1 /* tc-d30v.c -- Assembler code for the Mitsubishi D30V
2 Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation.
4 This file is part of GAS, the GNU Assembler.
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
25 #include "opcode/d30v.h"
27 const char comment_chars
[] = ";";
28 const char line_comment_chars
[] = "#";
29 const char line_separator_chars
[] = "";
30 const char *md_shortopts
= "OnNcC";
31 const char EXP_CHARS
[] = "eE";
32 const char FLT_CHARS
[] = "dD";
42 #define NOP_MULTIPLY 1
44 static int warn_nops
= 0;
45 static int Optimizing
= 0;
46 static int warn_register_name_conflicts
= 1;
52 typedef enum _exec_type
54 EXEC_UNKNOWN
, /* no order specified */
55 EXEC_PARALLEL
, /* done in parallel (FM=00) */
56 EXEC_SEQ
, /* sequential (FM=01) */
57 EXEC_REVSEQ
/* reverse sequential (FM=10) */
61 #define MAX_INSN_FIXUPS (5)
68 bfd_reloc_code_real_type reloc
;
71 typedef struct _fixups
74 struct d30v_fixup fix
[MAX_INSN_FIXUPS
];
78 static Fixups FixUps
[2];
79 static Fixups
*fixups
;
81 /* Whether current and previous instruction are word multiply insns. */
82 static int cur_mul32_p
= 0;
83 static int prev_mul32_p
= 0;
85 /* The flag_explicitly_parallel is true iff the instruction being assembled
86 has been explicitly written as a parallel short-instruction pair by the
87 human programmer. It is used in parallel_ok() to distinguish between
88 those dangerous parallelizations attempted by the human, which are to be
89 allowed, and those attempted by the assembler, which are not. It is set
90 from md_assemble(). */
91 static int flag_explicitly_parallel
= 0;
92 static int flag_xp_state
= 0;
94 /* Whether current and previous left sub-instruction disables
95 execution of right sub-instruction. */
96 static int cur_left_kills_right_p
= 0;
97 static int prev_left_kills_right_p
= 0;
99 /* The known current alignment of the current section. */
100 static int d30v_current_align
;
101 static segT d30v_current_align_seg
;
103 /* The last seen label in the current section. This is used to auto-align
104 labels preceeding instructions. */
105 static symbolS
*d30v_last_label
;
108 #define NOP_LEFT ((long long) NOP << 32)
109 #define NOP_RIGHT ((long long) NOP)
110 #define NOP2 (FM00 | NOP_LEFT | NOP_RIGHT)
112 /* local functions */
113 static int reg_name_search
PARAMS ((char *name
));
114 static int register_name
PARAMS ((expressionS
*expressionP
));
115 static int check_range
PARAMS ((unsigned long num
, int bits
, int flags
));
116 static int postfix
PARAMS ((char *p
));
117 static bfd_reloc_code_real_type get_reloc
PARAMS ((struct d30v_operand
*op
, int rel_flag
));
118 static int get_operands
PARAMS ((expressionS exp
[], int cmp_hack
));
119 static struct d30v_format
*find_format
PARAMS ((struct d30v_opcode
*opcode
,
120 expressionS ops
[],int fsize
, int cmp_hack
));
121 static long long build_insn
PARAMS ((struct d30v_insn
*opcode
, expressionS
*opers
));
122 static void write_long
PARAMS ((struct d30v_insn
*opcode
, long long insn
, Fixups
*fx
));
123 static void write_1_short
PARAMS ((struct d30v_insn
*opcode
, long long insn
,
124 Fixups
*fx
, int use_sequential
));
125 static int write_2_short
PARAMS ((struct d30v_insn
*opcode1
, long long insn1
,
126 struct d30v_insn
*opcode2
, long long insn2
, exec_type_enum exec_type
, Fixups
*fx
));
127 static long long do_assemble
PARAMS ((char *str
, struct d30v_insn
*opcode
,
128 int shortp
, int is_parallel
));
129 static int parallel_ok
PARAMS ((struct d30v_insn
*opcode1
, unsigned long insn1
,
130 struct d30v_insn
*opcode2
, unsigned long insn2
,
131 exec_type_enum exec_type
));
132 static void d30v_number_to_chars
PARAMS ((char *buf
, long long value
, int nbytes
));
133 static void check_size
PARAMS ((long value
, int bits
, char *file
, int line
));
134 static void d30v_align
PARAMS ((int, char *, symbolS
*));
135 static void s_d30v_align
PARAMS ((int));
136 static void s_d30v_text
PARAMS ((int));
137 static void s_d30v_data
PARAMS ((int));
138 static void s_d30v_section
PARAMS ((int));
140 struct option md_longopts
[] = {
141 {NULL
, no_argument
, NULL
, 0}
143 size_t md_longopts_size
= sizeof(md_longopts
);
146 /* The target specific pseudo-ops which we support. */
147 const pseudo_typeS md_pseudo_table
[] =
150 { "hword", cons
, 2 },
151 { "align", s_d30v_align
, 0 },
152 { "text", s_d30v_text
, 0 },
153 { "data", s_d30v_data
, 0 },
154 { "section", s_d30v_section
, 0 },
155 { "section.s", s_d30v_section
, 0 },
156 { "sect", s_d30v_section
, 0 },
157 { "sect.s", s_d30v_section
, 0 },
161 /* Opcode hash table. */
162 static struct hash_control
*d30v_hash
;
164 /* reg_name_search does a binary search of the pre_defined_registers
165 array to see if "name" is a valid regiter name. Returns the register
166 number from the array on success, or -1 on failure. */
169 reg_name_search (name
)
172 int middle
, low
, high
;
176 high
= reg_name_cnt () - 1;
180 middle
= (low
+ high
) / 2;
181 cmp
= strcasecmp (name
, pre_defined_registers
[middle
].name
);
188 if (symbol_find (name
) != NULL
)
190 if (warn_register_name_conflicts
)
191 as_warn (_("Register name %s conflicts with symbol of the same name"),
195 return pre_defined_registers
[middle
].value
;
203 /* register_name() checks the string at input_line_pointer
204 to see if it is a valid register name. */
207 register_name (expressionP
)
208 expressionS
*expressionP
;
211 char c
, *p
= input_line_pointer
;
213 while (*p
&& *p
!='\n' && *p
!='\r' && *p
!=',' && *p
!=' ' && *p
!=')')
220 /* look to see if it's in the register table */
221 reg_number
= reg_name_search (input_line_pointer
);
224 expressionP
->X_op
= O_register
;
225 /* temporarily store a pointer to the string here */
226 expressionP
->X_op_symbol
= (symbolS
*)input_line_pointer
;
227 expressionP
->X_add_number
= reg_number
;
228 input_line_pointer
= p
;
238 check_range (num
, bits
, flags
)
245 /* Don't bother checking 32-bit values. */
248 if (sizeof(unsigned long) * CHAR_BIT
== 32)
251 /* We don't record signed or unsigned for 32-bit quantities.
253 min
= -((unsigned long)1 << (bits
- 1));
254 max
= ((unsigned long)1 << bits
) - 1;
255 return (long)num
< min
|| (long)num
> max
;
258 if (flags
& OPERAND_SHIFT
)
260 /* We know that all shifts are right by three bits.... */
262 if (flags
& OPERAND_SIGNED
)
263 num
= (unsigned long) ( (long) num
>= 0)
264 ? ( ((long) num
) >> 3 )
265 : ( (num
>> 3) | ~(~(unsigned long)0 >> 3) );
270 if (flags
& OPERAND_SIGNED
)
272 max
= ((unsigned long)1 << (bits
- 1)) - 1;
273 min
= - ((unsigned long)1 << (bits
- 1));
274 return (long)num
> max
|| (long)num
< min
;
278 max
= ((unsigned long)1 << bits
) - 1;
280 return num
> max
|| num
< min
;
286 md_show_usage (stream
)
289 fprintf (stream
, _("\nD30V options:\n\
290 -O Make adjacent short instructions parallel if possible.\n\
291 -n Warn about all NOPs inserted by the assembler.\n\
292 -N Warn about NOPs inserted after word multiplies.\n\
293 -c Warn about symbols whoes names match register names.\n\
294 -C Opposite of -C. -c is the default.\n"));
298 md_parse_option (c
, arg
)
304 /* Optimize. Will attempt to parallelize operations */
309 /* Warn about all NOPS that the assembler inserts. */
314 /* Warn about the NOPS that the assembler inserts because of the
317 warn_nops
= NOP_MULTIPLY
;
321 warn_register_name_conflicts
= 1;
325 warn_register_name_conflicts
= 0;
335 md_undefined_symbol (name
)
341 /* Turn a string in input_line_pointer into a floating point constant of type
342 type, and store the appropriate bytes in *litP. The number of LITTLENUMS
343 emitted is stored in *sizeP . An error message is returned, or NULL on OK.
346 md_atof (type
, litP
, sizeP
)
352 LITTLENUM_TYPE words
[4];
366 return _("bad call to md_atof");
369 t
= atof_ieee (input_line_pointer
, type
, words
);
371 input_line_pointer
= t
;
375 for (i
= 0; i
< prec
; i
++)
377 md_number_to_chars (litP
, (valueT
) words
[i
], 2);
384 md_convert_frag (abfd
, sec
, fragP
)
393 md_section_align (seg
, addr
)
397 int align
= bfd_get_section_alignment (stdoutput
, seg
);
398 return ((addr
+ (1 << align
) - 1) & (-1 << align
));
405 struct d30v_opcode
* opcode
;
406 d30v_hash
= hash_new ();
408 /* Insert opcode names into a hash table. */
409 for (opcode
= (struct d30v_opcode
*)d30v_opcode_table
; opcode
->name
; opcode
++)
410 hash_insert (d30v_hash
, opcode
->name
, (char *) opcode
);
413 FixUps
[0].next
= &FixUps
[1];
414 FixUps
[1].next
= &FixUps
[0];
416 d30v_current_align_seg
= now_seg
;
420 /* this function removes the postincrement or postdecrement
421 operator ( '+' or '-' ) from an expression */
423 static int postfix (p
)
426 while (*p
!= '-' && *p
!= '+')
428 if (*p
==0 || *p
=='\n' || *p
=='\r' || *p
==' ' || *p
==',')
448 static bfd_reloc_code_real_type
449 get_reloc (op
, rel_flag
)
450 struct d30v_operand
*op
;
456 if (op
->flags
& OPERAND_SHIFT
)
457 return BFD_RELOC_D30V_9_PCREL
;
459 return BFD_RELOC_D30V_6
;
462 if (!(op
->flags
& OPERAND_SHIFT
))
463 as_warn (_("unexpected 12-bit reloc type"));
464 if (rel_flag
== RELOC_PCREL
)
465 return BFD_RELOC_D30V_15_PCREL
;
467 return BFD_RELOC_D30V_15
;
469 if (!(op
->flags
& OPERAND_SHIFT
))
470 as_warn (_("unexpected 18-bit reloc type"));
471 if (rel_flag
== RELOC_PCREL
)
472 return BFD_RELOC_D30V_21_PCREL
;
474 return BFD_RELOC_D30V_21
;
476 if (rel_flag
== RELOC_PCREL
)
477 return BFD_RELOC_D30V_32_PCREL
;
479 return BFD_RELOC_D30V_32
;
485 /* get_operands parses a string of operands and returns
486 an array of expressions */
489 get_operands (exp
, cmp_hack
)
493 char *p
= input_line_pointer
;
499 exp
[numops
].X_op
= O_absent
;
500 exp
[numops
++].X_add_number
= cmp_hack
- 1;
505 while (*p
== ' ' || *p
== '\t' || *p
== ',')
507 if (*p
==0 || *p
=='\n' || *p
=='\r')
513 exp
[numops
].X_op
= O_absent
;
517 exp
[numops
].X_add_number
= OPERAND_ATPAR
;
523 exp
[numops
].X_add_number
= OPERAND_ATMINUS
;
527 exp
[numops
].X_add_number
= OPERAND_ATSIGN
;
536 /* just skip the trailing paren */
541 input_line_pointer
= p
;
543 /* check to see if it might be a register name */
544 if (!register_name (&exp
[numops
]))
546 /* parse as an expression */
547 expression (&exp
[numops
]);
550 if (exp
[numops
].X_op
== O_illegal
)
551 as_bad (_("illegal operand"));
552 else if (exp
[numops
].X_op
== O_absent
)
553 as_bad (_("missing operand"));
556 p
= input_line_pointer
;
560 case -1: /* postdecrement mode */
561 exp
[numops
].X_op
= O_absent
;
562 exp
[numops
++].X_add_number
= OPERAND_MINUS
;
564 case 1: /* postincrement mode */
565 exp
[numops
].X_op
= O_absent
;
566 exp
[numops
++].X_add_number
= OPERAND_PLUS
;
572 exp
[numops
].X_op
= 0;
576 /* build_insn generates the instruction. It does everything */
577 /* but write the FM bits. */
580 build_insn (opcode
, opers
)
581 struct d30v_insn
*opcode
;
584 int i
, length
, bits
, shift
, flags
;
585 unsigned long number
, id
=0;
587 struct d30v_opcode
*op
= opcode
->op
;
588 struct d30v_format
*form
= opcode
->form
;
590 insn
= opcode
->ecc
<< 28 | op
->op1
<< 25 | op
->op2
<< 20 | form
->modifier
<< 18;
592 for (i
=0; form
->operands
[i
]; i
++)
594 flags
= d30v_operand_table
[form
->operands
[i
]].flags
;
596 /* must be a register or number */
597 if (!(flags
& OPERAND_REG
) && !(flags
& OPERAND_NUM
) &&
598 !(flags
& OPERAND_NAME
) && !(flags
& OPERAND_SPECIAL
))
601 bits
= d30v_operand_table
[form
->operands
[i
]].bits
;
602 if (flags
& OPERAND_SHIFT
)
605 length
= d30v_operand_table
[form
->operands
[i
]].length
;
606 shift
= 12 - d30v_operand_table
[form
->operands
[i
]].position
;
607 if (opers
[i
].X_op
!= O_symbol
)
608 number
= opers
[i
].X_add_number
;
611 if (flags
& OPERAND_REG
)
613 /* check for mvfsys or mvtsys control registers */
614 if (flags
& OPERAND_CONTROL
&& (number
& 0x7f) > MAX_CONTROL_REG
)
617 id
= (number
& 0x7f) - MAX_CONTROL_REG
;
620 else if (number
& OPERAND_FLAG
)
622 id
= 3; /* number is a flag register */
626 else if (flags
& OPERAND_SPECIAL
)
631 if (opers
[i
].X_op
!= O_register
&& opers
[i
].X_op
!= O_constant
&& !(flags
& OPERAND_NAME
))
633 /* now create a fixup */
635 if (fixups
->fc
>= MAX_INSN_FIXUPS
)
636 as_fatal (_("too many fixups"));
638 fixups
->fix
[fixups
->fc
].reloc
=
639 get_reloc ((struct d30v_operand
*)&d30v_operand_table
[form
->operands
[i
]], op
->reloc_flag
);
640 fixups
->fix
[fixups
->fc
].size
= 4;
641 fixups
->fix
[fixups
->fc
].exp
= opers
[i
];
642 fixups
->fix
[fixups
->fc
].operand
= form
->operands
[i
];
643 if (fixups
->fix
[fixups
->fc
].reloc
== BFD_RELOC_D30V_9_PCREL
)
644 fixups
->fix
[fixups
->fc
].pcrel
= RELOC_PCREL
;
646 fixups
->fix
[fixups
->fc
].pcrel
= op
->reloc_flag
;
650 /* truncate to the proper number of bits */
651 if ((opers
[i
].X_op
== O_constant
) && check_range (number
, bits
, flags
))
652 as_bad (_("operand out of range: %d"),number
);
654 number
&= 0x7FFFFFFF >> (31 - bits
);
655 if (flags
& OPERAND_SHIFT
)
659 /* it's a LONG instruction */
660 insn
|= ((number
& 0xffffffff) >> 26); /* top 6 bits */
661 insn
<<= 32; /* shift the first word over */
662 insn
|= ((number
& 0x03FC0000) << 2); /* next 8 bits */
663 insn
|= number
& 0x0003FFFF; /* bottom 18 bits */
666 insn
|= number
<< shift
;
672 /* write out a long form instruction */
674 write_long (opcode
, insn
, fx
)
675 struct d30v_insn
*opcode
;
680 char *f
= frag_more (8);
683 d30v_number_to_chars (f
, insn
, 8);
685 for (i
=0; i
< fx
->fc
; i
++)
687 if (fx
->fix
[i
].reloc
)
689 where
= f
- frag_now
->fr_literal
;
690 fix_new_exp (frag_now
,
702 /* Write out a short form instruction by itself. */
704 write_1_short (opcode
, insn
, fx
, use_sequential
)
705 struct d30v_insn
*opcode
;
710 char *f
= frag_more (8);
713 if (warn_nops
== NOP_ALL
)
714 as_warn (_("%s NOP inserted"), use_sequential
?
715 _("sequential") : _("parallel"));
717 /* The other container needs to be NOP. */
720 /* Use a sequential NOP rather than a parallel one,
721 as the current instruction is a FLAG_MUL32 type one
722 and the next instruction is a load. */
724 /* According to 4.3.1: for FM=01, sub-instructions performed
725 only by IU cannot be encoded in L-container. */
727 if (opcode
->op
->unit
== IU
)
728 insn
|= FM10
| NOP_LEFT
; /* right then left */
730 insn
= FM01
| (insn
<< 32) | NOP_RIGHT
; /* left then right */
734 /* According to 4.3.1: for FM=00, sub-instructions performed
735 only by IU cannot be encoded in L-container. */
737 if (opcode
->op
->unit
== IU
)
738 insn
|= FM00
| NOP_LEFT
; /* right container */
740 insn
= FM00
| (insn
<< 32) | NOP_RIGHT
; /* left container */
743 d30v_number_to_chars (f
, insn
, 8);
745 for (i
=0; i
< fx
->fc
; i
++)
747 if (fx
->fix
[i
].reloc
)
749 where
= f
- frag_now
->fr_literal
;
750 fix_new_exp (frag_now
,
761 /* Write out a short form instruction if possible.
762 Return number of instructions not written out. */
764 write_2_short (opcode1
, insn1
, opcode2
, insn2
, exec_type
, fx
)
765 struct d30v_insn
*opcode1
, *opcode2
;
766 long long insn1
, insn2
;
767 exec_type_enum exec_type
;
770 long long insn
= NOP2
;
774 if (exec_type
== EXEC_SEQ
775 && (opcode1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
))
776 && ((opcode1
->op
->flags_used
& FLAG_DELAY
) == 0)
777 && ((opcode1
->ecc
== ECC_AL
) || ! Optimizing
))
779 /* Unconditional, non-delayed branches kill instructions in
780 the right bin. Conditional branches don't always but if
781 we are not optimizing, then we have been asked to produce
782 an error about such constructs. For the purposes of this
783 test, subroutine calls are considered to be branches. */
784 write_1_short (opcode1
, insn1
, fx
->next
, false);
788 /* Note: we do not have to worry about subroutine calls occuring
789 in the right hand container. The return address is always
790 aligned to the next 64 bit boundary, be that 64 or 32 bit away. */
794 case EXEC_UNKNOWN
: /* Order not specified. */
796 && parallel_ok (opcode1
, insn1
, opcode2
, insn2
, exec_type
)
797 && ! ( (opcode1
->op
->unit
== EITHER_BUT_PREFER_MU
798 || opcode1
->op
->unit
== MU
)
800 ( opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
801 || opcode2
->op
->unit
== MU
)))
804 exec_type
= EXEC_PARALLEL
;
806 if (opcode1
->op
->unit
== IU
807 || opcode2
->op
->unit
== MU
808 || opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
809 insn
= FM00
| (insn2
<< 32) | insn1
;
812 insn
= FM00
| (insn1
<< 32) | insn2
;
816 else if ((opcode1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
)
817 && ((opcode1
->op
->flags_used
& FLAG_DELAY
) == 0))
818 || opcode1
->op
->flags_used
& FLAG_RP
)
820 /* We must emit (non-delayed) branch type instructions
821 on their own with nothing in the right container. */
822 /* We must treat repeat instructions likewise, since the
823 following instruction has to be separate from the repeat
824 in order to be repeated. */
825 write_1_short (opcode1
, insn1
, fx
->next
, false);
828 else if (prev_left_kills_right_p
)
830 /* The left instruction kils the right slot, so we
831 must leave it empty. */
832 write_1_short (opcode1
, insn1
, fx
->next
, false);
835 else if (opcode1
->op
->unit
== IU
836 || (opcode1
->op
->unit
== EITHER
837 && opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
))
839 /* reverse sequential */
840 insn
= FM10
| (insn2
<< 32) | insn1
;
841 exec_type
= EXEC_REVSEQ
;
846 insn
= FM01
| (insn1
<< 32) | insn2
;
848 exec_type
= EXEC_SEQ
;
852 case EXEC_PARALLEL
: /* parallel */
853 flag_explicitly_parallel
= flag_xp_state
;
854 if (! parallel_ok (opcode1
, insn1
, opcode2
, insn2
, exec_type
))
855 as_bad (_("Instructions may not be executed in parallel"));
856 else if (opcode1
->op
->unit
== IU
)
858 if (opcode2
->op
->unit
== IU
)
859 as_bad (_("Two IU instructions may not be executed in parallel"));
860 as_warn (_("Swapping instruction order"));
861 insn
= FM00
| (insn2
<< 32) | insn1
;
863 else if (opcode2
->op
->unit
== MU
)
865 if (opcode1
->op
->unit
== MU
)
866 as_bad (_("Two MU instructions may not be executed in parallel"));
867 else if (opcode1
->op
->unit
== EITHER_BUT_PREFER_MU
)
868 as_warn (_("Executing %s in IU may not work"), opcode1
->op
->name
);
869 as_warn (_("Swapping instruction order"));
870 insn
= FM00
| (insn2
<< 32) | insn1
;
874 if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
875 as_warn (_("Executing %s in IU may not work"), opcode2
->op
->name
);
877 insn
= FM00
| (insn1
<< 32) | insn2
;
880 flag_explicitly_parallel
= 0;
883 case EXEC_SEQ
: /* sequential */
884 if (opcode1
->op
->unit
== IU
)
885 as_bad (_("IU instruction may not be in the left container"));
886 if (prev_left_kills_right_p
)
887 as_bad (_("special left instruction `%s' kills instruction "
888 "`%s' in right container"),
889 opcode1
->op
->name
, opcode2
->op
->name
);
890 if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
891 as_warn (_("Executing %s in IU may not work"), opcode2
->op
->name
);
892 insn
= FM01
| (insn1
<< 32) | insn2
;
896 case EXEC_REVSEQ
: /* reverse sequential */
897 if (opcode2
->op
->unit
== MU
)
898 as_bad (_("MU instruction may not be in the right container"));
899 if (opcode2
->op
->unit
== EITHER_BUT_PREFER_MU
)
900 as_warn (_("Executing %s in IU may not work"), opcode2
->op
->name
);
901 insn
= FM10
| (insn1
<< 32) | insn2
;
906 as_fatal (_("unknown execution type passed to write_2_short()"));
909 /* printf ("writing out %llx\n",insn); */
911 d30v_number_to_chars (f
, insn
, 8);
913 /* If the previous instruction was a 32-bit multiply but it is put into a
914 parallel container, mark the current instruction as being a 32-bit
916 if (prev_mul32_p
&& exec_type
== EXEC_PARALLEL
)
921 for (i
=0; i
< fx
->fc
; i
++)
923 if (fx
->fix
[i
].reloc
)
925 where
= (f
- frag_now
->fr_literal
) + 4*j
;
927 fix_new_exp (frag_now
,
944 /* Check 2 instructions and determine if they can be safely */
945 /* executed in parallel. Returns 1 if they can be. */
947 parallel_ok (op1
, insn1
, op2
, insn2
, exec_type
)
948 struct d30v_insn
*op1
, *op2
;
949 unsigned long insn1
, insn2
;
950 exec_type_enum exec_type
;
952 int i
, j
, shift
, regno
, bits
, ecc
;
953 unsigned long flags
, mask
, flags_set1
, flags_set2
, flags_used1
, flags_used2
;
954 unsigned long ins
, mod_reg
[2][3], used_reg
[2][3], flag_reg
[2];
955 struct d30v_format
*f
;
956 struct d30v_opcode
*op
;
958 /* section 4.3: both instructions must not be IU or MU only */
959 if ((op1
->op
->unit
== IU
&& op2
->op
->unit
== IU
)
960 || (op1
->op
->unit
== MU
&& op2
->op
->unit
== MU
))
963 /* first instruction must not be a jump to safely optimize, unless this
964 is an explicit parallel operation. */
965 if (exec_type
!= EXEC_PARALLEL
966 && (op1
->op
->flags_used
& (FLAG_JMP
| FLAG_JSR
)))
969 /* If one instruction is /TX or /XT and the other is /FX or /XF respectively,
970 then it is safe to allow the two to be done as parallel ops, since only
971 one will ever be executed at a time. */
972 if ((op1
->ecc
== ECC_TX
&& op2
->ecc
== ECC_FX
)
973 || (op1
->ecc
== ECC_FX
&& op2
->ecc
== ECC_TX
)
974 || (op1
->ecc
== ECC_XT
&& op2
->ecc
== ECC_XF
)
975 || (op1
->ecc
== ECC_XF
&& op2
->ecc
== ECC_XT
))
980 [2] a0, a1, flag registers */
982 for (j
= 0; j
< 2; j
++)
999 mod_reg
[j
][0] = mod_reg
[j
][1] = 0;
1000 used_reg
[j
][0] = used_reg
[j
][1] = 0;
1002 if (flag_explicitly_parallel
)
1004 /* For human specified parallel instructions we have been asked
1005 to ignore the possibility that both instructions could modify
1006 bits in the PSW, so we initialise the mod & used arrays to 0.
1007 We have been asked, however, to refuse to allow parallel
1008 instructions which explicitly set the same flag register,
1009 eg "cmpne f0,r1,0x10 || cmpeq f0, r5, 0x2", so further on we test
1010 for the use of a flag register and set a bit in the mod or used
1011 array appropriately. */
1018 mod_reg
[j
][2] = (op
->flags_set
& FLAG_ALL
);
1019 used_reg
[j
][2] = (op
->flags_used
& FLAG_ALL
);
1022 /* BSR/JSR always sets R62 */
1023 if (op
->flags_used
& FLAG_JSR
)
1024 mod_reg
[j
][1] = (1L << (62-32));
1026 /* conditional execution affects the flags_used */
1031 used_reg
[j
][2] |= flag_reg
[j
] = FLAG_0
;
1036 used_reg
[j
][2] |= flag_reg
[j
] = FLAG_1
;
1041 used_reg
[j
][2] |= flag_reg
[j
] = (FLAG_0
| FLAG_1
);
1045 for (i
= 0; f
->operands
[i
]; i
++)
1047 flags
= d30v_operand_table
[f
->operands
[i
]].flags
;
1048 shift
= 12 - d30v_operand_table
[f
->operands
[i
]].position
;
1049 bits
= d30v_operand_table
[f
->operands
[i
]].bits
;
1053 mask
= 0x7FFFFFFF >> (31 - bits
);
1055 if ((flags
& OPERAND_PLUS
) || (flags
& OPERAND_MINUS
))
1057 /* this is a post-increment or post-decrement */
1058 /* the previous register needs to be marked as modified */
1060 shift
= 12 - d30v_operand_table
[f
->operands
[i
-1]].position
;
1061 regno
= (ins
>> shift
) & 0x3f;
1063 mod_reg
[j
][1] |= 1L << (regno
- 32);
1065 mod_reg
[j
][0] |= 1L << regno
;
1067 else if (flags
& OPERAND_REG
)
1069 regno
= (ins
>> shift
) & mask
;
1070 /* the memory write functions don't have a destination register */
1071 if ((flags
& OPERAND_DEST
) && !(op
->flags_set
& FLAG_MEM
))
1073 /* MODIFIED registers and flags */
1074 if (flags
& OPERAND_ACC
)
1077 mod_reg
[j
][2] |= FLAG_A0
;
1078 else if (regno
== 1)
1079 mod_reg
[j
][2] |= FLAG_A1
;
1083 else if (flags
& OPERAND_FLAG
)
1084 mod_reg
[j
][2] |= 1L << regno
;
1085 else if (!(flags
& OPERAND_CONTROL
))
1089 /* need to check if there are two destination */
1090 /* registers, for example ld2w */
1091 if (flags
& OPERAND_2REG
)
1096 for (r
= regno
; r
<= regno
+ z
; r
++)
1099 mod_reg
[j
][1] |= 1L << (r
- 32);
1101 mod_reg
[j
][0] |= 1L << r
;
1107 /* USED, but not modified registers and flags */
1108 if (flags
& OPERAND_ACC
)
1111 used_reg
[j
][2] |= FLAG_A0
;
1112 else if (regno
== 1)
1113 used_reg
[j
][2] |= FLAG_A1
;
1117 else if (flags
& OPERAND_FLAG
)
1118 used_reg
[j
][2] |= 1L << regno
;
1119 else if (!(flags
& OPERAND_CONTROL
))
1123 /* need to check if there are two source */
1124 /* registers, for example st2w */
1125 if (flags
& OPERAND_2REG
)
1130 for (r
= regno
; r
<= regno
+ z
; r
++)
1133 used_reg
[j
][1] |= 1L << (r
- 32);
1135 used_reg
[j
][0] |= 1L << r
;
1143 flags_set1
= op1
->op
->flags_set
;
1144 flags_set2
= op2
->op
->flags_set
;
1145 flags_used1
= op1
->op
->flags_used
;
1146 flags_used2
= op2
->op
->flags_used
;
1148 /* Check for illegal combinations with ADDppp/SUBppp. */
1149 if (((flags_set1
& FLAG_NOT_WITH_ADDSUBppp
) != 0
1150 && (flags_used2
& FLAG_ADDSUBppp
) != 0)
1151 || ((flags_set2
& FLAG_NOT_WITH_ADDSUBppp
) != 0
1152 && (flags_used1
& FLAG_ADDSUBppp
) != 0))
1155 /* Load instruction combined with half-word multiply is illegal. */
1156 if (((flags_used1
& FLAG_MEM
) != 0 && (flags_used2
& FLAG_MUL16
))
1157 || ((flags_used2
& FLAG_MEM
) != 0 && (flags_used1
& FLAG_MUL16
)))
1160 /* Specifically allow add || add by removing carry, overflow bits dependency.
1161 This is safe, even if an addc follows since the IU takes the argument in
1162 the right container, and it writes its results last.
1163 However, don't paralellize add followed by addc or sub followed by
1166 if (mod_reg
[0][2] == FLAG_CVVA
&& mod_reg
[1][2] == FLAG_CVVA
1167 && (used_reg
[0][2] & ~flag_reg
[0]) == 0
1168 && (used_reg
[1][2] & ~flag_reg
[1]) == 0
1169 && op1
->op
->unit
== EITHER
&& op2
->op
->unit
== EITHER
)
1171 mod_reg
[0][2] = mod_reg
[1][2] = 0;
1174 for (j
= 0; j
< 3; j
++)
1176 /* If the second instruction depends on the first, we obviously
1177 cannot parallelize. Note, the mod flag implies use, so
1178 check that as well. */
1179 /* If flag_explicitly_parallel is set, then the case of the
1180 second instruction using a register the first instruction
1181 modifies is assumed to be okay; we trust the human. We
1182 don't trust the human if both instructions modify the same
1183 register but we do trust the human if they modify the same
1185 /* We have now been requested not to trust the human if the
1186 instructions modify the same flag registers either. */
1187 if (flag_explicitly_parallel
)
1189 if ((mod_reg
[0][j
] & mod_reg
[1][j
]) != 0)
1193 if ((mod_reg
[0][j
] & (mod_reg
[1][j
] | used_reg
[1][j
])) != 0)
1201 /* This is the main entry point for the machine-dependent assembler. str points to a
1202 machine-dependent instruction. This function is supposed to emit the frags/bytes
1203 it assembles to. For the D30V, it mostly handles the special VLIW parsing and packing
1204 and leaves the difficult stuff to do_assemble(). */
1206 static long long prev_insn
= -1;
1207 static struct d30v_insn prev_opcode
;
1208 static subsegT prev_subseg
;
1209 static segT prev_seg
= 0;
1215 struct d30v_insn opcode
;
1217 exec_type_enum extype
= EXEC_UNKNOWN
; /* execution type; parallel, etc */
1218 static exec_type_enum etype
= EXEC_UNKNOWN
; /* saved extype. used for multiline instructions */
1221 if ((prev_insn
!= -1) && prev_seg
1222 && ((prev_seg
!= now_seg
) || (prev_subseg
!= now_subseg
)))
1223 d30v_cleanup (false);
1225 if (d30v_current_align
< 3)
1226 d30v_align (3, NULL
, d30v_last_label
);
1227 else if (d30v_current_align
> 3)
1228 d30v_current_align
= 3;
1229 d30v_last_label
= NULL
;
1231 flag_explicitly_parallel
= 0;
1233 if (etype
== EXEC_UNKNOWN
)
1235 /* look for the special multiple instruction separators */
1236 str2
= strstr (str
, "||");
1239 extype
= EXEC_PARALLEL
;
1244 str2
= strstr (str
, "->");
1249 str2
= strstr (str
, "<-");
1251 extype
= EXEC_REVSEQ
;
1254 /* str2 points to the separator, if one */
1259 /* if two instructions are present and we already have one saved
1260 then first write it out */
1261 d30v_cleanup (false);
1263 /* Assemble first instruction and save it. */
1264 prev_insn
= do_assemble (str
, &prev_opcode
, 1, 0);
1265 if (prev_insn
== -1)
1266 as_bad (_("Cannot assemble instruction"));
1267 if (prev_opcode
.form
!= NULL
&& prev_opcode
.form
->form
>= LONG
)
1268 as_bad (_("First opcode is long. Unable to mix instructions as specified."));
1269 fixups
= fixups
->next
;
1272 prev_subseg
= now_subseg
;
1276 insn
= do_assemble (str
, &opcode
,
1277 (extype
!= EXEC_UNKNOWN
|| etype
!= EXEC_UNKNOWN
),
1278 extype
== EXEC_PARALLEL
);
1281 if (extype
!= EXEC_UNKNOWN
)
1283 as_bad (_("Cannot assemble instruction"));
1287 if (etype
!= EXEC_UNKNOWN
)
1290 etype
= EXEC_UNKNOWN
;
1293 /* Word multiply instructions must not be followed by either a load or a
1294 16-bit multiply instruction in the next cycle. */
1295 if ( (extype
!= EXEC_REVSEQ
)
1297 && (opcode
.op
->flags_used
& (FLAG_MEM
| FLAG_MUL16
)))
1299 /* However, load and multiply should able to be combined in a parallel
1300 operation, so check for that first. */
1302 && (opcode
.op
->flags_used
& FLAG_MEM
)
1303 && opcode
.form
->form
< LONG
1304 && (extype
== EXEC_PARALLEL
|| (Optimizing
&& extype
== EXEC_UNKNOWN
))
1305 && parallel_ok (&prev_opcode
, (long)prev_insn
,
1306 &opcode
, (long)insn
, extype
)
1307 && write_2_short (&prev_opcode
, (long)prev_insn
,
1308 &opcode
, (long)insn
, extype
, fixups
) == 0)
1310 /* no instructions saved */
1316 /* Can't parallelize, flush previous instruction and emit a word of NOPS,
1317 unless the previous instruction is a NOP, in which case just flush it,
1318 as this will generate a word of NOPs for us. */
1320 if (prev_insn
!= -1 && (strcmp (prev_opcode
.op
->name
, "nop") == 0))
1321 d30v_cleanup (false);
1326 if (prev_insn
!= -1)
1327 d30v_cleanup (true);
1331 d30v_number_to_chars (f
, NOP2
, 8);
1333 if (warn_nops
== NOP_ALL
|| warn_nops
== NOP_MULTIPLY
)
1335 if (opcode
.op
->flags_used
& FLAG_MEM
)
1336 as_warn (_("word of NOPs added between word multiply and load"));
1338 as_warn (_("word of NOPs added between word multiply and 16-bit multiply"));
1343 extype
= EXEC_UNKNOWN
;
1346 else if ( (extype
== EXEC_REVSEQ
)
1348 && (prev_opcode
.op
->flags_used
& (FLAG_MEM
| FLAG_MUL16
)))
1350 /* Can't parallelize, flush current instruction and add a sequential NOP. */
1351 write_1_short (& opcode
, (long) insn
, fixups
->next
->next
, true);
1353 /* Make the previous instruction the current one. */
1354 extype
= EXEC_UNKNOWN
;
1357 now_subseg
= prev_subseg
;
1359 cur_mul32_p
= prev_mul32_p
;
1361 memcpy (&opcode
, &prev_opcode
, sizeof (prev_opcode
));
1364 /* If this is a long instruction, write it and any previous short instruction. */
1365 if (opcode
.form
->form
>= LONG
)
1367 if (extype
!= EXEC_UNKNOWN
)
1368 as_bad (_("Instruction uses long version, so it cannot be mixed as specified"));
1369 d30v_cleanup (false);
1370 write_long (& opcode
, insn
, fixups
);
1373 else if ((prev_insn
!= -1)
1375 (& prev_opcode
, (long) prev_insn
, & opcode
,
1376 (long) insn
, extype
, fixups
) == 0))
1378 /* No instructions saved. */
1383 if (extype
!= EXEC_UNKNOWN
)
1384 as_bad (_("Unable to mix instructions as specified"));
1386 /* Save off last instruction so it may be packed on next pass. */
1387 memcpy (&prev_opcode
, &opcode
, sizeof (prev_opcode
));
1390 prev_subseg
= now_subseg
;
1391 fixups
= fixups
->next
;
1392 prev_mul32_p
= cur_mul32_p
;
1397 /* do_assemble assembles a single instruction and returns an opcode */
1398 /* it returns -1 (an invalid opcode) on error */
1400 #define NAME_BUF_LEN 20
1403 do_assemble (str
, opcode
, shortp
, is_parallel
)
1405 struct d30v_insn
*opcode
;
1409 unsigned char * op_start
;
1410 unsigned char * save
;
1411 unsigned char * op_end
;
1412 char name
[NAME_BUF_LEN
];
1415 int fsize
= (shortp
? FORCE_SHORT
: 0);
1416 expressionS myops
[6];
1419 /* Drop leading whitespace */
1420 while (* str
== ' ')
1423 /* find the opcode end */
1424 for (op_start
= op_end
= (unsigned char *) (str
);
1426 && nlen
< (NAME_BUF_LEN
- 1)
1428 && !is_end_of_line
[*op_end
] && *op_end
!= ' ';
1431 name
[nlen
] = tolower (op_start
[nlen
]);
1440 /* if there is an execution condition code, handle it */
1444 while ( (i
< ECC_MAX
) && strncasecmp (d30v_ecc_names
[i
], op_end
+ 1, 2))
1450 strncpy (tmp
, op_end
+ 1, 2);
1452 as_bad (_("unknown condition code: %s"),tmp
);
1455 /* printf ("condition code=%d\n",i); */
1460 opcode
->ecc
= ECC_AL
;
1463 /* CMP and CMPU change their name based on condition codes */
1464 if (!strncmp (name
, "cmp", 3))
1467 char **str
= (char **)d30v_cc_names
;
1473 for (i
=1; *str
&& strncmp (*str
, & name
[p
], 2); i
++, str
++)
1476 /* cmpu only supports some condition codes */
1482 as_bad (_("cmpu doesn't support condition code %s"),&name
[p
]);
1489 as_bad (_("unknown condition code: %s"),&name
[p
]);
1498 /* printf("cmp_hack=%d\n",cmp_hack); */
1500 /* need to look for .s or .l */
1501 if (name
[nlen
-2] == '.')
1503 switch (name
[nlen
-1])
1506 fsize
= FORCE_SHORT
;
1515 /* find the first opcode with the proper name */
1516 opcode
->op
= (struct d30v_opcode
*)hash_find (d30v_hash
, name
);
1517 if (opcode
->op
== NULL
)
1519 as_bad (_("unknown opcode: %s"),name
);
1523 save
= input_line_pointer
;
1524 input_line_pointer
= op_end
;
1525 while (!(opcode
->form
= find_format (opcode
->op
, myops
, fsize
, cmp_hack
)))
1528 if (opcode
->op
->name
== NULL
|| strcmp (opcode
->op
->name
, name
))
1530 as_bad (_("operands for opcode `%s' do not match any valid format"), name
);
1534 input_line_pointer
= save
;
1536 insn
= build_insn (opcode
, myops
);
1538 /* Propigate multiply status */
1541 if (is_parallel
&& prev_mul32_p
)
1545 prev_mul32_p
= cur_mul32_p
;
1546 cur_mul32_p
= (opcode
->op
->flags_used
& FLAG_MUL32
) != 0;
1550 /* Propagate left_kills_right status */
1553 prev_left_kills_right_p
= cur_left_kills_right_p
;
1555 if (opcode
->op
->flags_set
& FLAG_LKR
)
1557 cur_left_kills_right_p
= 1;
1559 if (strcmp (opcode
->op
->name
, "mvtsys") == 0)
1561 /* Left kills right for only mvtsys only for PSW/PSWH/PSWL/flags target. */
1562 if ((myops
[0].X_op
== O_register
) &&
1563 ((myops
[0].X_add_number
== OPERAND_CONTROL
) || /* psw */
1564 (myops
[0].X_add_number
== OPERAND_CONTROL
+MAX_CONTROL_REG
+2) || /* pswh */
1565 (myops
[0].X_add_number
== OPERAND_CONTROL
+MAX_CONTROL_REG
+1) || /* pswl */
1566 (myops
[0].X_add_number
== OPERAND_FLAG
+0) || /* f0 */
1567 (myops
[0].X_add_number
== OPERAND_FLAG
+1) || /* f1 */
1568 (myops
[0].X_add_number
== OPERAND_FLAG
+2) || /* f2 */
1569 (myops
[0].X_add_number
== OPERAND_FLAG
+3) || /* f3 */
1570 (myops
[0].X_add_number
== OPERAND_FLAG
+4) || /* f4 */
1571 (myops
[0].X_add_number
== OPERAND_FLAG
+5) || /* f5 */
1572 (myops
[0].X_add_number
== OPERAND_FLAG
+6) || /* f6 */
1573 (myops
[0].X_add_number
== OPERAND_FLAG
+7))) /* f7 */
1575 cur_left_kills_right_p
= 1;
1579 /* Other mvtsys target registers don't kill right instruction. */
1580 cur_left_kills_right_p
= 0;
1585 cur_left_kills_right_p
= 0;
1592 /* find_format() gets a pointer to an entry in the format table.
1593 It must look at all formats for an opcode and use the operands
1594 to choose the correct one. Returns NULL on error. */
1596 static struct d30v_format
*
1597 find_format (opcode
, myops
, fsize
, cmp_hack
)
1598 struct d30v_opcode
*opcode
;
1599 expressionS myops
[];
1603 int numops
, match
, index
, i
=0, j
, k
;
1604 struct d30v_format
*fm
;
1609 /* Get all the operands and save them as expressions. */
1610 numops
= get_operands (myops
, cmp_hack
);
1612 while ((index
= opcode
->format
[i
++]) != 0)
1614 if (fsize
== FORCE_SHORT
&& index
>= LONG
)
1617 if (fsize
== FORCE_LONG
&& index
< LONG
)
1620 fm
= (struct d30v_format
*)&d30v_format_table
[index
];
1622 while (fm
->form
== index
)
1625 /* Now check the operands for compatibility. */
1626 for (j
= 0; match
&& fm
->operands
[j
]; j
++)
1628 int flags
= d30v_operand_table
[fm
->operands
[j
]].flags
;
1629 int bits
= d30v_operand_table
[fm
->operands
[j
]].bits
;
1630 int X_op
= myops
[j
].X_op
;
1631 int num
= myops
[j
].X_add_number
;
1633 if (flags
& OPERAND_SPECIAL
)
1635 else if (X_op
== O_illegal
)
1637 else if (flags
& OPERAND_REG
)
1639 if (X_op
!= O_register
1640 || ((flags
& OPERAND_ACC
) && !(num
& OPERAND_ACC
))
1641 || (!(flags
& OPERAND_ACC
) && (num
& OPERAND_ACC
))
1642 || ((flags
& OPERAND_FLAG
) && !(num
& OPERAND_FLAG
))
1643 || (!(flags
& (OPERAND_FLAG
| OPERAND_CONTROL
)) && (num
& OPERAND_FLAG
))
1644 || ((flags
& OPERAND_CONTROL
)
1645 && !(num
& (OPERAND_CONTROL
| OPERAND_FLAG
))))
1650 else if (((flags
& OPERAND_MINUS
)
1651 && (X_op
!= O_absent
|| num
!= OPERAND_MINUS
))
1652 || ((flags
& OPERAND_PLUS
)
1653 && (X_op
!= O_absent
|| num
!= OPERAND_PLUS
))
1654 || ((flags
& OPERAND_ATMINUS
)
1655 && (X_op
!= O_absent
|| num
!= OPERAND_ATMINUS
))
1656 || ((flags
& OPERAND_ATPAR
)
1657 && (X_op
!= O_absent
|| num
!= OPERAND_ATPAR
))
1658 || ((flags
& OPERAND_ATSIGN
)
1659 && (X_op
!= O_absent
|| num
!= OPERAND_ATSIGN
)))
1663 else if (flags
& OPERAND_NUM
)
1665 /* A number can be a constant or symbol expression. */
1667 /* If we have found a register name, but that name also
1668 matches a symbol, then re-parse the name as an expression. */
1669 if (X_op
== O_register
1670 && symbol_find ((char *) myops
[j
].X_op_symbol
))
1672 input_line_pointer
= (char *) myops
[j
].X_op_symbol
;
1673 expression (& myops
[j
]);
1676 /* Turn an expression into a symbol for later resolution. */
1677 if (X_op
!= O_absent
&& X_op
!= O_constant
1678 && X_op
!= O_symbol
&& X_op
!= O_register
1681 symbolS
*sym
= make_expr_symbol (&myops
[j
]);
1682 myops
[j
].X_op
= X_op
= O_symbol
;
1683 myops
[j
].X_add_symbol
= sym
;
1684 myops
[j
].X_add_number
= num
= 0;
1687 if (fm
->form
>= LONG
)
1689 /* If we're testing for a LONG format, either fits. */
1690 if (X_op
!= O_constant
&& X_op
!= O_symbol
)
1693 else if (fm
->form
< LONG
1694 && ((fsize
== FORCE_SHORT
&& X_op
== O_symbol
)
1695 || (fm
->form
== SHORT_D2
&& j
== 0)))
1697 /* This is the tricky part. Will the constant or symbol
1698 fit into the space in the current format? */
1699 else if (X_op
== O_constant
)
1701 if (check_range (num
, bits
, flags
))
1704 else if (X_op
== O_symbol
1705 && S_IS_DEFINED (myops
[j
].X_add_symbol
)
1706 && S_GET_SEGMENT (myops
[j
].X_add_symbol
) == now_seg
1707 && opcode
->reloc_flag
== RELOC_PCREL
)
1709 /* If the symbol is defined, see if the value will fit
1710 into the form we're considering. */
1714 /* Calculate the current address by running through the
1715 previous frags and adding our current offset. */
1717 for (f
= frchain_now
->frch_root
; f
; f
= f
->fr_next
)
1718 value
+= f
->fr_fix
+ f
->fr_offset
;
1719 value
= (S_GET_VALUE (myops
[j
].X_add_symbol
) - value
1720 - (obstack_next_free (&frchain_now
->frch_obstack
)
1721 - frag_now
->fr_literal
));
1722 if (check_range (value
, bits
, flags
))
1729 /* printf("through the loop: match=%d\n",match); */
1730 /* We're only done if the operands matched so far AND there
1731 are no more to check. */
1732 if (match
&& myops
[j
].X_op
== 0)
1734 /* Final check - issue a warning if an odd numbered register
1735 is used as the first register in an instruction that reads
1736 or writes 2 registers. */
1738 for (j
= 0; fm
->operands
[j
]; j
++)
1739 if (myops
[j
].X_op
== O_register
1740 && (myops
[j
].X_add_number
& 1)
1741 && (d30v_operand_table
[fm
->operands
[j
]].flags
& OPERAND_2REG
))
1743 _("Odd numbered register used as target of multi-register instruction"));
1747 fm
= (struct d30v_format
*)&d30v_format_table
[++k
];
1749 /* printf("trying another format: i=%d\n",i); */
1754 /* if while processing a fixup, a reloc really needs to be created */
1755 /* then it is done here */
1758 tc_gen_reloc (seg
, fixp
)
1763 reloc
= (arelent
*) xmalloc (sizeof (arelent
));
1764 reloc
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
1765 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
1766 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
1767 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, fixp
->fx_r_type
);
1768 if (reloc
->howto
== (reloc_howto_type
*) NULL
)
1770 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
1771 _("reloc %d not supported by object file format"), (int)fixp
->fx_r_type
);
1774 reloc
->addend
= fixp
->fx_addnumber
;
1779 md_estimate_size_before_relax (fragp
, seg
)
1788 md_pcrel_from_section (fixp
, sec
)
1792 if (fixp
->fx_addsy
!= (symbolS
*)NULL
&& (!S_IS_DEFINED (fixp
->fx_addsy
) ||
1793 (S_GET_SEGMENT (fixp
->fx_addsy
) != sec
)))
1795 return fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
1799 md_apply_fix3 (fixp
, valuep
, seg
)
1805 unsigned long insn
, insn2
;
1808 if (fixp
->fx_addsy
== (symbolS
*) NULL
)
1813 else if (fixp
->fx_pcrel
)
1817 value
= fixp
->fx_offset
;
1819 if (fixp
->fx_subsy
!= (symbolS
*) NULL
)
1821 if (S_GET_SEGMENT (fixp
->fx_subsy
) == absolute_section
)
1822 value
-= S_GET_VALUE (fixp
->fx_subsy
);
1825 /* We don't actually support subtracting a symbol. */
1826 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
1827 _("expression too complex"));
1832 /* Fetch the instruction, insert the fully resolved operand
1833 value, and stuff the instruction back again. */
1834 where
= fixp
->fx_frag
->fr_literal
+ fixp
->fx_where
;
1835 insn
= bfd_getb32 ((unsigned char *) where
);
1837 switch (fixp
->fx_r_type
)
1839 case BFD_RELOC_8
: /* Check for a bad .byte directive. */
1840 if (fixp
->fx_addsy
!= NULL
)
1841 as_bad (_("line %d: unable to place address of symbol '%s' into a byte"),
1842 fixp
->fx_line
, S_GET_NAME (fixp
->fx_addsy
));
1843 else if (((unsigned)value
) > 0xff)
1844 as_bad (_("line %d: unable to place value %x into a byte"),
1845 fixp
->fx_line
, value
);
1847 * (unsigned char *) where
= value
;
1850 case BFD_RELOC_16
: /* Check for a bad .short directive. */
1851 if (fixp
->fx_addsy
!= NULL
)
1852 as_bad (_("line %d: unable to place address of symbol '%s' into a short"),
1853 fixp
->fx_line
, S_GET_NAME (fixp
->fx_addsy
));
1854 else if (((unsigned)value
) > 0xffff)
1855 as_bad (_("line %d: unable to place value %x into a short"),
1856 fixp
->fx_line
, value
);
1858 bfd_putb16 ((bfd_vma
) value
, (unsigned char *) where
);
1861 case BFD_RELOC_64
: /* Check for a bad .quad directive. */
1862 if (fixp
->fx_addsy
!= NULL
)
1863 as_bad (_("line %d: unable to place address of symbol '%s' into a quad"),
1864 fixp
->fx_line
, S_GET_NAME (fixp
->fx_addsy
));
1867 bfd_putb32 ((bfd_vma
) value
, (unsigned char *) where
);
1868 bfd_putb32 (0, ((unsigned char *) where
) + 4);
1872 case BFD_RELOC_D30V_6
:
1873 check_size (value
, 6, fixp
->fx_file
, fixp
->fx_line
);
1874 insn
|= value
& 0x3F;
1875 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1878 case BFD_RELOC_D30V_9_PCREL
:
1879 if (fixp
->fx_where
& 0x7)
1884 fixp
->fx_r_type
= BFD_RELOC_D30V_9_PCREL_R
;
1886 check_size (value
, 9, fixp
->fx_file
, fixp
->fx_line
);
1887 insn
|= ((value
>> 3) & 0x3F) << 12;
1888 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1891 case BFD_RELOC_D30V_15
:
1892 check_size (value
, 15, fixp
->fx_file
, fixp
->fx_line
);
1893 insn
|= (value
>> 3) & 0xFFF;
1894 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1897 case BFD_RELOC_D30V_15_PCREL
:
1898 if (fixp
->fx_where
& 0x7)
1903 fixp
->fx_r_type
= BFD_RELOC_D30V_15_PCREL_R
;
1905 check_size (value
, 15, fixp
->fx_file
, fixp
->fx_line
);
1906 insn
|= (value
>> 3) & 0xFFF;
1907 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1910 case BFD_RELOC_D30V_21
:
1911 check_size (value
, 21, fixp
->fx_file
, fixp
->fx_line
);
1912 insn
|= (value
>> 3) & 0x3FFFF;
1913 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1916 case BFD_RELOC_D30V_21_PCREL
:
1917 if (fixp
->fx_where
& 0x7)
1922 fixp
->fx_r_type
= BFD_RELOC_D30V_21_PCREL_R
;
1924 check_size (value
, 21, fixp
->fx_file
, fixp
->fx_line
);
1925 insn
|= (value
>> 3) & 0x3FFFF;
1926 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1929 case BFD_RELOC_D30V_32
:
1930 insn2
= bfd_getb32 ((unsigned char *) where
+ 4);
1931 insn
|= (value
>> 26) & 0x3F; /* top 6 bits */
1932 insn2
|= ((value
& 0x03FC0000) << 2); /* next 8 bits */
1933 insn2
|= value
& 0x0003FFFF; /* bottom 18 bits */
1934 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1935 bfd_putb32 ((bfd_vma
) insn2
, (unsigned char *) where
+ 4);
1938 case BFD_RELOC_D30V_32_PCREL
:
1939 insn2
= bfd_getb32 ((unsigned char *) where
+ 4);
1940 insn
|= (value
>> 26) & 0x3F; /* top 6 bits */
1941 insn2
|= ((value
& 0x03FC0000) << 2); /* next 8 bits */
1942 insn2
|= value
& 0x0003FFFF; /* bottom 18 bits */
1943 bfd_putb32 ((bfd_vma
) insn
, (unsigned char *) where
);
1944 bfd_putb32 ((bfd_vma
) insn2
, (unsigned char *) where
+ 4);
1948 bfd_putb32 ((bfd_vma
) value
, (unsigned char *) where
);
1952 as_bad (_("line %d: unknown relocation type: 0x%x"),
1953 fixp
->fx_line
,fixp
->fx_r_type
);
1960 /* d30v_cleanup() is called after the assembler has finished parsing the input
1961 file or after a label is defined. Because the D30V assembler sometimes saves short
1962 instructions to see if it can package them with the next instruction, there may
1963 be a short instruction that still needs written. */
1965 d30v_cleanup (use_sequential
)
1971 if (prev_insn
!= -1)
1974 subseg
= now_subseg
;
1975 subseg_set (prev_seg
, prev_subseg
);
1976 write_1_short (&prev_opcode
, (long)prev_insn
, fixups
->next
, use_sequential
);
1977 subseg_set (seg
, subseg
);
1980 prev_mul32_p
= false;
1986 d30v_number_to_chars (buf
, value
, n
)
1987 char *buf
; /* Return 'nbytes' of chars here. */
1988 long long value
; /* The value of the bits. */
1989 int n
; /* Number of bytes in the output. */
1993 buf
[n
] = value
& 0xff;
1999 /* This function is called at the start of every line. */
2000 /* it checks to see if the first character is a '.' */
2001 /* which indicates the start of a pseudo-op. If it is, */
2002 /* then write out any unwritten instructions */
2007 char *c
= input_line_pointer
;
2009 while (isspace (*c
))
2013 d30v_cleanup (false);
2017 check_size (value
, bits
, file
, line
)
2030 max
= (1 << (bits
- 1)) - 1;
2033 as_bad_where (file
, line
, _("value too large to fit in %d bits"), bits
);
2038 /* d30v_frob_label() is called when after a label is recognized. */
2041 d30v_frob_label (lab
)
2044 /* Emit any pending instructions. */
2045 d30v_cleanup (false);
2047 /* Update the label's address with the current output pointer. */
2048 symbol_set_frag (lab
, frag_now
);
2049 S_SET_VALUE (lab
, (valueT
) frag_now_fix ());
2051 /* Record this label for future adjustment after we find out what
2052 kind of data it references, and the required alignment therewith. */
2053 d30v_last_label
= lab
;
2056 /* Hook into cons for capturing alignment changes. */
2059 d30v_cons_align (size
)
2065 while ((size
>>= 1) != 0)
2068 if (d30v_current_align
< log_size
)
2069 d30v_align (log_size
, (char *) NULL
, NULL
);
2070 else if (d30v_current_align
> log_size
)
2071 d30v_current_align
= log_size
;
2072 d30v_last_label
= NULL
;
2075 /* Called internally to handle all alignment needs. This takes care
2076 of eliding calls to frag_align if'n the cached current alignment
2077 says we've already got it, as well as taking care of the auto-aligning
2081 d30v_align (n
, pfill
, label
)
2086 /* The front end is prone to changing segments out from under us
2087 temporarily when -g is in effect. */
2088 int switched_seg_p
= (d30v_current_align_seg
!= now_seg
);
2090 /* Do not assume that if 'd30v_current_align >= n' and
2091 '! switched_seg_p' that it is safe to avoid performing
2092 this alignement request. The alignment of the current frag
2093 can be changed under our feet, for example by a .ascii
2094 directive in the source code. cf testsuite/gas/d30v/reloc.s */
2096 d30v_cleanup (false);
2101 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
2103 static char const nop
[4] = { 0x00, 0xf0, 0x00, 0x00 };
2105 /* First, make sure we're on a four-byte boundary, in case
2106 someone has been putting .byte values the text section. */
2107 if (d30v_current_align
< 2 || switched_seg_p
)
2108 frag_align (2, 0, 0);
2109 frag_align_pattern (n
, nop
, sizeof nop
, 0);
2112 frag_align (n
, 0, 0);
2115 frag_align (n
, *pfill
, 0);
2117 if (!switched_seg_p
)
2118 d30v_current_align
= n
;
2123 int label_seen
= false;
2124 struct frag
* old_frag
;
2128 assert (S_GET_SEGMENT (label
) == now_seg
);
2130 old_frag
= symbol_get_frag (label
);
2131 old_value
= S_GET_VALUE (label
);
2132 new_value
= (valueT
) frag_now_fix ();
2134 /* It is possible to have more than one label at a particular
2135 address, especially if debugging is enabled, so we must
2136 take care to adjust all the labels at this address in this
2137 fragment. To save time we search from the end of the symbol
2138 list, backwards, since the symbols we are interested in are
2139 almost certainly the ones that were most recently added.
2140 Also to save time we stop searching once we have seen at least
2141 one matching label, and we encounter a label that is no longer
2142 in the target fragment. Note, this search is guaranteed to
2143 find at least one match when sym == label, so no special case
2144 code is necessary. */
2145 for (sym
= symbol_lastP
; sym
!= NULL
; sym
= symbol_previous (sym
))
2147 if (symbol_get_frag (sym
) == old_frag
2148 && S_GET_VALUE (sym
) == old_value
)
2151 symbol_set_frag (sym
, frag_now
);
2152 S_SET_VALUE (sym
, new_value
);
2154 else if (label_seen
&& symbol_get_frag (sym
) != old_frag
)
2159 record_alignment (now_seg
, n
);
2162 /* Handle the .align pseudo-op. This aligns to a power of two. We
2163 hook here to latch the current alignment. */
2166 s_d30v_align (ignore
)
2170 char fill
, *pfill
= NULL
;
2171 long max_alignment
= 15;
2173 align
= get_absolute_expression ();
2174 if (align
> max_alignment
)
2176 align
= max_alignment
;
2177 as_warn (_("Alignment too large: %d assumed"), align
);
2181 as_warn (_("Alignment negative: 0 assumed"));
2185 if (*input_line_pointer
== ',')
2187 input_line_pointer
++;
2188 fill
= get_absolute_expression ();
2192 d30v_last_label
= NULL
;
2193 d30v_align (align
, pfill
, NULL
);
2195 demand_empty_rest_of_line ();
2198 /* Handle the .text pseudo-op. This is like the usual one, but it
2199 clears the saved last label and resets known alignment. */
2207 d30v_last_label
= NULL
;
2208 d30v_current_align
= 0;
2209 d30v_current_align_seg
= now_seg
;
2212 /* Handle the .data pseudo-op. This is like the usual one, but it
2213 clears the saved last label and resets known alignment. */
2220 d30v_last_label
= NULL
;
2221 d30v_current_align
= 0;
2222 d30v_current_align_seg
= now_seg
;
2225 /* Handle the .section pseudo-op. This is like the usual one, but it
2226 clears the saved last label and resets known alignment. */
2229 s_d30v_section (ignore
)
2232 obj_elf_section (ignore
);
2233 d30v_last_label
= NULL
;
2234 d30v_current_align
= 0;
2235 d30v_current_align_seg
= now_seg
;