags
);
10416 s
= bfd_make_section_old_way (abfd
, sec_name
);
10418 as_bad (_("could not create section %s"), sec_name
);
10419 if (!bfd_set_section_flags (abfd
, s
, out_flags
))
10420 as_bad (_("invalid flag combination on section %s"), sec_name
);
10427 section_has_property (segT sec
, frag_predicate property_function
)
10429 segment_info_type
*seginfo
= seg_info (sec
);
10432 if (seginfo
&& seginfo
->frchainP
)
10434 for (fragP
= seginfo
->frchainP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
10436 if (property_function (fragP
)
10437 && (fragP
->fr_type
!= rs_fill
|| fragP
->fr_fix
!= 0))
10446 section_has_xproperty (segT sec
, frag_flags_fn property_function
)
10448 segment_info_type
*seginfo
= seg_info (sec
);
10451 if (seginfo
&& seginfo
->frchainP
)
10453 for (fragP
= seginfo
->frchainP
->frch_root
; fragP
; fragP
= fragP
->fr_next
)
10455 frag_flags prop_flags
;
10456 property_function (fragP
, &prop_flags
);
10457 if (!xtensa_frag_flags_is_empty (&prop_flags
))
10465 /* Two types of block sections exist right now: literal and insns. */
10468 add_xt_block_frags (segT sec
,
10470 xtensa_block_info
**xt_block
,
10471 frag_predicate property_function
,
10472 frag_predicate end_property_function
)
10474 segment_info_type
*seg_info
;
10475 segment_info_type
*xt_seg_info
;
10476 bfd_vma seg_offset
;
10479 xt_seg_info
= retrieve_segment_info (xt_block_sec
);
10480 seg_info
= retrieve_segment_info (sec
);
10482 /* Build it if needed. */
10483 while (*xt_block
!= NULL
)
10484 xt_block
= &(*xt_block
)->next
;
10485 /* We are either at NULL at the beginning or at the end. */
10487 /* Walk through the frags. */
10490 if (seg_info
->frchainP
)
10492 for (fragP
= seg_info
->frchainP
->frch_root
;
10494 fragP
= fragP
->fr_next
)
10496 if (property_function (fragP
)
10497 && (fragP
->fr_type
!= rs_fill
|| fragP
->fr_fix
!= 0))
10499 if (*xt_block
!= NULL
)
10501 if ((*xt_block
)->offset
+ (*xt_block
)->size
10502 == fragP
->fr_address
)
10503 (*xt_block
)->size
+= fragP
->fr_fix
;
10505 xt_block
= &((*xt_block
)->next
);
10507 if (*xt_block
== NULL
)
10509 xtensa_block_info
*new_block
= (xtensa_block_info
*)
10510 xmalloc (sizeof (xtensa_block_info
));
10511 new_block
->sec
= sec
;
10512 new_block
->offset
= fragP
->fr_address
;
10513 new_block
->size
= fragP
->fr_fix
;
10514 new_block
->next
= NULL
;
10515 xtensa_frag_flags_init (&new_block
->flags
);
10516 *xt_block
= new_block
;
10518 if (end_property_function
10519 && end_property_function (fragP
))
10521 xt_block
= &((*xt_block
)->next
);
10529 /* Break the encapsulation of add_xt_prop_frags here. */
10532 xtensa_frag_flags_is_empty (const frag_flags
*prop_flags
)
10534 if (prop_flags
->is_literal
10535 || prop_flags
->is_insn
10536 || prop_flags
->is_data
10537 || prop_flags
->is_unreachable
)
10544 xtensa_frag_flags_init (frag_flags
*prop_flags
)
10546 memset (prop_flags
, 0, sizeof (frag_flags
));
10551 get_frag_property_flags (const fragS
*fragP
, frag_flags
*prop_flags
)
10553 xtensa_frag_flags_init (prop_flags
);
10554 if (fragP
->tc_frag_data
.is_literal
)
10555 prop_flags
->is_literal
= TRUE
;
10556 if (fragP
->tc_frag_data
.is_unreachable
)
10557 prop_flags
->is_unreachable
= TRUE
;
10558 else if (fragP
->tc_frag_data
.is_insn
)
10560 prop_flags
->is_insn
= TRUE
;
10561 if (fragP
->tc_frag_data
.is_loop_target
)
10562 prop_flags
->insn
.is_loop_target
= TRUE
;
10563 if (fragP
->tc_frag_data
.is_branch_target
)
10564 prop_flags
->insn
.is_branch_target
= TRUE
;
10565 if (fragP
->tc_frag_data
.is_specific_opcode
10566 || fragP
->tc_frag_data
.is_no_transform
)
10567 prop_flags
->insn
.is_no_transform
= TRUE
;
10568 if (fragP
->tc_frag_data
.is_no_density
)
10569 prop_flags
->insn
.is_no_density
= TRUE
;
10570 if (fragP
->tc_frag_data
.use_absolute_literals
)
10571 prop_flags
->insn
.is_abslit
= TRUE
;
10573 if (fragP
->tc_frag_data
.is_align
)
10575 prop_flags
->is_align
= TRUE
;
10576 prop_flags
->alignment
= fragP
->tc_frag_data
.alignment
;
10577 if (xtensa_frag_flags_is_empty (prop_flags
))
10578 prop_flags
->is_data
= TRUE
;
10584 frag_flags_to_number (const frag_flags
*prop_flags
)
10587 if (prop_flags
->is_literal
)
10588 num
|= XTENSA_PROP_LITERAL
;
10589 if (prop_flags
->is_insn
)
10590 num
|= XTENSA_PROP_INSN
;
10591 if (prop_flags
->is_data
)
10592 num
|= XTENSA_PROP_DATA
;
10593 if (prop_flags
->is_unreachable
)
10594 num
|= XTENSA_PROP_UNREACHABLE
;
10595 if (prop_flags
->insn
.is_loop_target
)
10596 num
|= XTENSA_PROP_INSN_LOOP_TARGET
;
10597 if (prop_flags
->insn
.is_branch_target
)
10599 num
|= XTENSA_PROP_INSN_BRANCH_TARGET
;
10600 num
= SET_XTENSA_PROP_BT_ALIGN (num
, prop_flags
->insn
.bt_align_priority
);
10603 if (prop_flags
->insn
.is_no_density
)
10604 num
|= XTENSA_PROP_INSN_NO_DENSITY
;
10605 if (prop_flags
->insn
.is_no_transform
)
10606 num
|= XTENSA_PROP_INSN_NO_TRANSFORM
;
10607 if (prop_flags
->insn
.is_no_reorder
)
10608 num
|= XTENSA_PROP_INSN_NO_REORDER
;
10609 if (prop_flags
->insn
.is_abslit
)
10610 num
|= XTENSA_PROP_INSN_ABSLIT
;
10612 if (prop_flags
->is_align
)
10614 num
|= XTENSA_PROP_ALIGN
;
10615 num
= SET_XTENSA_PROP_ALIGNMENT (num
, prop_flags
->alignment
);
10623 xtensa_frag_flags_combinable (const frag_flags
*prop_flags_1
,
10624 const frag_flags
*prop_flags_2
)
10626 /* Cannot combine with an end marker. */
10628 if (prop_flags_1
->is_literal
!= prop_flags_2
->is_literal
)
10630 if (prop_flags_1
->is_insn
!= prop_flags_2
->is_insn
)
10632 if (prop_flags_1
->is_data
!= prop_flags_2
->is_data
)
10635 if (prop_flags_1
->is_insn
)
10637 /* Properties of the beginning of the frag. */
10638 if (prop_flags_2
->insn
.is_loop_target
)
10640 if (prop_flags_2
->insn
.is_branch_target
)
10642 if (prop_flags_1
->insn
.is_no_density
!=
10643 prop_flags_2
->insn
.is_no_density
)
10645 if (prop_flags_1
->insn
.is_no_transform
!=
10646 prop_flags_2
->insn
.is_no_transform
)
10648 if (prop_flags_1
->insn
.is_no_reorder
!=
10649 prop_flags_2
->insn
.is_no_reorder
)
10651 if (prop_flags_1
->insn
.is_abslit
!=
10652 prop_flags_2
->insn
.is_abslit
)
10656 if (prop_flags_1
->is_align
)
10664 xt_block_aligned_size (const xtensa_block_info
*xt_block
)
10667 unsigned align_bits
;
10669 if (!xt_block
->flags
.is_align
)
10670 return xt_block
->size
;
10672 end_addr
= xt_block
->offset
+ xt_block
->size
;
10673 align_bits
= xt_block
->flags
.alignment
;
10674 end_addr
= ((end_addr
+ ((1 << align_bits
) -1)) >> align_bits
) << align_bits
;
10675 return end_addr
- xt_block
->offset
;
10680 xtensa_xt_block_combine (xtensa_block_info
*xt_block
,
10681 const xtensa_block_info
*xt_block_2
)
10683 if (xt_block
->sec
!= xt_block_2
->sec
)
10685 if (xt_block
->offset
+ xt_block_aligned_size (xt_block
)
10686 != xt_block_2
->offset
)
10689 if (xt_block_2
->size
== 0
10690 && (!xt_block_2
->flags
.is_unreachable
10691 || xt_block
->flags
.is_unreachable
))
10693 if (xt_block_2
->flags
.is_align
10694 && xt_block
->flags
.is_align
)
10696 /* Nothing needed. */
10697 if (xt_block
->flags
.alignment
>= xt_block_2
->flags
.alignment
)
10702 if (xt_block_2
->flags
.is_align
)
10704 /* Push alignment to previous entry. */
10705 xt_block
->flags
.is_align
= xt_block_2
->flags
.is_align
;
10706 xt_block
->flags
.alignment
= xt_block_2
->flags
.alignment
;
10711 if (!xtensa_frag_flags_combinable (&xt_block
->flags
,
10712 &xt_block_2
->flags
))
10715 xt_block
->size
+= xt_block_2
->size
;
10717 if (xt_block_2
->flags
.is_align
)
10719 xt_block
->flags
.is_align
= TRUE
;
10720 xt_block
->flags
.alignment
= xt_block_2
->flags
.alignment
;
10728 add_xt_prop_frags (segT sec
,
10730 xtensa_block_info
**xt_block
,
10731 frag_flags_fn property_function
)
10733 segment_info_type
*seg_info
;
10734 segment_info_type
*xt_seg_info
;
10735 bfd_vma seg_offset
;
10738 xt_seg_info
= retrieve_segment_info (xt_block_sec
);
10739 seg_info
= retrieve_segment_info (sec
);
10740 /* Build it if needed. */
10741 while (*xt_block
!= NULL
)
10743 xt_block
= &(*xt_block
)->next
;
10745 /* We are either at NULL at the beginning or at the end. */
10747 /* Walk through the frags. */
10750 if (seg_info
->frchainP
)
10752 for (fragP
= seg_info
->frchainP
->frch_root
; fragP
;
10753 fragP
= fragP
->fr_next
)
10755 xtensa_block_info tmp_block
;
10756 tmp_block
.sec
= sec
;
10757 tmp_block
.offset
= fragP
->fr_address
;
10758 tmp_block
.size
= fragP
->fr_fix
;
10759 tmp_block
.next
= NULL
;
10760 property_function (fragP
, &tmp_block
.flags
);
10762 if (!xtensa_frag_flags_is_empty (&tmp_block
.flags
))
10763 /* && fragP->fr_fix != 0) */
10765 if ((*xt_block
) == NULL
10766 || !xtensa_xt_block_combine (*xt_block
, &tmp_block
))
10768 xtensa_block_info
*new_block
;
10769 if ((*xt_block
) != NULL
)
10770 xt_block
= &(*xt_block
)->next
;
10771 new_block
= (xtensa_block_info
*)
10772 xmalloc (sizeof (xtensa_block_info
));
10773 *new_block
= tmp_block
;
10774 *xt_block
= new_block
;
10782 /* op_placement_info_table */
10784 /* op_placement_info makes it easier to determine which
10785 ops can go in which slots. */
10788 init_op_placement_info_table (void)
10790 xtensa_isa isa
= xtensa_default_isa
;
10791 xtensa_insnbuf ibuf
= xtensa_insnbuf_alloc (isa
);
10792 xtensa_opcode opcode
;
10795 int num_opcodes
= xtensa_isa_num_opcodes (isa
);
10797 op_placement_table
= (op_placement_info_table
)
10798 xmalloc (sizeof (op_placement_info
) * num_opcodes
);
10799 assert (xtensa_isa_num_formats (isa
) < MAX_FORMATS
);
10801 for (opcode
= 0; opcode
< num_opcodes
; opcode
++)
10803 op_placement_info
*opi
= &op_placement_table
[opcode
];
10804 /* FIXME: Make tinsn allocation dynamic. */
10805 if (xtensa_opcode_num_operands (isa
, opcode
) >= MAX_INSN_ARGS
)
10806 as_fatal (_("too many operands in instruction"));
10807 opi
->narrowest
= XTENSA_UNDEFINED
;
10808 opi
->narrowest_size
= 0x7F;
10809 opi
->narrowest_slot
= 0;
10811 opi
->num_formats
= 0;
10813 for (fmt
= 0; fmt
< xtensa_isa_num_formats (isa
); fmt
++)
10815 opi
->slots
[fmt
] = 0;
10816 for (slot
= 0; slot
< xtensa_format_num_slots (isa
, fmt
); slot
++)
10818 if (xtensa_opcode_encode (isa
, fmt
, slot
, ibuf
, opcode
) == 0)
10820 int fmt_length
= xtensa_format_length (isa
, fmt
);
10822 set_bit (fmt
, opi
->formats
);
10823 set_bit (slot
, opi
->slots
[fmt
]);
10824 if (fmt_length
< opi
->narrowest_size
10825 || (fmt_length
== opi
->narrowest_size
10826 && (xtensa_format_num_slots (isa
, fmt
)
10827 < xtensa_format_num_slots (isa
,
10830 opi
->narrowest
= fmt
;
10831 opi
->narrowest_size
= fmt_length
;
10832 opi
->narrowest_slot
= slot
;
10837 opi
->num_formats
++;
10840 xtensa_insnbuf_free (isa
, ibuf
);
10845 opcode_fits_format_slot (xtensa_opcode opcode
, xtensa_format fmt
, int slot
)
10847 return bit_is_set (slot
, op_placement_table
[opcode
].slots
[fmt
]);
10851 /* If the opcode is available in a single slot format, return its size. */
10854 xg_get_single_size (xtensa_opcode opcode
)
10856 return op_placement_table
[opcode
].narrowest_size
;
10860 static xtensa_format
10861 xg_get_single_format (xtensa_opcode opcode
)
10863 return op_placement_table
[opcode
].narrowest
;
10868 xg_get_single_slot (xtensa_opcode opcode
)
10870 return op_placement_table
[opcode
].narrowest_slot
;
10874 /* Instruction Stack Functions (from "xtensa-istack.h"). */
10877 istack_init (IStack
*stack
)
10879 memset (stack
, 0, sizeof (IStack
));
10885 istack_empty (IStack
*stack
)
10887 return (stack
->ninsn
== 0);
10892 istack_full (IStack
*stack
)
10894 return (stack
->ninsn
== MAX_ISTACK
);
10898 /* Return a pointer to the top IStack entry.
10899 It is an error to call this if istack_empty () is TRUE. */
10902 istack_top (IStack
*stack
)
10904 int rec
= stack
->ninsn
- 1;
10905 assert (!istack_empty (stack
));
10906 return &stack
->insn
[rec
];
10910 /* Add a new TInsn to an IStack.
10911 It is an error to call this if istack_full () is TRUE. */
10914 istack_push (IStack
*stack
, TInsn
*insn
)
10916 int rec
= stack
->ninsn
;
10917 assert (!istack_full (stack
));
10918 stack
->insn
[rec
] = *insn
;
10923 /* Clear space for the next TInsn on the IStack and return a pointer
10924 to it. It is an error to call this if istack_full () is TRUE. */
10927 istack_push_space (IStack
*stack
)
10929 int rec
= stack
->ninsn
;
10931 assert (!istack_full (stack
));
10932 insn
= &stack
->insn
[rec
];
10933 memset (insn
, 0, sizeof (TInsn
));
10939 /* Remove the last pushed instruction. It is an error to call this if
10940 istack_empty () returns TRUE. */
10943 istack_pop (IStack
*stack
)
10945 int rec
= stack
->ninsn
- 1;
10946 assert (!istack_empty (stack
));
10948 memset (&stack
->insn
[rec
], 0, sizeof (TInsn
));
10952 /* TInsn functions. */
10955 tinsn_init (TInsn
*dst
)
10957 memset (dst
, 0, sizeof (TInsn
));
10961 /* Get the ``num''th token of the TInsn.
10962 It is illegal to call this if num > insn->ntoks. */
10965 tinsn_get_tok (TInsn
*insn
, int num
)
10967 assert (num
< insn
->ntok
);
10968 return &insn
->tok
[num
];
10972 /* Return TRUE if ANY of the operands in the insn are symbolic. */
10975 tinsn_has_symbolic_operands (const TInsn
*insn
)
10978 int n
= insn
->ntok
;
10980 assert (insn
->insn_type
== ITYPE_INSN
);
10982 for (i
= 0; i
< n
; ++i
)
10984 switch (insn
->tok
[i
].X_op
)
10998 tinsn_has_invalid_symbolic_operands (const TInsn
*insn
)
11000 xtensa_isa isa
= xtensa_default_isa
;
11002 int n
= insn
->ntok
;
11004 assert (insn
->insn_type
== ITYPE_INSN
);
11006 for (i
= 0; i
< n
; ++i
)
11008 switch (insn
->tok
[i
].X_op
)
11016 /* Errors for these types are caught later. */
11021 /* Symbolic immediates are only allowed on the last immediate
11022 operand. At this time, CONST16 is the only opcode where we
11023 support non-PC-relative relocations. */
11024 if (i
!= get_relaxable_immed (insn
->opcode
)
11025 || (xtensa_operand_is_PCrelative (isa
, insn
->opcode
, i
) != 1
11026 && insn
->opcode
!= xtensa_const16_opcode
))
11028 as_bad (_("invalid symbolic operand"));
11037 /* For assembly code with complex expressions (e.g. subtraction),
11038 we have to build them in the literal pool so that
11039 their results are calculated correctly after relaxation.
11040 The relaxation only handles expressions that
11041 boil down to SYMBOL + OFFSET. */
11044 tinsn_has_complex_operands (const TInsn
*insn
)
11047 int n
= insn
->ntok
;
11048 assert (insn
->insn_type
== ITYPE_INSN
);
11049 for (i
= 0; i
< n
; ++i
)
11051 switch (insn
->tok
[i
].X_op
)
11067 /* Encode a TInsn opcode and its constant operands into slotbuf.
11068 Return TRUE if there is a symbol in the immediate field. This
11069 function assumes that:
11070 1) The number of operands are correct.
11071 2) The insn_type is ITYPE_INSN.
11072 3) The opcode can be encoded in the specified format and slot.
11073 4) Operands are either O_constant or O_symbol, and all constants fit. */
11076 tinsn_to_slotbuf (xtensa_format fmt
,
11079 xtensa_insnbuf slotbuf
)
11081 xtensa_isa isa
= xtensa_default_isa
;
11082 xtensa_opcode opcode
= tinsn
->opcode
;
11083 bfd_boolean has_fixup
= FALSE
;
11084 int noperands
= xtensa_opcode_num_operands (isa
, opcode
);
11087 assert (tinsn
->insn_type
== ITYPE_INSN
);
11088 if (noperands
!= tinsn
->ntok
)
11089 as_fatal (_("operand number mismatch"));
11091 if (xtensa_opcode_encode (isa
, fmt
, slot
, slotbuf
, opcode
))
11093 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
11094 xtensa_opcode_name (isa
, opcode
), xtensa_format_name (isa
, fmt
));
11098 for (i
= 0; i
< noperands
; i
++)
11100 expressionS
*expr
= &tinsn
->tok
[i
];
11106 switch (expr
->X_op
)
11109 if (xtensa_operand_is_visible (isa
, opcode
, i
) == 0)
11111 /* The register number has already been checked in
11112 expression_maybe_register, so we don't need to check here. */
11113 opnd_value
= expr
->X_add_number
;
11114 (void) xtensa_operand_encode (isa
, opcode
, i
, &opnd_value
);
11115 rc
= xtensa_operand_set_field (isa
, opcode
, i
, fmt
, slot
, slotbuf
,
11118 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa
));
11122 if (xtensa_operand_is_visible (isa
, opcode
, i
) == 0)
11124 as_where (&file_name
, &line
);
11125 /* It is a constant and we called this function
11126 then we have to try to fit it. */
11127 xtensa_insnbuf_set_operand (slotbuf
, fmt
, slot
, opcode
, i
,
11128 expr
->X_add_number
, file_name
, line
);
11141 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
11142 into a multi-slot instruction, fill the other slots with NOPs.
11143 Return TRUE if there is a symbol in the immediate field. See also the
11144 assumptions listed for tinsn_to_slotbuf. */
11147 tinsn_to_insnbuf (TInsn
*tinsn
, xtensa_insnbuf insnbuf
)
11149 static xtensa_insnbuf slotbuf
= 0;
11150 static vliw_insn vinsn
;
11151 xtensa_isa isa
= xtensa_default_isa
;
11152 bfd_boolean has_fixup
= FALSE
;
11157 slotbuf
= xtensa_insnbuf_alloc (isa
);
11158 xg_init_vinsn (&vinsn
);
11161 xg_clear_vinsn (&vinsn
);
11163 bundle_tinsn (tinsn
, &vinsn
);
11165 xtensa_format_encode (isa
, vinsn
.format
, insnbuf
);
11167 for (i
= 0; i
< vinsn
.num_slots
; i
++)
11169 /* Only one slot may have a fix-up because the rest contains NOPs. */
11171 tinsn_to_slotbuf (vinsn
.format
, i
, &vinsn
.slots
[i
], vinsn
.slotbuf
[i
]);
11172 xtensa_format_set_slot (isa
, vinsn
.format
, i
, insnbuf
, vinsn
.slotbuf
[i
]);
11179 /* Check the instruction arguments. Return TRUE on failure. */
11182 tinsn_check_arguments (const TInsn
*insn
)
11184 xtensa_isa isa
= xtensa_default_isa
;
11185 xtensa_opcode opcode
= insn
->opcode
;
11187 if (opcode
== XTENSA_UNDEFINED
)
11189 as_bad (_("invalid opcode"));
11193 if (xtensa_opcode_num_operands (isa
, opcode
) > insn
->ntok
)
11195 as_bad (_("too few operands"));
11199 if (xtensa_opcode_num_operands (isa
, opcode
) < insn
->ntok
)
11201 as_bad (_("too many operands"));
11208 /* Load an instruction from its encoded form. */
11211 tinsn_from_chars (TInsn
*tinsn
, char *f
, int slot
)
11215 xg_init_vinsn (&vinsn
);
11216 vinsn_from_chars (&vinsn
, f
);
11218 *tinsn
= vinsn
.slots
[slot
];
11219 xg_free_vinsn (&vinsn
);
11224 tinsn_from_insnbuf (TInsn
*tinsn
,
11225 xtensa_insnbuf slotbuf
,
11230 xtensa_isa isa
= xtensa_default_isa
;
11232 /* Find the immed. */
11233 tinsn_init (tinsn
);
11234 tinsn
->insn_type
= ITYPE_INSN
;
11235 tinsn
->is_specific_opcode
= FALSE
; /* must not be specific */
11236 tinsn
->opcode
= xtensa_opcode_decode (isa
, fmt
, slot
, slotbuf
);
11237 tinsn
->ntok
= xtensa_opcode_num_operands (isa
, tinsn
->opcode
);
11238 for (i
= 0; i
< tinsn
->ntok
; i
++)
11240 set_expr_const (&tinsn
->tok
[i
],
11241 xtensa_insnbuf_get_operand (slotbuf
, fmt
, slot
,
11242 tinsn
->opcode
, i
));
11247 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
11250 tinsn_immed_from_frag (TInsn
*tinsn
, fragS
*fragP
, int slot
)
11252 xtensa_opcode opcode
= tinsn
->opcode
;
11255 if (fragP
->tc_frag_data
.slot_symbols
[slot
])
11257 opnum
= get_relaxable_immed (opcode
);
11258 assert (opnum
>= 0);
11259 set_expr_symbol_offset (&tinsn
->tok
[opnum
],
11260 fragP
->tc_frag_data
.slot_symbols
[slot
],
11261 fragP
->tc_frag_data
.slot_offsets
[slot
]);
11267 get_num_stack_text_bytes (IStack
*istack
)
11270 int text_bytes
= 0;
11272 for (i
= 0; i
< istack
->ninsn
; i
++)
11274 TInsn
*tinsn
= &istack
->insn
[i
];
11275 if (tinsn
->insn_type
== ITYPE_INSN
)
11276 text_bytes
+= xg_get_single_size (tinsn
->opcode
);
11283 get_num_stack_literal_bytes (IStack
*istack
)
11288 for (i
= 0; i
< istack
->ninsn
; i
++)
11290 TInsn
*tinsn
= &istack
->insn
[i
];
11291 if (tinsn
->insn_type
== ITYPE_LITERAL
&& tinsn
->ntok
== 1)
11298 /* vliw_insn functions. */
11301 xg_init_vinsn (vliw_insn
*v
)
11304 xtensa_isa isa
= xtensa_default_isa
;
11306 xg_clear_vinsn (v
);
11308 v
->insnbuf
= xtensa_insnbuf_alloc (isa
);
11309 if (v
->insnbuf
== NULL
)
11310 as_fatal (_("out of memory"));
11312 for (i
= 0; i
< MAX_SLOTS
; i
++)
11314 v
->slotbuf
[i
] = xtensa_insnbuf_alloc (isa
);
11315 if (v
->slotbuf
[i
] == NULL
)
11316 as_fatal (_("out of memory"));
11322 xg_clear_vinsn (vliw_insn
*v
)
11326 memset (v
, 0, offsetof (vliw_insn
, insnbuf
));
11328 v
->format
= XTENSA_UNDEFINED
;
11330 v
->inside_bundle
= FALSE
;
11332 if (xt_saved_debug_type
!= DEBUG_NONE
)
11333 debug_type
= xt_saved_debug_type
;
11335 for (i
= 0; i
< MAX_SLOTS
; i
++)
11336 v
->slots
[i
].opcode
= XTENSA_UNDEFINED
;
11341 vinsn_has_specific_opcodes (vliw_insn
*v
)
11345 for (i
= 0; i
< v
->num_slots
; i
++)
11347 if (v
->slots
[i
].is_specific_opcode
)
11355 xg_free_vinsn (vliw_insn
*v
)
11358 xtensa_insnbuf_free (xtensa_default_isa
, v
->insnbuf
);
11359 for (i
= 0; i
< MAX_SLOTS
; i
++)
11360 xtensa_insnbuf_free (xtensa_default_isa
, v
->slotbuf
[i
]);
11364 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
11365 operands. See also the assumptions listed for tinsn_to_slotbuf. */
11368 vinsn_to_insnbuf (vliw_insn
*vinsn
,
11371 bfd_boolean record_fixup
)
11373 xtensa_isa isa
= xtensa_default_isa
;
11374 xtensa_format fmt
= vinsn
->format
;
11375 xtensa_insnbuf insnbuf
= vinsn
->insnbuf
;
11377 bfd_boolean has_fixup
= FALSE
;
11379 xtensa_format_encode (isa
, fmt
, insnbuf
);
11381 for (slot
= 0; slot
< vinsn
->num_slots
; slot
++)
11383 TInsn
*tinsn
= &vinsn
->slots
[slot
];
11384 bfd_boolean tinsn_has_fixup
=
11385 tinsn_to_slotbuf (vinsn
->format
, slot
, tinsn
,
11386 vinsn
->slotbuf
[slot
]);
11388 xtensa_format_set_slot (isa
, fmt
, slot
,
11389 insnbuf
, vinsn
->slotbuf
[slot
]);
11390 if (tinsn_has_fixup
)
11393 xtensa_opcode opcode
= tinsn
->opcode
;
11394 int noperands
= xtensa_opcode_num_operands (isa
, opcode
);
11397 for (i
= 0; i
< noperands
; i
++)
11399 expressionS
* expr
= &tinsn
->tok
[i
];
11400 switch (expr
->X_op
)
11405 if (get_relaxable_immed (opcode
) == i
)
11407 /* Add a fix record for the instruction, except if this
11408 function is being called prior to relaxation, i.e.,
11409 if record_fixup is false, and the instruction might
11410 be relaxed later. */
11412 || tinsn
->is_specific_opcode
11413 || !xg_is_relaxable_insn (tinsn
, 0))
11415 xg_add_opcode_fix (tinsn
, i
, fmt
, slot
, expr
, fragP
,
11416 frag_offset
- fragP
->fr_literal
);
11420 if (expr
->X_op
!= O_symbol
)
11421 as_bad (_("invalid operand"));
11422 tinsn
->symbol
= expr
->X_add_symbol
;
11423 tinsn
->offset
= expr
->X_add_number
;
11427 as_bad (_("symbolic operand not allowed"));
11435 as_bad (_("expression too complex"));
11447 vinsn_from_chars (vliw_insn
*vinsn
, char *f
)
11449 static xtensa_insnbuf insnbuf
= NULL
;
11450 static xtensa_insnbuf slotbuf
= NULL
;
11453 xtensa_isa isa
= xtensa_default_isa
;
11457 insnbuf
= xtensa_insnbuf_alloc (isa
);
11458 slotbuf
= xtensa_insnbuf_alloc (isa
);
11461 xtensa_insnbuf_from_chars (isa
, insnbuf
, (unsigned char *) f
, 0);
11462 fmt
= xtensa_format_decode (isa
, insnbuf
);
11463 if (fmt
== XTENSA_UNDEFINED
)
11464 as_fatal (_("cannot decode instruction format"));
11465 vinsn
->format
= fmt
;
11466 vinsn
->num_slots
= xtensa_format_num_slots (isa
, fmt
);
11468 for (i
= 0; i
< vinsn
->num_slots
; i
++)
11470 TInsn
*tinsn
= &vinsn
->slots
[i
];
11471 xtensa_format_get_slot (isa
, fmt
, i
, insnbuf
, slotbuf
);
11472 tinsn_from_insnbuf (tinsn
, slotbuf
, fmt
, i
);
11477 /* Expression utilities. */
11479 /* Return TRUE if the expression is an integer constant. */
11482 expr_is_const (const expressionS
*s
)
11484 return (s
->X_op
== O_constant
);
11488 /* Get the expression constant.
11489 Calling this is illegal if expr_is_const () returns TRUE. */
11492 get_expr_const (const expressionS
*s
)
11494 assert (expr_is_const (s
));
11495 return s
->X_add_number
;
11499 /* Set the expression to a constant value. */
11502 set_expr_const (expressionS
*s
, offsetT val
)
11504 s
->X_op
= O_constant
;
11505 s
->X_add_number
= val
;
11506 s
->X_add_symbol
= NULL
;
11507 s
->X_op_symbol
= NULL
;
11512 expr_is_register (const expressionS
*s
)
11514 return (s
->X_op
== O_register
);
11518 /* Get the expression constant.
11519 Calling this is illegal if expr_is_const () returns TRUE. */
11522 get_expr_register (const expressionS
*s
)
11524 assert (expr_is_register (s
));
11525 return s
->X_add_number
;
11529 /* Set the expression to a symbol + constant offset. */
11532 set_expr_symbol_offset (expressionS
*s
, symbolS
*sym
, offsetT offset
)
11534 s
->X_op
= O_symbol
;
11535 s
->X_add_symbol
= sym
;
11536 s
->X_op_symbol
= NULL
; /* unused */
11537 s
->X_add_number
= offset
;
11541 /* Return TRUE if the two expressions are equal. */
11544 expr_is_equal (expressionS
*s1
, expressionS
*s2
)
11546 if (s1
->X_op
!= s2
->X_op
)
11548 if (s1
->X_add_symbol
!= s2
->X_add_symbol
)
11550 if (s1
->X_op_symbol
!= s2
->X_op_symbol
)
11552 if (s1
->X_add_number
!= s2
->X_add_number
)
11559 copy_expr (expressionS
*dst
, const expressionS
*src
)
11561 memcpy (dst
, src
, sizeof (expressionS
));
11565 /* Support for the "--rename-section" option. */
11567 struct rename_section_struct
11571 struct rename_section_struct
*next
;
11574 static struct rename_section_struct
*section_rename
;
11577 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
11578 entries to the section_rename list. Note: Specifying multiple
11579 renamings separated by colons is not documented and is retained only
11580 for backward compatibility. */
11583 build_section_rename (const char *arg
)
11585 struct rename_section_struct
*r
;
11586 char *this_arg
= NULL
;
11587 char *next_arg
= NULL
;
11589 for (this_arg
= xstrdup (arg
); this_arg
!= NULL
; this_arg
= next_arg
)
11591 char *old_name
, *new_name
;
11595 next_arg
= strchr (this_arg
, ':');
11603 old_name
= this_arg
;
11604 new_name
= strchr (this_arg
, '=');
11606 if (*old_name
== '\0')
11608 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
11611 if (!new_name
|| new_name
[1] == '\0')
11613 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
11620 /* Check for invalid section renaming. */
11621 for (r
= section_rename
; r
!= NULL
; r
= r
->next
)
11623 if (strcmp (r
->old_name
, old_name
) == 0)
11624 as_bad (_("section %s renamed multiple times"), old_name
);
11625 if (strcmp (r
->new_name
, new_name
) == 0)
11626 as_bad (_("multiple sections remapped to output section %s"),
11631 r
= (struct rename_section_struct
*)
11632 xmalloc (sizeof (struct rename_section_struct
));
11633 r
->old_name
= xstrdup (old_name
);
11634 r
->new_name
= xstrdup (new_name
);
11635 r
->next
= section_rename
;
11636 section_rename
= r
;
11642 xtensa_section_rename (char *name
)
11644 struct rename_section_struct
*r
= section_rename
;
11646 for (r
= section_rename
; r
!= NULL
; r
= r
->next
)
11648 if (strcmp (r
->old_name
, name
) == 0)
11649 return r
->new_name
;