1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
25 #include "opcode/sparc.h"
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
32 #include "elf/sparc.h"
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
37 static struct bfd_link_hash_table
* sparc64_elf_bfd_link_hash_table_create
39 static reloc_howto_type
*sparc64_elf_reloc_type_lookup
40 PARAMS ((bfd
*, bfd_reloc_code_real_type
));
41 static void sparc64_elf_info_to_howto
42 PARAMS ((bfd
*, arelent
*, Elf_Internal_Rela
*));
44 static void sparc64_elf_build_plt
45 PARAMS((bfd
*, unsigned char *, int));
46 static bfd_vma sparc64_elf_plt_entry_offset
48 static bfd_vma sparc64_elf_plt_ptr_offset
51 static boolean sparc64_elf_check_relocs
52 PARAMS((bfd
*, struct bfd_link_info
*, asection
*sec
,
53 const Elf_Internal_Rela
*));
54 static boolean sparc64_elf_adjust_dynamic_symbol
55 PARAMS((struct bfd_link_info
*, struct elf_link_hash_entry
*));
56 static boolean sparc64_elf_size_dynamic_sections
57 PARAMS((bfd
*, struct bfd_link_info
*));
58 static int sparc64_elf_get_symbol_type
59 PARAMS (( Elf_Internal_Sym
*, int));
60 static boolean sparc64_elf_add_symbol_hook
61 PARAMS ((bfd
*, struct bfd_link_info
*, const Elf_Internal_Sym
*,
62 const char **, flagword
*, asection
**, bfd_vma
*));
63 static void sparc64_elf_symbol_processing
64 PARAMS ((bfd
*, asymbol
*));
66 static boolean sparc64_elf_merge_private_bfd_data
67 PARAMS ((bfd
*, bfd
*));
69 static boolean sparc64_elf_relax_section
70 PARAMS ((bfd
*, asection
*, struct bfd_link_info
*, boolean
*));
71 static boolean sparc64_elf_relocate_section
72 PARAMS ((bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
73 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**));
74 static boolean sparc64_elf_object_p
PARAMS ((bfd
*));
75 static long sparc64_elf_get_reloc_upper_bound
PARAMS ((bfd
*, asection
*));
76 static long sparc64_elf_get_dynamic_reloc_upper_bound
PARAMS ((bfd
*));
77 static boolean sparc64_elf_slurp_one_reloc_table
78 PARAMS ((bfd
*, asection
*, Elf_Internal_Shdr
*, asymbol
**, boolean
));
79 static boolean sparc64_elf_slurp_reloc_table
80 PARAMS ((bfd
*, asection
*, asymbol
**, boolean
));
81 static long sparc64_elf_canonicalize_dynamic_reloc
82 PARAMS ((bfd
*, arelent
**, asymbol
**));
83 static void sparc64_elf_write_relocs
PARAMS ((bfd
*, asection
*, PTR
));
85 /* The relocation "howto" table. */
87 static bfd_reloc_status_type sparc_elf_notsup_reloc
88 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
89 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
90 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
91 static bfd_reloc_status_type sparc_elf_hix22_reloc
92 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
93 static bfd_reloc_status_type sparc_elf_lox10_reloc
94 PARAMS ((bfd
*, arelent
*, asymbol
*, PTR
, asection
*, bfd
*, char **));
96 static reloc_howto_type sparc64_elf_howto_table
[] =
98 HOWTO(R_SPARC_NONE
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_NONE", false,0,0x00000000,true),
99 HOWTO(R_SPARC_8
, 0,0, 8,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_8", false,0,0x000000ff,true),
100 HOWTO(R_SPARC_16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_16", false,0,0x0000ffff,true),
101 HOWTO(R_SPARC_32
, 0,2,32,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_32", false,0,0xffffffff,true),
102 HOWTO(R_SPARC_DISP8
, 0,0, 8,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP8", false,0,0x000000ff,true),
103 HOWTO(R_SPARC_DISP16
, 0,1,16,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP16", false,0,0x0000ffff,true),
104 HOWTO(R_SPARC_DISP32
, 0,2,32,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP32", false,0,0x00ffffff,true),
105 HOWTO(R_SPARC_WDISP30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP30", false,0,0x3fffffff,true),
106 HOWTO(R_SPARC_WDISP22
, 2,2,22,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP22", false,0,0x003fffff,true),
107 HOWTO(R_SPARC_HI22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HI22", false,0,0x003fffff,true),
108 HOWTO(R_SPARC_22
, 0,2,22,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_22", false,0,0x003fffff,true),
109 HOWTO(R_SPARC_13
, 0,2,13,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_13", false,0,0x00001fff,true),
110 HOWTO(R_SPARC_LO10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LO10", false,0,0x000003ff,true),
111 HOWTO(R_SPARC_GOT10
, 0,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT10", false,0,0x000003ff,true),
112 HOWTO(R_SPARC_GOT13
, 0,2,13,false,0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_GOT13", false,0,0x00001fff,true),
113 HOWTO(R_SPARC_GOT22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GOT22", false,0,0x003fffff,true),
114 HOWTO(R_SPARC_PC10
, 0,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC10", false,0,0x000003ff,true),
115 HOWTO(R_SPARC_PC22
, 10,2,22,true, 0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_PC22", false,0,0x003fffff,true),
116 HOWTO(R_SPARC_WPLT30
, 2,2,30,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WPLT30", false,0,0x3fffffff,true),
117 HOWTO(R_SPARC_COPY
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_COPY", false,0,0x00000000,true),
118 HOWTO(R_SPARC_GLOB_DAT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_GLOB_DAT",false,0,0x00000000,true),
119 HOWTO(R_SPARC_JMP_SLOT
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_JMP_SLOT",false,0,0x00000000,true),
120 HOWTO(R_SPARC_RELATIVE
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_RELATIVE",false,0,0x00000000,true),
121 HOWTO(R_SPARC_UA32
, 0,0,00,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UA32", false,0,0x00000000,true),
122 #ifndef SPARC64_OLD_RELOCS
123 /* These aren't implemented yet. */
124 HOWTO(R_SPARC_PLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PLT32", false,0,0x00000000,true),
125 HOWTO(R_SPARC_HIPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_HIPLT22", false,0,0x00000000,true),
126 HOWTO(R_SPARC_LOPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_LOPLT10", false,0,0x00000000,true),
127 HOWTO(R_SPARC_PCPLT32
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT32", false,0,0x00000000,true),
128 HOWTO(R_SPARC_PCPLT22
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT22", false,0,0x00000000,true),
129 HOWTO(R_SPARC_PCPLT10
, 0,0,00,false,0,complain_overflow_dont
, sparc_elf_notsup_reloc
, "R_SPARC_PCPLT10", false,0,0x00000000,true),
131 HOWTO(R_SPARC_10
, 0,2,10,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_10", false,0,0x000003ff,true),
132 HOWTO(R_SPARC_11
, 0,2,11,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_11", false,0,0x000007ff,true),
133 HOWTO(R_SPARC_64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_64", false,0,MINUS_ONE
, true),
134 HOWTO(R_SPARC_OLO10
, 0,2,13,false,0,complain_overflow_signed
, sparc_elf_notsup_reloc
, "R_SPARC_OLO10", false,0,0x00001fff,true),
135 HOWTO(R_SPARC_HH22
, 42,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_HH22", false,0,0x003fffff,true),
136 HOWTO(R_SPARC_HM10
, 32,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_HM10", false,0,0x000003ff,true),
137 HOWTO(R_SPARC_LM22
, 10,2,22,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_LM22", false,0,0x003fffff,true),
138 HOWTO(R_SPARC_PC_HH22
, 42,2,22,true, 0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_PC_HH22", false,0,0x003fffff,true),
139 HOWTO(R_SPARC_PC_HM10
, 32,2,10,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_HM10", false,0,0x000003ff,true),
140 HOWTO(R_SPARC_PC_LM22
, 10,2,22,true, 0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_PC_LM22", false,0,0x003fffff,true),
141 HOWTO(R_SPARC_WDISP16
, 2,2,16,true, 0,complain_overflow_signed
, sparc_elf_wdisp16_reloc
,"R_SPARC_WDISP16", false,0,0x00000000,true),
142 HOWTO(R_SPARC_WDISP19
, 2,2,19,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_WDISP19", false,0,0x0007ffff,true),
143 HOWTO(R_SPARC_UNUSED_42
, 0,0, 0,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_UNUSED_42",false,0,0x00000000,true),
144 HOWTO(R_SPARC_7
, 0,2, 7,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_7", false,0,0x0000007f,true),
145 HOWTO(R_SPARC_5
, 0,2, 5,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_5", false,0,0x0000001f,true),
146 HOWTO(R_SPARC_6
, 0,2, 6,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_6", false,0,0x0000003f,true),
147 HOWTO(R_SPARC_DISP64
, 0,4,64,true, 0,complain_overflow_signed
, bfd_elf_generic_reloc
, "R_SPARC_DISP64", false,0,MINUS_ONE
, true),
148 HOWTO(R_SPARC_PLT64
, 0,4,64,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_PLT64", false,0,MINUS_ONE
, false),
149 HOWTO(R_SPARC_HIX22
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_hix22_reloc
, "R_SPARC_HIX22", false,0,MINUS_ONE
, false),
150 HOWTO(R_SPARC_LOX10
, 0,4, 0,false,0,complain_overflow_dont
, sparc_elf_lox10_reloc
, "R_SPARC_LOX10", false,0,MINUS_ONE
, false),
151 HOWTO(R_SPARC_H44
, 22,2,22,false,0,complain_overflow_unsigned
,bfd_elf_generic_reloc
, "R_SPARC_H44", false,0,0x003fffff,false),
152 HOWTO(R_SPARC_M44
, 12,2,10,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_M44", false,0,0x000003ff,false),
153 HOWTO(R_SPARC_L44
, 0,2,13,false,0,complain_overflow_dont
, bfd_elf_generic_reloc
, "R_SPARC_L44", false,0,0x00000fff,false),
154 HOWTO(R_SPARC_REGISTER
, 0,4, 0,false,0,complain_overflow_bitfield
,sparc_elf_notsup_reloc
, "R_SPARC_REGISTER",false,0,MINUS_ONE
, false),
155 HOWTO(R_SPARC_UA64
, 0,4,64,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA64", false,0,MINUS_ONE
, true),
156 HOWTO(R_SPARC_UA16
, 0,1,16,false,0,complain_overflow_bitfield
,bfd_elf_generic_reloc
, "R_SPARC_UA16", false,0,0x0000ffff,true)
159 struct elf_reloc_map
{
160 bfd_reloc_code_real_type bfd_reloc_val
;
161 unsigned char elf_reloc_val
;
164 static CONST
struct elf_reloc_map sparc_reloc_map
[] =
166 { BFD_RELOC_NONE
, R_SPARC_NONE
, },
167 { BFD_RELOC_16
, R_SPARC_16
, },
168 { BFD_RELOC_8
, R_SPARC_8
},
169 { BFD_RELOC_8_PCREL
, R_SPARC_DISP8
},
170 { BFD_RELOC_CTOR
, R_SPARC_64
},
171 { BFD_RELOC_32
, R_SPARC_32
},
172 { BFD_RELOC_32_PCREL
, R_SPARC_DISP32
},
173 { BFD_RELOC_HI22
, R_SPARC_HI22
},
174 { BFD_RELOC_LO10
, R_SPARC_LO10
, },
175 { BFD_RELOC_32_PCREL_S2
, R_SPARC_WDISP30
},
176 { BFD_RELOC_SPARC22
, R_SPARC_22
},
177 { BFD_RELOC_SPARC13
, R_SPARC_13
},
178 { BFD_RELOC_SPARC_GOT10
, R_SPARC_GOT10
},
179 { BFD_RELOC_SPARC_GOT13
, R_SPARC_GOT13
},
180 { BFD_RELOC_SPARC_GOT22
, R_SPARC_GOT22
},
181 { BFD_RELOC_SPARC_PC10
, R_SPARC_PC10
},
182 { BFD_RELOC_SPARC_PC22
, R_SPARC_PC22
},
183 { BFD_RELOC_SPARC_WPLT30
, R_SPARC_WPLT30
},
184 { BFD_RELOC_SPARC_COPY
, R_SPARC_COPY
},
185 { BFD_RELOC_SPARC_GLOB_DAT
, R_SPARC_GLOB_DAT
},
186 { BFD_RELOC_SPARC_JMP_SLOT
, R_SPARC_JMP_SLOT
},
187 { BFD_RELOC_SPARC_RELATIVE
, R_SPARC_RELATIVE
},
188 { BFD_RELOC_SPARC_WDISP22
, R_SPARC_WDISP22
},
189 /* ??? Doesn't dwarf use this? */
190 /*{ BFD_RELOC_SPARC_UA32, R_SPARC_UA32 }, not used?? */
191 {BFD_RELOC_SPARC_10
, R_SPARC_10
},
192 {BFD_RELOC_SPARC_11
, R_SPARC_11
},
193 {BFD_RELOC_SPARC_64
, R_SPARC_64
},
194 {BFD_RELOC_SPARC_OLO10
, R_SPARC_OLO10
},
195 {BFD_RELOC_SPARC_HH22
, R_SPARC_HH22
},
196 {BFD_RELOC_SPARC_HM10
, R_SPARC_HM10
},
197 {BFD_RELOC_SPARC_LM22
, R_SPARC_LM22
},
198 {BFD_RELOC_SPARC_PC_HH22
, R_SPARC_PC_HH22
},
199 {BFD_RELOC_SPARC_PC_HM10
, R_SPARC_PC_HM10
},
200 {BFD_RELOC_SPARC_PC_LM22
, R_SPARC_PC_LM22
},
201 {BFD_RELOC_SPARC_WDISP16
, R_SPARC_WDISP16
},
202 {BFD_RELOC_SPARC_WDISP19
, R_SPARC_WDISP19
},
203 {BFD_RELOC_SPARC_7
, R_SPARC_7
},
204 {BFD_RELOC_SPARC_5
, R_SPARC_5
},
205 {BFD_RELOC_SPARC_6
, R_SPARC_6
},
206 {BFD_RELOC_SPARC_DISP64
, R_SPARC_DISP64
},
207 {BFD_RELOC_SPARC_PLT64
, R_SPARC_PLT64
},
208 {BFD_RELOC_SPARC_HIX22
, R_SPARC_HIX22
},
209 {BFD_RELOC_SPARC_LOX10
, R_SPARC_LOX10
},
210 {BFD_RELOC_SPARC_H44
, R_SPARC_H44
},
211 {BFD_RELOC_SPARC_M44
, R_SPARC_M44
},
212 {BFD_RELOC_SPARC_L44
, R_SPARC_L44
},
213 {BFD_RELOC_SPARC_REGISTER
, R_SPARC_REGISTER
}
216 static reloc_howto_type
*
217 sparc64_elf_reloc_type_lookup (abfd
, code
)
218 bfd
*abfd ATTRIBUTE_UNUSED
;
219 bfd_reloc_code_real_type code
;
222 for (i
= 0; i
< sizeof (sparc_reloc_map
) / sizeof (struct elf_reloc_map
); i
++)
224 if (sparc_reloc_map
[i
].bfd_reloc_val
== code
)
225 return &sparc64_elf_howto_table
[(int) sparc_reloc_map
[i
].elf_reloc_val
];
231 sparc64_elf_info_to_howto (abfd
, cache_ptr
, dst
)
232 bfd
*abfd ATTRIBUTE_UNUSED
;
234 Elf64_Internal_Rela
*dst
;
236 BFD_ASSERT (ELF64_R_TYPE_ID (dst
->r_info
) < (unsigned int) R_SPARC_max_std
);
237 cache_ptr
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (dst
->r_info
)];
240 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
241 section can represent up to two relocs, we must tell the user to allocate
245 sparc64_elf_get_reloc_upper_bound (abfd
, sec
)
246 bfd
*abfd ATTRIBUTE_UNUSED
;
249 return (sec
->reloc_count
* 2 + 1) * sizeof (arelent
*);
253 sparc64_elf_get_dynamic_reloc_upper_bound (abfd
)
256 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd
) * 2;
259 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
260 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
261 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
262 for the same location, R_SPARC_LO10 and R_SPARC_13. */
265 sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
, dynamic
)
268 Elf_Internal_Shdr
*rel_hdr
;
272 PTR allocated
= NULL
;
273 bfd_byte
*native_relocs
;
280 allocated
= (PTR
) bfd_malloc ((size_t) rel_hdr
->sh_size
);
281 if (allocated
== NULL
)
284 if (bfd_seek (abfd
, rel_hdr
->sh_offset
, SEEK_SET
) != 0
285 || (bfd_read (allocated
, 1, rel_hdr
->sh_size
, abfd
)
286 != rel_hdr
->sh_size
))
289 native_relocs
= (bfd_byte
*) allocated
;
291 relents
= asect
->relocation
+ asect
->reloc_count
;
293 entsize
= rel_hdr
->sh_entsize
;
294 BFD_ASSERT (entsize
== sizeof (Elf64_External_Rela
));
296 count
= rel_hdr
->sh_size
/ entsize
;
298 for (i
= 0, relent
= relents
; i
< count
;
299 i
++, relent
++, native_relocs
+= entsize
)
301 Elf_Internal_Rela rela
;
303 bfd_elf64_swap_reloca_in (abfd
, (Elf64_External_Rela
*) native_relocs
, &rela
);
305 /* The address of an ELF reloc is section relative for an object
306 file, and absolute for an executable file or shared library.
307 The address of a normal BFD reloc is always section relative,
308 and the address of a dynamic reloc is absolute.. */
309 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0 || dynamic
)
310 relent
->address
= rela
.r_offset
;
312 relent
->address
= rela
.r_offset
- asect
->vma
;
314 if (ELF64_R_SYM (rela
.r_info
) == 0)
315 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
320 ps
= symbols
+ ELF64_R_SYM (rela
.r_info
) - 1;
323 /* Canonicalize ELF section symbols. FIXME: Why? */
324 if ((s
->flags
& BSF_SECTION_SYM
) == 0)
325 relent
->sym_ptr_ptr
= ps
;
327 relent
->sym_ptr_ptr
= s
->section
->symbol_ptr_ptr
;
330 relent
->addend
= rela
.r_addend
;
332 BFD_ASSERT (ELF64_R_TYPE_ID (rela
.r_info
) < (unsigned int) R_SPARC_max_std
);
333 if (ELF64_R_TYPE_ID (rela
.r_info
) == R_SPARC_OLO10
)
335 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_LO10
];
336 relent
[1].address
= relent
->address
;
338 relent
->sym_ptr_ptr
= bfd_abs_section_ptr
->symbol_ptr_ptr
;
339 relent
->addend
= ELF64_R_TYPE_DATA (rela
.r_info
);
340 relent
->howto
= &sparc64_elf_howto_table
[R_SPARC_13
];
343 relent
->howto
= &sparc64_elf_howto_table
[ELF64_R_TYPE_ID (rela
.r_info
)];
346 asect
->reloc_count
+= relent
- relents
;
348 if (allocated
!= NULL
)
354 if (allocated
!= NULL
)
359 /* Read in and swap the external relocs. */
362 sparc64_elf_slurp_reloc_table (abfd
, asect
, symbols
, dynamic
)
368 struct bfd_elf_section_data
* const d
= elf_section_data (asect
);
369 Elf_Internal_Shdr
*rel_hdr
;
370 Elf_Internal_Shdr
*rel_hdr2
;
372 if (asect
->relocation
!= NULL
)
377 if ((asect
->flags
& SEC_RELOC
) == 0
378 || asect
->reloc_count
== 0)
381 rel_hdr
= &d
->rel_hdr
;
382 rel_hdr2
= d
->rel_hdr2
;
384 BFD_ASSERT (asect
->rel_filepos
== rel_hdr
->sh_offset
385 || (rel_hdr2
&& asect
->rel_filepos
== rel_hdr2
->sh_offset
));
389 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
390 case because relocations against this section may use the
391 dynamic symbol table, and in that case bfd_section_from_shdr
392 in elf.c does not update the RELOC_COUNT. */
393 if (asect
->_raw_size
== 0)
396 rel_hdr
= &d
->this_hdr
;
397 asect
->reloc_count
= rel_hdr
->sh_size
/ rel_hdr
->sh_entsize
;
401 asect
->relocation
= ((arelent
*)
403 asect
->reloc_count
* 2 * sizeof (arelent
)));
404 if (asect
->relocation
== NULL
)
407 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
408 asect
->reloc_count
= 0;
410 if (!sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr
, symbols
,
415 && !sparc64_elf_slurp_one_reloc_table (abfd
, asect
, rel_hdr2
, symbols
,
422 /* Canonicalize the dynamic relocation entries. Note that we return
423 the dynamic relocations as a single block, although they are
424 actually associated with particular sections; the interface, which
425 was designed for SunOS style shared libraries, expects that there
426 is only one set of dynamic relocs. Any section that was actually
427 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
428 the dynamic symbol table, is considered to be a dynamic reloc
432 sparc64_elf_canonicalize_dynamic_reloc (abfd
, storage
, syms
)
440 if (elf_dynsymtab (abfd
) == 0)
442 bfd_set_error (bfd_error_invalid_operation
);
447 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
449 if (elf_section_data (s
)->this_hdr
.sh_link
== elf_dynsymtab (abfd
)
450 && (elf_section_data (s
)->this_hdr
.sh_type
== SHT_RELA
))
455 if (! sparc64_elf_slurp_reloc_table (abfd
, s
, syms
, true))
457 count
= s
->reloc_count
;
459 for (i
= 0; i
< count
; i
++)
470 /* Write out the relocs. */
473 sparc64_elf_write_relocs (abfd
, sec
, data
)
478 boolean
*failedp
= (boolean
*) data
;
479 Elf_Internal_Shdr
*rela_hdr
;
480 Elf64_External_Rela
*outbound_relocas
, *src_rela
;
481 unsigned int idx
, count
;
482 asymbol
*last_sym
= 0;
483 int last_sym_idx
= 0;
485 /* If we have already failed, don't do anything. */
489 if ((sec
->flags
& SEC_RELOC
) == 0)
492 /* The linker backend writes the relocs out itself, and sets the
493 reloc_count field to zero to inhibit writing them here. Also,
494 sometimes the SEC_RELOC flag gets set even when there aren't any
496 if (sec
->reloc_count
== 0)
499 /* We can combine two relocs that refer to the same address
500 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
501 latter is R_SPARC_13 with no associated symbol. */
503 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
509 addr
= sec
->orelocation
[idx
]->address
;
510 if (sec
->orelocation
[idx
]->howto
->type
== R_SPARC_LO10
511 && idx
< sec
->reloc_count
- 1)
513 arelent
*r
= sec
->orelocation
[idx
+ 1];
515 if (r
->howto
->type
== R_SPARC_13
516 && r
->address
== addr
517 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
518 && (*r
->sym_ptr_ptr
)->value
== 0)
523 rela_hdr
= &elf_section_data (sec
)->rel_hdr
;
525 rela_hdr
->sh_size
= rela_hdr
->sh_entsize
* count
;
526 rela_hdr
->contents
= (PTR
) bfd_alloc (abfd
, rela_hdr
->sh_size
);
527 if (rela_hdr
->contents
== NULL
)
533 /* Figure out whether the relocations are RELA or REL relocations. */
534 if (rela_hdr
->sh_type
!= SHT_RELA
)
537 /* orelocation has the data, reloc_count has the count... */
538 outbound_relocas
= (Elf64_External_Rela
*) rela_hdr
->contents
;
539 src_rela
= outbound_relocas
;
541 for (idx
= 0; idx
< sec
->reloc_count
; idx
++)
543 Elf_Internal_Rela dst_rela
;
548 ptr
= sec
->orelocation
[idx
];
550 /* The address of an ELF reloc is section relative for an object
551 file, and absolute for an executable file or shared library.
552 The address of a BFD reloc is always section relative. */
553 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
554 dst_rela
.r_offset
= ptr
->address
;
556 dst_rela
.r_offset
= ptr
->address
+ sec
->vma
;
558 sym
= *ptr
->sym_ptr_ptr
;
561 else if (bfd_is_abs_section (sym
->section
) && sym
->value
== 0)
566 n
= _bfd_elf_symbol_from_bfd_symbol (abfd
, &sym
);
575 if ((*ptr
->sym_ptr_ptr
)->the_bfd
!= NULL
576 && (*ptr
->sym_ptr_ptr
)->the_bfd
->xvec
!= abfd
->xvec
577 && ! _bfd_elf_validate_reloc (abfd
, ptr
))
583 if (ptr
->howto
->type
== R_SPARC_LO10
584 && idx
< sec
->reloc_count
- 1)
586 arelent
*r
= sec
->orelocation
[idx
+ 1];
588 if (r
->howto
->type
== R_SPARC_13
589 && r
->address
== ptr
->address
590 && bfd_is_abs_section ((*r
->sym_ptr_ptr
)->section
)
591 && (*r
->sym_ptr_ptr
)->value
== 0)
595 = ELF64_R_INFO (n
, ELF64_R_TYPE_INFO (r
->addend
,
599 dst_rela
.r_info
= ELF64_R_INFO (n
, R_SPARC_LO10
);
602 dst_rela
.r_info
= ELF64_R_INFO (n
, ptr
->howto
->type
);
604 dst_rela
.r_addend
= ptr
->addend
;
605 bfd_elf64_swap_reloca_out (abfd
, &dst_rela
, src_rela
);
610 /* Sparc64 ELF linker hash table. */
612 struct sparc64_elf_app_reg
615 unsigned short shndx
;
620 struct sparc64_elf_link_hash_table
622 struct elf_link_hash_table root
;
624 struct sparc64_elf_app_reg app_regs
[4];
627 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
629 #define sparc64_elf_hash_table(p) \
630 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
632 /* Create a Sparc64 ELF linker hash table. */
634 static struct bfd_link_hash_table
*
635 sparc64_elf_bfd_link_hash_table_create (abfd
)
638 struct sparc64_elf_link_hash_table
*ret
;
640 ret
= ((struct sparc64_elf_link_hash_table
*)
641 bfd_zalloc (abfd
, sizeof (struct sparc64_elf_link_hash_table
)));
642 if (ret
== (struct sparc64_elf_link_hash_table
*) NULL
)
645 if (! _bfd_elf_link_hash_table_init (&ret
->root
, abfd
,
646 _bfd_elf_link_hash_newfunc
))
648 bfd_release (abfd
, ret
);
652 return &ret
->root
.root
;
656 /* Utility for performing the standard initial work of an instruction
658 *PRELOCATION will contain the relocated item.
659 *PINSN will contain the instruction from the input stream.
660 If the result is `bfd_reloc_other' the caller can continue with
661 performing the relocation. Otherwise it must stop and return the
662 value to its caller. */
664 static bfd_reloc_status_type
665 init_insn_reloc (abfd
,
674 arelent
*reloc_entry
;
677 asection
*input_section
;
679 bfd_vma
*prelocation
;
683 reloc_howto_type
*howto
= reloc_entry
->howto
;
685 if (output_bfd
!= (bfd
*) NULL
686 && (symbol
->flags
& BSF_SECTION_SYM
) == 0
687 && (! howto
->partial_inplace
688 || reloc_entry
->addend
== 0))
690 reloc_entry
->address
+= input_section
->output_offset
;
694 /* This works because partial_inplace == false. */
695 if (output_bfd
!= NULL
)
696 return bfd_reloc_continue
;
698 if (reloc_entry
->address
> input_section
->_cooked_size
)
699 return bfd_reloc_outofrange
;
701 relocation
= (symbol
->value
702 + symbol
->section
->output_section
->vma
703 + symbol
->section
->output_offset
);
704 relocation
+= reloc_entry
->addend
;
705 if (howto
->pc_relative
)
707 relocation
-= (input_section
->output_section
->vma
708 + input_section
->output_offset
);
709 relocation
-= reloc_entry
->address
;
712 *prelocation
= relocation
;
713 *pinsn
= bfd_get_32 (abfd
, (bfd_byte
*) data
+ reloc_entry
->address
);
714 return bfd_reloc_other
;
717 /* For unsupported relocs. */
719 static bfd_reloc_status_type
720 sparc_elf_notsup_reloc (abfd
,
727 bfd
*abfd ATTRIBUTE_UNUSED
;
728 arelent
*reloc_entry ATTRIBUTE_UNUSED
;
729 asymbol
*symbol ATTRIBUTE_UNUSED
;
730 PTR data ATTRIBUTE_UNUSED
;
731 asection
*input_section ATTRIBUTE_UNUSED
;
732 bfd
*output_bfd ATTRIBUTE_UNUSED
;
733 char **error_message ATTRIBUTE_UNUSED
;
735 return bfd_reloc_notsupported
;
738 /* Handle the WDISP16 reloc. */
740 static bfd_reloc_status_type
741 sparc_elf_wdisp16_reloc (abfd
, reloc_entry
, symbol
, data
, input_section
,
742 output_bfd
, error_message
)
744 arelent
*reloc_entry
;
747 asection
*input_section
;
749 char **error_message ATTRIBUTE_UNUSED
;
753 bfd_reloc_status_type status
;
755 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
756 input_section
, output_bfd
, &relocation
, &insn
);
757 if (status
!= bfd_reloc_other
)
760 insn
= (insn
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
761 | ((relocation
>> 2) & 0x3fff));
762 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
764 if ((bfd_signed_vma
) relocation
< - 0x40000
765 || (bfd_signed_vma
) relocation
> 0x3ffff)
766 return bfd_reloc_overflow
;
771 /* Handle the HIX22 reloc. */
773 static bfd_reloc_status_type
774 sparc_elf_hix22_reloc (abfd
,
782 arelent
*reloc_entry
;
785 asection
*input_section
;
787 char **error_message ATTRIBUTE_UNUSED
;
791 bfd_reloc_status_type status
;
793 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
794 input_section
, output_bfd
, &relocation
, &insn
);
795 if (status
!= bfd_reloc_other
)
798 relocation
^= MINUS_ONE
;
799 insn
= (insn
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
800 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
802 if ((relocation
& ~ (bfd_vma
) 0xffffffff) != 0)
803 return bfd_reloc_overflow
;
808 /* Handle the LOX10 reloc. */
810 static bfd_reloc_status_type
811 sparc_elf_lox10_reloc (abfd
,
819 arelent
*reloc_entry
;
822 asection
*input_section
;
824 char **error_message ATTRIBUTE_UNUSED
;
828 bfd_reloc_status_type status
;
830 status
= init_insn_reloc (abfd
, reloc_entry
, symbol
, data
,
831 input_section
, output_bfd
, &relocation
, &insn
);
832 if (status
!= bfd_reloc_other
)
835 insn
= (insn
& ~0x1fff) | 0x1c00 | (relocation
& 0x3ff);
836 bfd_put_32 (abfd
, insn
, (bfd_byte
*) data
+ reloc_entry
->address
);
843 /* Both the headers and the entries are icache aligned. */
844 #define PLT_ENTRY_SIZE 32
845 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
846 #define LARGE_PLT_THRESHOLD 32768
847 #define GOT_RESERVED_ENTRIES 1
849 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
852 /* Fill in the .plt section. */
855 sparc64_elf_build_plt (output_bfd
, contents
, nentries
)
857 unsigned char *contents
;
860 const unsigned int nop
= 0x01000000;
863 /* The first four entries are reserved, and are initially undefined.
864 We fill them with `illtrap 0' to force ld.so to do something. */
866 for (i
= 0; i
< PLT_HEADER_SIZE
/4; ++i
)
867 bfd_put_32 (output_bfd
, 0, contents
+i
*4);
869 /* The first 32768 entries are close enough to plt1 to get there via
870 a straight branch. */
872 for (i
= 4; i
< LARGE_PLT_THRESHOLD
&& i
< nentries
; ++i
)
874 unsigned char *entry
= contents
+ i
* PLT_ENTRY_SIZE
;
875 unsigned int sethi
, ba
;
877 /* sethi (. - plt0), %g1 */
878 sethi
= 0x03000000 | (i
* PLT_ENTRY_SIZE
);
880 /* ba,a,pt %xcc, plt1 */
881 ba
= 0x30680000 | (((contents
+PLT_ENTRY_SIZE
) - (entry
+4)) / 4 & 0x7ffff);
883 bfd_put_32 (output_bfd
, sethi
, entry
);
884 bfd_put_32 (output_bfd
, ba
, entry
+4);
885 bfd_put_32 (output_bfd
, nop
, entry
+8);
886 bfd_put_32 (output_bfd
, nop
, entry
+12);
887 bfd_put_32 (output_bfd
, nop
, entry
+16);
888 bfd_put_32 (output_bfd
, nop
, entry
+20);
889 bfd_put_32 (output_bfd
, nop
, entry
+24);
890 bfd_put_32 (output_bfd
, nop
, entry
+28);
893 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
894 160: 160 entries and 160 pointers. This is to separate code from data,
895 which is much friendlier on the cache. */
897 for (; i
< nentries
; i
+= 160)
899 int block
= (i
+ 160 <= nentries
? 160 : nentries
- i
);
900 for (j
= 0; j
< block
; ++j
)
902 unsigned char *entry
, *ptr
;
905 entry
= contents
+ i
*PLT_ENTRY_SIZE
+ j
*4*6;
906 ptr
= contents
+ i
*PLT_ENTRY_SIZE
+ block
*4*6 + j
*8;
908 /* ldx [%o7 + ptr - entry+4], %g1 */
909 ldx
= 0xc25be000 | ((ptr
- entry
+4) & 0x1fff);
911 bfd_put_32 (output_bfd
, 0x8a10000f, entry
); /* mov %o7,%g5 */
912 bfd_put_32 (output_bfd
, 0x40000002, entry
+4); /* call .+8 */
913 bfd_put_32 (output_bfd
, nop
, entry
+8); /* nop */
914 bfd_put_32 (output_bfd
, ldx
, entry
+12); /* ldx [%o7+P],%g1 */
915 bfd_put_32 (output_bfd
, 0x83c3c001, entry
+16); /* jmpl %o7+%g1,%g1 */
916 bfd_put_32 (output_bfd
, 0x9e100005, entry
+20); /* mov %g5,%o7 */
918 bfd_put_64 (output_bfd
, contents
- (entry
+4), ptr
);
923 /* Return the offset of a particular plt entry within the .plt section. */
926 sparc64_elf_plt_entry_offset (index
)
931 if (index
< LARGE_PLT_THRESHOLD
)
932 return index
* PLT_ENTRY_SIZE
;
934 /* See above for details. */
936 block
= (index
- LARGE_PLT_THRESHOLD
) / 160;
937 ofs
= (index
- LARGE_PLT_THRESHOLD
) % 160;
939 return ((bfd_vma
)(LARGE_PLT_THRESHOLD
+ block
*160) * PLT_ENTRY_SIZE
944 sparc64_elf_plt_ptr_offset (index
, max
)
947 int block
, ofs
, last
;
949 BFD_ASSERT(index
>= LARGE_PLT_THRESHOLD
);
951 /* See above for details. */
953 block
= (((index
- LARGE_PLT_THRESHOLD
) / 160) * 160)
954 + LARGE_PLT_THRESHOLD
;
956 if (block
+ 160 > max
)
957 last
= (max
- LARGE_PLT_THRESHOLD
) % 160;
961 return (block
* PLT_ENTRY_SIZE
968 /* Look through the relocs for a section during the first phase, and
969 allocate space in the global offset table or procedure linkage
973 sparc64_elf_check_relocs (abfd
, info
, sec
, relocs
)
975 struct bfd_link_info
*info
;
977 const Elf_Internal_Rela
*relocs
;
980 Elf_Internal_Shdr
*symtab_hdr
;
981 struct elf_link_hash_entry
**sym_hashes
;
982 bfd_vma
*local_got_offsets
;
983 const Elf_Internal_Rela
*rel
;
984 const Elf_Internal_Rela
*rel_end
;
989 if (info
->relocateable
|| !(sec
->flags
& SEC_ALLOC
))
992 dynobj
= elf_hash_table (info
)->dynobj
;
993 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
994 sym_hashes
= elf_sym_hashes (abfd
);
995 local_got_offsets
= elf_local_got_offsets (abfd
);
1001 rel_end
= relocs
+ sec
->reloc_count
;
1002 for (rel
= relocs
; rel
< rel_end
; rel
++)
1004 unsigned long r_symndx
;
1005 struct elf_link_hash_entry
*h
;
1007 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1008 if (r_symndx
< symtab_hdr
->sh_info
)
1011 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1013 switch (ELF64_R_TYPE_ID (rel
->r_info
))
1018 /* This symbol requires a global offset table entry. */
1022 /* Create the .got section. */
1023 elf_hash_table (info
)->dynobj
= dynobj
= abfd
;
1024 if (! _bfd_elf_create_got_section (dynobj
, info
))
1030 sgot
= bfd_get_section_by_name (dynobj
, ".got");
1031 BFD_ASSERT (sgot
!= NULL
);
1034 if (srelgot
== NULL
&& (h
!= NULL
|| info
->shared
))
1036 srelgot
= bfd_get_section_by_name (dynobj
, ".rela.got");
1037 if (srelgot
== NULL
)
1039 srelgot
= bfd_make_section (dynobj
, ".rela.got");
1041 || ! bfd_set_section_flags (dynobj
, srelgot
,
1046 | SEC_LINKER_CREATED
1048 || ! bfd_set_section_alignment (dynobj
, srelgot
, 3))
1055 if (h
->got
.offset
!= (bfd_vma
) -1)
1057 /* We have already allocated space in the .got. */
1060 h
->got
.offset
= sgot
->_raw_size
;
1062 /* Make sure this symbol is output as a dynamic symbol. */
1063 if (h
->dynindx
== -1)
1065 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1069 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1073 /* This is a global offset table entry for a local
1075 if (local_got_offsets
== NULL
)
1078 register unsigned int i
;
1080 size
= symtab_hdr
->sh_info
* sizeof (bfd_vma
);
1081 local_got_offsets
= (bfd_vma
*) bfd_alloc (abfd
, size
);
1082 if (local_got_offsets
== NULL
)
1084 elf_local_got_offsets (abfd
) = local_got_offsets
;
1085 for (i
= 0; i
< symtab_hdr
->sh_info
; i
++)
1086 local_got_offsets
[i
] = (bfd_vma
) -1;
1088 if (local_got_offsets
[r_symndx
] != (bfd_vma
) -1)
1090 /* We have already allocated space in the .got. */
1093 local_got_offsets
[r_symndx
] = sgot
->_raw_size
;
1097 /* If we are generating a shared object, we need to
1098 output a R_SPARC_RELATIVE reloc so that the
1099 dynamic linker can adjust this GOT entry. */
1100 srelgot
->_raw_size
+= sizeof (Elf64_External_Rela
);
1104 sgot
->_raw_size
+= 8;
1107 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1108 unsigned numbers. If we permit ourselves to modify
1109 code so we get sethi/xor, this could work.
1110 Question: do we consider conditionally re-enabling
1111 this for -fpic, once we know about object code models? */
1112 /* If the .got section is more than 0x1000 bytes, we add
1113 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1114 bit relocations have a greater chance of working. */
1115 if (sgot
->_raw_size
>= 0x1000
1116 && elf_hash_table (info
)->hgot
->root
.u
.def
.value
== 0)
1117 elf_hash_table (info
)->hgot
->root
.u
.def
.value
= 0x1000;
1122 case R_SPARC_WPLT30
:
1124 case R_SPARC_HIPLT22
:
1125 case R_SPARC_LOPLT10
:
1126 case R_SPARC_PCPLT32
:
1127 case R_SPARC_PCPLT22
:
1128 case R_SPARC_PCPLT10
:
1130 /* This symbol requires a procedure linkage table entry. We
1131 actually build the entry in adjust_dynamic_symbol,
1132 because this might be a case of linking PIC code without
1133 linking in any dynamic objects, in which case we don't
1134 need to generate a procedure linkage table after all. */
1138 /* It does not make sense to have a procedure linkage
1139 table entry for a local symbol. */
1140 bfd_set_error (bfd_error_bad_value
);
1144 /* Make sure this symbol is output as a dynamic symbol. */
1145 if (h
->dynindx
== -1)
1147 if (! bfd_elf64_link_record_dynamic_symbol (info
, h
))
1151 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_PLT
;
1156 case R_SPARC_PC_HH22
:
1157 case R_SPARC_PC_HM10
:
1158 case R_SPARC_PC_LM22
:
1160 && strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0)
1164 case R_SPARC_DISP16
:
1165 case R_SPARC_DISP32
:
1166 case R_SPARC_DISP64
:
1167 case R_SPARC_WDISP30
:
1168 case R_SPARC_WDISP22
:
1169 case R_SPARC_WDISP19
:
1170 case R_SPARC_WDISP16
:
1199 /* When creating a shared object, we must copy these relocs
1200 into the output file. We create a reloc section in
1201 dynobj and make room for the reloc.
1203 But don't do this for debugging sections -- this shows up
1204 with DWARF2 -- first because they are not loaded, and
1205 second because DWARF sez the debug info is not to be
1206 biased by the load address. */
1207 if (info
->shared
&& (sec
->flags
& SEC_ALLOC
))
1213 name
= (bfd_elf_string_from_elf_section
1215 elf_elfheader (abfd
)->e_shstrndx
,
1216 elf_section_data (sec
)->rel_hdr
.sh_name
));
1220 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
1221 && strcmp (bfd_get_section_name (abfd
, sec
),
1224 sreloc
= bfd_get_section_by_name (dynobj
, name
);
1229 sreloc
= bfd_make_section (dynobj
, name
);
1230 flags
= (SEC_HAS_CONTENTS
| SEC_READONLY
1231 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
1232 if ((sec
->flags
& SEC_ALLOC
) != 0)
1233 flags
|= SEC_ALLOC
| SEC_LOAD
;
1235 || ! bfd_set_section_flags (dynobj
, sreloc
, flags
)
1236 || ! bfd_set_section_alignment (dynobj
, sreloc
, 3))
1241 sreloc
->_raw_size
+= sizeof (Elf64_External_Rela
);
1245 case R_SPARC_REGISTER
:
1246 /* Nothing to do. */
1250 (*_bfd_error_handler
)(_("%s: check_relocs: unhandled reloc type %d"),
1251 bfd_get_filename(abfd
),
1252 ELF64_R_TYPE_ID (rel
->r_info
));
1260 /* Hook called by the linker routine which adds symbols from an object
1261 file. We use it for STT_REGISTER symbols. */
1264 sparc64_elf_add_symbol_hook (abfd
, info
, sym
, namep
, flagsp
, secp
, valp
)
1266 struct bfd_link_info
*info
;
1267 const Elf_Internal_Sym
*sym
;
1269 flagword
*flagsp ATTRIBUTE_UNUSED
;
1270 asection
**secp ATTRIBUTE_UNUSED
;
1271 bfd_vma
*valp ATTRIBUTE_UNUSED
;
1273 static char *stt_types
[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1275 if (ELF_ST_TYPE (sym
->st_info
) == STT_REGISTER
)
1278 struct sparc64_elf_app_reg
*p
;
1280 reg
= (int)sym
->st_value
;
1283 case 2: reg
-= 2; break;
1284 case 6: reg
-= 4; break;
1286 (*_bfd_error_handler
)
1287 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1288 bfd_get_filename (abfd
));
1292 if (info
->hash
->creator
!= abfd
->xvec
1293 || (abfd
->flags
& DYNAMIC
) != 0)
1295 /* STT_REGISTER only works when linking an elf64_sparc object.
1296 If STT_REGISTER comes from a dynamic object, don't put it into
1297 the output bfd. The dynamic linker will recheck it. */
1302 p
= sparc64_elf_hash_table(info
)->app_regs
+ reg
;
1304 if (p
->name
!= NULL
&& strcmp (p
->name
, *namep
))
1306 (*_bfd_error_handler
)
1307 (_("Register %%g%d used incompatibly: "
1308 "previously declared in %s to %s, in %s redefined to %s"),
1310 bfd_get_filename (p
->abfd
), *p
->name
? p
->name
: "#scratch",
1311 bfd_get_filename (abfd
), **namep
? *namep
: "#scratch");
1315 if (p
->name
== NULL
)
1319 struct elf_link_hash_entry
*h
;
1321 h
= (struct elf_link_hash_entry
*)
1322 bfd_link_hash_lookup (info
->hash
, *namep
, false, false, false);
1326 unsigned char type
= h
->type
;
1328 if (type
> STT_FUNC
) type
= 0;
1329 (*_bfd_error_handler
)
1330 (_("Symbol `%s' has differing types: "
1331 "previously %s, REGISTER in %s"),
1332 *namep
, stt_types
[type
], bfd_get_filename (abfd
));
1336 p
->name
= bfd_hash_allocate (&info
->hash
->table
,
1337 strlen (*namep
) + 1);
1341 strcpy (p
->name
, *namep
);
1345 p
->bind
= ELF_ST_BIND (sym
->st_info
);
1347 p
->shndx
= sym
->st_shndx
;
1351 if (p
->bind
== STB_WEAK
1352 && ELF_ST_BIND (sym
->st_info
) == STB_GLOBAL
)
1354 p
->bind
= STB_GLOBAL
;
1361 else if (! *namep
|| ! **namep
)
1366 struct sparc64_elf_app_reg
*p
;
1368 p
= sparc64_elf_hash_table(info
)->app_regs
;
1369 for (i
= 0; i
< 4; i
++, p
++)
1370 if (p
->name
!= NULL
&& ! strcmp (p
->name
, *namep
))
1372 unsigned char type
= ELF_ST_TYPE (sym
->st_info
);
1374 if (type
> STT_FUNC
) type
= 0;
1375 (*_bfd_error_handler
)
1376 (_("Symbol `%s' has differing types: "
1377 "REGISTER in %s, %s in %s"),
1378 *namep
, bfd_get_filename (p
->abfd
), stt_types
[type
],
1379 bfd_get_filename (abfd
));
1386 /* This function takes care of emiting STT_REGISTER symbols
1387 which we cannot easily keep in the symbol hash table. */
1390 sparc64_elf_output_arch_syms (output_bfd
, info
, finfo
, func
)
1391 bfd
*output_bfd ATTRIBUTE_UNUSED
;
1392 struct bfd_link_info
*info
;
1394 boolean (*func
) PARAMS ((PTR
, const char *,
1395 Elf_Internal_Sym
*, asection
*));
1398 struct sparc64_elf_app_reg
*app_regs
=
1399 sparc64_elf_hash_table(info
)->app_regs
;
1400 Elf_Internal_Sym sym
;
1402 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1403 at the end of the dynlocal list, so they came at the end of the local
1404 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1405 to back up symtab->sh_info. */
1406 if (elf_hash_table (info
)->dynlocal
)
1408 bfd
* dynobj
= elf_hash_table (info
)->dynobj
;
1409 asection
*dynsymsec
= bfd_get_section_by_name (dynobj
, ".dynsym");
1410 struct elf_link_local_dynamic_entry
*e
;
1412 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
1413 if (e
->input_indx
== -1)
1417 elf_section_data (dynsymsec
->output_section
)->this_hdr
.sh_info
1422 if (info
->strip
== strip_all
)
1425 for (reg
= 0; reg
< 4; reg
++)
1426 if (app_regs
[reg
].name
!= NULL
)
1428 if (info
->strip
== strip_some
1429 && bfd_hash_lookup (info
->keep_hash
,
1430 app_regs
[reg
].name
,
1431 false, false) == NULL
)
1434 sym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1437 sym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
, STT_REGISTER
);
1438 sym
.st_shndx
= app_regs
[reg
].shndx
;
1439 if (! (*func
) (finfo
, app_regs
[reg
].name
, &sym
,
1440 sym
.st_shndx
== SHN_ABS
1441 ? bfd_abs_section_ptr
: bfd_und_section_ptr
))
1449 sparc64_elf_get_symbol_type (elf_sym
, type
)
1450 Elf_Internal_Sym
* elf_sym
;
1453 if (ELF_ST_TYPE (elf_sym
->st_info
) == STT_REGISTER
)
1454 return STT_REGISTER
;
1459 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1460 even in SHN_UNDEF section. */
1463 sparc64_elf_symbol_processing (abfd
, asym
)
1464 bfd
*abfd ATTRIBUTE_UNUSED
;
1467 elf_symbol_type
*elfsym
;
1469 elfsym
= (elf_symbol_type
*) asym
;
1470 if (elfsym
->internal_elf_sym
.st_info
1471 == ELF_ST_INFO (STB_GLOBAL
, STT_REGISTER
))
1473 asym
->flags
|= BSF_GLOBAL
;
1477 /* Adjust a symbol defined by a dynamic object and referenced by a
1478 regular object. The current definition is in some section of the
1479 dynamic object, but we're not including those sections. We have to
1480 change the definition to something the rest of the link can
1484 sparc64_elf_adjust_dynamic_symbol (info
, h
)
1485 struct bfd_link_info
*info
;
1486 struct elf_link_hash_entry
*h
;
1490 unsigned int power_of_two
;
1492 dynobj
= elf_hash_table (info
)->dynobj
;
1494 /* Make sure we know what is going on here. */
1495 BFD_ASSERT (dynobj
!= NULL
1496 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
)
1497 || h
->weakdef
!= NULL
1498 || ((h
->elf_link_hash_flags
1499 & ELF_LINK_HASH_DEF_DYNAMIC
) != 0
1500 && (h
->elf_link_hash_flags
1501 & ELF_LINK_HASH_REF_REGULAR
) != 0
1502 && (h
->elf_link_hash_flags
1503 & ELF_LINK_HASH_DEF_REGULAR
) == 0)));
1505 /* If this is a function, put it in the procedure linkage table. We
1506 will fill in the contents of the procedure linkage table later
1507 (although we could actually do it here). The STT_NOTYPE
1508 condition is a hack specifically for the Oracle libraries
1509 delivered for Solaris; for some inexplicable reason, they define
1510 some of their functions as STT_NOTYPE when they really should be
1512 if (h
->type
== STT_FUNC
1513 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
1514 || (h
->type
== STT_NOTYPE
1515 && (h
->root
.type
== bfd_link_hash_defined
1516 || h
->root
.type
== bfd_link_hash_defweak
)
1517 && (h
->root
.u
.def
.section
->flags
& SEC_CODE
) != 0))
1519 if (! elf_hash_table (info
)->dynamic_sections_created
)
1521 /* This case can occur if we saw a WPLT30 reloc in an input
1522 file, but none of the input files were dynamic objects.
1523 In such a case, we don't actually need to build a
1524 procedure linkage table, and we can just do a WDISP30
1526 BFD_ASSERT ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0);
1530 s
= bfd_get_section_by_name (dynobj
, ".plt");
1531 BFD_ASSERT (s
!= NULL
);
1533 /* The first four bit in .plt is reserved. */
1534 if (s
->_raw_size
== 0)
1535 s
->_raw_size
= PLT_HEADER_SIZE
;
1537 /* If this symbol is not defined in a regular file, and we are
1538 not generating a shared library, then set the symbol to this
1539 location in the .plt. This is required to make function
1540 pointers compare as equal between the normal executable and
1541 the shared library. */
1543 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1545 h
->root
.u
.def
.section
= s
;
1546 h
->root
.u
.def
.value
= s
->_raw_size
;
1549 /* To simplify matters later, just store the plt index here. */
1550 h
->plt
.offset
= s
->_raw_size
/ PLT_ENTRY_SIZE
;
1552 /* Make room for this entry. */
1553 s
->_raw_size
+= PLT_ENTRY_SIZE
;
1555 /* We also need to make an entry in the .rela.plt section. */
1557 s
= bfd_get_section_by_name (dynobj
, ".rela.plt");
1558 BFD_ASSERT (s
!= NULL
);
1560 /* The first plt entries are reserved, and the relocations must
1562 if (s
->_raw_size
== 0)
1563 s
->_raw_size
+= (PLT_HEADER_SIZE
/PLT_ENTRY_SIZE
1564 * sizeof (Elf64_External_Rela
));
1566 s
->_raw_size
+= sizeof (Elf64_External_Rela
);
1568 /* The procedure linkage table size is bounded by the magnitude
1569 of the offset we can describe in the entry. */
1570 if (s
->_raw_size
>= (bfd_vma
)1 << 32)
1572 bfd_set_error (bfd_error_bad_value
);
1579 /* If this is a weak symbol, and there is a real definition, the
1580 processor independent code will have arranged for us to see the
1581 real definition first, and we can just use the same value. */
1582 if (h
->weakdef
!= NULL
)
1584 BFD_ASSERT (h
->weakdef
->root
.type
== bfd_link_hash_defined
1585 || h
->weakdef
->root
.type
== bfd_link_hash_defweak
);
1586 h
->root
.u
.def
.section
= h
->weakdef
->root
.u
.def
.section
;
1587 h
->root
.u
.def
.value
= h
->weakdef
->root
.u
.def
.value
;
1591 /* This is a reference to a symbol defined by a dynamic object which
1592 is not a function. */
1594 /* If we are creating a shared library, we must presume that the
1595 only references to the symbol are via the global offset table.
1596 For such cases we need not do anything here; the relocations will
1597 be handled correctly by relocate_section. */
1601 /* We must allocate the symbol in our .dynbss section, which will
1602 become part of the .bss section of the executable. There will be
1603 an entry for this symbol in the .dynsym section. The dynamic
1604 object will contain position independent code, so all references
1605 from the dynamic object to this symbol will go through the global
1606 offset table. The dynamic linker will use the .dynsym entry to
1607 determine the address it must put in the global offset table, so
1608 both the dynamic object and the regular object will refer to the
1609 same memory location for the variable. */
1611 s
= bfd_get_section_by_name (dynobj
, ".dynbss");
1612 BFD_ASSERT (s
!= NULL
);
1614 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1615 to copy the initial value out of the dynamic object and into the
1616 runtime process image. We need to remember the offset into the
1617 .rel.bss section we are going to use. */
1618 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0)
1622 srel
= bfd_get_section_by_name (dynobj
, ".rela.bss");
1623 BFD_ASSERT (srel
!= NULL
);
1624 srel
->_raw_size
+= sizeof (Elf64_External_Rela
);
1625 h
->elf_link_hash_flags
|= ELF_LINK_HASH_NEEDS_COPY
;
1628 /* We need to figure out the alignment required for this symbol. I
1629 have no idea how ELF linkers handle this. 16-bytes is the size
1630 of the largest type that requires hard alignment -- long double. */
1631 power_of_two
= bfd_log2 (h
->size
);
1632 if (power_of_two
> 4)
1635 /* Apply the required alignment. */
1636 s
->_raw_size
= BFD_ALIGN (s
->_raw_size
,
1637 (bfd_size_type
) (1 << power_of_two
));
1638 if (power_of_two
> bfd_get_section_alignment (dynobj
, s
))
1640 if (! bfd_set_section_alignment (dynobj
, s
, power_of_two
))
1644 /* Define the symbol as being at this point in the section. */
1645 h
->root
.u
.def
.section
= s
;
1646 h
->root
.u
.def
.value
= s
->_raw_size
;
1648 /* Increment the section size to make room for the symbol. */
1649 s
->_raw_size
+= h
->size
;
1654 /* Set the sizes of the dynamic sections. */
1657 sparc64_elf_size_dynamic_sections (output_bfd
, info
)
1659 struct bfd_link_info
*info
;
1666 dynobj
= elf_hash_table (info
)->dynobj
;
1667 BFD_ASSERT (dynobj
!= NULL
);
1669 if (elf_hash_table (info
)->dynamic_sections_created
)
1671 /* Set the contents of the .interp section to the interpreter. */
1674 s
= bfd_get_section_by_name (dynobj
, ".interp");
1675 BFD_ASSERT (s
!= NULL
);
1676 s
->_raw_size
= sizeof ELF_DYNAMIC_INTERPRETER
;
1677 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
1682 /* We may have created entries in the .rela.got section.
1683 However, if we are not creating the dynamic sections, we will
1684 not actually use these entries. Reset the size of .rela.got,
1685 which will cause it to get stripped from the output file
1687 s
= bfd_get_section_by_name (dynobj
, ".rela.got");
1692 /* The check_relocs and adjust_dynamic_symbol entry points have
1693 determined the sizes of the various dynamic sections. Allocate
1697 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
1702 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
1705 /* It's OK to base decisions on the section name, because none
1706 of the dynobj section names depend upon the input files. */
1707 name
= bfd_get_section_name (dynobj
, s
);
1711 if (strncmp (name
, ".rela", 5) == 0)
1713 if (s
->_raw_size
== 0)
1715 /* If we don't need this section, strip it from the
1716 output file. This is to handle .rela.bss and
1717 .rel.plt. We must create it in
1718 create_dynamic_sections, because it must be created
1719 before the linker maps input sections to output
1720 sections. The linker does that before
1721 adjust_dynamic_symbol is called, and it is that
1722 function which decides whether anything needs to go
1723 into these sections. */
1728 const char *outname
;
1731 /* If this relocation section applies to a read only
1732 section, then we probably need a DT_TEXTREL entry. */
1733 outname
= bfd_get_section_name (output_bfd
,
1735 target
= bfd_get_section_by_name (output_bfd
, outname
+ 5);
1737 && (target
->flags
& SEC_READONLY
) != 0)
1740 if (strcmp (name
, ".rela.plt") == 0)
1743 /* We use the reloc_count field as a counter if we need
1744 to copy relocs into the output file. */
1748 else if (strcmp (name
, ".plt") != 0
1749 && strncmp (name
, ".got", 4) != 0)
1751 /* It's not one of our sections, so don't allocate space. */
1757 _bfd_strip_section_from_output (info
, s
);
1761 /* Allocate memory for the section contents. Zero the memory
1762 for the benefit of .rela.plt, which has 4 unused entries
1763 at the beginning, and we don't want garbage. */
1764 s
->contents
= (bfd_byte
*) bfd_zalloc (dynobj
, s
->_raw_size
);
1765 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
1769 if (elf_hash_table (info
)->dynamic_sections_created
)
1771 /* Add some entries to the .dynamic section. We fill in the
1772 values later, in sparc64_elf_finish_dynamic_sections, but we
1773 must add the entries now so that we get the correct size for
1774 the .dynamic section. The DT_DEBUG entry is filled in by the
1775 dynamic linker and used by the debugger. */
1777 struct sparc64_elf_app_reg
* app_regs
;
1778 struct bfd_strtab_hash
*dynstr
;
1779 struct elf_link_hash_table
*eht
= elf_hash_table (info
);
1783 if (! bfd_elf64_add_dynamic_entry (info
, DT_DEBUG
, 0))
1789 if (! bfd_elf64_add_dynamic_entry (info
, DT_PLTGOT
, 0)
1790 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTRELSZ
, 0)
1791 || ! bfd_elf64_add_dynamic_entry (info
, DT_PLTREL
, DT_RELA
)
1792 || ! bfd_elf64_add_dynamic_entry (info
, DT_JMPREL
, 0))
1796 if (! bfd_elf64_add_dynamic_entry (info
, DT_RELA
, 0)
1797 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELASZ
, 0)
1798 || ! bfd_elf64_add_dynamic_entry (info
, DT_RELAENT
,
1799 sizeof (Elf64_External_Rela
)))
1804 if (! bfd_elf64_add_dynamic_entry (info
, DT_TEXTREL
, 0))
1808 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1809 entries if needed. */
1810 app_regs
= sparc64_elf_hash_table (info
)->app_regs
;
1811 dynstr
= eht
->dynstr
;
1813 for (reg
= 0; reg
< 4; reg
++)
1814 if (app_regs
[reg
].name
!= NULL
)
1816 struct elf_link_local_dynamic_entry
*entry
, *e
;
1818 if (! bfd_elf64_add_dynamic_entry (info
, DT_SPARC_REGISTER
, 0))
1821 entry
= (struct elf_link_local_dynamic_entry
*)
1822 bfd_hash_allocate (&info
->hash
->table
, sizeof (*entry
));
1826 /* We cheat here a little bit: the symbol will not be local, so we
1827 put it at the end of the dynlocal linked list. We will fix it
1828 later on, as we have to fix other fields anyway. */
1829 entry
->isym
.st_value
= reg
< 2 ? reg
+ 2 : reg
+ 4;
1830 entry
->isym
.st_size
= 0;
1831 if (*app_regs
[reg
].name
!= '\0')
1833 = _bfd_stringtab_add (dynstr
, app_regs
[reg
].name
, true, false);
1835 entry
->isym
.st_name
= 0;
1836 entry
->isym
.st_other
= 0;
1837 entry
->isym
.st_info
= ELF_ST_INFO (app_regs
[reg
].bind
,
1839 entry
->isym
.st_shndx
= app_regs
[reg
].shndx
;
1841 entry
->input_bfd
= output_bfd
;
1842 entry
->input_indx
= -1;
1844 if (eht
->dynlocal
== NULL
)
1845 eht
->dynlocal
= entry
;
1848 for (e
= eht
->dynlocal
; e
->next
; e
= e
->next
)
1859 #define SET_SEC_DO_RELAX(section) do { elf_section_data(section)->tdata = (void *)1; } while (0)
1860 #define SEC_DO_RELAX(section) (elf_section_data(section)->tdata == (void *)1)
1864 sparc64_elf_relax_section (abfd
, section
, link_info
, again
)
1865 bfd
*abfd ATTRIBUTE_UNUSED
;
1866 asection
*section ATTRIBUTE_UNUSED
;
1867 struct bfd_link_info
*link_info ATTRIBUTE_UNUSED
;
1871 SET_SEC_DO_RELAX (section
);
1875 /* Relocate a SPARC64 ELF section. */
1878 sparc64_elf_relocate_section (output_bfd
, info
, input_bfd
, input_section
,
1879 contents
, relocs
, local_syms
, local_sections
)
1881 struct bfd_link_info
*info
;
1883 asection
*input_section
;
1885 Elf_Internal_Rela
*relocs
;
1886 Elf_Internal_Sym
*local_syms
;
1887 asection
**local_sections
;
1890 Elf_Internal_Shdr
*symtab_hdr
;
1891 struct elf_link_hash_entry
**sym_hashes
;
1892 bfd_vma
*local_got_offsets
;
1897 Elf_Internal_Rela
*rel
;
1898 Elf_Internal_Rela
*relend
;
1900 dynobj
= elf_hash_table (info
)->dynobj
;
1901 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
1902 sym_hashes
= elf_sym_hashes (input_bfd
);
1903 local_got_offsets
= elf_local_got_offsets (input_bfd
);
1905 if (elf_hash_table(info
)->hgot
== NULL
)
1908 got_base
= elf_hash_table (info
)->hgot
->root
.u
.def
.value
;
1910 sgot
= splt
= sreloc
= NULL
;
1913 relend
= relocs
+ input_section
->reloc_count
;
1914 for (; rel
< relend
; rel
++)
1917 reloc_howto_type
*howto
;
1918 unsigned long r_symndx
;
1919 struct elf_link_hash_entry
*h
;
1920 Elf_Internal_Sym
*sym
;
1923 bfd_reloc_status_type r
;
1925 r_type
= ELF64_R_TYPE_ID (rel
->r_info
);
1926 if (r_type
< 0 || r_type
>= (int) R_SPARC_max_std
)
1928 bfd_set_error (bfd_error_bad_value
);
1931 howto
= sparc64_elf_howto_table
+ r_type
;
1933 r_symndx
= ELF64_R_SYM (rel
->r_info
);
1935 if (info
->relocateable
)
1937 /* This is a relocateable link. We don't have to change
1938 anything, unless the reloc is against a section symbol,
1939 in which case we have to adjust according to where the
1940 section symbol winds up in the output section. */
1941 if (r_symndx
< symtab_hdr
->sh_info
)
1943 sym
= local_syms
+ r_symndx
;
1944 if (ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
1946 sec
= local_sections
[r_symndx
];
1947 rel
->r_addend
+= sec
->output_offset
+ sym
->st_value
;
1954 /* This is a final link. */
1958 if (r_symndx
< symtab_hdr
->sh_info
)
1960 sym
= local_syms
+ r_symndx
;
1961 sec
= local_sections
[r_symndx
];
1962 relocation
= (sec
->output_section
->vma
1963 + sec
->output_offset
1968 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
1969 while (h
->root
.type
== bfd_link_hash_indirect
1970 || h
->root
.type
== bfd_link_hash_warning
)
1971 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1972 if (h
->root
.type
== bfd_link_hash_defined
1973 || h
->root
.type
== bfd_link_hash_defweak
)
1975 boolean skip_it
= false;
1976 sec
= h
->root
.u
.def
.section
;
1980 case R_SPARC_WPLT30
:
1982 case R_SPARC_HIPLT22
:
1983 case R_SPARC_LOPLT10
:
1984 case R_SPARC_PCPLT32
:
1985 case R_SPARC_PCPLT22
:
1986 case R_SPARC_PCPLT10
:
1988 if (h
->plt
.offset
!= (bfd_vma
) -1)
1995 if (elf_hash_table(info
)->dynamic_sections_created
1997 || (!info
->symbolic
&& h
->dynindx
!= -1)
1998 || !(h
->elf_link_hash_flags
1999 & ELF_LINK_HASH_DEF_REGULAR
)))
2005 case R_SPARC_PC_HH22
:
2006 case R_SPARC_PC_HM10
:
2007 case R_SPARC_PC_LM22
:
2008 if (!strcmp(h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2016 case R_SPARC_DISP16
:
2017 case R_SPARC_DISP32
:
2018 case R_SPARC_WDISP30
:
2019 case R_SPARC_WDISP22
:
2032 case R_SPARC_WDISP19
:
2033 case R_SPARC_WDISP16
:
2037 case R_SPARC_DISP64
:
2046 && ((!info
->symbolic
&& h
->dynindx
!= -1)
2047 || !(h
->elf_link_hash_flags
2048 & ELF_LINK_HASH_DEF_REGULAR
)))
2055 /* In these cases, we don't need the relocation
2056 value. We check specially because in some
2057 obscure cases sec->output_section will be NULL. */
2062 relocation
= (h
->root
.u
.def
.value
2063 + sec
->output_section
->vma
2064 + sec
->output_offset
);
2067 else if (h
->root
.type
== bfd_link_hash_undefweak
)
2069 else if (info
->shared
&& !info
->symbolic
2070 && !info
->no_undefined
2071 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2075 if (! ((*info
->callbacks
->undefined_symbol
)
2076 (info
, h
->root
.root
.string
, input_bfd
,
2077 input_section
, rel
->r_offset
,
2078 (!info
->shared
|| info
->no_undefined
2079 || ELF_ST_VISIBILITY (h
->other
)))))
2085 /* When generating a shared object, these relocations are copied
2086 into the output file to be resolved at run time. */
2087 if (info
->shared
&& (input_section
->flags
& SEC_ALLOC
))
2093 case R_SPARC_PC_HH22
:
2094 case R_SPARC_PC_HM10
:
2095 case R_SPARC_PC_LM22
:
2097 && !strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_"))
2101 case R_SPARC_DISP16
:
2102 case R_SPARC_DISP32
:
2103 case R_SPARC_WDISP30
:
2104 case R_SPARC_WDISP22
:
2105 case R_SPARC_WDISP19
:
2106 case R_SPARC_WDISP16
:
2107 case R_SPARC_DISP64
:
2137 Elf_Internal_Rela outrel
;
2143 (bfd_elf_string_from_elf_section
2145 elf_elfheader (input_bfd
)->e_shstrndx
,
2146 elf_section_data (input_section
)->rel_hdr
.sh_name
));
2151 BFD_ASSERT (strncmp (name
, ".rela", 5) == 0
2152 && strcmp (bfd_get_section_name(input_bfd
,
2156 sreloc
= bfd_get_section_by_name (dynobj
, name
);
2157 BFD_ASSERT (sreloc
!= NULL
);
2162 if (elf_section_data (input_section
)->stab_info
== NULL
)
2163 outrel
.r_offset
= rel
->r_offset
;
2168 off
= (_bfd_stab_section_offset
2169 (output_bfd
, &elf_hash_table (info
)->stab_info
,
2171 &elf_section_data (input_section
)->stab_info
,
2173 if (off
== MINUS_ONE
)
2175 outrel
.r_offset
= off
;
2178 outrel
.r_offset
+= (input_section
->output_section
->vma
2179 + input_section
->output_offset
);
2181 /* Optimize unaligned reloc usage now that we know where
2182 it finally resides. */
2186 if (outrel
.r_offset
& 1) r_type
= R_SPARC_UA16
;
2189 if (!(outrel
.r_offset
& 1)) r_type
= R_SPARC_16
;
2192 if (outrel
.r_offset
& 3) r_type
= R_SPARC_UA32
;
2195 if (!(outrel
.r_offset
& 3)) r_type
= R_SPARC_32
;
2198 if (outrel
.r_offset
& 7) r_type
= R_SPARC_UA64
;
2201 if (!(outrel
.r_offset
& 7)) r_type
= R_SPARC_64
;
2206 memset (&outrel
, 0, sizeof outrel
);
2207 /* h->dynindx may be -1 if the symbol was marked to
2210 && ((! info
->symbolic
&& h
->dynindx
!= -1)
2211 || (h
->elf_link_hash_flags
2212 & ELF_LINK_HASH_DEF_REGULAR
) == 0))
2214 BFD_ASSERT (h
->dynindx
!= -1);
2216 = ELF64_R_INFO (h
->dynindx
,
2218 ELF64_R_TYPE_DATA (rel
->r_info
),
2220 outrel
.r_addend
= rel
->r_addend
;
2224 if (r_type
== R_SPARC_64
)
2226 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2227 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2234 sec
= local_sections
[r_symndx
];
2237 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2239 == bfd_link_hash_defweak
));
2240 sec
= h
->root
.u
.def
.section
;
2242 if (sec
!= NULL
&& bfd_is_abs_section (sec
))
2244 else if (sec
== NULL
|| sec
->owner
== NULL
)
2246 bfd_set_error (bfd_error_bad_value
);
2253 osec
= sec
->output_section
;
2254 indx
= elf_section_data (osec
)->dynindx
;
2256 /* FIXME: we really should be able to link non-pic
2257 shared libraries. */
2261 (*_bfd_error_handler
)
2262 (_("%s: probably compiled without -fPIC?"),
2263 bfd_get_filename (input_bfd
));
2264 bfd_set_error (bfd_error_bad_value
);
2270 = ELF64_R_INFO (indx
,
2272 ELF64_R_TYPE_DATA (rel
->r_info
),
2274 outrel
.r_addend
= relocation
+ rel
->r_addend
;
2278 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2279 (((Elf64_External_Rela
*)
2281 + sreloc
->reloc_count
));
2282 ++sreloc
->reloc_count
;
2284 /* This reloc will be computed at runtime, so there's no
2285 need to do anything now, unless this is a RELATIVE
2286 reloc in an unallocated section. */
2288 || (input_section
->flags
& SEC_ALLOC
) != 0
2289 || ELF64_R_TYPE_ID (outrel
.r_info
) != R_SPARC_RELATIVE
)
2301 /* Relocation is to the entry for this symbol in the global
2305 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2306 BFD_ASSERT (sgot
!= NULL
);
2311 bfd_vma off
= h
->got
.offset
;
2312 BFD_ASSERT (off
!= (bfd_vma
) -1);
2314 if (! elf_hash_table (info
)->dynamic_sections_created
2316 && (info
->symbolic
|| h
->dynindx
== -1)
2317 && (h
->elf_link_hash_flags
2318 & ELF_LINK_HASH_DEF_REGULAR
)))
2320 /* This is actually a static link, or it is a -Bsymbolic
2321 link and the symbol is defined locally, or the symbol
2322 was forced to be local because of a version file. We
2323 must initialize this entry in the global offset table.
2324 Since the offset must always be a multiple of 8, we
2325 use the least significant bit to record whether we
2326 have initialized it already.
2328 When doing a dynamic link, we create a .rela.got
2329 relocation entry to initialize the value. This is
2330 done in the finish_dynamic_symbol routine. */
2336 bfd_put_64 (output_bfd
, relocation
,
2337 sgot
->contents
+ off
);
2341 relocation
= sgot
->output_offset
+ off
- got_base
;
2347 BFD_ASSERT (local_got_offsets
!= NULL
);
2348 off
= local_got_offsets
[r_symndx
];
2349 BFD_ASSERT (off
!= (bfd_vma
) -1);
2351 /* The offset must always be a multiple of 8. We use
2352 the least significant bit to record whether we have
2353 already processed this entry. */
2358 bfd_put_64 (output_bfd
, relocation
, sgot
->contents
+ off
);
2359 local_got_offsets
[r_symndx
] |= 1;
2364 Elf_Internal_Rela outrel
;
2366 /* We need to generate a R_SPARC_RELATIVE reloc
2367 for the dynamic linker. */
2368 srelgot
= bfd_get_section_by_name(dynobj
, ".rela.got");
2369 BFD_ASSERT (srelgot
!= NULL
);
2371 outrel
.r_offset
= (sgot
->output_section
->vma
2372 + sgot
->output_offset
2374 outrel
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2375 outrel
.r_addend
= relocation
;
2376 bfd_elf64_swap_reloca_out (output_bfd
, &outrel
,
2377 (((Elf64_External_Rela
*)
2379 + srelgot
->reloc_count
));
2380 ++srelgot
->reloc_count
;
2383 relocation
= sgot
->output_offset
+ off
- got_base
;
2387 case R_SPARC_WPLT30
:
2389 case R_SPARC_HIPLT22
:
2390 case R_SPARC_LOPLT10
:
2391 case R_SPARC_PCPLT32
:
2392 case R_SPARC_PCPLT22
:
2393 case R_SPARC_PCPLT10
:
2395 /* Relocation is to the entry for this symbol in the
2396 procedure linkage table. */
2397 BFD_ASSERT (h
!= NULL
);
2399 if (h
->plt
.offset
== (bfd_vma
) -1)
2401 /* We didn't make a PLT entry for this symbol. This
2402 happens when statically linking PIC code, or when
2403 using -Bsymbolic. */
2409 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2410 BFD_ASSERT (splt
!= NULL
);
2413 relocation
= (splt
->output_section
->vma
2414 + splt
->output_offset
2415 + sparc64_elf_plt_entry_offset (h
->plt
.offset
));
2416 if (r_type
== R_SPARC_WPLT30
)
2424 relocation
+= rel
->r_addend
;
2425 relocation
= (relocation
& 0x3ff) + ELF64_R_TYPE_DATA (rel
->r_info
);
2427 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2428 x
= (x
& ~0x1fff) | (relocation
& 0x1fff);
2429 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2431 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2432 howto
->bitsize
, howto
->rightshift
,
2433 bfd_arch_bits_per_address (input_bfd
),
2438 case R_SPARC_WDISP16
:
2442 relocation
+= rel
->r_addend
;
2443 /* Adjust for pc-relative-ness. */
2444 relocation
-= (input_section
->output_section
->vma
2445 + input_section
->output_offset
);
2446 relocation
-= rel
->r_offset
;
2448 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2449 x
= (x
& ~0x303fff) | ((((relocation
>> 2) & 0xc000) << 6)
2450 | ((relocation
>> 2) & 0x3fff));
2451 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2453 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2454 howto
->bitsize
, howto
->rightshift
,
2455 bfd_arch_bits_per_address (input_bfd
),
2464 relocation
+= rel
->r_addend
;
2465 relocation
= relocation
^ MINUS_ONE
;
2467 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2468 x
= (x
& ~0x3fffff) | ((relocation
>> 10) & 0x3fffff);
2469 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2471 r
= bfd_check_overflow (howto
->complain_on_overflow
,
2472 howto
->bitsize
, howto
->rightshift
,
2473 bfd_arch_bits_per_address (input_bfd
),
2482 relocation
+= rel
->r_addend
;
2483 relocation
= (relocation
& 0x3ff) | 0x1c00;
2485 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2486 x
= (x
& ~0x1fff) | relocation
;
2487 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2493 case R_SPARC_WDISP30
:
2495 if (SEC_DO_RELAX (input_section
)
2496 && rel
->r_offset
+ 4 < input_section
->_raw_size
)
2500 #define XCC (2 << 20)
2501 #define COND(x) (((x)&0xf)<<25)
2502 #define CONDA COND(0x8)
2503 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2504 #define INSN_BA (F2(0,2) | CONDA)
2505 #define INSN_OR F3(2, 0x2, 0)
2506 #define INSN_NOP F2(0,4)
2510 /* If the instruction is a call with either:
2512 arithmetic instruction with rd == %o7
2513 where rs1 != %o7 and rs2 if it is register != %o7
2514 then we can optimize if the call destination is near
2515 by changing the call into a branch always. */
2516 x
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
2517 y
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
+ 4);
2518 if ((x
& OP(~0)) == OP(1) && (y
& OP(~0)) == OP(2))
2520 if (((y
& OP3(~0)) == OP3(0x3d) /* restore */
2521 || ((y
& OP3(0x28)) == 0 /* arithmetic */
2522 && (y
& RD(~0)) == RD(O7
)))
2523 && (y
& RS1(~0)) != RS1(O7
)
2525 || (y
& RS2(~0)) != RS2(O7
)))
2529 reloc
= relocation
+ rel
->r_addend
- rel
->r_offset
;
2530 reloc
-= (input_section
->output_section
->vma
2531 + input_section
->output_offset
);
2535 /* Ensure the branch fits into simm22. */
2536 if ((reloc
& ~(bfd_vma
)0x7fffff)
2537 && ((reloc
| 0x7fffff) != MINUS_ONE
))
2541 /* Check whether it fits into simm19. */
2542 if ((reloc
& 0x3c0000) == 0
2543 || (reloc
& 0x3c0000) == 0x3c0000)
2544 x
= INSN_BPA
| (reloc
& 0x7ffff); /* ba,pt %xcc */
2546 x
= INSN_BA
| (reloc
& 0x3fffff); /* ba */
2547 bfd_put_32 (input_bfd
, x
, contents
+ rel
->r_offset
);
2549 if (rel
->r_offset
>= 4
2550 && (y
& (0xffffffff ^ RS1(~0)))
2551 == (INSN_OR
| RD(O7
) | RS2(G0
)))
2556 z
= bfd_get_32 (input_bfd
,
2557 contents
+ rel
->r_offset
- 4);
2558 if ((z
& (0xffffffff ^ RD(~0)))
2559 != (INSN_OR
| RS1(O7
) | RS2(G0
)))
2567 If call foo was replaced with ba, replace
2568 or %rN, %g0, %o7 with nop. */
2570 reg
= (y
& RS1(~0)) >> 14;
2571 if (reg
!= ((z
& RD(~0)) >> 25)
2572 || reg
== G0
|| reg
== O7
)
2575 bfd_put_32 (input_bfd
, INSN_NOP
,
2576 contents
+ rel
->r_offset
+ 4);
2586 r
= _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
2587 contents
, rel
->r_offset
,
2588 relocation
, rel
->r_addend
);
2598 case bfd_reloc_outofrange
:
2601 case bfd_reloc_overflow
:
2607 if (h
->root
.type
== bfd_link_hash_undefweak
2608 && howto
->pc_relative
)
2610 /* Assume this is a call protected by other code that
2611 detect the symbol is undefined. If this is the case,
2612 we can safely ignore the overflow. If not, the
2613 program is hosed anyway, and a little warning isn't
2618 name
= h
->root
.root
.string
;
2622 name
= (bfd_elf_string_from_elf_section
2624 symtab_hdr
->sh_link
,
2629 name
= bfd_section_name (input_bfd
, sec
);
2631 if (! ((*info
->callbacks
->reloc_overflow
)
2632 (info
, name
, howto
->name
, (bfd_vma
) 0,
2633 input_bfd
, input_section
, rel
->r_offset
)))
2643 /* Finish up dynamic symbol handling. We set the contents of various
2644 dynamic sections here. */
2647 sparc64_elf_finish_dynamic_symbol (output_bfd
, info
, h
, sym
)
2649 struct bfd_link_info
*info
;
2650 struct elf_link_hash_entry
*h
;
2651 Elf_Internal_Sym
*sym
;
2655 dynobj
= elf_hash_table (info
)->dynobj
;
2657 if (h
->plt
.offset
!= (bfd_vma
) -1)
2661 Elf_Internal_Rela rela
;
2663 /* This symbol has an entry in the PLT. Set it up. */
2665 BFD_ASSERT (h
->dynindx
!= -1);
2667 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2668 srela
= bfd_get_section_by_name (dynobj
, ".rela.plt");
2669 BFD_ASSERT (splt
!= NULL
&& srela
!= NULL
);
2671 /* Fill in the entry in the .rela.plt section. */
2673 if (h
->plt
.offset
< LARGE_PLT_THRESHOLD
)
2675 rela
.r_offset
= sparc64_elf_plt_entry_offset (h
->plt
.offset
);
2680 int max
= splt
->_raw_size
/ PLT_ENTRY_SIZE
;
2681 rela
.r_offset
= sparc64_elf_plt_ptr_offset (h
->plt
.offset
, max
);
2682 rela
.r_addend
= -(sparc64_elf_plt_entry_offset (h
->plt
.offset
) + 4)
2683 -(splt
->output_section
->vma
+ splt
->output_offset
);
2685 rela
.r_offset
+= (splt
->output_section
->vma
+ splt
->output_offset
);
2686 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_JMP_SLOT
);
2688 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2689 ((Elf64_External_Rela
*) srela
->contents
2692 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2694 /* Mark the symbol as undefined, rather than as defined in
2695 the .plt section. Leave the value alone. */
2696 sym
->st_shndx
= SHN_UNDEF
;
2700 if (h
->got
.offset
!= (bfd_vma
) -1)
2704 Elf_Internal_Rela rela
;
2706 /* This symbol has an entry in the GOT. Set it up. */
2708 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2709 srela
= bfd_get_section_by_name (dynobj
, ".rela.got");
2710 BFD_ASSERT (sgot
!= NULL
&& srela
!= NULL
);
2712 rela
.r_offset
= (sgot
->output_section
->vma
2713 + sgot
->output_offset
2714 + (h
->got
.offset
&~ 1));
2716 /* If this is a -Bsymbolic link, and the symbol is defined
2717 locally, we just want to emit a RELATIVE reloc. Likewise if
2718 the symbol was forced to be local because of a version file.
2719 The entry in the global offset table will already have been
2720 initialized in the relocate_section function. */
2722 && (info
->symbolic
|| h
->dynindx
== -1)
2723 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
))
2725 asection
*sec
= h
->root
.u
.def
.section
;
2726 rela
.r_info
= ELF64_R_INFO (0, R_SPARC_RELATIVE
);
2727 rela
.r_addend
= (h
->root
.u
.def
.value
2728 + sec
->output_section
->vma
2729 + sec
->output_offset
);
2733 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ h
->got
.offset
);
2734 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_GLOB_DAT
);
2738 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2739 ((Elf64_External_Rela
*) srela
->contents
2740 + srela
->reloc_count
));
2741 ++srela
->reloc_count
;
2744 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_COPY
) != 0)
2747 Elf_Internal_Rela rela
;
2749 /* This symbols needs a copy reloc. Set it up. */
2751 BFD_ASSERT (h
->dynindx
!= -1);
2753 s
= bfd_get_section_by_name (h
->root
.u
.def
.section
->owner
,
2755 BFD_ASSERT (s
!= NULL
);
2757 rela
.r_offset
= (h
->root
.u
.def
.value
2758 + h
->root
.u
.def
.section
->output_section
->vma
2759 + h
->root
.u
.def
.section
->output_offset
);
2760 rela
.r_info
= ELF64_R_INFO (h
->dynindx
, R_SPARC_COPY
);
2762 bfd_elf64_swap_reloca_out (output_bfd
, &rela
,
2763 ((Elf64_External_Rela
*) s
->contents
2768 /* Mark some specially defined symbols as absolute. */
2769 if (strcmp (h
->root
.root
.string
, "_DYNAMIC") == 0
2770 || strcmp (h
->root
.root
.string
, "_GLOBAL_OFFSET_TABLE_") == 0
2771 || strcmp (h
->root
.root
.string
, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2772 sym
->st_shndx
= SHN_ABS
;
2777 /* Finish up the dynamic sections. */
2780 sparc64_elf_finish_dynamic_sections (output_bfd
, info
)
2782 struct bfd_link_info
*info
;
2785 int stt_regidx
= -1;
2789 dynobj
= elf_hash_table (info
)->dynobj
;
2791 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2793 if (elf_hash_table (info
)->dynamic_sections_created
)
2796 Elf64_External_Dyn
*dyncon
, *dynconend
;
2798 splt
= bfd_get_section_by_name (dynobj
, ".plt");
2799 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
2801 dyncon
= (Elf64_External_Dyn
*) sdyn
->contents
;
2802 dynconend
= (Elf64_External_Dyn
*) (sdyn
->contents
+ sdyn
->_raw_size
);
2803 for (; dyncon
< dynconend
; dyncon
++)
2805 Elf_Internal_Dyn dyn
;
2809 bfd_elf64_swap_dyn_in (dynobj
, dyncon
, &dyn
);
2813 case DT_PLTGOT
: name
= ".plt"; size
= false; break;
2814 case DT_PLTRELSZ
: name
= ".rela.plt"; size
= true; break;
2815 case DT_JMPREL
: name
= ".rela.plt"; size
= false; break;
2816 case DT_SPARC_REGISTER
:
2817 if (stt_regidx
== -1)
2820 _bfd_elf_link_lookup_local_dynindx (info
, output_bfd
, -1);
2821 if (stt_regidx
== -1)
2824 dyn
.d_un
.d_val
= stt_regidx
++;
2825 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2827 default: name
= NULL
; size
= false; break;
2834 s
= bfd_get_section_by_name (output_bfd
, name
);
2840 dyn
.d_un
.d_ptr
= s
->vma
;
2843 if (s
->_cooked_size
!= 0)
2844 dyn
.d_un
.d_val
= s
->_cooked_size
;
2846 dyn
.d_un
.d_val
= s
->_raw_size
;
2849 bfd_elf64_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
2853 /* Initialize the contents of the .plt section. */
2854 if (splt
->_raw_size
> 0)
2856 sparc64_elf_build_plt(output_bfd
, splt
->contents
,
2857 splt
->_raw_size
/ PLT_ENTRY_SIZE
);
2860 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
=
2864 /* Set the first entry in the global offset table to the address of
2865 the dynamic section. */
2866 sgot
= bfd_get_section_by_name (dynobj
, ".got");
2867 BFD_ASSERT (sgot
!= NULL
);
2868 if (sgot
->_raw_size
> 0)
2871 bfd_put_64 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
2873 bfd_put_64 (output_bfd
,
2874 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
2878 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 8;
2883 /* Functions for dealing with the e_flags field. */
2885 /* Merge backend specific data from an object file to the output
2886 object file when linking. */
2889 sparc64_elf_merge_private_bfd_data (ibfd
, obfd
)
2894 flagword new_flags
, old_flags
;
2897 if (bfd_get_flavour (ibfd
) != bfd_target_elf_flavour
2898 || bfd_get_flavour (obfd
) != bfd_target_elf_flavour
)
2901 new_flags
= elf_elfheader (ibfd
)->e_flags
;
2902 old_flags
= elf_elfheader (obfd
)->e_flags
;
2904 if (!elf_flags_init (obfd
)) /* First call, no flags set */
2906 elf_flags_init (obfd
) = true;
2907 elf_elfheader (obfd
)->e_flags
= new_flags
;
2910 else if (new_flags
== old_flags
) /* Compatible flags are ok */
2913 else /* Incompatible flags */
2917 if ((ibfd
->flags
& DYNAMIC
) != 0)
2919 /* We don't want dynamic objects memory ordering and
2920 architecture to have any role. That's what dynamic linker
2922 new_flags
&= ~(EF_SPARCV9_MM
| EF_SPARC_SUN_US1
| EF_SPARC_HAL_R1
);
2923 new_flags
|= (old_flags
2926 | EF_SPARC_HAL_R1
));
2930 /* Choose the highest architecture requirements. */
2931 old_flags
|= (new_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_HAL_R1
));
2932 new_flags
|= (old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_HAL_R1
));
2933 if ((old_flags
& (EF_SPARC_SUN_US1
| EF_SPARC_HAL_R1
))
2934 == (EF_SPARC_SUN_US1
| EF_SPARC_HAL_R1
))
2937 (*_bfd_error_handler
)
2938 (_("%s: linking UltraSPARC specific with HAL specific code"),
2939 bfd_get_filename (ibfd
));
2941 /* Choose the most restrictive memory ordering. */
2942 old_mm
= (old_flags
& EF_SPARCV9_MM
);
2943 new_mm
= (new_flags
& EF_SPARCV9_MM
);
2944 old_flags
&= ~EF_SPARCV9_MM
;
2945 new_flags
&= ~EF_SPARCV9_MM
;
2946 if (new_mm
< old_mm
)
2948 old_flags
|= old_mm
;
2949 new_flags
|= old_mm
;
2952 /* Warn about any other mismatches */
2953 if (new_flags
!= old_flags
)
2956 (*_bfd_error_handler
)
2957 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
2958 bfd_get_filename (ibfd
), (long)new_flags
, (long)old_flags
);
2961 elf_elfheader (obfd
)->e_flags
= old_flags
;
2965 bfd_set_error (bfd_error_bad_value
);
2972 /* Print a STT_REGISTER symbol to file FILE. */
2975 sparc64_elf_print_symbol_all (abfd
, filep
, symbol
)
2976 bfd
*abfd ATTRIBUTE_UNUSED
;
2980 FILE *file
= (FILE *) filep
;
2983 if (ELF_ST_TYPE (((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_info
)
2987 reg
= ((elf_symbol_type
*) symbol
)->internal_elf_sym
.st_value
;
2988 type
= symbol
->flags
;
2989 fprintf (file
, "REG_%c%c%11s%c%c R", "GOLI" [reg
/ 8], '0' + (reg
& 7), "",
2991 ? (type
& BSF_GLOBAL
) ? '!' : 'l'
2992 : (type
& BSF_GLOBAL
) ? 'g' : ' '),
2993 (type
& BSF_WEAK
) ? 'w' : ' ');
2994 if (symbol
->name
== NULL
|| symbol
->name
[0] == '\0')
2997 return symbol
->name
;
3000 /* Set the right machine number for a SPARC64 ELF file. */
3003 sparc64_elf_object_p (abfd
)
3006 unsigned long mach
= bfd_mach_sparc_v9
;
3008 if (elf_elfheader (abfd
)->e_flags
& EF_SPARC_SUN_US1
)
3009 mach
= bfd_mach_sparc_v9a
;
3010 return bfd_default_set_arch_mach (abfd
, bfd_arch_sparc
, mach
);
3013 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3014 standard ELF, because R_SPARC_OLO10 has secondary addend in
3015 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3016 relocation handling routines. */
3018 const struct elf_size_info sparc64_elf_size_info
=
3020 sizeof (Elf64_External_Ehdr
),
3021 sizeof (Elf64_External_Phdr
),
3022 sizeof (Elf64_External_Shdr
),
3023 sizeof (Elf64_External_Rel
),
3024 sizeof (Elf64_External_Rela
),
3025 sizeof (Elf64_External_Sym
),
3026 sizeof (Elf64_External_Dyn
),
3027 sizeof (Elf_External_Note
),
3028 4, /* hash-table entry size */
3029 /* internal relocations per external relocations.
3030 For link purposes we use just 1 internal per
3031 1 external, for assembly and slurp symbol table
3038 bfd_elf64_write_out_phdrs
,
3039 bfd_elf64_write_shdrs_and_ehdr
,
3040 sparc64_elf_write_relocs
,
3041 bfd_elf64_swap_symbol_out
,
3042 sparc64_elf_slurp_reloc_table
,
3043 bfd_elf64_slurp_symbol_table
,
3044 bfd_elf64_swap_dyn_in
,
3045 bfd_elf64_swap_dyn_out
,
3052 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3053 #define TARGET_BIG_NAME "elf64-sparc"
3054 #define ELF_ARCH bfd_arch_sparc
3055 #define ELF_MAXPAGESIZE 0x100000
3057 /* This is the official ABI value. */
3058 #define ELF_MACHINE_CODE EM_SPARCV9
3060 /* This is the value that we used before the ABI was released. */
3061 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3063 #define bfd_elf64_bfd_link_hash_table_create \
3064 sparc64_elf_bfd_link_hash_table_create
3066 #define elf_info_to_howto \
3067 sparc64_elf_info_to_howto
3068 #define bfd_elf64_get_reloc_upper_bound \
3069 sparc64_elf_get_reloc_upper_bound
3070 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3071 sparc64_elf_get_dynamic_reloc_upper_bound
3072 #define bfd_elf64_canonicalize_dynamic_reloc \
3073 sparc64_elf_canonicalize_dynamic_reloc
3074 #define bfd_elf64_bfd_reloc_type_lookup \
3075 sparc64_elf_reloc_type_lookup
3076 #define bfd_elf64_bfd_relax_section \
3077 sparc64_elf_relax_section
3079 #define elf_backend_create_dynamic_sections \
3080 _bfd_elf_create_dynamic_sections
3081 #define elf_backend_add_symbol_hook \
3082 sparc64_elf_add_symbol_hook
3083 #define elf_backend_get_symbol_type \
3084 sparc64_elf_get_symbol_type
3085 #define elf_backend_symbol_processing \
3086 sparc64_elf_symbol_processing
3087 #define elf_backend_check_relocs \
3088 sparc64_elf_check_relocs
3089 #define elf_backend_adjust_dynamic_symbol \
3090 sparc64_elf_adjust_dynamic_symbol
3091 #define elf_backend_size_dynamic_sections \
3092 sparc64_elf_size_dynamic_sections
3093 #define elf_backend_relocate_section \
3094 sparc64_elf_relocate_section
3095 #define elf_backend_finish_dynamic_symbol \
3096 sparc64_elf_finish_dynamic_symbol
3097 #define elf_backend_finish_dynamic_sections \
3098 sparc64_elf_finish_dynamic_sections
3099 #define elf_backend_print_symbol_all \
3100 sparc64_elf_print_symbol_all
3101 #define elf_backend_output_arch_syms \
3102 sparc64_elf_output_arch_syms
3104 #define bfd_elf64_bfd_merge_private_bfd_data \
3105 sparc64_elf_merge_private_bfd_data
3107 #define elf_backend_size_info \
3108 sparc64_elf_size_info
3109 #define elf_backend_object_p \
3110 sparc64_elf_object_p
3112 #define elf_backend_want_got_plt 0
3113 #define elf_backend_plt_readonly 0
3114 #define elf_backend_want_plt_sym 1
3116 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3117 #define elf_backend_plt_alignment 8
3119 #define elf_backend_got_header_size 8
3120 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3122 #include "elf64-target.h"